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Directed by Randall R. Holmes

Let K be an infinite field and T' = GL,,(K). If we linearly extend the natural action of T
on the set E of n-dimensional column vectors over K to the group algebra KT', then E
becomes a KT'-module. We then construct the KT'-module E®", the r-fold tensor product of
E. The image S, (") of the corresponding representation of KT is called the Schur algebra.
If E is replaced by a different KT'-module L, the same construction results in an algebra
S, 1. The subalgebra A(n) of K' generated by the coordinate functions cqs : I' — K with
1 < a, f < nis a bialgebra. A(n) has a subcoalgebra A, which consists of homogeneous
polynomials of total degree r in the indeterminants c,;. Classically, the dual A* of A, is an
algebra isomorphic to S,(T") and A, is the coefficient space of E®". We identify S, , with

the dual A* | of the coefficient space A, ; of L®" and give a description of A, ;.
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CHAPTER 1

PRELIMINARIES

Definitions and statements of standard results in the theory of modules, algebras, group
rings, tensor products, representations, characters, and linear functionals have been drawn

from [1-8, 10].

1.1 Modules, Algebras, and Group Rings

1 DEFINITION. Let R be a ring. A left R-module is an additive abelian group M
together with a function R x M — M ((r, m) — rm) which satisfies the module axioms
(i) r(m +n) = rm+rn, (ii) (r +s)m = rm + sm, and (iii) r(sm) = (rs)m for all r, s € R
and m, n € M. A right R-module has a similar definition with r on the right. Let M be a
(left) R-module. M is called unitary if R has an identity 1 and 1z -m = m for all m € M.
N is called an R-submodule of M if N is a subgroup of M and rn € N for all r € R and
n € N. If N is an R-module, a function f : M — N such that f(m + n) = f(m) + f(n)
and f(rm) = rf(m) for all m, n € M and r € R is called an R-module homomorphism.
The set of all R-modules homomorphisms from M to N is denoted Homg(M, N). Let K
be a field. A unitary K-module V, a K-submodule of V| and a K-module homomorphism

are called a K-space, a K-subspace, and a K-linear map, respectively.

“Module” means “left module” unless otherwise noted. K always represents a field. Since
K is commutative, a K-space V can be viewed as a right K-space by defining kv = vk
for all kK € K and v € V. An injective, surjective, or bijective homomorphism is called a

monomorphism, epimorphism, or isomorphism, respectively.



2 EXAMPLES. Let R be a ring and f : M — N an R-module homomorphism. Then
ker f = f~1({0}) is an R-submodule of M, im f is an R-submodule of N, and the quotient

group M /N = {m+ N | m € M} is an R-module called a quotient module.

3 THEOREM (First Isomorphism Theorem). If f : M — N is an R-module homomor-

phism then M/ker f = im f.
Proof. See [5, p. 172]. O

4 DEFINITION. A K-algebra is a ring A with identity such that A is a K-space (with
addition via the ring structure) satisfying the algebra condition k(ab) = (ka)b = a(kb) for all
ke Kanda, be A. A K-subalgebra of a K-algebra is a subring that is also a K-subspace.
If A and B are K-algebras, then a K-algebra homomorphism is a ring homomorphism

¢ : A — B mapping 1, to 1z such that p(ka) = k¢(a) for all k € K and a € A.

5 LEMMA. Let A be a ring with identity. Then A is a K-algebra if and only if there is

a ring homomorphism f : K — A such that f(K) C cent (A) and f(1x) = 1..

Proof. (=) Define f: K — A by f(k) = k1,. We have that f is a ring homomorphism
since f(jk) = (7R)La = j(k1a) = J(R(Lu1a)) = J(La(k1.)) = (GLO)(kL) = F()F(R) and
fU+k)=G+k)1s =jla+Ekls = f(§) + f(k) (j, k € K) by the algebra condition
and module axiom (ii). Also f(k)a = (kl,)a = k(1,a) = ka = k(al,) = a(kl,) = af(k)
(k€ K,a€ A) implies f(K) Ccent (A), and f(1x) =141, =1, since A is unitary.

(<=) Define k- a = f(k)a (k € K, a € A) where f(k)a is the multiplication in the ring A.
Note f(k)a = af(k) since f(K) C cent (A). Let j, k € K and a, b € A. Since A satisfies

ring distributive and associative laws, and f is a ring homomorphism,

(i) k-(a+0b)=f(k)(a+b) = f(k)a+ f(k)b=k-a+k-b,
(i) (j+k)-a=fi+ka=(fG)+f(k)a=[fGat f(kla=j-a+k-a,
(iii) j - (k- a) = f()(f(K)a) = (F()f(k))a = f(jk)a = (jk) - a,

2



(iv) 1x ra= f(lg)a=1,a = a, (v) k- (ab) = f(k)(ab) = (f(k)a)b = (k- a)b, and

(vi) (k- a)b = (f(k)a)b = (af (k)b = a(f(k)b) = a(k - b).
Thus A is a K-space by (i) - (iv), and satisfies the algebra condition by (v) and (vi). O

6 NOTATION. Let I' =T, (n € Z1) denote the general linear group GL, (K) and put

K':={f| f:T— K}

7 EXAMPLES. The following are K-algebras: (a) K, (b) the set Mat, K of all n x n
matrices over K, (c) the set Endg (V') of all K-linear maps from a K-space V' to itself, and

(d) K" with pointwise addition and multiplication, and identity 1,r(g) = 15 for all g € T.

8 DEFINITION. Let G be a group and R a commutative ring with identity 1z # Op.
The group ring RG of G over R is the set of all (formal) sums ) _.r,g where only finitely

many 7, € R satisfy r, # 0g. The equation > 7,9+ > 58,9 =, c(ry + 8,)g defines

addition while (35 _;7,9) (e 58h) = 2, nea(Tesn) (gh) = 22,6 (X hee Ton-151) g defines

multiplication where r,s; is the product in R and gh is the product in G.

RG is a ring. By the definition of multiplication, RG is commutative if and only if G is
abelian. We may consider GG as a subset of RG by identifying g € G with 1g. Similarly,
R C RG by identifying » € R with rls;. Thus, by restriction, any KG-module may be
viewed as a K-space. Further, KG is a K-space with scalar multiplication given by the

ring multiplication (viewing K C KG).
9 LEMMA. Let H be a group. Then KH is a K-algebra.

Proof. KH is a ring by the preceding remark. It has identity 151;. Define f : K — KH
by f(k) = kly (k € K). So f(j+k) = (j+k)lx = jlg + kly = f(§) + f(kK) (J, k € K)

and, by the definition of multiplication in K H,

f(]k) = (jk)lH = (jk)(]-HlH) = (le)(le) = f(])f(k)



Consequently f is a ring homomorphism. For k € K and s € KH, we have

fk)s = (kly)s = ks = sk = s(kly) = sf(k),
so f(K) Ccent (KH). Also f(1x) = 1x1y. Lemma (5) implies K H is a K-algebra. O
10 THEOREM. Let H be a group, A a K-algebra, and A* the multiplicative group of

invertible elements of A. Then every group homomorphism ¢ : H — A* has a unique

extension to a K-algebra homomorphism ¢ : KH — A.

Proof. Suppose ¢ : H — A* is a group homomorphism. We define o : KH — A by

@(ZheH ahh) = pen an@(h). Then

P(Tann+ ) =2(Slah+ b)) = X (an + b)olh)

= h;{ anp(h) + }; buo(h) = w(}; ahh) + <p<h§ bhh>
and
(S| [Sor]) =S5 ewn]e) = B (G
= h;{ <g€ZH agh—lbh) ¢(g) = 2 (gEZH agbh> v(gh)
= (B o) (o) = (Z oo (0]

show ¥ is a ring homomorphism. Also P(1x1y) = lxp(ly) =114, =1,. Now let k € K
and ), _, a,h € KH. Then

) o) G- (5]

heH heH heH heH heH

Consequently, @ is a K-algebra homomorphism. Finally, we establish uniqueness. Suppose

that ¢ : KH — A is a K-algebra homomorphism such that ¥|; = ¢. Then ¢ = % since

w(Z m) =3 ad(h) =3 anp(h) = ¢<Z ahh)_

heH heH heH heH D



1.2 Tensor Products

In this section, K-spaces are assumed to be finite-dimensional.

11 DEFINITION. Let {v,, vy, -+, v,} and {w,, w,, - -+, w,,} be bases for K-spaces V
and W, respectively. Then the tensor product of V and W, denoted V ® W, is the K-space
with basis {v; @ w; | 1 <i<mn,1<j<m}. Forarbitrary v € V and w € W, we may

write v = ) a;v; and w = ) Bw;. We define v @w =3, a,fv; 2w, € Vo W.

i\
12 REMARKS. Let V and W be K-spaces. (a) dim (V ® W) = (dim V')(dim W) follows
from the definition. (b) Let v € V. Then v®0=v® (0+0) =v®0+v®0. Since 0 is the
only element of a group that satisfies  + x = x, we have v ® 0 = 0. Similarly, 0 ® v = 0.
(c) The tensor product of V; ® --- ® V,, of n K-spaces Vi, ..., V, is defined similarly. We

have v, ® - - - ®v,, = 0 if any v; = 0.

13 LEMMA. Let V and W be K-spaces. Suppose u € V ® W. Then there is a positive
integer n, a linearly independent subset {v,, ..., v,} of V and a subset {w,, ..., w,} of W

such that u = )"" v, ® w;.

Proof. Let {v,}aer be a basis of V. Write u = >°" 2, @y, (x; € V,y, € W). Thus

T, = kiVa, + - + kiyva, (kj € K, Vo; €V, 1<4, 5 < n). Then

n n

u = Z(kilval +---+ kinvan) Y, = Z[(kilval & yi) + -+ (kinvan ® yz)]

i=1 i=1
- Z[(Ual ®kay:) + -+ (Va, @ Kinys)]

i=1
= (Vo @ kit + -+ + Vap, ki) + -+ (Vo @kiYp + -+ + Vay, @ k)
- [/Uocl ® (kllyl + e + knlyn)] + e + [Uan ® (klnyl + e + knnyn)]

= Z?}ai & (kliyl + o+ kn1yn)
i=1

The result follows since each ky;y; + -+ + k. y, € W. O



14 DEFINITION. If R is a commutative ring with 15, M,, ..., M,,, and L are R-modules,

and, for all , v € R and my, ..., m,, m, € M, f: M, x --- x M,, — L satisfies

fmy, ooy m_y, rmy+r'mlmoy, oo, my) =rf(my, oo, my) ' f(my, oo, om0 my)

k3

then f is called n-multilinear (or bilinear when n = 2).

15 EXAMPLES. (a) Let V and W be K-spaces. Define f : V. xW — V@ W by
B(v, w) =vRw (v €V, we W. Then for all v, vy, v, € V, w, wy, w, € W, and k,, k, € K,
we have
Blkyvy + kyvy, w) = (kyvy + kovy) @ w = kv, @ w + kyv, @ w
=k (v, @ w) + ky (v, @ w) = ky B0, w) + ky (s, w)

and, similarly, B(v, kyw, + kyw,) = ky 8(v, wy) + ko (v, w,). Thus 3 is bilinear. (3 is called
the canonical bilinear map. (b) We generalize (a). Let Vi, ..., V, be K-spaces. Define
B:Vix - -xV,-V® -V, by B(vg, ..., 0,) =0, -®w, (v, €V, 1 <i<n).
Similar to (a), [ is bilinear. (3 is called the canonical n-multilinear map. (c) Similar to (a),
t:VxW->WeV,p:VxK-—Vandp,: KxV — V given by t(v, w) = w ® v,

pi(v, k) = vk and py(k, v) = kv (ve V,w e W, k € K) are bilinear.

16 THEOREM. Suppose U, V, and W are K-spaces and let UxV f W
7
f:UxV — W be bilinear. Then there exists a unique K-linear BJ/ //f/
UV

map f:U®V — W such that fo3 = f, where 3 is the canonical

o Figure 1: Tensor Product
bilinear map.

Universal Property

Proof. See [5, p. 211]. O

17 LEMMA. Let M, N, P, and @ be K-spaces and let f : M — P and g: N — @ be
K-linear maps. Then there exists a unique K-linear map f® g: M @ N — P ® () such

that (f ® g)(m®n) = f(m) ® g(n) for all m € M and n € N.



Proof. Define h : M x N — P ® Q by h(m, n) = f(m)® g(n). Then h is bilinear. By
Theorem (16) there exists a unique K-linear map f ® g : M ® N — P ® @ such that

(f ® g) o B = h where (3 is the canonical bilinear map. Then for all m € M and n € N,

(f@g)(m@n) = (f @g)(B(m, n)) =[(f ®g) o Bl(m, n) = h(m, n) = f(m) @ g(n). O

18 DEFINITION. Let V and W be K-spaces with bases V and W, respectively. By
Theorem (16), the map ¢ of Example (15¢) induces the K-linear map 7: VW — WV
given by 7(v @ w) = w v for all v € V and w € W. 7 is called the twist map. Similarly,
for all v € V and k € K, the maps p; and p, of Example (15¢) induce the K-linear maps
m: VK —>Vandm: K@V — V given by m(v® k) = vk and my(k @ v) = kv. m
and m, are called the canonical projections. p, : V — V @ K and p,: V — K ® V given by

p1(v) = v ® 1 and py(v) = 1x ® v are called the canonical injections.

19 LEMMA. Let V and W be K-spaces, 7: VW - W@V and 7 : WV - VW
twist maps, m; and 7, the canonical projections, and p, and p, the canonical injections. (a)
70T = lygw, 707 = lyev, mops = 1y, prom = lygk, mop, = 1y, and pyom, = lggy. (b)
T, Ty, Ta, p1, and p, are K-space isomorphisms. (c¢) Let vy, vy, v3 € V and w,, w,, ws € W.

Define o : VW@ VIWVOW -VeaVeaVeaeWeoWeW by
SO(’U1®w1®U2®'UJ2®/U3®w3):U1®U2®U3®w1®w2®w3.
Then ¢ is a K-space isomorphism.

Proof. a. (T"or)(v@w)=7(w@v)=vwforallve V,weW. So7 o1 =1ygw.
Similarly, 707" = lygy. (M op)(v) =m (V@ 1g) = vl =v=1y(v) for all v € V.

Thus 7, 0 p; = 1,,. Similarly m, 0 p, = 1,. For allv € V and k € K, we have

(prom)(v@k)=p(vk) =vk@1lx =vRklxk =v®k =1lygr(v®k).

Thus p, o, = lygk. Similarly p, o m = 1ggy.



b. The indicated maps are all K-linear by the preceding remarks. They are K-space

isomorphisms by (a).

c. Similar to the proof that 7 is a K-space isomorphism. O

Let U, V, and W be K-spaces. The technique proving 7 is a K-space isomorphism may
be applied to show that the natural identification of (U ®@ V)@ W with U @ (V@ W) is a

K-space isomorphism. Thus the tensor product is associative.

1.3 Representations and Characters

In this section, K-spaces are assumed to be finite-dimensional. Also, K G-modules are

assumed to be finite-dimensional as K-spaces.

20 DEFINITION. Suppose V and W are K-spaces. Denote by GL(V') the group of
invertible K-linear maps from V' to itself. If G is a finite group and p : G — GL(V) is a
group homomorphism, then p is called a representation of G. Let B = {v,, -, v,} and
C =A{w,, -+, w,} be ordered bases of V and W, respectively, and f : V — W a K-linear
map. For 1 < j < n, we may write f(v;) = > .7 a,w, for unique o;; € K. The m x n
matrix [ay;] is called the matriz of f relative to the bases B and C. Let p: G — GL(V) be a
representation and [«;;(g)] the matrix of p(g) (relative to B) for each g € G. ThenT : G — T’
given by T'(g) = [a4;(g)] is a group homomorphism called the matriz representation of G

afforded by V relative to B.

Suppose V is a K-space. We establish a correspondence between representations of G and
KG-modules. Let p : G — GL(V) be a representation. Then V becomes a KG-module

when we define gv = p(g)(v) for ¢ € G and v € V and extend linearly to all of KG via

(e kg =22 ko(gv) = X2, kop(g)(v) (cf. Theorem (10)). Conversely, suppose V/



is a KG-module. We then define p : G — GL(V) by p(g)(v) = gv. For g € G, p(g) is a

linear map by the module axioms. Further

(p(9)p(g1))(v) = p(Plplg™") (V)] = glg™'v) = (997 Hv =v =1y (v) (v EV).

Hence p(g9)p(g~!) = 1y and p(g) € GL(V). Consequently p is well-defined. Finally for
9, h € G,v eV, p(gh)(v) = (gh)v = g(hv) = p(g)(hv) = p(g)p(h)(v) since V is a KG-
module. Thus p is a group homomorphism. It follows that p is a representation of G' by

definition. We call p the representation afforded by V.

21 DEFINITION. Let A = [a,;] € Mat, K, and B € Mat, K. The trace of A is the scalar
trA =ay; + ayp + - + a,,. The Kronecker product of A and B, denoted by A ® B, is a

block matrix in Mat,,, K whose (i, j)-block is a,;B.

22 THEOREM. (a) If A, B, C € Mat, K with C nonsingular, then tr (AB) = tr (BA)

and tr (C~'AC) =tr A. (b) If A € Mat,, K and B € Mat, K, then tr (A ® B) = (tr A)(tr B).

Proof.  a. Let A= [a;] and B = [b;;]. Then

r (AB) = tr <Z b> Y b =33 ba
k=1

i=1 k=1 k=1 i=1

=tr <Z b,m-ail) = tr (BA).
i=1

So tr (C7'AC) = tr ([C71A]C) = tr (C[C'A]) = tr ([CC'|A) = tr (TA) = tr A.

CLHB M CLlnB
b. Let A = [a;] and B = [b]. Consequently A ® B = : : and

B - a,,B
tr (a;B) = a; (b, +---+0b,,) for 1 <i <n imply ]

tr(A® B) =ay,(byy +---+b,,) + -+ apn(byy + -+ b,,)

= (ay + 4 app) (b1 + - +b,,) = (tr A)(tr B). O



Let V be a K-space, f : V — V a K-linear map, and A the matrix of f relative to some
basis B of V. Define tr f = tr A. If a different basis B’ is chosen, the matrix of f relative
to B’ is C7'AC, where C is the change-of-basis matrix that changes B’ coordinates to B

coordinates. So tr f is well-defined by Theorem (22a).

23 DEFINITION. Let G be a finite group, V a KG-module, and p the representation
afforded by V. Then x : G — K given by x(g) = trp(g) (¢ € G) is called the character
of G afforded by V (or by p). If V is simple (meaning V' # 0 and 0 and V are the only

submodules of V'), then y is an called an irreducible character.

24 REMARK. We may extend the definition of the tensor product. Let V and W
be KG-modules with respective K-bases {v, ---, v,} and {w,, -+, w,,}. Recall from
Definition (11) that the tensor product V@ W of V and W is the K-space with basis
{fvi@w; [ 1<i<n,1<j<m}and for arbitrary v =3 a;v; € Vandw =} Bw; € W
we define v ® w := Z” B0, @w; € VRW. VW becomes a KG-module by defining

gv®w) =gv®gw for all g € G, v € V, and w € W, and then extending linearly to KG
via (32, k,g)(v @ w) =3 k(g0 ® gw).

25 LEMMA. Let U, V, X, and Y be (finite-dimensional) K-spaces and let f : U — X
and g : V — Y be K-linear maps. Then the Kronecker product of matrices representing f

and ¢ is a matrix representing f ® g.

Proof. Let B, = {uy, -+, u,,} and B, = {vy, ---, v,} be ordered bases of U and V', re-
spectively. Also, let C; = {z, -+, x,} and C, = {y, --- , y,} be ordered bases of X and
Y, respectively. Then B = {u, ® v, | 1 < i <m,1 < j < n} isa basis of U ® V and
C={z,®y; |1 <i<p1<j<gq}isabasisof X®Y by Remark (24). Now let
flu) =>0_, apzy, and g(v;) = > 7, Be;y, where each ay,, B, € K. Then
» g P a
(@00 0) = ) @ 9(0) = (L awen ) © (3 o) = 2 P ol ow) (1)
1 =1 k=1 (=1

10



Note that A = [ay,] is the matrix of f and B = [f3,,] is the matrix of g relative to the given
bases. We now order B into m ordered lists with the ¢** list being v, ® vy, - -+ , u; ® v,, and
similarly order C into p ordered lists with the k™ list being x, ® y, -+, 2, ® y,. So (1)
determines the column entries for the corresponding matrix C' of f ® g. Since C' is a block

matrix whose (k, ¢)-block is «y,B, we have C = A ® B. O

26 THEOREM. Let V and W be KG-modules. Suppose V and W afford the characters

x and v, respectively. Then V ® W affords the character .

Proof. Let R be the matrix representation of G afforded by V relative to the basis A,
and let S be the matrix representation of G afforded by W relative to the basis B. Then
C={vew|veA we B}isabasis for VW as in Remark (24). Then T'= R® S defined
by T'(g9) = R(g) ® S(g) is the matrix representation of G afforded by V ® W relative to the
basis C by Lemma (25). Let w be the character afforded by V' ® W. Then for each g € G,

w(g) = tr(T(g)) = tr(R(g) @ S(g)) = [tr (R(9)][tr (S(9)] = x(9)¢(g). Consequently,

V ® W affords the character yi. O

1.4 Linear Functionals

27 DEFINITION. If A is an R-module, then the set A* of all R-module homomorphisms
from A to R is called the dual module of A and the elements of A* are called linear

functionals.
28 EXAMPLES.

a. The trace is a linear functional on Mat,, K since

i=1 i=1 i=1

b. The function n : K* — K given by n(p) = ¢(1x) (¢ € K*) is a K-linear map.

11



c. Recall T' := GL,(K). Define ¢ : K" — (KT')* by gp(f)(zger a,g9) = D ger ¥ f(9)-
Clearly, ¢ is K-linear. Suppose f € kerp. Then f(g) = ¢(f)(g) = 0 for each g € T".
Consequently, f = 0. Hence ker ¢ = 0 and ¢ is injective. Next let f € (KT)*. Then
define f = f|r. Thus ¢ is surjective since ¢(f) = ©(f|r) = f. Therefore ¢ is a

K-isomorphism.

29 LEMMA. Let V be a (possibly infinite-dimensional) K-space. (a) If V is finite-
dimensional then V = V*. (b) p: V*®@V* — (V®V)* given by p(f @ g)(z®y) = f(x)g(y)
where f, g € V* and z, y € V is a K-monomorphism. (c¢) If V' is finite-dimensional then p is
bijective. (d) If fy, ---, f, € V*¥and zy, ---, z, € Vthen§: V*®@ - -V* - (V®---@V)*
given by 0(f, ® -+ @ f)(x; ® - @ x,) = fi(xy) - fu(x,) is a K-linear map, which is a

K-space isomorphism if V' is finite-dimensional.

Proof. a. Let {vy, vy, ---, v,} be a basis of V. For each i, define v} : V — K by

v¥(v;) = d;; (Kronecker delta). Then v} is a linear functional for 1 < i < n. Suppose

n
i=1

avf = 0. In particular, a; = > " a0, = Y " ovf(v;) =0 for 1 < j < n.

Linear independence of {v}, v}, ---, v}} now follows. Next let v* € V* be arbitrary.

Then for arbitrary v = )" | a,v; we have

v*(v) = v* (zzj ozivi) - z:: a*(v;) = z:: vF ()" (v;) = <Z=j U*(m)uj> (v).

Thus {v}, v}, -+, v} spans V* and is a basis for V*. Hence dim V' = dim V*. Recall

that, for K-spaces V and W, V 2 W if and only if dimV =dimW. So V = V*.

b. Suppose f, fi, f2, 9, g1, g2 € V*, x,y € V, and k, k,, k, € K are arbitrary. Define

r(f,g): VxV — K by [r(f, 9)(z,y) = f(x)g(y). Clearly, r(f, g) is bilinear. By

Theorem (16) we obtain an induced map V ® V' — K and hence an element of

(V ®V)*, which we also denote by r(f, g). We have r(f, g)(r®y) = f(x)g(y). Then

12



(ki fi + kafa, 9)(x @y) = (ki fi + ko f2)(@)g(y) = (ki fi(x) + ko fa(2))g(y)

=k f1(2)g(y) + ko f2(2)g(y) = (kar(f1, g) + kar(f2, 9)) (2 @ y)

and similarly r(f, k1g1 + ko9.) = kir(f, g1) + kor(f, g2). So r is bilinear. So by
Theorem (16), r induces a K-linear map p: V* @ V* — (V. ® V)* such that po 3 =r

where 3 is the canonical bilinear map. Thus p is given by

p(f@g)(xz@y)=[p(B)(f Plz@y)=[(poB)(f 9llz@y)=[r(f 9)l(z@y)
= f(z)g(y).

Let h € Ker p. Then by Lemma (13), we may write h = > | fi®g, where {f,, ..., f,}

is a linearly independent subset of V* and {¢i, ..., g.} € V*. Then for all u, v € V,
0= p(h)(u, v —p(Zf ®gl> u, v) Zf (v) = (Zgi(v)fi)(u)
i=1

Thus Y7, g:(v) fi = 0 for all v € V. Consequently, g;(v) =0 (v € V, 1 <i < n) since
{fi, ..., f.} is a linearly independent subset of V*. So h=>"" fi® g =0 and p is
injective.

c. Let {vy, ..., v,} beabasisof V. Then {v;; | 1 <4, j <n}isabasisfor V&V, where
v;; = v; ®@v;. We have p(v] ®@ v7)(vie) = v] (V)V} v, = 61050 = 6,5y, (b, 0) = V5 (Vie). SO

p(vi ®v}) =} and p is a K-isomorphism.
d. Apply induction to Lemma (17), (b), and (c). O

30 DEFINITION. Let V and W be K-spaces and ¢ : V — W a K-linear map. If
@(v) = 0 implies v = 0, then ¢ is called non-singular. The annihilator of S C V is the set
S° of all linear functionals f on V such that f(a) =0 for all « € S. The dual of ¢ is the

map ¢* : W* — V* defined by [¢*(f)](v) = f(p(v)) € K.
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31 LEMMA. Let V be a K-space. (a) If W C V, then W?° is a subspace of V*. (b) If
W <V, then W* = V*/W°and W° = (V/W)*. (c) If V and W are subspaces of a K-space

and W <V, then W° > VO,

Proof. a. Let w € W. Then {w}° = {f € V* | w € ker f} by definition. So {w}° is a

subspace of V*. Since W° = ﬂ {w}’, it follows that W° is a subspace of V*.

weWw

b. First, define ¢ : V* — W* by ¢(f) = f|w. Then ¢ is a K-space epimorphism
with ker ¢ = W°. So W* = V*/W?° by the First Isomorphism Theorem. Now define
P WO — (V/W)* by ¥(f)(v+ W) = f(v). Then ¢ is both well-defined and injective
since, for f € W°,
utW=v+Weu—veWes flu)— flv)=flu—v)=0%& f(u) = f(v)
S Y)u+W) =¢(f)(v+W).
Let f € (V/W)* and v+ W € V/W. Recall 7 : V — V/W given by 7(v) = v+ W is

a K-space epimorphism. Put f = f on. Then f € W° and

() v+ W) = fv) = f(n(v)) = flv+W).

Thus f = ¥(f) and 7 is surjective. Finally, ¢ is a K-space isomorphism since for all

u, v €V and k € K:

PN+ W)+ v+ W) =9(f)((u+v) + W) = flutv) = fu) + f(v)
=N+ W) +(f)(v+ W),
PR+ W) =h(f) (kv + W) = f(kv) = kf(v) = ky(f) (v + W).

c. Let f € V° Then f(w) =0 for all w € W. Hence f € W°. O

32 LEMMA. If V and W are K-spaces and (, ) : V xW — K is non-singular and bilinear,

then V* and W are isomorphic.

Proof. Define ¢ : W — V* by [p(w)](v) = (v, w). Note that ¢ is well-defined since

(o, w) = av, w) and (v, + vy, w) = (v;, w) + (v,, w) imply that p(w) € V*. Also, since
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[o(w;, + w,y)](v) = (v, Wy + wy) = (v, wy) + (v, Wy) = [p(w,)](v) + [p(w,)](v) and similarly
for scalar multiplication, ¢ is a K-linear map. Let z € kery. Then (v, z) = 0 for all
v € V. Hence x = 0 since (, ) is non-singular. So ker ¢ = 0. Thus ¢ is injective. Finally
suppose {vy, --+, v,} € V is linearly independent and {w,, --- , w,,} is a basis of W. By
the injectivity of ¢, n > m. Assume n > m. Put ¢;; = (v;, w;). Recall (linear algebra)
there exist a,, a,, ---, a, € K not all of which are zero such that Zj a;c;; = 0 for all ¢
since n > m. So v := ) a;v; # 0. We show (v, w) = 0 for all w € W. Thus we must show
(v, w;) = 0 for each i. Then (v, w;) = (32, a;v;, wi) = > a;{v;, w;) = Y a;¢; = 0 for all

i since (, ) is bilinear, contrary to (, ) being non-singular. Therefore n = m. O
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CHAPTER 2

ALGEBRAS AND COALGEBRAS

Definitions and statements of standard results in the theory of algebras and coalgebras have

been drawn from [9-11].

2.1 Algebras and Commutative Diagrams

33 THEOREM. A is a K-algebra if and only if A is a K-space and there exist K-linear

maps t: A® A — A and ¢ : K — A such that the diagrams (Figure 2) commute.

Associative Law Unitary Property
A9A A4 AgA KoA24 A®A1A®L
1A®H\L \LH H

¥

Figure 2: Associative Law and Unitary Property

Proof. (=) Define m : A x A — A by m(a, b) = ab for all a, b € A. Then m is bilinear.
So by Theorem (16), m induces a K-linear map u : A® A — A such that pyo 3 = m
where [ is the canonical bilinear map. Then p(a ® b) = (u o f)(a, b) = m(a, b) = ab
for all a, b € A. Define ¢« : K — A by v(k) = kl,. Then for all a, 8, k € K, we have
a+B)=(a+PB)1y =aly+ 61, = tla) +(B) and t(ka) = (ka)l, = k(al,) = ki(a).
Consequently ¢ is also a K-linear map. Let a, b, ¢ € A and k € K. The algebra condition

k(ab) = (ka)b = a(kb) implies a(kl,) = k(al,) = ka = k(1,a) = (k1,)a. Then

(o (p®1a))(a®b®c) = p(pla®@b) ®14(c)) = plab® c) = (ab)c = a(bc)

= p(la(a) @ pb@c)) = (o (la@p))(@a®@b®c),
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(o (t®14))(k®a)=p(u(k) @1s(a)) =tk)la(a) = (kla)a = ka = my(k @ a),

and similarly (po (1, ®¢))(a® k) = m(a ® k). Thus the diagrams commute.
(<) Let a, b, ¢, € A and k € K. Define a product in A by ab := pu(a ® b). The product

is associative. Indeed, by the Associative Law diagram commutativity we have

albe) = pla @ be) = p(La(a) ® p(b® ¢)) = (o (14 & p))(a @ b o)

— (1o (1® L)) (a®b® ) = plu(a ®b) ® Ly(c)) = ulab @ c) = (ab)e.

Next, (a+b)c=p((a+b)®c) =pla®@c+b®@c) = pla®c) + pu(b® ¢) = ac+ be. Similarly,
c(a+ b) = ca+ cb, so the product distributes over addition. Define 1, := ¢(1x). The (left)

Unitary Property diagram yields

ka=my(k®@a)=(uo(t®@1,))(k®a)=pukl,®a) = (kl,)a (1)

Similarly, the (right) Unitary Property diagram yields ak = a(k1,). Thus

k(ab) = (k1,)(ab) = ((k14)a)b = (ka)b = (ak)b = (a(k1,))b = a((k14)b) = a(kb).

This establishes the algebra condition. Finally, by (1), 1,a = (1x1,4)a = 1xa = a and

similarly al, = a. So 1, is an identity. Therefore A is a K-algebra by definition. O

Theorem (33) permits (A, u, ¢) to denote a K-algebra A and its structure maps p and ¢,

which are respectively called the multiplication map and unit map.

34 THEOREM. The tensor product of K-algebras is a K-algebra.

Proof. Suppose (A, pia, t4) and (B, pg, tp) are K-algebras, 7: A® B — B ® A the twist
map, and p, : K — K ® K the canonical injection. Put pisgp = pta @ ppo (1, @ 7 ® 1)

and tagp = (La ®tp) o p;. We verify the Associative Law and Unitary Property (Figure 3).
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raeB®lagB

ARBRARBRARXB—AQ®BRA®B

Associative Law 1A®B®#A®BJ{ iﬂA@B
—_—
ARBRA® B Py A® B
tagpB®lagB lagB®LagB

KRA®B—AQB®AQB<=—ARBRK

Unitary Property \ 'U‘ALZ)B /
T2 v ™1

A®B
Figure 3: Tensor Product of K-algebras

Let A and B be bases for A and B, respectively. Then we have for all a,, a,, as, a € A,

by, by, by, b€ B and k € K that

(405 © (Hass ® Lass)) (a1 @ by) © (a2 ® ba) ® (a5 @ bs))
= paes((ta ® pip) 0 (14 ® 7 © 15) (a1 @ (by ® a5) ® by) © (a3 © by))
= pracs((ta ® p5) (a1 @ 62) @ (b @ b)) @ (a5 @ b))
= fags((a1as @ biba) @ (a3 @ b))
= ((ta®@pp)o(1la®@7TR1p))(a1a; ® (bibs ® az) ® by)

= (,UA & MB)(alaz & (a3 ® b162) ® bs) = (a1a2)a3 X (b1b2)63 = al(a2a3) ® by (b2b3)7

Similarly (NA@B e} (]-A®B X NA@B))((QI & b1) & (CLQ & bz) & (ag & bs)) = al(a2a3) ® bl(b2b3)7

(Hags © (tags @ 1ags))(k ® a ® ) = pags(tacs (k) @ lags(a @ b))
= taos((ta @ 1p)(k @ 1x) ® a @ b) = pags(ta(k) @ 1s(lx) © a @ D)
= (pa®@ppo(la®@T 1)) (ta(k) ® (1 ® a) ® )
= (1a @ pp)(ta(k) ®a®@ 15 @b) = ps(ea(k) ® @) @ pp(lp @ b)

=14(k)a®@1gb=ka®@b=m(k®a®0b),

and similarly (taigs © (Lags @ tags))(a @b® k) = m(a ® b® k). Extend linearly. Apply

Theorem (33). O
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2.2 Coalgebras and Bialgebras

35 DEFINITION. If C is a K-space, A¢c : C - C® C and e : C — K are K-linear
maps, and p, and p, the canonical injections, then (C, Ag, ¢) is called a K-coalgebra
whenever the diagrams (Figure 4) commute. A, and e are respectively called the comul-

tiplication and counit maps and together are called the structure maps of C.

Coassociative Law Counitary Property

Ac®le ec®lc lc®ec
CRCR(C<~—C0CxC KeC

CoK
A
1C®ACT TAC \Ac/
P2 ‘ P1
C

ceC Ao C

Figure 4: Coassociative Law and Counitary Property
A K-subspace D of a K-coalgebra (C, Aq, ¢) that satisfies Ao(D) € D ® D is called a

K -subcoalgebra of C' whose structure maps are the restrictions of As and €. to D.

36 EXAMPLE. Let H be a group. A := KH ® KH is a K-algebra by Theorem (34).
Define ¢ : H — A* by ¢(g9) = g ®g. Then ¢(gh) = gh ® gh = (g ® g)(h @ h) = ¢(g)p(h)
for all g, h € H. Thus the group homomorphisms ¢ and ¢ : H — K* given by ¥(g) = 15
respectively extend uniquely to K-algebra homomorphisms A: KH — Aande: KH — K

by Theorem (10). Then (KH, A, ¢) is a K-coalgebra since

(lxw @ A) 0 (Zagg> (lxn ® A) (Zag@g)zz%g@(g@g

geH geH gEH

=> a,(g09) 9= a,Alg) ® lxu(g),

geH geH
- A(Z(A ® 1KH)(%9)> (Ao (A®1ky) (Z agg>
geEH gEH
(e®1kn) o A) <Z a99> = (e ®1xn) <Z agg & 9> = ZaglK @y

geEH geEH geEH

= 1K® (Zagg> :p2<zagg>7

geEH geEH

and similarly ((1xy ®¢€) 0 A)(X2 p @g9) = p1 (D2 ,cpr @49)-
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37 THEOREM. The dual of a K-coalgebra is a K-algebra.

Proof. Let (C, A, €) be a K-coalgebra. By Definition (30), A* : (C ® C)* — C* is given
by [A*(f)](c) = f(A(c)) for ¢ € C. Define p : C*®@ C* — C* and ¢+ : K — C* by
u(f @ g)(e) = [A* o p](f ® g)(¢) and v(k)(c) = ke(c) for f,g € C*, c € C, and k € K
where p: C* ® C* — (C® C)* is the K-space isomorphism of Lemma (29c). We verify the

Associative Law and Unitary Property (Figure 5).

Associative Law Unitary Property

nR1o* @1
C’*@C*@C*HC*®C* K®C’**>C*®C*<7C*®K

CcreCr cr

Figure 5: Dual of a K-Coalgebra

For ¢ € C, write A(c) = >, ¢; ®d;, A(e;) = >, ai; @ by, A(d;) = > . e;; @ fij, and let

0:C*®C*®C* — (C®C®C)* be the 3-fold analog of p (see Lemma (29d)). Then
p(f @ g)(c) = [A" o pl(f @ g)(¢) = p(f @ g)(A Zf
for f, g € C* and c € C. This implies that for f, g, h € C* and ¢ € C' we have
(ko (p@le))(f ®g@h)(c) = (uu(f ®g) @ h)) Zuf®g (d:)
= Zf(aij)g(bu)h(di) =0(f®@g@h)(A®1lc)oA)(c)
=0(f©g@h)((1c ® A) o A)( Zf fis)
_Zf (g @ h)(d,) = (1~ @ p) (Zf (9@ h)( ))

= (lex @ p)(u(f @ (g @ h))(c)) = (Lo @ p) o p)(f @ g @ h)(c)

This establishes the Associative law. Next, for any ¢ € C, the commutativity of the

Counitary Property diagrams and Lemma (19¢) yields > e(¢;)d; = ¢ = )", c;e(d;) from
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¢=10(0) = (m0.p2)(0) = (M0 (£ @ Le) 0 A) () =m0 (€ ® 1o>(2 ®di>

i

— (Z e(e;) ® di> = e(c)d,

7 7

and similarly ¢ = ) c;e(d;). Then for all k € K, f € C*, and c € C,

(o (t® o)) (k@ f)(e) = plu(k) @ f)(c) = Y u(k)(c)f(d:) = Z ke(c:) f(d:)

i

— k1 (Y e(e)d,) = k) = mahis (o

and similarly (po (lex®1¢))(f ®k)(c) = m(f ®k)(c). This establishes the Unitary Property

and (C*, u, ¢) is a K-algebra by Theorem (33). O
38 THEOREM. The dual of a finite-dimensional K-algebra is a K-coalgebra.

Proof. Suppose (A, p, ¢) is a finite-dimensional K-algebra. Then p* : A* — (A® A)* is
given by [u*(f)](a ® b) = f(pu(a ® b)) and * : A* — K* is given by *(f)(k) = f(.(k)) for
feA*, ae A and k € K by Definition (30). Recall n : K* — K given by n(¢) = ¢(1k)
for p € K* is a K-linear map . We may now define A = : A* - A* @ A* and g4« : A* - K
by Au(f)(a) = [p~ o p*](f)(a) and ea-(f)(k) = [0 *(f)](k) for f € A%, a € A" ® A",
where p: A*® A* — (A® A)* is the K-space isomorphism of Lemma (29¢) (dim A < oo is

required). We verify the Coassociative Law and Counitary Property (Figure 6).

Coassociative Law Counitary Property

Ay @1 4 4% Q1 4% 14+ Q®e€ 4%
A*QA* QA <— A* @ A* KRA*<— A" QA" — A" K

A

14+ QA 4% A A g

A AT TA \x‘q 1
A*

A QA <— A*
Ay

Figure 6: Dual of a Finite-Dimensional K-Algebra

Write Aq«(f) = Zigi ® hiy, Aux(g:) = Z]‘ m; ; @n ;, and Ay« (h;) = Z]‘ Pi,; @ q;,; Where

* .
9i, I, My 5y N, 5y Di,js Qi3 € A*. Then:
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(Apr @ 1a)Ap+(f) = (Apr @ 1y (Zgz ® h, ) = me ® Ny, ;5 @ hy,

2%

(Lar @ Au ) A (f) = (1ar @ Ayx) (Zgz ® h> = Zgi R Pi,; @G, ;-

0]

Note that for all f € A* and a, b € A, we have

flab) = [ (Nl@®b) = [po (p~" o ") (@@ b) = [p(Au+(f))](a @ b)

~[o(Saon)|@on =L a@ne )
Recall §: AA @ A*® A* - (A® A® A)* given by (u ® v @ w)(a ® b ® ¢) = u(a)v(b)w(c)
where u, v, w € A* and a, b, ¢ € A is a K-space isomorphism by Lemma (29d). It follows

from the definition of # and (1) that

[9<Zmi,j®ni,j®hi>} a®b®c) = Zm” Zgz (ab)h f(abe)

(2%

= Zgi@)hi(b@ = ;gi(a)pi,j(b)qi,j(@ = [9 (Z G ®p; ® q)} (a®b®c)

irj
Since 0 is injective, >, -m; ;®@n; ;@h; =), . ¢:®p; ;®¢; ;. Consequently, the Coassociative

Law holds. Next, for all f € A*, we have

((eas ® 1av) 0 A=) (f) = (ear @ Lav) <Z 9 ® hi> = (e ® 1av)(g: ® )

i

= Z (ea(g:) ® hi) Z(UOL (9) @ h) =D _(F(9)(1x) ® hi) = Y (9:(e(1x)) @ hy)

7 2

= Z(]-Kgi(lA) ® hi) = Z(lx & gi(lA)hi) =1 ® Zgi(lA)hi =1k ® f= P2(f)~

i

For the penultimate inequality, we have used that f(a) = f(1.a) =), ¢:(14)h:(a) (a € A).
Similarly, ((1a*x ® €4¢) 0 A= )(f) = pi(f). Thus the check of the Counitary Property is

complete and (A%, A, €4+) is a K-coalgebra by Definition (35). O

39 NOTATION. Let (C, A, €) be a K-coalgebra. We write A(c) = Y. ¢;q) @ ¢ for

each ¢ € C or succinctly as A(c) = ¢y ® ¢(o) with summation implicit.
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40 LEMMA. Let (C, A, €) be a K-coalgebra with A(c) = ¢y ® ¢ for all ¢ € C.
a. Caym) @ Caye) @ €y = Cay @ C)a) @ Ca)2)- b. ¢=e(cy))ew = cayelcn)).

Proof. a. By the Coassociative Law

caym) @ Cayz) @ Ca) = Alcw) @@ = (A® 1o)(ca) ® ce) = ((A® 1) 0 A)(c)
= ((Ic®@A)oA)(c) = (1c @ A)(eqy @ @) = ey @ Alcr)) = ¢y @ Caya) @ Caye)-

b. Since p,(¢) = ¢® 1, and p,(c) = 1¢ ® ¢, by the Counitary Property we have:

le®@e=((e®1c)oA)(c) =elcwy) ® iy = 1o ®e(ewy) e,
c®le=((lc®e)oA)(c) = cuy Re(c) = cuyelce) @ le.

Therefore ¢ = e(cq)) @) = caye(Ca)- O
41 THEOREM. The tensor product of K-coalgebras is a K-coalgebra.

Proof. Suppose (C, Ag, e¢) and (D, Ap, ep) are K-coalgebras and 7 is the twist map. Put
Acgp = (1c®@T7®1p)0 A ®Ap and ecgp = Mo (ec®ep). We will verify the Coassociative

Law and Counitary Property (Figure 7).

Acep®lcgp

CRDICIDRICRID<—CRDRICRD
Coassociative Law 1C®D®AC®DT TAC®D
CDRCRXD<—CRD

Acep

ecep®lecgp lcep®ecgbD

KCD<—0C®DRC®D—CRD®K

Counitary Property x Actpp /
\

C®D

Figure 7: Tensor Product of K-coalgebras

For all ¢ € C and d € D, we have

((Acep ® legn) 0 Acgp)(c®d) = [(Acgp @ legp) 0 (1o ® T @ 1p) 0 (Ac @ Ap)](c @ d)

= [(Acgp ® legp) 0 (1c @ T @ 1p)|(c1) ® ¢2) ® d1y @ d(2))
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= (Acep ® logn)(cay ® day ® ¢y @ dz))
=[(le®7®1p) 0 (Ac ® Ap)(cay ® d))] @ (¢ ® dyz))
=[1e @ T ® 1p)(cyn) @ caye @ duyay @ daye)] ® (ce) @ dz)

= ¢y @ dayy ® Caye) @ dayz) ® o) @ d)

and similarly ((1cgp ® Acep) © Acep)(c®@d) = cqy ® diy ® c2)1) @ di2y1) @ Cayz) @ dizy2)-

Recall the K-space isomorphism ¢ of Lemma (19¢). Then by Lemma (40a),
P(((Acep ® leap) © Acep)(c ® d)) = @(cayw) @ duya ® caye @ duye) ® e @ dy)
= coyw @ Caye) ® €y © daya) ® daye) @ de)
= ca) ® Cy1) D Ciayiz) @ day @ dizyay @ dizy2)
= p(cay ® day ® ) ® dinya) @ Cyz) @ dizyz))
= ¢((leep ® Acep) © Acen)(c @ d)).
Consequently, ((Acgp @ leen) © Acen)(c®d) = ((Lewp @ Acep) © Acep)(c® d) since ¢ is

a K-space isomorphism. Then extending linearly establishes the Coassociative Law. Next,

for all ¢ € C' and d € D, applying Lemma (40b) yields

((ecop ® logn) © Acep)(c®@d) = [(ecep @ logn) © (le @ T @ 1p) 0 (Ae ® Ap)|(c @ d)
= [(ecap ® leap) 0 (1e @ T @ 1p)|(cay ® o) ® diy) @ dyz))
= (cep ® logn)(ca) ® duy ® cz) ® d(z)
= [(m2 0 (ec ®ep))(cy ® dw)] & (e ® dizy) = ec(cy)en(dny) ® ¢z @ d)

=1k ®ec(cn))e@ ®ep(dn))de = 1k @ c®d = py(c®d)

and similarly ((1egp®€cep)oAcen)(c®d) = p;(c®d). Extend linearly. Thus the Counitary

Property holds and (C ® D, Acgp, cep) is a K-coalgebra. O
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42 DEFINITION. Suppose that (C, Aq, ec) and (D, Ap, €p) are K-coalgebras and
there exists a K-linear map f : C'— D such that Apof = (f® f)oAg and ep o0 f = €.

(Figure 8). Then f is called a K-coalgebra homomorphism.

c—L +p c—L-p
TR N
£c

Figure 8: Coalgebra Homomorphism

43 EXAMPLE. Put L := K ® K. We have that (K, Ay, ex) is a K-coalgebra with
Agx : K — L and e : K — K given by Ag(k) = k® 1x and ex(k) = 1i for all
k € K. Let 7 : L — L be the twist map. We may now define A, : L — L ® L and
e, L > Kby Apk®t) = (1x 7@ 1x) 0 (Ax @A) (k@) = k®(® 1 ® 1 and
e(k®0) = (mo(ex®er)) (k@) =m(lx ®1g) =1 for all k, £ € K. Then (L, Ay, €,)
is a K-coalgebra by Theorem (41). Define pux : L — K and 1 : K — K by px(k®0) = k¢

and tx (k) =k for all k, £ € K. Then pu is a K-coalgebra homomorphism since
(Ag o) (k@) = Ag(kl) =kl @ 1 = (x @ puge) (k@ LD 1pe @ 1)

= ((ux ® pxc) o (AL)(k ® £))
and

(EK O,“K)(k‘@f) = €K(/€€) =15 = €L(k®£)

for all k, ¢ € K. Similarly since Ag oty = (tx ® tx) 0 Ag and e 0 1 = €, it follows that

ti is a K-coalgebra homomorphism.

44 THEOREM. Let B be a K-space, (B, u,t) a K-algebra, and (B, Ag, ¢5) a K-
coalgebra. The following are equivalent: (a) p and ¢ are K-coalgebra homomorphisms, (b)
Ap and e are K-algebra homomorphisms, (¢) Ag(bc) = Ag(b)Ap(c), Ap(ls) =15 ® 15,

ep(be) = ep(b)ep(c), and e5(1lg) = 1k for all b, c € B.
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Proof. Consider the following four diagrams:

i Aop=(u®u)o(lzorTolsz)ocA®A ii. Acv=1(tot)op,

B®B - B K—"—=nB
A®Al Pll \LA
BRB®B®B A K@K—>B®B
1B®T®IB\L

BR®B®RB®B—B®B
Hp

iii. eop=mo(e®ce¢) iv. o1 =1y
B®B——B K—=B
! N

Figure 9: Bialgebra Equivalent Conditions

We have that A = Ay is a K-algebra homomorphism when (i) and (ii) are satisfied, €5 is
a K-algebra homomorphism when (iii) and (iv) hold, u is a K-coalgebra homomorphism
when (i) and (iii) are satisfied, and ¢ is a K-coalgebra homomorphism when (ii) and (iv)

hold. So (a) is equivalent to (b). (b) is equivalent to (c¢) by Definition (4). O

45 DEFINITION. Let (B, p, ¢) be a K-algebra and (B, A, €) a K-coalgebra. If any

condition of Theorem (44) is satisfied then (B, u, ¢, A, €) is called a K -bialgebra.
46 EXAMPLES.

a. (K, px, tx, Ag, €x) is a K-bialgebra. See Examples (7) and (43).

b. Let H be a group. Recall (KH, p, ) is a K-algebra by Lemma (9) and Theorem
(33) and (KH, A, ¢€) is a K-coalgebra and A and € are K-algebra homomorphisms

by Example (36). Thus (KH, u, ¢, A, €) is a K-bialgebra.
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CHAPTER 3

RESULTS IN SCHUR ALGEBRAS

Definitions and statements of standard results in the theory of Schur algebras have been

drawn from [12, 13].

3.1 Polynomial Functions and Coefficient Space

47 DEFINITION. Let E be the set of n-dimensional column K-vectors. For g € I' and
x € F, define gz by usual matrix multiplication. We may extend linearly to all of KT via
(X ger kog) = 2 1 ko(gx)(ky # O for finitely many g € I' assumed throughout). Then E

is called the standard or natural KT'-module.

We write I(n,r) := {i = (i1, 4y, -+ ,4,) | 1 < i, < nforl < k < r}. Suppose
{e1, €q, --+ , €,} is the standard basis for E. Define g(v; ® -+ @ v,) = gv; @ -+ @ gu,
for g € T'. Consequently E*" = F® --- @ E (r factors) becomes a KT-module with

K-basis {e, =¢;, ® --- ®e;, | i € I(n, )}

48 PROPOSITION. Let v, w € E. (a) 7 : E®2 — E®? given by 7(v ® w) = w ® v
is a KI'-module homomorphism. (b) The sets S*(E) = {z € E®? | 7(z) = z} and
N(E) = {z € E®? | 7(z) = —x} are K[-submodules of E¥2. (c) S?(E) = (1 + 7)(E%?),

A(E) = (1 —7)(E®?), and E®? = S*(E) + A*(E) if char K # 2.

Proof. a. 7(gx) = 7(g9(r, @ x,)) = 7(911 @ gT3) = g, ® gy = g(T2 @ 1) = g7 () for all

geTl and z = 2, ® x, € E®%. Extend linearly.
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b. Let g € T, z € S*(F), and y € A*(F). Note that 7(gz) = g7(z) = gz and that

7(9y) = g7(y) = —gy by (a). Extend linearly.

c. First, let v € S*(E). Thenz =4+ % =2+47(%) = (1+7) (%) € (1+7)(E®?). Thus
S2(E) C (1+7)(E®?). Conversely, let z € (1+7)(E®?). Then x = y+ 7(y) for some

y € E®2. We have 7(7(y)) = y by linear extension. It then follows that

() =1y+7W) =70 +7(r(y) =7(y) +y ==

Thus x € S*(E). Consequently, (1 + 7)(E®?) C S?(E) and the first equality is
shown. The second equality is established similarly. Suppose that z € A?(E). Then
+

xr =

=Z-7(%)=0-7)(%) € (1—7)(E®?). Thus A\*(E) C (1 —7)(E%?).

(V]
(V]

Conversely, any x € (1 — 7)(E®?) may be written as x = y — 7(y) for some y € E%2.

We also have 7(7(y)) = y by linear extension. Consequently,

T(y) = 7(r(y) = 7(y) —y = —=.

A
s
!
\1
<
|
\]
S
~—
i

Thus z € A2(E). So (1—7)(E®?) C A?(E) and the second equality also holds. Finally,

it is clear that S?(E) N A%(E) = {0}. Let x € E®2. Then
v = glo (@) +o—7(@)] = 51+ 7)@) + 51~ 7)),

Since 1(z + 7(x)) € S*(E) and 3(z — 7(z)) € A*(E), then E¥? = S*(E) + A*(E). O

49 DEFINITION. Let g.5 denote the («, ()-entry of the matrix g. ¢,z : ' — K where
Cap(g) = gap for all g € T is called a coordinate function. Suppose n := {1, 2, ---, n} and
A, :={cap | @, B € n}. We will denote by A(n) the K-subalgebra of K generated by
A,. A(n) is called the algebra of polynomial functions and the elements of A(n) are called
polynomial functions on I'. {y,, ---, y,} in a K-algebra is called algebraically independent

over K if no nonzero polynomial p € K[z, - , x,] exists such that p(y,, --- , y,) = 0.
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50 LEMMA. If K is infinite then every subset of A, is algebraically independent over K.

Proof. This result is well-known (see [13, page 9]). We present a proof of the case S C A,
with | S| = 1. Then S = {¢,;} for some fixed i and j. Let p(z) € K[z] with p(c;;) = Ok.
Assume p(x) is not the zero polynomial. Suppose i # j. We may choose a nonzero
a € K with p(a) # 0k since K is infinite. Construct matrix g where g,, = 1, for
1 <h<mn,g,; =a, and g,, = Ok for all other pairs (¢, m) with £, m € n. Then g € T
but 0x = p(cy;)(g9) = p(a). Contradiction. So i = j. Again choose a nonzero a € K with
p(a) # 0k. Construct matrix g where g,, = 1 for 1 < h < n with h # i, g, = «, and
9em = Ok for all other pairs (¢, m) with £, m € n. Then g € ' but 0x = p(c,;)(g) = p(a).

Contradiction. Thus p is the zero polynomial. So S is algebraically independent over K. [

51 DEFINITION. Let V be a KI'-module and T : I' — I' the matrix representation
afforded by V relative to the basis {v,, - -+, v,} of V. So T'(¢9) = [ev;(g)] for unique o;; € KT
with gv; = >, ay;(g)vi (9 € T'). We extend linearly by T'(3_ . k,9) = > . k,T(g). The

K-space cf (V) spanned by the «; is called the coefficient space of V.

1 0 a b
52 EXAMPLES. Put e, = , €y = ,and g =

0 1 c d
a. Let p: ' — GL,(K) be the matrix representation corresponding to the natural KT-

module E relative to the basis {e,, e,} of E. Consequently p satisfies p(g) = ¢ since

ge, = ae, + ce, and ge, = be; + de,. Thus cf (E®1) = (€11, C12y Ca1y Caz)-

b. We use the convention that c¢; i, .y, = CijisCigi,- E®? has basis {ey, €15, €21, €22}

where e,; = ¢; ® e;. Then by a calculation similar to (c) below,

®2\ _ /.2 2 2 2
cf (E ) = <C11a Cla, C11C12, C11Ca1, C11Ca2, C12Ca1, C12Caa, Cop,y Co, 021022>

= <011,11, Ci1,225 C11,12, Ci12,115, C12,125 C12,21y C12,22, C22,11, C22 22, C22,12>

c. S*(E) has basis {e,;, €1, + €41, €32}. Then:
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gen = ge, ® ge, = (ae, + cey) ® (ae;, + cey) = a’ey; + ac(ery + €51) + e,
glers +ea) = ge; @ ge, + ge, @ gey

= [(ae, + ce;) @ (bey + dey)] + [(be, + de;) ® (aer + ces,)]

= 2abey; + (ad + be)(eqs + €s1) + 2cdey,,

9622 — g€2 ® 962 — (bel + dez) ® (b61 + deg) — b2611 + bd(€12 + 621) + d2€22-

Hence

2 _ /.2 2 2 2
cf (S (E)) = <C11a 2€11C12, Ciy, C11C21, C11C22 + C12Ca1y C12Ca2, Copy 2C21Caa, ng>

= <011,117 2011,127 Ci1,22y C12,115 Ci2,12 T Ci2.215 Ci2,225 Co211, 2022,127 C22,22>-

d. Similarly, A’(E) has basis {e,, — €5} and cf (A*(E)) = (1212 — Ci2,21)-
53 NOTATION. Let 7 € > . Denote 7c; ; := ¢; ;» where jT = (Jry, = » Jn(r)-
54 PROPOSITION. If 7 = (12) € ) , then (1 £ 7)cf (E®?) = cf (1 £ 7) (E®?).

2\ _
P?”OOf. cf (E® ) = <011,117 Ci1,225 C11,125 Ci2,115 Ci2,12, Ci2,21, Ci2,225 C22,11, C22,22, Cz2,12>

by Example (52b). Note that:

(1 + T)(C11,11) =ChntCin = 2011,11; (1 + T)(C11,22) = Cii22 T Ci122 = 2C11,22;

(1 + 7')(011,12) = Ci1,12 T Cr1,21 = C11C12 + C12C1 = 2¢11C1 = 2011,127

(1 + 7')(012,11) = Ci211 T Cio1 = 2012,11; (1 + 7')(012,12) = Ci2,12 + Ci2.21,
(1 + T)(C12,21) = Ci2,21 + Ci212, (1 + T)(Cm,zz) = Ciz22 T Ci2020 = 2612,22a
(1 + 7')(022,11) = Cap11 t Coo11 = 2022,11, (1 + 7') (022,22) = Cag 22 t Conoo = 2022,22a

(1 + 7)(022,12) = Cag,12 T+ Ca2.21 = C21Cag + Ca2Coy = 2¢y,Cop = 2022,12-

Thus by Example (52c) and Proposition (48c),

(1 + 7') (Cf (E®2)) = <C11,117 Ci1,22, C11,125 C12,11, Ci2,12 T Ci2,215 C12,22, Ca2.11y C22, 22, C22,12>
= cf (5 (B)) = cf (1 +7) (E®?)).

Similarly, note that:
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(1 - 7')(011,11) = Ci1,11 — C11,11 = 0, (1 - 7')(011,12) = Cy11,12 — C11,21 = C11C12 — C12C11 = 0,

(1 = 7)(C1212) = C12.12 — C12.01, (1 = 7)(C1192) = Ci190 — C1100 =0,
(1 —7)(c12.11) = Cr211 — C1211 =0, (1 = 7)(C12.21) = Crz.21 — Ci2.125

(1 = 7)(Cra.2) = Cra92 — C1220 =0, (1 = 7)(Ca211) = Can11 — Cap11 =0,
(1 = 7)(Cann2) = Caz1a — Cangr = Ca1Cap — CapCay = 0, (1 = 7)(Ca2.22) = Canigz — Cango = 0.

Applying Example (52d) and Proposition (48¢c) yields

(1—=7) (cf(E®?)) = (Cro12 — Cro) = £ (A? (E)) = cf (1 — 7) (E®?)). O
55 NOTATION.

a. A polynomial is called homogeneous when each of its terms has the same degree. We
let K be infinite hereafter. By Lemma (50), A(n) may be viewed as the polynomial
algebra over K in the indeterminants c,z. Let A, (r > 0) denote the K-subspace of

A(n) generated by the homogeneous polynomial functions of total degree 7.

b. Let I = {f| f:r—mn}. G =) actson I via im = (i,q), -..l() and G acts on
I x I by (i, j)m = (im, jmw) for i, j € I and w € G. For i, j € I, define (i, j) ~ (p, q)
for (i, j), (p, q) € I x I when p =im and ¢ = jm for some 7w € G. Let R(n, r) denote

a set of representatives for the equivalence classes of I x I under ~.

56 REMARK. For fixed g € I and with £ viewed as a K-space, define t/ : EX" — E®"
by t(zy, -+, z,) = g, ® ---®ux,) for all ,, ---, x, € E. Then t is r-multilinear and
induces a K-linear map t, : E¥” — E®" (Theorem (16) and induction) such that t/ =t 0
where 3 is the canonical r-multilinear map. Then ¢, gives rise to a matrix representation
T!,: T — GL,(E®") given by T (g) = t,. Extending linearly to KT and using the
standard basis {e; | i € I} of E®" yields the matrix representation T, , : KI' — Mat; K
given by T,, (k) = [g; ;] for i, j € I where ke; = . _, g; je;. Similarly, c; ; may be extended

J

linearly to KT'.
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- — 241 -1
57 LEMMA. Let r be a nonnegative integer. Then Z (n . + Z) = (n tr )

i r
1=0
Proof. We proceed by induction on r. The result is obvious for » = 0. Recall [14, p. 8] that
1
Pascal’s Rule says (k " 1) + (Z) = <n;§|— > for 1 < k < n. Then, using the induction

hypothesis, we have
i n—2+1 B i n—2+1 n n—2+r B n—2+r + n—2+r
- 1 N ‘ /) T N r—1 r
=0 =0
-1
_<”+7" ) O
T

| (i, j) € R(n, r)} is a K-basis for A,. (b)

e C

trir

Proof.  a. A, is spanned as a K-space by the monomials {¢, ; | i, j € I}. Now since
¢ ; = ¢, if and only if (4, j) ~ (k, ), we have that this set equals C. So C spans A,,
and the elements of C are distinct. Thus C is linearly independent by Lemma (50).

Consequently C is a K-basis for A,.

b. We show that the number of distinct monomials xi* ---z’™ in the m commuting
. . . . (m+r—1 . .
indeterminants x; with > r, = r is . We proceed by induction on m.

T
The result is obvious for m = 1. Let w, be the number of distinct monomials with

>, ri = r such that r,, = . The number in question is w = ), w,. By Lemma (57),

W= Wy + -+ W,

m—14+r—1 m—14+r—1-—1 m—14+0-—1
= + +...+
T r—1 0

:izi;(m—fj—ir—i) :z’":<m—i2+i) _ (m—i—:—l)'

=0

The claim now follows from (a).

c. By Remark(56), ge; = 7., ¢; ;(g)e;. Thus cf (E®7) =37, . Ke, ;= A,. O

i€l 77
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Define F' : K" x K" — K™ by [F(f, 9)](u, v) = f(u)g(v) (f, g € K", u, v € I'). There
exists a unique K-linear map ® : K" @ K" — K"*" given by [®(f ® g)|(u, v) = f(u)g(v)
by Theorem (16) since F' is bilinear. ® is injective by an argument similar to that given in

the proof of Lemma (29b). So, we may consider K" ® K" as a K-subspace of K",
59 LEMMA. A(n) is a K-bialgebra, and A, is a K-subcoalgebra of A(n).

Proof. A(n) is a K-algebra as it is a K-subalgebra of KT. Then p: A(n) ® A(n) — A(n)
and ¢ : K — A(n) given by u(c; ; ® ¢ ) = ¢, ;¢ and ¢(k) = k1 are the structure maps for
A(n) by the proof of Theorem (33). Define A : K" — K™ by [A(f)](u, v) = f(uv) and
e: K" — K bye(f)=f(1p) for all f € K", u, v € I'. Since for all f, g € K", u, v € T,

and k € K, we have

() [A(f + 9w, v) = (f + g)(uv) = f(uv) + g(uv) = [Af](u, v) + [Ag](u, v),
(i) [A(f9)](u, v) = (fg)(uv) = f(uv)g(uwv) = [Af](u, v)[Ag](u, v),

(iif) [A(ES)](u, v) = (kf)(w0) = kf(uv) = K[Af(u, v),

(iv) [A(1gr)|(u, v) = 1 r(uv) = 1x = 1 rxr(u, v),
W) e(f+9) = (f +9)(1r) = f(Ir) + 9(1r) = &(f) + (9),

(vi) e(fg) = (f9)(Ir) = f(1r)g(lr) = e(f)e(9),

(vii) e(kf) = (kf)(1r) = kf (1) = ke(f), and

(viii) (1) = 1,0 (1p) = 1g,

A and ¢ are K-algebra homomorphisms by (i) - (iv) and (v) - (viii), respectively. Now

restrict A and € to A(n). Then A(c,s) = D", oy ®cp and e(c,p) = 045 for 1 < o, f < n.

v=1

We next verify the Coassociative Law and Counitary Property. Then

(A@1)0A) ) = (Bo ) (Len©en) = Ylew o) ey

R2ES

= anc ® (coy ® Cyp) = (1® A) (Z Cac @ Cw) =((1®A)oA)(cap)
¢

V¢
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(8100 8)(eus) = (01w 9610) = T elen) 80 = Lo ey

~

=1 ® Z OarCys = 1k ® Cap = pa(Cap);
N
and similarly ((1 ® €) o A)(cap) = p1(Cap). So (A(n), A, €) is a K-coalgebra. By Theorem
(44), (A(n), u, t, A, €) is a K-bialgebra. Finally, note A, is a K-subspace of A(n) by the

definition of A,. Let ¢, , = ¢ - ¢k, € A.. Then, using the fact that A is a K-algebra

1k

homomorphism, we find that A(c; ) =), ;¢ ;@ ¢; v € A, ® A,. Thus A(4,) C A, @ A,.

A, is a K-subcoalgebra of A(n) by Definition (35). O

3.2 Schur Algebras and Group Actions

Let f € K" and k = Y_k,g € KT. Define f(k) = 3. k,f(g). Then f is a unique linear
extension of f. Let V be a finite-dimensional KT-module with basis {v, | b € B}. If
I' acts as gu, = >, ®u(g9)v. (as in the definition of coefficient space), then KT acts as
Koy, = > au(k)v, for all Kk € KT and all b € B. Let p : KI' — Endg(V) be the

representation afforded by V', and let Y = ker p.

60 LEMMA. Let f € K" and k € KI'. Then (a) x € Y if and only if f(k) = 0 for all

fect(V)and (b) fecf(V)if and only if f(k) =0 forall k € Y.

Proof. a. Let k € Y and f € cf (V). Then f = Za’bdabaab for some d,, € K. Since
au(k) = 0 for all a, b € B, we have f(k) = >, duaq(k) = 0. Conversely, let
f(k) =0 for all f € cf(V). Since ay, € cf (V) for all a, b € B, we have a,,(k) = 0 for

all a, b€ B. So p(k)(v) = kvy =), up(k)v, =0foralla,be B. Sok €Y.

b. Let N := p(KT). Define (,) : Y°x N — K by (f,v) = f(k) for all f € Y° and
v = p(k) € N. Suppose p(k) = p(\) for some k, A € KT and let f € Y°. Since p

is a homomorphism, then p(k — A\) = 0. Hence k — X\ € kerp. Thus f(k —A) =0
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since f € Y°. So f(k) — f(\) = 0 since f is linear. Hence f(k) = f(\). Thus (, ) is

well-defined. Now suppose (f, v) = 0 for every v € N. So f(k) = 0 for every k € KT

In particular, 0 = f(1xg) = f(g) for every g € I. So f = 0. Now let v = p(§) € N.

Suppose (f, v) = 0 for every f € Y°. Then f(£) = 0 for every f € Y° by the definition

of (,). Note Y = (Y°)° ={z | f(z) =0 for every f € Y°}. Hence { € Y. Sov =0.

So (, ) is non-singular. By (a), c¢f(V) C Y°. Observe if v = p(k) € N such that

f(k) = (f,v) =0 for all f e cf(V), then xk € Y by (a). Hence v = 0. This implies

(, ) restricted to cf (V) x N is non-singular. So cf (V) = N* 2 Y by two applications

of Lemma (32). Thus dimcf (V) = dim Y°. Therefore cf (V) = Y°.

O

61 EXAMPLE. Let g be the 3 x 3 matrix with g;; = ¢g1» = ¢g2o = ¢33 = 1 and 0 elsewhere.

We compute T5 ,(g). Note e, = e;, ® e,, since i = (i, i,). We write e;, := e; ® e, and

Gik, om = 0(g)(j. 1), ¢, m)- A few calculations are included:
gen = gle, ®ey) = ge, ®ge, = e, ®e; = ey

= ¢g11.,11 = L and g, ,, =0 for i # (1, 1);

ge, = ge; ® ge, = e, @ (e, + €3) = ey + €55

= Q1112 = G12.12 = L and g, 1, = 0 for i # (1, 1), (1, 2);
geis = ge, @ ges — e, @ €3 = €13

= (15,13 = 1 and g, 13 = 0 for ¢ # (1, 3);

ges = ge, @ ge, = (e, +e3) ® e, = e + ey

= gi1.21 = Go1.21 = L and g, 5, = 0 for ¢ # (1, 1), (2, 1).

We eventually obtain T} ,(g) = g ® g (Figure 10).

1101100 O—
0100100 0
001 001PO 0
0001100 0
000 O01O0O0 0
0 00 0O0OT1F® O 0
0000O0TO0T1 0
000 0O0O0GO 0
000 0O0O0O 1_

Figure 10: T; ,(g)

62 DEFINITION. The Schur algebra, denoted by S, or S,(I'), is the image of KT under

T, . with identity 1s, = [d; ;] where 6, ; = 6;,5, -+ 9

irjr®

Note that [0, ;] is just the identity matrix.

i J
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63 THEOREM. (a) (,): A, xS, — K given by (¢ 1, T, .(Kk)) = ¢;.1(k) is well-defined,

non-singular, and bilinear where ¢, , € A,, and K € KT'. (b) Af and S, are isomorphic as
n’+r—1
. .

K-spaces. (c) S, is a K-algebra with dim S, = (
Proof. (a) First, if T, (k) =T, .(k'), then K — " € Ker T, ,. So ¢, x(k — £') = 0 (Theorem
(58¢) and Lemma (60b)) and ¢; (k) = ¢; (k). Consequently, the form is well-defined.
Suppose 0 = (¢; x, T (k)) = ¢ x(k) for all Kk € KI'. Thus ¢, , = 0. Now suppose
¢iw(k) = (¢ixy Tn (k) =0 for all ¢, , € A,. Then k € kerT,, , by Lemma (60a). Hence
T, .(k) = 0. Thus (, ) is non-singular. Next for all ¢, ;, ¢; , € A, K, A € KT',and z, y € K,

we have

(@en i +ycjn Too(8)) = (@en,: + y¢; 1) () = 2 i(K) + ye; 1 (r)

= a(cn.sy To o (R)) + y(cii, To o (K))

and

(Ci gy 2T, (K) + YT v(N) = (Ciky T v(xk +YN)) = ¢ k(zh + YA) = z0; 1 (K) + yei 1 (N)

= z(ciny T (K)) + ylci s Ton(N)).

Thus (, ) is bilinear. (b) dim A¥ is finite by Theorem (58b). Then A* and S, are isomorphic

as K-spaces by Lemma (32). (c) S, is a homomorphic image of the K-algebra KT so it is a

2 -1
K-algebra. Moreover, dim S, = dim A” =dim 4, = (n T ) by Theorem (58b). O
T
64 LEMMA. Let &, ne€ S, and i, j € I.
a. <Ci7ja E) = the (7’7 ])th entry Of § b <Ci,ja 577> = 2h€1<ci,h7 §> <ch7ja 77>

Proof.  a. Note that £ : E®" — E®" is a linear map. We write the matrix of £ relative
to the basis {e; | i € I} as [§;]. We must show that (c;;, £) = &;. That is, we
must show that {(e;) = >_.(c;;, {)e;. Suppose that £ = T,, ,.(g) for some g € I'. By

Theorem (63), we must show that £(e;) = >_. ¢;;(g)e;. But this is clear since

k3
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(e,) =T (9)(e;) = gej, @~ @ gej, = Y cijy(9)en, @@ Y cig,(9)ei,

i1=1 ir=1

= Zcij(g)eil Qejp @ - Qe = Z%‘(Q)ei-

Since T, , and ¢;; are linear, we obtain T, .(xk)(e;) = >, ¢;;(k)(e;) for each k € KT,

and the claim follows.

b. By (a), <Cij7 §n) = (4, j)th entry of &n = Zhel Sinln,j = Zhe]<cih7 £><Chja n)- 0
65 THEOREM. ¢ : S.(I') — A* given by ¥(§)(f) = (f, §) is a K-algebra isomorphism.

Proof. First, ¢ is a K-space isomorphism by the proofs of Theorem (63b) and Lemma (32).
Multiplication in the algebra A* is defined by (af)(c) = > a(c)B(d:) (a, B € Af, c € A,),

where A(c) =), ¢; ® d;. Indeed,
(@B)(e.)) = [A*(a @ B)](e.,) = (@ ® B)(Ale,) = (a® f) (Z Cn® )
— Z Ch J

hel
Now let £, n € S,.(T') and 4, j € I. Then by the definition of 1) and Lemma (64b)

w(&?)(czy) = <Ci,j7 577> = Z< Ci, n) 5 Ch,j> Zw G, h (Ch,j)‘

hel hel

Since the ¢; ; span A,, we have ¥(&n)(c) = >, , ¥(&)(c;)v(n)(d;) for all ¢ € A,. Next, let

a =) and f = 1¥(n). Consequently,

(ED()(e) = (aB)(e) = Y ale)Bd:) = Y $(€)(e)db(n)(di) = $(En) (<)

i€l i€l

for all ¢ € A,. Thus % is a homomorphism. Therefore 1 is an algebra map since

¢(1sr<r>)(ci,j) = {ci,; Ls,ry) = 0;,; = e(ci,;)- 0

66 DEFINITION. Let S be a set, G a group, and e the identity of G. An action of G

on S is a function G x S — S given by (g, ) — gx such that ex = x and (gh)x = g(hx)
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for all x € S and g, h € G. A right action of G has a similar definition with g appearing

on the right. S is called a (right) G-set when an (right) action exists.

67 NOTATION. We set N := End.(E®"). Then N has basis {e; ; | 4, j € I} where

e, ;: E®" — E®" is given by e, ;(e,) = d; xé:.

68 EXAMPLES. Let G=)_ ,0€ G, i= (i1, %, - -+ , i,), and recall I := I(n, r).
a. Consider oi = (i,-1(,), -, i,-1(,). This makes I a G-set since

(1)i = (igyy-t0ays ++ » igay-tgey) = (ia, -+, i,) = i, and
O-(Ti) = 0(i7_1(1)a T /I:T_:l(’r‘)) = U(jla T ]T) = (jo_l(l)’ B jo'_l(T))

(C=1o=1ay> " brLie=1(y) = (lom=1ays = " 5 Gom—1(n) = (0T,

where ji 1= -1,.

b. Next, consider E®" and oe, = €,, = €,;, ® -+ ® €,;,. Then (l)e, = e,; = ¢, and
a(pe;) = (€p) = €sipiy = €op@y = (op)e; by (a). Hence E®" is a G-set with the

above action extended linearly.

c. Define e, ;0 by (e; ;0)(e) = e, ;(ce) (e € E®"). Consequently, extending this ac-
tion linearly yields that N a right G-set because (e, ;1)(e) = e, ;(le) = e, ;(e)
and ((e; ;0)7)(e) = (e;;0)(te) = e, ;((o1)e) = (e;,;(07))(e). Moreover, we have
(€:,;0)er = € j(0er) = € j(eor) = 0j one; = 6,-1; 1€; = (€, ,—1,)ex. It therefore follows

that e; ;o0 =e, ,-1,.

d. Arguing as in (c), we find that N* is a G-set with action (o€ ;)e, . = €] ;(ex, o) where
e; ;(exe) = 0; k0, . Moreover,
(O-e;k’j)ek’e - ezj(ek’la) = ezj(ek,aflz) = 5i,k5j,a*12 = 5i,k60j,2 = 6: aj(ek,é)

*
4,05"

by (c). So we have oe} . =e
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3.3 Main Results

69 NOTATION. Suppose X is a character of G =) . Weset t, := > _, x(0)o € KG,

L:=t,E® N,:=Endg(L), and A, := cf(L).

70 DEFINITION. Let T : KI' — N be the representation corresponding to the KT'-
module E®". We define Ty, : KT — N by Ty.(k) = T(x)|, .
The action of I' on E®" clearly commutes with the action of G. So T'(x)(L) C L and T, is
well-defined.
71 LEMMA. ¢ : (imT)t, — im T}, given by (T (k)t,) = T(m)‘L is a K-isomorphism.
Proof. We have that 1 is well-defined and injective since,

T(k)t, = T\t & T(k)t,(e) = T(\)t,(e) for all e € E®"

& T(k)(tye) = T(N)(te) for all e € E®7

X

& T(r)|, =T\, & v(T(k)t,) = »(TAL).

o is also surjective since (T (k)t,) = T(k)|, for any T'(x)|, € imTy. Finally ¢ is a K-space

isomorphism since for all £ € K and for all T'(x)|, T()\)‘L €imTy:

W(T(k)t, +T(Nt) = 0(T(k+ MNt,) =T(k+ )|, =T(k)|, + T(V)],
= w(T(’%)tx) + w(T(/\)tx%
P(kT(r)t,) = Y(T(kr)t,) = T(kr)|, = kT(r)|, = k(T(k)t,. 0

72 REMARK. The dual of ¢ in Lemma (71) is the map ¢* : (im7})* — ((imT)t,)*
defined by ¥*(f)(T'(r)t,) = f(W(T(K)t,)) = f(T(m)’L) by Definition (30). Also since
N is a right G-set by Example (68c), it follows that Homy (KT, N) is a right G-set by

(fo)(k) = f(k)o. In particular, (T't,)(k) = T'(k)t

X*
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73 LEMMA. (a) v: A, — (imT.)* given by (v(a))(T.(k)) = a(k) is a K-isomorphism.
(b) If v = ¢* oy then v(a) o (Tt,) = a as functions from KT to K for every a € A;. (c)

AL - <e:i] OTtX)'

Proof.  a. By Lemma (60b) we have A, = (kerT})°. Note that there exists an isomor-
phism F' : (kerT,)° — (KT'/kerT,)* by Lemma (31b). Similarly, there exists an
isomorphism G : (KT'/kerT;,)* — (im 7} )* by the First Isomorphism Theorem. Now

define v = G o F. Consequently ~ is an isomorphism with

(@) (Te(k)) = G(F(a))(TL(r)) = F(a)(k + ker Ty () = a(x).

b. Let v € KT'. Then by (a) (v(a))(T(k)t,) = ¥*(v(a))(T(x)ty) = v(a)(Ti(k)) = a(k)
(T(k)t, € (mT)t,). Thus a(k) = (v(a)(T(k)t,) = v(a)((Tt,)(x)) = (v(a) o Tt,)(x)

by the last sentence of Remark (72). Consequently, v(a) o (T't,) = a.

c. First, Ay C (e}, oTt,) since, using (b),we have for each a € A,

a=v(a)o Tt, = (4" 07)(a) o Tt, = <Z . ) oTt,
1im X

2%

= Zai,j(eij oTt,) € (e, 0Tt,).

2%

where we have used that ((im7')¢,)* is spanned by the restrictions of the e . to
(imT)t, to express (¥* o y)(a) as indicated. For the converse, let x € ker T},. Conse-
quently, T(k)t, = ¢~ (T(x)|,) =1~"(0) = 0 by Lemma (71). Then since

(ef ;0T ) (k) =€} (Tt (k) = el (T(k)t,) =e; (0) =0,

) 7

we may conclude that ef . o T't, € ((imT)t,)° = A,. Thus (e ;0 Tt,) C Ap. O
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74 LEMMA. There exists a well-defined K-endomorphism ¢, of A, with the property

tyCij = ZGEG x(o)ei, . (i, 5 €1).

Proof. Since A, is spanned by the ¢, ;, it is enough to check that the assignment is well-

R

defined. Suppose ¢, ; = ¢, ,. Then k = im and ¢ = jr for some m € G (see Notation (55b)).

Then Ck,gé = Ciﬂ'xa(jﬂ') = Cﬂ'_li, on— 1 7 = C’L Tonw “j° SO
txck,f = E X(U)Ckw’@ = E :X(U z ron—Lj — § X m pﬂ- i, pJ E X G, pj — Ci,js
ocG occG peG peG
where we have used the fact that characters are constant on conjugacy classes. O

75 NOTATION. If E is replaced by L, the same construction (see Remark (56) and
Definition (62)) which yielded S, results in a K-algebra, which we denote by S, ;. Put

AS,L = cf (L®s).

Theorem (76), Theorem (78), and Theorem (80) below are the main results. Theorem (76)
generalizes Proposition (54), Theorem (78) generalizes Theorem (58c), and Theorem (80)

generalizes Theorem (63b).
76 THEOREM. cf (t, E®") = ¢ cf (E®").
Proof. Note

(€], 0Tt ) (k) = el ;(Tt)(r)) = e ;(T(r)ty) = (teei ))(T(k)) = (e ;) o T)(r).

Thus €] ; o Tt, = tye; , oT. Now tef, = > _.x(o)oel, = > _.x(o)e},,;. Then by

X

Lemma (58c), Lemma (73c), Lemma (74), and since c; ; = €] ; o T, we have

of (1, E®") = A, = (ef ;o Tt,) = ((tyel ) o <<ZX > >

oceG
<ZX 1 oj > <ZX 1 a]> <txci,j>
ceG oeG
=t (c; ;) =t A, = t,cf (E®). O
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77 NOTATION. Let r,, ---,r, € ZT. For each i, let x; be a character of Zri and put

L, =t E®i. We write [],t,,A, tomean the set of all products [[, ¢; with ¢; € ¢, A, ..
78 THEOREM. cf (Q,L,,) =I[, t,A.,-

Proof. The matrix representation of a tensor product of modules is the Kronecker product

of the matrix representations of the factors (see the proof of Theorem (26)). By Theorem

(76), o (®, Ly,) = T1,ef (Ly,) = T, of (1, %) = I, t,,ef (%) = [, £, A... m
79 COROLLARY. cf (L®%) = (t,A,)* for any s € Z™.

Proof. Immediate from Theorem (78). O
80 THEOREM. S, , = A* ,.

Proof. Let T, : KI' — End(L®®) be the representation afforded by L®¢ (extended to
KT). Then KT/kerT, = imT, = S, ; by the First Isomorphism Theorem. Therefore

A, =cf (L%%) = (kerT;)° = (KT/ker T;,)* = S* , by Lemma (60b) and Lemma (31b). [
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