
Minimizing N -Detect Tests for Combinational Circuits

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not

include proprietary or classified information.

Kalyana R. Kantipudi

Certificate of Approval:

Charles E. Stroud
Professor
Electrical and Computer Engineering

Vishwani D. Agrawal, Chair
James J. Danaher Professor
Electrical and Computer Engineering

Victor P. Nelson
Professor
Electrical and Computer Engineering

George T. Flowers
Interim Dean
Graduate School

Minimizing N -Detect Tests for Combinational Circuits

Kalyana R. Kantipudi

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
May 10, 2007

Minimizing N -Detect Tests for Combinational Circuits

Kalyana R. Kantipudi

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon the request of individuals or institutions and at their expense.

The author reserves all publication rights.

Signature of Author

Date of Graduation

iii

Vita

Kalyana R. Kantipudi, son of Mr. K. V. Mohana Rao and Mrs. K. Padma Ku-

mari, was born in Kovvur, Andhra Pradesh, India. He graduated from Vikas Jr. College,

Rajahmundry in 2000. He earned the degree Bachelor of Technology in Electronics and

Communication Engineering from Acharya Nagarjuna University, Guntur, India in 2004.

iv

Thesis Abstract

Minimizing N -Detect Tests for Combinational Circuits

Kalyana R. Kantipudi

Master of Science, May 10, 2007
(B.Tech., Acharya Nagarjuna University, 2004)

91 Typed Pages

Directed by Vishwani D. Agrawal

An N -detect test set detects each stuck-at fault by at least N different vectors. N -

detect tests are of practical interest because of their ability to improve the defect coverage.

The main problem that limits their use is their size. Researchers have proposed various

methods to generate N -detect tests, but not much work has been done on minimizing

them. Also, there is no clear minimum size estimate of an N -detect test set.

We provide a theoretical lower bound on the size of an N -detect test set. This is derived

using the independent fault set concept proposed by Akers et al. An independent fault set

(IFS) is a set of faults in which no two faults are detectable by the same vector. A known

lower bound on the size of any single-detect test set is equal to the size of the largest IFS.

We show that the lower bound on the size of an N -detect test set is N times the size of the

largest IFS.

Given any N -detect vector set, we derive a minimal N -detect vector set from it. Integer

linear programming (ILP) is used to find the smallest set. Each vector is assigned an integer

[0,1] variable such that 1 means that the vector is included in, and 0 means that it is excluded

v

from, the minimized set. Faults are simulated without fault dropping and that result is used

to formulate the ILP model. The model consists of a single N -detection constraint for each

fault and an objective function to be minimized, which is the sum of all integer variables.

The problem is then solvable by any ILP solver program.

The ILP method, when applied to the ISCAS85 benchmark circuits, produces better

results compared to an earlier N -detect test minimization method [64]. For most circuits,

an order of magnitude reduction in the minimized test set size is achieved. For the circuit

c1355, the earlier minimization method produced a 15-detect test set of size 1274 in 5674.6

seconds, while our ILP method produced a test set of size 1260 in just 52.1 seconds. We

make two observations. First, the ILP method is limited in its application to much larger

circuits because of its exponential complexity. Second, An absolute minimal N -detect test

set can be guaranteed only when we start with the exhaustive set of inputs. Because that

is practically impossible for large circuits, the quality of the result will depend upon the

starting set. We classify circuits based on the overlap between the input cones of their

primary outputs. For type-I circuits, the cones have a large overlap and the initial test

set should have many (if not all) vectors for each fault. For type-II circuits, the cones are

largely disjoint and vectors should be generated with don’t cares and then combined in a

specific way. The remaining contributions as summarized below are motivated by these

observations.

A new relaxed linear programming (LP) algorithm addresses the complexity issue. We

call this method recursive rounding. It is shown to be an improvement over the existing

relaxed LP methods like randomized rounding. The new algorithm has a polynomial time

complexity and, most importantly, it is time bound. The worst case time will be the product

of the minimized test set size and the time taken for one LP run. We, however, observed

vi

that the time taken by the algorithm in practice is significantly smaller than the worst case

time. The recursive rounding algorithm is applied to the ISCAS85 benchmark circuits. For

the circuit c432 targeted for 15-detect, the ILP method produced a test set of size 430 in

444.8 seconds while the recursive rounding algorithm took only 83.5 seconds to generate a

test set of the same size. The results indicate an almost linear increase in CPU time with

respect to the circuit size. The recursive rounding method can be applicable in various

fields where ILP is conventionally used.

In general, a circuit may not exactly be type I or II, but can only be classified as being

closer to one. As examples, ripple-carry adders and c432 are studied in Chapter 4 and

Chapter 5 respectively. The benchmark circuit c6288, a 16-bit multiplier, is a challenging

example due to the huge difference between its theoretical minimum test set of size of six

and the practically achieved minimum test set of size 12. Small size multipliers are designed

based on c6288 and integer linear programming method is applied to their exhaustive test

sets. Some interesting observations are made in this work. For the first time, it is veritably

confirmed through a 5-bit multiplier that for some circuits, the theoretical lower bound

cannot be achieved practically. The 5-bit multiplier has a theoretical minimum of size

six, but it needs at least 7 vectors to detect all its faults once. It is also observed that

even though the practical minimum for a single-detect test set is seven, only 12 vectors

are needed to detect each fault twice. The minimum test sets from smaller multipliers are

replicated in various combinations for the 16 bit multiplier (c6288) and are processed using

ILP, which produced a minimum test set of size 10. The recursive LP method gave a test

set of 12 vectors in 301 seconds. We believe that the 10 vector set is the smallest test set

ever achieved for c6288.

vii

Acknowledgments

I would like to thank my advisor Dr. Vishwani D. Agrawal for his sustenance and

being my constant source of motivation and inspiration. I thank Dr. Charles E. Stroud and

Dr. Victor P. Nelson for being on my thesis committee and for their valuable suggestions.

Suggestions regarding relaxed LP from Dr. Shiwen Mao are quite helpful. I thank all my

professors in Auburn University for their guidance and support, its been a privilege learning

from them. I would like to thank my parents and sister for their continuous support and

encouragement. I thank my research mates and friends in Auburn for their assistance and

company.

viii

Style manual or journal used LATEX: A Document Preparation System by Leslie

Lamport (together with the style known as “aums”).

Computer software used The document preparation package TEX (specifically LATEX)

together with the departmental style-file aums.sty. The images and plots were generated

using Microsoft Office Visio 2007 beta/SmartDraw 6 and Microsoft Office Excel 2003.

ix

Table of Contents

List of Figures xiii

List of Tables xiv

1 Introduction 1
1.1 Problem Statement . 1
1.2 Contribution of Research . 2
1.3 Organization of the Thesis . 3

2 Background 4
2.1 Fault Modeling . 5

2.1.1 Stuck-At Faults . 5
2.1.2 Bridging Faults . 5
2.1.3 Transistor-Level Faults . 7
2.1.4 Delay Faults . 8

2.2 Need for Higher Defect Coverage . 8
2.3 N-Detect Tests . 9
2.4 Test Metrics – Analyzing the Efficiency of Test Sets 9

2.4.1 Bridging Coverage Estimate (BCE) 9
2.4.2 Neighborhood Node States . 10
2.4.3 Gate Exhaustive (GE) Coverage . 10

2.5 Need for Test Minimization . 11

3 Previous Work 13
3.1 Previous Work on Theoretical Limits of Test Sets 13
3.2 Previous Work on Test Minimization . 14

3.2.1 Static Compaction . 14
3.2.2 Dynamic Compaction . 15

3.3 Generation of N-Detect Tests . 18
3.3.1 Traditional N-Detect ATPG Method 18
3.3.2 Defect Oriented N-Detect Greedy ATPG Approach [64] 19
3.3.3 N-Detect Generation From One-Detection Test Set [79] 19

3.4 N-Detect Test Minimization . 20
3.5 Linear Programming Techniques for Single-Detection 20

3.5.1 Integer Linear Programming . 21

x

3.5.2 Relaxed Linear Programming . 22
3.6 Applications of LP Techniques in Testing 24

4 Theoretical Results on Minimal Test Sets 25
4.1 Independence Graph . 25
4.2 Independent Fault Set . 26

4.2.1 Lower Bound on Single-Detect Tests 27
4.2.2 Lower Bound on N-Detect Tests . 28
4.2.3 An Example . 29

4.3 Classification of Combinational Circuits . 31
4.3.1 Type-I Circuits . 31
4.3.2 Type-II Circuits . 32
4.3.3 Ripple-Carry Adders . 33

5 ILP Method for N-Detect Tests 36
5.1 Test Set Minimization Problem as a Set Covering Problem 36
5.2 Realization using Integer Linear Programming 37

5.2.1 Example . 38
5.3 Derivation of N -Detect Tests . 39

5.3.1 Example . 42
5.4 Results . 44

6 Recursive Rounding – A New Relaxed-LP Method 47
6.1 Complexity of Integer Linear Programming 47
6.2 LP-relaxation of the Minimization Problem 48
6.3 Limitations of Randomized Rounding . 50
6.4 Recursive Rounding . 51

6.4.1 Recursive Rounding Procedure . 51
6.4.2 The 3V3F Example for Recursive Rounding 52
6.4.3 Analyzing the Recursive Rounding method 53

6.5 Results . 54
6.5.1 Single-Detect Tests . 54
6.5.2 N-Detect Tests . 57

6.6 A Note on Relaxed-LP Methods . 59

7 Single Detect Results of c6288 Benchmark 60
7.1 Structure of c6288 Benchmark . 60
7.2 Iterative Arrays . 60
7.3 Approach for c6288 Benchmark . 61

8 Conclusion 65
8.1 Future Work . 67

8.1.1 The Dual Problem . 67

xi

Bibliography 69

Appendix 75

xii

List of Figures

2.1 Basic principle of digital testing. 4

2.2 Stuck-at faults representing actual defects 6

2.3 Node-to-node bridging faults in a CMOS circuit. 7

4.1 Independence graph of c17. 26

4.2 Independence graph of c17 showing an independent fault set. 27

4.3 Faults in the independent fault set of c17. 29

4.4 Type-I circuit. 31

4.5 Type-II circuit. 32

4.6 Hierarchical structure of ripple-carry adder. 33

4.7 Minimized test sets of ripple-carry adders. 34

4.8 Structure of the full-adder used in ripple-carry adders. 35

5.1 Sizes of N -detect test sets for c432 as a function of iterations. 41

5.2 ILP CPU time versus number of unoptimized vectors for c432. 42

5.3 All the 22 structural equivalence collapsed faults of c17. 43

5.4 The structural equivalence collapsed faults of c17 (numbered). 44

6.1 ILP and LP solutions for the three-vector three-fault (3V3F) example. . . . 49

6.2 LP solution space and the progression of recursive rounding 52

6.3 Quality and Complexity of recursive LP and ILP solutions for multipliers. . 56

7.1 Structure of an n-bit multiplier. 61

7.2 Structure of an n-bit ripple-carry adder. 62

xiii

List of Tables

4.1 Results of a 4-bit ALU (74181). 30

5.1 N -detect tests for 74181 ALU. 39

5.2 Diagnostic fault simulation result for the 29 vectors of c17. 45

5.3 N -detect test set sizes minimized by ILP. 46

5.4 Comparing 15-detect tests. 46

6.1 Optimized single-detect tests for ISCAS85 circuits (*incomplete). 54

6.2 Single-detect test optimization for multipliers. 55

6.3 Optimized 5-detect tests for ISCAS85 circuits. 57

6.4 Optimized sizes of 15-detect tests for ISCAS85 benchmark circuits. 57

7.1 Practical single-detect test sizes for multipliers. 63

7.2 A single-detect test set for 5-bit multiplier. 63

7.3 Two single-detect test sets for 4-bit multiplier. 64

7.4 A single-detect test set for 6-bit multiplier. 64

7.5 Ten-vector single-detect test set generated for c6288. 64

xiv

Chapter 1

Introduction

All manufactured VLSI chips are tested for defects. But it is not possible to generate

or apply vectors to test all possible defects in a chip. So defects are modeled as faults

to ease the test generation process. Among the various fault models proposed, the single

stuck-at fault model is widely accepted because of its closeness to actual defects and the

algorithmic possibilities it offers for generating test vectors. However, as smaller DPM

(defective parts per million) levels are desired for devices in most applications, better fault

models are needed, which can accurately model the defects. Such fault models tend to be

complex, making test generation harder, or even impossible. Therefore, a practical idea

that seems to work is to use the single stuck-at fault model and increase the probability of

detecting unmodeled defects by increasing the number of times each single stuck-at fault is

detected during a test [70].

An N -detect test set is a set that detects each stuck-at fault with at least N “different”

test vectors. The more uniquely different the test vectors for a fault, the better may be

the defect coverage [7, 38, 94], but harder will be the test generation. There is no general

agreement on how the vector “difference” should be defined. The main problem that limits

the use of N -detect tests is their size, and there is need to minimize them.

1.1 Problem Statement

The main problems solved in this thesis are:

1

1. Find a lower bound on the size of N -detect tests.

2. Find an exact method for minimizing a given N -detect test set.

3. Derive a polynomial time heuristic algorithm for the problem in item 2.

1.2 Contribution of Research

We find a theoretical lower bound on the size of N -detect tests, which is N times the

size of the theoretical minimum of a single-detect test set. The result is significant in the

sense that even though a single-detect test detects about 70–80% of the faults at least twice,

we still need a test set that is almost twice its size to detect all the faults twice. The ability

to obtain minimized test sets for combinational circuits is studied based on their structure.

It is observed that it is harder to obtain a minimized test set for shallow circuits with

narrow non-overlapping output cones than to obtain a minimized test set for deep circuits

with output cones having large overlap.

Diagnostic fault simulation (fault simulation without fault dropping) information is

used to convert the test set minimization problem into a set covering problem. Linear pro-

gramming techniques are used to solve the problem. Initially, Integer Linear Programming

(ILP) is used. ILP always produces an optimal solution, but its worst-case time complexity

is exponential. So a new Linear Programming (LP) based recursive rounding method is

developed to solve the problem in polynomial time.

The ILP produced better results compared to a previously reported method [64]. The

new LP-recursive rounding method produced test sets that are almost of the same size as

those produced by ILP, but the solution is much quicker.

Another endeavor undertaken is to produce a minimal single-detect test set of ten

vectors for the c6288 benchmark by making use of the regularity in its structure and the

2

linear programming techniques. The ten vector set is the lowest ever achieved for the c6288

benchmark circuit.

A paper describing part of this work was presented at the Nineteenth International

Conference on VLSI Design [53] and another paper describing the work on the new LP-

recursive rounding method is being presented at the Twentieth International Conference on

VLSI Design [54].

1.3 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, we discuss the basics of digital testing

and the N -detect tests. In Chapter 3, previous test minimization strategies along with the

linear programming techniques are discussed. In Chapter 4, the theoretical results on the

minimal tests are presented. The ILP method modified for N -detect tests is introduced

in Chapter 5, which also includes results on ISCAS85 benchmark circuits. The new LP-

recursive rounding method is given in Chapter 6 along with its results. The single-detect

results obtained for c6288 benchmark are reported in Chapter 7. The thesis is concluded

with an insight on future work in Chapter 8.

3

Chapter 2

Background

Any manufactured integrated circuit is prone to defects. Proper design, verification

and physical device debugging can get rid of most of the systematic defects. Any remaining

defects are random by nature and cannot be completely eliminated. Therefore, testing needs

to be done on every integrated circuit (IC) device that is manufactured so that defective

devices can be separated. Testing a digital IC involves applying specific bit vectors to the

circuit under test and comparing the observed output responses with expected responses.

Figure 2.1 illustrates the basic principle of digital testing [13].

DIGITAL CIRCUIT

COMPARATOR

---11
---01
--- - -
--- - -
--- - -
---00
---10

10---
00---
- - ---
- - ---
- - ---
- - ---
11---
00---

STORED
CORRECT

RESPONSE

OUTPUT RESPONSESINPUT PATTERNS

TEST RESULT

Figure 2.1: Basic principle of digital testing.

4

2.1 Fault Modeling

As it is not possible to enumerate all possible physical defects and develop tests for

them, the defects are modeled as faults. These abstract fault models emulate the behav-

ior of physical defects while simplifying the test generation process. Of the various fault

models, the single line stuck-at fault model is widely accepted because of its closeness to

actual defects and the simplicity it allows in generating test vectors. Various efficient algo-

rithms have been developed and programmed to efficiently generate tests for single stuck-at

faults [35, 47, 82, 87, 86].

2.1.1 Stuck-At Faults

Stuck-at faults are gate-level faults modeled by assigning a fixed (0 or 1) value to an

input or an output of a logic gate or a flip-flop [13]. Each interconnection in a circuit

can have two faults, stuck-at-1 and stuck-at-0, represented as sa1 and sa0, respectively. If

we assume that there can be several simultaneous stuck-at faults, then in a circuit with n

interconnections between gates there are 3n − 1 possible multiple stuck-at faults. Besides

their prohibitively large number, the multiple stuck-at faults pose other problems, like fault

masking. It is a common practice to model only single stuck-at faults. We therefore assume

that only one stuck-at fault is present in a circuit. In a circuit with n interconnections there

can be no more than 2n single stuck-at faults. These can be further reduced using fault

collapsing techniques [13, 85].

2.1.2 Bridging Faults

Bridging fault is a model in which defects are modeled as bridges between two nodes of

a circuit. Bridging fault models give an accurate replication of the actual defects and they

5

VCC

1

0

W

VSS

W sa1

W sa0

Figure 2.2: Stuck-at faults representing actual defects

are called “defect-oriented faults” [3, 83]. Bridging faults can be modeled at the gate or

transistor level. The bridging faults modeled for defects in a CMOS circuit can be broadly

classified as dominant, OR-type and AND-type bridging faults (see Figure 2.3).

Generating test vectors for bridging faults can be a complex problem [9]. In a dominant

bridging fault a node K forces its logic value on another node W . This type of bridging fault

will be detected if a stuck-at fault on W is detected and K and W have opposite values. To

detect an OR-type bridging fault where W behaves as (W OR K), a stuck-at-1 fault on wire

W should be detected while K is set to 1. Similarly, to detect an AND-type bridging fault

where W behaves as (W AND K), a stuck-at-0 fault on wire W should be detected while

K is set to 0. Clearly, the probability of detecting a bridging fault by a stuck-at fault test

depends on the chance of that test having the right value on the involved wire [9]. This point

is further analyzed later in this chapter while explaining test metrics. It has been observed,

for a state of the art microprocessor design, that approximately 80% of all bridges occur

6

W

K = 1

K = 0 K = 1
K = 0

Dominate

OR

AND

Figure 2.3: Node-to-node bridging faults in a CMOS circuit.

between a node and Vcc or Vss [60]. In another evaluation it was concluded that bridges

with power rails contributed to about 60% to 90% of all bridging defects [15]. As observed

from Figure 2.2 these node-power rail bridging defects can be directly modeled at the gate

level as stuck-at faults, which is the reason why the stuck-at fault tests demonstrate such a

good defect coverage.

2.1.3 Transistor-Level Faults

At the transistor-level, defects in a CMOS circuit are modeled as stuck-short and

stuck-open faults on transistors. Like the single stuck-at fault model, this fault model

assumes just one transistor to be stuck-open or stuck-short. A vector pair is needed to

detect a stuck-open fault. First, an initialization vector appropriately sets a logic value at

the output of the gate with the stuck-open transistor and then another vector, generated

for a corresponding stuck-at fault is applied to detect the stuck-open fault. A stuck-open

fault of a pMOS transistor can be modeled as a stuck-at-1 fault at the gate input of that

transistor. Similarly, a stuck-open fault of an nMOS transistor is equivalent to a stuck-at-0

7

fault at the gate input of that transistor. A stuck-short fault of a pMOS or nMOS transistor

can be represented as a stuck-at-0 or stuck-at-1 fault at the corresponding gate input [13].

These faults are therefore internal to logic gates because in a CMOS logic gate every input

internally fans out to multiple transistors. The only way to accurately detect a stuck-short

fault is through IDDQ testing, which is not considered practical due to high leakage and

large transistor densities of the present day digital ICs.

2.1.4 Delay Faults

All paths in a circuit have some nominal delays. But due to manufacturing defects,

some paths may get further delayed. If the delay of a path prevents a transition from

reaching an output within a clock period, it will cause an error. These delay defects are

modeled as path-delay, gate-delay, and transition faults [13, 21, 61]. Simplest of these are

transition faults, defined as slow-to-rise and slow-to-fall conditions for each gate.

2.2 Need for Higher Defect Coverage

The test vectors generated based on the single stuck-at fault model can deliver a product

quality level of around 500 DPM (defective parts per million) [3, 70]. Some applications

require much lower DPM. The defect coverage must be improved either by using better

fault models to generate tests or by generating enhanced tests based on the single stuck-at

fault model. Better fault models like the bridging faults, transistor faults and delay faults

make test generation harder, and sometimes impossible. A practical alternative is to make

use of the single stuck-at fault model to generate better test vectors, which can improve the

defect coverage.

8

One solution is to reorder and/or reapply the same single-detect test set. This ensures

increased transition fault coverage and stuck-open fault coverage. But the bridging fault

coverage cannot be improved unless those specific test vectors are generated. It was observed

that a test set with greater than 95% stuck-at fault coverage can produce only 33% coverage

of node-to-node bridging faults [60]. So a suggested alternative is to target each single stuck-

at fault multiple times [70, 77].

2.3 N-Detect Tests

N -detect tests are stuck-at fault tests where each stuck-at fault is detected at least

N times, i.e., by N different test vectors. It is observed that the N -detect tests give a

much improved defect coverage (lower DPM) than single-detect stuck-at fault tests [7, 65,

69, 70, 93, 94]. Detecting the same single stuck-at fault under different excitation and

observation conditions improves the chances of detecting different bridging faults. Various

test generation strategies have been developed to generate efficient N -detect tests [7, 9, 45,

64, 72, 78, 79, 94].

2.4 Test Metrics – Analyzing the Efficiency of Test Sets

Various test metrics have been developed to analyze the efficiency of the generated test

sets.

2.4.1 Bridging Coverage Estimate (BCE)

If a stuck-at fault on a node is detected once, the probability of detecting a static

bridging fault with another un correlated node, that has a signal probability 50% of being

1 or 0, is also 50% [38]. Similarly, if a stuck-at fault is detected N times, the chance to

9

detect its corresponding bridging fault will be (1− (1− 0.5)N) [9]. So for a given test set T

and target fault set F , the bridging coverage estimate (BCE) is calculated as follows:

BCE =
n∑

i=1

fi

|F | (1 − 2−i) (2.1)

where fi is the number of stuck-at faults detected i times by T , |F | is the total number of

stuck-at faults in the target fault list F and n is the maximum number of times that any

fault is detected by T . Generally n can be set to 10, which yields an upper bound BCE of

99.9%, to sufficiently improve the quality of a test set.

2.4.2 Neighborhood Node States

The BCE estimates the effectiveness of a test set, based on the number of times each

fault is detected. But the probability of detecting a defect at a fault site will increase

with the number of detections only when the fault at that site is detected under different

excitation and observation conditions [38]. So, neighboring nodes of a fault site are used to

evaluate the diversity of the test. If different states of neighboring nodes are excited during

the multiple detections of a fault, then the probability to detect different types of defects

at that fault site increases [7, 94]. Neighborhood signals are extracted at the logic level. A

more realistic measure is obtained if we extract the physical neighborhoods of signals from

the layout [10, 72]. But such measures are complex and time consuming.

2.4.3 Gate Exhaustive (GE) Coverage

Several test metrics have been proposed for analyzing the efficiency of test sets. Some

of them include observation count [38], MPG-D defective part level [25, 26, 27, 28, 64], etc.

The most recent one is a test metric called gate exhaustive (GE) coverage [18, 39, 68]. The

10

GE is computed as:

GE =
|F |∑

i=1

coverage credit(fi)
|F | (2.2)

where |F | is the total number of gate-output stuck-at faults in the circuit and for each

stuck-at fault fi, the coverage credit of fi is the ratio of the number of distinct gate input

combinations in the test set that detect fi to the maximum number of gate input combi-

nations that can detect fi. The GE coverage estimate, though computationally complex, is

observed to be closely correlated to the actual defect coverage [39]. The only way to exactly

measure the effectiveness of a test set is to observe the actual chip defect coverage.

2.5 Need for Test Minimization

Better test sets are expected to give better defect coverage. An important aspect

which limits our ability to apply better test sets is the test application time. As chip

testing costs are becoming a major portion of the manufacturing costs, any reduction in

test application time directly translates into reduction of the chip cost. An ideal way to

reduce the test application time is by reducing the number of vectors to be applied. Thus,

test set minimization is an important aspect in testing.

Test generation is known to be a computationally complex problem [32, 46]. Even test

minimization is proven to be NP-complete [34, 59]. So, heuristic methods [17, 41, 76] are

used. These heuristic methods are based on a set of iterative test set compaction algorithms,

whose execution time can be reduced by stopping the iteration whenever some prespecified

threshold is reached or after iterating a predetermined number of times. Theoretical lower

bounds, sometimes known, give an estimate of the effectiveness of a compaction procedure.

Estimating the size of, or determining the minimum test set is given considerable importance

11

in research [2, 4, 5, 6, 22, 23, 41, 59, 67]. The minimum test set size estimation problem is

NP-hard [59].

12

Chapter 3

Previous Work

In this chapter, previous work on the estimation of theoretical limits of single-detect

test sets and the previous work on test compaction is presented. The last part of the

chapter reviews the work on linear programming techniques that are relevant to the present

research.

3.1 Previous Work on Theoretical Limits of Test Sets

A vast amount of work has been done on finding the theoretical minimum for single-

detect tests for circuits [2, 4, 5, 6, 22, 23, 41, 59, 67]. One of the most commonly used

heuristics for finding the lower bound is to find the size of the maximal clique of the indepen-

dence graph (also known as the incompatibility graph) of the circuit. In an independence

graph, each node represents a fault and an edge between a pair of nodes indicates inde-

pendence of the corresponding faults. Two faults are independent of each other, if they

cannot be simultaneously detected by any vector. A clique is a sub-graph, where each node

is connected to every other node in the sub-graph [19]. It has been shown that the maximal

clique in the independence graph, called the maximal independent fault set, will be less

than or equal to the minimum test set size [5].

13

3.2 Previous Work on Test Minimization

Minimizing test sets, simply termed as test set compaction, can be broadly classified

as static or dynamic compaction [1, 36].

3.2.1 Static Compaction

The process in which all tests are generated first before carrying out compaction is

referred to as static compaction. Two important methods sum up the idea of static com-

paction, vector shuffling and vector merging.

In vector shuffling, the generated vectors are shuffled and then simulated in the new

sequence order. In fault simulation, after the circuit is simulated for a vector, all the faults

detected by that vector are dropped from the target fault list. So, if the fault set is empty,

and still there are some vectors left for simulation, then those vectors can be removed from

the test set. Also, if a simulated vector does not detect any of the remaining faults in the

target fault list, then that vector can be considered redundant and is dropped.

A much simplified “reverse order fault simulation” method [87] has also been used,

where the generated test set is simulated in the reverse order, hoping to eliminate some

of the initially generated vectors. Though this method looks too simple to be efficient, it

is effective to a certain level of compaction. This is because the normal test generation

often starts with a random phase, where random vectors are simulated until no new faults

are being detected and then a deterministic phase begins, where fault specific vectors are

generated. Thus, test pattern generation effort is not wasted on the easy to detect faults

that have already been detected by random vectors. A reverse order fault simulation method

then removes most of the initially generated random vectors, which are made redundant by

the deterministic vectors.

14

In vector merging, when a vector targeting a fault is generated, the unspecified bits

are left as such. Then these unspecified bits are used to merge vectors [1, 13].

An ingenious method, named the “double detection algorithm”, was developed by

Kajihara et al., [50, 51], where the generated vectors are simulated in any order without

fault dropping and for each vector the number of faults only detected by that vector alone

(exclusively detected) is counted. At the end of the simulation if a vector has a count 0 then

it means that all the faults it detects are also detected by other vectors. But this does not

mean that the vector is redundant, because it may belong to a set of vectors, each of which

detects a fault. Now in a second simulation with fault dropping, all vectors with non-zero

counts are simulated first, followed by the vectors with zero counts in the reverse order.

This time many vectors with 0 counts become redundant, i.e., those that do not detect any

new fault, and can be eliminated.

3.2.2 Dynamic Compaction

The compaction procedure which makes use of the fault simulation information during

test generation and/or which dynamically morphs and merges the generated vectors based

on the fault simulation information can be simply termed as dynamic compaction. Basically,

as the test generation proceeds, fault targets are dynamically selected and test vectors

for target faults are also selected based on certain criteria. Besides, a vector previously

generated may be modified or replaced.

Dynamic Compaction During Test Generation

The first dynamic compaction procedure proposed by Goel and Rosales [36] makes use

of the fault simulation information by dynamically adjusting the fault list and dropping the

faults which are detected by the vectors generated earlier.

15

Most of the latest dynamic compaction techniques are based on the idea of compatibility

of faults. Two faults are said to be compatible, if there is at least one vector that can detect

both faults. Two faults are independent (incompatible), if they cannot be detected by a

single vector. Recent work on independence fault collapsing and concurrent test generation

collapses faults into groups based on an independence relation [23], and then for each group

tries to generate either a single vector, or as few vectors as possible, which can detect all

faults in that group [2, 22].

In COMPACTEST [76], independent fault sets were used to order the fault list for

test generation. The faults were ordered such that faults included in a larger independent

fault set (IFS) appear higher in the fault list and are processed earlier. Thus, if the largest

independent fault set is of size k, then the first k tests are generated for independent faults.

Thus, it is guaranteed that the first k tests are necessary and cannot be replaced by a

smaller number of tests. Later Kajihara et al. [50, 51] proposed dynamic fault ordering,

in which, whenever a test vector is generated, the order of the faults in the fault list is

changed according to the number of yet-undetected faults in each independent fault set.

The largest set at that point is dynamically put at the top of the fault list. The “double

detection algorithm” mentioned earlier in the section on static compaction can be applied

dynamically, where fault simulation and value assignment was done for each vector right

after its generation. This made test compaction far more efficient than the corresponding

static compaction technique.

Ayari and Kaminska [8] proposed test generation approaches that make use of the

compatibility relation between faults to decide which of the faults can be targeted together

for test generation. The idea of concurrent test generation has also been proposed by Doshi

and Agrawal [2, 22].

16

A redundant vector elimination (RVE) algorithm, which identifies redundant vectors

during test generation and dynamically drops them from the test set, was developed by

Hamzaoglu and Patel [41]. The proposed RVE algorithm works somewhat similar to the

double detection algorithm [50, 51], but in addition to the count of faults “only detectable

by this vector”, all faults detected by each vector are also determined. In addition, the exact

number of times each fault is detected by the vector set is determined. As will be observed,

this information is needed for other advanced dynamic test compaction techniques [17, 41,

76].

Dynamic Compaction After Test Generation

Chang and Lin [17] proposed a forced pair-merging (FPM) algorithm in which a vector,

say t1, is taken and as many 0s and 1s as possible are replaced with Xs such that the vector

still detects its essential faults. The essential faults of a vector are those that cannot be

detected by any other vector in the vector set. Then, for each of the remaining patterns,

say t2, the algorithm tries to change the bits that are incompatible with the new t1 to Xs.

If the process succeeds, the pair is merged into a single pattern. The essential fault pruning

(EFP) method developed by Chang and Lin [17] tries to actively modify the rest of the

test set to detect the essential faults of a vector, making the vector redundant. Pruning

an essential fault of a test vector decreases the number of its essential faults by one. If all

the essential faults of a test vector are pruned then it becomes redundant. A limitation of

this method is its narrow view of the problem; it is not possible to remove all the essential

faults of a vector. So a new essential fault reduction (EFR) algorithm [41] is used instead of

the EFP method. EFR uses a multiple target test generation (MTTG) procedure [17, 51]

to generate a test vector that will detect a given set of faults. The EFR algorithm makes

17

use of the independence (incompatibility) graph to decide which faults in a vector can be

pruned through detection by another vector.

The main problem with all dynamic test compaction approaches is their complex-

ity. Also, all methods heavily rely on fault simulation for every step. So applying these

approaches could become impractical for minimizing N -detect tests. The essential fault

reduction (EFR) algorithm along with the redundant vector elimination (RVE) algorithm

have produced some of the smallest reported single-detect test sets for the ISCAS85 [12]

and ISCAS89 [11] (scan versions) benchmark circuits.

3.3 Generation of N-Detect Tests

3.3.1 Traditional N-Detect ATPG Method

N -detect tests have been generated in industry by a simple algorithm. The algorithm

proposed by Benware et al. [9] is illustrated below:

1. Perform single-detect fault simulation with the single-detect pattern set T1 for all

faults

2. Save all faults detected by single-detect fault simulation with pattern set T1 in list F

3. Set the number of detections to N

4. For k = 1 to (N − 1)

(a) Perform multiple-detect fault simulation with pattern sets T1 to Tk for faults in

list F

(b) Save faults detected k times in Fk

18

(c) Target faults in Fk and perform single-detect ATPG to increase the number of

detections by one

(d) Save the patterns to Tk+1

This method has a built-in static compaction procedure and it is perhaps the most

frequently used method in the industry [7, 9, 45, 94].

3.3.2 Defect Oriented N-Detect Greedy ATPG Approach [64]

In ATPG algorithms efficiency of searching is essential for reducing the run time. There-

fore, an ATPG always chooses what are estimated to be the easiest excitation and propaga-

tion paths. If the same fault is targeted again, the ATPG may get exactly the same vector,

which will not detect any additional defects. Thus, this efficiency-oriented approach may

not always produce the best defect coverage. So, a new ATPG procedure is proposed, which

will try to randomize the searching process for both excitation and propagation. As a result,

different patterns will be generated in each run and it can be expected that multiple pat-

terns for the same fault site would detect additional defects fortuitously. Such approaches

may also try to achieve compaction by targeting multiple faults during test generation.

3.3.3 N-Detect Generation From One-Detection Test Set [79]

In this procedure, N -detect tests are generated without applying a test generation

procedure to target faults. Starting from a single-detect test set the algorithm applies an

N -detect fault simulation to the test set. Unlike normal fault simulation, where faults are

dropped right when they are detected, in an N -detect fault simulation faults are dropped

only when they have been detected N times. This simulation gives the number of times

each fault still needs to be targeted. Test cubes are generated for the targeted faults from

19

the one-detection test set. Test cubes are vectors in which 0s and 1s have been converted

to Xs, but they still detect particular targeted faults. Next, those test cubes are merged

in various ways to obtain an N -detect test set. It is observed that the resulting test set is

as effective as an N -detect test set generated by a deterministic test generation procedure

in detecting untargeted faults. As the fault simulation of a given test set is faster than

its generation, this approach is reported to perform faster than the traditional N -detect

approach. Fault simulation is required only for extracting test cubes for the targeted faults.

3.4 N-Detect Test Minimization

Although several test generation strategies have been developed, not much work has

been done on minimizing the size of N -detect tests. A previously reported N -detect test

minimization approach is the reverse order N -detect fault simulation [79], where vectors

are simulated in the reverse order and a fault is dropped only after it is detected N times.

If a test vector does not detect any fault that is still in the fault list, then that vector is

removed from the test set. The only other N -detect test minimization approach presented

in the literature makes use of polynomial time reduction techniques followed by a greedy

approach to minimize a pre-generated N -detect test set [45]. That is presented in the next

section.

3.5 Linear Programming Techniques for Single-Detection

The problem of finding a smallest possible subset of test vectors that tests a given

set of faults is a set covering problem. In set covering problems, the goal is to identify

the smallest collection of sets that cover a given (universal) set of elements. In the test

20

compaction problem the elements are the faults to be covered by the given collection of test

vectors.

3.5.1 Integer Linear Programming

Suppose a circuit has the detected faults f1, . . . , fm and the corresponding test set

consisting of vectors v1, . . . , vn. Each test vector vj is associated with a fault subset, Sj, j =

1, . . . , n. The problem is to find the smallest collection of fault subsets that covers all faults

1, . . . ,m. An m×n detection matrix D of m rows and n columns is generated. Its element

Dij equals 1 if fault fi is detected by vector vj , otherwise Dij equals 0. We also define a

vector of n integer variables x such that the variable xj = 1 implies that vector vj belongs to

the compacted vector set and vj = 0 means that vj is discarded. The set covering problem

is formulated as an integer linear programming (ILP) model:

Objective function : minimize
n∑

j=1

xj

subject to m constraints : Dx ≥ 1 (3.1)

A solution of the ILP model can be obtained from any available program [31]. The mini-

mized value of the objective function gives the number of vectors in the compacted test set.

The values of [0,1] integer variables xj directly determine which vectors should be in the

minimal vector set. Even for moderately large circuits, ILP solutions can be obtained.

However, the worst-case complexity of ILP is exponential and some solutions will require

large run times.

21

3.5.2 Relaxed Linear Programming

A useful method to solve an integer linear programming (ILP) problem is to first solve

a relaxed linear programming (LP) problem, which has the same objective function and

constraints as given in Equation 3.1, but the variables xj are regarded as real continuous

variables in the range [0.0,1.0]. Since the LP complexity is polynomial, a solution is easily

obtained from available programs [31].

It is known that the minimized value of the objective function in the relaxed LP solution

is a lower bound on the ILP solution. The value of xj , however, does not directly indicate

whether or not vector vj should be selected. The method discussed in the next section rounds

each xj to 0 or 1 such that the resulting values satisfy all ILP constraints of Equation 3.1. A

solution to the vector compaction problem is thus obtained, altough the optimality provided

by the ILP is not guaranteed.

Randomized Rounding

The process of rounding the real values obtained from the relaxed LP is probabilistic.

The variable xj is interpreted as the probability of including the vector vj in the compacted

vector set. However, to find the vector set, we should round each xj to 0 or 1. This

procedure is known as randomized rounding [92]:

1. Generate a real-valued random number r in the range 0.0 and 1.0

2. Compare r and xj

(a) If r ≤ xj, then xj is set to 1,

(b) otherwise, xj is set to 0.

22

If the final rounded solution satisfies the ILP constraints in Equation 3.1, it will be the final

relaxed-LP solution. If the rounded values do not satisfy the ILP constraints 3.1, and this

can happen quite frequently, then one must repeat the rounding procedure.

In some cases, where the randomized rounding cannot give an integer solution, a round-

ing heuristic proposed by Hochbaum [44] can be used. If the solution of relaxed-LP is x∗,

then the output of the rounding heuristic is �x∗�. In this rounding approach, all the vari-

ables which are assigned real values greater than zero are immediately rounded to 1. Thus,

all ILP constraints 3.1 are guaranteed to be satisfied, although, in general, the solution will

be non-optimal, sometimes with a significant margin.

Motivated by the weaknesses of solutions obtained from the relaxed-LP using the pre-

viously known methods, we have developed a new procedure called recursive rounding in

the present research. That work is discussed in Chapter 6.

A Heuristic Method [45]

As the ILP method cannot be applied to large circuits due to space and performance

limitations, a heuristic method is proposed, which first applies an extension of the com-

monly used polynomial-time reduction techniques in logic synthesis. The techniques of

essentiality, row dominance and column dominance are redefined for this approach. These

techniques along with a greedy algorithm are applied to approximately solve the integer

linear programming problem in polynomial time.

23

3.6 Applications of LP Techniques in Testing

The linear programming techniques are used in various aspects of testing. They have

been used to optimize vector sequences for sequential circuits [24], minimize tests for re-

versible circuits [75], compact defect-oriented test patterns [92] and optimize test patterns

generated from RTL descriptions of circuits [95, 96, 97]. Other applications for the LP

techniques include test planning [91], test data compression [16] and test resource optimiza-

tion [14, 49] for testing of SoCs. However, the idea of using linear programming techniques

for N -detect tests was first explored in our recent paper [53]. This is one of the main

contributions of the present research and will be discussed in Chapter 5.

24

Chapter 4

Theoretical Results on Minimal Test Sets

In this chapter, a theoretical minimum for N -detect tests is derived based on the

independence graph. As test minimization is an NP-complete problem [34, 59], various

heuristic-based strategies are used for test minimization. For those methods to work effi-

ciently, a rough idea of the lower bound is needed to make their search precise. Also, in

this chapter we study the quality of minimized test sets when an exact minimization is

possible. This quality is influenced by the initial test set generated before minimization.

This analysis helps us understand why test sets for some circuits can be better compacted

compared to others.

4.1 Independence Graph

Two faults are independent (also called incompatible) if and only if they cannot be

detected by the same test vector [5, 6]. An independence graph (also known as incompatibility

graph) represents the independence relations between the faults of a circuit. Each fault is

represented by a node in the independence graph and the independence of two faults is

represented by the presence of an undirected edge between the corresponding nodes. So an

edge between two nodes means that the two faults cannot be tested by a common vector.

The Independence graph for the 11 collapsed faults for the ISCAS85 benchmark circuit

c17 is shown in Figure 4.1 [22]. The circuit c17 has 17 nets, so there will be a total of

25

4321 5

11

109876

Figure 4.1: Independence graph of c17.

34 single-line stuck-at faults. Applying both the structural and functional dominance and

equivalence collapsing techniques [1, 13, 84, 85] reduced the targeted fault list to 11.

4.2 Independent Fault Set

A clique is a subgraph in which every node is connected to every other node, making the

subgraph fully connected [19]. So in a clique each node is independent of every other node.

The largest clique, i.e., the clique with the largest number of nodes in the independence

graph is called an independent fault set (IFS) of the circuit. Akers et al., in their classical

paper on test minimization [5], gave a theorem about the lower bound on the single-detect

test sets.

26

4321 5

11

109876

Figure 4.2: Independence graph of c17 showing an independent fault set.

4.2.1 Lower Bound on Single-Detect Tests

Theorem 1: The size of the largest clique in the independence graph (the independent

fault set) is a lower bound on the single-detect test set size [5].

From the independence graph of c17, redrawn in Figure 4.2, it is clear that nodes

(faults) 1, 2, 4 and 5 form an independent fault set (IFS). So, in order to detect all faults

in c17, we need at least 4 vectors. Actually, the minimum possible test set for c17 has

four vectors. In general, however, the size if IFS is only a theoretical minimum and such a

test set whose size equals the lower bound may not be achieved in practice for many circuits.

27

4.2.2 Lower Bound on N-Detect Tests

Theorem 2: The lower bound on the size of an N-detect test set is N times the size

of the largest clique (independent fault set) in the independence graph.

Proof: Consider the faults that form an independent fault set of the independence

graph. Suppose we generate N test vectors for a fault in the IFS. These vectors cannot

detect any other fault in the IFS. For the second fault we therefore generate N new test

vectors, which will neither detect the first fault nor any other fault in the IFS. Thus, the N -

detect test set for the two faults contains 2N vectors. To detect all faults in the independent

fault set N times we must apply this procedure independently to each fault, thus producing

N distinctly different vectors each time. These N × |IFS| vectors are needed to cover all

faults in the IFS N times. However, they may or may not cover the remaining faults of the

circuit. Hence, this number is only a lower bound on the N -detect test set.

Figure 4.3 illustrates the application of the arguments of the above proof to the IFS

of c17. If N vectors are generated for the fault-1, those vectors cannot detect any of the

remaining 3 faults in the IFS. So, we need N more vectors to detect fault-2 N times, but

those vectors cannot detect either of the remaining 2 faults. So, totally 4N vectors are

needed to detect each fault in the independent fault set, which means that at least 4N

vectors are needed to detect all the faults in c17 N times.

The progressive explanation of the independence fault set concept makes the newly

derived Theorem 2 look like a general outcome of Theorem 1 [5]. The new theorem does

not seem so obvious when we consider the fact that a minimal single-detect test set actually

detects about 70% of all faults at least twice, but then it is Theorem 2 that tells us that

28

1

N test
Vecs
N test
Vecs

5

N test
Vecs
N test
Vecs

2

N test
Vecs
N test
Vecs

4
N test
Vecs
N test
Vecs

Figure 4.3: Faults in the independent fault set of c17.

we need another complete single-detect test set to cover the remaining 30% of the faults a

second time. Theorem 2 is general and does imply Theorem 1.

4.2.3 An Example

The 74181 4-bit ALU [43] is used to compare the N -detect lower bounds and the

practically achievable minimums (see Theorem 3 in Chapter 5). The results, given in

Table 4.1, are derived using an N -detect test minimization method [53] we propose in

Chapter 5.

The size of the largest clique (independent fault set) of the 74181 ALU is 12. So, from

Theorem 1 [5], the lower bound on the size of the single-detect test set is 12. As observed,

there exists a minimal single-detect test set of size 12. As pointed out earlier, that may not

be the case always. From the independence graph, it is clear that any fault of the circuit

that is not in the independent fault set will be compatible with one or more of the faults

in the IFS. When each fault in the IFS forms its own set containing only faults that are

29

Table 4.1: Results of a 4-bit ALU (74181).

N Theorem 2 (Lower Bound) Theorem 3, Chap. 5 (Practical Minimum)
1 12 12

10 120 120
20 240 240
30 360 360
40 480 480
50 600 607
60 720 742
70 840 877
80 960 1012
90 1080 1147
96 1152 1228

compatible with itself, then every fault in the circuit can be grouped into one of those fault

sets [2, 23]. Now if there exists a single vector which detects all faults in a fault set and such

a vector is found for each fault set, then we will have a complete coverage test set whose

size will equal the IFS. If faults in any of the fault sets cannot be covered by a single vector,

then the number of vectors needed for complete coverage will exceed the lower bound.

From Theorem 2, the lower bound on the size of an N -detect test set must be 12N .

In Table 4.1 there are several N -detect tests with 12N vectors. But the N -detect test set

size start to diverge from the lower bound around N = 50. This may be because there do

not exist N different vectors which can detect all faults in one of the fault sets. So, two or

more vectors will be needed to detect all faults in that fault set, resulting in a larger test

set than the lower bound.

From the bridging coverage estimate (BCE) test metric discussed in Chapter 2, it is

clear that N -detect tests of orders more than 10–15 may not further improve bridging

defect coverage. But here N -detect tests of orders much higher than 10 are considered to

30

practically illustrate the result of the proposed theorem and to demonstrate the divergence

of minimal test sets from their lower bounds.

4.3 Classification of Combinational Circuits

It is observed that some circuits achieve their minimal test sets with greater ease

compared to other circuits. The ISCAS85 benchmarks were investigated and analyzed to

study the structural properties of the circuits [42], which contribute to these differences.

Based on their structures, combinational circuits can be classified as type-I or type-II.

4.3.1 Type-I Circuits

Type-I circuits can be classified as narrow and deep circuits with output cones having

large overlap. Figure 4.4 gives an illustration of a type-I circuit. In these circuits, the

P
R
I
M
A
R
Y

I
N
P
U
T
S

PO1

PO2

PO3

F1

X

X
F2

X
F3

F4

X

Figure 4.4: Type-I circuit.

output cones PO1, PO2 and PO3 have large overlap between them. Any vector detecting a

31

fault F2 will have high probability of detecting other faults, say F3 or F1. The benchmarks

c499, c1355 and c1908 can be considered as type-I circuits [42].

4.3.2 Type-II Circuits

Type-II circuits are classified as wider and shallow circuits with output cones having no

or very small overlap between them. Figure 4.5 illustrates the topology of a type-II circuit.

Here the output cones PO1, PO2, PO3 and PO4 have almost no overlap between them.

F1

 X

F3

 X

F2

X

F4
X

P
R
I
M
A
R
Y

I
N
P
U
T
S

PO1

PO3

PO4

PO2

Figure 4.5: Type-II circuit.

So any vector targeted for detecting a particular fault will have a much lower probability

of detecting any other fault. The benchmarks c880, c2670 and c7552 can be considered as

type-II circuits [42].

32

4.3.3 Ripple-Carry Adders

Generally, any circuit may not be exactly classified as type-I or type-II. It is the domi-

nating property of the circuit which decides the nature of the circuit. This can be illustrated

using the example of a ripple-carry adder shown in Figure 4.6.

1-b1-b

1-b1-b

1-b1-b

1-b1-b

Figure 4.6: Hierarchical structure of ripple-carry adder.

N -detect tests were generated for the ripple-carry adder, constructed as an array of

identical full-adders. The minimum number of single-detect vectors needed to detect all

gate-level single stuck-at faults is 5, irrespective of the size of the adder. Figure 4.7 shows

minimized vector sets obtained by the new N -detect test minimization technique of Chap-

ter 5. An iteration here means that an additional vector set from a random-seed based test

generator has been included in the pre-minimization vector set. The test set size rapidly

33

16−bit adder

15

10

5

0

1−b 2−b 4−b 8−b

M
in

im
iz

ed
 te

st
 s

et
 s

iz
e

Iterations
1 10 100

Minimum test set size = 5
for ripple−carry adders of all sizes

Figure 4.7: Minimized test sets of ripple-carry adders.

converges to 5 for the 1-bit adder in 1 iteration, 2-bit adder in 3 iterations and 4-bit adder

in 5 iterations. The 8-bit adder required 55 iterations for the optimal test set. For the

16-bit adder, the convergence became asymptotic, with the test set size remaining 7 even

after 100 iterations.

Figure 4.8 shows the gate-level structure of the full-adder used as the basic cell in the

ripple-carry adders. From the figure it is clear that the two output cones of the full-adder

have reasonable overlap among them. This is a type-I structure. However, there is also

a good amount of disjointness among the cones. When larger adders are built by adding

ripple-carry stages, the number of output cones increases. Gradually more non-overlapping

cones start appearing. As a result, type-II behavior begins to dominate. This should be the

reason why small adders behave as type-I circuits while large ones are type-II in nature.

34

Ai

Bi

Ci

Ci+1

Si

Figure 4.8: Structure of the full-adder used in ripple-carry adders.

35

Chapter 5

ILP Method for N-Detect Tests

In this chapter, a new N -detect test minimization method is presented. We express the

test minimization problem as a set covering problem and use integer linear programming

(ILP) technique to find an optimal solution. Results obtained for this method are compared

with those of a previously published N -detect approach [64].

5.1 Test Set Minimization Problem as a Set Covering Problem

In a set covering optimization problem (simply referred to as set covering problem)

several sets, which may have some elements in common, are given as inputs and a minimum

number of these sets is to be selected so that the selected sets contain “all” the elements

contained in the original sets.

An instance (X,F) of the set-covering problem consists of a finite set X and a family

F of subsets of X, such that every element of X belongs to at least one subset in F :

X =
⋃

S∈F

S

We say that a subset S ∈ F covers all elements of X. Now the set covering problem is to

find a minimum size subset C ⊆ F whose members cover all of X:

Minimize C such that, C ∈ S (5.1)

36

We say that any C satisfying the Conditions 5.1 will be the optimal subset S, which covers

X [19]. It can be observed that this set covering problem is an abstraction of commonly

arising combinatorial problems. The set covering problem is proven to be NP–complete [56].

In order to convert the test minimization problem to a set covering problem, the de-

tected faults are considered as the finite set X and the test vectors, each detecting a subset

of the faults, are considered as the family F of subsets of X. Now the objective is to

minimize C, the subset of the family F of subsets of X which covers all of X the required

number of times.

5.2 Realization using Integer Linear Programming

Suppose we have a set of k vectors that detects every fault at least N times. We

use diagnostic fault simulation, i.e., fault simulation without fault dropping, to identify

the vector subset Tj that detects a fault j, for all j. We assign an integer-valued variable

ti ∈ {0, 1} to ith vector such that ti = 1 means that ith vector should be included in the

minimal vector set and ti = 0 means that ith vector should be discarded. The problem of

finding the minimal N -detect set then reduces to assigning values to ti’s such that:

Objective function : minimize
k∑

i=1

ti (5.2)

under the following constraints:

∑

ti∈{Tj}
ti ≥ Nj, ∀ faults j (5.3)

ti ∈ {0, 1}

37

where Nj is the multiplicity of detection for the jth fault. Nj can be selected for individual

faults based on some criticality criteria, like the coupling capacitance associated with each

node, etc. Such a procedure has been proposed for defect-oriented test minimization [92].

This, however, may require the layout-level data available only after the physical design has

been completed. Actually, Nj can be limited by the capability of the initial vector set. To

target for a minimized N -detect test, we have simply assumed all Njs to be equal to N . An

integer linear program (ILP) solver [31, 48] can then find the [0, 1] values of the variables

{ti} that define a minimal N -detect vector set. For N = 1, the ILP produces the minimal

single-detect test set [30, 44, 89].

Theorem 3: When the minimization is performed over an exhaustive set of vectors of a

combinational circuit, any ILP solution that satisfies expressions 5.2 and 5.3 is a minimum

N-detect test set.

Proof: Expressions 5.2 and 5.3 define a solution space and a set of conditions. Con-

straints 5.3 ensure that a set of vectors covers all faults. It is known that an ILP solution

when feasible is optimal [66, 74]. When the constraints 5.3 are specified for the exhaustive

set of patterns and a minimal set is found from ILP, that set will be the global minimum

because it is taken out of the entire solution space.

5.2.1 Example

Table 5.1 shows the ILP solution for the 74181 four-bit ALU circuit. The circuit has 14

primary inputs and therefore the exhaustive set contains 214 = 16,384 vectors. Diagnostic

fault simulation of these vectors by Hope [63] required 14.3 seconds on a Sun Ultra 5 with

256MB RAM. Also shown in the table are 2,370 vectors generated by Atalanta [62] to detect

38

Table 5.1: N -detect tests for 74181 ALU.

16,384 exhaustive vectors 2,370 Atalanta 10-detect vectors
N Minimized ILP Minimized ILP

vectors CPU s vectors CPU s
1 12 87.47 12 5.19
2 24 63.09 24 8.23
3 36 70.56 36 5.53
4 48 72.12 48 6.53
5 60 65.06 60 5.69
8 96 71.01 96 5.46
9 108 88.01 109 6.24

10 120 68.82 122 5.32
20 240 79.56 262 5.93
40 480 66.08 - -

each fault at least 10 times. This circuit has a collapsed set of 237 detectable faults and 10

vectors were generated for each fault. Diagnostic simulation of these 2,370 vectors by Hope

required 2.3 seconds.

Notice that the ILP CPU times remain about the same for all orders of N . Generally,

ILP time depends on the number of constraints in the problem and also on the size of the

constraints, but here it does not seem to depend on the value of N . We also observe that

the optimized Atalanta vector set starts to diverge from the lower bound, i.e., 12N , for

N ≥ 9. This is because not all test vectors of each fault are included in the initial set and

ILP might not find the right vector. That is why Theorem 3 does not guarantee optimality

in this case.

5.3 Derivation of N-Detect Tests

We generate an unoptimized M -detect test set by an ATPG program, where M ≥ N .

In our case, this was done using Atalanta [62], which was originally designed to generate

a single-detect test set. Interestingly, repeated runs of the program produce different test

39

sets. This is because different random vectors (due to a different seed in the random

number generator) are used each time to initially cover easy-to-detect faults. In most cases,

by combining M single-detect test sets we could get the required set.

A simple analysis of vectors is used to remove any repeated vectors. This is important

for a correct result from the ILP when N > 1. Next, a fault simulator (Hope [63], in our

case) was used for diagnostic fault simulation. In fact, any of the fault simulators [73, 90]

can be used for this purpose. The fault simulator determines the vector set {Tj} for every

fault j. If |{Tj}| < N for any fault then additional vectors are obtained for that fault.

Using the fault simulation data, the ILP constraints are generated and a solver [31, 48]

can then find the [0, 1] integer variables ti. Results show that for small values of N , i.e., N

close to 1, M should be several times N to obtain the minimal or a near-minimal test set for

very large circuits. However, for large N , M ≈ N may sometimes provide a near-optimal

N -detect test set.

In general, a suitable value for M is not known. We used an iterative procedure to study

the effect this value may have on the N -detect test minimization. Tests were generated for

the c432 ISCAS85 benchmark circuit, which is known to have a minimal single-detect test

set of 27 vectors [41]. In the first iteration, a single-detect set of 70 vectors generated by

Atalanta [62] was used. The ILP reduced this set to 49 vectors for N = 1 but no sets were

generated for N ≥ 2 due to insufficient number of detections for some faults. To enhance the

vectors, we generated extra tests for 25 faults that were detected last in the 70-vector set.

The 25 vectors so generated had several don’t care bits, which were enumerated to create 10

vectors from each. Thus, 25×10+70 = 320 vectors were obtained. After removing repeated

vectors this set reduced to 317 vectors. Subsequent iterations added a new single-detect set

generated by Atalanta, from which repeated vectors were removed.

40

Iterations
1 10 100

10

1000

N=2

N=1

N=3

N=5

N=10

27

54

81

135

270

100

Lower bounds

M
in

im
iz

ed
 te

st
 s

et
 s

iz
e

(n
um

be
r

of
 v

ec
to

rs
)

1000

Figure 5.1: Sizes of N -detect test sets for c432 as a function of iterations.

Figure 5.1 shows the N -detect test set sizes obtained from ILP as a function of number

of iterations. The 1-detect set converges to the lower bound of 27 only at the 225th iteration,

when the number of unoptimized vectors has reached 14,882. Test set sizes for N = 2, 3, 5

and 10 are 55, 83, 140 and 283, respectively. The corresponding lower bounds are 54, 81,

135 and 270, respectively.

Figure 5.2 shows the Sun Ultra-5 CPU time for the ILP as a function of number of

iterations. Although the number of vectors increases linearly, a sub-linear increase in the

CPU time is observed. The value of N did not affect the run time of ILP.

41

IL
P

 ti
m

e
(C

P
U

 s
ec

on
ds

)

10 100 1000 10000
Number of unoptimized vectors

1

0.1

10

100

Figure 5.2: ILP CPU time versus number of unoptimized vectors for c432.

5.3.1 Example

The c17 benchmark circuit is used for generating a minimal 3-detect test set. At-

lanta [62] is used to generate 4 test sets (M = 4 iterations) for the 22 structural equivalence

collapsed faults (see Figure 5.3 and Figure 5.4) and the repeated vectors are removed leav-

ing 29 vectors. If both structural and functional equivalence and dominance collapsing is

applied, as in Chapter 4, only 11 faults will be present in the target fault list. The fault

simulator Hope [63] is used to perform diagnostic fault simulation on those 29 vectors. The

simulation information, shown in Table 5.2, is used to create constraints for ILP.

42

sa1
x

sa1
x

sa1
x

sa1
x

sa1
x

sa1
x

sa1
x

sa1
x sa1

x

sa1
x

sa1
x

sa1
x

sa1
x

sa1
x

sa1
x

X
sa0

X
sa0

X
sa0

X
sa0

X
sa0

sa1
x

sa1
x

Figure 5.3: All the 22 structural equivalence collapsed faults of c17.

Now the objective is:

minimize
29∑

i=1

ti

and the constraints are:

∑

vectori∈{Tj}
ti ≥ 3, ∀ faults j

Constraint for fault 1: t1 + t2 + t15 + t16 + t22 + t24 ≥ 3
...

Constraint for fault 21: t13 + t15 + t16 + t19 + t23 + t24 ≥ 3
...

The minimum 3-detect test set given by ILP has 13 vectors (the lower bound from Theorem 2

is 12).

43

1511

8

21

12

9
7

6

54

3
14

13 12

10 16
17

18

19

20

22

3
12

19

20

22

Figure 5.4: The structural equivalence collapsed faults of c17 (numbered).

Suppose fault 21 is a critical fault in the circuit which needs to be targeted more times,

say 5. Then all that is needed is a change in the constraint for fault 21 as,

Constraint for fault 21: t13 + t15 + t16 + t19 + t23 + t24 ≥ 5

Now, ILP gave a minimum test set of 14 vectors. Actually, for larger circuits, this change

in test set size can be quite small.

5.4 Results

Table 5.3 shows results obtained for several ISCAS85 benchmark circuits. The lower

bound (L.B.) for each N -detect test is obtained by multiplying the theoretical single-detect

minimum [41] by N ; see Theorem 2. Test sets for 1, 2, 3 and 5 detections were generated.

The iterative procedure, as explained in the previous section, was used. Absolute minimal

test sets were obtained for c499 (6 iterations), c1355 (7 iterations) and c1908 (12 iterations).

The vector sets for c432 (225 iterations) were minimal only for N = 1 and 2. All CPU times

44

Table 5.2: Diagnostic fault simulation result for the 29 vectors of c17.

Fault Vectors which detect the fault
1 1, 2, 15, 16, 22, 24
2 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 16, 22, 24, 28, 29
3 1, 2, 13, 15, 16, 19, 22, 23, 24
4 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
5 1, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27
6 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 25, 26, 28, 29
7 2, 6, 9, 11, 29
8 2, 10, 11, 14, 25, 26
9 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 25, 26, 28, 29

10 3, 4, 5, 6, 7, 8, 28, 29
11 3, 4, 7, 10, 14, 17, 18, 25, 28
12 3, 4, 5, 6, 7, 8, 9, 28, 29
13 3, 4, 7, 14, 25, 28
14 5, 6, 7, 9, 28
15 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 23, 25, 26, 27
16 10, 14, 17, 18
17 10, 11, 12, 14, 17, 18, 21, 22, 25, 26, 27
18 11, 13, 19, 20, 21, 23
19 12, 17, 18, 21, 22, 27
20 13, 16, 23, 24
21 13, 15, 16, 19, 23, 24
22 15, 19, 23, 24

are for a Sun Ultra-5, except for two cases marked with asterisks (*) that were run on a

Sun Ultra-10. The times for N ≥ 2 were not significantly different from these times, which

are for N = 1.

Table 5.4 compares the ILP result of 15-detect tests with those from a heuristic ap-

proach by Lee et al. [64] and a lower bound. This lower bound (L.B.) is obtained upon

multiplying the theoretical minimum single-detect test set by 15, as stated in Theorem 2

(not always realized [41]). ILP takes exponential time and is NP-complete [56], so for cir-

cuits whose ILP ran too long (c880, c3540, c5315 and c6288), time limits were set. CPU

times (ILP and [64]) are for a Sun Ultra-5, except those with * (Ultra-10) and ** (Sun Fire-

280R-900MHz-Dual-Processor). The ILP technique (even when CPU time was restricted

45

Table 5.3: N -detect test set sizes minimized by ILP.

Circuit Unopt. ILP Single-detect 2-detect 3-detect 5-detect
name vect. CPU s L.B. Set L.B. Set L.B. Set L.B. Set

size size size size
c432 14822 82.3 27 27 54 55 81 83 135 140
c499 397 5.3 52 52 104 104 156 156 260 260
c880 3042 306.8 13 25 26 44 39 63 65 105
c1355 755 16.7 84 84 168 168 252 252 420 420
c1908 2088 97.0 106 106 212 212 318 318 530 530
c2670 8767 1568.6* 44 71 88 145 132 224 220 391
c6288 243 519.7 6 18 12 27 18 37 30 57
c7552 2156 1530.0* 65 148 130 298 195 468 325 841

Table 5.4: Comparing 15-detect tests.

Circuit ILP [this work] Heuristic [64] L.B.
name Vect. CPU s Vect. CPU s [41]
c432 430 444.8 505 292.1 405
c499 780 24.9 793 153.2 780
c880 321 521.4 338 229.6 195
c1355 1260 52.1 1274 5674.6 1260
c1908 1590 191.0 1648 1563.9 1590
c2670 1248 607.8* 962 9357.6 660
c3540 1411 1223.7 - - 1200
c5315 924 1368.4* - - 555
c6288 134 1206.3 144 1813.8 90
c7552 2370 346.1** - - 975

for some circuits) did better than the heuristic method, although further improvement is

possible.

46

Chapter 6

Recursive Rounding – A New Relaxed-LP Method

Given that the number of elements in a set covering problem may grow polynomi-

ally with circuit size, finding an optimal solution for the set covering problem is NP-

complete [56]. A possible alternative is to relax the integer constraints of the set covering

problem, solve an LP, and round the LP result to generate a possibly close-to-optimal so-

lution. In this chapter a new rounding approach, termed recursive rounding , is presented.

Unlike previous rounding techniques, such as the randomized rounding, the new technique

always converges to a solution in a finite number of recursions, and almost always generates

a close to optimal solution.

6.1 Complexity of Integer Linear Programming

The complexity of integer linear programming (ILP) is known to be exponential in

terms of the number of variables. We illustrate this by a very simple three-vector three-

fault (3V3F) example. Consider three faults f1, f2 and f3, and three vectors. We assign a

binary integer ti to each vector i. The single-detection problem is specified as follows:

Minimize t1 + t2 + t3 (6.1)

Subject to constraints,

f1 : t1 + t2 ≥ 1 (6.2)

47

f2 : t2 + t3 ≥ 1

f3 : t3 + t1 ≥ 1

The solution space is shown in Figure 6.1. Any pair of vectors is an optimum solution for

this problem and the three solutions are shown by black dots. Four points, marked as 0

or 1, do not satisfy all the constraints in 6.2 and one point, t1 = t2 = t3 = 1, though

it satisfies all the constraints, is non-optimal. The ILP basically must search among all

vertices of the unit cube (a unit hypercube in general) to find one of the optimal solutions.

Although a branch and bound solution can be implemented, the ILP search complexity

remains exponential, as the number of vertices for n vectors is 2n.

6.2 LP-relaxation of the Minimization Problem

The ILP problem is specified as follows:

minimize
k∑

i=1

ti (6.3)

under the following constraints:

∑

ti∈{Tj}
ti ≥ Nj ,∀ faults j (6.4)

ti ∈ {0, 1}

In order to create the linear programming relaxation of the problem, the integer variables

ti are relaxed as real variables which can take any value between 0 and 1 (1 ≥ xi ≥ 0).

ti ∈ [0.0, 1.0]

48

t3

t2

t1

LP Solution
(0.5,0.5,0.5)

0

1

1

1

Non-optimum solution

ILP solutions (optimum)

Figure 6.1: ILP and LP solutions for the three-vector three-fault (3V3F) example.

The LP solution can be found in polynomial time or sometimes in linear time. As observed

in our research, the LP solution will be in terms of real values most of the time, which

means that the solution lies in the interior of the hypercube. So it should be followed by a

rounding technique to generate an integer solution.

Lemma 1: The relaxed-LP of the ILP minimization problem has the property that its

optimal value is a lower bound on the value of the optimal integer solution to the problem [24,

44].

49

For the 3V3F example, the LP solution t1 = t2 = t3 = 0.5 is shown in figure 6.1.

Notice that the LP solution for the sum in Equation 6.1 is 1.5. This is known to be a lower

bound for the exact ILP solution, which is 2 in this case. The problem now remains to be

converted into an ILP solution.

6.3 Limitations of Randomized Rounding

The literature gives a randomized rounding method [24, 80], in which real variables

ts are treated as probabilities. A random number xi uniformly distributed over the range

[0.0, 1.0] is generated for each variable ti. If ti ≥ xi then ti is rounded to 1, otherwise

it is rounded to 0. If the rounded variables satisfy the ILP constraints, then the rounded

solution is accepted, otherwise, rounding is again performed starting from the original LP

solution.

For many problems randomized rounding works efficiently. However, notice that for

our 3V3F problem, t1 = t2 = t3 = 0.5, and therefore, all nodes in Figure 6.1 are equally

likely. Here, the randomized rounding is nothing but a random search. In general, we found

that the LP solution for the test minimization problem contains a large number of equal

values, which makes the search almost random. Since the number of tests is much larger

than the size of the minimal test set, we find ourselves conducting a random search in a

very large solution space, which contains very few optimal and many non-optimal solutions

(this last point is not illustrated by the small 3V3F example). As a result, it may require

many iterations of rounding before all constraints are satisfied and even then the solution

generally turns out to be non-optimal. In some situations where the LP solution disperses

over the entire vector set (assigning small real numbers to a large portion of the vector set),

randomized rounding proved ineffective.

50

6.4 Recursive Rounding

After unsuccessful attempts at using randomized rounding for a solution for benchmark

circuits, we devised a new recursive rounding procedure.

6.4.1 Recursive Rounding Procedure

The new recursive rounding procedure is as follows,

1. Obtain an LP solution. Stop if each ti is either 0.0 or 1.0.

2. Round the largest ti to 1 and fix its value to 1.0. If several ti have the largest value,

then arbitrarily set only one to 1.0. Go to Step 1.

Step 1 guarantees that any solution thus obtained satisfies all constraints.

Lemma 2: The maximum number of LP runs in step 1 is bounded by the minimized

test set size.

During step 2 of each iteration, at least one vector (one of the vectors with largest ti)

will be rounded to 1.

Lemma 3: The recursive rounding/LP method takes polynomial time even in the worst

case.

In the worst case, the recursive rounding/LP method takes nmin LP runs, where nmin

is the number of vectors in the minimal test set. A linear program takes polynomial time [55,

80]. So even in the worst case, the recursive/LP method takes (nmin × T ime for one LP run),

which is still polynomial time.

Like other approximate methods an absolute optimality cannot be guaranteed for the

new method. But as observed in the research results, the new recursive rounding method

51

Non−optimum solution

Recursive rounding:

(0.5,0.5,0.5)

1

1

1
t 2

t
3

t
1

0

ILP solutions (optimum)

LP solution

Step 1
Step 2

Figure 6.2: LP solution space and the progression of recursive rounding

gives a solution which is always close to the possible optimum, even in the cases where other

methods cease to perform.

6.4.2 The 3V3F Example for Recursive Rounding

For the 3V3F example, Step 1 gives t1 = t2 = t3 = 0.5. In Step 2, we arbitrarily set

t1 = 1.0. Thus, the first and third constraints in 6.2 are satisfied. Repeating Step 1, we get

either t2 = 1, t3 = 0 or t2 = 0, t3 = 1 or t2 = t3 = 0.5. In the last case, Step 2 sets t2 = 1.0

and then Step 1 gives t3 = 0.0. Thus, we always select two vectors, which is an optimum

solution, and we observe a reduction in size of each LP run.

52

6.4.3 Analyzing the Recursive Rounding method

To understand recursive rounding, let us reexamine the 3V3F example in Figure 6.2.

The LP solution and the optimal ILP solutions form a tetrahedron. Having found the apex

(LP solution), which is an interior point, we wish to get to any one of the corners at the

base of the tetrahedron. The recursive rounding procedure involves successively projecting

onto one of the faces (by setting a variable to 1.0) and thereby reducing the dimension of

the solution space by one each time. When the process terminates, the LP solution is found

at a corner of the reduced dimension hypercube. These LP solutions are shown by the bold

dashed line arrows in Figure 6.2.

This small example clearly shows the effectiveness of recursive rounding, whose key

feature is the guaranteed convergence to a solution in a small number (size of the minimized

test set, in worst case) LP runs. It is observed that in each run, many 1’s are generated

by the LP, thereby reducing the number of LP runs as well as the sizes of the repeated LP

runs. For most large circuits the total time was dominated by the time taken by the first

LP run. Although this example is too small to illustrate the limitations of the method, in

practice we have found it to work well. In most cases, our ability to find the minimum test

is restricted by Theorem 3, which states that an absolute minimality is guaranteed only if

we start with the exhaustive vector set.

Lemma 4: The size of the optimal integer solution always lies between the relaxed-LP

solution (a lower bound) and the recursive rounding solution.

recursive − LP (lower bound) ≤ ILP size ≤ Recursive rounding size (6.5)

53

Table 6.1: Optimized single-detect tests for ISCAS85 circuits (*incomplete).

Circuit Initial Lower Rand round Rec. round ILP
Name vect. bound Vect. CPUs Vect. CPUs Vect. CPUs
c432 608 34.7 66 1 36 2 35 4
c499 379 52.0 52 1 52 1 52 4
c880 1023 23.4 124 8 28 31 28 31h*
c1355 755 84.0 84 5 84 5 84 14
c1908 1055 106.0 109 7 107 8 107 29
c2670 959 84.0 96 9 84 9 84 49
c3540 1971 89.9 301 64 105 197 108 70m*
c5315 1079 62.7 223 121 72 464 74 70m*
c6288 243 10.2 92 33 18 78 18 6h*
c7552 2165 144.1 231 145 145 151 145 8035

Lemma 5: If recursive LP test set size equals the LP lower bound, then the recursive

LP test set is an optimal integer solution.

Because ILP size is optimum, whenever the test set given by the recursive rounding

LP is equal to the LP lower bound, it will be an optimal solution. Otherwise, the differ-

ence between the recursive solution and the lower bound provides the maximum possible

deviation from optimality.

6.5 Results

6.5.1 Single-Detect Tests

Our first results evaluate the relative merits of recursive rounding against randomized

rounding [24, 80, 92] and ILP [53]. Table 6.1 gives optimized test set sizes for single-

detection. The initial vectors in the second column were obtained from an ATPG pro-

gram [62]. Enough vectors were generated so that every fault was covered by at least five

vectors. This required between 5 to 8 complete test sets from the ATPG. The industrial

54

Table 6.2: Single-detect test optimization for multipliers.

Multiplier. Initial Lower Rec. round. ILP (*incomplete)
size vect. bound Vect. CPU s Vect. CPU s

3 64 5.5 6 0.13 6 0.25
4 256 6.0 7 3 6 6
5 1024 6.0 8 10 7 56
6 1024 6.1 8 18 8 9704
8 1024 6.4 10 45 10 1007*

10 1024 6.9 12 112 12 1011*
12 1024 8.3 14 173 17 1016*
14 1024 8.2 14 428 15 1022*
16 1024 8.4 16 742 * *

methods mentioned in earlier papers [7, 9, 45, 94] can also be used to generate a similar

test set for further minimization.

As stated before, the minimum value of the sum of variables provided by the LP is a

lower bound (sometimes unattainable) on the size of the absolute minimum test set. This

is given in the third column of Table 6.1. The next six columns give optimized test set

sizes and CPU times (Sun Ultra-5) for randomized rounding, recursive rounding and ILP

respectively. In some cases, ILP runs did not complete. Those are shown by asterisks (*) in

the last column. A simpler form of randomized rounding, as described by Hochbaum [44]

was implemented. We notice that recursive rounding solutions are almost the same as ILP.

For c3540 and c5315, the ILP solution is suboptimal because the program did not complete.

Recursive rounding found better solutions. Randomized rounding was suboptimal in several

cases, although its CPU time was always the smallest. As stated in the previous section, the

recursive LP may iterate in the worst case as many times as the size of the optimized vectors.

However, the CPU times in columns 5 and 7 show that not to be the case, considering that

randomized rounding does not iterate.

55

0

20

40

60

80

100

120

140

160

180

200

3 4 5 6 7 8 9 10 11 12

Size of Multiplier (bits)

C
P

U
 S

ec
on

ds

0

2

4

6

8

10

12

14

16

18

T
es

t S
et

 S
iz

e

LP/Recur. Test Set

ILP Test Set
ILP (incomplete) Test Set

LP/Recur. Time

ILP Time

Figure 6.3: Quality and Complexity of recursive LP and ILP solutions for multipliers.

To study the complexity of the recursive rounding we used array multipliers of increas-

ing sizes. As shown in Table 6.2 the initial vector sets were exhaustive for multipliers up

to five bits. For larger multipliers, 1,024 random vectors that could detect all faults were

used. ILP could not complete in several cases and its test sets above 12-bits were larger

than those obtained by recursive rounding. Figure 6.3 shows the time complexities and the

minimized test set sizes. The exponential complexity of ILP is evident. CPU time limits

had to be used and the ILP solutions became worse than those of recursive rounding.

56

Table 6.3: Optimized 5-detect tests for ISCAS85 circuits.

Circuit Initial Lower LP/rec. round. ILP (optimum)
name vectors bound Vect. CPU s Vect. CPU s
c432 608 196.4 197 1.0 197 1.0
c499 379 260.0 260 1.2 260 2.3
c880 1023 126.0 128 14.0 127 881.8
c1355 755 420.0 420 3.2 420 4.4
c1908 1055 543.0 543 4.6 543 6.9
c2670 959 477.0 477 4.7 477 7.2
c3540 1971 467.3 477 72.0 471 20008.5
c5315 1079 374.3 377 18.0 376 40.7
c6288 243 52.5 57 39.0 56 56000.0
c7552 2165 841.0 841 52.0 841 114.3

Table 6.4: Optimized sizes of 15-detect tests for ISCAS85 benchmark circuits.

Circuit Initial Lower LP/recur. ILP [53] Heuristic [64] L.B.
name vectors bound Vectors CPU s Vectors CPU s Vectors CPU s [41]
c432 14882 429.5 430 83.5 430 444.8 505 292.1 405
c499 1850 780.0 780 17.8 780 24.9 793 153.2 780
c880 4976 318.9 322 94.5 321 521.4 338 229.6 195
c1355 2341 1260.0 1260 41.2 1260 52.1 1274 5674.6 1260
c1908 6609 1590.0 1590 150.4 1590 191.0 1648 1563.9 1590
c2670 8767 1248.0 1248 380.6 1248 607.8† 962 9357.6 660
c3540 4782 1400.5 1407 239.6 1411 1223.7 - - 1200
c5315 4318 921.9 924 494.3 924 1368.4† - - 555
c6288 731 130.1 134 250.5 134 1206.3 144 1813.8 90
c7552 6995 2370.0 2371 359.1 2370 346.1‡ - - 975

6.5.2 N-Detect Tests

Table 6.3 gives optimized 5-detect test set sizes for ISCAS85 benchmarks. The initial

vectors in the second column are the same as those used in the previous subsection for single-

detection. Here again, we had problems with excessive CPU times for the ILP. The time

complexity of recursive rounding is much lower. The test set sizes are either equal to those

of ILP (optimum) or are very close. The usefulness of determining how close the recursive

solution by the relation 6.5 is to the optimum can be verified. For c7552, even without

57

knowing the ILP solution, we can say that the recursive rounding solution is optimal. For

c6288, the lower bound is 53 (rounded to integer) and the recursive rounding solution of

57, according to 6.5, is within 4 vectors of the optimum. As is evident from columns 4 and

6, this deviation from the optimum does not diverge when the circuits become larger.

Table 6.4 gives the result of 15-detect tests. Although the unoptimized vectors are

generated, same as before, by Atalanta [62] ATPG, in some cases we required many more

vectors to have at least 15 detections for every fault. These numbers are given in column 2.

Many ILP solutions (c880, c3540, c5315 and c6288) were obtained by setting time limits,

while recursive rounding LP always converged, giving test sets within one vector of ILP.

For c3540 it was better than the time-limited ILP. The last three columns compare the

15-detect results from the literature [64]. The lower bound (L.B.) is simply a number that

is 15 times the minimum reported for single-detection [41].

CPU times (ILP and [64]) are for Sun Ultra-5, except those with † (Ultra-10) and ‡

(Sun Fire-280R-900MHz-Dual Processor). Once again we see that the new LP/recursive

rounding result is extremely close to the optimum (ILP) and its time does not increase as

rapidly with the increasing size of the circuit.

It is clear that test minimization for single and N-detection can be efficiently done (in

polynomial time, even in the worst case) by the new procedure of linear programming and

recursive rounding. The quality of this result is almost the same as that of integer linear

programming (ILP), which is capable of exact minimality but has exponential computing

complexity. In practice, the quality of the ILP method is compromised due to limits on the

CPU time.

58

6.6 A Note on Relaxed-LP Methods

The literature describes several methods of obtaining an ILP solution from the relaxed-

LP. The basic idea is to use the LP solution as the starting point and round off the variables

such that they satisfy the ILP. The two methods that we have discussed in this chapter are

randomized rounding and a new procedure we call recursive rounding. Branch and bound

methods use an exhaustive search strategy in the integer space [57, 58, 81, 88]. Given

enough computing time they can find an optimal solution. They can also be stopped at

feasible non-optimal solutions. The recursive rounding provides one such stopping criteria,

which seems to work well for the test optimization problem. Genetic algorithms [20, 37] can

also provide a solution without the guarantee of absolute optimality. This problem can also

be solved by simulated annealing, which is known to provide an optimum solution provided

the computing is not limited [71].

59

Chapter 7

Single Detect Results of c6288 Benchmark

In this chapter, we present some minimal single-detect results on the c6288 ISCAS85

benchmark circuit. This circuit is of interest because there exists a huge difference between

its theoretical lower bound of six and its practically achieved test set of size 12 [41]. The

iterative structure of the circuit is used along with the linear programming techniques to

generate a single-detect test set which is the smallest ever achieved for the circuit.

7.1 Structure of c6288 Benchmark

c6288 is a 16-bit multiplier with 32 inputs, 32 outputs and 2406 gates. As shown in

Figure 7.1, c6288 is made up of a 15 × 16 matrix of full-adders (FA) and half-adders (HA).

Each full-adder (FA) has nine NOR gates, while each half-adder (HA) has seven NOR gates

and two inverters.

7.2 Iterative Arrays

There is prior work on finding minimum test sets for regular array structures that

deals with minimization of test sets for ripple carry adders using minimum test sets for

their building blocks [52]. Initially, the minimum test sets for the 1-bit adders, used to

build the ripple-carry adder, are derived. As the carry-out of an adder passes on as the

carry-in of the next adder (see Figure 7.2), the test sets are replicated such that the carry-

out output bit of one adder is matched to the carry-in input bit of the next adder. We

60

HA HA HA

FA

FA

FA

FA FA

FA FA

HAFA

A0 B0A1 B0A2 B0B0An-1

An-1B1

B2An-1

Bn-1An-1

P2n-1 P2n-2 Pn

P0

P1

P2

P3

Pn+1

A0

B1

B2

A0

A0

B3

1
1

n-2

1

2
1n-2

2

n-2 1
33

Figure 7.1: Structure of an n-bit multiplier.

observe that faults of the ith cell propagated to its sum output are immediately detected.

Faults propagated to the carry output are detected at the i + 1th sum output, irrespective

of the input states of that block.

7.3 Approach for c6288 Benchmark

Unfortunately, c6288 is not a completely regular circuit like the ripple-carry adder. So,

we partitioned the circuit into regular modules, found a minimum test set for a module and

tried to replicate it to get the entire vector set for the circuit. Unlike the ripple-carry adders,

the outputs of the modules which are fed as inputs to the other modules are not able to

propagate to their outputs. We formulated an experiment in which lower-order multipliers

61

c0

a b

cin

s

cout

a b

cin

s

cout

a b

cin

s

cout

a1 b1 a2 b2 an bn

s1 s2 sn

c1 c2 cn-1 cn

= sn+1

Figure 7.2: Structure of an n-bit ripple-carry adder.

of the same architecture (Figure 7.1) are used along with the linear programming techniques

to find minimum test sets.

ILP always guarantees a minimal test set when worked with exhaustive test set (The-

orem 3 in Chapter 5). As it is not possible to work directly with 232 vectors for the c6288

circuit, lower order multipliers are used to create a vector set which has a high probability

of having the vectors in the minimal test set.

The theoretical lower bound for all these multipliers is six. Using exhaustive vector

sets and the ILP technique, the minimal single-detect test required six vectors for the

four-bit multiplier but seven vectors are needed for the five-bit and six-bit multipliers; see

Tables 7.1, 7.2 and 7.4. So for the first time it is veritably confirmed that for some circuits

the theoretical lower bound cannot be achieved practically.

Two sets were generated for the four-bit multiplier; see Table 7.3. These sets, along

with a set generated for the 6-bit multiplier (Table 7.4), are carefully duplicated to create

nearly 900 different test vectors for c6288, which are minimized using ILP to obtain a test

set of 10 vectors. This, we believe is the lowest ever achieved for the circuit c6288. The 10

62

Table 7.1: Practical single-detect test sizes for multipliers.

Multiplier Theoretical L.B. Practical minimum
3-bit 6 6
4-bit 6 6
5-bit 6 7
6-bit 6 7
7-bit 6 8*

∗ ILP incomplete, but ran for considerable amount of time

Table 7.2: A single-detect test set for 5-bit multiplier.

Vector No. Five-bit multiplier
1 00110 11111
2 01111 11010
3 10111 10100
4 11000 11011
5 11001 00111
6 11101 11011
7 11111 01101

vector set is given in Table 7.5. The Recursive rounding/LP method found a 12 vector set

in 301 seconds. We do not know whether the 10-vector set we give for c6288 is the ultimate

minimum, but it signifies the shortcomings of present test minimization techniques.

63

Table 7.3: Two single-detect test sets for 4-bit multiplier.

Vector No. Four-bit multiplier
Test set 1 Test set 2

1 0011 0110 1111 1100
2 0111 1101 1111 0011
3 1010 1111 1101 1111
4 1101 1111 1010 1111
5 1110 1100 0111 0110
6 1111 0011 0110 1101

Table 7.4: A single-detect test set for 6-bit multiplier.

Vector No. Six-bit multiplier
1 001101 110111
2 011011 001011
3 011011 110100
4 100100 101110
5 110110 110101
6 110111 011011
7 111111 111110

Table 7.5: Ten-vector single-detect test set generated for c6288.

Vector No. Sixteen-bit multiplier, c6288
1 11011011011011011101111111111111
2 01101101101101101111111111111111
3 00000000000000000010111111111111
4 10110110110110111101111111111111
5 11111111111111111101010101010101
6 11111111111111110110101010101010
7 00111111111111011101010101010101
8 00111111111111011010101010101011
9 11101101101101100010111111111111
10 11011011011011001010101010101010

64

Chapter 8

Conclusion

A lower bound is proposed for N -detect tests, which is N times the size of the largest

clique in the independence graph. This result, stated as Theorem 2 in Chapter 4, is a

generalization of the previously published result of Akers et al. [5, 6]. We have developed a

new approach to test minimization, which formulates the problem as a set covering problem

and makes use of linear programming techniques to give a close to optimal solution in

polynomial time. The regularity in the structure of multipliers is used along with the linear

programming techniques to produce an optimal test set for a large multiplier circuit (c6288).

Our ten-vector 100% coverage test set is the smallest known so far.

The N -detect test minimization problem is solved exactly by an integer linear pro-

gramming (ILP) technique. The ILP always guarantees an optimal solution (see Theorem 3

in Chapter 5). The results for ISCAS85 benchmarks in Table 5.4 clearly demonstrated

the efficiency of this N -detect minimization method compared to a previous approach [64].

Even though the ILP method generated minimized test sets in comparatively shorter times

for some circuits, the ILP technique has a known exponential time complexity [34]. There-

fore, a time limit is set on each ILP run. Even for those circuits whose ILP runs are time

bounded, the results are better than those previously published [64].

Though limiting of the ILP run time produced reasonable results, there will always be

larger circuits for which ILP would be unusable. With that in mind an alternative relaxed

65

linear programming (LP) technique is explored for a polynomial time solution. The random-

ized rounding technique suggested in the literature [24, 80, 92] rounds the LP solution into

an integer solution. As experimental results of Chapter 6 show, the randomized rounding

technique failed to produce consistent results. Motivated by this observation, we developed

a new recursive rounding approach. The new approach produced solutions that are close

to optimal and, most importantly, the complexity of the new approach is polynomial. Ta-

ble 6.1 clearly demonstrates the advantages of the recursive rounding technique over the

randomized rounding technique. Results for ISCAS85 benchmark circuits also demonstrate

the effectiveness of the new approach compared to other approaches (ILP and [64]). The

recursive rounding technique should prove to be useful in all other areas where ILP has

been traditionally used.

Previous work on iterative arrays [52] suggested that the minimized test set generated

for a basic cell in an iterative array can be replicated to create a minimized test set for

the entire iterative array. There exists a huge difference between the theoretical minimum

of just six vectors and the reported minimum of twelve vectors for the circuit c6288 [41],

which is a 16-bit array multiplier. Initial attempts at replicating the patterns generated for

a cell in the multiplier failed because, unlike the ripple-carry adders used in the previous

work, the faults presented at the inputs of a module are not propagated to its outputs. So

the ILP technique is applied to a few lower-order multipliers where Theorem 3 guarantees

an optimal solution. These optimal sets are replicated to create test vectors for the 16-bit

multiplier and a minimal set is derived from those vectors using ILP. The ILP method gave

a minimal test set of 10 vectors for c6288, while the recursive rounding-LP method took

only 301 seconds to give a minimal test set of 12.

66

8.1 Future Work

A method recently proposed by Huang [45] makes use of the conditional equivalence

and dominance relations present in the constraints of the set covering problem for a solution.

If the constraints become cyclic, the proposed method follows a greedy heuristic of picking

the vector that detects maximum number of faults. But it is well known that a vector

should be in the minimal set only if it detects some of the essential faults. So, instead of

that greedy heuristic, it will be a better option to run an LP on the remaining constraints

and pick the vector with the maximum LP value.

The linear programming solution indicates the chance of each vector being in the min-

imal test set. Additionally, the cost associated with each constraint can also be calculated.

The cost associated with each constraint, i.e., with each fault, indicates the difficulty of test-

ing that fault with the current set of vectors. This result can be used to generate additional

vectors for those expensive faults.

8.1.1 The Dual Problem

Any linear programming problem (called the primal problem) has a dual problem. The

dual problem is like a contra-positive to the primal problem, which can provide an insight

into the solution of the primal problem. In the dual of the test minimization problem

solved here, faults, instead of vectors, will be treated as variables and the vectors will form

constraints. A modeling of this dual problem is given in Appendix A. It is observed that

the solution of the dual problem implies a set of faults that are independent of each other

with respect to the vectors used. These faults can be considered as an independent fault

set (IFS) for the given set of vectors. In previous dynamic test compaction techniques like

COMPACTEST [76] and the method of Kajihara et al. [50, 51], the concept of IFS plays an

67

important role in choosing the faults to be targeted by the ATPG. However, one problem

is the high complexity of finding the IFS. A solution of the dual problem can provide that

information based on the previously generated vectors, with continuous refinement as more

vectors are generated.

68

Bibliography

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and Testable
Design. Piscataway, New Jersey: IEEE Press, 1994.

[2] V. D. Agrawal and A. S. Doshi, “Concurrent Test Generation,” in Proceedings of 14th IEEE
Asian Test Symposium, 2005, pp. 294–299.

[3] R. C. Aitken, “Defect-Oriented Testing,” in D. Gizopoulos, editor, Advances in Electronic
Testing: Challenges and Methodologies, chapter 1, pp. 1–42, Springer, 2006.

[4] S. B. Akers, “Universal Test Sets for Logic Networks,” IEEE Transactions on Computers,
vol. C-22, no. 9, pp. 835–839, 1973.

[5] S. B. Akers, C. Joseph, and B. Krishnamurthy, “On the Role of Independent Fault Sets in the
Generation of Minimal Test Sets,” in Proceedings of International Test Conference, 1987, pp.
1100–1107.

[6] S. B. Akers and B. Krishnamurthy, “Test Counting: A Tool for VLSI Testing,” IEEE Trans-
actions on Design & Test of Computers, vol. 6, no. 5, pp. 58–77, 1989.

[7] M. E. Amyeen, S. Venkataraman, and A. Ojha, “Evaluation of the Quality of N-detect Scan
ATPG Patterns on a Processor,” in Proceedings of International Test Conference, 2004, pp.
669–678.

[8] B. Ayari and B. Kaminska, “A New Dynamic Test Vector Compaction for Automatic Test
Pattern Generation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 13, no. 3, pp. 353–358, 1994.

[9] B. Benware, C. Schuermyer, S. Ranganathan, R. Madge, P. Krishnamurthy, N. Tamarapalli,
K. H. Tsai, and J. Rajski, “Impact of Multiple-Detect Test Patterns on Product Quality,” in
Proceedings of International Test Conference, 2003, pp. 1031–1040.

[10] R. D. Blanton, K. N. Dwarakanath, and A. B. Shah, “Analyzing the Effectiveness of Multiple-
Detect Test Sets,” in Proceedings of International Test Conference, 2003, pp. 876–885.

[11] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles of Sequential Benchmark
Circuits,” in Proceedings of IEEE International Symposium on Circuits and Systems, 1989, pp.
1929–1934.

[12] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark Designs and a
Special Translator in Fortran,” in Proceedings of IEEE International Symposium on Circuits
and Systems, jun 1985.

[13] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory, and
Mixed-Signal VLSI Circuits. Springer, 2000.

[14] K. Chakrabarty, V. Iyengar, and A. Chandra, Test Resource Partitioning for System-On-A-
Chip. Kluwer Academic Publishers, 2002.

69

[15] S. Chakravarty, A. Jain, N. Radhakrishnan, E. W. Savage, and S. T. Zachariah, “ Experimental
Evaluation of Scan Tests for Bridges,” in Proceedings of International Test Conference, 2002,
pp. 688–695.

[16] A. Chandra and K. Chakrabarty, “Test data compression and test resource partitioning for
system-on-a-chip using frequency-directed run-length (FDR) codes,” IEEE Transactions on
Computers, vol. 52, no. 8, pp. 1076–1088, 2003.

[17] J. S. Chang and C. S. Lin, “Test Set Compaction for Combinational Circuits,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 11, pp.
1370–1378, 1995.

[18] K. Y. Cho, S. Mitra, and E. J. McCluskey, “Gate Exhaustive Testing,” in Proceedings of
International Test Conference, 2005, pp. 771–777.

[19] T. H. Cormen, C. E. Leiserson, and R. L. Riverst, Introduction to Algorithms. MIT Press,
2001.

[20] F. Corno, P. Prinetto, M. Rebaudengo, and M. Sonza Reorda, “New static compaction tech-
niques of test sequences for sequentialcircuits,” in Proceedings of the European Design and Test
Conference, 1997, pp. 37–43.

[21] A. Cron, “Delay Testing,” in D. Gizopoulos, editor, Advances in Electronic Testing: Challenges
and Methodologies, chapter 4, pp. 109–139, Springer, 2006.

[22] A. S. Doshi, “Independence Fault Collapsing and Concurrent Test Generation,” Master’s thesis,
Auburn University, May 2006.

[23] A. S. Doshi and V. D. Agrawal, “Independence Fault Collapsing,” in Proceedings of the 9th
VLSI Design and Test Symposium, 2005, pp. 357–364.

[24] P. Drineas and Y. Makris, “Independent Test Sequence Compaction through Integer Program-
ming,” in Proceedings of the 21st International Conference on Computer Design, 2003, pp.
380–386.

[25] J. Dworak, “An Analysis of Defect Detection and Site Observation Counts for Weighted Ran-
dom Patterns and Compact Test Pattern Sets,” in Proceedings of North-Atlantic Test Work-
shop, 2006, pp. 183–190.

[26] J. Dworak, B. Cobb, J. Wingfield, and M. Mercer, “Balanced excitation and its effect on the
fortuitous detection of dynamic defects,” in Proceedings of the Design Automation and Test in
Europe Conference and Exhibition, 2004, pp. 1066–1071.

[27] J. Dworak, D. Dorsey, A. Wang, and M. Mercer, “Excitation, observation, and ELF-MD:
optimization criteria for high quality test sets,” in Proceedings of the 22nd IEEE VLSI Test
Symposium, 2004, pp. 9–15.

[28] J. Dworak, J. D. Wicker, S. Lee, M. R. Grimaila, M. R. Mercer, K. M. Butler, B. Stewart, and
L. C. Wang, “Defect-Oriented Testing and Defective-Part-Level Prediction,” IEEE Design &
Test of Computers, vol. 18, no. 1, pp. 31–41, 2001.

[29] M. Flood, “On the Hitchcock distribution problem.,” Pacific J. Math, vol. 3, no. 2, pp. 369–386,
1953.

[30] P. F. Flores and J. P. Neto H. C.and Marques-Silva, “An Exact Solution to the Minimum
Size Test Pattern Problem,” ACM Transactions on Design Automation of Electronic Systems,
vol. 6, no. 4, pp. 629–644, 2001.

70

[31] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Mathematical Programming Language,
2nd Edition. Brooks/Cole–Thomson Learning, 2003.

[32] H. Fujiwara, “Computational Complexity of Controllability/Observability Problems for Com-
binational Circuits,” in Proceedings of Fault Tolerant Computing Symposium, June 1988, pp.
64–69.

[33] D. Gale, H. Kuhn, and A. Tucker, “Linear programming and the theory of games,” Activity
Analysis of Production and Allocation, pp. 317–329, 1951.

[34] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[35] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic
Circuits,” IEEE Transactions on Computers, vol. C-30, no. 3, pp. 215–222, 1981.

[36] P. Goel and B. C. Rosales, “Test Generation and Dynamic Compaction of Tests,” Digest of
Papers 1979 Test Conference, pp. 189–192, 1979.

[37] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1989.

[38] M. R. Grimaila, S. Lee, J. Dworak, K. M. Butler, B. Stewart, H. Balachandran, B. Houchins,
V. Mathur, J. Park, L. C. Wang, and M. R. Mercer, “REDO-Random Excitation and Deter-
ministic Observation-First Commercial Experiment,” in Proceedings of VLSI Test Symposium,
1999, pp. 268–274.

[39] R. Guo, S. Mitra, E. Amyeen, J. Lee, S. Sivaraj, and S. Venkataraman, “Evaluation of test
metrics: stuck-at, bridge coverage estimate and gate exhaustive,” in Proceedings of the 24th
IEEE VLSI Test Symposium, 2006, pp. 66–77.

[40] M. Hall Jr, Combinatorial theory. John Wiley & Sons, Inc. New York, NY, USA, 1998.

[41] I. Hamzaoglu and J. H. Patel, “Test Set Compaction Algorithms for Combinational Circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 19,
no. 8, pp. 957–963, 2000.

[42] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85 Benchmarks: A Case
Study in Reverse Engineering,” IEEE Design & Test of Computers, vol. 16, no. 3, pp. 72–80,
1999.

[43] J. Hayes, “74181 4-bit ALU and Function Generator and Complete Gate-level Tests. Available
from: www.eecs.umich.edu/˜ jhayes/iscas/74181.html.”

[44] D. S. Hochbaum, “An Optimal Test Compression Procedure for Combinational Circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 10,
pp. 1294–1299, 1996.

[45] Y. Huang, “On N-Detect Pattern Set Optimization,” in Proceedings of the 7th International
Symposium on Quality Electronic Design, 2006, pp. 445–450.

[46] O. H. Ibarra and S. K. Sahni, “Polynomially Complete Fault Detection Problems,” IEEE
Transactions on Computers, vol. C-24, no. 3, pp. 242–249, Mar. 1975.

[47] H. Ichihara, K. Kinoshita, and S. Kajihara, “On Test Generation with A Limited Number of
Tests,” in Proceedings of the 9th Great Lakes Symposium on VLSI, 1999, pp. 12–15.

[48] ILOG, “CPLEX 7.5 — Solver for linear, integer and mixed-integer problems.”

71

[49] V. Iyengar, S. Goel, E. Marinissen, and K. Chakrabarty, “Test resource optimization for multi-
site testing of SOCs under ATE memory depth constraints,” in Proceedings of International
Test Conference, 2002, pp. 1159–1168.

[50] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost-Effective Generation of Mini-
mal Test Sets for Stuck-at Faults in Combinational Logic Circuits,” in Proceedings of the 30th
Design Automation Conference, 1993, pp. 102–106.

[51] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost-Effective Generation of Min-
imal Test Sets for Stuck-at Faults in Combinational Logic Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 12, pp. 1496–1504,
1995.

[52] S. Kajihara and T. Sasao, “On the Adders with Minimum Tests,” in Proceedings of the 6th
Asian Test Symposium, 1997, pp. 10–15.

[53] K. R. Kantipudi and V. D. Agrawal, “On the Size and Generation of Minimal N -Detection
Tests,” in Proceedings of the 19th International Conference on VLSI Design, 2006, pp. 425–430.

[54] K. R. Kantipudi and V. D. Agrawal, “A Reduced Complexity Algorithm for Minimizing N -
Detect Tests,” in Proceedings of the 20th International Conference on VLSI Design, Jan. 2007.

[55] N. Karmarkar, “A New Polynomial-Time Algorithm for Linear Programming,” Combinatorica,
vol. 4, no. 4, pp. 373–395, 1984.

[56] R. M. Karp, “Reducibility Among Combinatorial Problems,” Complexity of Computer Com-
putations, vol. 43, pp. 85–103, 1972.

[57] S. Kompella, S. Mao, Y. T. Hou, and H. D. Sherali, “Path selection and rate allocation for
video streaming in multihop wireless networks,” in Proceedings of IEEE MILCOM–2006, Oct
2006.

[58] S. Kompella, S. Mao, Y. T. Hou, and H. D. Sherali, “Cross-layer optimized multipath routing
for video communications in wireless networks,” IEEE Journal on Selected Areas in Commu-
nications, Special Issue on Cross-Layer Optimized Wireless Multimedia Communications, May
2007.

[59] B. Krishnamurthy and B. Akers, “On the Complexity of Estimating the Size of a Test Set,”
IEEE Transactions on Computers, vol. 33, no. 8, pp. 750–752, 1984.

[60] V. Krishnaswamy, A. B. Ma, and P. Vishakantiaiah, “A Study of Bridging Defect Probabilities
on a Pentium 4 CPU,” in Proceedings of International Test Conference, 2001, pp. 688–695.

[61] A. Krstić and K.-T. Cheng, Delay Fault Testing for VLSI Circuits. Boston: Springer, 1998.

[62] H. K. Lee and D. S. Ha, “Atalanta: an Efficient ATPG for Combinational Circuits,” Deptart-
ment of Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburg,
VA, USA, Technical Report, 1993.

[63] H. K. Lee and D. S. Ha, “HOPE: An Efficient Parallel Fault Simulator for Synchronous Se-
quential Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, no. 9, pp. 1048–1058, 1996.

[64] S. Lee, B. Cobb, J. Dworak, M. R. Grimaila, and M. R. Mercer, “A New ATPG Algorithm to
Limit Test Set Size and Achieve Multiple Detections of all Faults,” in Proceedings of Design
Automation and Test in Europe Conference and Exhibition, 2002, pp. 94–99.

[65] S. C. Ma, P. Franco, and E. J. McCluskey, “An Experimental Chip to Evaluate Test Techniques
Experiment Results,” in Proceedings of International Test Conference, 1995, pp. 663–672.

72

[66] R. K. Martin, Large Scale Linear and Integer Optimization: A Unified Approach. Kluwer
Academic Publishers, 1998.

[67] Y. Matsunaga, “MINT–An Exact Algorithm for Finding Minimum Test Set,” IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 76, no. 10,
pp. 1652–1658, 1993.

[68] E. J. McCluskey, “Quality and Single Stuck Faults,” in Proceedings of International Test Con-
ference, 1993, p. 597.

[69] E. J. McCluskey, A. Al-Yamani, J. Li, C. Tseng, E. Volkerink, F. Ferhani, E. Li, and S. Mitra,
“ELF-Murphy Data on Defects and Test Sets,” in Proceedings of IEEE VLSI Test Symposium,
2004, pp. 16–22.

[70] E. J. McCluskey and C. W. Tseng, “Stuck-Fault Tests vs. Actual Defects,” in Proceedings of
International Test Conference, 2000, pp. 336–343.

[71] D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, “Convergence and Finite-Time Behavior
of Simulated Annealing,” Advances in Applied Probability, vol. 18, no. 3, pp. 747–771, 1986.

[72] J. E. Nelson, J. G. Brown, R. Desineni, and R. D. Blanton, “Multiple-detect ATPG based on
physical neighborhoods,” in Proceedings of the 43rd annual conference on Design automation,
2006, pp. 1099–1102.

[73] T. M. Niermann, W. T. Cheng, and J. H. Patel, “PROOFS: A Fast, Memory-Efficient Se-
quential Circuit Fault Simulator,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 11, no. 2, pp. 198–207, 1992.

[74] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity.
Dover Publications, 1998.

[75] K. N. Patel, J. P. Hayes, and I. L. Markov, “Fault Testing for Reversible Circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 8, pp.
1220–1230, 2004.

[76] I. Pomeranz, L. N. Reddy, and S. M. Reddy, “COMPACTEST: A Method to Generate Com-
pact Test Sets for Combinational Circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 12, no. 7, pp. 1040–1049, 1993.

[77] I. Pomeranz and S. M. Reddy, “Stuck-At Tuple-Detection: A Fault Model based on Stuck-
At Faults for Improved Defect Coverage,” in Proceedings of VLSI Test Symposium, 1998, pp.
289–294.

[78] I. Pomeranz and S. M. Reddy, “On the Use of Fault Dominance in n-Detection Test Genera-
tion,” in Proceedings of VLSI Test Symposium, 2001, pp. 352–357.

[79] I. Pomeranz and S. M. Reddy, “Forming N-Detection Test Sets from One-Detection Test Sets
Without Test Generation,” in Proceedings of International Test Conference, 2005. Paper 22.3.

[80] P. Raghavan and C. D. Thompson, “Randomized Rounding: A Technique for Provably Good
Algorithms and Algorithmic Proofs,” Combinatorica, vol. 7, no. 4, pp. 365–374, 1987.

[81] J. Raik, A. Jutman, and R. Ubar, “Fast static compaction of tests composed of independent
sequences: basic properties and comparison of methods,” in Proceedings of the 9th International
Conference on Electronics, Circuits and Systems, 2002, pp. 445–448.

[82] S. M. Reddy, “Complete Test Sets for Logic Functions,” IEEE Transactions on Computers,
vol. C-22, no. 11, pp. 1016–1020, 1973.

73

[83] M. Sachdev, Defect Oriented Testing for CMOS Analog and Digital Circuits. Kluwer Academic
Publishers, 1998.

[84] R. K. K. R. Sandireddy, “Hierarchical Fault Collapsing for Logic Circuits,” Master’s thesis,
Auburn University, May 2005.

[85] R. K. K. R. Sandireddy and V. D. Agrawal, “Diagnostic and Detection Fault Collapsing for
Multiple Output Circuits,” in Proceedings of Design, Automation and Test in Europe, 2005,
pp. 1014–1019.

[86] M. H. Schulz and E. Auth, “Improved Deterministic Test Pattern Generation with Applications
to Redundancy Identification,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 8, no. 7, pp. 811–816, 1989.

[87] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A Highly Efficient Automatic
Test Pattern Generation System,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 7, no. 1, pp. 126–137, jan 1988.

[88] H. D. Sherali and W. P. Adams, A Reformulation-Linearization Technique for Solving Discrete
and Continous Nonconvex Problems. Boston, MA: Kluwer Academic Publisher, 1999.

[89] J. P. M. Silva, “Integer Programming Models for Optimization Problems in Test Generation,”
in Proceedings of IEEE Asian-South Pacific Design Automation Conference, 1998, pp. 481–487.

[90] C. E. Stroud, “AUSIM: Auburn University SIMulator-Version 2.1,” Technical report, Depart-
ment of Electrical & Computer Engineering, Auburn University, March 2004.

[91] F. Su, S. Ozev, and K. Chakrabarty, “Test Planning and Test Resource Optimization for
Droplet-Based Microfluidic Systems,” Journal of Electronic Testing: Theory and Applications,
vol. 22, no. 2, pp. 199–210, 2006.

[92] Y. Tian, M. R. Grimaila, W. Shi, and M. R. Mercer, “An Optimal Test Pattern Selection
Method to Improve the Defect Coverage,” in Proceedings of International Test Conference,
2005. Paper 31.2.

[93] C. Tseng, R. Chen, P. Nigh, and E. McCluskey, “MINVDD Testing for Weak CMOS ICs,” in
Proceedings of the 19th IEEE VLSI Test Symposium, 2001, pp. 339–344.

[94] S. Venkataraman, S. Sivaraj, S. Amyeen, S. Lee, A. Ojha, and R. Guo, “An Experimental Study
of N-detect Scan ATPG Patterns on a Processor,” in Proceedings of the 22nd IEEE VLSI Test
Symposium, 2004, pp. 23–28.

[95] N. Yogi and V. D. Agrawal, “Spectral Characterization of Functional Vectors for Gate-Level
Fault Coverage Tests,” in Proceedings of the 10th VLSI Design and Test Symposium, 2006, pp.
407–417.

[96] N. Yogi and V. D. Agrawal, “Spectral RTL Test Generation for Gate-Level Stuck-at Faults,”
in Proceedings of the 15th Asian Test Symposium, Nov. 2006, pp. 83–88.

[97] N. Yogi and V. D. Agrawal, “Spectral RTL Test Generation for Microprocessors,” in Proceedings
of the 20th International Conference on VLSI Design, Jan. 2007.

74

Appendix

The Dual Problem

A linear program is a method of maximizing or minimizing an objective function under
a set of linear constraints, usually expressed as inequalities [40]. The treatment here is from
Flood [29] and Gale et al. [33].

Suppose we are given an r × s matrix A = (aij) and two vectors b = (b1, . . . , br) and
c = (c1, . . . , cs). Then two problems can be considered.

Problem I. Find x = (x1, . . . , xs) that minimizes

cxt = (c, x) (1)
subject to the inequalities

Axt ≥ bt, x ≥ 0

Problem II. Find y = (y1, . . . , yr) that maximizes

ybt = (y, b) (2)
subject to the inequalities

yA ≤ c, y ≥ 0

These two problems are said to be duals of each other and are referred to as primal
and dual problems. If there exists a solution x satisfying 1, then Problem I is said to be
feasible and x is called a feasible solution. Similar arguments apply to Problem II.

Duality Theorem: If m is the minimum value of cxt in Problem I and M is the maximum
value of ybt in Problem II, then m = M. If either problem has a solution, so does the other.

Similarly for the test minimization problem modeled as a set covering problem, there exists
a dual problem which consists of faults as variables and vectors forming constraints.

Suppose we have k vectors and p faults. Then the test minimization problem:

Objective function : minimize
k∑

i=1

ti

75

under the following constraints:
∑

ti∈{Tj}
ti ≥ 1, ∀ faults j

ti ∈ {0, 1}

The dual problem is:

Objective function : maximize
p∑

i=1

fi

under the following constraints:
∑

fi∈{Fj}
fi ≤ 1, ∀ vectors j

fi ∈ {0, 1}

Take the c17 example used in Chapter 5. There are 29 vectors and 22 faults. Table 5.2
gives the matrix required for the primal problem, which indicates the faults vs. vectors,
i.e., which fault is detected by which vector. The Table in the following page gives the
information required for the dual problem, which shows the vectors vs. faults, i.e., which
shows the vector vs. detected fault data.

The primal problem gave a solution of 4 vectors, consisting of vectors 6, 14, 21 and 24.
The dual problem also gave a four-fault solution, consisting of faults 1, 10, 16 and 18. It is
clear from the Table 5.2 that these four faults are independent of each other. In this case,
both the primal and dual problems yielded integer solutions. But in cases where relaxed
LP gives non-integer solutions for the dual problem, rounding techniques can be used. The
resulting solutions need further analysis, but for this example the dual problem yielded an
IFS of the circuit.

76

Faults detected by each vector for c17
Vector No Faults detected by the numbered vector

1 1, 2, 3, 4, 5
2 1, 2, 3, 6, 7, 8, 9
3 2, 10, 11, 12, 6, 13, 9
4 2, 10, 11, 12, 6, 13, 9
5 2, 10, 12, 6, 9, 14
6 2, 10, 12, 6, 7, 9, 14
7 2, 10, 11, 12, 6, 13, 9, 14
8 2, 10, 12, 6, 9
9 2, 12, 6, 7, 9, 14

10 15, 16, 11, 4, 17, 6, 8, 9
11 15, 18, 4, 17, 6, 7, 8, 9
12 15, 4, 17, 5, 19
13 15, 18, 3, 4, 20, 21, 5
14 15, 16, 11, 4, 17, 6, 13, 8, 9
15 1, 2, 3, 4, 21, 5, 22
16 1, 2, 3, 4, 20, 21, 5
17 15, 16, 11, 4, 17, 5, 19
18 15, 16, 11, 4, 17, 5, 19
19 15, 18, 3, 4, 21, 5, 22
20 15, 18, 4, 5
21 15, 18, 4, 17, 5, 19
22 1, 2, 3, 4, 17, 5, 19
23 15, 18, 3, 4, 20, 21, 5, 22
24 1, 2, 3, 4, 20, 21, 5, 22
25 15, 11, 4, 17, 6, 13, 8, 9
26 15, 4, 17, 6, 8, 9
27 15, 4, 17, 5, 19
28 2, 10, 11, 12, 6, 13, 9, 14
29 2, 10, 12, 6, 7, 9

77

