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Abstract 
 
 

Prediction of degradation states like power and capacity fade is the most challenging issue 

for rechargeable batteries, which is called State of Health (SOH). Power and capacity fade is 

evaluated by predicting Available Power and estimating Maximum Capacity in a battery at any 

instant. This thesis proposes online estimation methods for SOH of an Absorbed Glass Mat (AGM) 

lead acid battery based on a second order Randles’ equivalent circuit model (ECM). Since the 

Maximum Capacity can be simply predicted based on estimated state-of-charge (SOC), this thesis 

has been mainly focused on prediction of Available Power. The Available Power is calculated 

based on a maximum allowable current and the terminal voltage using a second order Randles’ 

ECM. However, the parameters of the model vary continuously because of effects of amplitude of 

current, temperature, SOC in addition to aging process. After review of different methods of 

parameter estimations, I reformulated the continuous equation of the model into a difference 

equation of the Autoregressive Model with Exogenous input (ARX) and applied Linear Kalman 

Filter (LKF) to estimate the parameters. The performance of this technique has been better than 

recursive least square (RLS) methods, particularly at rapidly varying parameters optimized by 

selection of appropriate covariance matrices. In addition, the pre-calculated open circuit voltage 

(OCV) can reduce the number of the parameters that allows for stability of the estimation. For 

capacity fade, the Maximum Capacity is estimated using RLS under assumption that SOC is 

known. Experimental validation of both Available Power prediction and Maximum Capacity 
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estimation are conducted under aging condition as batteries are cycled. At the end, this thesis 

shows evaluation of SOH using the Available Power and Maximum Capacity. 
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1. Introduction 

1.1. Background 

As the transportation industry strives to electrify vehicles, the onboard battery management 

system (BMS) becomes one of the major issues that need further development. BMS monitors 

various states of a battery, such as current, voltage, temperature, State of Charge (SOC), and State 

of Health (SOH) [1]. Successfully monitoring of these states can prevent a battery from various 

damages, and they can also significantly improve the battery performance in a vehicle. This thesis 

focus on the algorithm development of SOH, including Available Power Prediction and Capacity 

Estimation. 

The major batteries used in a traditional vehicle are Lead acid batteries due to its low cost 

and safety consideration. Absorbed Glass Mat (AGM) battery became popular in early 1980s. It is 

capable to deliver a higher power on demand and offers a relatively longer service life than other 

types of Lead acid batteries. Thus, it is commonly used in a high-end vehicle that includes lots of 

power-hungry accessories, such as heated steering wheels, heated seats, and heated mirrors. AGM 

batteries were used to conduct required experiments in this thesis. 
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1.1.1. Basics of AGM Batteries  

AGM is an improved technology of Lead acid battery, and it can have a better performance 

than a regular flooded type Lead acid battery. The major difference in structure is that there is a 

mat of fine glass fibers that absorbed the electrolyte in an AGM battery. Obviously, this difference 

makes the AGM battery spill free, so that the hazardous material inside won’t spill out easily. 

Secondly, this improvement also reduces its internal resistance as compared with the regular type. 

A lower internal resistance allows a higher current output, thus the maximum Available Power of 

the battery is increased. Other advantages over regular flooded type Lead acid batteries are longer 

service life, lower weight, faster charge time, and better electrical reliability. On the other hand, 

there are a few disadvantages of AGM batteries. It has a lower specific energy and higher 

manufacturing costs.  

 

 

Figure 1: A typical AGM battery in high-end vehicles 
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1.1.2. Fundamental Chemical Reactions in AGM batteries 

There are plenty of chemical reactions in a Lead acid battery. Paul [2] has made a fully 

discussion about the chemical reactions at different potential-pH. The major reaction in a Lead 

acid battery is: 

 

( 1 )

In discharging, lead and lead dioxide dissolve into the electrolyte forming PbSO4 and water. 

The chemical energy is converted to electrical energy in this reaction while this process is reversed 

in charging condition.  

In thermodynamics, the Gibbs free energy is defined as: 

G  H TS  ( 2 )

, where H is enthalpy, T is absolute temperature, and S is entropy 

In chemical reaction, the variation of the equation ( 2 ) is used: 

G  H TS  ( 3 )

Thus, change of the free energy during chemical reaction is expressed as: 

G  G0  RT lnQ  ( 4 )

, where G0  is the change of  standard Gibbs’free energy, R is the ideal gas constant, and Q is 

the reaction quotient 

The potential of electrode in standard state condition is: 

E  
G

n F
 

( 5 )

, where n is the number of electrons involved in the redox reaction, F is the Faraday’s constant  

Combining ( 4 ) and ( 5 ), the redox potential of an electrode is defined by Nernst expression: 
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E  E 0 
RT

nF
lnQ 

( 6 )

, where E0   is the potential of electrode under standard conditions 

The overall Electromotive force (EMF) is defined as: 

E  ECathode
0  EAnode

0   ( 7 )

, where   is over-potential 

The major chemical reaction at positive electrode and its potential under standard condition 

is: 

( 8 )

The major chemical reaction at negative electrode and its potential under standard 

condition is: 

 
( 9 )

( 8 ) and ( 9 ) can be combined into one overall reaction and its potential under standard 

condition is:  

( 10 )

Besides, there are also some side reactions that take place in Lead acid batteries. The major 

side reaction at positive electrode and negative electrode are as follows: 

Pb  H2SO4  PbSO4  2H   2e;  E0  0.358V ( 11 )

2Pb  SO4
2  H2O PbO PbSO4  2H   4e;  E0  0.130V ( 12 )
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1.1.3. Intelligent Battery Sensor (IBS) 

Intelligent Battery Sensor (IBS) is a mechatronic component that used for online 

monitoring the battery conditions in a vehicle. It is connected to the negative terminal of the AGM 

lead acid battery. The IBS is shown in Figure 2. 

 

 

Figure 2: The structure of a typical IBS 

 

The software in the PC-board of the IBS can calculate SOC and SOH of the battery based 

on the measurement data including current, terminal voltage and temperature. Typical 

configuration of SLI system with IBS is shown in Figure 3. 
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Figure 3: Configuration of SLI system 

 

1.2. Motivations and Objectives 

The main objectives of BMS are protecting a battery from damage, prolonging the lifetime 

of a battery, and maintaining the battery in a required state. It is one of the key components in a 

vehicle. As there are more and more electrical activities in vehicles, researchers give more and 

more focus on BMS. Most researchers, e.g. [3] [4] [5] [6] [7, 7] [8] [9] [10] [11] [12], discussed 

BMS based on lithium-ion batteries., while only a few, e.g. [13] [14] [15] [16], focused on lead 

acid batteries.  Lead acid batteries are still widely used in vehicles, and need to conduct more 

research on this area. Researchers, e.g. Waag [17] and [18], have done an in-depth review of 

current BMS technologies for lithium-ion batteries. Most of these technologies can be applied to 

Lead-acid batteries as well, but their performances are not as good as lithium-ion batteries. The 

main reason is the different electrochemistry inside a battery. Those algorithms should be 

improved to fit for lead acid batteries, and BMS in Lead acid batteries still need further 

development.  
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BMS plays an important role of protecting the battery from dangerous conditions. A simple 

BMS may only monitor the current, voltage, and temperature. These can prevent the problems, 

including over-current, over-voltage, under-voltage, over-temperature, and under-temperature. 

However, these functions are not enough for a vehicle that has various power-hungry accessories. 

It is because batteries may not have enough power to carry out certain electrical activities or may 

not have enough energy to support an activity for a certain time. In this case, Monitoring SOH 

becomes a solution.  

Monitoring of batteries is a challenging task, because it involves complicated 

electrochemistry systems and has nonlinear behavior that related to a variety of internal and 

external conditions. Moreover, there are some significant changes in a battery’s characteristics 

when the battery ages, and this make it rather difficult to predict a battery behavior. Thus, advanced 

batteries algorithms are needed for BMS. 

There are certain criterions of the development of SOH for an AGM battery. One of the 

major criterions is the computational limitation. These batteries algorithms will be implemented 

into a microcontroller, which only has limited computational power. Thus, complicated models, 

such as electrochemical model, is avoided while a simple model, such as equivalent circuit model, 

is considered. Secondly, there is limited memory space in a microcontroller, Recursive methods 

are preferred, because they only need to store a few information and the information can update in 

each sample time. Lastly, the estimation results should have a high accuracy and reliability. Thus, 

advanced estimation techniques should be applied to achieve the required performance. 

There are also some other requirements for BMS in a lead acid battery. One is the terminal 

voltage limitation of a battery. Generally, the maximum terminal voltage of a lead acid battery is 
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14.3 V, and the minimum terminal voltage is 10.5V (not including cranking). The reason is that a 

battery will be damaged when exceeding these voltage limits.  

The objectives of this thesis are to develop estimation and monitoring algorithms of AGM 

batteries. Consistent with the objectives, major topics to be addressed are listed as below: 

 Identification of batteries parameters 

 Prediction of Available Power 

 Estimation of Maximum Capacity  

1.3. Thesis Outlines 

The basic structure of the thesis is shown as follows: 

1. Introduction 

First of all, this chapter discusses the research background. It also briefly introduces 

the basics of AGM batteries and the fundamental chemical reactions of a Lead acid battery. 

Then, the motivations and objectives of this thesis are addressed. 

2. Available Power Prediction 

This Chapter is the main focus in this thesis. First of all, this section introduces the 

Modeling of AGM batteries. After reviewing the various modeling methods, we selected 

Randles’ ECM to simulate the voltage response of AGM batteries. A fitting comparison is used 

to compare the fitting performance of different order of Randles’ ECM. This thesis shows the 

continuous equations of those models as well as the conversion process from continuous to 

discrete equations. Then, Parameters Identification methods are discussed. Two online 

parameters identification methods are proposed. Through simulation, I compare them and 

select a better approach. Then, this approach is validated both in simulation and experimental 
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data. Lastly, this section shows the Power Prediction process with those estimated parameters. 

This section shows three approaches to predict Available Power of a battery. One approach is 

selected and the experimental validation of that is shown in the aged process. 

3. Maximum Capacity Estimation 

In this chapter, the methods for estimation of Maximum Capacity are discussed. RLS 

is chose to be the final solution. Experimental validation capacity fade is shown in aging 

condition.  

4. Evaluation of SOH 

In this section, this thesis discusses how to make use of Available Power and capacity 

information to evaluate the SOH, and how to detect the battery failures. 

5. Conclusion and Future Research 

I summarize the main findings in this thesis and discuss the remaining works to do in 

the future.  
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2. Available Power Prediction 

2.1. Overview 

Available Power is the capability of batteries to deliver a certain power at any instant in the 

course of lifespan. Some researchers [19] also defined it as State of Function (SOF). The Available 

Power of a battery is the maximum charging and discharging power available under different SOCs, 

temperatures, and aging process. During aging process, the Available Power gradually decreases, 

which is referred as Power fade or SOHP. Prediction of Available Power plays an important role 

in vehicles. If the battery cannot deliver a certain amount of power for acceleration of actuators 

like the starter, engine cannot be cranked. If the charging current is too high, the terminal voltage 

of the battery becomes too high and as a result the battery is overcharged and the lifetime gets 

reduced. Reduction of the lifetime can be prevented if Available Power can be predicted and 

considered before the charging.  

 Existing techniques for prediction of Available Power can be divided into two categories, 

based on characteristic map or a model.  

 In the first category, authors [20] [21] recorded all experimental data in a characteristic 

map that is used to predict Available Power. It is very simple and can be easily implemented. 

However, this approach only considers the static power and has a low accuracy, because batteries’ 

characteristics are strongly depend on previous load history even in the same SOC, temperature 

and aging conditions. In addition, this approach does not work well for aging batteries, since the 

current aging condition is hard to define.  
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The second one is based on a battery model. Static power can be predicted by using the 

limiting terminal voltage. However, dynamic power can be predicted by the maximum current 

allowed over certain period of time through iteratively calculating the battery’s terminal voltage 

response until it reaches to the limiting values. Then, the Available Power is obtained by 

multiplying the maximum current with the terminal voltage. This technique can significantly 

increase the estimation accuracy, which can be found in [1] [22] [19] [23] [4] [24] [9]. Main 

differences in their research are type of model used for parameters identification. The models are 

based on ECM with either the first order or second order or state space representation or ARX. 

The methods for parameter identifications include EKF, UKF and RLS, where it is assumed that 

SOC is unknown. With unknown SOC, parameters estimation can work well under assumption 

that parameters do change slowly.  All of methods above proposed have been applied to lithium 

ion battery, but not to lead acid batteries where parameters are changing rapidly. Therefore, I 

selected the dynamic power prediction using a second order ECM in ARX form with known SOC 

and LKF. .  

2.2. Modeling of AGM batteries 

2.2.1. Review of Modeling Methods  

The parameters of a battery are mainly referred to as the impedance parameters. The value 

of the parameters continuously change along with the present battery conditions, such as SOC, 

temperature, and aging condition. The parameters have a strong relation with the SOH of a battery 

and can be directly used to predict the Available Power [24]. Some authors may also use the 

parameters to estimate the Maximum Capacity of a battery. Thus, batteries’ parameters should be 

identified prior to the development of the SOH algorithms.  

The techniques of identifying those parameters can be categorized into three groups.  
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 Electrochemical Impedance Spectroscopy (EIS).  

 Electrochemical Thermal Model (ETM). 

 Equivalent Circuit Model (ECM). 

The first technique is the most common method to investigate impedance in laboratories. 

Some researchers, such as [25], have measured the impedance by actively generating specific 

currents. This method needs extra excitation over a low to high frequency and has not found 

practical implementation yet. Other authors, such as [26], have developed a passive method, where 

the current fluctuations are used. However, it requires that current fluctuations must be both 

significant and periodic in a certain frequency range. These current fluctuations are not commonly 

present in vehicles, and thus the implementation is very limited. 

The second technique considers electrochemical models. There are mainly four approaches 

related to this group. The first approach [27] utilizes Sigma Point Kalman Filter to estimate 

electrolyte conductivity based on a single particle model. Then, it finds a relationship between 

change in electrolyte conductivity and battery resistance. The second approach [28] is also based 

on a single particle model. It separates the identification process into two parts, the first one that 

determines the unknown diffusion and boundary control input. The second part applies nonlinear 

least squares method to identify those unknown parameters. The third approach [29] simplifies the 

single particle model that depends on cell resistance and solid phase diffusion time of Li+ species 

in the positive electrode, and it makes use of online adaptive gradient-based recursive approach to 

estimate aging parameters. The last approach [30] combines the electrochemical model with a 

multi-rate particle filter to estimate SOC and parameters simultaneously.  

The third technique, Equivalent Circuit Model (ECM), simulates the battery terminal 

voltage response. Although it may not fully represent the various response of a battery, it 

significantly reduces the complexity and saves computational power. Approaches can be divided 



13 
 

into three categories. The first category [31] directly uses the nonlinear least squares to estimate 

parameters based on the nonlinear ECM model. It is very accurate and stable. However, it requires 

a high demand of memory and computing power, which makes it impractical to apply in a real 

vehicle.  The second category [3] [4] linearizes the nonlinear model into a state space model and 

various Kalman Filters are applied to estimate states and parameters. The advantages are to 

estimate the parameters online because the data only needs to be stored in the present time step. 

The last category [5] [19] converts the state space model into an autoregressive model with 

exogenous input (ARX). Then, recursive least squares method is applied to identify the battery’s 

parameters, which further simplifies the estimation process and avoids the complicated matrix 

calculation in the state space model. Batteries parameters identification methods can be 

summarized into Table 1: 

 

Table 1: Classification of the methods for the estimation of the battery impedance 

Approaches for the 

estimation of the 

battery parameters 

Based on Electrochemical 

Impedance Spectroscopy 

Based on active method [25] 

Based on passive method [26] 

Based on Electrochemical 

Models 

Based on relationship between 

electrolyte conductivity and 

battery resistance [27] 

Based on PDE, Pade identifier, and 

nonlinear least squares method 

[28] 

Based on adaptive gradient 

recursive approach [29] 
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Based on multi-rate particle filter 

method [30] 

Based on Equivalent Circuit 

Models 

Based on nonlinear models [31] 

Based on state space models [3] 

[4] 

Based on Autoregressive models 

with exogenous input (ARX) [5] 

[19] 

 

2.2.2. Collection of Measurement Data  

Before constructing the models of a battery, the measurement data should be collected. 

This is because the model is used to simulate the response of certain signals. There are three typical 

profiles in traditional vehicles, including Constant Current Charging, Constant Voltage Charging, 

and Constant Current Discharging.  

During charging, a battery is first under Constant Current Charging, and then under 

Constant Voltage Charging. This process is shown in Figure 4: 
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Figure 4: Typical Charging profile 

The typical profile during discharging is shown in Figure 5: 

 

Figure 5: Typical discharging profile 
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This thesis focuses on Constant Current Charging and Constant Current Discharging 

because there is no well-developed ECM to simulate the Constant Voltage process in an AGM 

battery.  

2.2.3. Randles’ ECM 

In this thesis, zeroth order, first order, and second order Randle equivalent circuit models 

are considered to estimate the parameters of batteries. The advantages and disadvantages of them 

are discussed. Generally, the lower the model order is, the less time it takes for calculation. On the 

other hand, the higher the model order is, the more accurate the model’s voltage response can 

represent a real battery. I also use real measured data to compare these three models’ voltage 

responses. 

2.2.3.1. The zeroth Order Model 

The zeroth order ECM is the simplest and is also referred to as the Ohmic’s model. It only 

consists of two elements, an ideal voltage source and a resistor as shown in Figure 6: 

: 

 

 

 

The voltage source represents the open circuit voltage (OCV) of a battery, and the resistor 

R0 represents the internal resistance of a battery. Although the ECM seems to be trivial, it is far 

Figure 6: The zeroth order ECM 
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more complicated because the complexity of the parameters it contains. There are only two 

parameters in this zeroth order ECM, but they are both a function of SOC, temperature, and aging. 

The parameters also have some relationship with current and time. In order to simplify these 

parameters, I start from discharging batteries with a constant current at constant temperature and 

same aging condition. Then, it is can be assumed that the OCV and parameters only depends on 

SOC. The zeroth order Randles’ ECM in continuous time can be derived as follows:  

0IROCVVt    ( 13 )

, where the positive sign of the current means discharging.  

 

At 60% SOC, a 3.5A constant discharging current is applied to an AGM battery. The 

simulated response compared with true response is shown in Figure 7:  

 

As can be seen from Figure 7, the zeroth order ECM has a very poorly fitting performance 

for the terminal voltage response of a constant current. It fails to capture the dynamics present in 

Figure 7: The zeroth order ECM fitting result for a voltage response 
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the voltage response of a battery. Actually, the response of a zeroth order ECM is a square wave, 

and this can represent the immediate voltage drop of a battery. It can be useful for some power 

applications, because this model is the simplest and has the fewest of parameters to identify.  

2.2.3.2. The first Order Model 

 

The first order ECM includes one pair of resistor R1 and capacitor C1 in series with the 

internal resistance R0. It can represent the terminal voltage response of a constant current better 

than zeroth order, but it requires two more parameters. The first order ECM is shown in Figure 8: 

 The added resistor R1 and capacitor C1 are functions of SOC, current, temperature, and 

aging condition. The corresponding equations of this first order ECM become much more 

complicated. Its inner dynamics in discharging can be represented in following two equations:  

Vt  OCV  IR0 VC1

C1

dVC1

dt


VC1

R1

 I VC1
0   0

 

 

( 14 ) 

In Laplace domain, the second equation in ( 14 ) is shown as follows:  

R1C1VC1
s s VC1

s   IR1

1

s

VC1
s   IR1

s 1 R1C1s  
IR1

1
R1C1

s
1

R1C1

 s






 

 

 

( 15 )

 

Figure 8: The first order ECM  
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Then, the result is: 

VC1
 IR1 1 e


1

R1C1

t







  

( 16 )

 

Combine ( 16 ) into the first equation in ( 14 ) : 

Vt  OCV  IR0  IR1 1 e


1

R1C1

t







  

( 17 )

 

At 60% SOC, a 3.5A constant discharging current is applied to an AGM battery. The 

simulated response compared with true response is shown in the Figure 9: 

 

Figure 9: The first order ECM fitting result for a voltage response 

 

In the Figure 9 above, the simulated response is much better than the response of the zeroth 

order ECM. It can represent the true battery terminal voltage response more accurate, but there are 
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still some discrepancy, especially in the first 20 seconds. The discrepancy in the beginning stage 

can lead to a much greater estimation of internal resistance R0, because the estimated model 

considering a greater voltage drop as compared with the true battery model. Moreover, the first 

order ECM requires more computational power than a simple zeroth order ECM, since there are 

four parameters that need to be identified.  

2.2.3.3. The second Order Model 

 The second order ECM looks very similar to the first order ECM. They both have resistor 

and capacitor pair, but the difference is that one more pair of resistor and capacitor. The circuit 

diagram of the second order ECM is shown in the Figure 10: 

 

 

The total number of the parameters to be estimated is six. The corresponding equations for 

the second order ECM is shown below: 

Vt  OCV  IR0 VC1
VC2

C1

dVC1

dt


VC1

R1

 I VC1
0   0

C2

dVC2

dt


VC2

R2

 I VC2
0   0

 

 

 

( 18 )

 

 

Figure 10: The second order ECM 
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Similarly to ( 15 ), 

R2C2VC2
s VC2

 IR2

1

s

VC2


IR2

s 1 R2C2s  
IR2

1
R2C2

s
1

R2C2

 s






 

 

 

( 19 )

Thus, 

VC2
 IR2 1 e


1

R2C2
t









Vt  OCV  IR0  IR1 1 e


1

R1C1

t







  IR2 1 e


1

R2C2

t









 

( 20 )

At 60% SOC, a 3.5A constant discharging current is applied to an AGM battery. The 

simulated response compared with true response is shown in Figure 11: 

 

Figure 11: The second order ECM fitting result for a voltage response 
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As can be seen from Figure 11, the simulated response can trace the terminal voltage 

response almost perfectly. It can accurately represent the inner dynamics of the terminal voltage 

response of a battery. However, the second order ECM requires two more parameters to be 

identified, which cost more computing time and power than the first order ECM.  

Comparing these three equivalent circuit models, each Randles’ ECM has its advantages and 

disadvantages. Selecting the best ECM should depend on its applications. In this thesis, the zeroth 

order ECM is not used because it completely fails to represent the dynamics of an AGM battery. 

Conversely, both the first order ECM and the second order ECM are considered for parameters 

identification. I discuss these two models in details at later chapter. 

2.3. Online Parameters Identification 

2.3.1. Reformulation of Continuous Model  

2.3.1.1. OCV Consideration 

Before determining these parameters (R0, R1, R2, C1, C2), the described models in previous 

section include one more unknown variable, which is the open circuit voltage (OCV). OCV is the 

terminal voltage of a battery when the battery is not in charging or discharging conditions. Since 

the OCV cannot be measured directly, it should be taken into consideration.  

There are three approaches. One is estimating the OCV and parameters simultaneously. 

This method usually makes use of the autoregressive model with exogenous input model. It treats 

OCV as a parameter and estimate it directly. However, this kind of approach may not be stable 

enough and may even lead to a divergent result.  



23 
 

The second method is converting OCV to SOC, and then estimating the SOC and 

parameters simultaneously. SOC is defined as the available capacity divided by the nominal 

capacity, which is the maximum amount of energy that can be charged into a battery without 

damaging the battery. The units of SOC are percentage. 100% SOC means the battery is fully 

charged while 0% indicates the battery is out of energy. Conversion of the OCV to SOC can utilize 

the OCV-SOC relationship. It is a certain relationship between SOC and OCV. In AGM battery, 

this relationship remains a relatively a constant value until the battery ages. Thus, it is easy to 

calculate one value from the other if this relationship is pre-measured. The OCV-SOC curve of the 

Lead acid batteries used for experiments is shown in Figure 12 

 

Figure 12: OCV-SOC curve at 25 degree Celsius 

 

OCV-SOC curve for an AGM battery is usually represented by a polynomial. In this thesis, 

the relationship is defined as follows: 
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OCV(x) = p1*x^5 + p2*x^4 + p3*x^3 + p4*x^2 + p5*x + p6 

Where x is SOC 

Parameter p1 p2 p3 p4 p5 p6 

Value 7.134 -21.21 24.36 -13.44 5.086 11.05 

 

On the other hand, the SOCk+1 can be expressed based on the SOCk with the capacity 

charged or discharged from k to k+1 step.   

max

1

1 3600Q

Idt
SOCSOC

k

k
kk




   

( 21 )

, where SOCk is the SOC at a current sample point and SOCk+1 is the SOC at a next sample point, 

Qmax is the estimated Maximum Capacity, and I is the current. 

This equation ( 21) of SOC allow a stable result for SOC. It has widely used in the Li-ion 

batteries, but this co-estimation of SOC and parameters may not have a good performance in Lead 

acid batteries. It can be used in co-estimation of SOC, but not for parameters. It is because the 

parameters (R1, R2, C1, C2) in Lead acid batteries may change with charging time [32], which 

causes the parameters identification process fluctuating and may even lead to a divergent result. 

The last approach has three steps: 

1. Estimate the SOC by Coulomb Counting 

2. Convert the SOC to OCV through the OCV-SOC relationship 

3. Treat OCV is a known variable and estimate the parameters with known OCV  

 

Coulomb Counting estimates SOC based on the equation ( 21). This method highly depends 

on the accuracy of current measurement. Then, the second step is same in the second method, 
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which is also very reliable. Thus, it can reduce one unknown variable during estimation process in 

step 3. It makes the estimation process faster and more stable. I propose using the third approach.  

2.3.1.2. Continuous Models Representation 

The equations of ECM shown in the previous section are all in continuous time. If it is 

assumed that the current is a constant value, then a nonlinear Least Square method can be directly 

applied to identify these parameters.  

For a first order ECM,  

Vt OCV  IR0  IR1 1 e


1

R1C1

t







 OCV Vt  IR0  IR1 1 e


t

R1C1










( 22 )

Since OCV can be considered as a known variable (see 2.4.1.1), let y  OCV Vt  

y OCV Vt

 y  IR0  IR1 1 e


t

R1C1










 y  R0  R1  I  R1Ie


1

R1C1

t

 

 

 

( 23 )

 

Let a0  R0  R1  I a1  R1I b  
1

R1C1

, then baa  and , , 10  are used to simplify this 

model: 

y  a0  a1e
bt  ( 24 )

The simplified model can be identified by nonlinear Least Square method. Matlab function 

“fit” is used to calculate baa  and , , 10 . Since I  is assumed to be a constant, the parameters are 

shown as follows: 
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R1  
a1

I
R0 

a0

I
 R1 C1  

1

R1b
 

( 25 )

Similarly to first order ECM, the parameters in a second order ECM can be identified:  

Vt  OCV  IR0  IR1 1 e


1

R1C1

t







  IR2 1 e


1

R2C2

t









( 26 )

y  OCV Vt

 y  IR0  IR1 1 e


t

R1C1








  IR2 1 e


1

R2C2

t









 y  R0  R1  I  R1Ie


1

R1C1

t

 R2Ie


1

R2C2

t

 

 

 

( 27 )

Let a0  R0  R1  I a1  R1I a2  R2I b1  
1

R1C1

b2  
1

R2C2

 

y  a0  a1e
b1t  a2e

b2t  ( 28 )

The parameters can be identified through the following equations: 

R1  
a1

I
R2  

a2

I
R0 

a0

I
 R1  R2 C1  

1

R1b1

C2  
1

R2b2

( 29 )

Although parameters can be identified directly in the continuous time, this approach cannot 

be used for online parameters identification. One reason is that the current is assumed to be a 

constant, but the current in real application changes frequently. The other reason is that this 

nonlinear Least Square fitting process takes relatively more time and consume more memory as 

compared with discrete model. It needs to store all the prior information, because the fitting process 

considers all the past data to generate a best fitting curve. If applied online, it needs to run the 

calculation process in each time step and make it take longer time than recursive Least Square 

method.  
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2.3.2. Discretization 

In order to identify these parameters online, it is required to convert these continuous 

models in discrete time. There are two approaches to transfer the continuous model into a discrete 

model. One is in time domain and the other is to find equation in Laplace domain and then convert 

them into difference equations. I compare these two transformations and select a better one. All 

these analysis is discussed based on first order system, because it is easier to calculate and the 

transformation performance should be the same for both first order and second order ECM. 

 

2.3.2.1. By First Order Taylor Approximation: 

For a first order Randles’ ECM 

Vt  OCV  IR0 VC1

C1

dVC1

dt


VC1

R1

 I
 

 

( 30 )

dVc1

dt


Vc1

R1C1


I

C1


VC1

k 1  VC1
k 

T


VC1
k 

R1C1


1

C1

I k 

VC1
k 1   1

T

R1C1







VC1
k   T

C1

I k 

 

 

 

 

( 31 )

  

           Let y k  OCV k  Vt k , 

y k  OCV k Vt k 
 y k   R0I k Vc1

k 
 

 

( 32 )
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The equation ( 32 ) in k-1 time step as: 

y k 1   R0I k 1  Vc1
k 1 

 1
T

R1C1







y k 1   1
T

R1C1







R0I k 1  1
T

R1C1







Vc1
k 1 

 

( 33 )

Then, use the equation in present time step ( 32 ) to minus the equation in previous time 

step ( 33 ): 

y k   1
T

R1C1







y k 1   R0I k  Vc1
k   1

T

R1C1







R0I k 1   1
T

R1C1







Vc1
k 1 

 y k   1
T

R1C1







y k 1   R0I k   1
T

R1C1







R0I k 1  T

C1

I k 1 
 

 

 

( 34 )

In difference equation form: 

y k   a1y k 1  b0I k   b1I k 1  ( 35 )

, where a  1
T

R1C1







, b0  R0, b1 
T

C1

 R0 1
T

R1C1







 

The parameters can be identified: 

R0  b0 C1 
T

b1  a1b0

R1 
T

C1 1 a1 
 

( 36 )

 

2.3.2.2. By Laplace Transform:  

Vt  OCV  IR0 VC1

C1

dVC1

dt


VC1

R1

 I VC1
s   I s R1

s 1 R1C1s 
 

 

( 37 )
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Combine these two equations in ( 37 ): 

OCV s -Vt s 
s


R0I s 

s


R1I s 
s 1 R1C1s 

y s   I s R0R1C1s  R0  R1

R1C1s 1

 

 

 

( 38 )

By using bilinear transformation s 
2

T

1 z1

1 z1 ,  

Y z1 
U z1 


R0R1C1

2
T

1 z1

1 z1






 R0  R1

R1C1

2
T

1 z1

1 z1






1

Y z1 
U z1 



R0T  R1T  2R0R1C1

T  2R1C1


R0T  R1T  2R0R1C1

T  2R1C1

z1

1
T  2R1C1

T  2R1C1

z1

 

 

 

 

( 39 )

Then, the equation ( 39 ) is shown in difference equation form: 

y k   a1y k 1  b0I k   b1I k 1  ( 40 )

, where a1  
T  2R1C1

T  2R1C1

, b0 
R0T  R1T  2R0R1C1

T  2R1C1

, b1 
R0T  R1T  2R0R1C1

T  2R1C1

 

The parameters can be identified: 

R0 
b0  b1

1 a1

, R1 
b0  b1

1 a1

 R0,C1 
T (1 a1)

2 1 a1 R1

 
( 41 )

2.3.2.3. Comparison of Discretization Methods 

The discrete equations derived from time domain and Laplace domain seem to be in the 

same form. Both contain 101  and , , bba , which means that they get same values for 101  and , , bba in 
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the parameters identification process. However, the final parameters R0, R1, and C1 are calculated 

by different equations of 101  and , , bba .  

Suppose that R0  0.009057 R1  0.0157 C1  2392F . Matlab are used to 

simulate response y with a constant input of 14 A. The comparison result is shown in Figure 13: 

 

Figure 13: Comparison of continuous and discrete equations 

 

As can be seen in the figure above, both of the two transformation approaches can achieve 

satisfactory result to simulate the response. However, the equation derived by bilinear transform 

is much more complicated than the equation derived by Taylor approximation and requires more 

computational power. Thus, I select the method of Taylor approximation.   
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2.3.2.4. Final Discrete Model 

The second order ECM is selected in the section of Approaches for Parameters 

Identification in Continuous Model, and time domain is chosen in the Approaches to Convert 

Continuous Model to Discrete Model. This section shows the final model, which is the Discrete 

Model of second order ECM in time domain.  

For a second order ECM, the continuous models are: 

Vt  OCV  IR0 VC1
VC2

C1

dVC1

dt


VC1

R1

 I VC1
0   0

C2

dVC2

dt


VC2

R2

 I VC2
0   0

 

 

 

 

( 42 )

Through Taylor Expansion, the following two equations can be derived: 

dVc1

dt


Vc1

R1C1


I

C1


VC1

k 1  VC1
k 

T


VC1
k 

R1C1


1

C1

I k VC1
k 1   1

T

R1C1







VC1
k   T

C1

I k  

dVc2

dt


Vc2

R2C2


I

C2


VC2

k 1  VC2
k 

T


VC2
k 

R2C2


1

C2

I k VC2
k 1   1

T

R2C2







VC2
k  T

C2

I k  

Let y k  OCV k  Vt k , 

OCV k  Vt k   R0I k Vc1
k  Vc2

k 

y k   R0I k  1
T

R1C1







Vc1
k 1   I[k 1]

T

C1

Vc2
k 

 

( 43 )

Let a1  1
T

R1C1







, the previous time step of ( 43 ): 

a1y k 1   a1R0I k  2   a1Vc1
k  2  a1Vc2

k 1  ( 44 )
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Using the equation in current time step minus the last time step: 

y k   a1y k 1   R0I k  [
T

C1

 a1R0 ]I k 1 Vc2
k   a1Vc2

k 1 
( 45 )

In previous time step of ( 57 ), let a2  1
T

R2C2







:  

a2y k 1   a2a1y k  2   a2R0I k 1   a2[
T

C1

 a1R0 ]I k  2  a2Vc2
k 1   a2a1Vc2

k  2  ( 46 ) 

 Using the equation in last time step minus the second last time step: 

y k   (a1  a2 )y k 1  a1a2y k  2 

 R0I k  T

C1

 a1R0  a2R0









 I k 1   a2[

T

C1

 a1R0 ]I k  2   T

C2

I k 1   a1

T

C2

I k  2 

 y k   (a1  a2 )y k 1   a1a2y k  2   R0I k   T

C1


T

C2

 a1R0  a2R0









 I k 1   [a1a2R0 

T

C1

a2 
T

C2

a1]I k  2 

  

( 47 )

Thus, the final model is: 

y k  1y k 1  2y k  2  3I k  4I k 1  5I k  2  ( 48 )

, where 

1  a1  a2,2  a1a2,3  R0,4 
Ts

C1


Ts

C2

 R0 a1  a2 ,

5  R0a1a2  a2

Ts

C1

 a1

Ts

C2

, a1 1
Ts

R1C1

, a2 1
Ts

R2C2
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2.3.3. Approaches to Parameters Identification using Discrete Model 

2.3.3.1. Recursive Least-square (RLS) Method 

This section introduces the method to identify these parameters by recursive Least-squares 

(RLS) method. It is the most basic way to identify parameters in a system. This section also 

introduces its improved version, which is called RLS with forgetting factor.  

Before introducing the RLS, the Least Squares method is briefly explained because RLS 

is just a recursive form of Least Square method. Let us consider an Autoregressive model with 

exogenous input (ARX) system: 

( 49 )

, where , y(k) is the output at k step, , 

u(k) is the exogenous input at k step, and e is the disturbance 

 

The ARX model is one of the standard estimation models for Least Squares. In the Least 

Squares estimation form, it is written as follows: 

y(k)  T (k)̂  ( 50 )

, where   represents the known 

variables, and  represents the parameters need to be 

identified. 

During a time interval1 t  N , input and output data collected are as follows: 

        NyNuyuZ N ,,,1,1   ( 51 )
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The Least Squares method minimizes the mean square error to estimate the optimum 

parameters̂ . The loss function of a common Least Squares is:  

V ̂, Z N   1

N
1
2 y k  T k ̂ 

2

k1

N

  
( 52 )

In order to get a minimal value with regard to parameters, the loss function is differentiated:  

dV ̂, Z N 
d

 
1

N
y k  T k ̂ 

k1

N

 T k   0
( 53 )

  In matrix form, y(k)  T (k)̂  can be represented as: 

Y N    N ̂  ( 54 )

, where ,  

 

Assume matrix is nonsingular, and then the parameters can be identified in the following 

steps: 

̂  Y

T̂  TY

̂  (T)1TY

 

 

( 55 )
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When there are some parameters that appear to be abnormal or people want to focus on 

some important parameters, a weighting factor matrix W can be added to adjust the weight of these 

parameters during identification process.  

̂  (TW)1TWY  ( 56 )

As can be seen, the Least Squares method estimates the parameters in one single step 

considering all the measured data. In order to make this process recursive, two extra notations 

should be introduced: 

P(k)  [T (k)(k)]1  [ (i)T (i)
i1

k ]1

K(k)  P(k)(k)
 

( 57 )

For the current step,  

̂  (T)1TY ̂(k)  P(k)[ (i)y(i)
i1

k ]  P(k)[ (i)y(i)
i1

k1 (k)y(k)] ( 58 )

For the last step, 

̂ (k 1)  P(k 1)[ (i)y(i)
i1

k1 ] (i)y(i)
i1

k1  P1(k 1)̂(k 1) ( 59 )

Then, 

P1(k)  (i)T (i)
i1

k  (i)T (i)
i1

k1 (k)T (k)  P1(k 1)(k)T (k)

 P1(k 1)  P1(k)(k)T (k)
 

( 60 )

Plug the result ( 60 ) back to the last step equation ( 59 ) 

(i)y(i)
i1

k1  P1(k)(k)T (k) ̂ (k 1) ( 61 )

Plug the result ( 61 ) back to the current step equation ( 58 ) 

̂ (k)  P(k) P1(k)(k)T (k) ̂ (k 1)  (k)y(k)

̂ (k)  ̂ (k 1) P(k)(k)T (k)̂ (k 1) P(k)(k)y(k)

̂ (k)  ̂ (k 1) K(k)(k)

 

( 62 )
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Then P(k) and K(k) are also need to be updated 

P(k)  [T (k)(k)]1  T (k 1)(k 1)(k)T (k) 
1

 P1(k 1)(k)T (k) 
1

 

( 63 )

By matrix inversion lemma: (A  BCD)1  A1  A1B(C1  DA1B) 1DA1 

P(k)  P(k 1) P(k 1)(k) I T (k)P(k 1)(k) 
1
T (k)P(k 1) ( 64 )

K(k)  P(k)(k)  P(k 1)(k) I  I T (k)P(k 1)(k) 
1
T (k)P(k 1)(k) 

 K(k)  P(k 1)(k)[I T (k)P(k 1)(k)]1

 
 

( 65 )

In summary, an initial condition should be provided at first: 

P(k0 )  [T (k0 )(k0 )]1

̂ (k0 )  P(k0 )T (k0 )Y (k0 )
 

( 66 )

Then, it is assumed that T  is non-singular for all k. Thus, the parameters can be updated 

in each step as follows: 

K(k) 
P(k 1)(k)

I T (k)P(k 1)(k)

̂ (k)  ̂ (k 1) K(k)[y(k)T (k)̂ (k 1)]

P(k)  P(k 1)K k T (k)P(k 1)

 

 

( 67 )

Since the parameters are a function of temperature, SOC, current, and aging, the true 

parameter values may continuously change during estimation process. Thus, it is better to give a 

high weight factor on the most recent measurement data. This can be done with a forgetting factor

  that makes the previous data less important. The estimation steps become: 
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K(k) 
P(k 1)(k)

 T (k)P(k 1)(k)

̂ (k)  ̂ (k 1) K(k)[y(k)T (k)̂ (k 1)]

P(k) 
P(k 1) K k T (k)P(k 1)



 
( 68 )

2.3.3.2. Kalman Filter (KF) Method 

KF can also be used for parameters identification in ARX model. Firstly, the standard KF 

method is briefly discussed. Consider a state space model with noises, wk and vk: 

xk kxk1  Bkuk1 wk1

zk  Hkxk  vk

 
( 69 )

, where the covariance of this model are: 

E(w
k
w

i
T )  Q

k
, i  k

0, i  k

E(v
k
v

i
T )  R

k
, i  k

0, i  k

E(w
k
v

i
T )  0, for all k and i

 

The state update of this algorithm is:  

 
Figure 14: Standard Kalman Filter process 
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 Under consideration that the parameters are states, the Kalman Filter can be directly 

applied to the ARX model: 

 

Then, the parameters identification process becomes: 

 

K(k) 
P(k 1)(k)

R T (k)P(k 1)(k)

̂(k)  ̂ (k 1) K(k)[y(k)T (k)̂ (k 1)]

P(k)  P(k 1)K k T (k)P(k 1)Q

 
( 70 )

  

When I compare RLS with LKF, performance of them is quite similar. The major 

difference is the update of error covariance matrix. LKF has two tuning factors Q and R while 

RLS only has one . By selecting a good set of Q and R value, the estimation becomes fast and 

accurate. When Q is decreased, the estimation result will be more stable but follow the 

measurement data slower. Conversely, when R is decreased, the estimation result will follow the 

measurement data faster but be less stable. The effects of Q and R are shown in following two 

figures. 
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Figure 15: Effects of Q on errors 

 

 

 

Figure 16: Effects of R on errors 
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In practice, the values of Q and R are determined based on stability of parameters 

estimation and errors of terminal voltage. Basically, the values of Q and R can be adapted 

dependent upon speed of changing parameters and the level of noises that should be removed. 

Several sets of the values have been applied for this battery dependent upon six current profiles 

under CC mode. The profiles are charging- resting, resting-charging, charging-discharging, 

discharging-resting, resting-discharging and discharging-charging. The values of Q and R used 

in the experiment is shown in Table 2. However, other combination of two values can deliver the 

similar results as well.  

 

Table 2: Table of Q and R values 

Profiles Q R 

Charging-resting diag([0.1 0.1 0.01 0.01 0.01]) 0.01 

Resting-charging diag([0.5 0.5 0.02 0.02 0.02]) 0.1 

Charging-discharging diag([0.01 0.01 0.01 0.01 0.01]) 0.01 

Discharging-resting diag([0.05 0.05 0.01 0.01 0.01]) 0.01 

Resting-discharging diag([0.5 0.5 0.02 0.02 0.02]) 0.01 

Discharging-charging diag([0.05 0.05 0.01 0.01 0.01]) 0.1 

 

2.3.4. Validation of Parameters Identification 

2.3.4.1. Simulation Validation 

Before implementing these identification process into real experiments, these two 

approaches have been evaluated by simulation using the first order and second order ECM and 
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Simulink. In the first order ECM, the OCV part is excluded, so the model only contains a resistor 

and one set of RC circuit, as shown in Figure 17. 

 

Figure 17: Simulink model of first order ECM 

 

The predefined parameters in the first order ECM are: 

R0  8103 R1  8103 C1  500F  

A step current input is applied to the first order ECM system, where the direction of positive 

current is discharging. Then there should be a voltage drop corresponding to a positive current. 

The current input and voltage response are shown in Figure 18: 
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Figure 18: Input and output of a first order ECM system 

In this simple system, all three techniques (including nonlinear Least Squares, Recursive 

Least Squares, and KF) are applied to estimate its parameters. The results are shown in Figure 19: 

 

Figure 19: Parameters identification results of first order ECM system with a step input 
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As can be seen in the Figure 19, parameters that estimated by those three methods can all 

achieve satisfactory results. The nonlinear Least Square method is the most accurate way to 

estimate the parameters, but this method cannot be applied online due to the high memory required. 

The estimated parameters are also verified by comparing their response to the same input. The 

comparison is shown in Figure 20: 

 

 

Figure 20: Validation of the estimated parameters 

 

Then, another simulation is performed to compare RLS and KF for estimation of varying 

parameters, because those parameters in reality also vary, and are changing with several factors, 

including SOC, temperature, aging conditions, and direction of current. In this simulation, R0 and 

R1 are changing with time while C1 still keeps at a constant value. Input is also changed to a 

repeating stair function. The input and output of this system is shown in the Figure 21: 
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Figure 21: Input and output of the repeating stair function 

The estimated parameters are shown in Figure 22 

 

Figure 22: Parameters identification results of first order ECM system with varying parameter 
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The responses using estimated parameters are compared by simulation as shown in Figure 

23: 

 

Figure 23: Validation of the varying parameters 

 

In comparisons, both of RLS and KF show similar performances and can be used to 

estimate the parameters. However, KF is selected because of more flexibility in the tuning process. 

KF has Q and R that can be tuned to achieve satisfactory result while the RLS only has one tuning 

factor, which is the forgetting factor. Therefore, KF actually has a slightly better result than RLS 

in the estimation results. 

The second order ECM system is also built using Simulink model. The OCV is added to 

the system in this improved system. The OCV is defined as a function of SOC, and the SOC is 

estimated by Ah Counting method. The simulation of a second order ECM is shown in following 

Figure 24 
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Figure 24: Simulink model of second order ECM 

 The true parameters in this Simulink model: 

 R0 = 0.008   

 R1 = 0.05   

 R2 = 0.005   

 C1 = 2000 F 

 C2 = 2000 F 

 

A simple profile is applied to the second order ECM. The input current, output voltage, 

and SOC are shown in Figure 25 
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Figure 25: Input and output of the second order ECM system 

 

There is no calculation at the beginning stage (both input and output are constants), since 

there is no excitation signal. The initial values of these parameters are estimated by Least Square 

method with the data collected in first 1000s data. The parameters are shown in Figure 26: 
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Figure 26: Parameters estimation results of second order ECM system 

 

The estimated parameters can be validated by simulation of the response of the original 

input. This is shown in Figure 27: 
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Figure 27: Validation of second order ECM 

2.3.4.2. Experimental Validation 

 After the parameters identification method is evaluated by Simulation, I also applied those 

methods to some real experiments. Pulse discharging is applied to a fresh battery from 100% SOC 

to 0% SOC at a constant temperature of 25C . The input current and measured Terminal Voltage 

are shown in Figure 28.  
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The estimated parameters are shown as follows:  

 

Figure 29: Estimated R0 vs SOC 

 

   

Figure 30: Estimated R1 vs SOC                                 Figure 31: Estimated C1 vs SOC 
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Figure 32: Estimated R2 vs SOC                           Figure 33: Estimated C2 vs SOC 

 

In order to validate this test result, I also used the estimated parameters to calculate the 

terminal voltage.  

 

Figure 34: Validation of parameters estimated from experiment  
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2.4. Prediction of Available Power 

2.4.1. Review of Methodology 

The power capability of the battery should be limited in the safe operation range. The 

limiting factors include the terminal voltage, current, and SOC. Early researchers focused on the 

limit based on SOC, because it is easy to start and implement. Plett [23] mentioned one of these 

methods called rate limit based on SOC. It assumes that the present available energy, which is 

SOC, is a constant value and is estimated by SOC estimation techniques. Then, I can calculate the 

power of a battery over a certain time period by using the available energy divided by the time 

period. However, the amount of energy in a battery changes when the charging or discharging 

current is changing. It makes this method not accurate enough for immediate power estimation.  

In order to avoid the assumption of constant energy in the first approach, recent researchers 

make use of the voltage limit in a battery to predict the battery’s Available Power based on a model. 

This approach needs to identify battery’s parameters first. Some researchers [19] propose a simple 

Ohmic’s model, which only consist of a simple resistor and OCV. The problem is that it cannot 

simulate power for a certain period of time. Other researchers used first order or second order 

ECM to predict the Available Power. This method makes the power can be predicted in different 

time periods under consideration of temperature and aging effect. The only disadvantage is that it 

requires a high computational power. The major methods for calculation of SOHP are shown in 

Table 3. 
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Table 3: Methods for calculation of SOHP 

Methods Pros Cons 

Rate limits based on 

SOC [23] 

 Simple 

 Low computation power 

 Suitable for long time 

power prediction  

 Low accuracy 

 Update Qmax is required 

 

Rate limits based on 

voltage with simple 

Ohmic’s model [19] 

 Simple 

 Low computational power 

 Accurate for instantaneous 

power prediction  

 Cannot predict power for Δt 

seconds 

 

Rate limits based on 

voltage with complex 

models [7] [22] 

 Accurate 

 Good aging and 

temperature consideration 

 High computational power 

 

 

In addition, there are other methods that used experiment to find out the power capability.  

Parity-relation is one of these methods [20]. During cranking, there is a significant voltage loss. It 

looks at this cranking behavior of a lead acid battery, and builds a relationship with aging condition. 

This behavior is more reliable than a simple Ohmic’s model, because experiments indicated that 

there is a linear relationship between voltage and current in the same condition. This is shown in 

following figure 3: 
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Figure 35 [20]: Typical voltage vs. current plot of a battery during cranking 

 

The voltage estimated by the parity relation model may have a discrepancy with the real 

measured terminal voltage. This discrepancy is defined as the residual. Then, a pre-defined 

threshold is used to evaluate its performance. The result also needs to consider the effect of SOC 

and temperature. The whole process is shown in Figure 34: 

 

Figure 36 [20]: Complete process of parity-relation-based method 
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2.4.2. Approaches to Predict Available Power 

The Available Power of battery is not easy to measure directly. It is common to predict the 

maximum current and multiply the predicted current with voltage limit instead. In real life 

application, constant current is the most common current profile. Thus, the charging and 

discharging current are assumed to be constant during the prediction period. This can greatly 

simplified the prediction process. Generally, the prediction period is up to 10 second. Since the 

prediction period is relatively short, simple approach only predicts the instantaneous power and 

assume the power is a constant during the prediction period. On the other hand, some advanced 

techniques can predict the power over certain period of a time. These methods are more accurate 

and are used in some application that requires a high precision.. This section discusses these in 

detail. 

There are four approaches that can be used for on-line prediction of available charging and 

discharging power. The first one is based on characteristic map. This approach needs a lot of pre-

measurement information and try to build a relationship between them. It is not discussed here. 

The second method is based on State of Charge (SOC) while the last two are based on terminal 

voltage of battery. This thesis analyzes the pros and cons of these three approaches and select the 

best one.   

2.4.2.1. Rate Limits Based on SOC 

The first approach is called Rate Limits Based on SOC. This approach assumes the energy 

stored in a battery is a constant value. The current energy level can be represented by the value of 

SOC. For a constant current I, current and SOC has the following relationship: 
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SOCk1  SOCk 
I dt

k

k1


3600Qmax

 

( 71 )

, where the SOCk is the present SOC, SOCk+1 is the predicted SOC after charging or discharging 

for a certain period of time in the future, Qmax is the Maximum Capacity in ampere-hour, and I is 

the current (assume positive value for discharging and negative value for charging). 

If SOC is defined in a certain limit such that SOCmin (usually is 0) < SOC < SOCmax (usually 

is 1) for a battery. For a constant current, the integration part  in the previous equation can 

be replaced by . Through a simple algebra, the following two equations can be derived: 

Imaximum discharging 
SOCmax  SOCk

t
3600Qmax  

( 72 )

Iminimum charging 
SOCmin  SOCk

t
3600Qmax  

( 73 )

After current is predicted, the available charging and discharging power can be calculated 

by the following two equations: 

Pmaximum discharging Vt  Imax  ( 74 )

Pmaximum charging  Vt  Imin  ( 75 )

, where Vt is the terminal voltage of a battery, Imin is a negative value so the absolute value of it is 

taken. 

This approach is very simple and can predict the Available Power for any time period. 

However, there are two key issues.  

It is assumed that the energy stored in the battery is a constant value. While the Maximum 

Capacity changes very slowly and can be assumed to be a constant, the amount of energy can be 

released or absorbed will change when the current changes. More specifically, a high discharging 

I dt
k

k1



t  I
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current reduces the amount of energy that can be released, and a high charging current reduces the 

amount of energy that can be absorbed. Thus, the prediction accuracy will be low when the 

absolute value of current is high.  

The other issue is about the accuracy of SOC estimation. Since this approach requires a 

present SOC as an input, the estimation of SOC should be accurate to ensure accurate power 

prediction.  

2.4.2.2. Rate Limits Based on Terminal Voltage 

The other two approaches are discussed in this section. While the first method is based on 

a simple model, the second approach is based on a complicated model.  

Both of these two approaches do not need the previous inaccurate assumption that the 

stored energy in the battery is a constant value. Conversely, these methods are based on the very 

important limitation on the terminal voltage. There is a terminal voltage drop during discharging. 

This voltage decreases when the discharging current increases. In order to protect the battery from 

reaching to a low terminal voltage level, a minimum value is specified for a battery. The maximum 

discharging power is the one when the terminal voltage reaches this specified minimum value. At 

same time, the current also increases to a maximum value. Since the available discharging power 

is a product of terminal voltage and current, the maximum available discharging power can be 

expressed as a product:  

Pmaximum discharging Vt, min  Imax  ( 76 )

Similarly, the terminal voltage increases during charging and a maximum terminal voltage 

is specified for a battery. The maximum charging power is the one when the terminal voltage 



58 
 

reaches its maximum value and charging current reaches its minimum value (the sign of the current 

at discharging is negative). Thus, the maximum available charging power can be expressed as: 

Pmaximum charging  Vt, max  Imin  ( 77 )

The specified minimum and maximum terminal voltage are fixed values, so the prediction 

of available charging and discharging power can be obtained by finding out the maximum current 

that makes the terminal voltage to reach its maximum or minimum specified values. 

2.4.2.2.1. Zeroth Order Randles’ Model 

The first method makes use of the simple Ohmic’s model. R0 represents the internal 

resistance of battery that is used to simulate the immediate voltage drop when a constant current 

is applied. 

 

The dynamic resistance of battery can be expressed as:  

Rinternal resistance 
Vt

I
 

( 78 )

In the prediction process, the initial current is zero and the initial terminal voltage is the 

same with the open circuit voltage (OCV). OCV is a function of SOC, which relationship is already 

known. The Kalman Filter can be used to estimate SOC, so the value of OCV can be calculated. 

Since the maximum Available Power is the one when the terminal voltage reaches the design limits, 

Figure 37: First order ECM 
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the final voltage is the terminal voltage limits. The internal resistance is estimated in the parameters 

identification process. Thus, the only unknown in the equation is the final current and can be 

predicted in equation ( 79 ).. 

I predict 
OCV Vt, set

R0

 
( 79 )

, where Vt, set is equal to the minimum terminal voltage in discharging or the maximum terminal 

voltage in charging. 

This approach is also very simple and only requires a low computational power. Thus, it 

can be easily implemented into the microcontroller. Moreover, it is accurate for instantaneous 

power prediction, but prediction during a period is not possible.  

2.4.2.2.2. Second Order Randles’ ECM 

 The last approach is based on a second order Randles’ ECM to simulate the Available 

Power.  

 

 

The parameters (R0, R1, R2, C1, and C2) are estimated in the parameters identification 

process. OCV can be calculated by the using the estimated SOC and the known relationship 

between OCV and SOC. If I input a current into this model, the terminal voltage response of the 

corresponding current can be calculated by iterative process, so an optimum current that can make 

Figure 38: Second order ECM 
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the terminal voltage equals to the voltage limit can be obtained. Flowchart for this iterative process 

is shown in Figure 39. 

 

 

 

The second order ECM not only can represent the immediate voltage response of a battery, 

but also be used to predict the voltage response for 10 seconds or 20 seconds. Although the 

parameters and OCV may change for a long time charging or discharging, they can be assumed to 

be constant during the prediction process. Thus, it is possible to predict the power for 10 seconds 

accurately, which is the typical longest period required for vehicle applications. The only 

disadvantage of this approach is the calculation time needed for iteration. 

2.4.3. Experimental Validation of Power Prediction 

The standard power measurement method uses Hybrid Pulse Power Characterization 

(HPPC) cycle that is commonly used for Lithium ion battery. However, it cannot be applied to 

Figure 39: Flow chart of Available Power Prediction 
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lead acid battery because HPPC requires a setting for current limitation, but there is no current 

limitation for a Lead acid battery in a vehicle. Thus, I propose a different way to measure the 

maximum Available Power.  

The immediate power is a product of the terminal voltage and the current. For calculation 

of the average power over a certain period, the immediate power over time is integrated and then 

divided it by the period. In the power prediction process, I have specified that the current should 

be constant value. Based on the power calculation formula above, the power at certain current can 

be measured. This power is the actual measured power at a certain current, SOC, and temperature. 

In order to measure the maximum Available Power, the absolute value of current was gradually 

increased by checking if the terminal voltage is still within the limitation. When the terminal 

voltage is close enough to the limit, the average power at this current is the maximum available 

charging or discharging power. Comparison between measured and estimated power is shown in 

Figure 40 . 

 

Figure 40: Comparison of measured and estimated available charging power 

10 20 30 40 50 60 70
100

200

300

400

500

600

700

800

900

1000
Maximum Available Charging Power in 25 C

Current/A

C
h

a
rg

in
g

 P
o

w
e

r/
W

 

 

Measured Power

Estimated Power



62 
 

This method is also used for aging experiments. Predefined aging cycles are applied to a 

fresh battery at constant temperature of 25C . I measured the maximum available discharging 

power at 50% SOC and compared it with the proposed Available Power prediction method. The 

maximum available discharging power around 50% SOC at 25 C  is plotted in Figure 41.  

 

Figure 41: Experimental validation of power prediction method in aging condition 
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3. Maximum Capacity Estimation 

3.1. Review of Methodology 

Capacity is the capability of batteries to store energy. The maximum amount of energy that 

a battery can store at present condition is defined as the Maximum Capacity of the battery. The 

value of capacity is usually expressed in ampere hours (Ah). This value only varies slightly for 

individual battery or cell of a given type due to production tolerances, but it changes significantly 

in different temperature and aging conditions. There is a standard offline process to measure 

Maximum Capacity, where the discharging energy is measured by applying a constant current in 

a predefined temperature. However, the measured capacity varies dependent upon current or 

temperature and is significantly reduced when a battery ages.  

Here are the steps for measurement of Maximum Capacity at 25 C : 

1) Apply a 25A constant discharging current to the battery until the terminal voltage reaches 10.5 

V 

2) Rest the battery for 6 hours 

3) Apply a -14 A constant charging current to the battery until the terminal voltage reaches 14.3 

V 

4) Change to  a constant voltage charging until the total charging time is 24 hours 

5) Rest the battery for 12 hours 

6) Apply a 3.5 A constant discharging current to the battery until the terminal voltage reaches 

10.5 V 
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In step 6, the total energy that can be released is defined as the standard value of Maximum 

Capacity.  

There are several approaches to estimate Maximum Capacity of batteries. The first one, 

such as [33], is based on a relationship between parameters and capacity, which disadvantageously 

requires a lot of experiments and the result has very limited usage in aging condition because this 

relationship changes when batteries age.  

Singh [34] proposed using fuzzy logic to determine the Maximum Capacity. Fuzzy systems 

translate the behavior of the system into fuzzy sets and by using rules based on a linguistic 

representation of export knowledge to process the fuzzy data. Then, Fuzzy logic data analysis is 

used to estimate the Maximum Capacity of a battery directly from measured battery data without 

any intermediate transformation steps. There are some typical conceptual components for fuzzy 

system: 

 A rule base describing the relationship between input and output variables 

 A data base that defines the membership functions for the input and in the case of Mamdani 

modeling output variables 

 A reasoning mechanism that performs the inference procedure 

 A de-fuzzification block that transforms the fuzzy output sets to a real valued output 

Pascoe [35] introduced a method based on Coup de Fouet. It is the correlation between 

battery’s Maximum Capacity and parameters found within the voltage profile during the initial 

stages of discharging. The following Figure 42 shows this region: 
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Figure 42 [35]: Coup de Fouet region in a discharging curve 

  

Coup de Fouet is a special electrochemical phenomenon in a lead acid battery. Although 

there is no clear explanation of this effect, it does have a certain relationship with the capacity of 

a battery. There are two approaches for this method. One approach is based on a fixed operation 

condition, and compares this region with a fresh battery. This method is easy to implement online, 

but it requires a certain condition of current rates and temperature that can be compared with a 

fresh battery. The other approach is applying correction factors so that the test can be conducted 

in different operation condition. However, this requires extra experiment and may also need to 

change these factors in different aging condition. 

The last approach is based on the definition of SOC (see equation ( 21 )), which can be used 

to calculate the SOC with a known Maximum Capacity value. When the SOC is estimated by other 

methods, this equation can be used to estimate the Maximum Capacity. The key issue involved in 

this approach is the estimation of SOC or OCV. If OCV can be estimated, the SOC can be 

calculated based on OCV-SOC curve, which is pre-measured. After SOC or OCV is estimated, a 
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variety of methods can be used to estimate the Maximum Capacity based on ( 21 ) and are 

summarized in Table 4: 

 

Table 4: Methods for Maximum Capacity estimation based on definition of SOC 

Methods Pros Cons 

Based on terminal 

voltage of resting 

 Simple implementation 

 Long estimation period 

 Blind current may exist and 

cause inaccuracy 

Based on an observer 

[36] 

 Simple  

 Stable 

 Requires accurate SOC 

estimation 

Based on RLS [37] 
 Stable 

 More accurate than an observer 

 Requires accurate SOC 

estimation 

Based on dual KF [4]  Co-estimation of SOC  Results may be divergent 

Based on joint KF [38]  Co-estimation of SOC  High computational power 

 

3.2. Approaches to Estimate Maximum Capacity 

This thesis proposes using the approach based on the definition of SOC to estimate 

Maximum Capacity. The core idea is based on the change of SOC in different aging condition. If 

I discharge a same amount of energy for a fresh battery and an aged battery, the change of SOC is 

different. Then, I can use this difference of SOC to estimate the Maximum Capacity. This approach 

assumes the SOC estimation is accurate and not based on Coulomb Counting. The estimation of 

SOC is discussed in my group mate’s thesis.  
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I use one simple calculation to illustrate the basic idea in details. It is known that the OCV 

is equal to the terminal voltage after the battery is rested for enough time. If a simple constant 

current discharging profile is applied to the battery, I can know the OCV at initial and end state. 

Then, the SOC can be calculated based on the pre-measured OCV-SOC curve. In order to estimate 

the Maximum Capacity, I reformulate the equation ( 21 ) into equation ( 80 ) under consideration 

of SOC at k-1 step. 

max

1
1 3600Q

Idt
SOCSOC

k

k
kk

 
   

( 80 )

Qmax is given as follows:  

 1

1
max 3600 




 

kk

k

k

SOCSOC

Idt
Q  

( 81 )

This simple approach reveals the basic idea how to estimate the Maximum Capacity. A 

battery is simply discharged with a constant current for a certain time and the terminal voltage is 

measured before and after discharge. Since the OCV is equal to terminal voltage after the battery 

rest for enough time, the value of OCV before and after the discharging can be obtained. The OCV-

SOC curve measured previously can be used to calculate corresponding SOC before and after the 

discharging. When the k-1 step and k step are the instant before and after application of the 

discharging current, respectively, the max capacity can be estimated by applying the equation ( 81 ).  

This one step calculation may not be accurate, because there are always some errors in both 

of the integration of current and SOC estimation. It is better to consider several steps and minimize 

these errors with an estimation technique, such as Kalman Filter or Least Squares. Particularly, 

attention should be paid to two errors. The first one is by the longtime current integration that may 

deliver a biased result. Even if a very high-resolution current sensor is used, there might still exist 
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a small error. The error gradually builds up during the long time charging or discharging. Thus, 

the time step of SOCk and SOCk-1 should be short. Moreover, it is also important to pay attention 

on the errors in SOC estimation. There is always some error in SOC estimation no matter whatever 

approaches are applied. Moreover, SOC may not change in a short time, so the time step of SOCk 

and SOCk-1 should be large enough. A long time step can minimize the effect of errors in SOC 

estimation, because the Maximum Capacity estimation only cares about the difference of SOCk 

and SOCk-1. Thus, the selection of sample time should consider both of two factors. 

For estimation of Maximum Capacity, RLS method is used. I propose to collect next SOC 

values only when the SOC change is larger than 5%, since SOC values may not change much in 

one sample time and the current is not large enough to change the SOC in a short time. After 

collecting several data, RLS method is applied in equation ( 68 ) to get the current Maximum 

Capacity of the battery. The estimation model is shown below: 

 

   
  


max

1 3600

1
1

Q
IdtkSOCkSOC

T

k

k
y

 
  

( 82 )

There are several reasons for choosing this approach. The first reason is that the Maximum 

Capacity does not change in a short time. It may need a month to change 1 Ampere-hour in real 

vehicle. Thus, Maximum Capacity does not need to be estimated very frequently. Secondly, the 

requirement for resolution of Maximum Capacity is very low. Resolution of 1 Ampere-hour is 

enough for all other applications. Lastly, this method can estimate the capacity in one step 

considering several data sets. It would greatly save time and calculation effort.  
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3.3. Experimental Validation of Maximum Capacity Estimation 

Predefined aging cycles are applied to a fresh battery at 25 C  until the capacity fades 

around 50%. The true capacity is measured by the standard method explained previously.  

Extended Kalman Filter is used to estimate the SOC continuously, and the SOC data is recorded 

only when the change of SOC is more than 5%. The current capacity between each SOC data was 

recorded. Then, RLS is used to found out the Maximum Capacity. The estimated capacity is also 

compared with the capacity measured with standard method. The result is plotted in Figure 43: 

 

 

Figure 43: Experimental Validation of Maximum Capacity Estimation 
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4. Evaluation of SOH  

4.1. Introduction of SOH 

SOH is defined as the present conditions of a battery compared with the conditions of a 

fresh battery. It represents the abilities of a battery to store energy, source and sink high currents, 

and retain charge over extended periods [17] [39]. These abilities decrease over the battery lifetime 

due to aging. It is common to define the SOH is 100% for a fresh battery and SOH is 0% when 

one of these two capacities decreases to a minimum value. One thing should be pointed out is that 

the battery may still can be used when the SOH is 0%, because this is merely an indicator that 

reflects the battery has already reached to its predefined criteria for replacement.  

The ability to store energy can be quantified as the Maximum Capacity of a battery. It is 

the maximum amount of energy that can be stored in a battery. The Maximum Capacity of a battery 

is gradually faded during its lifetime, and is defined as capacity fade or SOHQ. When the capacity 

is not enough for its normal use, a battery should be replaced. The estimation of Maximum 

Capacity is a very challenging task, because it does not related to anything directly. Most 

researchers make use of the equation ( 21 ) to estimate the Maximum Capacity. This thesis has 

describe the details in Chapter 3. 
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The ability of source and sink high currents are the available discharging and charging 

power of a battery. This is measureable by a certain device and can be easily tested. It also 

gradually decrease during battery lifetime. I define this aging process as power fade or SOHP. 

There is a direct relationship between Available Power and battery parameters. Thus, most of the 

researchers predict the Available Power based on battery parameters. 

The last ability can be described as how much charge an aged battery can accept. It more 

or less related to its inner structures and it is hard to measure directly. Most researchers propose to 

use either SOHQ or SOHP to represent the value of SOH. On the other hand, other researchers tried 

to find a relationship between SOH and other conditions. The problem is that those methods can 

only be implemented in lab but is hard to integrate in a real vehicle. Thus, this thesis focuses on 

the Capacity Fade SOHQ and Power Fade SOHP of a battery. 

4.2. Approach to Evaluate of SOH and Detect Battery Failure  

I propose to evaluate the SOH considering both effects of power fade and capacity fade. The 

SOH is represented by two values: SOHP and SOHQ. SOHP is defined as the present power 

capability divided by the nominated power capability of a fresh battery.  

%100
nominated


P

P
SOH present

P  
( 83 )

, where the presentP is the present power capability at a certain condition and is predicted by 

Available Power prediction method, and nominatedP  is specified by manufacture for a fresh battery 

The SOHQ is defined as the present Maximum Capacity of battery divided by the nominal 

capacity of a fresh battery.  
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%100
nominated

max 
Q

Q
SOH Q  

( 84 )

, where the maxQ is the Maximum Capacity of a battery at certain aging condition and is estimated 

by the capacity estimation method, and nominatedQ  is specified by manufacture for a fresh battery 

The evaluation of SOH can also be used in a battery failure detection algorithm. It is 

because battery failure is a special case when either of SOHP or SOHQ becomes zero.  

There are four criterions that defined the battery failures.  

• Mechanical damage 

– When the voltage exceeds a certain limit (Vt>15.5V or Vt<9V), mechanical part of 

a battery can be damaged.  

• Short circuit 

– When the battery’s normal current is extremely high (I>200A) for more than 20s, 

a battery can be damaged 

• Capacity fade 

– When the max capacity fades 50%, a battery can be failed 

• Power fade 

– When the power fade 50%, a battery can be failed 

– The power fade is mainly due to the increase of internal resistance, and there is a 

proportional relationship between internal resistance and Available Power. Thus, 

when the internal resistance increase to 200% of its original internal resistance, a 

battery can be failed 

The maximum Available Power prediction and Maximum Capacity estimation method are 

both very important for the determination of battery failure. Thus, the result of Available Power 

prediction and Maximum Capacity estimation are integrated into the determination of a battery 

failures. 
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5. Summary and Future Research 

This thesis presents online approaches to predict Available Power and estimate Maximum 

Capacity. The Available Power during a given time is calculated using a maximum allowable 

current at a given limiting terminal voltage. To find out the maximum current, the terminal voltage 

is calculated iteratively using a second order Randles’ ECM by incrementing the current until the 

voltage reaches the limited value. Then, the Available Power is obtained by multiplying the 

maximum current with the limiting terminal voltage. However, the parameters of the model vary 

continuously because of effects of amplitude of current, temperature, SOC in addition to ageing. 

Therefore, exact values of parameters are the crucial factor for accurate estimation of the power 

prediction, which is carried out by employing LKF based on ARX model. This method is verified 

by both simulations and experiments. The summary of contributions are shown as follows: 

a. A thorough literature review of the current technologies of batteries parameters 

identification 

b. Analysis of the advantages and disadvantages of zeroth, first, and second order Randles’ 

ECM system. The performance of these systems is discussed based on their fitting result 

of a set of measured data. Second order ECM is selected because of the best fitting result. 

c. Conversion of continuous system into discrete system by Taylor expansion and Laplace 

transform. The performance of these two methods is compared with the response of 

continuous system. The results are quite similar, but the conversion in time domain results 

in a simple equation and is finally is selected.   
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d. Two online methods to estimate parameters in ARX system are discussed and compared, 

including KF and RLS. Although RLS has fewer tuning factors and is simpler than KF, KF 

is selected as the final method to estimate parameters, since KF has a slightly better 

performance as compared with RLS 

e. Three common approaches to predict Available Power are introduced. The method using a 

seconder order Randles’ ECM is selected. The result is also verified by experimental data. 

 

For estimation of the Maximum Capacity, I make use of the equation to estimate SOC in 

Coulomb Counting. If SOC is known, this equation can be used to estimate Maximum Capacity. 

This approach requires an accurate SOC estimation (less than 5%) that I used from a previous 

work of Dr. Choe’s research group. I propose using RLS to minimize the error in SOC estimation. 

The result of Maximum Capacity estimation is validated in aging conditions.  

This thesis also introduces a combined approach to evaluate the SOH of an AGM batteries, 

considering both Power fade, SOHP and Capacity fade, SOHQ. SOH is an indication for the health 

information of a battery, such as whether the battery should be replaced. Power fade requires the 

input from Available Power prediction while the capacity fade requires the input from Maximum 

Capacity estimation. Then, these input are compared with reference data of a fresh battery. In 

addition, power fade and capacity fade can also be integrated into the criterions to detect failure of 

batteries. When either power fade or capacity fade reaches to zero percent, they battery can be 

failed. 
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5.1. Future Research 

a. In CV charging mode, the terminal voltage is very high and the chemical reactions in this 

condition are more complicated than the normal CC mode, such as water loss. There does 

not exist an appropriate model for CV charging, which can be addressed in the future work.  

b. Parameters are also functions of current. The change of current only has a very limited 

effect to the parameters, so this effect can be ignored in the prediction of Available Power. 

However, if a more accurate power prediction is required, these effects should be 

considered into the prediction process. 

c. When the capacity is very low, the OCV-SOC curve needs to be adjusted. This change is 

measured offline and input into the capacity estimation process. However, future research 

may develop an advanced approach that can estimate this relationship online.  
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Appendix 

Aging Mechanisms 

Aging Mechanisms Characteristics Causes Solution 

Anodic corrosion / 
Side reactions 

Grid corrosion at positive 
plates 

Over-charging Unavoidable but slow 

Corrosion at negative plates Acid depletion due to water loss Maintain in high SOC 

Positive active 
material degradation 

Loss of contact between 
individual particles of the 
positive active material and 
grid 

1. Cycling 
2. Deep discharging with high 
current  

1. Charging with high current or high 
temperature 
2. Increase mechanical compression 

Crystallization / 
Sulfation 

1. Formation of irreversible 
crystalline lead sulfate 
2. Mainly in negative plates 

1. Insufficient charging 
2. Long periods of discharge at 
very low current (self-discharge) 

Unavoidable 

Short-circuits 

Across the separators High acid concentration Addition of Na2SO4  

Due to positive active 
material degradation 

Same with positive active 
material degradation 

Same with positive active material 
degradation 
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Causes and Symptoms of Batteries Failure 

Failure modes Battery type Causes Symptoms 

Sediment build-up Flooded Excessive cycling Voltage drop 

Top lead corrosion Flooded Heat generated by large 

current 

Short circuit 

Positive grid corrosion Flooded, VRLA Oxidation Increase of internal resistance 

Plate sulphation Flooded, VRLA Incomplete recharge after 

over-discharging 

Increase of internal resistance and capacity 

fade 

Soft (dendritic) shorts VRLA Over-discharging Decrease of internal resistance and voltage 

drop 

Dry-out and Thermal run-

away 

VRLA Lack of proper ventilation, 

over-charging 

Increase of internal resistance and capacity 

fade 

 


