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Let K be an infinite field and Γ = GLn(K). If we linearly extend the natural action of Γ

on the set E of n-dimensional column vectors over K to the group algebra KΓ, then E

becomes a KΓ-module. We then construct the KΓ-module E⊗r, the r-fold tensor product of

E. The image Sr(Γ) of the corresponding representation of KΓ is called the Schur algebra.

If E is replaced by a different KΓ-module L, the same construction results in an algebra

Sr, L. The subalgebra A(n) of KΓ generated by the coordinate functions cαβ : Γ → K with

1 ≤ α, β ≤ n is a bialgebra. A(n) has a subcoalgebra Ar which consists of homogeneous

polynomials of total degree r in the indeterminants cαβ. Classically, the dual A∗r of Ar is an

algebra isomorphic to Sr(Γ) and Ar is the coefficient space of E⊗r. We identify Sr, L with

the dual A∗r, L of the coefficient space Ar, L of L⊗r and give a description of Ar, L.
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Chapter 1

Preliminaries

Definitions and statements of standard results in the theory of modules, algebras, group

rings, tensor products, representations, characters, and linear functionals have been drawn

from [1-8, 10].

1.1 Modules, Algebras, and Group Rings

1 DEFINITION. Let R be a ring. A left R-module is an additive abelian group M

together with a function R ×M → M ((r, m) 7→ rm) which satisfies the module axioms

(i) r(m + n) = rm + rn, (ii) (r + s)m = rm + sm, and (iii) r(sm) = (rs)m for all r, s ∈ R

and m, n ∈ M . A right R-module has a similar definition with r on the right. Let M be a

(left) R-module. M is called unitary if R has an identity 1R and 1R ·m = m for all m ∈ M .

N is called an R-submodule of M if N is a subgroup of M and rn ∈ N for all r ∈ R and

n ∈ N . If N is an R-module, a function f : M → N such that f(m + n) = f(m) + f(n)

and f(rm) = rf(m) for all m, n ∈ M and r ∈ R is called an R-module homomorphism.

The set of all R-modules homomorphisms from M to N is denoted HomR(M, N). Let K

be a field. A unitary K-module V , a K-submodule of V , and a K-module homomorphism

are called a K-space, a K-subspace, and a K-linear map, respectively.

“Module” means “left module” unless otherwise noted. K always represents a field. Since

K is commutative, a K-space V can be viewed as a right K-space by defining kv = vk

for all k ∈ K and v ∈ V . An injective, surjective, or bijective homomorphism is called a

monomorphism, epimorphism, or isomorphism, respectively.
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2 EXAMPLES. Let R be a ring and f : M → N an R-module homomorphism. Then

ker f = f−1({0}) is an R-submodule of M , im f is an R-submodule of N , and the quotient

group M/N = {m + N | m ∈ M} is an R-module called a quotient module.

3 THEOREM (First Isomorphism Theorem). If f : M → N is an R-module homomor-

phism then M/ ker f ∼= im f .

Proof. See [5, p. 172].

4 DEFINITION. A K-algebra is a ring A with identity such that A is a K-space (with

addition via the ring structure) satisfying the algebra condition k(ab) = (ka)b = a(kb) for all

k ∈ K and a, b ∈ A. A K-subalgebra of a K-algebra is a subring that is also a K-subspace.

If A and B are K-algebras, then a K-algebra homomorphism is a ring homomorphism

ϕ : A → B mapping 1A to 1B such that ϕ(ka) = kϕ(a) for all k ∈ K and a ∈ A.

5 LEMMA. Let A be a ring with identity. Then A is a K-algebra if and only if there is

a ring homomorphism f : K → A such that f(K) ⊆ cent (A) and f(1K) = 1A.

Proof. (=⇒) Define f : K → A by f(k) = k1A. We have that f is a ring homomorphism

since f(jk) = (jk)1A = j(k1A) = j(k(1A1A)) = j(1A(k1A)) = (j1A)(k1A) = f(j)f(k) and

f(j + k) = (j + k)1A = j1A + k1A = f(j) + f(k) (j, k ∈ K) by the algebra condition

and module axiom (ii). Also f(k)a = (k1A)a = k(1Aa) = ka = k(a1A) = a(k1A) = af(k)

(k ∈ K, a ∈ A) implies f(K) ⊆ cent (A), and f(1K) = 1K1A = 1A since A is unitary.

(⇐=) Define k · a = f(k)a (k ∈ K, a ∈ A) where f(k)a is the multiplication in the ring A.

Note f(k)a = af(k) since f(K) ⊆ cent (A). Let j, k ∈ K and a, b ∈ A. Since A satisfies

ring distributive and associative laws, and f is a ring homomorphism,

(i) k · (a + b) = f(k)(a + b) = f(k)a + f(k)b = k · a + k · b,

(ii) (j + k) · a = f(j + k)a = (f(j) + f(k))a = f(j)a + f(k)a = j · a + k · a,

(iii) j · (k · a) = f(j)(f(k)a) = (f(j)f(k))a = f(jk)a = (jk) · a,
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(iv) 1K · a = f(1K)a = 1Aa = a, (v) k · (ab) = f(k)(ab) = (f(k)a)b = (k · a)b, and

(vi) (k · a)b = (f(k)a)b = (af(k))b = a(f(k)b) = a(k · b).

Thus A is a K-space by (i) - (iv), and satisfies the algebra condition by (v) and (vi).

6 NOTATION. Let Γ = Γn (n ∈ Z+) denote the general linear group GLn(K) and put

KΓ := {f | f : Γ → K}.

7 EXAMPLES. The following are K-algebras: (a) K, (b) the set MatnK of all n × n

matrices over K, (c) the set EndK(V ) of all K-linear maps from a K-space V to itself, and

(d) KΓ with pointwise addition and multiplication, and identity 1KΓ(g) = 1K for all g ∈ Γ.

8 DEFINITION. Let G be a group and R a commutative ring with identity 1R 6= 0R.

The group ring RG of G over R is the set of all (formal) sums
∑

g∈G
rgg where only finitely

many rg ∈ R satisfy rg 6= 0R. The equation
∑

g∈G
rgg +

∑
g∈G

sgg =
∑

g∈G
(rg + sg)g defines

addition while
(∑

g∈G
rgg

)(∑
h∈G

shh
)

=
∑

g, h∈G
(rgsh)(gh) =

∑
g∈G

(∑
h∈G

rgh−1sh

)
g defines

multiplication where rgsh is the product in R and gh is the product in G.

RG is a ring. By the definition of multiplication, RG is commutative if and only if G is

abelian. We may consider G as a subset of RG by identifying g ∈ G with 1Rg. Similarly,

R ⊆ RG by identifying r ∈ R with r1G. Thus, by restriction, any KG-module may be

viewed as a K-space. Further, KG is a K-space with scalar multiplication given by the

ring multiplication (viewing K ⊆ KG).

9 LEMMA. Let H be a group. Then KH is a K-algebra.

Proof. KH is a ring by the preceding remark. It has identity 1K1H . Define f : K → KH

by f(k) = k1H (k ∈ K). So f(j + k) = (j + k)1H = j1H + k1H = f(j) + f(k) (j, k ∈ K)

and, by the definition of multiplication in KH,

f(jk) = (jk)1H = (jk)(1H1H) = (j1H)(k1H) = f(j)f(k).

3



Consequently f is a ring homomorphism. For k ∈ K and s ∈ KH, we have

f(k)s = (k1H)s = ks = sk = s(k1H) = sf(k),

so f(K) ⊆ cent (KH). Also f(1K) = 1K1H . Lemma (5) implies KH is a K-algebra.

10 THEOREM. Let H be a group, A a K-algebra, and A× the multiplicative group of

invertible elements of A. Then every group homomorphism ϕ : H → A× has a unique

extension to a K-algebra homomorphism ϕ : KH → A.

Proof. Suppose ϕ : H → A× is a group homomorphism. We define ϕ : KH → A by

ϕ
(∑

h∈H
ahh

)
=

∑
h∈H

ahϕ(h). Then

ϕ

(∑
h∈H

ahh +
∑
h∈H

bhh

)
= ϕ

(∑
h∈H

(ahh + bhh)
)

=
∑
h∈H

(ah + bh)ϕ(h)

=
∑
h∈H

ahϕ(h) +
∑
h∈H

bhϕ(h) = ϕ

(∑
h∈H

ahh

)
+ ϕ

(∑
h∈H

bhh

)

and

ϕ

([∑
h∈H

ahh

][∑
h∈H

bhh

])
= ϕ

(∑
g∈H

[∑
h∈H

agh−1bh

]
g

)
=

∑
g∈H

(∑
h∈H

agh−1bh

)
ϕ(g)

=
∑
h∈H

(∑
g∈H

agh−1bh

)
ϕ(g) =

∑
h∈H

(∑
g∈H

agbh

)
ϕ(gh)

=
(∑

h∈H

ahϕ(h)
)(∑

h∈H

bhϕ(h)
)

= ϕ

(∑
h∈H

ahh

)
ϕ

(∑
h∈H

bhh

)

show ϕ is a ring homomorphism. Also ϕ(1K1H) = 1Kϕ(1H) = 1K1A = 1A. Now let k ∈ K

and
∑

h∈H
ahh ∈ KH. Then

ϕ

(
k

∑
h∈H

ahh

)
= ϕ

(∑
h∈H

(kah)h
)

=
∑
h∈H

(kah)ϕ(h) = k
∑
h∈H

ahϕ(h) = kϕ

(∑
h∈H

ahh

)
.

Consequently, ϕ is a K-algebra homomorphism. Finally, we establish uniqueness. Suppose

that ψ : KH → A is a K-algebra homomorphism such that ψ|H = ϕ. Then ψ = ϕ since

ψ

(∑
h∈H

ahh

)
=

∑
h∈H

ahψ(h) =
∑
h∈H

ahϕ(h) = ϕ

(∑
h∈H

ahh

)
.

4



1.2 Tensor Products

In this section, K-spaces are assumed to be finite-dimensional.

11 DEFINITION. Let {v1, v2, · · · , vn} and {w1, w2, · · · , wm} be bases for K-spaces V

and W , respectively. Then the tensor product of V and W , denoted V ⊗W , is the K-space

with basis {vi ⊗ wj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. For arbitrary v ∈ V and w ∈ W , we may

write v =
∑

i
αivi and w =

∑
j
βjwj. We define v ⊗ w :=

∑
i, j

αiβjvi ⊗ wj ∈ V ⊗W .

12 REMARKS. Let V and W be K-spaces. (a) dim (V ⊗W ) = (dimV )(dimW ) follows

from the definition. (b) Let v ∈ V . Then v⊗ 0 = v⊗ (0 + 0) = v⊗ 0 + v⊗ 0. Since 0 is the

only element of a group that satisfies x + x = x, we have v ⊗ 0 = 0. Similarly, 0 ⊗ v = 0.

(c) The tensor product of V1 ⊗ · · · ⊗ Vn of n K-spaces V1, . . . , Vn is defined similarly. We

have v1 ⊗ · · · ⊗ vn = 0 if any vi = 0.

13 LEMMA. Let V and W be K-spaces. Suppose u ∈ V ⊗W . Then there is a positive

integer n, a linearly independent subset {v1, . . . , vn} of V and a subset {w1, . . . , wn} of W

such that u =
∑

n

i=1
vi ⊗ wi.

Proof. Let {vα}α∈I be a basis of V . Write u =
∑

n

i=1
xi ⊗ yi (xi ∈ V, yi ∈ W ). Thus

xi = ki1vα1
+ · · ·+ kinvαn (kij ∈ K, vαj

∈ V , 1 ≤ i, j ≤ n). Then

u =
n∑

i=1

(ki1vα1
+ · · ·+ kinvαn)⊗ yi =

n∑
i=1

[(ki1vα1
⊗ yi) + · · ·+ (kinvαn ⊗ yi)]

=
n∑

i=1

[(vα1
⊗ ki1yi) + · · ·+ (vαn ⊗ kinyi)]

= (vα1
⊗ k11y1 + · · ·+ vαn ⊗ k1ny1) + · · ·+ (vα1

⊗ kn1yn + · · ·+ vαn ⊗ knnyn)

= [vα1
⊗ (k11y1 + · · ·+ kn1yn)] + · · ·+ [vαn ⊗ (k1ny1 + · · ·+ knnyn)]

=
n∑

i=1

vαi
⊗ (k1iy1 + · · ·+ kniyn).

The result follows since each k1iy1 + · · ·+ kniyn ∈ W .
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14 DEFINITION. If R is a commutative ring with 1R, M1, . . . , Mn, and L are R-modules,

and, for all r, r′ ∈ R and m1, . . . , mn, m′
i ∈ M , f : M1 × · · · ×Mn → L satisfies

f(m1, . . . , mi−1, rmi + r′m′
i, mi+1, . . . , mn) = rf(m1, . . . , mn)+ r′f(m1, . . . , m′

i, . . . , mn)

then f is called n-multilinear (or bilinear when n = 2).

15 EXAMPLES. (a) Let V and W be K-spaces. Define β : V × W → V ⊗ W by

β(v, w) = v⊗w (v ∈ V, w ∈ W . Then for all v, v1, v2 ∈ V , w, w1, w2 ∈ W , and k1, k2 ∈ K,

we have

β(k1v1 + k2v2, w) = (k1v1 + k2v2)⊗ w = k1v1 ⊗ w + k2v2 ⊗ w

= k1(v1 ⊗ w) + k2(v2 ⊗ w) = k1β(v1, w) + k2β(v2, w)

and, similarly, β(v, k1w1 + k2w2) = k1β(v, w1) + k2β(v, w2). Thus β is bilinear. β is called

the canonical bilinear map. (b) We generalize (a). Let V1, . . . , Vn be K-spaces. Define

β : V1 × · · · × Vn → V1 ⊗ · · · ⊗ Vn by β(v1, . . . , vn) = v1 ⊗ · · · ⊗ vn (vi ∈ Vi, 1 ≤ i ≤ n).

Similar to (a), β is bilinear. β is called the canonical n-multilinear map. (c) Similar to (a),

t : V × W → W ⊗ V , p1 : V × K → V and p2 : K × V → V given by t(v, w) = w ⊗ v,

p1(v, k) = vk and p2(k, v) = kv (v ∈ V , w ∈ W , k ∈ K) are bilinear.

16 THEOREM. Suppose U , V , and W are K-spaces and let

f : U × V → W be bilinear. Then there exists a unique K-linear

map f̄ : U ⊗V → W such that f̄ ◦ β = f , where β is the canonical

bilinear map.

U × V

β
²²

f // W

U ⊗ V
f̄

;;w
w

w
w

w

Figure 1: Tensor Product

Universal Property

Proof. See [5, p. 211].

17 LEMMA. Let M , N , P , and Q be K-spaces and let f : M → P and g : N → Q be

K-linear maps. Then there exists a unique K-linear map f ⊗ g : M ⊗ N → P ⊗ Q such

that (f ⊗ g)(m⊗ n) = f(m)⊗ g(n) for all m ∈ M and n ∈ N .
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Proof. Define h : M × N → P ⊗ Q by h(m, n) = f(m) ⊗ g(n). Then h is bilinear. By

Theorem (16) there exists a unique K-linear map f ⊗ g : M ⊗ N → P ⊗ Q such that

(f ⊗ g) ◦ β = h where β is the canonical bilinear map. Then for all m ∈ M and n ∈ N ,

(f ⊗ g)(m⊗ n) = (f ⊗ g)(β(m, n)) = [(f ⊗ g) ◦ β](m, n) = h(m, n) = f(m)⊗ g(n).

18 DEFINITION. Let V and W be K-spaces with bases V and W, respectively. By

Theorem (16), the map t of Example (15c) induces the K-linear map τ : V ⊗W → W ⊗ V

given by τ(v ⊗ w) = w ⊗ v for all v ∈ V and w ∈ W. τ is called the twist map. Similarly,

for all v ∈ V and k ∈ K, the maps p1 and p2 of Example (15c) induce the K-linear maps

π1 : V ⊗ K → V and π2 : K ⊗ V → V given by π1(v ⊗ k) = vk and π2(k ⊗ v) = kv. π1

and π2 are called the canonical projections. ρ1 : V → V ⊗K and ρ2 : V → K ⊗ V given by

ρ1(v) = v ⊗ 1K and ρ2(v) = 1K ⊗ v are called the canonical injections.

19 LEMMA. Let V and W be K-spaces, τ : V ⊗W → W ⊗ V and τ ′ : W ⊗ V → V ⊗W

twist maps, π1 and π2 the canonical projections, and ρ1 and ρ2 the canonical injections. (a)

τ ′◦τ = 1V⊗W , τ ◦τ ′ = 1W⊗V , π1◦ρ1 = 1V , ρ1◦π1 = 1V⊗K, π2◦ρ2 = 1V , and ρ2◦π2 = 1K⊗V . (b)

τ , π1, π2, ρ1, and ρ2 are K-space isomorphisms. (c) Let v1, v2, v3 ∈ V and w1, w2, w3 ∈ W .

Define ϕ : V ⊗W ⊗ V ⊗W ⊗ V ⊗W → V ⊗ V ⊗ V ⊗W ⊗W ⊗W by

ϕ(v1 ⊗ w1 ⊗ v2 ⊗ w2 ⊗ v3 ⊗ w3) = v1 ⊗ v2 ⊗ v3 ⊗ w1 ⊗ w2 ⊗ w3.

Then ϕ is a K-space isomorphism.

Proof. a. (τ ′ ◦ τ)(v ⊗ w) = τ ′(w ⊗ v) = v ⊗ w for all v ∈ V , w ∈ W . So τ ′ ◦ τ = 1V⊗W .

Similarly, τ ◦ τ ′ = 1W⊗V . (π1 ◦ ρ1)(v) = π1(v ⊗ 1K) = v1K = v = 1V (v) for all v ∈ V .

Thus π1 ◦ ρ1 = 1V . Similarly π2 ◦ ρ2 = 1V . For all v ∈ V and k ∈ K, we have

(ρ1 ◦ π1)(v ⊗ k) = ρ1(vk) = vk ⊗ 1K = v ⊗ k1K = v ⊗ k = 1V⊗K(v ⊗ k).

Thus ρ1 ◦ π1 = 1V⊗K. Similarly ρ2 ◦ π2 = 1K⊗V .

7



b. The indicated maps are all K-linear by the preceding remarks. They are K-space

isomorphisms by (a).

c. Similar to the proof that τ is a K-space isomorphism.

Let U , V , and W be K-spaces. The technique proving τ is a K-space isomorphism may

be applied to show that the natural identification of (U ⊗ V )⊗W with U ⊗ (V ⊗W ) is a

K-space isomorphism. Thus the tensor product is associative.

1.3 Representations and Characters

In this section, K-spaces are assumed to be finite-dimensional. Also, KG-modules are

assumed to be finite-dimensional as K-spaces.

20 DEFINITION. Suppose V and W are K-spaces. Denote by GL(V ) the group of

invertible K-linear maps from V to itself. If G is a finite group and ρ : G → GL(V ) is a

group homomorphism, then ρ is called a representation of G. Let B = {v1, · · · , vn} and

C = {w1, · · · , wm} be ordered bases of V and W , respectively, and f : V → W a K-linear

map. For 1 ≤ j ≤ n, we may write f(vj) =
∑

m

i=1
αijwi for unique αij ∈ K. The m × n

matrix [αij] is called the matrix of f relative to the bases B and C. Let ρ : G → GL(V ) be a

representation and [αij(g)] the matrix of ρ(g) (relative to B) for each g ∈ G. Then T : G → Γ

given by T (g) = [αij(g)] is a group homomorphism called the matrix representation of G

afforded by V relative to B.

Suppose V is a K-space. We establish a correspondence between representations of G and

KG-modules. Let ρ : G → GL(V ) be a representation. Then V becomes a KG-module

when we define gv = ρ(g)(v) for g ∈ G and v ∈ V and extend linearly to all of KG via

(
∑

g∈G
kgg)v =

∑
g∈G

kg(gv) =
∑

g∈G
kgρ(g)(v) (cf. Theorem (10)). Conversely, suppose V

8



is a KG-module. We then define ρ : G → GL(V ) by ρ(g)(v) = gv. For g ∈ G, ρ(g) is a

linear map by the module axioms. Further

(ρ(g)ρ(g−1))(v) = ρ(g)[ρ(g−1)(v)] = g(g−1v) = (gg−1)v = v = 1V (v) (v ∈ V ).

Hence ρ(g)ρ(g−1) = 1V and ρ(g) ∈ GL(V ). Consequently ρ is well-defined. Finally for

g, h ∈ G, v ∈ V , ρ(gh)(v) = (gh)v = g(hv) = ρ(g)(hv) = ρ(g)ρ(h)(v) since V is a KG-

module. Thus ρ is a group homomorphism. It follows that ρ is a representation of G by

definition. We call ρ the representation afforded by V .

21 DEFINITION. Let A = [aij] ∈ MatnK, and B ∈ MatpK. The trace of A is the scalar

trA = a11 + a22 + · · · + ann. The Kronecker product of A and B, denoted by A ⊗ B, is a

block matrix in MatnpK whose (i, j)-block is aijB.

22 THEOREM. (a) If A, B, C ∈ MatnK with C nonsingular, then tr (AB) = tr (BA)

and tr (C−1AC) = trA. (b) If A ∈ MatnK and B ∈ MatpK, then tr (A⊗B) = (trA)(trB).

Proof. a. Let A = [aij] and B = [bij]. Then

tr (AB) = tr
( n∑

k=1

aikbkj

)
=

n∑
i=1

n∑
k=1

aikbki =
n∑

k=1

n∑
i=1

bkiaik

= tr
( n∑

i=1

bkiail

)
= tr (BA).

So tr (C−1AC) = tr ([C−1A]C) = tr (C[C−1A]) = tr ([CC−1]A) = tr (IA) = trA.

b. Let A = [aij] and B = [bk`]. Consequently A ⊗ B =




a11B · · · a1nB

...
. . .

...

an1B · · · annB




and

tr (aiiB) = aii(b11 + · · ·+ bpp) for 1 ≤ i ≤ n imply

tr (A⊗B) = a11(b11 + · · ·+ bpp) + · · ·+ ann(b11 + · · ·+ bpp)

= (a11 + · · ·+ ann)(b11 + · · ·+ bpp) = (tr A)(trB).
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Let V be a K-space, f : V → V a K-linear map, and A the matrix of f relative to some

basis B of V . Define tr f = trA. If a different basis B′ is chosen, the matrix of f relative

to B′ is C−1AC, where C is the change-of-basis matrix that changes B′ coordinates to B

coordinates. So tr f is well-defined by Theorem (22a).

23 DEFINITION. Let G be a finite group, V a KG-module, and ρ the representation

afforded by V . Then χ : G → K given by χ(g) = tr ρ(g) (g ∈ G) is called the character

of G afforded by V (or by ρ). If V is simple (meaning V 6= 0 and 0 and V are the only

submodules of V ), then χ is an called an irreducible character.

24 REMARK. We may extend the definition of the tensor product. Let V and W

be KG-modules with respective K-bases {v1, · · · , vn} and {w1, · · · , wm}. Recall from

Definition (11) that the tensor product V ⊗ W of V and W is the K-space with basis

{vi⊗wj | 1 ≤ i ≤ n, 1 ≤ j ≤ m} and for arbitrary v =
∑

i
αivi ∈ V and w =

∑
j
βjwj ∈ W

we define v ⊗ w :=
∑

i, j
αiβjvi ⊗ wj ∈ V ⊗W . V ⊗W becomes a KG-module by defining

g(v ⊗ w) = gv ⊗ gw for all g ∈ G, v ∈ V , and w ∈ W , and then extending linearly to KG

via (
∑

g
kgg)(v ⊗ w) =

∑
g
kg(gv ⊗ gw).

25 LEMMA. Let U , V , X, and Y be (finite-dimensional) K-spaces and let f : U → X

and g : V → Y be K-linear maps. Then the Kronecker product of matrices representing f

and g is a matrix representing f ⊗ g.

Proof. Let B1 = {u1, · · · , um} and B2 = {v1, · · · , vn} be ordered bases of U and V , re-

spectively. Also, let C1 = {x1, · · · , xp} and C2 = {y1, · · · , yq} be ordered bases of X and

Y , respectively. Then B = {ui ⊗ vj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis of U ⊗ V and

C = {xi ⊗ yj | 1 ≤ i ≤ p, 1 ≤ j ≤ q} is a basis of X ⊗ Y by Remark (24). Now let

f(ui) =
∑

p

k=1
αkixk and g(vj) =

∑
q

`=1
β`jy` where each αki, β`j ∈ K. Then

(f ⊗ g)(ui ⊗ vj) = f(ui)⊗ g(vj) =
( p∑

k=1

αkixk

)
⊗

( q∑
`=1

β`jy`

)
=

p∑
k=1

q∑
`=1

αkiβ`j(xk ⊗ y`) (1)

10



Note that A = [αki] is the matrix of f and B = [β`j] is the matrix of g relative to the given

bases. We now order B into m ordered lists with the i th list being ui ⊗ v1, · · · , ui ⊗ vn and

similarly order C into p ordered lists with the k th list being xk ⊗ y1, · · · , xk ⊗ yq. So (1)

determines the column entries for the corresponding matrix C of f ⊗ g. Since C is a block

matrix whose (k, `)-block is αk`B, we have C = A⊗B.

26 THEOREM. Let V and W be KG-modules. Suppose V and W afford the characters

χ and ψ, respectively. Then V ⊗W affords the character χψ.

Proof. Let R be the matrix representation of G afforded by V relative to the basis A,

and let S be the matrix representation of G afforded by W relative to the basis B. Then

C = {v⊗w | v ∈ A, w ∈ B} is a basis for V ⊗W as in Remark (24). Then T = R⊗S defined

by T (g) = R(g)⊗S(g) is the matrix representation of G afforded by V ⊗W relative to the

basis C by Lemma (25). Let ω be the character afforded by V ⊗W . Then for each g ∈ G,

ω(g) = tr (T (g)) = tr (R(g)⊗ S(g)) = [tr (R(g))][tr (S(g))] = χ(g)ψ(g). Consequently,

V ⊗W affords the character χψ.

1.4 Linear Functionals

27 DEFINITION. If A is an R-module, then the set A∗ of all R-module homomorphisms

from A to R is called the dual module of A and the elements of A∗ are called linear

functionals.

28 EXAMPLES.

a. The trace is a linear functional on MatnK since

tr (cA + B) =
n∑

i=1

(cAii + Bii) = c

n∑
i=1

Aii +
n∑

i=1

Bii = c trA + trB.

b. The function η : K∗ → K given by η(ϕ) = ϕ(1K) (ϕ ∈ K∗) is a K-linear map.
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c. Recall Γ := GLn(K). Define ϕ : KΓ → (KΓ)∗ by ϕ(f)
(∑

g∈Γ
αgg

)
=

∑
g∈Γ

αgf(g).

Clearly, ϕ is K-linear. Suppose f ∈ kerϕ. Then f(g) = ϕ(f)(g) = 0 for each g ∈ Γ.

Consequently, f = 0. Hence kerϕ = 0 and ϕ is injective. Next let f ∈ (KΓ)∗. Then

define f = f |Γ. Thus ϕ is surjective since ϕ(f) = ϕ(f |Γ) = f . Therefore ϕ is a

K-isomorphism.

29 LEMMA. Let V be a (possibly infinite-dimensional) K-space. (a) If V is finite-

dimensional then V ∼= V ∗. (b) ρ : V ∗⊗V ∗ → (V ⊗V )∗ given by ρ(f ⊗g)(x⊗y) = f(x)g(y)

where f, g ∈ V ∗ and x, y ∈ V is a K-monomorphism. (c) If V is finite-dimensional then ρ is

bijective. (d) If f1, · · · , fn ∈ V ∗ and x1, · · · , xn ∈ V then θ : V ∗⊗· · ·⊗V ∗ → (V ⊗· · ·⊗V )∗

given by θ(f1 ⊗ · · · ⊗ fn)(x1 ⊗ · · · ⊗ xn) = f1(x1) · · · fn(xn) is a K-linear map, which is a

K-space isomorphism if V is finite-dimensional.

Proof. a. Let {v1, v2, · · · , vn} be a basis of V . For each i, define v∗i : V → K by

v∗i (vj) = δij (Kronecker delta). Then v∗i is a linear functional for 1 ≤ i ≤ n. Suppose
∑

n

i=1
αiv

∗
i = 0. In particular, αj =

∑
n

i=1
αiδij =

∑
n

i=1
αiv

∗
i (vj) = 0 for 1 ≤ j ≤ n.

Linear independence of {v∗1 , v∗2 , · · · , v∗n} now follows. Next let v∗ ∈ V ∗ be arbitrary.

Then for arbitrary v =
∑

n

i=1
αivi we have

v∗(v) = v∗
( n∑

i=1

αivi

)
=

n∑
i=1

αiv
∗(vi) =

n∑
i=1

v∗i (v)v∗(vi) =
( n∑

i=1

v∗(vi)v∗i

)
(v).

Thus {v∗1 , v∗2 , · · · , v∗n} spans V ∗ and is a basis for V ∗. Hence dimV = dim V ∗. Recall

that, for K-spaces V and W , V ∼= W if and only if dimV = dimW . So V ∼= V ∗.

b. Suppose f, f1, f2, g, g1, g2 ∈ V ∗, x, y ∈ V , and k, k1, k2 ∈ K are arbitrary. Define

r(f, g) : V × V → K by [r(f, g)](x, y) = f(x)g(y). Clearly, r(f, g) is bilinear. By

Theorem (16) we obtain an induced map V ⊗ V → K and hence an element of

(V ⊗V )∗, which we also denote by r(f, g). We have r(f, g)(x⊗ y) = f(x)g(y). Then
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r(k1f1 + k2f2, g)(x⊗ y) = (k1f1 + k2f2)(x)g(y) = (k1f1(x) + k2f2(x))g(y)

= k1f1(x)g(y) + k2f2(x)g(y) = (k1r(f1, g) + k2r(f2, g))(x⊗ y)

and similarly r(f, k1g1 + k2g2) = k1r(f, g1) + k2r(f, g2). So r is bilinear. So by

Theorem (16), r induces a K-linear map ρ : V ∗⊗ V ∗ → (V ⊗ V )∗ such that ρ ◦ β = r

where β is the canonical bilinear map. Thus ρ is given by

ρ(f ⊗ g)(x⊗ y) = [ρ(β)(f, g)](x⊗ y) = [(ρ ◦ β)(f, g)](x⊗ y) = [r(f, g)](x⊗ y)

= f(x)g(y).

Let h ∈ Ker ρ. Then by Lemma (13), we may write h =
∑

n

i=1
fi⊗gi where {f1, . . . , fn}

is a linearly independent subset of V ∗ and {g1, . . . , gn} ⊆ V ∗. Then for all u, v ∈ V ,

0 = ρ(h)(u, v) = ρ

( n∑
i=1

fi ⊗ gi

)
(u, v) =

n∑
i=1

fi(u)gi(v) =
( n∑

i=1

gi(v)fi

)
(u).

Thus
∑

n

i=1
gi(v)fi = 0 for all v ∈ V . Consequently, gi(v) = 0 (v ∈ V , 1 ≤ i ≤ n) since

{f1, . . . , fn} is a linearly independent subset of V ∗. So h =
∑

n

i=1
fi ⊗ gi = 0 and ρ is

injective.

c. Let {v1, . . . , vn} be a basis of V . Then {vij | 1 ≤ i, j ≤ n} is a basis for V ⊗V , where

vij := vi ⊗ vj. We have ρ(v∗i ⊗ v∗j )(vk`) = v∗i (vk)v∗j v` = δikδj` = δ(i, j), (k, `) = v∗ij(vk`). So

ρ(v∗i ⊗ v∗j ) = v∗ij and ρ is a K-isomorphism.

d. Apply induction to Lemma (17), (b), and (c).

30 DEFINITION. Let V and W be K-spaces and ϕ : V → W a K-linear map. If

ϕ(v) = 0 implies v = 0, then ϕ is called non-singular. The annihilator of S ⊆ V is the set

S0 of all linear functionals f on V such that f(α) = 0 for all α ∈ S. The dual of ϕ is the

map ϕ∗ : W ∗ → V ∗ defined by [ϕ∗(f)](v) = f(ϕ(v)) ∈ K.
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31 LEMMA. Let V be a K-space. (a) If W ⊆ V , then W 0 is a subspace of V ∗. (b) If

W ≤ V , then W ∗ ∼= V ∗/W 0 and W 0 ∼= (V/W )∗. (c) If V and W are subspaces of a K-space

and W ≤ V , then W 0 ≥ V 0.

Proof. a. Let w ∈ W . Then {w}0 = {f ∈ V ∗ | w ∈ ker f} by definition. So {w}0 is a

subspace of V ∗. Since W 0 =
⋂

w∈W

{w}0, it follows that W 0 is a subspace of V ∗.

b. First, define ϕ : V ∗ → W ∗ by ϕ(f) = f |W . Then ϕ is a K-space epimorphism

with kerϕ = W 0. So W ∗ ∼= V ∗/W 0 by the First Isomorphism Theorem. Now define

ψ : W 0 → (V/W )∗ by ψ(f)(v +W ) = f(v). Then ψ is both well-defined and injective

since, for f ∈ W 0,

u + W = v + W ⇔ u− v ∈ W ⇔ f(u)− f(v) = f(u− v) = 0 ⇔ f(u) = f(v)

⇔ ψ(f)(u + W ) = ψ(f)(v + W ).

Let f ∈ (V/W )∗ and v + W ∈ V/W . Recall π : V → V/W given by π(v) = v + W is

a K-space epimorphism. Put f = f ◦ π. Then f ∈ W 0 and

ψ(f)(v + W ) = f(v) = f(π(v)) = f(v + W ).

Thus f = ψ(f) and ψ is surjective. Finally, ψ is a K-space isomorphism since for all

u, v ∈ V and k ∈ K:

ψ(f)((u + W ) + (v + W )) = ψ(f)((u + v) + W ) = f(u + v) = f(u) + f(v)

= ψ(f)(u + W ) + ψ(f)(v + W ),

ψ(f)(k(v + W )) = ψ(f)(kv + W ) = f(kv) = kf(v) = kψ(f)(v + W ).

c. Let f ∈ V 0. Then f(w) = 0 for all w ∈ W . Hence f ∈ W 0.

32 LEMMA. If V and W are K-spaces and 〈 , 〉 : V ×W → K is non-singular and bilinear,

then V ∗ and W are isomorphic.

Proof. Define ϕ : W → V ∗ by [ϕ(w)](v) = 〈v, w〉. Note that ϕ is well-defined since

〈αv, w〉 = α〈v, w〉 and 〈v1 + v2, w〉 = 〈v1, w〉+ 〈v2, w〉 imply that ϕ(w) ∈ V ∗. Also, since
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[ϕ(w1 + w2)](v) = 〈v, w1 + w2〉 = 〈v, w1〉+ 〈v, w2〉 = [ϕ(w1)](v) + [ϕ(w2)](v) and similarly

for scalar multiplication, ϕ is a K-linear map. Let x ∈ kerϕ. Then 〈v, x〉 = 0 for all

v ∈ V . Hence x = 0 since 〈 , 〉 is non-singular. So kerϕ = 0. Thus ϕ is injective. Finally

suppose {v1, · · · , vn} ⊆ V is linearly independent and {w1, · · · , wm} is a basis of W . By

the injectivity of ϕ, n ≥ m. Assume n > m. Put cij = 〈vj, wi〉. Recall (linear algebra)

there exist a1, a2, · · · , an ∈ K not all of which are zero such that
∑

j
ajcij = 0 for all i

since n > m. So v :=
∑

j
ajvj 6= 0. We show 〈v, w〉 = 0 for all w ∈ W . Thus we must show

〈v, wi〉 = 0 for each i. Then 〈v, wi〉 =
〈∑

j
ajvj, wi

〉
=

∑
j
aj〈vj, wi〉 =

∑
j
ajcij = 0 for all

i since 〈 , 〉 is bilinear, contrary to 〈 , 〉 being non-singular. Therefore n = m.
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Chapter 2

Algebras and Coalgebras

Definitions and statements of standard results in the theory of algebras and coalgebras have

been drawn from [9-11].

2.1 Algebras and Commutative Diagrams

33 THEOREM. A is a K-algebra if and only if A is a K-space and there exist K-linear

maps µ : A⊗A → A and ι : K → A such that the diagrams (Figure 2) commute.

Associative Law Unitary Property

A⊗A⊗A

1A⊗µ

²²

µ⊗1A // A⊗A

µ

²²
A⊗A µ

// A

K ⊗A

π2
%%JJJJJJJJJJ

ι⊗1A // A⊗A

µ

²²

A⊗K
1A⊗ιoo

π1
yytttttttttt

A

Figure 2: Associative Law and Unitary Property

Proof. (=⇒) Define m : A × A → A by m(a, b) = ab for all a, b ∈ A. Then m is bilinear.

So by Theorem (16), m induces a K-linear map µ : A ⊗ A → A such that µ ◦ β = m

where β is the canonical bilinear map. Then µ(a ⊗ b) = (µ ◦ β)(a, b) = m(a, b) = ab

for all a, b ∈ A. Define ι : K → A by ι(k) = k1A. Then for all α, β, k ∈ K, we have

ι(α + β) = (α + β)1A = α1A + β1A = ι(α) + ι(β) and ι(kα) = (kα)1A = k(α1A) = kι(α).

Consequently ι is also a K-linear map. Let a, b, c ∈ A and k ∈ K. The algebra condition

k(ab) = (ka)b = a(kb) implies a(k1A) = k(a1A) = ka = k(1Aa) = (k1A)a. Then

(µ ◦ (µ⊗ 1A))(a⊗ b⊗ c) = µ(µ(a⊗ b)⊗ 1A(c)) = µ(ab⊗ c) = (ab)c = a(bc)

= µ(1A(a)⊗ µ(b⊗ c)) = (µ ◦ (1A ⊗ µ))(a⊗ b⊗ c),
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(µ ◦ (ι⊗ 1A))(k ⊗ a) = µ(ι(k)⊗ 1A(a)) = ι(k)1A(a) = (k1A)a = ka = π2(k ⊗ a),

and similarly (µ ◦ (1A ⊗ ι))(a⊗ k) = π1(a⊗ k). Thus the diagrams commute.

(⇐=) Let a, b, c, ∈ A and k ∈ K. Define a product in A by ab := µ(a ⊗ b). The product

is associative. Indeed, by the Associative Law diagram commutativity we have

a(bc) = µ(a⊗ bc) = µ(1A(a)⊗ µ(b⊗ c)) = (µ ◦ (1A ⊗ µ))(a⊗ b⊗ c)

= (µ ◦ (µ⊗ 1A))(a⊗ b⊗ c) = µ(µ(a⊗ b)⊗ 1A(c)) = µ(ab⊗ c) = (ab)c.

Next, (a + b)c = µ((a + b)⊗ c) = µ(a⊗ c + b⊗ c) = µ(a⊗ c) + µ(b⊗ c) = ac + bc. Similarly,

c(a + b) = ca + cb, so the product distributes over addition. Define 1A := ι(1K). The (left)

Unitary Property diagram yields

ka = π2(k ⊗ a) = (µ ◦ (ι⊗ 1A))(k ⊗ a) = µ(k1A ⊗ a) = (k1A)a (1)

Similarly, the (right) Unitary Property diagram yields ak = a(k1A). Thus

k(ab) = (k1A)(ab) = ((k1A)a)b = (ka)b = (ak)b = (a(k1A))b = a((k1A)b) = a(kb).

This establishes the algebra condition. Finally, by (1), 1Aa = (1K1A)a = 1Ka = a and

similarly a1A = a. So 1A is an identity. Therefore A is a K-algebra by definition.

Theorem (33) permits (A, µ, ι) to denote a K-algebra A and its structure maps µ and ι,

which are respectively called the multiplication map and unit map.

34 THEOREM. The tensor product of K-algebras is a K-algebra.

Proof. Suppose (A, µA, ιA) and (B, µB, ιB) are K-algebras, τ : A⊗ B → B ⊗ A the twist

map, and ρ1 : K → K ⊗K the canonical injection. Put µA⊗B = µA ⊗ µB ◦ (1A ⊗ τ ⊗ 1B)

and ιA⊗B = (ιA ⊗ ιB) ◦ ρ1. We verify the Associative Law and Unitary Property (Figure 3).
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A⊗B ⊗A⊗B ⊗A⊗B

1A⊗B⊗µA⊗B

²²

µA⊗B⊗1A⊗B

// A⊗B ⊗A⊗B

µA⊗B

²²
A⊗B ⊗A⊗B µA⊗B

// A⊗B

Associative Law

K ⊗A⊗B

π2 ((QQQQQQQQQQQQQ

ιA⊗B⊗1A⊗B

// A⊗B ⊗A⊗B

µA⊗B

²²

A⊗B ⊗K
1A⊗B⊗ιA⊗B

oo

π1vvmmmmmmmmmmmmm

A⊗B

Unitary Property

Figure 3: Tensor Product of K-algebras

Let A and B be bases for A and B, respectively. Then we have for all a1, a2, a3, a ∈ A,

b1, b2, b3, b ∈ B and k ∈ K that

(µA⊗B ◦ (µA⊗B ⊗ 1A⊗B))((a1 ⊗ b1)⊗ (a2 ⊗ b2)⊗ (a3 ⊗ b3))

= µA⊗B((µA ⊗ µB) ◦ (1A ⊗ τ ⊗ 1B)(a1 ⊗ (b1 ⊗ a2)⊗ b2)⊗ (a3 ⊗ b3))

= µA⊗B((µA ⊗ µB)(((a1 ⊗ a2)⊗ (b1 ⊗ b2))⊗ (a3 ⊗ b3)))

= µA⊗B((a1a2 ⊗ b1b2)⊗ (a3 ⊗ b3))

= ((µA ⊗ µB) ◦ (1A ⊗ τ ⊗ 1B))(a1a2 ⊗ (b1b2 ⊗ a3)⊗ b3)

= (µA ⊗ µB)(a1a2 ⊗ (a3 ⊗ b1b2)⊗ b3) = (a1a2)a3 ⊗ (b1b2)b3 = a1(a2a3)⊗ b1(b2b3),

similarly (µA⊗B ◦ (1A⊗B ⊗ µA⊗B))((a1 ⊗ b1)⊗ (a2 ⊗ b2)⊗ (a3 ⊗ b3)) = a1(a2a3)⊗ b1(b2b3),

(µA⊗B ◦ (ιA⊗B ⊗ 1A⊗B))(k ⊗ a⊗ b) = µA⊗B(ιA⊗B(k)⊗ 1A⊗B(a⊗ b))

= µA⊗B((ιA ⊗ ιB)(k ⊗ 1K)⊗ a⊗ b) = µA⊗B(ιA(k)⊗ ιB(1K)⊗ a⊗ b)

= (µA ⊗ µB ◦ (1A ⊗ τ ⊗ 1B))(ιA(k)⊗ (1B ⊗ a)⊗ b)

= (µA ⊗ µB)(ιA(k)⊗ a⊗ 1B ⊗ b) = µA(ιA(k)⊗ a)⊗ µB(1B ⊗ b)

= ιA(k)a⊗ 1Bb = ka⊗ b = π2(k ⊗ a⊗ b),

and similarly (µA⊗B ◦ (1A⊗B ⊗ ιA⊗B))(a ⊗ b ⊗ k) = π1(a ⊗ b ⊗ k). Extend linearly. Apply

Theorem (33).
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2.2 Coalgebras and Bialgebras

35 DEFINITION. If C is a K-space, ∆C : C → C ⊗ C and εC : C → K are K-linear

maps, and ρ1 and ρ2 the canonical injections, then (C, ∆C , εC) is called a K-coalgebra

whenever the diagrams (Figure 4) commute. ∆C and εC are respectively called the comul-

tiplication and counit maps and together are called the structure maps of C.

Coassociative Law Counitary Property

C ⊗ C ⊗ C C ⊗ C
∆C⊗1C
oo

C ⊗ C

1C⊗∆C

OO

C

∆C

OO

∆C

oo

K ⊗ C C ⊗ C
εC⊗1C
oo

1C⊗εC
// C ⊗K

C

ρ2

eeKKKKKKKKKK
∆C

OO

ρ1

99ssssssssss

Figure 4: Coassociative Law and Counitary Property

A K-subspace D of a K-coalgebra (C, ∆C, εC) that satisfies ∆C(D) ⊆ D ⊗ D is called a

K-subcoalgebra of C whose structure maps are the restrictions of ∆C and εC to D.

36 EXAMPLE. Let H be a group. A := KH ⊗KH is a K-algebra by Theorem (34).

Define ϕ : H → A× by ϕ(g) = g ⊗ g. Then ϕ(gh) = gh⊗ gh = (g ⊗ g)(h⊗ h) = ϕ(g)ϕ(h)

for all g, h ∈ H. Thus the group homomorphisms ϕ and ψ : H → K× given by ψ(g) = 1K

respectively extend uniquely to K-algebra homomorphisms ∆ : KH → A and ε : KH → K

by Theorem (10). Then (KH, ∆, ε) is a K-coalgebra since

((1KH ⊗∆) ◦∆)
(∑

g∈H

agg

)
= (1KH ⊗∆)

(∑
g∈H

agg ⊗ g

)
=

∑
g∈H

agg ⊗ (g ⊗ g)

=
∑
g∈H

ag(g ⊗ g)⊗ g =
∑
g∈H

ag∆(g)⊗ 1KH(g),

= ∆
(∑

g∈H

(∆⊗ 1KH)(agg)
)

= (∆ ◦ (∆⊗ 1KH))
(∑

g∈H

agg

)
,

((ε⊗ 1KH) ◦∆)
(∑

g∈H

agg

)
= (ε⊗ 1KH)

(∑
g∈H

agg ⊗ g

)
=

∑
g∈H

ag1K ⊗ g

= 1K ⊗
(∑

g∈H

agg

)
= ρ2

(∑
g∈H

agg

)
,

and similarly ((1KH ⊗ ε) ◦∆)(
∑

g∈H
agg) = ρ1(

∑
g∈H

agg).
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37 THEOREM. The dual of a K-coalgebra is a K-algebra.

Proof. Let (C, ∆, ε) be a K-coalgebra. By Definition (30), ∆∗ : (C ⊗ C)∗ → C∗ is given

by [∆∗(f)](c) = f(∆(c)) for c ∈ C. Define µ : C∗ ⊗ C∗ → C∗ and ι : K → C∗ by

µ(f ⊗ g)(c) = [∆∗ ◦ ρ](f ⊗ g)(c) and ι(k)(c) = kε(c) for f, g ∈ C∗, c ∈ C, and k ∈ K

where ρ : C∗⊗C∗ → (C ⊗C)∗ is the K-space isomorphism of Lemma (29c). We verify the

Associative Law and Unitary Property (Figure 5).

Associative Law Unitary Property

C∗ ⊗ C∗ ⊗ C∗

1C∗⊗µ

²²

µ⊗1C∗ // C∗ ⊗ C∗

µ

²²
C∗ ⊗ C∗ µ

// C∗

K ⊗ C∗
ι⊗1C∗ //

π2
&&MMMMMMMMMMM C∗ ⊗ C∗

µ

²²

C∗ ⊗K
1C∗⊗ι
oo

π1
xxqqqqqqqqqqq

C∗

Figure 5: Dual of a K-Coalgebra

For c ∈ C, write ∆(c) =
∑

i
ci ⊗ di, ∆(ci) =

∑
j
aij ⊗ bij, ∆(di) =

∑
j
eij ⊗ fij, and let

θ : C∗ ⊗ C∗ ⊗ C∗ → (C ⊗ C ⊗ C)∗ be the 3-fold analog of ρ (see Lemma (29d)). Then

µ(f ⊗ g)(c) = [∆∗ ◦ ρ](f ⊗ g)(c) = ρ(f ⊗ g)(∆(c)) =
∑

i

f(ci)g(di)

for f, g ∈ C∗ and c ∈ C. This implies that for f, g, h ∈ C∗ and c ∈ C we have

(µ ◦ (µ⊗ 1C∗))(f ⊗ g ⊗ h)(c) = (µ(µ(f ⊗ g)⊗ h))(c) =
∑

i

µ(f ⊗ g)(ci)h(di)

=
∑
i, j

f(aij)g(bij)h(di) = θ(f ⊗ g ⊗ h)((∆⊗ 1C) ◦∆)(c)

= θ(f ⊗ g ⊗ h)((1C ⊗∆) ◦∆)(c) =
∑
i, j

f(ci)g(eij)h(fij)

=
∑

i

f(ci)µ(g ⊗ h)(di) = (1C∗ ⊗ µ)
(∑

i

f(ci)(g ⊗ h)(di)
)

= (1C∗ ⊗ µ)(µ(f ⊗ (g ⊗ h))(c)) = ((1C∗ ⊗ µ) ◦ µ)(f ⊗ g ⊗ h)(c)

This establishes the Associative law. Next, for any c ∈ C, the commutativity of the

Counitary Property diagrams and Lemma (19c) yields
∑

i
ε(ci)di = c =

∑
i
ciε(di) from
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c = 1C(c) = (π2 ◦ ρ2)(c) = (π2 ◦ (ε⊗ 1C) ◦∆)(c) = π2 ◦ (ε⊗ 1C)
(∑

i

ci ⊗ di

)

= π2

(∑
i

ε(ci)⊗ di

)
=

∑
i

ε(ci)di

and similarly c =
∑

i
ciε(di). Then for all k ∈ K, f ∈ C∗, and c ∈ C,

(µ ◦ (ι⊗ 1C∗))(k ⊗ f)(c) = µ(ι(k)⊗ f)(c) =
∑

i

ι(k)(ci)f(di) =
∑

i

kε(ci)f(di)

= kf

(∑
i

ε(ci)di

)
= kf(c) = π2(k ⊗ f)(c)

and similarly (µ◦ (1C∗⊗ ι))(f ⊗k)(c) = π1(f ⊗k)(c). This establishes the Unitary Property

and (C∗, µ, ι) is a K-algebra by Theorem (33).

38 THEOREM. The dual of a finite-dimensional K-algebra is a K-coalgebra.

Proof. Suppose (A, µ, ι) is a finite-dimensional K-algebra. Then µ∗ : A∗ → (A ⊗ A)∗ is

given by [µ∗(f)](a ⊗ b) = f(µ(a ⊗ b)) and ι∗ : A∗ → K∗ is given by ι∗(f)(k) = f(ι(k)) for

f ∈ A∗, a ∈ A, and k ∈ K by Definition (30). Recall η : K∗ → K given by η(ϕ) = ϕ(1K)

for ϕ ∈ K∗ is a K-linear map . We may now define ∆A∗ : A∗ → A∗⊗A∗ and εA∗ : A∗ → K

by ∆A∗(f)(a) = [ρ−1 ◦ µ∗](f)(a) and εA∗(f)(k) = [η ◦ ι∗(f)](k) for f ∈ A∗, a ∈ A∗ ⊗ A∗,

where ρ : A∗ ⊗A∗ → (A⊗A)∗ is the K-space isomorphism of Lemma (29c) (dimA < ∞ is

required). We verify the Coassociative Law and Counitary Property (Figure 6).

Coassociative Law Counitary Property

A∗ ⊗A∗ ⊗A∗ A∗ ⊗A∗
∆A∗⊗1A∗oo

A∗ ⊗A∗

1A∗⊗∆A∗

OO

A∗

∆A∗

OO

∆A∗
oo

K ⊗A∗ A∗ ⊗A∗
εA∗⊗1A∗oo

1A∗⊗εA∗// A∗ ⊗K

A∗
ρ2

ffMMMMMMMMMMM
∆A∗

OO

ρ1

88qqqqqqqqqqq

Figure 6: Dual of a Finite-Dimensional K-Algebra

Write ∆A∗(f) =
∑

i
gi ⊗ hi, ∆A∗(gi) =

∑
j
mi, j ⊗ ni, j, and ∆A∗(hi) =

∑
j
pi, j ⊗ qi, j where

gi, hi, mi, j, ni, j, pi, j, qi, j ∈ A∗. Then:
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(∆A∗ ⊗ 1A∗)∆A∗(f) = (∆A∗ ⊗ 1A∗)
(∑

i

gi ⊗ hi

)
=

∑
i, j

mi, j ⊗ ni, j ⊗ hi,

(1A∗ ⊗∆A∗)∆A∗(f) = (1A∗ ⊗∆A∗)
(∑

i

gi ⊗ hi

)
=

∑
i, j

gi ⊗ pi, j ⊗ qi, j.

Note that for all f ∈ A∗ and a, b ∈ A, we have

f(ab) = [µ∗(f)](a⊗ b) = [ρ ◦ (ρ−1 ◦ µ∗)(f))](a⊗ b) = [ρ(∆A∗(f))](a⊗ b)

=
[
ρ

(∑
i

gi ⊗ hi

)]
(a⊗ b) =

∑
i

gi(a)hi(b) (1)

Recall θ : A∗ ⊗ A∗ ⊗ A∗ → (A⊗ A⊗ A)∗ given by θ(u⊗ v ⊗ w)(a⊗ b⊗ c) = u(a)v(b)w(c)

where u, v, w ∈ A∗ and a, b, c ∈ A is a K-space isomorphism by Lemma (29d). It follows

from the definition of θ and (1) that
[
θ

(∑
i, j

mi, j ⊗ ni, j ⊗ hi

)]
(a⊗ b⊗ c) =

∑
i, j

mi, j(a)ni, j(b)hi(c) =
∑

i

gi(ab)hi(c) = f(abc)

=
∑

i

gi(a)hi(bc) =
∑
i, j

gi(a)pi, j(b)qi, j(c) =
[
θ

(∑
i, j

gi ⊗ pi, j ⊗ qi, j

)]
(a⊗ b⊗ c)

Since θ is injective,
∑

i, j
mi, j⊗ni, j⊗hi =

∑
i, j

gi⊗pi, j⊗qi, j. Consequently, the Coassociative

Law holds. Next, for all f ∈ A∗, we have

((εA∗ ⊗ 1A∗) ◦∆A∗)(f) = (εA∗ ⊗ 1A∗)
(∑

i

gi ⊗ hi

)
=

∑
i

(εA∗ ⊗ 1A∗)(gi ⊗ hi)

=
∑

i

(εA∗(gi)⊗ hi) =
∑

i

(η ◦ ι∗(gi)⊗ hi) =
∑

i

(ι∗(gi)(1K)⊗ hi) =
∑

i

(gi(ι(1K))⊗ hi)

=
∑

i

(1Kgi(1A)⊗ hi) =
∑

i

(1K ⊗ gi(1A)hi) = 1K ⊗
∑

i

gi(1A)hi = 1K ⊗ f = ρ2(f).

For the penultimate inequality, we have used that f(a) = f(1Aa) =
∑

i
gi(1A)hi(a) (a ∈ A).

Similarly, ((1A∗ ⊗ εA∗) ◦ ∆A∗)(f) = ρ1(f). Thus the check of the Counitary Property is

complete and (A∗, ∆A∗ , εA∗) is a K-coalgebra by Definition (35).

39 NOTATION. Let (C, ∆, ε) be a K-coalgebra. We write ∆(c) =
∑

i
ci(1) ⊗ ci(2) for

each c ∈ C or succinctly as ∆(c) = c(1) ⊗ c(2) with summation implicit.
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40 LEMMA. Let (C, ∆, ε) be a K-coalgebra with ∆(c) = c(1) ⊗ c(2) for all c ∈ C.

a. c(1)(1) ⊗ c(1)(2) ⊗ c(2) = c(1) ⊗ c(2)(1) ⊗ c(2)(2). b. c = ε(c(1))c(2) = c(1)ε(c(2)).

Proof. a. By the Coassociative Law

c(1)(1) ⊗ c(1)(2) ⊗ c(2) = ∆(c(1))⊗ c(2) = (∆⊗ 1C)(c(1) ⊗ c(2)) = ((∆⊗ 1C) ◦∆)(c)

= ((1C ⊗∆) ◦∆)(c) = (1C ⊗∆)(c(1) ⊗ c(2)) = c(1) ⊗∆(c(2)) = c(1) ⊗ c(2)(1) ⊗ c(2)(2).

b. Since ρ1(c) = c⊗ 1C and ρ2(c) = 1C ⊗ c, by the Counitary Property we have:

1C ⊗ c = ((ε⊗ 1C) ◦∆)(c) = ε(c(1))⊗ c(2) = 1C ⊗ ε(c(1))c(2),

c⊗ 1C = ((1C ⊗ ε) ◦∆)(c) = c(1) ⊗ ε(c(2)) = c(1)ε(c(2))⊗ 1C.

Therefore c = ε(c(1))c(2) = c(1)ε(c(2)).

41 THEOREM. The tensor product of K-coalgebras is a K-coalgebra.

Proof. Suppose (C, ∆C, εC) and (D, ∆D, εD) are K-coalgebras and τ is the twist map. Put

∆C⊗D = (1C⊗τ⊗1D)◦∆C⊗∆D and εC⊗D = π2◦(εC⊗εD). We will verify the Coassociative

Law and Counitary Property (Figure 7).

C ⊗D ⊗ C ⊗D ⊗ C ⊗D C ⊗D ⊗ C ⊗D
∆C⊗D⊗1C⊗D

oo

C ⊗D ⊗ C ⊗D

1C⊗D⊗∆C⊗D

OO

C ⊗D

∆C⊗D

OO

∆C⊗D

oo

Coassociative Law

K ⊗ C ⊗D C ⊗D ⊗ C ⊗D
εC⊗D⊗1C⊗D

oo
1C⊗D⊗εC⊗D

// C ⊗D ⊗K

C ⊗D

ρ2

hhRRRRRRRRRRRRR
∆C⊗D

OO

ρ1

66lllllllllllll
Counitary Property

Figure 7: Tensor Product of K-coalgebras

For all c ∈ C and d ∈ D, we have

((∆C⊗D ⊗ 1C⊗D) ◦∆C⊗D)(c⊗ d) = [(∆C⊗D ⊗ 1C⊗D) ◦ (1C ⊗ τ ⊗ 1D) ◦ (∆C ⊗∆D)](c⊗ d)

= [(∆C⊗D ⊗ 1C⊗D) ◦ (1C ⊗ τ ⊗ 1D)](c(1) ⊗ c(2) ⊗ d(1) ⊗ d(2))
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= (∆C⊗D ⊗ 1C⊗D)(c(1) ⊗ d(1) ⊗ c(2) ⊗ d(2))

= [(1C ⊗ τ ⊗ 1D) ◦ (∆C ⊗∆D)(c(1) ⊗ d(1))]⊗ (c(2) ⊗ d(2))

= [(1C ⊗ τ ⊗ 1D)(c(1)(1) ⊗ c(1)(2) ⊗ d(1)(1) ⊗ d(1)(2))]⊗ (c(2) ⊗ d(2))

= c(1)(1) ⊗ d(1)(1) ⊗ c(1)(2) ⊗ d(1)(2) ⊗ c(2) ⊗ d(2)

and similarly ((1C⊗D ⊗∆C⊗D) ◦∆C⊗D)(c⊗ d) = c(1) ⊗ d(1) ⊗ c(2)(1) ⊗ d(2)(1) ⊗ c(2)(2) ⊗ d(2)(2).

Recall the K-space isomorphism ϕ of Lemma (19c). Then by Lemma (40a),

ϕ(((∆C⊗D ⊗ 1C⊗D) ◦∆C⊗D)(c⊗ d)) = ϕ(c(1)(1) ⊗ d(1)(1) ⊗ c(1)(2) ⊗ d(1)(2) ⊗ c(2) ⊗ d(2))

= c(1)(1) ⊗ c(1)(2) ⊗ c(2) ⊗ d(1)(1) ⊗ d(1)(2) ⊗ d(2)

= c(1) ⊗ c(2)(1) ⊗ c(2)(2) ⊗ d(1) ⊗ d(2)(1) ⊗ d(2)(2)

= ϕ(c(1) ⊗ d(1) ⊗ c(2)(1) ⊗ d(2)(1) ⊗ c(2)(2) ⊗ d(2)(2))

= ϕ(((1C⊗D ⊗∆C⊗D) ◦∆C⊗D)(c⊗ d)).

Consequently, ((∆C⊗D ⊗ 1C⊗D) ◦∆C⊗D)(c⊗ d) = ((1C⊗D ⊗∆C⊗D) ◦∆C⊗D)(c⊗ d) since ϕ is

a K-space isomorphism. Then extending linearly establishes the Coassociative Law. Next,

for all c ∈ C and d ∈ D, applying Lemma (40b) yields

((εC⊗D ⊗ 1C⊗D) ◦∆C⊗D)(c⊗ d) = [(εC⊗D ⊗ 1C⊗D) ◦ (1C ⊗ τ ⊗ 1D) ◦ (∆C ⊗∆D)](c⊗ d)

= [(εC⊗D ⊗ 1C⊗D) ◦ (1C ⊗ τ ⊗ 1D)](c(1) ⊗ c(2) ⊗ d(1) ⊗ d(2))

= (εC⊗D ⊗ 1C⊗D)(c(1) ⊗ d(1) ⊗ c(2) ⊗ d(2))

= [(π2 ◦ (εC ⊗ εD))(c(1) ⊗ d(1))]⊗ (c(2) ⊗ d(2)) = εC(c(1))εD(d(1))⊗ c(2) ⊗ d(2)

= 1K ⊗ εC(c(1))c(2) ⊗ εD(d(1))d(2) = 1K ⊗ c⊗ d = ρ2(c⊗ d)

and similarly ((1C⊗D⊗εC⊗D)◦∆C⊗D)(c⊗d) = ρ1(c⊗d). Extend linearly. Thus the Counitary

Property holds and (C ⊗D, ∆C⊗D, εC⊗D) is a K-coalgebra.
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42 DEFINITION. Suppose that (C, ∆C, εC) and (D, ∆D, εD) are K-coalgebras and

there exists a K-linear map f : C → D such that ∆D ◦ f = (f ⊗ f) ◦∆C and εD ◦ f = εC

(Figure 8). Then f is called a K-coalgebra homomorphism.

C
f //

∆C

²²

D

∆D

²²
C ⊗ C

f⊗f
// D ⊗D

C
f //

εC ÃÃ@
@@

@@
@@

D

εD

²²
K

Figure 8: Coalgebra Homomorphism

43 EXAMPLE. Put L := K ⊗ K. We have that (K, ∆K, εK) is a K-coalgebra with

∆K : K → L and εK : K → K given by ∆K(k) = k ⊗ 1K and εK(k) = 1K for all

k ∈ K. Let τ : L → L be the twist map. We may now define ∆L : L → L ⊗ L and

εL : L → K by ∆L(k ⊗ `) = (1K ⊗ τ ⊗ 1K) ◦ (∆K ⊗ ∆K)(k ⊗ `) = k ⊗ ` ⊗ 1K ⊗ 1K and

εL(k ⊗ `) = (π1 ◦ (εK ⊗ εK))(k ⊗ `) = π1(1K ⊗ 1K) = 1K for all k, ` ∈ K. Then (L, ∆L, εL)

is a K-coalgebra by Theorem (41). Define µK : L → K and ιK : K → K by µK(k⊗ `) = k`

and ιK(k) = k for all k, ` ∈ K. Then µK is a K-coalgebra homomorphism since

(∆K ◦ µK)(k ⊗ `) = ∆K(k`) = k`⊗ 1K = (µK ⊗ µK)(k ⊗ `⊗ 1K ⊗ 1K)

= ((µK ⊗ µK) ◦ (∆L)(k ⊗ `))

and

(εK ◦ µK)(k ⊗ `) = εK(k`) = 1K = εL(k ⊗ `)

for all k, ` ∈ K. Similarly since ∆K ◦ ιK = (ιK ⊗ ιK) ◦∆K and εK ◦ ιK = εK, it follows that

ιK is a K-coalgebra homomorphism.

44 THEOREM. Let B be a K-space, (B, µ, ι) a K-algebra, and (B, ∆B, εB) a K-

coalgebra. The following are equivalent: (a) µ and ι are K-coalgebra homomorphisms, (b)

∆B and εB are K-algebra homomorphisms, (c) ∆B(bc) = ∆B(b)∆B(c), ∆B(1B) = 1B ⊗ 1B,

εB(bc) = εB(b)εB(c), and εB(1B) = 1K for all b, c ∈ B.
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Proof. Consider the following four diagrams:

i. ∆ ◦ µ = (µ⊗ µ) ◦ (1B ◦ τ ◦ 1B) ◦∆⊗∆ ii. ∆ ◦ ι = (ι ◦ ι) ◦ ρ1

B ⊗B
µ //

∆⊗∆

²²

B

∆

²²

B ⊗B ⊗B ⊗B

1B⊗τ⊗1B

²²
B ⊗B ⊗B ⊗B

µ⊗µ
// B ⊗B

K
ι //

ρ1

²²

B

∆

²²
K ⊗K

ι⊗ι
// B ⊗B

iii. ε ◦ µ = π2 ◦ (ε⊗ ε) iv. ε ◦ ι = 1K

B ⊗B
µ //

ε⊗ε

²²

B

ε

²²
K ⊗K π2

// K

K
ι //

1K ÃÃA
AA

AA
AA

A B

ε

²²
K

Figure 9: Bialgebra Equivalent Conditions

We have that ∆ = ∆B is a K-algebra homomorphism when (i) and (ii) are satisfied, εB is

a K-algebra homomorphism when (iii) and (iv) hold, µ is a K-coalgebra homomorphism

when (i) and (iii) are satisfied, and ι is a K-coalgebra homomorphism when (ii) and (iv)

hold. So (a) is equivalent to (b). (b) is equivalent to (c) by Definition (4).

45 DEFINITION. Let (B, µ, ι) be a K-algebra and (B, ∆, ε) a K-coalgebra. If any

condition of Theorem (44) is satisfied then (B, µ, ι, ∆, ε) is called a K-bialgebra.

46 EXAMPLES.

a. (K, µK, ιK, ∆K, εK) is a K-bialgebra. See Examples (7) and (43).

b. Let H be a group. Recall (KH, µ, ι) is a K-algebra by Lemma (9) and Theorem

(33) and (KH, ∆, ε) is a K-coalgebra and ∆ and ε are K-algebra homomorphisms

by Example (36). Thus (KH, µ, ι, ∆, ε) is a K-bialgebra.
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Chapter 3

Results in Schur Algebras

Definitions and statements of standard results in the theory of Schur algebras have been

drawn from [12, 13].

3.1 Polynomial Functions and Coefficient Space

47 DEFINITION. Let E be the set of n-dimensional column K-vectors. For g ∈ Γ and

x ∈ E, define gx by usual matrix multiplication. We may extend linearly to all of KΓ via

(
∑

g∈Γ
kgg)x =

∑
g∈Γ

kg(gx)(kg 6= 0 for finitely many g ∈ Γ assumed throughout). Then E

is called the standard or natural KΓ-module.

We write I(n, r) := {i = (i1, i2, · · · , ir) | 1 ≤ ik ≤ n for 1 ≤ k ≤ r}. Suppose

{e1, e2, · · · , en} is the standard basis for E. Define g(v1 ⊗ · · · ⊗ vr) = gv1 ⊗ · · · ⊗ gvr

for g ∈ Γ. Consequently E⊗r = E ⊗ · · · ⊗ E (r factors) becomes a KΓ-module with

K-basis {ei = ei1 ⊗ · · · ⊗ eir | i ∈ I(n, r)}.

48 PROPOSITION. Let v, w ∈ E. (a) τ : E⊗2 → E⊗2 given by τ(v ⊗ w) = w ⊗ v

is a KΓ-module homomorphism. (b) The sets S2(E) = {x ∈ E⊗2 | τ(x) = x} and

∧2(E) = {x ∈ E⊗2 | τ(x) = −x} are KΓ-submodules of E⊗2. (c) S2(E) = (1 + τ)(E⊗2),

∧2(E) = (1− τ)(E⊗2), and E⊗2 = S2(E) u ∧2(E) if charK 6= 2.

Proof. a. τ(gx) = τ(g(x1⊗ x2)) = τ(gx1⊗ gx2) = gx2⊗ gx1 = g(x2⊗ x1) = gτ(x) for all

g ∈ Γ and x = x1 ⊗ x2 ∈ E⊗2. Extend linearly.
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b. Let g ∈ Γ, x ∈ S2(E), and y ∈ ∧2(E). Note that τ(gx) = gτ(x) = gx and that

τ(gy) = gτ(y) = −gy by (a). Extend linearly.

c. First, let x ∈ S2(E). Then x = x
2 + x

2 = x
2 + τ

(
x
2

)
= (1+ τ)

(
x
2

) ∈ (1+ τ)(E⊗2). Thus

S2(E) ⊆ (1 + τ)(E⊗2). Conversely, let x ∈ (1 + τ)(E⊗2). Then x = y + τ(y) for some

y ∈ E⊗2. We have τ(τ(y)) = y by linear extension. It then follows that

τ(x) = τ(y + τ(y)) = τ(y) + τ(τ(y)) = τ(y) + y = x.

Thus x ∈ S2(E). Consequently, (1 + τ)(E⊗2) ⊆ S2(E) and the first equality is

shown. The second equality is established similarly. Suppose that x ∈ ∧2(E). Then

x = x
2 + x

2 = x
2 − τ

(
x
2

)
= (1 − τ)

(
x
2

) ∈ (1 − τ)(E⊗2). Thus ∧2(E) ⊆ (1 − τ)(E⊗2).

Conversely, any x ∈ (1− τ)(E⊗2) may be written as x = y − τ(y) for some y ∈ E⊗2.

We also have τ(τ(y)) = y by linear extension. Consequently,

τ(x) = τ(y − τ(y)) = τ(y)− τ(τ(y)) = τ(y)− y = −x.

Thus x ∈ ∧2(E). So (1−τ)(E⊗2) ⊆ ∧2(E) and the second equality also holds. Finally,

it is clear that S2(E) ∩ ∧2(E) = {0}. Let x ∈ E⊗2. Then

x =
1
2
[x + τ(x) + x− τ(x)] =

1
2
(1 + τ)(x) +

1
2
(1− τ)(x).

Since 1
2(x + τ(x)) ∈ S2(E) and 1

2(x− τ(x)) ∈ ∧2(E), then E⊗2 = S2(E) + ∧2(E).

49 DEFINITION. Let gαβ denote the (α, β)-entry of the matrix g. cαβ : Γ → K where

cαβ(g) = gαβ for all g ∈ Γ is called a coordinate function. Suppose n := {1, 2, · · · , n} and

An := {cαβ | α, β ∈ n}. We will denote by A(n) the K-subalgebra of KΓ generated by

An. A(n) is called the algebra of polynomial functions and the elements of A(n) are called

polynomial functions on Γ. {y1, · · · , yq} in a K-algebra is called algebraically independent

over K if no nonzero polynomial p ∈ K[x1, · · · , xq] exists such that p(y1, · · · , yq) = 0.
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50 LEMMA. If K is infinite then every subset of An is algebraically independent over K.

Proof. This result is well-known (see [13, page 9]). We present a proof of the case S ⊆ An

with |S | = 1. Then S = {cij} for some fixed i and j. Let p(x) ∈ K[x] with p(cij) = 0K.

Assume p(x) is not the zero polynomial. Suppose i 6= j. We may choose a nonzero

α ∈ K with p(α) 6= 0K since K is infinite. Construct matrix g where ghh = 1K for

1 ≤ h ≤ n, gij = α, and g`m = 0K for all other pairs (`, m) with `, m ∈ n. Then g ∈ Γ

but 0K = p(cij)(g) = p(α). Contradiction. So i = j. Again choose a nonzero α ∈ K with

p(α) 6= 0K. Construct matrix g where ghh = 1K for 1 ≤ h ≤ n with h 6= i, gii = α, and

g`m = 0K for all other pairs (`, m) with `, m ∈ n. Then g ∈ Γ but 0K = p(cii)(g) = p(α).

Contradiction. Thus p is the zero polynomial. So S is algebraically independent over K.

51 DEFINITION. Let V be a KΓ-module and T : Γ → Γ the matrix representation

afforded by V relative to the basis {v1, · · · , vn} of V . So T (g) = [αij(g)] for unique αij ∈ KΓ

with gvj =
∑

i
αij(g)vi (g ∈ Γ). We extend linearly by T (

∑
g∈Γ

kgg) =
∑

g∈Γ
kgT (g). The

K-space cf (V ) spanned by the αij is called the coefficient space of V .

52 EXAMPLES. Put e1 =




1

0


, e2 =




0

1


, and g =




a b

c d


.

a. Let ρ : Γ → GL2(K) be the matrix representation corresponding to the natural KΓ-

module E relative to the basis {e1, e2} of E. Consequently ρ satisfies ρ(g) = g since

ge1 = ae1 + ce2 and ge2 = be1 + de2. Thus cf
(
E⊗1

)
= 〈c11, c12, c21, c22〉.

b. We use the convention that ci1i3,i2i4
= ci1i2ci3i4

. E⊗2 has basis {e11, e12, e21, e22}

where eij = ei ⊗ ej. Then by a calculation similar to (c) below,

cf
(
E⊗2

)
= 〈c2

11, c2
12, c11c12, c11c21, c11c22, c12c21, c12c22, c2

21, c2
22, c21c22〉

= 〈c11,11, c11,22, c11,12, c12,11, c12,12, c12,21, c12,22, c22,11, c22,22, c22,12〉

c. S2(E) has basis {e11, e12 + e21, e22}. Then:
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ge11 = ge1 ⊗ ge1 = (ae1 + ce2)⊗ (ae1 + ce2) = a2e11 + ac(e12 + e21) + c2e22,

g(e12 + e21) = ge1 ⊗ ge2 + ge2 ⊗ ge1

= [(ae1 + ce2)⊗ (be1 + de2)] + [(be1 + de2)⊗ (ae1 + ce2)]

= 2abe11 + (ad + bc)(e12 + e21) + 2cde22,

ge22 = ge2 ⊗ ge2 = (be1 + de2)⊗ (be1 + de2) = b2e11 + bd(e12 + e21) + d2e22.

Hence

cf (S2(E)) = 〈c2
11, 2c11c12, c2

12, c11c21, c11c22 + c12c21, c12c22, c2
21, 2c21c22, c2

22〉

= 〈c11,11, 2c11,12, c11,22, c12,11, c12,12 + c12,21, c12,22, c22,11, 2c22,12, c22,22〉.

d. Similarly, ∧2(E) has basis {e12 − e21} and cf (∧2(E)) = 〈c12,12 − c12,21〉.

53 NOTATION. Let π ∈ ∑
r
. Denote πci, j := ci, jπ where jπ = (jπ(1), · · · , jπ(r)).

54 PROPOSITION. If τ = (12) ∈ ∑
r
, then (1± τ)cf

(
E⊗2

)
= cf (1± τ)

(
E⊗2

)
.

Proof. cf
(
E⊗2

)
= 〈c11,11, c11,22, c11,12, c12,11, c12,12, c12,21, c12,22, c22,11, c22,22, c22,12〉

by Example (52b). Note that:

(1 + τ)(c11,11) = c11,11 + c11,11 = 2c11,11, (1 + τ)(c11,22) = c11,22 + c11,22 = 2c11,22,

(1 + τ)(c11,12) = c11,12 + c11,21 = c11c12 + c12c11 = 2c11c12 = 2c11,12,

(1 + τ)(c12,11) = c12,11 + c12,11 = 2c12,11, (1 + τ)(c12,12) = c12,12 + c12,21,

(1 + τ)(c12,21) = c12,21 + c12,12, (1 + τ)(c12,22) = c12,22 + c12,22 = 2c12,22,

(1 + τ)(c22,11) = c22,11 + c22,11 = 2c22,11, (1 + τ)(c22,22) = c22,22 + c22,22 = 2c22,22,

(1 + τ)(c22,12) = c22,12 + c22,21 = c21c22 + c22c21 = 2c21c22 = 2c22,12.

Thus by Example (52c) and Proposition (48c),

(1 + τ)
(
cf

(
E⊗2

))
= 〈c11,11, c11,22, c11,12, c12,11, c12,12 + c12,21, c12,22, c22,11, c22,22, c22,12〉

= cf (S2 (E)) = cf
(
(1 + τ)

(
E⊗2

))
.

Similarly, note that:
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(1− τ)(c11,11) = c11,11 − c11,11 = 0, (1− τ)(c11,12) = c11,12 − c11,21 = c11c12 − c12c11 = 0,

(1− τ)(c12,12) = c12,12 − c12,21, (1− τ)(c11,22) = c11,22 − c11,22 = 0,

(1− τ)(c12,11) = c12,11 − c12,11 = 0, (1− τ)(c12,21) = c12,21 − c12,12,

(1− τ)(c12,22) = c12,22 − c12,22 = 0, (1− τ)(c22,11) = c22,11 − c22,11 = 0,

(1− τ)(c22,12) = c22,12 − c22,21 = c21c22 − c22c21 = 0, (1− τ)(c22,22) = c22,22 − c22,22 = 0.

Applying Example (52d) and Proposition (48c) yields

(1− τ)
(
cf

(
E⊗2

))
= 〈c12,12 − c12,21〉 = cf (∧2 (E)) = cf

(
(1− τ)

(
E⊗2

))
.

55 NOTATION.

a. A polynomial is called homogeneous when each of its terms has the same degree. We

let K be infinite hereafter. By Lemma (50), A(n) may be viewed as the polynomial

algebra over K in the indeterminants cαβ. Let Ar (r ≥ 0) denote the K-subspace of

A(n) generated by the homogeneous polynomial functions of total degree r.

b. Let I = {f | f : r → n}. G =
∑

r
acts on I via iπ = (iπ(1), . . . iπ(r)) and G acts on

I × I by (i, j)π = (iπ, jπ) for i, j ∈ I and π ∈ G. For i, j ∈ I, define (i, j) ∼ (p, q)

for (i, j), (p, q) ∈ I × I when p = iπ and q = jπ for some π ∈ G. Let R(n, r) denote

a set of representatives for the equivalence classes of I × I under ∼.

56 REMARK. For fixed g ∈ Γ and with E viewed as a K-space, define t′g : E×r → E⊗r

by t′g(x1, · · · , xr) = g(x1 ⊗ · · · ⊗ xr) for all x1, · · · , xr ∈ E. Then t′g is r-multilinear and

induces a K-linear map tg : E⊗r → E⊗r (Theorem (16) and induction) such that t′g = tg ◦β

where β is the canonical r-multilinear map. Then tg gives rise to a matrix representation

T ′n, r : Γ → GLn(E⊗r) given by T ′n, r(g) = tg. Extending linearly to KΓ and using the

standard basis {ei | i ∈ I} of E⊗r yields the matrix representation Tn, r : KΓ → MatIK

given by Tn, r(κ) = [gi, j] for i, j ∈ I where κej =
∑

i∈I
gi, jei. Similarly, ci, j may be extended

linearly to KΓ.
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57 LEMMA. Let r be a nonnegative integer. Then
r∑

i=0

(
n− 2 + i

i

)
=

(
n + r − 1

r

)
.

Proof. We proceed by induction on r. The result is obvious for r = 0. Recall [14, p. 8] that

Pascal’s Rule says
(

n

k − 1

)
+

(
n

k

)
=

(
n + 1

k

)
for 1 ≤ k ≤ n. Then, using the induction

hypothesis, we have
r∑

i=0

(
n− 2 + i

i

)
=

[ r−1∑
i=0

(
n− 2 + i

i

)]
+

(
n− 2 + r

r

)
=

(
n− 2 + r

r − 1

)
+

(
n− 2 + r

r

)

=
(

n + r − 1
r

)
.

58 THEOREM. (a) C = {ci, j = ci1j1
· · · cirjr | (i, j) ∈ R(n, r)} is a K-basis for Ar. (b)

dimAr =
(

n2 + r − 1
r

)
. (c) Ar = cf (E⊗r).

Proof. a. Ar is spanned as a K-space by the monomials {ci, j | i, j ∈ I}. Now since

ci, j = ck, ` if and only if (i, j) ∼ (k, `), we have that this set equals C. So C spans Ar,

and the elements of C are distinct. Thus C is linearly independent by Lemma (50).

Consequently C is a K-basis for Ar.

b. We show that the number of distinct monomials xr1
1 · · ·xrm

m in the m commuting

indeterminants xi with
∑

i
ri = r is

(
m + r − 1

r

)
. We proceed by induction on m.

The result is obvious for m = 1. Let w` be the number of distinct monomials with
∑

i
ri = r such that rm = `. The number in question is w =

∑
`
w`. By Lemma (57),

w = w0 + · · ·+ wr

=
(

m− 1 + r − 1
r

)
+

(
m− 1 + r − 1− 1

r − 1

)
+ · · ·+

(
m− 1 + 0− 1

0

)

=
r∑

i=0

(
m− 2 + r − i

r − i

)
=

r∑
i=0

(
m− 2 + i

i

)
=

(
m + r − 1

r

)
.

The claim now follows from (a).

c. By Remark(56), gej =
∑

i∈I
ci, j(g)ei. Thus cf (E⊗r) =

∑
i, j∈I

Kci, j = Ar.
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Define F : KΓ ×KΓ → KΓ×Γ by [F (f, g)](u, v) = f(u)g(v) (f, g ∈ KΓ, u, v ∈ Γ). There

exists a unique K-linear map Φ : KΓ ⊗KΓ → KΓ×Γ given by [Φ(f ⊗ g)](u, v) = f(u)g(v)

by Theorem (16) since F is bilinear. Φ is injective by an argument similar to that given in

the proof of Lemma (29b). So, we may consider KΓ ⊗KΓ as a K-subspace of KΓ×Γ.

59 LEMMA. A(n) is a K-bialgebra, and Ar is a K-subcoalgebra of A(n).

Proof. A(n) is a K-algebra as it is a K-subalgebra of KΓ. Then µ : A(n) ⊗ A(n) → A(n)

and ι : K → A(n) given by µ(ci, j ⊗ ck, `) = ci, jck, ` and ι(k) = k1 are the structure maps for

A(n) by the proof of Theorem (33). Define ∆ : KΓ → KΓ×Γ by [∆(f)](u, v) = f(uv) and

ε : KΓ → K by ε(f) = f(1Γ) for all f ∈ KΓ, u, v ∈ Γ. Since for all f, g ∈ KΓ, u, v ∈ Γ,

and k ∈ K, we have

(i) [∆(f + g)](u, v) = (f + g)(uv) = f(uv) + g(uv) = [∆f ](u, v) + [∆g](u, v),

(ii) [∆(fg)](u, v) = (fg)(uv) = f(uv)g(uv) = [∆f ](u, v)[∆g](u, v),

(iii) [∆(kf)](u, v) = (kf)(uv) = kf(uv) = k[∆f ](u, v),

(iv) [∆(1KΓ)](u, v) = 1KΓ(uv) = 1K = 1KΓ×Γ(u, v),

(v) ε(f + g) = (f + g)(1Γ) = f(1Γ) + g(1Γ) = ε(f) + ε(g),

(vi) ε(fg) = (fg)(1Γ) = f(1Γ)g(1Γ) = ε(f)ε(g),

(vii) ε(kf) = (kf)(1Γ) = kf(1Γ) = kε(f), and

(viii) ε(1KΓ) = 1KΓ(1Γ) = 1K,

∆ and ε are K-algebra homomorphisms by (i) - (iv) and (v) - (viii), respectively. Now

restrict ∆ and ε to A(n). Then ∆(cαβ) =
∑

n

γ=1
cαγ ⊗ cγβ and ε(cαβ) = δαβ for 1 ≤ α, β ≤ n.

We next verify the Coassociative Law and Counitary Property. Then

((∆⊗ 1) ◦∆)(cαβ) = (∆⊗ 1)
(∑

γ

cαγ ⊗ cγβ

)
=

∑
γ, ζ

(cαζ ⊗ cζγ)⊗ cγβ

=
∑
γ, ζ

cαζ ⊗ (cζγ ⊗ cγβ) = (1 ⊗∆)
(∑

ζ

cαζ ⊗ cζβ

)
= ((1 ⊗∆) ◦∆)(cαβ)
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((ε⊗ 1) ◦∆)(cαβ) = (ε⊗ 1)
(∑

γ

cαγ ⊗ cγβ

)
=

∑
γ

ε(cαγ)⊗ cγβ = 1K ⊗
∑

γ

ε(cαγ)cγβ

= 1K ⊗
∑

γ

δαγcγβ = 1K ⊗ cαβ = ρ2(cαβ),

and similarly ((1 ⊗ ε) ◦∆)(cαβ) = ρ1(cαβ). So (A(n), ∆, ε) is a K-coalgebra. By Theorem

(44), (A(n), µ, ι, ∆, ε) is a K-bialgebra. Finally, note Ar is a K-subspace of A(n) by the

definition of Ar. Let ci, k = ci1k1
· · · cirkr ∈ Ar. Then, using the fact that ∆ is a K-algebra

homomorphism, we find that ∆(ci, k) =
∑

j∈I
ci, j ⊗ cj, k ∈ Ar ⊗Ar. Thus ∆(Ar) ⊆ Ar ⊗Ar.

Ar is a K-subcoalgebra of A(n) by Definition (35).

3.2 Schur Algebras and Group Actions

Let f ∈ KΓ and κ =
∑

κgg ∈ KΓ. Define f(κ) =
∑

κgf(g). Then f is a unique linear

extension of f . Let V be a finite-dimensional KΓ-module with basis {vb | b ∈ B}. If

Γ acts as gvb =
∑

B
αab(g)va (as in the definition of coefficient space), then KΓ acts as

κvb =
∑

a
αab(κ)va for all κ ∈ KΓ and all b ∈ B. Let ρ : KΓ → EndK(V ) be the

representation afforded by V , and let Y = ker ρ.

60 LEMMA. Let f ∈ KΓ and κ ∈ KΓ. Then (a) κ ∈ Y if and only if f(κ) = 0 for all

f ∈ cf (V ) and (b) f ∈ cf (V ) if and only if f(κ) = 0 for all κ ∈ Y .

Proof. a. Let κ ∈ Y and f ∈ cf (V ). Then f =
∑

a, b
dabαab for some dab ∈ K. Since

αab(κ) = 0 for all a, b ∈ B, we have f(κ) =
∑

a, b
dabαab(κ) = 0. Conversely, let

f(κ) = 0 for all f ∈ cf (V ). Since αab ∈ cf (V ) for all a, b ∈ B, we have αab(κ) = 0 for

all a, b ∈ B. So ρ(κ)(vb) = κvb =
∑

a
αab(κ)va = 0 for all a, b ∈ B. So κ ∈ Y .

b. Let N := ρ(KΓ). Define 〈 , 〉 : Y 0 × N → K by 〈f, ν〉 = f(κ) for all f ∈ Y 0 and

ν = ρ(κ) ∈ N . Suppose ρ(κ) = ρ(λ) for some κ, λ ∈ KΓ and let f ∈ Y 0. Since ρ

is a homomorphism, then ρ(κ − λ) = 0. Hence κ − λ ∈ ker ρ. Thus f(κ − λ) = 0
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since f ∈ Y 0. So f(κ) − f(λ) = 0 since f is linear. Hence f(κ) = f(λ). Thus 〈 , 〉 is

well-defined. Now suppose 〈f, ν〉 = 0 for every ν ∈ N . So f(κ) = 0 for every κ ∈ KΓ.

In particular, 0 = f(1Kg) = f(g) for every g ∈ Γ. So f = 0. Now let ν = ρ(ξ) ∈ N .

Suppose 〈f, ν〉 = 0 for every f ∈ Y 0. Then f(ξ) = 0 for every f ∈ Y 0 by the definition

of 〈 , 〉. Note Y = (Y 0)0 = {x | f(x) = 0 for every f ∈ Y 0}. Hence ξ ∈ Y . So ν = 0.

So 〈 , 〉 is non-singular. By (a), cf (V ) ⊆ Y 0. Observe if ν = ρ(κ) ∈ N such that

f(κ) = 〈f, ν〉 = 0 for all f ∈ cf (V ), then κ ∈ Y by (a). Hence ν = 0. This implies

〈 , 〉 restricted to cf (V )×N is non-singular. So cf (V ) ∼= N∗ ∼= Y 0 by two applications

of Lemma (32). Thus dim cf (V ) = dimY 0. Therefore cf (V ) = Y 0.

61 EXAMPLE. Let g be the 3×3 matrix with g11 = g12 = g22 = g33 = 1 and 0 elsewhere.

We compute T3, 2(g). Note ei = ei1
⊗ ei2

since i = (i1, i2). We write ejk := ej ⊗ ek and

gjk, `m := α(g)(j, k), (`, m). A few calculations are included:

ge11 = g(e1 ⊗ e1) = ge1 ⊗ ge1 = e1 ⊗ e1 = e11

⇒ g11, 11 = 1 and gi, 11 = 0 for i 6= (1, 1);

ge12 = ge1 ⊗ ge2 = e1 ⊗ (e1 + e2) = e11 + e12

⇒ g11, 12 = g12, 12 = 1 and gi, 12 = 0 for i 6= (1, 1), (1, 2);

ge13 = ge1 ⊗ ge3 = e1 ⊗ e3 = e13

⇒ g13, 13 = 1 and gi, 13 = 0 for i 6= (1, 3);

ge21 = ge2 ⊗ ge1 = (e1 + e2)⊗ e1 = e11 + e21

⇒ g11, 21 = g21, 21 = 1 and gi, 21 = 0 for i 6= (1, 1), (2, 1).

We eventually obtain T3, 2(g) = g ⊗ g (Figure 10).




1 1 0 1 1 0 0 0 0

0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1




Figure 10: T3, 2(g)

62 DEFINITION. The Schur algebra, denoted by Sr or Sr(Γ), is the image of KΓ under

Tn, r with identity 1Sr = [δi, j] where δi, j = δi1j1 · · · δirjr .

Note that [δi, j] is just the identity matrix.
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63 THEOREM. (a) 〈 , 〉 : Ar × Sr → K given by 〈ci, k, Tn, r(κ)〉 = ci, k(κ) is well-defined,

non-singular, and bilinear where ci, k ∈ Ar, and κ ∈ KΓ. (b) A∗r and Sr are isomorphic as

K-spaces. (c) Sr is a K-algebra with dimSr =
(

n2 + r − 1
r

)
.

Proof. (a) First, if Tn, r(κ) = Tn, r(κ′), then κ− κ′ ∈ KerTn, r. So ci, k(κ− κ′) = 0 (Theorem

(58c) and Lemma (60b)) and ci, k(κ) = ci, k(κ′). Consequently, the form is well-defined.

Suppose 0 = 〈ci, k, Tn, r(κ)〉 = ci, k(κ) for all κ ∈ KΓ. Thus ci, k = 0. Now suppose

ci, k(κ) = 〈ci, k, Tn, r(κ)〉 = 0 for all ci, k ∈ Ar. Then κ ∈ kerTn, r by Lemma (60a). Hence

Tn, r(κ) = 0. Thus 〈, 〉 is non-singular. Next for all ch, i, cj, k ∈ Ar, κ, λ ∈ KΓ, and x, y ∈ K,

we have

〈xch, i + ycj, k, Tn, r(κ)〉 = (xch, i + ycj, k)(κ) = xch, i(κ) + ycj, k(κ)

= x〈ch, i, Tn, r(κ)〉+ y〈cj, k, Tn, r(κ)〉
and

〈ci, k, xTn, r(κ) + yTn, r(λ)〉 = 〈ci, k, Tn, r(xκ + yλ)〉 = ci, k(xκ + yλ) = xci, k(κ) + yci, k(λ)

= x〈ci, k, Tn, r(κ)〉+ y〈ci, k, Tn, r(λ)〉.

Thus 〈 , 〉 is bilinear. (b) dimA∗r is finite by Theorem (58b). Then A∗r and Sr are isomorphic

as K-spaces by Lemma (32). (c) Sr is a homomorphic image of the K-algebra KΓ so it is a

K-algebra. Moreover, dimSr = dim A∗r = dimAr =
(

n2 + r − 1
r

)
by Theorem (58b).

64 LEMMA. Let ξ, η ∈ Sr and i, j ∈ I.

a. 〈ci, j, ξ〉 = the (i, j)th entry of ξ. b. 〈ci, j, ξη〉 =
∑

h∈I
〈ci, h, ξ〉〈ch, j, η〉.

Proof. a. Note that ξ : E⊗r → E⊗r is a linear map. We write the matrix of ξ relative

to the basis {ei | i ∈ I} as [ξij]. We must show that 〈cij, ξ〉 = ξij. That is, we

must show that ξ(ej) =
∑

i
〈cij, ξ〉ei. Suppose that ξ = Tn, r(g) for some g ∈ Γ. By

Theorem (63), we must show that ξ(ej) =
∑

i
cij(g)ei. But this is clear since
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ξ(ej) = Tn, r(g)(ej) = gej1 ⊗ · · · ⊗ gejr =
n∑

i1=1

ci1j1(g)ei1 ⊗ · · · ⊗
n∑

ir=1

cirjr(g)eir

=
∑

i

cij(g)ei1 ⊗ ei2 ⊗ · · · ⊗ eir =
∑

i

cij(g)ei.

Since Tn, r and cij are linear, we obtain Tn, r(κ)(ej) =
∑

i
cij(κ)(ej) for each κ ∈ KΓ,

and the claim follows.

b. By (a), 〈cij, ξη〉 = (i, j)th entry of ξη =
∑

h∈I
ξi, hηh, j =

∑
h∈I
〈cih, ξ〉〈chj, η〉.

65 THEOREM. ψ : Sr(Γ) → A∗r given by ψ(ξ)(f) = 〈f, ξ〉 is a K-algebra isomorphism.

Proof. First, ψ is a K-space isomorphism by the proofs of Theorem (63b) and Lemma (32).

Multiplication in the algebra A∗r is defined by (αβ)(c) =
∑

α(ci)β(di) (α, β ∈ A∗r , c ∈ Ar),

where ∆(c) =
∑

i
ci ⊗ di. Indeed,

(αβ)(ci, j) = [∆∗(α⊗ β)](ci, j) = (α⊗ β)(∆(ci, j)) = (α⊗ β)
(∑

h∈I

ci, h ⊗ ch, j

)

=
∑
h∈I

α(ci, h)β(ch, j).

Now let ξ, η ∈ Sr(Γ) and i, j ∈ I. Then by the definition of ψ and Lemma (64b)

ψ(ξη)(ci, j) = 〈ci, j, ξη〉 =
∑
h∈I

〈ci, h, ξ〉〈ch, j, η〉 =
∑
h∈I

ψ(ξ)(ci, h)ψ(η)(ch, j).

Since the ci, j span Ar, we have ψ(ξη)(c) =
∑

i∈I
ψ(ξ)(ci)ψ(η)(di) for all c ∈ Ar. Next, let

α = ψ(ξ) and β = ψ(η). Consequently,

ψ(ξ)ψ(η)(c) = (αβ)(c) =
∑
i∈I

α(ci)β(di) =
∑
i∈I

ψ(ξ)(ci)ψ(η)(di) = ψ(ξη)(c)

for all c ∈ Ar. Thus ψ is a homomorphism. Therefore ψ is an algebra map since

ψ(1Sr(Γ))(ci, j) = 〈ci, j, 1Sr(Γ)〉 = δi, j = ε(ci, j).

66 DEFINITION. Let S be a set, G a group, and e the identity of G. An action of G

on S is a function G × S → S given by (g, x) 7→ gx such that ex = x and (gh)x = g(hx)
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for all x ∈ S and g, h ∈ G. A right action of G has a similar definition with g appearing

on the right. S is called a (right) G-set when an (right) action exists.

67 NOTATION. We set N := EndK(E⊗r). Then N has basis {ei, j | i, j ∈ I} where

ei, j : E⊗r → E⊗r is given by ei, j(ek) = δj, kei.

68 EXAMPLES. Let G =
∑

r
, σ ∈ G, i = (i1, i2, · · · , ir), and recall I := I(n, r).

a. Consider σi = (iσ−1(1), · · · , iσ−1(r)). This makes I a G-set since

(1)i = (i(1)−1(1), · · · , i(1)−1(r)) = (i1, · · · , ir) = i, and

σ(τi) = σ(iτ−1(1), · · · , iτ−1(r)) = σ(j1, · · · , jr) = (jσ−1(1), · · · , jσ−1(r))

= (iτ−1(σ−1(1)), · · · , iτ−1(σ−1(r))) = (i(στ)−1(1), · · · , i(στ)−1(r)) = (στ)i,

where jk := iτ−1(k).

b. Next, consider E⊗r and σei = eσi = eσi1
⊗ · · · ⊗ eσir . Then (1)ei = e1i = ei and

σ(ρei) = σ(eρi) = eσ(ρi) = e(σρ)(i) = (σρ)ei by (a). Hence E⊗r is a G-set with the

above action extended linearly.

c. Define ei, jσ by (ei, jσ)(e) = ei, j(σe) (e ∈ E⊗r). Consequently, extending this ac-

tion linearly yields that N a right G-set because (ei, j1)(e) = ei, j(1e) = ei, j(e)

and ((ei, jσ)τ)(e) = (ei, jσ)(τe) = ei, j((στ)e) = (ei, j(στ))(e). Moreover, we have

(ei, jσ)ek = ei, j(σek) = ei, j(eσk) = δj, σkei = δσ−1j, kei = (ei, σ−1j)ek. It therefore follows

that ei, jσ = ei, σ−1j.

d. Arguing as in (c), we find that N∗ is a G-set with action (σe∗i, j)ek, ` = e∗i, j(ek, `σ) where

e∗i, j(ek, `) = δi, kδj, `. Moreover,

(σe∗i, j)ek, ` = e∗i, j(ek, `σ) = e∗i, j(ek, σ−1`) = δi, kδj, σ−1` = δi, kδσj, ` = e∗i, σj(ek, `)

by (c). So we have σe∗i, j = e∗i, σj.
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3.3 Main Results

69 NOTATION. Suppose χ is a character of G =
∑

r
. We set tχ :=

∑
σ∈G

χ(σ)σ ∈ KG,

L := tχE⊗r, NL := EndK(L), and AL := cf (L).

70 DEFINITION. Let T : KΓ → N be the representation corresponding to the KΓ-

module E⊗r. We define TL : KΓ → NL by TL(κ) = T (κ)
∣∣
L
.

The action of Γ on E⊗r clearly commutes with the action of G. So T (κ)(L) ⊆ L and TL is

well-defined.

71 LEMMA. ψ : (imT )tχ → imTL given by ψ(T (κ)tχ) = T (κ)
∣∣
L

is a K-isomorphism.

Proof. We have that ψ is well-defined and injective since,

T (κ)tχ = T (λ)tχ ⇔ T (κ)tχ(e) = T (λ)tχ(e) for all e ∈ E⊗r

⇔ T (κ)(tχe) = T (λ)(tχe) for all e ∈ E⊗r

⇔ T (κ)
∣∣
L

= T (λ)
∣∣
L
⇔ ψ(T (κ)tχ) = ψ(T (λ)tχ).

ψ is also surjective since ψ(T (κ)tχ) = T (κ)
∣∣
L

for any T (κ)
∣∣
L
∈ im TL. Finally ψ is a K-space

isomorphism since for all k ∈ K and for all T (κ)
∣∣
L
, T (λ)

∣∣
L
∈ im TL:

ψ(T (κ)tχ + T (λ)tχ) = ψ(T (κ + λ)tχ) = T (κ + λ)
∣∣
L

= T (κ)
∣∣
L

+ T (λ)
∣∣
L

= ψ(T (κ)tχ) + ψ(T (λ)tχ),

ψ(kT (κ)tχ) = ψ(T (kκ)tχ) = T (kκ)
∣∣
L

= kT (κ)
∣∣
L

= kψ(T (κ)tχ.

72 REMARK. The dual of ψ in Lemma (71) is the map ψ∗ : (imTL)∗ → ((imT )tχ)∗

defined by ψ∗(f)(T (κ)tχ) = f(ψ(T (κ)tχ)) = f(T (κ)
∣∣
L
) by Definition (30). Also since

N is a right G-set by Example (68c), it follows that HomK(KΓ, N) is a right G-set by

(fσ)(κ) = f(κ)σ. In particular, (Ttχ)(κ) = T (κ)tχ.
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73 LEMMA. (a) γ : AL → (imTL)∗ given by (γ(a))(TL(κ)) = a(κ) is a K-isomorphism.

(b) If ν = ψ∗ ◦ γ then ν(a) ◦ (Ttχ) = a as functions from KΓ to K for every a ∈ AL. (c)

AL = 〈e∗i, j ◦ Ttχ〉.

Proof. a. By Lemma (60b) we have AL = (kerTL)◦. Note that there exists an isomor-

phism F : (kerTL)◦ → (KΓ/ kerTL)∗ by Lemma (31b). Similarly, there exists an

isomorphism G : (KΓ/ kerTL)∗ → (imTL)∗ by the First Isomorphism Theorem. Now

define γ = G ◦ F . Consequently γ is an isomorphism with

γ(a)(TL(κ)) = G(F (a))(TL(κ)) = F (a)(κ + kerTL(κ)) = a(κ).

b. Let κ ∈ KΓ. Then by (a) (ν(a))(T (κ)tχ) = ψ∗(γ(a))(T (κ)tχ) = γ(a)(TL(κ)) = a(κ)

(T (κ)tχ ∈ (imT )tχ). Thus a(κ) = (ν(a))(T (κ)tχ) = ν(a)
(
(Ttχ)(κ)

)
= (ν(a) ◦ Ttχ)(κ)

by the last sentence of Remark (72). Consequently, ν(a) ◦ (Ttχ) = a.

c. First, AL ⊆ 〈e∗i, j ◦ Ttχ〉 since, using (b),we have for each a ∈ AL

a = ν(a) ◦ Ttχ = (ψ∗ ◦ γ)(a) ◦ Ttχ =
(∑

i, j

ai, je
∗
i, j

∣∣∣
(im T )tχ

)
◦ Ttχ

=
∑
i, j

ai, j(e∗i, j ◦ Ttχ) ∈ 〈e∗i, j ◦ Ttχ〉.

where we have used that ((imT )tχ)∗ is spanned by the restrictions of the e∗i, j to

(imT )tχ to express (ψ∗ ◦ γ)(a) as indicated. For the converse, let κ ∈ kerTL. Conse-

quently, T (κ)tχ = ψ−1(T (κ)
∣∣
L
) = ψ−1(0) = 0 by Lemma (71). Then since

(e∗i, j ◦ Ttχ)(κ) = e∗i, j(Ttχ(κ)) = e∗i, j(T (κ)tχ) = e∗i, j(0) = 0,

we may conclude that e∗i, j ◦ Ttχ ∈ ((imT )tχ)◦ = AL. Thus 〈e∗i, j ◦ Ttχ〉 ⊆ AL.
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74 LEMMA. There exists a well-defined K-endomorphism tχ of Ar with the property

tχci, j =
∑

σ∈G
χ(σ)ci, σj (i, j ∈ I).

Proof. Since Ar is spanned by the ci, j, it is enough to check that the assignment is well-

defined. Suppose ci, j = ck, `. Then k = iπ and ` = jπ for some π ∈ G (see Notation (55b)).

Then ck, σ` = ciπ, σ(jπ) = cπ−1i, σπ−1j = ci, πσπ−1j. So

tχck, ` =
∑
σ∈G

χ(σ)ck, σ` =
∑
σ∈G

χ(σ)ci, πσπ−1j =
∑
ρ∈G

χ(π−1ρπ)ci, ρj =
∑
ρ∈G

χ(ρ)ci, ρj = tχci, j,

where we have used the fact that characters are constant on conjugacy classes.

75 NOTATION. If E is replaced by L, the same construction (see Remark (56) and

Definition (62)) which yielded Sr results in a K-algebra, which we denote by Ss, L. Put

As, L := cf (L⊗s).

Theorem (76), Theorem (78), and Theorem (80) below are the main results. Theorem (76)

generalizes Proposition (54), Theorem (78) generalizes Theorem (58c), and Theorem (80)

generalizes Theorem (63b).

76 THEOREM. cf (tχE⊗r) = tχcf (E⊗r).

Proof. Note

(e∗i, j ◦ Ttχ)(κ) = e∗i, j((Ttχ)(κ)) = e∗i, j((T (κ)tχ) = (tχe∗i, j)(T (κ)) = ((tχe∗i, j) ◦ T )(κ).

Thus e∗i, j ◦ Ttχ = tχe∗i, j ◦ T . Now tχe∗i, j =
∑

σ∈G
χ(σ)σe∗i, j =

∑
σ∈G

χ(σ)e∗i, σj. Then by

Lemma (58c), Lemma (73c), Lemma (74), and since ci, j = e∗i, j ◦ T , we have

cf (tχE⊗r) = AL = 〈e∗i, j ◦ Ttχ〉 = 〈(tχe∗i, j) ◦ T 〉 =
〈(∑

σ∈G

χ(σ)e∗i, σj

)
◦ T

〉

=
〈∑

σ∈G

χ(σ)(e∗i, σj ◦ T )
〉

=
〈∑

σ∈G

χ(σ)ci, σj

〉
= 〈tχci, j〉

= tχ〈ci, j〉 = tχAr = tχcf (E⊗r).
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77 NOTATION. Let r1, · · · , ru ∈ Z+. For each i, let χi be a character of
∑

ri
and put

Lχi
= tχi

E⊗ri . We write
∏

i
tχi

Ari
to mean the set of all products

∏
i
ci with ci ∈ tχi

Ari
.

78 THEOREM. cf
(⊗

i
Lχi

)
=

∏
i
tχi

Ari
.

Proof. The matrix representation of a tensor product of modules is the Kronecker product

of the matrix representations of the factors (see the proof of Theorem (26)). By Theorem

(76), cf
(⊗

i
Lχi

)
=

∏
i
cf

(
Lχi

)
=

∏
i
cf

(
tχi

E⊗ri
)

=
∏

i
tχi

cf (E⊗ri) =
∏

i
tχi

Ari
.

79 COROLLARY. cf (L⊗s) = (tχAr)s for any s ∈ Z+.

Proof. Immediate from Theorem (78).

80 THEOREM. Ss, L
∼= A∗s, L.

Proof. Let TL : KΓ → End(L⊗s) be the representation afforded by L⊗s (extended to

KΓ). Then KΓ/ kerTL
∼= imTL = Ss, L by the First Isomorphism Theorem. Therefore

As, L = cf (L⊗s) = (kerTL)0 ∼= (KΓ/ kerTL)∗ = S∗s, L by Lemma (60b) and Lemma (31b).
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