Coefficient Space Properties and a Schur Algebra Generalization

Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information.

David P. Turner

Greg A. Harris
Associate Professor
Department of Mathematics

Randall R. Holmes, Chair

Associate Professor

Department of Mathematics

William D. Ullery
Professor
Department of Mathematics

Eugene J. Clothiaux
Professor
Department of Physics

David P. Turner

A Dissertation
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Doctor of Philosophy

Auburn, Alabama
December 16, 2005

Coefficient Space Properties and a Schur Algebra Generalization

David P. Turner

Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon request of individuals or institutions and at their expense.

The author reserves all publication rights.

Signature of Author

Date of Graduation

Vita

David Presnell Turner, son of Thomas E. Turner and Mary Elizabeth Shope Turner, was born June 24, 1960, in Lancaster, Pennsylvania. He graduated from North Gallia High School in Vinton, Ohio in 1978. He entered Rio Grande College in September 1978. He graduated with the degree of Bachelor of Science in mathematics in June 1986. He entered Indiana University in Bloomington, Indiana in August 1986. He graduated with the degree of Master of Arts in mathematics in May 1988. He entered Purdue University in West Lafayette, Indiana in August 1989. He graduated with the degree of Master of Science in mathematics in May 1994. He enrolled in the Ph.D. program in the Department of Mathematics, Auburn University in September, 1993. He worked as Adjunct Instructor of Mathematics for Lexington Community College in Lexington, Kentucky from August 1991 to June 1993. He has taught mathematics and physics at Faulkner University in Montgomery, Alabama from August 1993 to the present. He married Brenda White, daughter of Fred and Ruth (Dillon) White, on August 31, 1984.

Dissertation Abstract

Coefficient Space Properties and a Schur Algebra Generalization
 David P. Turner

Doctor of Philosophy, December 16, 2005
(M.S., Purdue University, 1994)
(M.A., Indiana University, 1988)
(B.S., Rio Grande College, 1986)

54 Typed Pages
Directed by Randall R. Holmes

Let K be an infinite field and $\Gamma=\mathrm{GL}_{n}(K)$. If we linearly extend the natural action of Γ on the set E of n-dimensional column vectors over K to the group algebra $K \Gamma$, then E becomes a $K \Gamma$-module. We then construct the $K \Gamma$-module $E^{\otimes r}$, the r-fold tensor product of E. The image $S_{r}(\Gamma)$ of the corresponding representation of $K \Gamma$ is called the Schur algebra. If E is replaced by a different $K \Gamma$-module L, the same construction results in an algebra $S_{r, L}$. The subalgebra $A(n)$ of K^{Γ} generated by the coordinate functions $c_{\alpha \beta}: \Gamma \rightarrow K$ with $1 \leq \alpha, \beta \leq n$ is a bialgebra. $A(n)$ has a subcoalgebra A_{r} which consists of homogeneous polynomials of total degree r in the indeterminants $c_{\alpha \beta}$. Classically, the dual A_{r}^{*} of A_{r} is an algebra isomorphic to $S_{r}(\Gamma)$ and A_{r} is the coefficient space of $E^{\otimes r}$. We identify $S_{r, L}$ with the dual $A_{r, L}^{*}$ of the coefficient space $A_{r, L}$ of $L^{\otimes r}$ and give a description of $A_{r, L}$.

Acknowledgments

This work is dedicated to my mother Mary Elizabeth Shope Turner (1927-1985) and to Brenda White Turner, my wife for the past 21 years. Words cannot express my indebtedness to each of them and my love for both of them. Many thanks to Dr. Randall Holmes, my major professor, for his algebraic expertise and patient guidance, and to the other members of my committee, Dr. William Ullery, Dr. Greg Harris, and Dr. Eugene Clothiaux, for their excellent classroom instruction in mathematics and physics. Also thanks to Faulkner University for sabbatical leave during my residency year at Auburn and for numerous scheduling accommodations.

The style manual used is Auburn University Graduate School Guide to Preparation and Submission of Theses and Dissertations. The bibliography uses the style in $L^{A} T_{E} X$: A Document Preparation System by Leslie Lamport.

The computer software packages used are $\mathrm{AT}_{\mathrm{EX}} 2_{\varepsilon}$ and $\mathcal{A} \mathcal{M} \mathcal{S}$ - $\mathrm{ET} \mathrm{EXX}_{\mathrm{E}}$ with diagrams generated by XY-pic. All packages are under a MiKTEX implementation with WinEdt used as the text editor. The final output was printed from Adobe Acrobat.

Table of Contents

List of Figures ix
1 Preliminaries 1
1.1 Modules, Algebras, and Group Rings 1
1.2 Tensor Products 5
1.3 Representations and Characters 8
1.4 Linear Functionals 11
2 Algebras and Coalgebras 16
2.1 Algebras and Commutative Diagrams 16
2.2 Coalgebras and Bialgebras 19
3 Results in Schur Algebras 27
3.1 Polynomial Functions and Coefficient Space 27
3.2 Schur Algebras and Group Actions 34
3.3 Main Results 39
Bibliography 43
INDEX 44

List of Figures

Figure 1: Tensor Product Universal Property 6
Figure 2: Associative Law and Unitary Property 16
Figure 3: Tensor Product of K-algebras 18
Figure 4: Coassociative Law and Counitary Property 19
Figure 5: Dual of a K-Coalgebra 20
Figure 6: Dual of a Finite-Dimensional K-Algebra 21
Figure 7: Tensor Product of K-coalgebras 23
Figure 8: Coalgebra Homomorphism 25
Figure 9: Bialgebra Equivalent Conditions 26
Figure 10: $T_{3,2}(g)$ 35

Chapter 1

Preliminaries

Definitions and statements of standard results in the theory of modules, algebras, group rings, tensor products, representations, characters, and linear functionals have been drawn from $[1-8,10]$.

1.1 Modules, Algebras, and Group Rings

1 DEFINITION. Let R be a ring. A left R-module is an additive abelian group M together with a function $R \times M \rightarrow M((r, m) \mapsto r m)$ which satisfies the module axioms (i) $r(m+n)=r m+r n$, (ii) $(r+s) m=r m+s m$, and (iii) $r(s m)=(r s) m$ for all $r, s \in R$ and $m, n \in M$. A right R-module has a similar definition with r on the right. Let M be a (left) R-module. M is called unitary if R has an identity 1_{R} and $1_{R} \cdot m=m$ for all $m \in M$. N is called an R-submodule of M if N is a subgroup of M and $r n \in N$ for all $r \in R$ and $n \in N$. If N is an R-module, a function $f: M \rightarrow N$ such that $f(m+n)=f(m)+f(n)$ and $f(r m)=r f(m)$ for all $m, n \in M$ and $r \in R$ is called an R-module homomorphism. The set of all R-modules homomorphisms from M to N is denoted $\operatorname{Hom}_{R}(M, N)$. Let K be a field. A unitary K-module V, a K-submodule of V, and a K-module homomorphism are called a K-space, a K-subspace, and a K-linear map, respectively.
"Module" means "left module" unless otherwise noted. K always represents a field. Since K is commutative, a K-space V can be viewed as a right K-space by defining $k v=v k$ for all $k \in K$ and $v \in V$. An injective, surjective, or bijective homomorphism is called a monomorphism, epimorphism, or isomorphism, respectively.

2 EXAMPLES. Let R be a ring and $f: M \rightarrow N$ an R-module homomorphism. Then ker $f=f^{-1}(\{0\})$ is an R-submodule of $M, \operatorname{im} f$ is an R-submodule of N, and the quotient group $M / N=\{m+N \mid m \in M\}$ is an R-module called a quotient module.

3 THEOREM (First Isomorphism Theorem). If $f: M \rightarrow N$ is an R-module homomorphism then $M / \operatorname{ker} f \cong \operatorname{im} f$.

Proof. See [5, p. 172].

4 DEFINITION. A K-algebra is a ring A with identity such that A is a K-space (with addition via the ring structure) satisfying the algebra condition $k(a b)=(k a) b=a(k b)$ for all $k \in K$ and $a, b \in A$. A K-subalgebra of a K-algebra is a subring that is also a K-subspace. If A and B are K-algebras, then a K-algebra homomorphism is a ring homomorphism $\varphi: A \rightarrow B$ mapping 1_{A} to 1_{B} such that $\varphi(k a)=k \varphi(a)$ for all $k \in K$ and $a \in A$.

5 LEMMA. Let A be a ring with identity. Then A is a K-algebra if and only if there is a ring homomorphism $f: K \rightarrow A$ such that $f(K) \subseteq \operatorname{cent}(A)$ and $f\left(1_{K}\right)=1_{A}$.

Proof. (\Longrightarrow) Define $f: K \rightarrow A$ by $f(k)=k 1_{A}$. We have that f is a ring homomorphism since $f(j k)=(j k) 1_{A}=j\left(k 1_{A}\right)=j\left(k\left(1_{A} 1_{A}\right)\right)=j\left(1_{A}\left(k 1_{A}\right)\right)=\left(j 1_{A}\right)\left(k 1_{A}\right)=f(j) f(k)$ and $f(j+k)=(j+k) 1_{A}=j 1_{A}+k 1_{A}=f(j)+f(k)(j, k \in K)$ by the algebra condition and module axiom (ii). Also $f(k) a=\left(k 1_{A}\right) a=k\left(1_{A} a\right)=k a=k\left(a 1_{A}\right)=a\left(k 1_{A}\right)=a f(k)$ $(k \in K, a \in A)$ implies $f(K) \subseteq$ cent (A), and $f\left(1_{K}\right)=1_{K} 1_{A}=1_{A}$ since A is unitary.
(\Longleftarrow) Define $k \cdot a=f(k) a(k \in K, a \in A)$ where $f(k) a$ is the multiplication in the ring A. Note $f(k) a=a f(k)$ since $f(K) \subseteq \operatorname{cent}(A)$. Let $j, k \in K$ and $a, b \in A$. Since A satisfies ring distributive and associative laws, and f is a ring homomorphism,
(i) $k \cdot(a+b)=f(k)(a+b)=f(k) a+f(k) b=k \cdot a+k \cdot b$,
(ii) $(j+k) \cdot a=f(j+k) a=(f(j)+f(k)) a=f(j) a+f(k) a=j \cdot a+k \cdot a$,
(iii) $j \cdot(k \cdot a)=f(j)(f(k) a)=(f(j) f(k)) a=f(j k) a=(j k) \cdot a$,
(iv) $1_{K} \cdot a=f\left(1_{K}\right) a=1_{A} a=a,(v) k \cdot(a b)=f(k)(a b)=(f(k) a) b=(k \cdot a) b$, and
(vi) $(k \cdot a) b=(f(k) a) b=(a f(k)) b=a(f(k) b)=a(k \cdot b)$.

Thus A is a K-space by (i) - (iv), and satisfies the algebra condition by (v) and (vi).

6 NOTATION. Let $\Gamma=\Gamma_{n}\left(n \in \mathbb{Z}^{+}\right)$denote the general linear group $\mathrm{GL}_{n}(K)$ and put $K^{\Gamma}:=\{f \mid f: \Gamma \rightarrow K\}$.

7 EXAMPLES. The following are K-algebras: (a) K, (b) the set $\operatorname{Mat}_{n} K$ of all $n \times n$ matrices over K, (c) the set $\operatorname{End}_{K}(V)$ of all K-linear maps from a K-space V to itself, and (d) K^{Γ} with pointwise addition and multiplication, and identity $1_{K^{\Gamma}}(g)=1_{K}$ for all $g \in \Gamma$.

8 DEFINITION. Let G be a group and R a commutative ring with identity $1_{R} \neq 0_{R}$. The group ring $R G$ of G over R is the set of all (formal) sums $\sum_{g \in G} r_{g} g$ where only finitely many $r_{g} \in R$ satisfy $r_{g} \neq 0_{R}$. The equation $\sum_{g \in G} r_{g} g+\sum_{g \in G} s_{g} g=\sum_{g \in G}\left(r_{g}+s_{g}\right) g$ defines addition while $\left(\sum_{g \in G} r_{g} g\right)\left(\sum_{h \in G} s_{h} h\right)=\sum_{g, h \in G}\left(r_{g} s_{h}\right)(g h)=\sum_{g \in G}\left(\sum_{h \in G} r_{g h-1} s_{h}\right) g$ defines multiplication where $r_{g} s_{h}$ is the product in R and $g h$ is the product in G.
$R G$ is a ring. By the definition of multiplication, $R G$ is commutative if and only if G is abelian. We may consider G as a subset of $R G$ by identifying $g \in G$ with $1_{R} g$. Similarly, $R \subseteq R G$ by identifying $r \in R$ with $r 1_{G}$. Thus, by restriction, any $K G$-module may be viewed as a K-space. Further, $K G$ is a K-space with scalar multiplication given by the ring multiplication (viewing $K \subseteq K G$).

9 LEMMA. Let H be a group. Then $K H$ is a K-algebra.

Proof. $K H$ is a ring by the preceding remark. It has identity $1_{K} 1_{H}$. Define $f: K \rightarrow K H$ by $f(k)=k 1_{H}(k \in K)$. So $f(j+k)=(j+k) 1_{H}=j 1_{H}+k 1_{H}=f(j)+f(k)(j, k \in K)$ and, by the definition of multiplication in $K H$,

$$
f(j k)=(j k) 1_{H}=(j k)\left(1_{H} 1_{H}\right)=\left(j 1_{H}\right)\left(k 1_{H}\right)=f(j) f(k)
$$

Consequently f is a ring homomorphism. For $k \in K$ and $s \in K H$, we have

$$
f(k) s=\left(k 1_{H}\right) s=k s=s k=s\left(k 1_{H}\right)=s f(k),
$$

so $f(K) \subseteq$ cent $(K H)$. Also $f\left(1_{K}\right)=1_{K} 1_{H}$. Lemma (5) implies $K H$ is a K-algebra.

10 THEOREM. Let H be a group, A a K-algebra, and A^{\times}the multiplicative group of invertible elements of A. Then every group homomorphism $\varphi: H \rightarrow A^{\times}$has a unique extension to a K-algebra homomorphism $\bar{\varphi}: K H \rightarrow A$.

Proof. Suppose $\varphi: H \rightarrow A^{\times}$is a group homomorphism. We define $\bar{\varphi}: K H \rightarrow A$ by $\bar{\varphi}\left(\sum_{h \in H} a_{h} h\right)=\sum_{h \in H} a_{h} \varphi(h)$. Then

$$
\begin{aligned}
\bar{\varphi}\left(\sum_{h \in H} a_{h} h+\sum_{h \in H} b_{h} h\right) & =\bar{\varphi}\left(\sum_{h \in H}\left(a_{h} h+b_{h} h\right)\right)=\sum_{h \in H}\left(a_{h}+b_{h}\right) \varphi(h) \\
& =\sum_{h \in H} a_{h} \varphi(h)+\sum_{h \in H} b_{h} \varphi(h)=\bar{\varphi}\left(\sum_{h \in H} a_{h} h\right)+\bar{\varphi}\left(\sum_{h \in H} b_{h} h\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{\varphi}\left(\left[\sum_{h \in H} a_{h} h\right]\left[\sum_{h \in H} b_{h} h\right]\right) & =\bar{\varphi}\left(\sum_{g \in H}\left[\sum_{h \in H} a_{g h^{-1}} b_{h}\right] g\right)=\sum_{g \in H}\left(\sum_{h \in H} a_{g h^{-1}} b_{h}\right) \varphi(g) \\
& =\sum_{h \in H}\left(\sum_{g \in H} a_{g h^{-1}} b_{h}\right) \varphi(g)=\sum_{h \in H}\left(\sum_{g \in H} a_{g} b_{h}\right) \varphi(g h) \\
& =\left(\sum_{h \in H} a_{h} \varphi(h)\right)\left(\sum_{h \in H} b_{h} \varphi(h)\right)=\bar{\varphi}\left(\sum_{h \in H} a_{h} h\right) \bar{\varphi}\left(\sum_{h \in H} b_{h} h\right)
\end{aligned}
$$

show $\bar{\varphi}$ is a ring homomorphism. Also $\bar{\varphi}\left(1_{K} 1_{H}\right)=1_{K} \varphi\left(1_{H}\right)=1_{K} 1_{A}=1_{A}$. Now let $k \in K$ and $\sum_{h \in H} a_{h} h \in K H$. Then

$$
\bar{\varphi}\left(k \sum_{h \in H} a_{h} h\right)=\bar{\varphi}\left(\sum_{h \in H}\left(k a_{h}\right) h\right)=\sum_{h \in H}\left(k a_{h}\right) \varphi(h)=k \sum_{h \in H} a_{h} \varphi(h)=k \bar{\varphi}\left(\sum_{h \in H} a_{h} h\right) .
$$

Consequently, $\bar{\varphi}$ is a K-algebra homomorphism. Finally, we establish uniqueness. Suppose that $\bar{\psi}: K H \rightarrow A$ is a K-algebra homomorphism such that $\left.\bar{\psi}\right|_{H}=\varphi$. Then $\bar{\psi}=\bar{\varphi}$ since

$$
\bar{\psi}\left(\sum_{h \in H} a_{h} h\right)=\sum_{h \in H} a_{h} \bar{\psi}(h)=\sum_{h \in H} a_{h} \varphi(h)=\bar{\varphi}\left(\sum_{h \in H} a_{h} h\right) .
$$

1.2 Tensor Products

In this section, K-spaces are assumed to be finite-dimensional.

11 DEFINITION. Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $\left\{w_{1}, w_{2}, \cdots, w_{m}\right\}$ be bases for K-spaces V and W, respectively. Then the tensor product of V and W, denoted $V \otimes W$, is the K-space with basis $\left\{v_{i} \otimes w_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$. For arbitrary $v \in V$ and $w \in W$, we may write $v=\sum_{i} \alpha_{i} v_{i}$ and $w=\sum_{j} \beta_{j} w_{j}$. We define $v \otimes w:=\sum_{i, j} \alpha_{i} \beta_{j} v_{i} \otimes w_{j} \in V \otimes W$.

12 REMARKS. Let V and W be K-spaces. (a) $\operatorname{dim}(V \otimes W)=(\operatorname{dim} V)(\operatorname{dim} W)$ follows from the definition. (b) Let $v \in V$. Then $v \otimes 0=v \otimes(0+0)=v \otimes 0+v \otimes 0$. Since 0 is the only element of a group that satisfies $x+x=x$, we have $v \otimes 0=0$. Similarly, $0 \otimes v=0$. (c) The tensor product of $V_{1} \otimes \cdots \otimes V_{n}$ of $n K$-spaces V_{1}, \ldots, V_{n} is defined similarly. We have $v_{1} \otimes \cdots \otimes v_{n}=0$ if any $v_{i}=0$.

13 LEMMA. Let V and W be K-spaces. Suppose $u \in V \otimes W$. Then there is a positive integer n, a linearly independent subset $\left\{v_{1}, \ldots, v_{n}\right\}$ of V and a subset $\left\{w_{1}, \ldots, w_{n}\right\}$ of W such that $u=\sum_{i=1}^{n} v_{i} \otimes w_{i}$.

Proof. Let $\left\{v_{\alpha}\right\}_{\alpha \in I}$ be a basis of V. Write $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\left(x_{i} \in V, y_{i} \in W\right)$. Thus $x_{i}=k_{i 1} v_{\alpha_{1}}+\cdots+k_{i n} v_{\alpha_{n}}\left(k_{i j} \in K, v_{\alpha_{j}} \in V, 1 \leq i, j \leq n\right)$. Then

$$
\begin{aligned}
u & =\sum_{i=1}^{n}\left(k_{i 1} v_{\alpha_{1}}+\cdots+k_{i n} v_{\alpha_{n}}\right) \otimes y_{i}=\sum_{i=1}^{n}\left[\left(k_{i 1} v_{\alpha_{1}} \otimes y_{i}\right)+\cdots+\left(k_{i n} v_{\alpha_{n}} \otimes y_{i}\right)\right] \\
& =\sum_{i=1}^{n}\left[\left(v_{\alpha_{1}} \otimes k_{i 1} y_{i}\right)+\cdots+\left(v_{\alpha_{n}} \otimes k_{i n} y_{i}\right)\right] \\
& =\left(v_{\alpha_{1}} \otimes k_{11} y_{1}+\cdots+v_{\alpha_{n}} \otimes k_{1 n} y_{1}\right)+\cdots+\left(v_{\alpha_{1}} \otimes k_{n 1} y_{n}+\cdots+v_{\alpha_{n}} \otimes k_{n n} y_{n}\right) \\
& =\left[v_{\alpha_{1}} \otimes\left(k_{11} y_{1}+\cdots+k_{n 1} y_{n}\right)\right]+\cdots+\left[v_{\alpha_{n}} \otimes\left(k_{1 n} y_{1}+\cdots+k_{n n} y_{n}\right)\right] \\
& =\sum_{i=1}^{n} v_{\alpha_{i}} \otimes\left(k_{1 i} y_{1}+\cdots+k_{n i} y_{n}\right) .
\end{aligned}
$$

The result follows since each $k_{1 i} y_{1}+\cdots+k_{n i} y_{n} \in W$.

14 DEFINITION. If R is a commutative ring with $1_{R}, M_{1}, \ldots, M_{n}$, and L are R-modules, and, for all $r, r^{\prime} \in R$ and $m_{1}, \ldots, m_{n}, m_{i}^{\prime} \in M, f: M_{1} \times \cdots \times M_{n} \rightarrow L$ satisfies $f\left(m_{1}, \ldots, m_{i-1}, r m_{i}+r^{\prime} m_{i}^{\prime}, m_{i+1}, \ldots, m_{n}\right)=r f\left(m_{1}, \ldots, m_{n}\right)+r^{\prime} f\left(m_{1}, \ldots, m_{i}^{\prime}, \ldots, m_{n}\right)$ then f is called n-multilinear (or bilinear when $n=2$).

15 EXAMPLES. (a) Let V and W be K-spaces. Define $\beta: V \times W \rightarrow V \otimes W$ by $\beta(v, w)=v \otimes w\left(v \in V, w \in W\right.$. Then for all $v, v_{1}, v_{2} \in V, w, w_{1}, w_{2} \in W$, and $k_{1}, k_{2} \in K$, we have

$$
\begin{aligned}
\beta\left(k_{1} v_{1}+k_{2} v_{2}, w\right) & =\left(k_{1} v_{1}+k_{2} v_{2}\right) \otimes w=k_{1} v_{1} \otimes w+k_{2} v_{2} \otimes w \\
& =k_{1}\left(v_{1} \otimes w\right)+k_{2}\left(v_{2} \otimes w\right)=k_{1} \beta\left(v_{1}, w\right)+k_{2} \beta\left(v_{2}, w\right)
\end{aligned}
$$

and, similarly, $\beta\left(v, k_{1} w_{1}+k_{2} w_{2}\right)=k_{1} \beta\left(v, w_{1}\right)+k_{2} \beta\left(v, w_{2}\right)$. Thus β is bilinear. β is called the canonical bilinear map. (b) We generalize (a). Let V_{1}, \ldots, V_{n} be K-spaces. Define $\beta: V_{1} \times \cdots \times V_{n} \rightarrow V_{1} \otimes \cdots \otimes V_{n}$ by $\beta\left(v_{1}, \ldots, v_{n}\right)=v_{1} \otimes \cdots \otimes v_{n}\left(v_{i} \in V_{i}, 1 \leq i \leq n\right)$. Similar to (a), β is bilinear. β is called the canonical n-multilinear map. (c) Similar to (a), $t: V \times W \rightarrow W \otimes V, p_{1}: V \times K \rightarrow V$ and $p_{2}: K \times V \rightarrow V$ given by $t(v, w)=w \otimes v$, $p_{1}(v, k)=v k$ and $p_{2}(k, v)=k v(v \in V, w \in W, k \in K)$ are bilinear.

16 THEOREM. Suppose U, V, and W are K-spaces and let $f: U \times V \rightarrow W$ be bilinear. Then there exists a unique K-linear map $\bar{f}: U \otimes V \rightarrow W$ such that $\bar{f} \circ \beta=f$, where β is the canonical bilinear map.

Figure 1: Tensor Product Universal Property

Proof. See [5, p. 211].

17 LEMMA. Let M, N, P, and Q be K-spaces and let $f: M \rightarrow P$ and $g: N \rightarrow Q$ be K-linear maps. Then there exists a unique K-linear map $f \otimes g: M \otimes N \rightarrow P \otimes Q$ such that $(f \otimes g)(m \otimes n)=f(m) \otimes g(n)$ for all $m \in M$ and $n \in N$.

Proof. Define $h: M \times N \rightarrow P \otimes Q$ by $h(m, n)=f(m) \otimes g(n)$. Then h is bilinear. By Theorem (16) there exists a unique K-linear map $f \otimes g: M \otimes N \rightarrow P \otimes Q$ such that $(f \otimes g) \circ \beta=h$ where β is the canonical bilinear map. Then for all $m \in M$ and $n \in N$,

$$
(f \otimes g)(m \otimes n)=(f \otimes g)(\beta(m, n))=[(f \otimes g) \circ \beta](m, n)=h(m, n)=f(m) \otimes g(n)
$$

18 DEFINITION. Let V and W be K-spaces with bases \mathcal{V} and \mathcal{W}, respectively. By Theorem (16), the map t of Example (15c) induces the K-linear map $\tau: V \otimes W \rightarrow W \otimes V$ given by $\tau(v \otimes w)=w \otimes v$ for all $v \in \mathcal{V}$ and $w \in \mathcal{W} . \tau$ is called the twist map. Similarly, for all $v \in V$ and $k \in K$, the maps p_{1} and p_{2} of Example (15c) induce the K-linear maps $\pi_{1}: V \otimes K \rightarrow V$ and $\pi_{2}: K \otimes V \rightarrow V$ given by $\pi_{1}(v \otimes k)=v k$ and $\pi_{2}(k \otimes v)=k v . \pi_{1}$ and π_{2} are called the canonical projections. $\rho_{1}: V \rightarrow V \otimes K$ and $\rho_{2}: V \rightarrow K \otimes V$ given by $\rho_{1}(v)=v \otimes 1_{K}$ and $\rho_{2}(v)=1_{K} \otimes v$ are called the canonical injections.

19 LEMMA. Let V and W be K-spaces, $\tau: V \otimes W \rightarrow W \otimes V$ and $\tau^{\prime}: W \otimes V \rightarrow V \otimes W$ twist maps, π_{1} and π_{2} the canonical projections, and ρ_{1} and ρ_{2} the canonical injections. (a) $\tau^{\prime} \circ \tau=1_{V \otimes W}, \tau \circ \tau^{\prime}=1_{W \otimes V}, \pi_{1} \circ \rho_{1}=1_{V}, \rho_{1} \circ \pi_{1}=1_{V \otimes K}, \pi_{2} \circ \rho_{2}=1_{V}$, and $\rho_{2} \circ \pi_{2}=1_{K \otimes V}$. $\tau, \pi_{1}, \pi_{2}, \rho_{1}$, and ρ_{2} are K-space isomorphisms. (c) Let $v_{1}, v_{2}, v_{3} \in V$ and $w_{1}, w_{2}, w_{3} \in W$. Define $\varphi: V \otimes W \otimes V \otimes W \otimes V \otimes W \rightarrow V \otimes V \otimes V \otimes W \otimes W \otimes W$ by

$$
\varphi\left(v_{1} \otimes w_{1} \otimes v_{2} \otimes w_{2} \otimes v_{3} \otimes w_{3}\right)=v_{1} \otimes v_{2} \otimes v_{3} \otimes w_{1} \otimes w_{2} \otimes w_{3} .
$$

Then φ is a K-space isomorphism.

Proof.
a. $\left(\tau^{\prime} \circ \tau\right)(v \otimes w)=\tau^{\prime}(w \otimes v)=v \otimes w$ for all $v \in V, w \in W$. So $\tau^{\prime} \circ \tau=1_{V \otimes W}$.

Similarly, $\tau \circ \tau^{\prime}=1_{W \otimes V} .\left(\pi_{1} \circ \rho_{1}\right)(v)=\pi_{1}\left(v \otimes 1_{K}\right)=v 1_{K}=v=1_{V}(v)$ for all $v \in V$. Thus $\pi_{1} \circ \rho_{1}=1_{V}$. Similarly $\pi_{2} \circ \rho_{2}=1_{V}$. For all $v \in V$ and $k \in K$, we have

$$
\left(\rho_{1} \circ \pi_{1}\right)(v \otimes k)=\rho_{1}(v k)=v k \otimes 1_{K}=v \otimes k 1_{K}=v \otimes k=1_{V \otimes K}(v \otimes k) .
$$

Thus $\rho_{1} \circ \pi_{1}=1_{V \otimes K}$. Similarly $\rho_{2} \circ \pi_{2}=1_{K \otimes V}$.
b. The indicated maps are all K-linear by the preceding remarks. They are K-space isomorphisms by (a).
c. Similar to the proof that τ is a K-space isomorphism.

Let U, V, and W be K-spaces. The technique proving τ is a K-space isomorphism may be applied to show that the natural identification of $(U \otimes V) \otimes W$ with $U \otimes(V \otimes W)$ is a K-space isomorphism. Thus the tensor product is associative.

1.3 Representations and Characters

In this section, K-spaces are assumed to be finite-dimensional. Also, $K G$-modules are assumed to be finite-dimensional as K-spaces.

20 DEFINITION. Suppose V and W are K-spaces. Denote by $\mathrm{GL}(V)$ the group of invertible K-linear maps from V to itself. If G is a finite group and $\rho: G \rightarrow \mathrm{GL}(V)$ is a group homomorphism, then ρ is called a representation of G. Let $\mathcal{B}=\left\{v_{1}, \cdots, v_{n}\right\}$ and $\mathcal{C}=\left\{w_{1}, \cdots, w_{m}\right\}$ be ordered bases of V and W, respectively, and $f: V \rightarrow W$ a K-linear map. For $1 \leq j \leq n$, we may write $f\left(v_{j}\right)=\sum_{i=1}^{m} \alpha_{i j} w_{i}$ for unique $\alpha_{i j} \in K$. The $m \times n$ matrix $\left[\alpha_{i j}\right]$ is called the matrix of f relative to the bases \mathcal{B} and \mathcal{C}. Let $\rho: G \rightarrow \operatorname{GL}(V)$ be a representation and $\left[\alpha_{i j}(g)\right]$ the matrix of $\rho(g)$ (relative to \mathcal{B}) for each $g \in G$. Then $T: G \rightarrow \Gamma$ given by $T(g)=\left[\alpha_{i j}(g)\right]$ is a group homomorphism called the matrix representation of G afforded by V relative to \mathcal{B}.

Suppose V is a K-space. We establish a correspondence between representations of G and $K G$-modules. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation. Then V becomes a $K G$-module when we define $g v=\rho(g)(v)$ for $g \in G$ and $v \in V$ and extend linearly to all of $K G$ via $\left(\sum_{g \in G} k_{g} g\right) v=\sum_{g \in G} k_{g}(g v)=\sum_{g \in G} k_{g} \rho(g)(v)$ (cf. Theorem (10)). Conversely, suppose V
is a $K G$-module. We then define $\rho: G \rightarrow \mathrm{GL}(V)$ by $\rho(g)(v)=g v$. For $g \in G, \rho(g)$ is a linear map by the module axioms. Further

$$
\left(\rho(g) \rho\left(g^{-1}\right)\right)(v)=\rho(g)\left[\rho\left(g^{-1}\right)(v)\right]=g\left(g^{-1} v\right)=\left(g g^{-1}\right) v=v=1_{V}(v)(v \in V)
$$

Hence $\rho(g) \rho\left(g^{-1}\right)=1_{V}$ and $\rho(g) \in \mathrm{GL}(V)$. Consequently ρ is well-defined. Finally for $g, h \in G, v \in V, \rho(g h)(v)=(g h) v=g(h v)=\rho(g)(h v)=\rho(g) \rho(h)(v)$ since V is a $K G-$ module. Thus ρ is a group homomorphism. It follows that ρ is a representation of G by definition. We call ρ the representation afforded by V.

21 DEFINITION. Let $A=\left[a_{i j}\right] \in \operatorname{Mat}_{n} K$, and $B \in \operatorname{Mat}_{p} K$. The trace of A is the scalar $\operatorname{tr} A=a_{11}+a_{22}+\cdots+a_{n n}$. The Kronecker product of A and B, denoted by $A \otimes B$, is a block matrix in $\operatorname{Mat}_{n p} K$ whose (i, j)-block is $a_{i j} B$.

22 THEOREM. (a) If $A, B, C \in \operatorname{Mat}_{n} K$ with C nonsingular, then $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ and $\operatorname{tr}\left(C^{-1} A C\right)=\operatorname{tr} A$. (b) If $A \in \operatorname{Mat}_{n} K$ and $B \in \operatorname{Mat}_{p} K$, then $\operatorname{tr}(A \otimes B)=(\operatorname{tr} A)(\operatorname{tr} B)$.

Proof. a. Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$. Then

$$
\begin{aligned}
\operatorname{tr}(A B) & =\operatorname{tr}\left(\sum_{k=1}^{n} a_{i k} b_{k j}\right)=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k i}=\sum_{k=1}^{n} \sum_{i=1}^{n} b_{k i} a_{i k} \\
& =\operatorname{tr}\left(\sum_{i=1}^{n} b_{k i} a_{i l}\right)=\operatorname{tr}(B A) .
\end{aligned}
$$

So $\operatorname{tr}\left(C^{-1} A C\right)=\operatorname{tr}\left(\left[C^{-1} A\right] C\right)=\operatorname{tr}\left(C\left[C^{-1} A\right]\right)=\operatorname{tr}\left(\left[C C^{-1}\right] A\right)=\operatorname{tr}(I A)=\operatorname{tr} A$.
b. Let $A=\left[a_{i j}\right]$ and $B=\left[b_{k \ell}\right]$. Consequently $A \otimes B=\left[\begin{array}{ccc}a_{11} B & \cdots & a_{1 n} B \\ \vdots & \ddots & \vdots \\ a_{n 1} B & \cdots & a_{n n} B\end{array}\right]$ and

$$
\begin{aligned}
& \operatorname{tr}\left(a_{i i} B\right)=a_{i i}\left(b_{11}+\cdots+b_{p p}\right) \text { for } 1 \leq i \leq n \text { imply } \\
& \qquad \begin{aligned}
\operatorname{tr}(A \otimes B) & =a_{11}\left(b_{11}+\cdots+b_{p p}\right)+\cdots+a_{n n}\left(b_{11}+\cdots+b_{p p}\right) \\
& =\left(a_{11}+\cdots+a_{n n}\right)\left(b_{11}+\cdots+b_{p p}\right)=(\operatorname{tr} A)(\operatorname{tr} B) .
\end{aligned}
\end{aligned}
$$

Let V be a K-space, $f: V \rightarrow V$ a K-linear map, and A the matrix of f relative to some basis \mathcal{B} of V. Define $\operatorname{tr} f=\operatorname{tr} A$. If a different basis \mathcal{B}^{\prime} is chosen, the matrix of f relative to \mathcal{B}^{\prime} is $C^{-1} A C$, where C is the change-of-basis matrix that changes \mathcal{B}^{\prime} coordinates to \mathcal{B} coordinates. So $\operatorname{tr} f$ is well-defined by Theorem (22a).

23 DEFINITION. Let G be a finite group, V a $K G$-module, and ρ the representation afforded by V. Then $\chi: G \rightarrow K$ given by $\chi(g)=\operatorname{tr} \rho(g)(g \in G)$ is called the character of G afforded by V (or by ρ). If V is simple (meaning $V \neq 0$ and 0 and V are the only submodules of V), then χ is an called an irreducible character.

24 REMARK. We may extend the definition of the tensor product. Let V and W be $K G$-modules with respective K-bases $\left\{v_{1}, \cdots, v_{n}\right\}$ and $\left\{w_{1}, \cdots, w_{m}\right\}$. Recall from Definition (11) that the tensor product $V \otimes W$ of V and W is the K-space with basis $\left\{v_{i} \otimes w_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and for arbitrary $v=\sum_{i} \alpha_{i} v_{i} \in V$ and $w=\sum_{j} \beta_{j} w_{j} \in W$ we define $v \otimes w:=\sum_{i, j} \alpha_{i} \beta_{j} v_{i} \otimes w_{j} \in V \otimes W . V \otimes W$ becomes a $K G$-module by defining $g(v \otimes w)=g v \otimes g w$ for all $g \in G, v \in V$, and $w \in W$, and then extending linearly to $K G$ $\operatorname{via}\left(\sum_{g} k_{g} g\right)(v \otimes w)=\sum_{g} k_{g}(g v \otimes g w)$.

25 LEMMA. Let U, V, X, and Y be (finite-dimensional) K-spaces and let $f: U \rightarrow X$ and $g: V \rightarrow Y$ be K-linear maps. Then the Kronecker product of matrices representing f and g is a matrix representing $f \otimes g$.

Proof. Let $\mathcal{B}_{1}=\left\{u_{1}, \cdots, u_{m}\right\}$ and $\mathcal{B}_{2}=\left\{v_{1}, \cdots, v_{n}\right\}$ be ordered bases of U and V, respectively. Also, let $\mathcal{C}_{1}=\left\{x_{1}, \cdots, x_{p}\right\}$ and $\mathcal{C}_{2}=\left\{y_{1}, \cdots, y_{q}\right\}$ be ordered bases of X and Y, respectively. Then $\mathcal{B}=\left\{u_{i} \otimes v_{j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$ is a basis of $U \otimes V$ and $\mathcal{C}=\left\{x_{i} \otimes y_{j} \mid 1 \leq i \leq p, 1 \leq j \leq q\right\}$ is a basis of $X \otimes Y$ by Remark (24). Now let $f\left(u_{i}\right)=\sum_{k=1}^{p} \alpha_{k i} x_{k}$ and $g\left(v_{j}\right)=\sum_{\ell=1}^{q} \beta_{\ell j} y_{\ell}$ where each $\alpha_{k i}, \beta_{\ell j} \in K$. Then
$(f \otimes g)\left(u_{i} \otimes v_{j}\right)=f\left(u_{i}\right) \otimes g\left(v_{j}\right)=\left(\sum_{k=1}^{p} \alpha_{k i} x_{k}\right) \otimes\left(\sum_{\ell=1}^{q} \beta_{\ell j} y_{\ell}\right)=\sum_{k=1}^{p} \sum_{\ell=1}^{q} \alpha_{k i} \beta_{\ell j}\left(x_{k} \otimes y_{\ell}\right)$

Note that $A=\left[\alpha_{k i}\right]$ is the matrix of f and $B=\left[\beta_{\ell j}\right]$ is the matrix of g relative to the given bases. We now order \mathcal{B} into m ordered lists with the $i^{\text {th }}$ list being $u_{i} \otimes v_{1}, \cdots, u_{i} \otimes v_{n}$ and similarly order \mathcal{C} into p ordered lists with the $k^{\text {th }}$ list being $x_{k} \otimes y_{1}, \cdots, x_{k} \otimes y_{q}$. So (1) determines the column entries for the corresponding matrix C of $f \otimes g$. Since C is a block matrix whose (k, ℓ)-block is $\alpha_{k \ell} B$, we have $C=A \otimes B$.

26 THEOREM. Let V and W be $K G$-modules. Suppose V and W afford the characters χ and ψ, respectively. Then $V \otimes W$ affords the character $\chi \psi$.

Proof. Let R be the matrix representation of G afforded by V relative to the basis \mathcal{A}, and let S be the matrix representation of G afforded by W relative to the basis \mathcal{B}. Then $\mathcal{C}=\{v \otimes w \mid v \in \mathcal{A}, w \in \mathcal{B}\}$ is a basis for $V \otimes W$ as in Remark (24). Then $T=R \otimes S$ defined by $T(g)=R(g) \otimes S(g)$ is the matrix representation of G afforded by $V \otimes W$ relative to the basis \mathcal{C} by Lemma (25). Let ω be the character afforded by $V \otimes W$. Then for each $g \in G$, $\omega(g)=\operatorname{tr}(T(g))=\operatorname{tr}(R(g) \otimes S(g))=[\operatorname{tr}(R(g))][\operatorname{tr}(S(g))]=\chi(g) \psi(g)$. Consequently, $V \otimes W$ affords the character $\chi \psi$.

1.4 Linear Functionals

27 DEFINITION. If A is an R-module, then the set A^{*} of all R-module homomorphisms from A to R is called the dual module of A and the elements of A^{*} are called linear functionals.

28 EXAMPLES.

a. The trace is a linear functional on $\mathrm{Mat}_{n} K$ since

$$
\operatorname{tr}(c A+B)=\sum_{i=1}^{n}\left(c A_{i i}+B_{i i}\right)=c \sum_{i=1}^{n} A_{i i}+\sum_{i=1}^{n} B_{i i}=c \operatorname{tr} A+\operatorname{tr} B
$$

b. The function $\eta: K^{*} \rightarrow K$ given by $\eta(\varphi)=\varphi\left(1_{K}\right)\left(\varphi \in K^{*}\right)$ is a K-linear map.
c. Recall $\Gamma:=\mathrm{GL}_{n}(K)$. Define $\varphi: K^{\Gamma} \rightarrow(K \Gamma)^{*}$ by $\varphi(f)\left(\sum_{g \in \Gamma} \alpha_{g} g\right)=\sum_{g \in \Gamma} \alpha_{g} f(g)$. Clearly, φ is K-linear. Suppose $f \in \operatorname{ker} \varphi$. Then $f(g)=\varphi(f)(g)=0$ for each $g \in \Gamma$. Consequently, $f=0$. Hence $\operatorname{ker} \varphi=0$ and φ is injective. Next let $f \in(K \Gamma)^{*}$. Then define $\bar{f}=\left.f\right|_{\Gamma}$. Thus φ is surjective since $\varphi(\bar{f})=\varphi\left(\left.f\right|_{\Gamma}\right)=f$. Therefore φ is a K-isomorphism.

29 LEMMA. Let V be a (possibly infinite-dimensional) K-space. (a) If V is finitedimensional then $V \cong V^{*}$. (b) $\rho: V^{*} \otimes V^{*} \rightarrow(V \otimes V)^{*}$ given by $\rho(f \otimes g)(x \otimes y)=f(x) g(y)$ where $f, g \in V^{*}$ and $x, y \in V$ is a K-monomorphism. (c) If V is finite-dimensional then ρ is bijective. (d) If $f_{1}, \cdots, f_{n} \in V^{*}$ and $x_{1}, \cdots, x_{n} \in V$ then $\theta: V^{*} \otimes \cdots \otimes V^{*} \rightarrow(V \otimes \cdots \otimes V)^{*}$ given by $\theta\left(f_{1} \otimes \cdots \otimes f_{n}\right)\left(x_{1} \otimes \cdots \otimes x_{n}\right)=f_{1}\left(x_{1}\right) \cdots f_{n}\left(x_{n}\right)$ is a K-linear map, which is a K-space isomorphism if V is finite-dimensional.

Proof. a. Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a basis of V. For each i, define $v_{i}^{*}: V \rightarrow K$ by $v_{i}^{*}\left(v_{j}\right)=\delta_{i j}$ (Kronecker delta). Then v_{i}^{*} is a linear functional for $1 \leq i \leq n$. Suppose $\sum_{i=1}^{n} \alpha_{i} v_{i}^{*}=0$. In particular, $\alpha_{j}=\sum_{i=1}^{n} \alpha_{i} \delta_{i j}=\sum_{i=1}^{n} \alpha_{i} v_{i}^{*}\left(v_{j}\right)=0$ for $1 \leq j \leq n$. Linear independence of $\left\{v_{1}^{*}, v_{2}^{*}, \cdots, v_{n}^{*}\right\}$ now follows. Next let $v^{*} \in V^{*}$ be arbitrary. Then for arbitrary $v=\sum_{i=1}^{n} \alpha_{i} v_{i}$ we have

$$
v^{*}(v)=v^{*}\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right)=\sum_{i=1}^{n} \alpha_{i} v^{*}\left(v_{i}\right)=\sum_{i=1}^{n} v_{i}^{*}(v) v^{*}\left(v_{i}\right)=\left(\sum_{i=1}^{n} v^{*}\left(v_{i}\right) v_{i}^{*}\right)(v) .
$$

Thus $\left\{v_{1}^{*}, v_{2}^{*}, \cdots, v_{n}^{*}\right\}$ spans V^{*} and is a basis for V^{*}. Hence $\operatorname{dim} V=\operatorname{dim} V^{*}$. Recall that, for K-spaces V and $W, V \cong W$ if and only if $\operatorname{dim} V=\operatorname{dim} W$. So $V \cong V^{*}$.
b. Suppose $f, f_{1}, f_{2}, g, g_{1}, g_{2} \in V^{*}, x, y \in V$, and $k, k_{1}, k_{2} \in K$ are arbitrary. Define $r(f, g): V \times V \rightarrow K$ by $[r(f, g)](x, y)=f(x) g(y)$. Clearly, $r(f, g)$ is bilinear. By Theorem (16) we obtain an induced map $V \otimes V \rightarrow K$ and hence an element of $(V \otimes V)^{*}$, which we also denote by $r(f, g)$. We have $r(f, g)(x \otimes y)=f(x) g(y)$. Then

$$
\begin{gathered}
r\left(k_{1} f_{1}+k_{2} f_{2}, g\right)(x \otimes y)=\left(k_{1} f_{1}+k_{2} f_{2}\right)(x) g(y)=\left(k_{1} f_{1}(x)+k_{2} f_{2}(x)\right) g(y) \\
=k_{1} f_{1}(x) g(y)+k_{2} f_{2}(x) g(y)=\left(k_{1} r\left(f_{1}, g\right)+k_{2} r\left(f_{2}, g\right)\right)(x \otimes y)
\end{gathered}
$$

and similarly $r\left(f, k_{1} g_{1}+k_{2} g_{2}\right)=k_{1} r\left(f, g_{1}\right)+k_{2} r\left(f, g_{2}\right)$. So r is bilinear. So by Theorem (16), r induces a K-linear map $\rho: V^{*} \otimes V^{*} \rightarrow(V \otimes V)^{*}$ such that $\rho \circ \beta=r$ where β is the canonical bilinear map. Thus ρ is given by

$$
\begin{aligned}
\rho(f \otimes g)(x \otimes y) & =[\rho(\beta)(f, g)](x \otimes y)=[(\rho \circ \beta)(f, g)](x \otimes y)=[r(f, g)](x \otimes y) \\
& =f(x) g(y) .
\end{aligned}
$$

Let $h \in \operatorname{Ker} \rho$. Then by Lemma (13), we may write $h=\sum_{i=1}^{n} f_{i} \otimes g_{i}$ where $\left\{f_{1}, \ldots, f_{n}\right\}$ is a linearly independent subset of V^{*} and $\left\{g_{1}, \ldots, g_{n}\right\} \subseteq V^{*}$. Then for all $u, v \in V$,

$$
0=\rho(h)(u, v)=\rho\left(\sum_{i=1}^{n} f_{i} \otimes g_{i}\right)(u, v)=\sum_{i=1}^{n} f_{i}(u) g_{i}(v)=\left(\sum_{i=1}^{n} g_{i}(v) f_{i}\right)(u) .
$$

Thus $\sum_{i=1}^{n} g_{i}(v) f_{i}=0$ for all $v \in V$. Consequently, $g_{i}(v)=0(v \in V, 1 \leq i \leq n)$ since $\left\{f_{1}, \ldots, f_{n}\right\}$ is a linearly independent subset of V^{*}. So $h=\sum_{i=1}^{n} f_{i} \otimes g_{i}=0$ and ρ is injective.
c. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V. Then $\left\{v_{i j} \mid 1 \leq i, j \leq n\right\}$ is a basis for $V \otimes V$, where $v_{i j}:=v_{i} \otimes v_{j}$. We have $\rho\left(v_{i}^{*} \otimes v_{j}^{*}\right)\left(v_{k \ell}\right)=v_{i}^{*}\left(v_{k}\right) v_{j}^{*} v_{\ell}=\delta_{i k} \delta_{j \ell}=\delta_{(i, j),(k, \ell)}=v_{i j}^{*}\left(v_{k \ell}\right)$. So $\rho\left(v_{i}^{*} \otimes v_{j}^{*}\right)=v_{i j}^{*}$ and ρ is a K-isomorphism.
d. Apply induction to Lemma (17), (b), and (c).

30 DEFINITION. Let V and W be K-spaces and $\varphi: V \rightarrow W$ a K-linear map. If $\varphi(v)=0$ implies $v=0$, then φ is called non-singular. The annihilator of $S \subseteq V$ is the set S^{0} of all linear functionals f on V such that $f(\alpha)=0$ for all $\alpha \in S$. The dual of φ is the map $\varphi^{*}: W^{*} \rightarrow V^{*}$ defined by $\left[\varphi^{*}(f)\right](v)=f(\varphi(v)) \in K$.

31 LEMMA. Let V be a K-space. (a) If $W \subseteq V$, then W^{0} is a subspace of V^{*}. (b) If $W \leq V$, then $W^{*} \cong V^{*} / W^{0}$ and $W^{0} \cong(V / W)^{*}$. (c) If V and W are subspaces of a K-space and $W \leq V$, then $W^{0} \geq V^{0}$.

Proof. a. Let $w \in W$. Then $\{w\}^{0}=\left\{f \in V^{*} \mid w \in \operatorname{ker} f\right\}$ by definition. So $\{w\}^{0}$ is a subspace of V^{*}. Since $W^{0}=\bigcap_{w \in W}\{w\}^{0}$, it follows that W^{0} is a subspace of V^{*}.
b. First, define $\varphi: V^{*} \rightarrow W^{*}$ by $\varphi(f)=\left.f\right|_{W}$. Then φ is a K-space epimorphism with $\operatorname{ker} \varphi=W^{0}$. So $W^{*} \cong V^{*} / W^{0}$ by the First Isomorphism Theorem. Now define $\psi: W^{0} \rightarrow(V / W)^{*}$ by $\psi(f)(v+W)=f(v)$. Then ψ is both well-defined and injective since, for $f \in W^{0}$,

$$
\begin{aligned}
u+W=v+W & \Leftrightarrow u-v \in W \Leftrightarrow f(u)-f(v)=f(u-v)=0 \Leftrightarrow f(u)=f(v) \\
& \Leftrightarrow \psi(f)(u+W)=\psi(f)(v+W)
\end{aligned}
$$

Let $f \in(V / W)^{*}$ and $v+W \in V / W$. Recall $\pi: V \rightarrow V / W$ given by $\pi(v)=v+W$ is a K-space epimorphism. Put $\bar{f}=f \circ \pi$. Then $\bar{f} \in W^{0}$ and

$$
\psi(\bar{f})(v+W)=\bar{f}(v)=f(\pi(v))=f(v+W)
$$

Thus $f=\psi(\bar{f})$ and ψ is surjective. Finally, ψ is a K-space isomorphism since for all $u, v \in V$ and $k \in K:$

$$
\left.\begin{array}{rl}
\begin{array}{l}
\psi(f)((u+W)+(v+W))
\end{array} & =\psi(f)((u+v)+W)=f(u+v)=f(u)+f(v) \\
& =\psi(f)(u+W)+\psi(f)(v+W)
\end{array}\right\}
$$

c. Let $f \in V^{0}$. Then $f(w)=0$ for all $w \in W$. Hence $f \in W^{0}$.

32 LEMMA. If V and W are K-spaces and $\langle\rangle:, V \times W \rightarrow K$ is non-singular and bilinear, then V^{*} and W are isomorphic.

Proof. Define $\varphi: W \rightarrow V^{*}$ by $[\varphi(w)](v)=\langle v, w\rangle$. Note that φ is well-defined since $\langle\alpha v, w\rangle=\alpha\langle v, w\rangle$ and $\left\langle v_{1}+v_{2}, w\right\rangle=\left\langle v_{1}, w\right\rangle+\left\langle v_{2}, w\right\rangle$ imply that $\varphi(w) \in V^{*}$. Also, since
$\left[\varphi\left(w_{1}+w_{2}\right)\right](v)=\left\langle v, w_{1}+w_{2}\right\rangle=\left\langle v, w_{1}\right\rangle+\left\langle v, w_{2}\right\rangle=\left[\varphi\left(w_{1}\right)\right](v)+\left[\varphi\left(w_{2}\right)\right](v)$ and similarly for scalar multiplication, φ is a K-linear map. Let $x \in \operatorname{ker} \varphi$. Then $\langle v, x\rangle=0$ for all $v \in V$. Hence $x=0$ since \langle,$\rangle is non-singular. So \operatorname{ker} \varphi=0$. Thus φ is injective. Finally suppose $\left\{v_{1}, \cdots, v_{n}\right\} \subseteq V$ is linearly independent and $\left\{w_{1}, \cdots, w_{m}\right\}$ is a basis of W. By the injectivity of $\varphi, n \geq m$. Assume $n>m$. Put $c_{i j}=\left\langle v_{j}, w_{i}\right\rangle$. Recall (linear algebra) there exist $a_{1}, a_{2}, \cdots, a_{n} \in K$ not all of which are zero such that $\sum_{j} a_{j} c_{i j}=0$ for all i since $n>m$. So $v:=\sum_{j} a_{j} v_{j} \neq 0$. We show $\langle v, w\rangle=0$ for all $w \in W$. Thus we must show $\left\langle v, w_{i}\right\rangle=0$ for each i. Then $\left\langle v, w_{i}\right\rangle=\left\langle\sum_{j} a_{j} v_{j}, w_{i}\right\rangle=\sum_{j} a_{j}\left\langle v_{j}, w_{i}\right\rangle=\sum_{j} a_{j} c_{i j}=0$ for all i since \langle,$\rangle is bilinear, contrary to \langle$,$\rangle being non-singular. Therefore n=m$.

Chapter 2

Algebras and Coalgebras

Definitions and statements of standard results in the theory of algebras and coalgebras have been drawn from [9-11].

2.1 Algebras and Commutative Diagrams

33 THEOREM. A is a K-algebra if and only if A is a K-space and there exist K-linear maps $\mu: A \otimes A \rightarrow A$ and $\iota: K \rightarrow A$ such that the diagrams (Figure 2) commute.

Figure 2: Associative Law and Unitary Property

Proof. (\Longrightarrow) Define $m: A \times A \rightarrow A$ by $m(a, b)=a b$ for all $a, b \in A$. Then m is bilinear. So by Theorem (16), m induces a K-linear map $\mu: A \otimes A \rightarrow A$ such that $\mu \circ \beta=m$ where β is the canonical bilinear map. Then $\mu(a \otimes b)=(\mu \circ \beta)(a, b)=m(a, b)=a b$ for all $a, b \in A$. Define $\iota: K \rightarrow A$ by $\iota(k)=k 1_{A}$. Then for all $\alpha, \beta, k \in K$, we have $\iota(\alpha+\beta)=(\alpha+\beta) 1_{A}=\alpha 1_{A}+\beta 1_{A}=\iota(\alpha)+\iota(\beta)$ and $\iota(k \alpha)=(k \alpha) 1_{A}=k\left(\alpha 1_{A}\right)=k \iota(\alpha)$. Consequently ι is also a K-linear map. Let $a, b, c \in A$ and $k \in K$. The algebra condition $k(a b)=(k a) b=a(k b)$ implies $a\left(k 1_{A}\right)=k\left(a 1_{A}\right)=k a=k\left(1_{A} a\right)=\left(k 1_{A}\right) a$. Then

$$
\begin{aligned}
\left(\mu \circ\left(\mu \otimes 1_{A}\right)\right)(a \otimes b \otimes c) & =\mu\left(\mu(a \otimes b) \otimes 1_{A}(c)\right)=\mu(a b \otimes c)=(a b) c=a(b c) \\
& =\mu\left(1_{A}(a) \otimes \mu(b \otimes c)\right)=\left(\mu \circ\left(1_{A} \otimes \mu\right)\right)(a \otimes b \otimes c),
\end{aligned}
$$

$$
\left(\mu \circ\left(\iota \otimes 1_{A}\right)\right)(k \otimes a)=\mu\left(\iota(k) \otimes 1_{A}(a)\right)=\iota(k) 1_{A}(a)=\left(k 1_{A}\right) a=k a=\pi_{2}(k \otimes a),
$$

and similarly $\left(\mu \circ\left(1_{A} \otimes \iota\right)\right)(a \otimes k)=\pi_{1}(a \otimes k)$. Thus the diagrams commute.
(\Longleftarrow) Let $a, b, c, \in A$ and $k \in K$. Define a product in A by $a b:=\mu(a \otimes b)$. The product is associative. Indeed, by the Associative Law diagram commutativity we have

$$
\begin{aligned}
a(b c) & =\mu(a \otimes b c)=\mu\left(1_{A}(a) \otimes \mu(b \otimes c)\right)=\left(\mu \circ\left(1_{A} \otimes \mu\right)\right)(a \otimes b \otimes c) \\
& =\left(\mu \circ\left(\mu \otimes 1_{A}\right)\right)(a \otimes b \otimes c)=\mu\left(\mu(a \otimes b) \otimes 1_{A}(c)\right)=\mu(a b \otimes c)=(a b) c
\end{aligned}
$$

Next, $(a+b) c=\mu((a+b) \otimes c)=\mu(a \otimes c+b \otimes c)=\mu(a \otimes c)+\mu(b \otimes c)=a c+b c$. Similarly, $c(a+b)=c a+c b$, so the product distributes over addition. Define $1_{A}:=\iota\left(1_{K}\right)$. The (left) Unitary Property diagram yields

$$
\begin{equation*}
k a=\pi_{2}(k \otimes a)=\left(\mu \circ\left(\iota \otimes 1_{A}\right)\right)(k \otimes a)=\mu\left(k 1_{A} \otimes a\right)=\left(k 1_{A}\right) a \tag{1}
\end{equation*}
$$

Similarly, the (right) Unitary Property diagram yields $a k=a\left(k 1_{A}\right)$. Thus

$$
k(a b)=\left(k 1_{A}\right)(a b)=\left(\left(k 1_{A}\right) a\right) b=(k a) b=(a k) b=\left(a\left(k 1_{A}\right)\right) b=a\left(\left(k 1_{A}\right) b\right)=a(k b)
$$

This establishes the algebra condition. Finally, by (1), $1_{A} a=\left(1_{K} 1_{A}\right) a=1_{K} a=a$ and similarly $a 1_{A}=a$. So 1_{A} is an identity. Therefore A is a K-algebra by definition.

Theorem (33) permits (A, μ, ι) to denote a K-algebra A and its structure maps μ and ι, which are respectively called the multiplication map and unit map.

34 THEOREM. The tensor product of K-algebras is a K-algebra.

Proof. Suppose $\left(A, \mu_{A}, \iota_{A}\right)$ and $\left(B, \mu_{B}, \iota_{B}\right)$ are K-algebras, $\tau: A \otimes B \rightarrow B \otimes A$ the twist map, and $\rho_{1}: K \rightarrow K \otimes K$ the canonical injection. Put $\mu_{A \otimes B}=\mu_{A} \otimes \mu_{B} \circ\left(1_{A} \otimes \tau \otimes 1_{B}\right)$ and $\iota_{A \otimes B}=\left(\iota_{A} \otimes \iota_{B}\right) \circ \rho_{1}$. We verify the Associative Law and Unitary Property (Figure 3).

Figure 3: Tensor Product of K-algebras
Let \mathcal{A} and \mathcal{B} be bases for A and B, respectively. Then we have for all $a_{1}, a_{2}, a_{3}, a \in \mathcal{A}$, $b_{1}, b_{2}, b_{3}, b \in \mathcal{B}$ and $k \in K$ that

$$
\begin{aligned}
\left(\mu_{A \otimes B}\right. & \left.\circ\left(\mu_{A \otimes B} \otimes 1_{A \otimes B}\right)\right)\left(\left(a_{1} \otimes b_{1}\right) \otimes\left(a_{2} \otimes b_{2}\right) \otimes\left(a_{3} \otimes b_{3}\right)\right) \\
& =\mu_{A \otimes B}\left(\left(\mu_{A} \otimes \mu_{B}\right) \circ\left(1_{A} \otimes \tau \otimes 1_{B}\right)\left(a_{1} \otimes\left(b_{1} \otimes a_{2}\right) \otimes b_{2}\right) \otimes\left(a_{3} \otimes b_{3}\right)\right) \\
& =\mu_{A \otimes B}\left(\left(\mu_{A} \otimes \mu_{B}\right)\left(\left(\left(a_{1} \otimes a_{2}\right) \otimes\left(b_{1} \otimes b_{2}\right)\right) \otimes\left(a_{3} \otimes b_{3}\right)\right)\right) \\
& =\mu_{A \otimes B}\left(\left(a_{1} a_{2} \otimes b_{1} b_{2}\right) \otimes\left(a_{3} \otimes b_{3}\right)\right) \\
& =\left(\left(\mu_{A} \otimes \mu_{B}\right) \circ\left(1_{A} \otimes \tau \otimes 1_{B}\right)\right)\left(a_{1} a_{2} \otimes\left(b_{1} b_{2} \otimes a_{3}\right) \otimes b_{3}\right) \\
& =\left(\mu_{A} \otimes \mu_{B}\right)\left(a_{1} a_{2} \otimes\left(a_{3} \otimes b_{1} b_{2}\right) \otimes b_{3}\right)=\left(a_{1} a_{2}\right) a_{3} \otimes\left(b_{1} b_{2}\right) b_{3}=a_{1}\left(a_{2} a_{3}\right) \otimes b_{1}\left(b_{2} b_{3}\right),
\end{aligned}
$$

similarly $\left(\mu_{A \otimes B} \circ\left(1_{A \otimes B} \otimes \mu_{A \otimes B}\right)\right)\left(\left(a_{1} \otimes b_{1}\right) \otimes\left(a_{2} \otimes b_{2}\right) \otimes\left(a_{3} \otimes b_{3}\right)\right)=a_{1}\left(a_{2} a_{3}\right) \otimes b_{1}\left(b_{2} b_{3}\right)$,

$$
\begin{aligned}
& \left(\mu_{A \otimes B} \circ\left(\iota_{A \otimes B} \otimes 1_{A \otimes B}\right)\right)(k \otimes a \otimes b)=\mu_{A \otimes B}\left(\iota_{A \otimes B}(k) \otimes 1_{A \otimes B}(a \otimes b)\right) \\
& \quad=\mu_{A \otimes B}\left(\left(\iota_{A} \otimes \iota_{B}\right)\left(k \otimes 1_{K}\right) \otimes a \otimes b\right)=\mu_{A \otimes B}\left(\iota_{A}(k) \otimes \iota_{B}\left(1_{K}\right) \otimes a \otimes b\right) \\
& \quad=\left(\mu_{A} \otimes \mu_{B} \circ\left(1_{A} \otimes \tau \otimes 1_{B}\right)\right)\left(\iota_{A}(k) \otimes\left(1_{B} \otimes a\right) \otimes b\right) \\
& \quad=\left(\mu_{A} \otimes \mu_{B}\right)\left(\iota_{A}(k) \otimes a \otimes 1_{B} \otimes b\right)=\mu_{A}\left(\iota_{A}(k) \otimes a\right) \otimes \mu_{B}\left(1_{B} \otimes b\right) \\
& \quad=\iota_{A}(k) a \otimes 1_{B} b=k a \otimes b=\pi_{2}(k \otimes a \otimes b),
\end{aligned}
$$

and similarly $\left(\mu_{A \otimes B} \circ\left(1_{A \otimes B} \otimes \iota_{A \otimes B}\right)\right)(a \otimes b \otimes k)=\pi_{1}(a \otimes b \otimes k)$. Extend linearly. Apply Theorem (33).

2.2 Coalgebras and Bialgebras

35 DEFINITION. If C is a K-space, $\Delta_{C}: C \rightarrow C \otimes C$ and $\varepsilon_{C}: C \rightarrow K$ are K-linear maps, and ρ_{1} and ρ_{2} the canonical injections, then $\left(C, \Delta_{C}, \varepsilon_{C}\right)$ is called a K-coalgebra whenever the diagrams (Figure 4) commute. Δ_{C} and ε_{C} are respectively called the comultiplication and counit maps and together are called the structure maps of C.

Coassociative Law

Counitary Property

Figure 4: Coassociative Law and Counitary Property
A K-subspace D of a K-coalgebra $\left(C, \Delta_{C}, \varepsilon_{C}\right)$ that satisfies $\Delta_{C}(D) \subseteq D \otimes D$ is called a K-subcoalgebra of C whose structure maps are the restrictions of Δ_{C} and ε_{C} to D.

36 EXAMPLE. Let H be a group. $A:=K H \otimes K H$ is a K-algebra by Theorem (34). Define $\varphi: H \rightarrow A^{\times}$by $\varphi(g)=g \otimes g$. Then $\varphi(g h)=g h \otimes g h=(g \otimes g)(h \otimes h)=\varphi(g) \varphi(h)$ for all $g, h \in H$. Thus the group homomorphisms φ and $\psi: H \rightarrow K^{\times}$given by $\psi(g)=1_{K}$ respectively extend uniquely to K-algebra homomorphisms $\Delta: K H \rightarrow A$ and $\varepsilon: K H \rightarrow K$ by Theorem (10). Then $(K H, \Delta, \varepsilon)$ is a K-coalgebra since

$$
\begin{aligned}
\left(\left(1_{K H} \otimes \Delta\right) \circ \Delta\right)\left(\sum_{g \in H} a_{g} g\right) & =\left(1_{K H} \otimes \Delta\right)\left(\sum_{g \in H} a_{g} g \otimes g\right)=\sum_{g \in H} a_{g} g \otimes(g \otimes g) \\
& =\sum_{g \in H} a_{g}(g \otimes g) \otimes g=\sum_{g \in H} a_{g} \Delta(g) \otimes 1_{K H}(g) \\
& =\Delta\left(\sum_{g \in H}\left(\Delta \otimes 1_{K H}\right)\left(a_{g} g\right)\right)=\left(\Delta \circ\left(\Delta \otimes 1_{K H}\right)\right)\left(\sum_{g \in H} a_{g} g\right) \\
\left(\left(\varepsilon \otimes 1_{K H}\right) \circ \Delta\right)\left(\sum_{g \in H} a_{g} g\right) & =\left(\varepsilon \otimes 1_{K H}\right)\left(\sum_{g \in H} a_{g} g \otimes g\right)=\sum_{g \in H} a_{g} 1_{K} \otimes g \\
& =1_{K} \otimes\left(\sum_{g \in H} a_{g} g\right)=\rho_{2}\left(\sum_{g \in H} a_{g} g\right)
\end{aligned}
$$

and similarly $\left(\left(1_{K H} \otimes \varepsilon\right) \circ \Delta\right)\left(\sum_{g \in H} a_{g} g\right)=\rho_{1}\left(\sum_{g \in H} a_{g} g\right)$.

37 THEOREM. The dual of a K-coalgebra is a K-algebra.

Proof. Let (C, Δ, ε) be a K-coalgebra. By Definition (30), $\Delta^{*}:(C \otimes C)^{*} \rightarrow C^{*}$ is given by $\left[\Delta^{*}(f)\right](c)=f(\Delta(c))$ for $c \in C$. Define $\mu: C^{*} \otimes C^{*} \rightarrow C^{*}$ and $\iota: K \rightarrow C^{*}$ by $\mu(f \otimes g)(c)=\left[\Delta^{*} \circ \rho\right](f \otimes g)(c)$ and $\iota(k)(c)=k \varepsilon(c)$ for $f, g \in C^{*}, c \in C$, and $k \in K$ where $\rho: C^{*} \otimes C^{*} \rightarrow(C \otimes C)^{*}$ is the K-space isomorphism of Lemma (29c). We verify the Associative Law and Unitary Property (Figure 5).

Associative Law

Figure 5: Dual of a K-Coalgebra

For $c \in C$, write $\Delta(c)=\sum_{i} c_{i} \otimes d_{i}, \Delta\left(c_{i}\right)=\sum_{j} a_{i j} \otimes b_{i j}, \Delta\left(d_{i}\right)=\sum_{j} e_{i j} \otimes f_{i j}$, and let $\theta: C^{*} \otimes C^{*} \otimes C^{*} \rightarrow(C \otimes C \otimes C)^{*}$ be the 3 -fold analog of ρ (see Lemma (29d)). Then

$$
\mu(f \otimes g)(c)=\left[\Delta^{*} \circ \rho\right](f \otimes g)(c)=\rho(f \otimes g)(\Delta(c))=\sum_{i} f\left(c_{i}\right) g\left(d_{i}\right)
$$

for $f, g \in C^{*}$ and $c \in C$. This implies that for $f, g, h \in C^{*}$ and $c \in C$ we have

$$
\begin{aligned}
\left(\mu \circ\left(\mu \otimes 1_{C^{*}}\right)\right) & (f \otimes g \otimes h)(c)=(\mu(\mu(f \otimes g) \otimes h))(c)=\sum_{i} \mu(f \otimes g)\left(c_{i}\right) h\left(d_{i}\right) \\
= & \sum_{i, j} f\left(a_{i j}\right) g\left(b_{i j}\right) h\left(d_{i}\right)=\theta(f \otimes g \otimes h)\left(\left(\Delta \otimes 1_{C}\right) \circ \Delta\right)(c) \\
= & \theta(f \otimes g \otimes h)\left(\left(1_{C} \otimes \Delta\right) \circ \Delta\right)(c)=\sum_{i, j} f\left(c_{i}\right) g\left(e_{i j}\right) h\left(f_{i j}\right) \\
= & \sum_{i} f\left(c_{i}\right) \mu(g \otimes h)\left(d_{i}\right)=\left(1_{C^{*}} \otimes \mu\right)\left(\sum_{i} f\left(c_{i}\right)(g \otimes h)\left(d_{i}\right)\right) \\
= & \left(1_{C^{*}} \otimes \mu\right)(\mu(f \otimes(g \otimes h))(c))=\left(\left(1_{C^{*}} \otimes \mu\right) \circ \mu\right)(f \otimes g \otimes h)(c)
\end{aligned}
$$

This establishes the Associative law. Next, for any $c \in C$, the commutativity of the Counitary Property diagrams and Lemma (19c) yields $\sum_{i} \varepsilon\left(c_{i}\right) d_{i}=c=\sum_{i} c_{i} \varepsilon\left(d_{i}\right)$ from

$$
\begin{aligned}
c & =1_{C}(c)=\left(\pi_{2} \circ \rho_{2}\right)(c)=\left(\pi_{2} \circ\left(\varepsilon \otimes 1_{C}\right) \circ \Delta\right)(c)=\pi_{2} \circ\left(\varepsilon \otimes 1_{C}\right)\left(\sum_{i} c_{i} \otimes d_{i}\right) \\
& =\pi_{2}\left(\sum_{i} \varepsilon\left(c_{i}\right) \otimes d_{i}\right)=\sum_{i} \varepsilon\left(c_{i}\right) d_{i}
\end{aligned}
$$

and similarly $c=\sum_{i} c_{i} \varepsilon\left(d_{i}\right)$. Then for all $k \in K, f \in C^{*}$, and $c \in C$,

$$
\begin{aligned}
\left(\mu \circ\left(\iota \otimes 1_{C^{*}}\right)\right)(k \otimes f)(c) & =\mu(\iota(k) \otimes f)(c)=\sum_{i} \iota(k)\left(c_{i}\right) f\left(d_{i}\right)=\sum_{i} k \varepsilon\left(c_{i}\right) f\left(d_{i}\right) \\
& =k f\left(\sum_{i} \varepsilon\left(c_{i}\right) d_{i}\right)=k f(c)=\pi_{2}(k \otimes f)(c)
\end{aligned}
$$

and similarly $\left(\mu \circ\left(1_{C^{*}} \otimes \iota\right)\right)(f \otimes k)(c)=\pi_{1}(f \otimes k)(c)$. This establishes the Unitary Property and $\left(C^{*}, \mu, \iota\right)$ is a K-algebra by Theorem (33).

38 THEOREM. The dual of a finite-dimensional K-algebra is a K-coalgebra.

Proof. Suppose (A, μ, ι) is a finite-dimensional K-algebra. Then $\mu^{*}: A^{*} \rightarrow(A \otimes A)^{*}$ is given by $\left[\mu^{*}(f)\right](a \otimes b)=f(\mu(a \otimes b))$ and $\iota^{*}: A^{*} \rightarrow K^{*}$ is given by $\iota^{*}(f)(k)=f(\iota(k))$ for $f \in A^{*}, a \in A$, and $k \in K$ by Definition (30). Recall $\eta: K^{*} \rightarrow K$ given by $\eta(\varphi)=\varphi\left(1_{K}\right)$ for $\varphi \in K^{*}$ is a K-linear map . We may now define $\Delta_{A^{*}}: A^{*} \rightarrow A^{*} \otimes A^{*}$ and $\varepsilon_{A^{*}}: A^{*} \rightarrow K$ by $\Delta_{A^{*}}(f)(a)=\left[\rho^{-1} \circ \mu^{*}\right](f)(a)$ and $\varepsilon_{A^{*}}(f)(k)=\left[\eta \circ \iota^{*}(f)\right](k)$ for $f \in A^{*}, a \in A^{*} \otimes A^{*}$, where $\rho: A^{*} \otimes A^{*} \rightarrow(A \otimes A)^{*}$ is the K-space isomorphism of Lemma (29c) ($\operatorname{dim} A<\infty$ is required). We verify the Coassociative Law and Counitary Property (Figure 6).

Figure 6: Dual of a Finite-Dimensional K-Algebra

Write $\Delta_{A^{*}}(f)=\sum_{i} g_{i} \otimes h_{i}, \Delta_{A^{*}}\left(g_{i}\right)=\sum_{j} m_{i, j} \otimes n_{i, j}$, and $\Delta_{A^{*}}\left(h_{i}\right)=\sum_{j} p_{i, j} \otimes q_{i, j}$ where $g_{i}, h_{i}, m_{i, j}, n_{i, j}, p_{i, j}, q_{i, j} \in A^{*}$. Then:

$$
\begin{aligned}
& \left(\Delta_{A^{*}} \otimes 1_{A^{*}}\right) \Delta_{A^{*}}(f)=\left(\Delta_{A^{*}} \otimes 1_{A^{*}}\right)\left(\sum_{i} g_{i} \otimes h_{i}\right)=\sum_{i, j} m_{i, j} \otimes n_{i, j} \otimes h_{i} \\
& \left(1_{A^{*}} \otimes \Delta_{A^{*}}\right) \Delta_{A^{*}}(f)=\left(1_{A^{*}} \otimes \Delta_{A^{*}}\right)\left(\sum_{i} g_{i} \otimes h_{i}\right)=\sum_{i, j} g_{i} \otimes p_{i, j} \otimes q_{i, j}
\end{aligned}
$$

Note that for all $f \in A^{*}$ and $a, b \in A$, we have

$$
\begin{align*}
f(a b) & \left.=\left[\mu^{*}(f)\right](a \otimes b)=\left[\rho \circ\left(\rho^{-1} \circ \mu^{*}\right)(f)\right)\right](a \otimes b)=\left[\rho\left(\Delta_{A^{*}}(f)\right)\right](a \otimes b) \\
& =\left[\rho\left(\sum_{i} g_{i} \otimes h_{i}\right)\right](a \otimes b)=\sum_{i} g_{i}(a) h_{i}(b) \tag{1}
\end{align*}
$$

Recall $\theta: A^{*} \otimes A^{*} \otimes A^{*} \rightarrow(A \otimes A \otimes A)^{*}$ given by $\theta(u \otimes v \otimes w)(a \otimes b \otimes c)=u(a) v(b) w(c)$ where $u, v, w \in A^{*}$ and $a, b, c \in A$ is a K-space isomorphism by Lemma (29d). It follows from the definition of θ and (1) that

$$
\begin{gathered}
{\left[\theta\left(\sum_{i, j} m_{i, j} \otimes n_{i, j} \otimes h_{i}\right)\right](a \otimes b \otimes c)=\sum_{i, j} m_{i, j}(a) n_{i, j}(b) h_{i}(c)=\sum_{i} g_{i}(a b) h_{i}(c)=f(a b c)} \\
\quad=\sum_{i} g_{i}(a) h_{i}(b c)=\sum_{i, j} g_{i}(a) p_{i, j}(b) q_{i, j}(c)=\left[\theta\left(\sum_{i, j} g_{i} \otimes p_{i, j} \otimes q_{i, j}\right)\right](a \otimes b \otimes c)
\end{gathered}
$$

Since θ is injective, $\sum_{i, j} m_{i, j} \otimes n_{i, j} \otimes h_{i}=\sum_{i, j} g_{i} \otimes p_{i, j} \otimes q_{i, j}$. Consequently, the Coassociative Law holds. Next, for all $f \in A^{*}$, we have

$$
\begin{aligned}
\left(\left(\varepsilon_{A^{*}}\right.\right. & \left.\left.\otimes 1_{A^{*}}\right) \circ \Delta_{A^{*}}\right)(f)=\left(\varepsilon_{A^{*}} \otimes 1_{A^{*}}\right)\left(\sum_{i} g_{i} \otimes h_{i}\right)=\sum_{i}\left(\varepsilon_{A^{*}} \otimes 1_{A^{*}}\right)\left(g_{i} \otimes h_{i}\right) \\
& =\sum_{i}\left(\varepsilon_{A^{*}}\left(g_{i}\right) \otimes h_{i}\right)=\sum_{i}\left(\eta \circ \iota^{*}\left(g_{i}\right) \otimes h_{i}\right)=\sum_{i}\left(\iota^{*}\left(g_{i}\right)\left(1_{K}\right) \otimes h_{i}\right)=\sum_{i}\left(g_{i}\left(\iota\left(1_{K}\right)\right) \otimes h_{i}\right) \\
& =\sum_{i}\left(1_{K} g_{i}\left(1_{A}\right) \otimes h_{i}\right)=\sum_{i}\left(1_{K} \otimes g_{i}\left(1_{A}\right) h_{i}\right)=1_{K} \otimes \sum_{i} g_{i}\left(1_{A}\right) h_{i}=1_{K} \otimes f=\rho_{2}(f)
\end{aligned}
$$

For the penultimate inequality, we have used that $f(a)=f\left(1_{A} a\right)=\sum_{i} g_{i}\left(1_{A}\right) h_{i}(a)(a \in A)$. Similarly, $\left(\left(1_{A^{*}} \otimes \varepsilon_{A^{*}}\right) \circ \Delta_{A^{*}}\right)(f)=\rho_{1}(f)$. Thus the check of the Counitary Property is complete and $\left(A^{*}, \Delta_{A^{*}}, \varepsilon_{A^{*}}\right)$ is a K-coalgebra by Definition (35).

39 NOTATION. Let (C, Δ, ε) be a K-coalgebra. We write $\Delta(c)=\sum_{i} c_{i(1)} \otimes c_{i(2)}$ for each $c \in C$ or succinctly as $\Delta(c)=c_{(1)} \otimes c_{(2)}$ with summation implicit.

40 LEMMA. Let (C, Δ, ε) be a K-coalgebra with $\Delta(c)=c_{(1)} \otimes c_{(2)}$ for all $c \in C$.
a. $c_{(1)(1)} \otimes c_{(1)(2)} \otimes c_{(2)}=c_{(1)} \otimes c_{(2)(1)} \otimes c_{(2)(2)}$.
b. $c=\varepsilon\left(c_{(1)}\right) c_{(2)}=c_{(1)} \varepsilon\left(c_{(2)}\right)$.

Proof.
a. By the Coassociative Law

$$
\begin{aligned}
& c_{(1)(1)} \otimes c_{(1)(2)} \otimes c_{(2)}=\Delta\left(c_{(1)}\right) \otimes c_{(2)}=\left(\Delta \otimes 1_{C}\right)\left(c_{(1)} \otimes c_{(2)}\right)=\left(\left(\Delta \otimes 1_{C}\right) \circ \Delta\right)(c) \\
& \quad=\left(\left(1_{C} \otimes \Delta\right) \circ \Delta\right)(c)=\left(1_{C} \otimes \Delta\right)\left(c_{(1)} \otimes c_{(2)}\right)=c_{(1)} \otimes \Delta\left(c_{(2)}\right)=c_{(1)} \otimes c_{(2)(1)} \otimes c_{(2)(2)} .
\end{aligned}
$$

b. Since $\rho_{1}(c)=c \otimes 1_{C}$ and $\rho_{2}(c)=1_{C} \otimes c$, by the Counitary Property we have:

$$
\begin{aligned}
& 1_{C} \otimes c=\left(\left(\varepsilon \otimes 1_{C}\right) \circ \Delta\right)(c)=\varepsilon\left(c_{(1)}\right) \otimes c_{(2)}=1_{C} \otimes \varepsilon\left(c_{(1)}\right) c_{(2)} \\
& c \otimes 1_{C}=\left(\left(1_{C} \otimes \varepsilon\right) \circ \Delta\right)(c)=c_{(1)} \otimes \varepsilon\left(c_{(2)}\right)=c_{(1)} \varepsilon\left(c_{(2)}\right) \otimes 1_{C}
\end{aligned}
$$

Therefore $c=\varepsilon\left(c_{(1)}\right) c_{(2)}=c_{(1)} \varepsilon\left(c_{(2)}\right)$.

41 THEOREM. The tensor product of K-coalgebras is a K-coalgebra.

Proof. Suppose $\left(C, \Delta_{C}, \varepsilon_{C}\right)$ and $\left(D, \Delta_{D}, \varepsilon_{D}\right)$ are K-coalgebras and τ is the twist map. Put $\Delta_{C \otimes D}=\left(1_{C} \otimes \tau \otimes 1_{D}\right) \circ \Delta_{C} \otimes \Delta_{D}$ and $\varepsilon_{C \otimes D}=\pi_{2} \circ\left(\varepsilon_{C} \otimes \varepsilon_{D}\right)$. We will verify the Coassociative Law and Counitary Property (Figure 7).

Figure 7: Tensor Product of K-coalgebras
For all $c \in C$ and $d \in D$, we have

$$
\begin{aligned}
& \left(\left(\Delta_{C \otimes D} \otimes 1_{C \otimes D}\right) \circ \Delta_{C \otimes D}\right)(c \otimes d)=\left[\left(\Delta_{C \otimes D} \otimes 1_{C \otimes D}\right) \circ\left(1_{C} \otimes \tau \otimes 1_{D}\right) \circ\left(\Delta_{C} \otimes \Delta_{D}\right)\right](c \otimes d) \\
& \quad=\left[\left(\Delta_{C \otimes D} \otimes 1_{C \otimes D}\right) \circ\left(1_{C} \otimes \tau \otimes 1_{D}\right)\right]\left(c_{(1)} \otimes c_{(2)} \otimes d_{(1)} \otimes d_{(2)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\Delta_{C \otimes D} \otimes 1_{C \otimes D}\right)\left(c_{(1)} \otimes d_{(1)} \otimes c_{(2)} \otimes d_{(2)}\right) \\
& =\left[\left(1_{C} \otimes \tau \otimes 1_{D}\right) \circ\left(\Delta_{C} \otimes \Delta_{D}\right)\left(c_{(1)} \otimes d_{(1)}\right)\right] \otimes\left(c_{(2)} \otimes d_{(2)}\right) \\
& =\left[\left(1_{C} \otimes \tau \otimes 1_{D}\right)\left(c_{(1)(1)} \otimes c_{(1)(2)} \otimes d_{(1)(1)} \otimes d_{(1)(2)}\right)\right] \otimes\left(c_{(2)} \otimes d_{(2)}\right) \\
& =c_{(1)(1)} \otimes d_{(1)(1)} \otimes c_{(1)(2)} \otimes d_{(1)(2)} \otimes c_{(2)} \otimes d_{(2)}
\end{aligned}
$$

and similarly $\left(\left(1_{C \otimes D} \otimes \Delta_{C \otimes D}\right) \circ \Delta_{C \otimes D}\right)(c \otimes d)=c_{(1)} \otimes d_{(1)} \otimes c_{(2)(1)} \otimes d_{(2)(1)} \otimes c_{(2)(2)} \otimes d_{(2)(2)}$. Recall the K-space isomorphism φ of Lemma (19c). Then by Lemma (40a),

$$
\begin{aligned}
\varphi\left(\left(\left(\Delta_{C \otimes D} \otimes 1_{C \otimes D}\right) \circ \Delta_{C \otimes D}\right)(c \otimes d)\right) & =\varphi\left(c_{(1)(1)} \otimes d_{(1)(1)} \otimes c_{(1)(2)} \otimes d_{(1)(2)} \otimes c_{(2)} \otimes d_{(2)}\right) \\
& =c_{(1)(1)} \otimes c_{(1)(2)} \otimes c_{(2)} \otimes d_{(1)(1)} \otimes d_{(1)(2)} \otimes d_{(2)} \\
& =c_{(1)} \otimes c_{(2)(1)} \otimes c_{(2)(2)} \otimes d_{(1)} \otimes d_{(2)(1)} \otimes d_{(2)(2)} \\
& =\varphi\left(c_{(1)} \otimes d_{(1)} \otimes c_{(2)(1)} \otimes d_{(2)(1)} \otimes c_{(2)(2)} \otimes d_{(2)(2)}\right) \\
& =\varphi\left(\left(\left(1_{C \otimes D} \otimes \Delta_{C \otimes D}\right) \circ \Delta_{C \otimes D}\right)(c \otimes d)\right) .
\end{aligned}
$$

Consequently, $\left(\left(\Delta_{C \otimes D} \otimes 1_{C \otimes D}\right) \circ \Delta_{C \otimes D}\right)(c \otimes d)=\left(\left(1_{C \otimes D} \otimes \Delta_{C \otimes D}\right) \circ \Delta_{C \otimes D}\right)(c \otimes d)$ since φ is a K-space isomorphism. Then extending linearly establishes the Coassociative Law. Next, for all $c \in C$ and $d \in D$, applying Lemma (40b) yields

$$
\begin{aligned}
& \left(\left(\varepsilon_{C \otimes D} \otimes 1_{C \otimes D}\right) \circ \Delta_{C \otimes D}\right)(c \otimes d)=\left[\left(\varepsilon_{C \otimes D} \otimes 1_{C \otimes D}\right) \circ\left(1_{C} \otimes \tau \otimes 1_{D}\right) \circ\left(\Delta_{C} \otimes \Delta_{D}\right)\right](c \otimes d) \\
& \quad=\left[\left(\varepsilon_{C \otimes D} \otimes 1_{C \otimes D}\right) \circ\left(1_{C} \otimes \tau \otimes 1_{D}\right)\right]\left(c_{(1)} \otimes c_{(2)} \otimes d_{(1)} \otimes d_{(2)}\right) \\
& \quad=\left(\varepsilon_{C \otimes D} \otimes 1_{C \otimes D}\right)\left(c_{(1)} \otimes d_{(1)} \otimes c_{(2)} \otimes d_{(2)}\right) \\
& \quad=\left[\left(\pi_{2} \circ\left(\varepsilon_{C} \otimes \varepsilon_{D}\right)\right)\left(c_{(1)} \otimes d_{(1)}\right)\right] \otimes\left(c_{(2)} \otimes d_{(2)}\right)=\varepsilon_{C}\left(c_{(1)}\right) \varepsilon_{D}\left(d_{(1)}\right) \otimes c_{(2)} \otimes d_{(2)} \\
& \quad=1_{K} \otimes \varepsilon_{C}\left(c_{(1)}\right) c_{(2)} \otimes \varepsilon_{D}\left(d_{(1)}\right) d_{(2)}=1_{K} \otimes c \otimes d=\rho_{2}(c \otimes d)
\end{aligned}
$$

and similarly $\left(\left(1_{C \otimes D} \otimes \varepsilon_{C \otimes D}\right) \circ \Delta_{C \otimes D}\right)(c \otimes d)=\rho_{1}(c \otimes d)$. Extend linearly. Thus the Counitary Property holds and $\left(C \otimes D, \Delta_{C \otimes D}, \varepsilon_{C \otimes D}\right)$ is a K-coalgebra.

42 DEFINITION. Suppose that $\left(C, \Delta_{C}, \varepsilon_{C}\right)$ and $\left(D, \Delta_{D}, \varepsilon_{D}\right)$ are K-coalgebras and there exists a K-linear map $f: C \rightarrow D$ such that $\Delta_{D} \circ f=(f \otimes f) \circ \Delta_{C}$ and $\varepsilon_{D} \circ f=\varepsilon_{C}$ (Figure 8). Then f is called a K-coalgebra homomorphism.

Figure 8: Coalgebra Homomorphism

43 EXAMPLE. Put $L:=K \otimes K$. We have that $\left(K, \Delta_{K}, \varepsilon_{K}\right)$ is a K-coalgebra with $\Delta_{K}: K \rightarrow L$ and $\varepsilon_{K}: K \rightarrow K$ given by $\Delta_{K}(k)=k \otimes 1_{K}$ and $\varepsilon_{K}(k)=1_{K}$ for all $k \in K$. Let $\tau: L \rightarrow L$ be the twist map. We may now define $\Delta_{L}: L \rightarrow L \otimes L$ and $\varepsilon_{L}: L \rightarrow K$ by $\Delta_{L}(k \otimes \ell)=\left(1_{K} \otimes \tau \otimes 1_{K}\right) \circ\left(\Delta_{K} \otimes \Delta_{K}\right)(k \otimes \ell)=k \otimes \ell \otimes 1_{K} \otimes 1_{K}$ and $\varepsilon_{L}(k \otimes \ell)=\left(\pi_{1} \circ\left(\varepsilon_{K} \otimes \varepsilon_{K}\right)\right)(k \otimes \ell)=\pi_{1}\left(1_{K} \otimes 1_{K}\right)=1_{K}$ for all $k, \ell \in K$. Then $\left(L, \Delta_{L}, \varepsilon_{L}\right)$ is a K-coalgebra by Theorem (41). Define $\mu_{K}: L \rightarrow K$ and $\iota_{K}: K \rightarrow K$ by $\mu_{K}(k \otimes \ell)=k \ell$ and $\iota_{K}(k)=k$ for all $k, \ell \in K$. Then μ_{K} is a K-coalgebra homomorphism since

$$
\begin{aligned}
\left(\Delta_{K} \circ \mu_{K}\right)(k \otimes \ell) & =\Delta_{K}(k \ell)=k \ell \otimes 1_{K}=\left(\mu_{K} \otimes \mu_{K}\right)\left(k \otimes \ell \otimes 1_{K} \otimes 1_{K}\right) \\
& =\left(\left(\mu_{K} \otimes \mu_{K}\right) \circ\left(\Delta_{L}\right)(k \otimes \ell)\right)
\end{aligned}
$$

and

$$
\left(\varepsilon_{K} \circ \mu_{K}\right)(k \otimes \ell)=\varepsilon_{K}(k \ell)=1_{K}=\varepsilon_{L}(k \otimes \ell)
$$

for all $k, \ell \in K$. Similarly since $\Delta_{K} \circ \iota_{K}=\left(\iota_{K} \otimes \iota_{K}\right) \circ \Delta_{K}$ and $\varepsilon_{K} \circ \iota_{K}=\varepsilon_{K}$, it follows that ι_{K} is a K-coalgebra homomorphism.

44 THEOREM. Let B be a K-space, (B, μ, ι) a K-algebra, and $\left(B, \Delta_{B}, \varepsilon_{B}\right)$ a K coalgebra. The following are equivalent: (a) μ and ι are K-coalgebra homomorphisms, (b) Δ_{B} and ε_{B} are K-algebra homomorphisms, (c) $\Delta_{B}(b c)=\Delta_{B}(b) \Delta_{B}(c), \Delta_{B}\left(1_{B}\right)=1_{B} \otimes 1_{B}$, $\varepsilon_{B}(b c)=\varepsilon_{B}(b) \varepsilon_{B}(c)$, and $\varepsilon_{B}\left(1_{B}\right)=1_{K}$ for all $b, c \in B$.

Proof. Consider the following four diagrams:

Figure 9: Bialgebra Equivalent Conditions
We have that $\Delta=\Delta_{B}$ is a K-algebra homomorphism when (i) and (ii) are satisfied, ε_{B} is a K-algebra homomorphism when (iii) and (iv) hold, μ is a K-coalgebra homomorphism when (i) and (iii) are satisfied, and ι is a K-coalgebra homomorphism when (ii) and (iv) hold. So (a) is equivalent to (b). (b) is equivalent to (c) by Definition (4).

45 DEFINITION. Let (B, μ, ι) be a K-algebra and (B, Δ, ε) a K-coalgebra. If any condition of Theorem (44) is satisfied then $(B, \mu, \iota, \Delta, \varepsilon)$ is called a K-bialgebra.

46 EXAMPLES

a. ($K, \mu_{K}, \iota_{K}, \Delta_{K}, \varepsilon_{K}$) is a K-bialgebra. See Examples (7) and (43).
b. Let H be a group. Recall $(K H, \mu, \iota)$ is a K-algebra by Lemma (9) and Theorem (33) and $(K H, \Delta, \epsilon)$ is a K-coalgebra and Δ and ϵ are K-algebra homomorphisms by Example (36). Thus ($K H, \mu, \iota, \Delta, \epsilon$) is a K-bialgebra.

Chapter 3

Results in Schur Algebras

Definitions and statements of standard results in the theory of Schur algebras have been drawn from [12, 13].

3.1 Polynomial Functions and Coefficient Space

47 DEFINITION. Let E be the set of n-dimensional column K-vectors. For $g \in \Gamma$ and $x \in E$, define $g x$ by usual matrix multiplication. We may extend linearly to all of $K \Gamma$ via $\left(\sum_{g \in \Gamma} k_{g} g\right) x=\sum_{g \in \Gamma} k_{g}(g x)\left(k_{g} \neq 0\right.$ for finitely many $g \in \Gamma$ assumed throughout $)$. Then E is called the standard or natural $К \Gamma$-module.

We write $I(n, r):=\left\{i=\left(i_{1}, i_{2}, \cdots, i_{r}\right) \mid 1 \leq i_{k} \leq n\right.$ for $\left.1 \leq k \leq r\right\}$. Suppose $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ is the standard basis for E. Define $g\left(v_{1} \otimes \cdots \otimes v_{r}\right)=g v_{1} \otimes \cdots \otimes g v_{r}$ for $g \in \Gamma$. Consequently $E^{\otimes r}=E \otimes \cdots \otimes E$ (r factors) becomes a $K \Gamma$-module with K-basis $\left\{e_{i}=e_{i_{1}} \otimes \cdots \otimes e_{i_{r}} \mid i \in I(n, r)\right\}$.

48 PROPOSITION. Let $v, w \in E$. (a) $\tau: E^{\otimes 2} \rightarrow E^{\otimes 2}$ given by $\tau(v \otimes w)=w \otimes v$ is a K K -module homomorphism. (b) The sets $S^{2}(E)=\left\{x \in E^{\otimes 2} \mid \tau(x)=x\right\}$ and $\wedge^{2}(E)=\left\{x \in E^{\otimes 2} \mid \tau(x)=-x\right\}$ are KГ-submodules of $E^{\otimes 2}$. (c) $S^{2}(E)=(1+\tau)\left(E^{\otimes 2}\right)$, $\wedge^{2}(E)=(1-\tau)\left(E^{\otimes 2}\right)$, and $E^{\otimes 2}=S^{2}(E) \dot{+} \wedge^{2}(E)$ if char $K \neq 2$.

Proof. \quad a. $\tau(g x)=\tau\left(g\left(x_{1} \otimes x_{2}\right)\right)=\tau\left(g x_{1} \otimes g x_{2}\right)=g x_{2} \otimes g x_{1}=g\left(x_{2} \otimes x_{1}\right)=g \tau(x)$ for all $g \in \Gamma$ and $x=x_{1} \otimes x_{2} \in E^{\otimes 2}$. Extend linearly.
b. Let $g \in \Gamma, x \in S^{2}(E)$, and $y \in \wedge^{2}(E)$. Note that $\tau(g x)=g \tau(x)=g x$ and that $\tau(g y)=g \tau(y)=-g y$ by (a). Extend linearly.
c. First, let $x \in S^{2}(E)$. Then $x=\frac{x}{2}+\frac{x}{2}=\frac{x}{2}+\tau\left(\frac{x}{2}\right)=(1+\tau)\left(\frac{x}{2}\right) \in(1+\tau)\left(E^{\otimes 2}\right)$. Thus $S^{2}(E) \subseteq(1+\tau)\left(E^{\otimes 2}\right)$. Conversely, let $x \in(1+\tau)\left(E^{\otimes 2}\right)$. Then $x=y+\tau(y)$ for some $y \in E^{\otimes 2}$. We have $\tau(\tau(y))=y$ by linear extension. It then follows that

$$
\tau(x)=\tau(y+\tau(y))=\tau(y)+\tau(\tau(y))=\tau(y)+y=x .
$$

Thus $x \in S^{2}(E)$. Consequently, $(1+\tau)\left(E^{\otimes 2}\right) \subseteq S^{2}(E)$ and the first equality is shown. The second equality is established similarly. Suppose that $x \in \wedge^{2}(E)$. Then $x=\frac{x}{2}+\frac{x}{2}=\frac{x}{2}-\tau\left(\frac{x}{2}\right)=(1-\tau)\left(\frac{x}{2}\right) \in(1-\tau)\left(E^{\otimes 2}\right)$. Thus $\wedge^{2}(E) \subseteq(1-\tau)\left(E^{\otimes 2}\right)$. Conversely, any $x \in(1-\tau)\left(E^{\otimes 2}\right)$ may be written as $x=y-\tau(y)$ for some $y \in E^{\otimes 2}$. We also have $\tau(\tau(y))=y$ by linear extension. Consequently,

$$
\tau(x)=\tau(y-\tau(y))=\tau(y)-\tau(\tau(y))=\tau(y)-y=-x .
$$

Thus $x \in \wedge^{2}(E)$. So $(1-\tau)\left(E^{\otimes 2}\right) \subseteq \wedge^{2}(E)$ and the second equality also holds. Finally, it is clear that $S^{2}(E) \cap \wedge^{2}(E)=\{0\}$. Let $x \in E^{\otimes 2}$. Then

$$
x=\frac{1}{2}[x+\tau(x)+x-\tau(x)]=\frac{1}{2}(1+\tau)(x)+\frac{1}{2}(1-\tau)(x) .
$$

Since $\frac{1}{2}(x+\tau(x)) \in S^{2}(E)$ and $\frac{1}{2}(x-\tau(x)) \in \wedge^{2}(E)$, then $E^{\otimes 2}=S^{2}(E)+\wedge^{2}(E)$.

49 DEFINITION. Let $g_{\alpha \beta}$ denote the (α, β)-entry of the matrix $g . c_{\alpha \beta}: \Gamma \rightarrow K$ where $c_{\alpha \beta}(g)=g_{\alpha \beta}$ for all $g \in \Gamma$ is called a coordinate function. Suppose $\mathbf{n}:=\{1,2, \cdots, n\}$ and $\mathcal{A}_{n}:=\left\{c_{\alpha \beta} \mid \alpha, \beta \in \mathbf{n}\right\}$. We will denote by $A(n)$ the K-subalgebra of K^{Γ} generated by $\mathcal{A}_{n} . A(n)$ is called the algebra of polynomial functions and the elements of $A(n)$ are called polynomial functions on $\Gamma .\left\{y_{1}, \cdots, y_{q}\right\}$ in a K-algebra is called algebraically independent over K if no nonzero polynomial $p \in K\left[x_{1}, \cdots, x_{q}\right]$ exists such that $p\left(y_{1}, \cdots, y_{q}\right)=0$.

50 LEMMA. If K is infinite then every subset of \mathcal{A}_{n} is algebraically independent over K.

Proof. This result is well-known (see [13, page 9]). We present a proof of the case $S \subseteq \mathcal{A}_{n}$ with $|S|=1$. Then $S=\left\{c_{i j}\right\}$ for some fixed i and j. Let $p(x) \in K[x]$ with $p\left(c_{i j}\right)=0_{K}$. Assume $p(x)$ is not the zero polynomial. Suppose $i \neq j$. We may choose a nonzero $\alpha \in K$ with $p(\alpha) \neq 0_{K}$ since K is infinite. Construct matrix g where $g_{h h}=1_{K}$ for $1 \leq h \leq n, g_{i j}=\alpha$, and $g_{\ell m}=0_{K}$ for all other pairs (ℓ, m) with $\ell, m \in \mathbf{n}$. Then $g \in \Gamma$ but $0_{K}=p\left(c_{i j}\right)(g)=p(\alpha)$. Contradiction. So $i=j$. Again choose a nonzero $\alpha \in K$ with $p(\alpha) \neq 0_{K}$. Construct matrix g where $g_{h h}=1_{K}$ for $1 \leq h \leq n$ with $h \neq i, g_{i i}=\alpha$, and $g_{\ell m}=0_{K}$ for all other pairs (ℓ, m) with $\ell, m \in \mathbf{n}$. Then $g \in \Gamma$ but $0_{K}=p\left(c_{i i}\right)(g)=p(\alpha)$. Contradiction. Thus p is the zero polynomial. So S is algebraically independent over K.

51 DEFINITION. Let V be a $K \Gamma$-module and $T: \Gamma \rightarrow \Gamma$ the matrix representation afforded by V relative to the basis $\left\{v_{1}, \cdots, v_{n}\right\}$ of V. So $T(g)=\left[\alpha_{i j}(g)\right]$ for unique $\alpha_{i j} \in K^{\text {r }}$ with $g v_{j}=\sum_{i} \alpha_{i j}(g) v_{i}(g \in \Gamma)$. We extend linearly by $T\left(\sum_{g \in \Gamma} k_{g} g\right)=\sum_{g \in \Gamma} k_{g} T(g)$. The K-space $\operatorname{cf}(V)$ spanned by the $\alpha_{i j}$ is called the coefficient space of V.

52 EXAMPLES. Put $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
a. Let $\rho: \Gamma \rightarrow \mathrm{GL}_{2}(K)$ be the matrix representation corresponding to the natural $K \Gamma$ module E relative to the basis $\left\{e_{1}, e_{2}\right\}$ of E. Consequently ρ satisfies $\rho(g)=g$ since $g e_{1}=a e_{1}+c e_{2}$ and $g e_{2}=b e_{1}+d e_{2}$. Thus $\operatorname{cf}\left(E^{\otimes 1}\right)=\left\langle c_{11}, c_{12}, c_{21}, c_{22}\right\rangle$.
b. We use the convention that $c_{i_{1} i_{3}, i_{2} i_{4}}=c_{i_{1} i_{2}} c_{i_{3} i_{4}} . E^{\otimes 2}$ has basis $\left\{e_{11}, e_{12}, e_{21}, e_{22}\right\}$ where $e_{i j}=e_{i} \otimes e_{j}$. Then by a calculation similar to (c) below,

$$
\begin{aligned}
\operatorname{cf}\left(E^{\otimes 2}\right) & =\left\langle c_{11}^{2}, c_{12}^{2}, c_{11} c_{12}, c_{11} c_{21}, c_{11} c_{22}, c_{12} c_{21}, c_{12} c_{22}, c_{21}^{2}, c_{22}^{2}, c_{21} c_{22}\right\rangle \\
& =\left\langle c_{11,11}, c_{11,22}, c_{11,12}, c_{12,11}, c_{12,12}, c_{12,21}, c_{12,22}, c_{22,11}, c_{22,22}, c_{22,12}\right\rangle
\end{aligned}
$$

c. $S^{2}(E)$ has basis $\left\{e_{11}, e_{12}+e_{21}, e_{22}\right\}$. Then:

$$
\begin{aligned}
& g e_{11}=g e_{1} \otimes g e_{1}=\left(a e_{1}+c e_{2}\right) \otimes\left(a e_{1}+c e_{2}\right)=a^{2} e_{11}+a c\left(e_{12}+e_{21}\right)+c^{2} e_{22}, \\
& g\left(e_{12}+e_{21}\right)=g e_{1} \otimes g e_{2}+g e_{2} \otimes g e_{1} \\
& =\left[\left(a e_{1}+c e_{2}\right) \otimes\left(b e_{1}+d e_{2}\right)\right]+\left[\left(b e_{1}+d e_{2}\right) \otimes\left(a e_{1}+c e_{2}\right)\right] \\
& =2 a b e_{11}+(a d+b c)\left(e_{12}+e_{21}\right)+2 c d e_{22},
\end{aligned} \text { ge } \begin{aligned}
& 22=g e_{2} \otimes g e_{2}=\left(b e_{1}+d e_{2}\right) \otimes\left(b e_{1}+d e_{2}\right)=b^{2} e_{11}+b d\left(e_{12}+e_{21}\right)+d^{2} e_{22} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{cf}\left(S^{2}(E)\right) & =\left\langle c_{11}^{2}, 2 c_{11} c_{12}, c_{12}^{2}, c_{11} c_{21}, c_{11} c_{22}+c_{12} c_{21}, c_{12} c_{22}, c_{21}^{2}, 2 c_{21} c_{22}, c_{22}^{2}\right\rangle \\
& =\left\langle c_{11,11}, 2 c_{11,12}, c_{11,22}, c_{12,11}, c_{12,12}+c_{12,21}, c_{12,22}, c_{22,11}, 2 c_{22,12}, c_{22,22}\right\rangle .
\end{aligned}
$$

d. Similarly, $\wedge^{2}(E)$ has basis $\left\{e_{12}-e_{21}\right\}$ and $\operatorname{cf}\left(\wedge^{2}(E)\right)=\left\langle c_{12,12}-c_{12,21}\right\rangle$.

53 NOTATION. Let $\pi \in \sum_{r}$. Denote $\pi c_{i, j}:=c_{i, j \pi}$ where $j \pi=\left(j_{\pi(1)}, \cdots, j_{\pi(r)}\right)$.
54 PROPOSITION. If $\tau=(12) \in \sum_{r}$, then $(1 \pm \tau) \operatorname{cf}\left(E^{\otimes 2}\right)=\operatorname{cf}(1 \pm \tau)\left(E^{\otimes 2}\right)$.
Proof. $\operatorname{cf}\left(E^{\otimes 2}\right)=\left\langle c_{11,11}, c_{11,22}, c_{11,12}, c_{12,11}, c_{12,12}, c_{12,21}, c_{12,22}, c_{22,11}, c_{22,22}, c_{22,12}\right\rangle$ by Example (52b). Note that:

$$
\begin{array}{lr}
(1+\tau)\left(c_{11,11}\right)=c_{11,11}+c_{11,11}=2 c_{11,11}, & (1+\tau)\left(c_{11,22}\right)=c_{11,22}+c_{11,22}=2 c_{11,22}, \\
(1+\tau)\left(c_{11,12}\right)=c_{11,12}+c_{11,21}=c_{11} c_{12}+c_{12} c_{11}=2 c_{11} c_{12}=2 c_{11,12}, \\
(1+\tau)\left(c_{12,11}\right)=c_{12,11}+c_{12,11}=2 c_{12,11}, & (1+\tau)\left(c_{12,12}\right)=c_{12,12}+c_{12,21}, \\
(1+\tau)\left(c_{12,21}\right)=c_{12,21}+c_{12,12}, & (1+\tau)\left(c_{12,22}\right)=c_{12,22}+c_{12,22}=2 c_{12,22}, \\
(1+\tau)\left(c_{22,11}\right)=c_{22,11}+c_{22,11}=2 c_{22,11}, & (1+\tau)\left(c_{22,22}\right)=c_{22,22}+c_{22,22}=2 c_{22,22}, \\
(1+\tau)\left(c_{22,12}\right)=c_{22,12}+c_{22,21}=c_{21} c_{22}+c_{22} c_{21}=2 c_{21} c_{22}=2 c_{22,12} .
\end{array}
$$

Thus by Example (52c) and Proposition (48c),

$$
\begin{aligned}
(1+\tau)\left(\operatorname{cf}\left(E^{\otimes 2}\right)\right) & =\left\langle c_{11,11}, c_{11,22}, c_{11,12}, c_{12,11}, c_{12,12}+c_{12,21}, c_{12,22}, c_{22,11}, c_{22,22}, c_{22,12}\right\rangle \\
& =\operatorname{cf}\left(S^{2}(E)\right)=\operatorname{cf}\left((1+\tau)\left(E^{\otimes 2}\right)\right)
\end{aligned}
$$

Similarly, note that:

$$
\begin{array}{lrl}
(1-\tau)\left(c_{11,11}\right)=c_{11,11}-c_{11,11}=0, & (1-\tau)\left(c_{11,12}\right) & =c_{11,12}-c_{11,21}=c_{11} c_{12}-c_{12} c_{11}=0, \\
(1-\tau)\left(c_{12,12}\right)=c_{12,12}-c_{12,21}, & (1-\tau)\left(c_{11,22}\right)=c_{11,22}-c_{11,22}=0, \\
(1-\tau)\left(c_{12,11}\right)=c_{12,11}-c_{12,11}=0, & (1-\tau)\left(c_{12,21}\right)=c_{12,21}-c_{12,12}, \\
(1-\tau)\left(c_{12,22}\right)=c_{12,22}-c_{12,22}=0, & (1-\tau)\left(c_{22,11}\right)=c_{22,, 11}-c_{22,11}=0, \\
(1-\tau)\left(c_{22,12}\right)=c_{22,12}-c_{22,21}=c_{21} c_{22}-c_{22} c_{21}=0, & (1-\tau)\left(c_{22,22}\right)=c_{22,22}-c_{22,22}=0 .
\end{array}
$$

Applying Example (52d) and Proposition (48c) yields

$$
(1-\tau)\left(\operatorname{cf}\left(E^{\otimes 2}\right)\right)=\left\langle c_{12,12}-c_{12,21}\right\rangle=\operatorname{cf}\left(\wedge^{2}(E)\right)=\operatorname{cf}\left((1-\tau)\left(E^{\otimes 2}\right)\right) .
$$

55 NOTATION.

a. A polynomial is called homogeneous when each of its terms has the same degree. We let K be infinite hereafter. By Lemma (50), $A(n)$ may be viewed as the polynomial algebra over K in the indeterminants $c_{\alpha \beta}$. Let $A_{r}(r \geq 0)$ denote the K-subspace of $A(n)$ generated by the homogeneous polynomial functions of total degree r.
b. Let $I=\{f \mid f: \mathbf{r} \rightarrow \mathbf{n}\}$. $G=\sum_{r}$ acts on I via $i \pi=\left(i_{\pi(1)}, \ldots i_{\pi(r)}\right)$ and G acts on $I \times I$ by $(i, j) \pi=(i \pi, j \pi)$ for $i, j \in I$ and $\pi \in G$. For $i, j \in I$, define $(i, j) \sim(p, q)$ for $(i, j),(p, q) \in I \times I$ when $p=i \pi$ and $q=j \pi$ for some $\pi \in G$. Let $R(n, r)$ denote a set of representatives for the equivalence classes of $I \times I$ under \sim.

56 REMARK. For fixed $g \in \Gamma$ and with E viewed as a K-space, define $t_{g}^{\prime}: E^{\times r} \rightarrow E^{\otimes r}$ by $t_{g}^{\prime}\left(x_{1}, \cdots, x_{r}\right)=g\left(x_{1} \otimes \cdots \otimes x_{r}\right)$ for all $x_{1}, \cdots, x_{r} \in E$. Then t_{g}^{\prime} is r-multilinear and induces a K-linear map $t_{g}: E^{\otimes r} \rightarrow E^{\otimes r}$ (Theorem (16) and induction) such that $t_{g}^{\prime}=t_{g} \circ \beta$ where β is the canonical r-multilinear map. Then t_{g} gives rise to a matrix representation $T_{n, r}^{\prime}: \Gamma \rightarrow \mathrm{GL}_{n}\left(E^{\otimes r}\right)$ given by $T_{n, r}^{\prime}(g)=t_{g}$. Extending linearly to $K \Gamma$ and using the standard basis $\left\{e_{i} \mid i \in I\right\}$ of $E^{\otimes r}$ yields the matrix representation $T_{n, r}: K \Gamma \rightarrow \operatorname{Mat}_{I} K$ given by $T_{n, r}(\kappa)=\left[g_{i, j}\right]$ for $i, j \in I$ where $\kappa e_{j}=\sum_{i \in I} g_{i, j} e_{i}$. Similarly, $c_{i, j}$ may be extended linearly to $K \Gamma$.

57 LEMMA. Let r be a nonnegative integer. Then $\sum_{i=0}^{r}\binom{n-2+i}{i}=\binom{n+r-1}{r}$.
Proof. We proceed by induction on r. The result is obvious for $r=0$. Recall [14, p. 8] that Pascal's Rule says $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$ for $1 \leq k \leq n$. Then, using the induction hypothesis, we have

$$
\begin{aligned}
\sum_{i=0}^{r}\binom{n-2+i}{i} & =\left[\sum_{i=0}^{r-1}\binom{n-2+i}{i}\right]+\binom{n-2+r}{r}=\binom{n-2+r}{r-1}+\binom{n-2+r}{r} \\
& =\binom{n+r-1}{r}
\end{aligned}
$$

58 THEOREM. (a) $\mathcal{C}=\left\{c_{i, j}=c_{i_{1} j_{1}} \cdots c_{i_{r} j_{r}} \mid(i, j) \in R(n, r)\right\}$ is a K-basis for A_{r}. (b) $\operatorname{dim} A_{r}=\binom{n^{2}+r-1}{r}$. (c) $A_{r}=\operatorname{cf}\left(E^{\otimes r}\right)$.

Proof. a. A_{r} is spanned as a K-space by the monomials $\left\{c_{i, j} \mid i, j \in I\right\}$. Now since $c_{i, j}=c_{k, \ell}$ if and only if $(i, j) \sim(k, \ell)$, we have that this set equals \mathcal{C}. So \mathcal{C} spans A_{r}, and the elements of \mathcal{C} are distinct. Thus \mathcal{C} is linearly independent by Lemma (50). Consequently \mathcal{C} is a K-basis for A_{r}.
b. We show that the number of distinct monomials $x_{1}^{r_{1}} \cdots x_{m}^{r_{m}}$ in the m commuting indeterminants x_{i} with $\sum_{i} r_{i}=r$ is $\binom{m+r-1}{r}$. We proceed by induction on m. The result is obvious for $m=1$. Let w_{ℓ} be the number of distinct monomials with $\sum_{i} r_{i}=r$ such that $r_{m}=\ell$. The number in question is $w=\sum_{\ell} w_{\ell}$. By Lemma (57),

$$
\begin{aligned}
w & =w_{0}+\cdots+w_{r} \\
& =\binom{m-1+r-1}{r}+\binom{m-1+r-1-1}{r-1}+\cdots+\binom{m-1+0-1}{0} \\
& =\sum_{i=0}^{r}\binom{m-2+r-i}{r-i}=\sum_{i=0}^{r}\binom{m-2+i}{i}=\binom{m+r-1}{r} .
\end{aligned}
$$

The claim now follows from (a).
c. By Remark(56), $g e_{j}=\sum_{i \in I} c_{i, j}(g) e_{i}$. Thus $\operatorname{cf}\left(E^{\otimes r}\right)=\sum_{i, j \in I} K c_{i, j}=A_{r}$.

Define $F: K^{\Gamma} \times K^{\Gamma} \rightarrow K^{\Gamma \times \Gamma}$ by $[F(f, g)](u, v)=f(u) g(v)\left(f, g \in K^{\Gamma}, u, v \in \Gamma\right)$. There exists a unique K-linear map $\Phi: K^{\Gamma} \otimes K^{\Gamma} \rightarrow K^{\Gamma \times \Gamma}$ given by $[\Phi(f \otimes g)](u, v)=f(u) g(v)$ by Theorem (16) since F is bilinear. Φ is injective by an argument similar to that given in the proof of Lemma (29b). So, we may consider $K^{\Gamma} \otimes K^{\Gamma}$ as a K-subspace of $K^{\Gamma \times \Gamma}$.

59 LEMMA. $A(n)$ is a K-bialgebra, and A_{r} is a K-subcoalgebra of $A(n)$.

Proof. $A(n)$ is a K-algebra as it is a K-subalgebra of K^{Γ}. Then $\mu: A(n) \otimes A(n) \rightarrow A(n)$ and $\iota: K \rightarrow A(n)$ given by $\mu\left(c_{i, j} \otimes c_{k, \ell}\right)=c_{i, j} c_{k, \ell}$ and $\iota(k)=k 1$ are the structure maps for $A(n)$ by the proof of Theorem (33). Define $\Delta: K^{\Gamma} \rightarrow K^{\Gamma \times \Gamma}$ by $[\Delta(f)](u, v)=f(u v)$ and $\varepsilon: K^{\Gamma} \rightarrow K$ by $\varepsilon(f)=f\left(1_{\Gamma}\right)$ for all $f \in K^{\Gamma}, u, v \in \Gamma$. Since for all $f, g \in K^{\Gamma}, u, v \in \Gamma$, and $k \in K$, we have
(i) $[\Delta(f+g)](u, v)=(f+g)(u v)=f(u v)+g(u v)=[\Delta f](u, v)+[\Delta g](u, v)$,
(ii) $[\Delta(f g)](u, v)=(f g)(u v)=f(u v) g(u v)=[\Delta f](u, v)[\Delta g](u, v)$,
(iii) $[\Delta(k f)](u, v)=(k f)(u v)=k f(u v)=k[\Delta f](u, v)$,
(iv) $\left[\Delta\left(1_{K^{\Gamma}}\right)\right](u, v)=1_{K^{\Gamma}}(u v)=1_{K}=1_{K^{\Gamma} \times \Gamma}(u, v)$,
(v) $\varepsilon(f+g)=(f+g)\left(1_{\Gamma}\right)=f\left(1_{\Gamma}\right)+g\left(1_{\Gamma}\right)=\varepsilon(f)+\varepsilon(g)$,
$(\mathrm{vi}) \varepsilon(f g)=(f g)\left(1_{\Gamma}\right)=f\left(1_{\Gamma}\right) g\left(1_{\Gamma}\right)=\varepsilon(f) \varepsilon(g)$,
$(\mathrm{vii}) \varepsilon(k f)=(k f)\left(1_{\Gamma}\right)=k f\left(1_{\Gamma}\right)=k \varepsilon(f)$, and
$\left(\right.$ viii) $\varepsilon\left(1_{K^{\Gamma}}\right)=1_{K^{\Gamma}}\left(1_{\Gamma}\right)=1_{K}$,
Δ and ε are K-algebra homomorphisms by (i) - (iv) and (v) - (viii), respectively. Now restrict Δ and ε to $A(n)$. Then $\Delta\left(c_{\alpha \beta}\right)=\sum_{\gamma=1}^{n} c_{\alpha \gamma} \otimes c_{\gamma \beta}$ and $\varepsilon\left(c_{\alpha \beta}\right)=\delta_{\alpha \beta}$ for $1 \leq \alpha, \beta \leq n$. We next verify the Coassociative Law and Counitary Property. Then

$$
\begin{aligned}
((\Delta \otimes 1) \circ \Delta)\left(c_{\alpha \beta}\right) & =(\Delta \otimes 1)\left(\sum_{\gamma} c_{\alpha \gamma} \otimes c_{\gamma \beta}\right)=\sum_{\gamma, \zeta}\left(c_{\alpha \zeta} \otimes c_{\zeta \gamma}\right) \otimes c_{\gamma \beta} \\
& =\sum_{\gamma, \zeta} c_{\alpha \zeta} \otimes\left(c_{\zeta \gamma} \otimes c_{\gamma \beta}\right)=(1 \otimes \Delta)\left(\sum_{\zeta} c_{\alpha \zeta} \otimes c_{\zeta \beta}\right)=((1 \otimes \Delta) \circ \Delta)\left(c_{\alpha \beta}\right)
\end{aligned}
$$

$$
\begin{aligned}
((\varepsilon \otimes 1) \circ \Delta)\left(c_{\alpha \beta}\right) & =(\varepsilon \otimes 1)\left(\sum_{\gamma} c_{\alpha \gamma} \otimes c_{\gamma \beta}\right)=\sum_{\gamma} \varepsilon\left(c_{\alpha \gamma}\right) \otimes c_{\gamma \beta}=1_{K} \otimes \sum_{\gamma} \varepsilon\left(c_{\alpha \gamma}\right) c_{\gamma \beta} \\
& =1_{K} \otimes \sum_{\gamma} \delta_{\alpha \gamma} c_{\gamma \beta}=1_{K} \otimes c_{\alpha \beta}=\rho_{2}\left(c_{\alpha \beta}\right)
\end{aligned}
$$

and similarly $((1 \otimes \varepsilon) \circ \Delta)\left(c_{\alpha \beta}\right)=\rho_{1}\left(c_{\alpha \beta}\right)$. So $(A(n), \Delta, \varepsilon)$ is a K-coalgebra. By Theorem (44), $(A(n), \mu, \iota, \Delta, \varepsilon)$ is a K-bialgebra. Finally, note A_{r} is a K-subspace of $A(n)$ by the definition of A_{r}. Let $c_{i, k}=c_{i_{1} k_{1}} \cdots c_{i_{r} k_{r}} \in A_{r}$. Then, using the fact that Δ is a K-algebra homomorphism, we find that $\Delta\left(c_{i, k}\right)=\sum_{j \in I} c_{i, j} \otimes c_{j, k} \in A_{r} \otimes A_{r}$. Thus $\Delta\left(A_{r}\right) \subseteq A_{r} \otimes A_{r}$. A_{r} is a K-subcoalgebra of $A(n)$ by Definition (35).

3.2 Schur Algebras and Group Actions

Let $f \in K^{\Gamma}$ and $\kappa=\sum \kappa_{g} g \in K \Gamma$. Define $\bar{f}(\kappa)=\sum \kappa_{g} f(g)$. Then \bar{f} is a unique linear extension of f. Let V be a finite-dimensional $K \Gamma$-module with basis $\left\{v_{b} \mid b \in B\right\}$. If Γ acts as $g v_{b}=\sum_{B} \alpha_{a b}(g) v_{a}$ (as in the definition of coefficient space), then $K \Gamma$ acts as $\kappa v_{b}=\sum_{a} \alpha_{a b}(\kappa) v_{a}$ for all $\kappa \in K \Gamma$ and all $b \in B$. Let $\rho: K \Gamma \rightarrow \operatorname{End}_{K}(V)$ be the representation afforded by V, and let $Y=\operatorname{ker} \rho$.

60 LEMMA. Let $f \in K^{\Gamma}$ and $\kappa \in K \Gamma$. Then (a) $\kappa \in Y$ if and only if $f(\kappa)=0$ for all $f \in \operatorname{cf}(V)$ and (b) $f \in \operatorname{cf}(V)$ if and only if $f(\kappa)=0$ for all $\kappa \in Y$.

Proof. a. Let $\kappa \in Y$ and $f \in \operatorname{cf}(V)$. Then $f=\sum_{a, b} d_{a b} \alpha_{a b}$ for some $d_{a b} \in K$. Since $\alpha_{a b}(\kappa)=0$ for all $a, b \in B$, we have $f(\kappa)=\sum_{a, b} d_{a b} \alpha_{a b}(\kappa)=0$. Conversely, let $f(\kappa)=0$ for all $f \in \operatorname{cf}(V)$. Since $\alpha_{a b} \in \operatorname{cf}(V)$ for all $a, b \in B$, we have $\alpha_{a b}(\kappa)=0$ for all $a, b \in B$. So $\rho(\kappa)\left(v_{b}\right)=\kappa v_{b}=\sum_{a} \alpha_{a b}(\kappa) v_{a}=0$ for all $a, b \in B$. So $\kappa \in Y$.
b. Let $N:=\rho(K \Gamma)$. Define $\langle\rangle:, Y^{0} \times N \rightarrow K$ by $\langle f, \nu\rangle=f(\kappa)$ for all $f \in Y^{0}$ and $\nu=\rho(\kappa) \in N$. Suppose $\rho(\kappa)=\rho(\lambda)$ for some $\kappa, \lambda \in K \Gamma$ and let $f \in Y^{0}$. Since ρ is a homomorphism, then $\rho(\kappa-\lambda)=0$. Hence $\kappa-\lambda \in \operatorname{ker} \rho$. Thus $f(\kappa-\lambda)=0$
since $f \in Y^{0}$. So $f(\kappa)-f(\lambda)=0$ since f is linear. Hence $f(\kappa)=f(\lambda)$. Thus \langle,$\rangle is$ well-defined. Now suppose $\langle f, \nu\rangle=0$ for every $\nu \in N$. So $f(\kappa)=0$ for every $\kappa \in K \Gamma$. In particular, $0=f\left(1_{K} g\right)=f(g)$ for every $g \in \Gamma$. So $f=0$. Now let $\nu=\rho(\xi) \in N$. Suppose $\langle f, \nu\rangle=0$ for every $f \in Y^{0}$. Then $f(\xi)=0$ for every $f \in Y^{0}$ by the definition of \langle,$\rangle . Note Y=\left(Y^{0}\right)^{0}=\left\{x \mid f(x)=0\right.$ for every $\left.f \in Y^{0}\right\}$. Hence $\xi \in Y$. So $\nu=0$. So \langle,$\rangle is non-singular. By (a), \operatorname{cf}(V) \subseteq Y^{0}$. Observe if $\nu=\rho(\kappa) \in N$ such that $f(\kappa)=\langle f, \nu\rangle=0$ for all $f \in \operatorname{cf}(V)$, then $\kappa \in Y$ by (a). Hence $\nu=0$. This implies \langle,$\rangle restricted to \operatorname{cf}(V) \times N$ is non-singular. $\operatorname{Socf}(V) \cong N^{*} \cong Y^{0}$ by two applications of Lemma (32). Thus dim $\operatorname{cf}(V)=\operatorname{dim} Y^{0}$. Therefore $\operatorname{cf}(V)=Y^{0}$.

61 EXAMPLE. Let g be the 3×3 matrix with $g_{11}=g_{12}=g_{22}=g_{33}=1$ and 0 elsewhere. We compute $T_{3,2}(g)$. Note $e_{i}=e_{i_{1}} \otimes e_{i_{2}}$ since $i=\left(i_{1}, i_{2}\right)$. We write $e_{j k}:=e_{j} \otimes e_{k}$ and $g_{j k, \ell m}:=\alpha(g)_{(j, k),(\ell, m)}$. A few calculations are included:
$g e_{11}=g\left(e_{1} \otimes e_{1}\right)=g e_{1} \otimes g e_{1}=e_{1} \otimes e_{1}=e_{11}$
$\Rightarrow g_{11,11}=1$ and $g_{i, 11}=0$ for $i \neq(1,1)$;
$g e_{12}=g e_{1} \otimes g e_{2}=e_{1} \otimes\left(e_{1}+e_{2}\right)=e_{11}+e_{12}$
$\Rightarrow g_{11,12}=g_{12,12}=1$ and $g_{i, 12}=0$ for $i \neq(1,1),(1,2)$;
$g e_{13}=g e_{1} \otimes g e_{3}=e_{1} \otimes e_{3}=e_{13}$
$\Rightarrow g_{13,13}=1$ and $g_{i, 13}=0$ for $i \neq(1,3)$;
$g e_{21}=g e_{2} \otimes g e_{1}=\left(e_{1}+e_{2}\right) \otimes e_{1}=e_{11}+e_{21}$
$\Rightarrow g_{11,21}=g_{21,21}=1$ and $g_{i, 21}=0$ for $i \neq(1,1),(2,1)$.
We eventually obtain $T_{3,2}(g)=g \otimes g$ (Figure 10).
$\left[\begin{array}{lllllllll}1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Figure 10: $T_{3,2}(g)$

62 DEFINITION. The $S c h u r$ algebra, denoted by S_{r} or $S_{r}(\Gamma)$, is the image of $K \Gamma$ under $T_{n, r}$ with identity $1_{S_{r}}=\left[\delta_{i, j}\right]$ where $\delta_{i, j}=\delta_{i_{1} j_{1}} \cdots \delta_{i_{r} j_{r}}$.

Note that $\left[\delta_{i, j}\right]$ is just the identity matrix.

63 THEOREM. (a) $\langle\rangle:, A_{r} \times S_{r} \rightarrow K$ given by $\left\langle c_{i, k}, T_{n, r}(\kappa)\right\rangle=c_{i, k}(\kappa)$ is well-defined, non-singular, and bilinear where $c_{i, k} \in A_{r}$, and $\kappa \in K \Gamma$. (b) A_{r}^{*} and S_{r} are isomorphic as K-spaces. (c) S_{r} is a K-algebra with $\operatorname{dim} S_{r}=\binom{n^{2}+r-1}{r}$.

Proof. (a) First, if $T_{n, r}(\kappa)=T_{n, r}\left(\kappa^{\prime}\right)$, then $\kappa-\kappa^{\prime} \in \operatorname{Ker} T_{n, r}$. So $c_{i, k}\left(\kappa-\kappa^{\prime}\right)=0$ (Theorem (58c) and Lemma (60b)) and $c_{i, k}(\kappa)=c_{i, k}\left(\kappa^{\prime}\right)$. Consequently, the form is well-defined. Suppose $0=\left\langle c_{i, k}, T_{n, r}(\kappa)\right\rangle=c_{i, k}(\kappa)$ for all $\kappa \in K \Gamma$. Thus $c_{i, k}=0$. Now suppose $c_{i, k}(\kappa)=\left\langle c_{i, k}, T_{n, r}(\kappa)\right\rangle=0$ for all $c_{i, k} \in A_{r}$. Then $\kappa \in \operatorname{ker} T_{n, r}$ by Lemma (60a). Hence $T_{n, r}(\kappa)=0$. Thus \langle,$\rangle is non-singular. Next for all c_{h, i}, c_{j, k} \in A_{r}, \kappa, \lambda \in K \Gamma$, and $x, y \in K$, we have

$$
\begin{aligned}
\left\langle x c_{h, i}+y c_{j, k}, T_{n, r}(\kappa)\right\rangle & =\left(x c_{h, i}+y c_{j, k}\right)(\kappa)=x c_{h, i}(\kappa)+y c_{j, k}(\kappa) \\
& =x\left\langle c_{h, i}, T_{n, r}(\kappa)\right\rangle+y\left\langle c_{j, k}, T_{n, r}(\kappa)\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle c_{i, k}, x T_{n, r}(\kappa)+y T_{n, r}(\lambda)\right\rangle & =\left\langle c_{i, k}, T_{n, r}(x \kappa+y \lambda)\right\rangle=c_{i, k}(x \kappa+y \lambda)=x c_{i, k}(\kappa)+y c_{i, k}(\lambda) \\
& =x\left\langle c_{i, k}, T_{n, r}(\kappa)\right\rangle+y\left\langle c_{i, k}, T_{n, r}(\lambda)\right\rangle .
\end{aligned}
$$

Thus \langle,$\rangle is bilinear. (b) \operatorname{dim} A_{r}^{*}$ is finite by Theorem (58b). Then A_{r}^{*} and S_{r} are isomorphic as K-spaces by Lemma (32). (c) S_{r} is a homomorphic image of the K-algebra $K \Gamma$ so it is a K-algebra. Moreover, $\operatorname{dim} S_{r}=\operatorname{dim} A_{r}^{*}=\operatorname{dim} A_{r}=\binom{n^{2}+r-1}{r}$ by Theorem (58b).

64 LEMMA. Let $\xi, \eta \in S_{r}$ and $i, j \in I$.
a. $\left\langle c_{i, j}, \xi\right\rangle=$ the (i, j) th entry of ξ.
b. $\left\langle c_{i, j}, \xi \eta\right\rangle=\sum_{h \in I}\left\langle c_{i, h}, \xi\right\rangle\left\langle c_{h, j}, \eta\right\rangle$.

Proof. a. Note that $\xi: E^{\otimes r} \rightarrow E^{\otimes r}$ is a linear map. We write the matrix of ξ relative to the basis $\left\{e_{i} \mid i \in I\right\}$ as $\left[\xi_{i j}\right]$. We must show that $\left\langle c_{i j}, \xi\right\rangle=\xi_{i j}$. That is, we must show that $\xi\left(e_{j}\right)=\sum_{i}\left\langle c_{i j}, \xi\right\rangle e_{i}$. Suppose that $\xi=T_{n, r}(g)$ for some $g \in \Gamma$. By Theorem (63), we must show that $\xi\left(e_{j}\right)=\sum_{i} c_{i j}(g) e_{i}$. But this is clear since

$$
\begin{aligned}
\xi\left(e_{j}\right) & =T_{n, r}(g)\left(e_{j}\right)=g e_{j_{1}} \otimes \cdots \otimes g e_{j_{r}}=\sum_{i_{1}=1}^{n} c_{i_{1} j_{1}}(g) e_{i_{1}} \otimes \cdots \otimes \sum_{i_{r}=1}^{n} c_{i_{r} j_{r}}(g) e_{i_{r}} \\
& =\sum_{i} c_{i j}(g) e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{r}}=\sum_{i} c_{i j}(g) e_{i} .
\end{aligned}
$$

Since $T_{n, r}$ and $c_{i j}$ are linear, we obtain $T_{n, r}(\kappa)\left(e_{j}\right)=\sum_{i} c_{i j}(\kappa)\left(e_{j}\right)$ for each $\kappa \in K \Gamma$, and the claim follows.
b. By (a), $\left\langle c_{i j}, \xi \eta\right\rangle=(i, j)$ th entry of $\xi \eta=\sum_{h \in I} \xi_{i, h} \eta_{h, j}=\sum_{h \in I}\left\langle c_{i h}, \xi\right\rangle\left\langle c_{h j}, \eta\right\rangle$.

65 THEOREM. $\psi: S_{r}(\Gamma) \rightarrow A_{r}^{*}$ given by $\psi(\xi)(f)=\langle f, \xi\rangle$ is a K-algebra isomorphism.

Proof. First, ψ is a K-space isomorphism by the proofs of Theorem (63b) and Lemma (32). Multiplication in the algebra A_{r}^{*} is defined by $(\alpha \beta)(c)=\sum \alpha\left(c_{i}\right) \beta\left(d_{i}\right)\left(\alpha, \beta \in A_{r}^{*}, c \in A_{r}\right)$, where $\Delta(c)=\sum_{i} c_{i} \otimes d_{i}$. Indeed,

$$
\begin{aligned}
(\alpha \beta)\left(c_{i, j}\right) & =\left[\Delta^{*}(\alpha \otimes \beta)\right]\left(c_{i, j}\right)=(\alpha \otimes \beta)\left(\Delta\left(c_{i, j}\right)\right)=(\alpha \otimes \beta)\left(\sum_{h \in I} c_{i, h} \otimes c_{h, j}\right) \\
& =\sum_{h \in I} \alpha\left(c_{i, h}\right) \beta\left(c_{h, j}\right) .
\end{aligned}
$$

Now let $\xi, \eta \in S_{r}(\Gamma)$ and $i, j \in I$. Then by the definition of ψ and Lemma (64b)

$$
\psi(\xi \eta)\left(c_{i, j}\right)=\left\langle c_{i, j}, \xi \eta\right\rangle=\sum_{h \in I}\left\langle c_{i, h}, \xi\right\rangle\left\langle c_{h, j}, \eta\right\rangle=\sum_{h \in I} \psi(\xi)\left(c_{i, h}\right) \psi(\eta)\left(c_{h, j}\right) .
$$

Since the $c_{i, j}$ span A_{r}, we have $\psi(\xi \eta)(c)=\sum_{i \in I} \psi(\xi)\left(c_{i}\right) \psi(\eta)\left(d_{i}\right)$ for all $c \in A_{r}$. Next, let $\alpha=\psi(\xi)$ and $\beta=\psi(\eta)$. Consequently,

$$
\psi(\xi) \psi(\eta)(c)=(\alpha \beta)(c)=\sum_{i \in I} \alpha\left(c_{i}\right) \beta\left(d_{i}\right)=\sum_{i \in I} \psi(\xi)\left(c_{i}\right) \psi(\eta)\left(d_{i}\right)=\psi(\xi \eta)(c)
$$

for all $c \in A_{r}$. Thus ψ is a homomorphism. Therefore ψ is an algebra map since $\psi\left(1_{S_{r}(\Gamma)}\right)\left(c_{i, j}\right)=\left\langle c_{i, j}, 1_{S_{r}(\Gamma)}\right\rangle=\delta_{i, j}=\varepsilon\left(c_{i, j}\right)$.

66 DEFINITION. Let S be a set, G a group, and e the identity of G. An action of G on S is a function $G \times S \rightarrow S$ given by $(g, x) \mapsto g x$ such that $e x=x$ and $(g h) x=g(h x)$
for all $x \in S$ and $g, h \in G$. A right action of G has a similar definition with g appearing on the right. S is called a (right) G-set when an (right) action exists.

67 NOTATION. We set $N:=\operatorname{End}_{K}\left(E^{\otimes r}\right)$. Then N has basis $\left\{e_{i, j} \mid i, j \in I\right\}$ where $e_{i, j}: E^{\otimes r} \rightarrow E^{\otimes r}$ is given by $e_{i, j}\left(e_{k}\right)=\delta_{j, k} e_{i}$.

68 EXAMPLES. Let $G=\sum_{r}, \sigma \in G, i=\left(i_{1}, i_{2}, \cdots, i_{r}\right)$, and recall $I:=I(n, r)$.
a. Consider $\sigma i=\left(i_{\sigma^{-1}(1)}, \cdots, i_{\sigma^{-1}(r)}\right)$. This makes I a G-set since

$$
\begin{aligned}
(1) i & =\left(i_{(1)^{-1}(1)}, \cdots, i_{(1)^{-1}(r)}\right)=\left(i_{1}, \cdots, i_{r}\right)=i, \text { and } \\
\sigma(\tau i) & =\sigma\left(i_{\tau^{-1}(1)}, \cdots, i_{\tau^{-1}(r)}\right)=\sigma\left(j_{1}, \cdots, j_{r}\right)=\left(j_{\sigma^{-1}(1)}, \cdots, j_{\sigma^{-1}(r)}\right) \\
& =\left(i_{\tau^{-1}\left(\sigma^{-1}(1)\right)}, \cdots, i_{\tau^{-1}\left(\sigma^{-1}(r)\right)}\right)=\left(i_{(\sigma \tau)^{-1}(1)}, \cdots, i_{(\sigma \tau)^{-1}(r)}\right)=(\sigma \tau) i,
\end{aligned}
$$

where $j_{k}:=i_{\tau^{-1}(k)}$.
b. Next, consider $E^{\otimes r}$ and $\sigma e_{i}=e_{\sigma i}=e_{\sigma i_{1}} \otimes \cdots \otimes e_{\sigma i_{r}}$. Then (1) $e_{i}=e_{1 i}=e_{i}$ and $\sigma\left(\rho e_{i}\right)=\sigma\left(e_{\rho i}\right)=e_{\sigma(\rho i)}=e_{(\sigma \rho)(i)}=(\sigma \rho) e_{i}$ by (a). Hence $E^{\otimes r}$ is a G-set with the above action extended linearly.
c. Define $e_{i, j} \sigma$ by $\left(e_{i, j} \sigma\right)(e)=e_{i, j}(\sigma e)\left(e \in E^{\otimes r}\right)$. Consequently, extending this action linearly yields that N a right G-set because $\left(e_{i, j} 1\right)(e)=e_{i, j}(1 e)=e_{i, j}(e)$ and $\left(\left(e_{i, j} \sigma\right) \tau\right)(e)=\left(e_{i, j} \sigma\right)(\tau e)=e_{i, j}((\sigma \tau) e)=\left(e_{i, j}(\sigma \tau)\right)(e)$. Moreover, we have $\left(e_{i, j} \sigma\right) e_{k}=e_{i, j}\left(\sigma e_{k}\right)=e_{i, j}\left(e_{\sigma k}\right)=\delta_{j, \sigma k} e_{i}=\delta_{\sigma^{-1}{ }_{j, k}} e_{i}=\left(e_{i, \sigma^{-1}}^{j}\right) e_{k}$. It therefore follows that $e_{i, j} \sigma=e_{i, \sigma^{-1}}$.
d. Arguing as in (c), we find that N^{*} is a G-set with action $\left(\sigma e_{i, j}^{*}\right) e_{k, \ell}=e_{i, j}^{*}\left(e_{k, \ell} \sigma\right)$ where $e_{i, j}^{*}\left(e_{k, \ell}\right)=\delta_{i, k} \delta_{j, \ell}$. Moreover,

$$
\left(\sigma e_{i, j}^{*}\right) e_{k, \ell}=e_{i, j}^{*}\left(e_{k, \ell} \sigma\right)=e_{i, j}^{*}\left(e_{k, \sigma^{-1} \ell}\right)=\delta_{i, k} \delta_{j, \sigma^{-1} \ell}=\delta_{i, k} \delta_{\sigma j, \ell}=e_{i, \sigma j}^{*}\left(e_{k, \ell}\right)
$$

by (c). So we have $\sigma e_{i, j}^{*}=e_{i, \sigma j}^{*}$.

3.3 Main Results

69 NOTATION. Suppose χ is a character of $G=\sum_{r}$. We set $t_{\chi}:=\sum_{\sigma \in G} \chi(\sigma) \sigma \in K G$, $L:=t_{\chi} E^{\otimes r}, N_{L}:=\operatorname{End}_{K}(L)$, and $A_{L}:=\operatorname{cf}(L)$.

70 DEFINITION. Let $T: K \Gamma \rightarrow N$ be the representation corresponding to the $K \Gamma$ module $E^{\otimes r}$. We define $T_{L}: K \Gamma \rightarrow N_{L}$ by $T_{L}(\kappa)=\left.T(\kappa)\right|_{L}$.

The action of Γ on $E^{\otimes r}$ clearly commutes with the action of G. So $T(\kappa)(L) \subseteq L$ and T_{L} is well-defined.

71 LEMMA. $\psi:(\operatorname{im} T) t_{\chi} \rightarrow \operatorname{im} T_{L}$ given by $\psi\left(T(\kappa) t_{\chi}\right)=\left.T(\kappa)\right|_{L}$ is a K-isomorphism.

Proof. We have that ψ is well-defined and injective since,

$$
\begin{aligned}
T(\kappa) t_{\chi}=T(\lambda) t_{\chi} & \Leftrightarrow T(\kappa) t_{\chi}(e)=T(\lambda) t_{\chi}(e) \text { for all } e \in E^{\otimes r} \\
& \Leftrightarrow T(\kappa)\left(t_{\chi} e\right)=T(\lambda)\left(t_{\chi} e\right) \text { for all } e \in E^{\otimes r} \\
& \left.\Leftrightarrow T(\kappa)\right|_{L}=\left.T(\lambda)\right|_{L} \Leftrightarrow \psi\left(T(\kappa) t_{\chi}\right)=\psi\left(T(\lambda) t_{\chi}\right)
\end{aligned}
$$

ψ is also surjective since $\psi\left(T(\kappa) t_{\chi}\right)=\left.T(\kappa)\right|_{L}$ for any $\left.T(\kappa)\right|_{L} \in \operatorname{im} T_{L}$. Finally ψ is a K-space isomorphism since for all $k \in K$ and for all $\left.T(\kappa)\right|_{L},\left.T(\lambda)\right|_{L} \in \operatorname{im} T_{L}$:

$$
\begin{aligned}
\psi\left(T(\kappa) t_{\chi}+T(\lambda) t_{\chi}\right) & =\psi\left(T(\kappa+\lambda) t_{\chi}\right)=\left.T(\kappa+\lambda)\right|_{L}=\left.T(\kappa)\right|_{L}+\left.T(\lambda)\right|_{L} \\
& =\psi\left(T(\kappa) t_{\chi}\right)+\psi\left(T(\lambda) t_{\chi}\right) \\
\psi\left(k T(\kappa) t_{\chi}\right) & =\psi\left(T(k \kappa) t_{\chi}\right)=\left.T(k \kappa)\right|_{L}=\left.k T(\kappa)\right|_{L}=k \psi\left(T(\kappa) t_{\chi}\right.
\end{aligned}
$$

72 REMARK. The dual of ψ in Lemma (71) is the map $\psi^{*}:\left(\operatorname{im} T_{L}\right)^{*} \rightarrow\left((\operatorname{im} T) t_{\chi}\right)^{*}$ defined by $\psi^{*}(f)\left(T(\kappa) t_{\chi}\right)=f\left(\psi\left(T(\kappa) t_{\chi}\right)\right)=f\left(\left.T(\kappa)\right|_{L}\right)$ by Definition (30). Also since N is a right G-set by Example (68c), it follows that $\operatorname{Hom}_{K}(K \Gamma, N)$ is a right G-set by $(f \sigma)(\kappa)=f(\kappa) \sigma$. In particular, $\left(T t_{\chi}\right)(\kappa)=T(\kappa) t_{\chi}$.

73 LEMMA. (a) $\gamma: A_{L} \rightarrow\left(\operatorname{im} T_{L}\right)^{*}$ given by $(\gamma(a))\left(T_{L}(\kappa)\right)=a(\kappa)$ is a K-isomorphism. (b) If $\nu=\psi^{*} \circ \gamma$ then $\nu(a) \circ\left(T t_{\chi}\right)=a$ as functions from $K \Gamma$ to K for every $a \in A_{L}$. (c) $A_{L}=\left\langle e_{i, j}^{*} \circ T t_{\chi}\right\rangle$.

Proof. a. By Lemma (60b) we have $A_{L}=\left(\operatorname{ker} T_{L}\right)^{\circ}$. Note that there exists an isomorphism $F:\left(\operatorname{ker} T_{L}\right)^{\circ} \rightarrow\left(K \Gamma / \operatorname{ker} T_{L}\right)^{*}$ by Lemma (31b). Similarly, there exists an isomorphism $G:\left(K \Gamma / \operatorname{ker} T_{L}\right)^{*} \rightarrow\left(\operatorname{im} T_{L}\right)^{*}$ by the First Isomorphism Theorem. Now define $\gamma=G \circ F$. Consequently γ is an isomorphism with

$$
\gamma(a)\left(T_{L}(\kappa)\right)=G(F(a))\left(T_{L}(\kappa)\right)=F(a)\left(\kappa+\operatorname{ker} T_{L}(\kappa)\right)=a(\kappa) .
$$

b. Let $\kappa \in K \Gamma$. Then by (a) $(\nu(a))\left(T(\kappa) t_{\chi}\right)=\psi^{*}(\gamma(a))\left(T(\kappa) t_{\chi}\right)=\gamma(a)\left(T_{L}(\kappa)\right)=a(\kappa)$ $\left(T(\kappa) t_{\chi} \in(\operatorname{im} T) t_{\chi}\right)$. Thus $a(\kappa)=(\nu(a))\left(T(\kappa) t_{\chi}\right)=\nu(a)\left(\left(T t_{\chi}\right)(\kappa)\right)=\left(\nu(a) \circ T t_{\chi}\right)(\kappa)$ by the last sentence of Remark (72). Consequently, $\nu(a) \circ\left(T t_{\chi}\right)=a$.
c. First, $A_{L} \subseteq\left\langle e_{i, j}^{*} \circ T t_{\chi}\right\rangle$ since, using (b), we have for each $a \in A_{L}$

$$
\begin{aligned}
a & =\nu(a) \circ T t_{\chi}=\left(\psi^{*} \circ \gamma\right)(a) \circ T t_{\chi}=\left(\left.\sum_{i, j} a_{i, j} e_{i, j}^{*}\right|_{(\mathrm{im} T) t_{\chi}}\right) \circ T t_{\chi} \\
& =\sum_{i, j} a_{i, j}\left(e_{i, j}^{*} \circ T t_{\chi}\right) \in\left\langle e_{i, j}^{*} \circ T t_{\chi}\right\rangle .
\end{aligned}
$$

where we have used that $\left((\operatorname{im} T) t_{\chi}\right)^{*}$ is spanned by the restrictions of the $e_{i, j}^{*}$ to $(\operatorname{im} T) t_{\chi}$ to express $\left(\psi^{*} \circ \gamma\right)(a)$ as indicated. For the converse, let $\kappa \in \operatorname{ker} T_{L}$. Consequently, $T(\kappa) t_{\chi}=\psi^{-1}\left(\left.T(\kappa)\right|_{L}\right)=\psi^{-1}(0)=0$ by Lemma (71). Then since

$$
\left(e_{i, j}^{*} \circ T t_{\chi}\right)(\kappa)=e_{i, j}^{*}\left(T t_{\chi}(\kappa)\right)=e_{i, j}^{*}\left(T(\kappa) t_{\chi}\right)=e_{i, j}^{*}(0)=0,
$$

we may conclude that $e_{i, j}^{*} \circ T t_{\chi} \in\left((\operatorname{im} T) t_{\chi}\right)^{\circ}=A_{L}$. Thus $\left\langle e_{i, j}^{*} \circ T t_{\chi}\right\rangle \subseteq A_{L}$.

74 LEMMA. There exists a well-defined K-endomorphism t_{χ} of A_{r} with the property $t_{\chi} c_{i, j}=\sum_{\sigma \in G} \chi(\sigma) c_{i, \sigma j}(i, j \in I)$.

Proof. Since A_{r} is spanned by the $c_{i, j}$, it is enough to check that the assignment is welldefined. Suppose $c_{i, j}=c_{k, \ell}$. Then $k=i \pi$ and $\ell=j \pi$ for some $\pi \in G$ (see Notation (55b)). Then $c_{k, \sigma \ell}=c_{i \pi, \sigma(j \pi)}=c_{\pi^{-1} i_{i, \sigma \pi^{-1}}^{j}}=c_{i, \pi \sigma \pi^{-1} j}$. So

$$
t_{\chi} c_{k, \ell}=\sum_{\sigma \in G} \chi(\sigma) c_{k, \sigma \ell}=\sum_{\sigma \in G} \chi(\sigma) c_{i, \pi \sigma \pi^{-1}{ }_{j}}=\sum_{\rho \in G} \chi\left(\pi^{-1} \rho \pi\right) c_{i, \rho j}=\sum_{\rho \in G} \chi(\rho) c_{i, \rho j}=t_{\chi} c_{i, j},
$$

where we have used the fact that characters are constant on conjugacy classes.

75 NOTATION. If E is replaced by L, the same construction (see Remark (56) and Definition (62)) which yielded S_{r} results in a K-algebra, which we denote by $S_{s, L}$. Put $A_{s, L}:=\operatorname{cf}\left(L^{\otimes s}\right)$.

Theorem (76), Theorem (78), and Theorem (80) below are the main results. Theorem (76) generalizes Proposition (54), Theorem (78) generalizes Theorem (58c), and Theorem (80) generalizes Theorem (63b).

76 THEOREM. $\operatorname{cf}\left(t_{\chi} E^{\otimes r}\right)=t_{\chi} \operatorname{cf}\left(E^{\otimes r}\right)$.

Proof. Note

$$
\left(e_{i, j}^{*} \circ T t_{\chi}\right)(\kappa)=e_{i, j}^{*}\left(\left(T t_{\chi}\right)(\kappa)\right)=e_{i, j}^{*}\left(\left(T(\kappa) t_{\chi}\right)=\left(t_{\chi} e_{i, j}^{*}\right)(T(\kappa))=\left(\left(t_{\chi} e_{i, j}^{*}\right) \circ T\right)(\kappa) .\right.
$$

Thus $e_{i, j}^{*} \circ T t_{\chi}=t_{\chi} e_{i, j}^{*} \circ T$. Now $t_{\chi} e_{i, j}^{*}=\sum_{\sigma \in G} \chi(\sigma) \sigma e_{i, j}^{*}=\sum_{\sigma \in G} \chi(\sigma) e_{i, \sigma j}^{*}$. Then by Lemma (58c), Lemma (73c), Lemma (74), and since $c_{i, j}=e_{i, j}^{*} \circ T$, we have

$$
\begin{aligned}
\operatorname{cf}\left(t_{\chi} E^{\otimes r}\right) & =A_{L}=\left\langle e_{i, j}^{*} \circ T t_{\chi}\right\rangle=\left\langle\left(t_{\chi} e_{i, j}^{*}\right) \circ T\right\rangle=\left\langle\left(\sum_{\sigma \in G} \chi(\sigma) e_{i, \sigma j}^{*}\right) \circ T\right\rangle \\
& =\left\langle\sum_{\sigma \in G} \chi(\sigma)\left(e_{i, \sigma j}^{*} \circ T\right)\right\rangle=\left\langle\sum_{\sigma \in G} \chi(\sigma) c_{i, \sigma j}\right\rangle=\left\langle t_{\chi} c_{i, j}\right\rangle \\
& =t_{\chi}\left\langle c_{i, j}\right\rangle=t_{\chi} A_{r}=t_{\chi} \operatorname{cf}\left(E^{\otimes r}\right) .
\end{aligned}
$$

77 NOTATION. Let $r_{1}, \cdots, r_{u} \in \mathbb{Z}^{+}$. For each i, let χ_{i} be a character of $\sum_{r_{i}}$ and put $L_{\chi_{i}}=t_{\chi_{i}} E^{\otimes r_{i}}$. We write $\prod_{i} t_{\chi_{i}} A_{r_{i}}$ to mean the set of all products $\prod_{i} c_{i}$ with $c_{i} \in t_{\chi_{i}} A_{r_{i}}$. 78 THEOREM. $\operatorname{cf}\left(\bigotimes_{i} L_{\chi_{i}}\right)=\prod_{i} t_{\chi_{i}} A_{r_{i}}$.

Proof. The matrix representation of a tensor product of modules is the Kronecker product of the matrix representations of the factors (see the proof of Theorem (26)). By Theorem (76), cf $\left(\bigotimes_{i} L_{\chi_{i}}\right)=\prod_{i} \operatorname{cf}\left(L_{\chi_{i}}\right)=\prod_{i} \operatorname{cf}\left(t_{\chi_{i}} E^{\otimes r_{i}}\right)=\prod_{i} t_{\chi_{i}} \operatorname{cf}\left(E^{\otimes r_{i}}\right)=\prod_{i} t_{\chi_{i}} A_{r_{i}}$.

79 COROLLARY. $\operatorname{cf}\left(L^{\otimes s}\right)=\left(t_{\chi} A_{r}\right)^{s}$ for any $s \in \mathbb{Z}^{+}$.

Proof. Immediate from Theorem (78).

80 THEOREM. $S_{s, L} \cong A_{s, L}^{*}$.
Proof. Let $T_{L}: K \Gamma \rightarrow \operatorname{End}\left(L^{\otimes s}\right)$ be the representation afforded by $L^{\otimes s}$ (extended to $K \Gamma)$. Then $K \Gamma / \operatorname{ker} T_{L} \cong \operatorname{im} T_{L}=S_{s, L}$ by the First Isomorphism Theorem. Therefore $A_{s, L}=\operatorname{cf}\left(L^{\otimes s}\right)=\left(\operatorname{ker} T_{L}\right)^{0} \cong\left(K \Gamma / \operatorname{ker} T_{L}\right)^{*}=S_{s, L}^{*}$ by Lemma (60b) and Lemma (31b).

Bibliography

[1] David S. Dummit and Richard M. Foote. Abstract Algebra. 2nd ed. John Wiley, Hoboken, NJ, 1999.
[2] Paul Halmos. Linear Algebra Problem Book. Mathematical Association of America, Washington, DC, 1996.
[3] Kenneth Hoffman and Ray Kunze. Linear Algebra. 2nd ed., Prentice Hall, Englewood Cliffs, NJ, 1971.
[4] Randall R. Holmes. Linear Representations of Finite Groups. Lecture notes, Auburn University, 2000.
[5] Thomas W. Hungerford. Algebra. Springer-Verlag, New York, NY 1974.
[6] Nathan Jacobson. Basic Algebra I. 2nd ed. W H Freeman, New York, NY, 1985.
[7] Nathan Jacobson. Basic Algebra II. 2nd ed. W H Freeman, New York, NY, 1989.
[8] Jin Ho Kwak and Sungpyo Hong. Linear Algebra. Birkhäuser, Boston, MA 1997.
[9] Eiichi Abe. Hopf Algebras. Cambridge University Press, Cambridge, UK, 1980.
[10] Sorin Dascalesau, Constantin Nastesescu, Serban Raianu, and C. Nastasescu. Hopf Algebras: An Introduction. Marcel Dekker, New York, NY, 2000.
[11] D.G. Northcott. Multilinear Algebra. Cambridge University Press, Cambridge, UK, 1984.
[12] James A. Green. Polynomial Representations of $G L_{n}$. Springer-Verlag, New York, NY, 1980.
[13] Stuart Martin. Schur Algebras and Representation Theory. Cambridge University Press, Cambridge, UK, 1993.
[14] David M. Burton. Elementary Number Theory. 5th ed., McGraw-Hill, New York, NY, 2002.

Index

algebra, 2
condition, 2
definition
diagram version, 16
homomorphism version, 2
dual, 21
examples, 3
group ring, 3-4
homomorphism, 2
extension property, 4
polynomial functions, 28, 33
Schur, 35
dimension, 36
example, 35
tensor product, 17
algebraic independence, 28
annihilator, 13
properties, 14
bialgebra, 26
equivalent definitions, 25
examples, 26
group ring, 26
polynomial functions, 33
bilinear map, 6
canonical, 6
examples, 6
canonical injection, 7
isomorphism, 7
canonical projection, 7
isomorphism, 7
character, 10
irreducible, 10
product, 11
coalgebra, 19
dual, 20
group ring, 19
homomorphism, 25
polynomial functions, 34
tensor product, 23
coefficient space, 29
examples, 29-30
comultiplication map, 19
coordinate functions, 28
basis, 28
finite subsets, 29
counit map, 19
dual map, 13
non-singular pairing, 14
dual module, 11
coalgebra, 20
finite-dimensional algebra, 21
tensor product, 12
G-set, 38
right, 38
group
action, 37-38
examples, 38
right, 38
general linear, 3
invertible K-linear maps, 8
ring, 3
K-space, 3
algebra, 3
bialgebra, 26
coalgebra, 19
dual, 12
homomorphism
algebra, 2
extension property, 4
coalgebra, 25
example, 25
module, 1
image, 2
kernel, 2
K-linear map, 1
dual, 13
matrix, 8
non-singular, 13
trace, 10
Kronecker product, 9
example, 35
matrix representation, 10
trace, 9
K-space, 1
subspace, 1
linear functional, 11
examples, 11-12
module
examples, 2
First Isomorphism Theorem, 2
left, 1
natural or standard, 27
quotient, 2
right, 1
simple, 10
unitary, 1
multilinear map, 6
canonical, 6
multiplication map, 17
non-singular K-linear map, 13
bilinear pairing, 14
Pascal's Rule, 32
polynomial functions, 28
algebra, 28, 33
bialgebra, 33
coalgebra, 34
homogeneous, 31
basis, 32
coefficient space, 32
dimension, 32
dual, 36
K-subspace, 31
subcoalgebra, 33
representation, 8
matrix, 8
module correspondence, 8-9
Schur algebra, 35
dimension, 36
example, 35
structure maps
algebra, 17
coalgebra, 19
subalgebra, 2
polynomial functions, 33
subcoalgebra, 19
polynomial functions
homogeneous, 33
submodule, 1
Sweedler notation, 22
tensor product
algebras, 17
antisymmetric, 27
associative, 8
character, 11
coalgebras, 23
dimension, 5
dual, 12
elements, 5
$K G$-module, 10
K-linear maps, 6
K-space, 5
symmetric, 27
universal property, 6
zero element, 5
trace, 9
linear functional, 11
properties, 9
twist map, 7
isomorphism, 7
unit map, 17
universal property
tensor product, 6

