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Abstract

Magnetohydrodynamic (MHD) modeling of magnetic confinement devices is an impor-

tant tool in the understanding of plasma processes. With the nearly axisymmetric tokamak

being the leading candidate for a plasma fusion reactor, much of the work in plasma mod-

eling has been focussed on two-dimensional modeling. Recently, the importance of three-

dimensional effects has become apparent in the control of disruptive modes such as the Edge

Localized Mode (ELM)1,2 and the resistive wall mode3,4. Thus modeling of three-dimensional

plasma configurations is a critical step forward in the process of designing a viable plasma

fusion reactor.

This dissertation describes modeling of the Compact Toroidal Hybrid (CTH) stellara-

tor/tokamak hybrid at Auburn University using the extended MHD code NIMROD.5 The

CTH has a high degree of toroidal shaping and a circular boundary and is thus a good candi-

date for modeling with NIMROD. Building on initial work by Schlutt et al.,6 ohmic heating,

temperature dependent thermal diffusivity, initial temperature and density profiles, temper-

ature dependent resistivity, and time dependent loop voltages were added to the model to

increase physical fidelity. This updated model is used to investigate current hesitations in

the current rise of CTH discharges.

Initial modeling shows large, symmetry-breaking islands growing with an m = 2, n = 1

structure. These islands have a large effect on plasma current and temperature profiles and

the growth rate of the associated magnetic mode scales similarly to the resistive interchange

mode (γ ∼ η1/3). The growth of large islands for lower rotational transforms is investigated

using the driving loop voltage as a feedback mechanism to keep the total plasma current

constant. Doing this, symmetry-breaking islands formed for ι- = 1/3, but the growth time-

scale was much longer than the time-scale of hesitations in the experiment. To sharpen edge
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gradients, the perpendicular thermal diffusivity was lowered. This change greatly affected

the current drive, causing symmetry-breaking islands to grow for rotational transforms as

low as ι- = 1/10.
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Chapter 1

Motivation

This brief chapter will serve as a motivation and overview of the work contained in this

document. See chapter 2 for a more in-depth introduction.

1.1 Expansion of NIMROD stellarator modeling

The NIMROD (Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion)

code5 is a three-dimensional magnetohydrodynamics (MHD) code used extensively for the

study of plasmas. NIMROD is used to model plasmas ranging from space plasmas to fu-

sion relevant plasmas.7,8,9,10 Of particular interest are the fusions studies undertaken with

NIMROD.

Modeling stellarators is difficult due to the high degree of non-axisymmetry inherent

to the configuration. Equilibrium codes such as VMEC11 simplify the problem by making

assumptions such as the presence of closed flux surfaces. As experiments become more

sophisticated, however, it is seen that effects such as magnetic islands and stochastic regions,

which do not fit the assumption of closed flux surfaces, are important in fully explaining

experimental observations.

Some initial work studying the Compact Toroidal Hybrid (CTH) with NIMROD was

done by Schlutt et al.6 By inducing a current in a zero-β model, they saw a hollow current

profile form. This current produced magnetic islands in the plasma which preserved the five-

fold periodicity inherent to the CTH system. Depending on the strength of the current drive,

these islands could coalesce into larger islands which broke the periodicity of the machine

and, eventually, reduced the confinement properties of the plasma.
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Figure 1.1: Measured plasma current (blue) and edge rotational transform (red, horizontal
lines for ι- = 1/7, 1/6, 1/5, 1/4, and 1/3) as calculated by V3FIT in a CTH shot. Note
the hesitations in current drive, and their coincidence with rational values of edge rotational
transform.

This work aims to improve on that modeling. Where the original study used a simplified

plasma model, this work brings the model closer to experimental reality through the inclusion

of ohmic heating, temperature dependent thermal diffusivity, initial temperature and density

profiles, temperature dependent resistivity, and a time dependent loop voltage.

1.2 Investigation of current ramp dynamics

In CTH, a typical ohmic shot proceeds as follows:

1. Magnetic field coils are energized, setting a stellarator field which persists throughout

the shot

2



2. Microwaves are fired into the machine, serving the dual purpose of ionizing the neutral

gas in the machine and heating the electrons through Electron Cyclotron Resonance

Heating (ECRH)

3. A capacitor bank is discharged through a central solenoid in the machine, inducing

toroidal current in the plasma

In the first few moments after the ohmic coil is discharged, hesitations are observed in the

driven current. As can be seen in figure 1.1, these hesitations are believed to occur when the

edge rotational transform is near a rational value, evidenced by V3FIT12 reconstructions.

Hesitations such as these have been observed before in other current carrying plasma

systems. It is generally accepted that these hesitations are the result of reconnection events

in the interior of the plasma, relaxing a hollow current profile to a peaked profile13,14 . Scara-

bosio et al.15 studied this phenomenon in TCV and found that these hesitations coincide

with low-order rational values of edge safety factor qa. With the dominant mode numbers

of the instabilities m/n = qa, a connection with the external-kink mode was posited. Given

the proper conditions, these non-disrupting modes have been observed to couple with the

m = 2, n = 1 mode, causing disruptions. It was found that plasma shaping (both elongation

and triangularity) stabilized this disruptive mode. Bonfiglio et al.16 studied the transitional

regime between tokamaks and reversed-field pinches, seeing, in both experiment and mod-

eling, hesitations in the current driven. Modeling showed that these hesitations occurred

when the edge safety factor was a low order rational and could be suppressed by increasing

the current drive before onset. In the modeling, a self-reorganization of the plasma flux was

observed and the hesitations in driven current were attributed to this phenomenon.

Calculations modeling this phenomenon in the CTH geometry could shed some light on

the effect of three-dimensional fields on these hesitations. In previous work, Scarabosio et

al.15 used the resistive stability code PEST-317 to study the effect of shaping on current rise

instabilities and disruptions. In the modeling, they found that plasma shaping tended to

destabilize the disruptive mode observed in experiment, attributing the disparity between
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model and experiment to the lack of wall interaction and vacuum mode coupling in the

model. While NIMROD does not fully address the lack of wall interaction, vacuum modes

are allowed to couple to the plasma in NIMROD, and a time-dependent non-linear calculation

may shed more light on the effect of shaping.

1.3 Dissertation organization

The remainder of this document is organized as follows:

• Chapter 2 gives an overview of confinement schemes, focussing specifically on CTH

and the role it plays in fusion research as well as giving a more in-depth discussion of

NIMROD.

• Chapter 3 details the specifics of the physics model used in NIMROD to model CTH

as well as highlighting features implemented to this end.

• Chapter 4 details the results of experiments in modeling the current rise phase of CTH

shots.

• Chapter 5 gives a review and discussion of this work, as well as offering suggestions for

future work.
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Chapter 2

CTH and NIMROD

Fossil fuels have been providing the energy which has powered the world for the past

century. New concerns over global climate change, as well as the finiteness of the resource

and the political instability which often accompanies production, have renewed calls for an

alternate source of clean, plentiful, abundant energy. Plasma fusion promises to provide this

fuel for the future.

2.1 Plasma fusion

Nuclear fusion is the process by which two or more nuclei combine into a single, larger

nucleus. This results in a release of energy if the resulting nucleus is lighter than the total

mass of the original nuclei. Extreme conditions are required to overcome the electrostatic

repulsion between nuclei. In the center of the Sun, where the process of nuclear fusion

takes place many times every day, gravity provides the conditions necessary to overcome the

electrostatic repulsion between nuclei and creates an environment conducive to fusion.

Plasma is often called the fourth state of matter, and can be described as an ionized

gas which exhibits collective behavior. As plasmas are, by definition, ionized and the charge

carriers are free to more about, plasmas are electrically conductive. Plasmas exist in many

forms in nature; from lightning to the Earth’s magnetosphere to interstellar nebulae.

Fusion requires extreme conditions due to the electrostatic repulsion between nuclei. In

fusion research these conditions are typically obtained through high temperatures. These

high temperatures increase the chance of fusion by giving particles in the high-energy tail of

the thermal velocity distribution enough kinetic energy to overcome electrostatic repulsion.

High temperatures, however, are not enough to create fusion. It is also necessary to keep
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nuclei in close proximity to each other for long enough that random thermal collisions will

result in fusion events. These two, often competing, considerations are brought together

in a measure called the Lawson criterion18 which determines the minimum temperature

and confinement time needed to achieve sustained fusion. The Lawson criterion for the

deuterium-tritium (D-T) reaction is given by

nτE ≥
12

Ech

kBT

〈σv〉
, (2.1)

where n is the plasma density, T is the temperature, τE is the energy confinement time-scale,

kB is the Boltzmann constant, Ech is the energy of the electrically charged products of a

fusion reaction, and 〈σv〉 denotes an average over a Maxewellian in velocity space of the

fusion cross-section (σ) and the relative velocity (v).

Cold plasmas such as those found in fluorescent lights can be confined simply by mate-

rials such as glass. Material confinement is not possible, however, at the extreme conditions

needed for fusion. In the sun, gravity confines the plasma. This combination of long con-

finement times and high temperatures easily satisfies the Lawson criterion. Since it is not

possible to use gravity to bind such a system on Earth, other forms of confinement must be

explored.

2.2 Confinement schemes

Research into plasma fusion is chiefly split into two areas: magnetic confinement and

inertial confinement.

Magnetic confinement is achieved by using magnetic fields to confine the plasma in a

configuration conducive to achieving fusion. As charged particles tend to travel along mag-

netic field lines, these devices are often formed into a torus to mitigate the loss of hot particles

on open magnetic field lines, increasing the confinement time. This increase in confinement

time allows magnetic confinement machines to run at relatively lower temperatures than
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Figure 2.1: Conceptual drawing of the ITER tokamak, currently under construction. Note
the toroidal uniformity of the vacuum vessel. ( c©ITER Organization, 2011)

inertial confinement machines. Inertial confinement involves simultaneously heating and

compressing a source of light nuclei with lasers to achieve the required conditions. Though

the confinement time is short, the Lawson criterion is satisfied through the extremely high

temperatures and densities obtained in the compression. This work focuses on the former

method, and, in particular, a combination of two toroidal confinement schemes: the stellara-

tor and the tokamak.

2.2.1 Tokamak

Confining magnetic fields in a tokamak are provided by a combination of external coils

and an internally driven current. This current also provides heat to the plasma through ohmic
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heating. This scheme is the leading candidate for a fusion reactor, with the experimental

reactor ITER currently under construction.19

That current must be driven in a tokamak is hugely advantageous. Firstly, poloidal

fields, which are necessary for plasma confinement, are difficult to produce externally. Given

a toroidal guide field, the current driven in the plasma provides the necessary poloidal field,

thus greatly simplifying the engineering of the machine. Also, because of the electrical

resistance of the plasma, the current heats the plasma through the process of ohmic heating.

This heating, while not sufficient to heat the plasma to ignition, gives a jump start to the

heating process, carrying some of the load that supplemental heating methods would need to

provide. The tokamak is also inherently nearly axisymmetric, i.e. if one were to look at two

different poloidal cross-sections, the plasma would be nominally the same. This fact greatly

reduces the complexity involved in modeling tokamak plasmas.

Though favored by many for fusion power generation, the tokamak has inherent insta-

bilities which can make it violently disrupt. While the driven current provides some benefits

as described above, it also complicates things by its necessity by making the plasma unstable

to current driven instabilities, such as the kink instability.20 Another obstacle for a tokamak

in terms of generating sustained power is the method by which current is driven in the ma-

chine. Current in tokamaks is usually provided by a central solenoid, often called an ohmic

transformer. In this scheme, the plasma itself is used as the secondary leg of a transformer.

The pulsed nature of this arrangement, though, is not conducive to steady-state operation.

Further current drive is necessary, and the best source of this drive is an open question.21

2.2.2 Stellarator

The initial design for the stellarator was laid out in 1958 by Lyman Spitzer22 and is

defined by generating the confining field completely by external coils. One of the chief reasons

stellarators are desirable to plasma fusion efforts is the lack of a steady-state toroidal current.

This fact bypasses many of the instabilities seen in tokamaks. Also, when a stellarator
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encounters an instability, the ensuing disruption is relatively mild and does not typically

lead to a loss of total confinement as is seen in the tokamak.

The stellarator design is not without drawbacks. Since only external fields are used

to confine the plasma, the coils producing these fields must be irregularly shaped and the

resulting magnetic fields are necessarily non-axisymmetric. The resulting coils must also be

placed with great care and accuracy, resulting in much higher up-front expenses than in a

typical tokamak. Due to a lack of plasma current, the stellarator also does not produce much

heat natively. To bring the plasma to fusion relevant temperatures requires much more input

power than in the tokamak design, again raising expenses.

2.2.3 Compact Toroidal Hybrid (CTH)

The Compact Toroidal Hybrid (CTH) is a stellarator-tokamak hybrid device located

at Auburn university. The machine is configured so that it can run as a stellarator, with

external coils providing the magnetic structure necessary for confinement of the plasma, or

in more of a tokamak mode, with induced current in the plasma providing a substantial

portion of the poloidal magnetic field. Designed to test the degree of external 3D magnetic

field needed to mitigate current driven tokamak disruptions, CTH has shown promising

results in confirming a vertical stability criterion23 and exceeding the empirical Greenwald

density limit.24

The vacuum vessel confining the plasma is a torus with major radius R ≈ 0.75m and

minor radius r ≈ 0.3m. To begin a CTH shot, vacuum magnetic fields are activated. The

plasma is then ionized and initially heated using ECRH, resulting in a plasma with Te ≈

20eV. After this initialization, the ohmic transformer may be energized, inducing current

in the plasma. Values of peak plasma parameters vary on a shot-to-shot basis, but typical

values are Temax ≈ 200eV, nemax ≈ 5× 1019m−3, and Ipmax ≈ 80kA.

CTH was designed to test the ability of externally supplied helical magnetic fields to

suppress or mitigate current driven instabilities seen in tokamaks. To this end, the versatile
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Figure 2.2: CAD model of the Wendeslstein 7-X stellarator. Note the irregularity of the
confining coils (dark blue) and the shaping of the resulting plasma (yellow). Reprinted from
“Status of Wendelstein 7-X Construction,” by L. Wegener, 2009, Fusion Engineering and
Design, Vol. 84, No 2-6, Pgs. 106-112. Copyright 2009 by Elsevier Limited. Reprinted with
permission.

10



Figure 2.3: The Compact Toroidal Hybrid magnetic field coils. Red - Helical Field; Yellow
- Toroidal Field; Green - Ohmic Transformer; Gray - Error Correction Coils; Blue - Vertical
Field. The 3D shaping of the helical field coil results in a five-fold periodicity in CTH
plasmas.
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field shaping coils on the machine can achieve rotational transforms (the number times a

field line rotates poloidally for every toroidal transit) in the range 0.01 ≤ ι- ≤ 0.3. The

confining fields in CTH possess a five-fold symmetry due to the geometry of the helical coil

(red coil in figure 2.3).

The work in this paper is concerned with using NIMROD to model the start-up phase

of a CTH plasma. In addition to these efforts, further computational work is also being done

in regards to the CTH. V3FIT12 is currently being used in concert with a suite of diagnostics

to reconstruct evolving equilibrium states of the plasma during a discharge. Initial work

has focussed on magnetic diagnostics, but a more varied collection of diagnostics are now

being included in these reconstructions. In addition, equilibria calculated using V3FIT and

VMEC11 are now being imported into NIMROD with the purposes of exploring the effects

of perturbations away from equilibrium and the formation of features not reproducible in

VMEC, namely magnetic islands.

2.3 Modeling efforts

Computer modeling has been an important aspect of plasma research for many years.

Much work has been done and many important steps have been made in plasma modeling in

recent years, but a full review of the topic is beyond the scope of this dissertation. Since this

work is concerned with using the fluid code NIMROD5 to model the CTH, we will briefly

discuss the NIMROD code (as well as offering a review of MHD as it applies to the code) and

review previous steps in the modeling of the most similar device to the CTH, the stellarator,

as well as provide context for this research.

2.3.1 The NIMROD code

The Non-Ideal Magnetohydrodynamic with Rotation, Open Discussion (NIMROD) code

is, at its core, a 3D partial differential equation solver. This solver, and the auxiliary routines

which surround it, have been specialized to solve MHD problems. NIMROD has a flexible
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geometric representation of the computational domain, requiring two dimensions to be rep-

resented by a finite element mesh while the third is represented in Fourier space. The code

is massively parallel and is being used to solve problems ranging from fundamental plasma

physics to those applicable to fusion.7,8,9,10

MHD Review

Magnetohydrodynamics is an important approximation in which single particle effects

are ignored in favor of the collective effects of the plasma as a whole. This approximation

is applicable to many magnetic confinement regimes and has been used to great effect in

understanding phenomena in plasma discharges. There are many well written discourses on

MHD20,21,25; this section will discuss only the representation of the MHD equations used in

NIMROD.

NIMROD uses Maxwell’s equations (without displacement current) and the single fluid

form of velocity moments of the electron and ion distribution functions to calculate the

dynamics of a discharge. Maxwell’s equations, less Gauss’s law and the displacement current,

are given by

∇× ~E = −∂
~B

∂t
, (2.2)

∇× ~B = µ0
~J, (2.3)

∇ · ~B = 0, (2.4)

where ~E is the electric field, ~B is the magnetic field, and ~J is the current density. If

quasineutrality is assumed (Zeffni ≈ ne where ni is the ion density and ne is the electron

density), the continuity equation is given by

∂n

∂t
+ ~v · ∇n = −n∇ · ~v, (2.5)
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where ~v is the center of mass velocity and n is the single fluid number density. The velocity

evolution is given by

ρ
∂~v

∂t
+ ρ~v · ∇~v = ~J × ~B −∇p−∇·

↔
Π, (2.6)

where ρ is the mass density, p = nT is the pressure, and
↔
Π is the fluid stress tensor.

Temperature evolution is given by

n

γ − 1

(
∂

∂t
+ ~v · ∇

)
T = −p∇ · ~v−

↔
Π: ∇~v −∇ · ~q +Q, (2.7)

where q is the thermal diffusion and Q is a catchall term for sources of heat. The equations

are closed using a generalized Ohms law

~E = −~v × ~B + η ~J +
1

ne
~J × ~B +

me

n2
e

[
∂ ~J

∂t
+∇ · ( ~J~v + ~v ~J)− e

me

(∇pe +∇·
↔
Πe)

]
, (2.8)

where η is the resistivity. Note that this is the full set of equations that NIMROD solves.

Each equation can be modified by omitting certain terms as defined by the user. For example,

in all of this work, many of the terms in the generalized Ohm’s law are dropped, leaving only

~E = −~v × ~B + η ~J. (2.9)

2.4 CTH/NIMROD model

For the purposes of modeling CTH, the NIMROD problem domain is represented by

a 2D finite element mesh complemented by a Fourier spectrum in a third direction. The

CTH vacuum vessel is approximated by a circular torus, which is used as the boundary

for NIMROD simulations. A cross section of the torus is then divided by ir and jθ radial

and poloidal lines, respectively. These newly formed cells are the major mesh for the finite

element analysis. Viewed in logical space, these cells form a rectangular mesh. This mesh
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Figure 2.4: A circular cross section divided (upper left), transformed into logical space (upper
right), and an individual cell with all quadrature points shown for Np = 2.

is further refined with the addition of Np data points on the vertical and horizontal legs of

each cell, as well as 2Np points interior to the cell, where Np + 1 is the polynomial degree

of the finite elements. For graphical representation, see figure 2.4. The toroidal nature of

the problem is contained in the Fourier decomposition of the variables defined at each of the

points described previously. Data between mesh points is calculated by interpolation. For

more information on the specifics of the NIMROD mesh as applied to CTH, see appendix

C.
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Chapter 3

The Physics Model

The NIMROD code solves a very flexible system of equations geared toward the modeling

of magnetohydrodynamic phenomena in plasmas. Aside from various geometric options, the

verisimilitude of the physics involved in the model can be manipulated. Initial work done

toward applying NIMROD to the CTH used a proof of principle model which included limited

physics. The aim of this work is to enhance the physical fidelity of the model in order to

perform single-fluid modeling of CTH in the most experimentally valid way possible. This

chapter outlines the steps taken toward the goal of full physical fidelity in the model.

3.1 Initial model

Work done by M. Schlutt et. al6 laid out the foundation for this work. The CTH

vacuum fields were modeled by manually loading the fields normal to the vacuum vessel into

NIMROD and then using the magnetic field advance as a Laplace’s equation solver for

∇ · ∇ ~B = 0 (3.1)

The resulting fields match well with a filamentary model of the physical coils on CTH as seen

in figure 3.1. A constant loop voltage was then applied in vacuum. The resulting system of
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Figure 3.1: Comparison of NIMROD (blue) and CTH (red) vacuum flux surfaces at a full
(left) and half (right) field period

equations governing the evolution of the plasma is

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = ~J × ~B +∇ · νρ∇~v, (3.2)

∂ ~B

∂t
= −∇× ~E + κdivB∇∇ · ~B, (3.3)

~E = −~v × ~B + η ~J, (3.4)

µ0
~J = ∇× ~B, (3.5)

where the last term in equation 3.3 controls the ∇ · ~B cleaning in NIMROD’s numerical

scheme. Though there was no plasma present, a constant resistivity profile was set over

most of the NIMROD domain to simulate a CTH plasma of Te ∼ 100eV. Near the edge of

the domain a higher resistivity was set to suppress spurious current on open field lines. The

applied loop voltage then drove a current in this vacuum “plasma”, changing the structure

of the background magnetic field. Depending on the strength of the driving loop voltage and

the relative strength of magnetic diffusion (given through the dimensionless magnetic Prandtl
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number Prm = ν/η where ν is the kinematic viscosity and η is the magnetic diffusivity),

magnetic islands were observed growing and, in some cases, breaking into regions of chaotic

field lines.

3.2 Adding ohmic heating

Where initial experiments were done at β = 2µ0p/B
2 = 0, recreating physical runs

requires finite β and, thus, finite pressure. On CTH, the main source of heating during the

discharge is ohmic heating, that is the heating of a resistive material when a current is passed

through it. The power derived from ohmic heating is given by

Q = ηJ2, (3.6)

where J is the current density and η is the resistivity of the plasma. Including this heating

term in the NIMROD model should generate heating wherever there is plasma current.

Recall that the initial model did not evolve the temperature. In order to use ohmic

heating, then, it is necessary to add temperature evolution (in the form of equation 2.7) to

the model. As a reminder,

n

γ − 1

(
∂

∂t
+ ~v · ∇

)
T = −p∇ · ~v−

↔
Π: ∇~v −∇ · ~q +Q,

where n is the density, γ is the adiabatic index (taken to be 5/3), t is the time, ~v is the

velocity, T is the temperature, p = nT is the pressure,
↔
Π is the viscous stress, ~q is the heat

diffusion, and Q is a catch-all term for the heating. In the limit of adiabatic heat conduction

and ~v = 0, the above becomes

n

γ − 1

∂T

∂t
= Q,
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Using the form of ohmic heating defined in 3.6, the temperature evolution becomes

n

γ − 1

∂T

∂t
= ηJ2,

On the simplest level, adding ohmic heating to the model should heat the plasma where

there is current. Without complicating the initial model too much, it is possible to include

ohmic heating with constant resistivity and adiabatic thermal transport. This should result

in the deposition of heat where there is the most current, that is, on closed flux surfaces.

Figure 3.2 shows the results of adding ohmic heating to the basic model. Note that,

as predicted, heat is deposited where current is flowing, and is deposited proportional to

the amount of current. This is an important first step in bringing the model more in line

with experiment, as now there is a mechanism for converting current to heat, evolving β and

making it an important plasma parameter.

3.3 Adding temperature dependent thermal diffusivity

When a physical parameter can be calculated as a combination of NIMROD’s basic

plasma variables (T , ~v, ~B, and n), the option exists to calculate said parameter at each time

step. In the original model, all of these parameters were kept constant. With the addition

of ohmic heating, it is possible to use the plasma temperature to alter them as they evolve

in reality.

The first such parameter to be altered is the thermal diffusivity. Previously, for simplic-

ity, the thermal diffusivity had been set to 0 (the previous adiabatic assumption). Physical

plasmas, however, are not adiabatic, with the thermal diffusivity varying greatly parallel and

perpendicular to the guide field in magnetized plasmas. From Goedbloed and Poedts,20 fol-

lowing the formalism of Braginskii, the thermal conductivity (that is the thermal diffusivity
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Figure 3.2: Current density (black) and temperature (red) at 1ms for a simulation with ohmic
heating, a constant electrical diffusivity of 630m2/s, and a constant loop voltage of 1V. These
values were chosen for illustrative purposes and do not reflect experimental conditions. Note
the effect of ohmic heating: increasing temperature in regions where plasma current is driven.
Also note the anomalous heating near r = 0.5m.
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times the density) parallel and perpendicular to the magnetic field are given by

κ|| = 4.4
nkTeτe
me

(3.7)

κ⊥ = 4.6
nkTe
meω2

ceτe
(3.8)

where ωce = e| ~B|/me is the electron cyclotron frequency and τe is the electron relaxation

time given as

τe ≡
6
√

2π3/2ε20
√
me(kTe)

3/2

lnΛe4ne
(3.9)

where lnΛ is the Coulomb logarithm. Thus the thermal conductivities are given by

κ|| = 26.4

√
2π3/2ε20(kTe)

5/2

lnΛe4
√
me

(3.10)

κ⊥ = 0.77
e3lnλn2

π3/2ε2
√

2|B|√me(kTe)3/2
(3.11)

Note that the electron thermal diffusivities are cited here as, though the calculations in this

work are single fluid, the electron thermal diffusivities dominate.

In NIMROD, the thermal diffusivity is not directly calculated using the constants and

equations cited above. Instead, in the mode used in this work, the parallel thermal diffusivity

is scaled based on its temperature dependence. Thus, the model used in NIMROD is given

by:

κ|| = Max

(
Min

(
κ0

(
T0
T

)5/2

, κmax

)
, κmin

)
(3.12)

where κ|| is the parallel thermal diffusivity, κ0 is the parallel thermal diffusivity calculated

for a reference temperature T0, and κmax and κmin are the maximum and minimum values

κ|| is allowed to take. The user provides κ0, T0, κmax, and κmin.
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For the perpendicular thermal diffusivity, a constant value is used. This is due to the

fact that, from equations 3.10 and 3.11, κ|| ∼ T
5/2
e and κ⊥ ∼ T

−1/2
e . Thus, considering

only the temperature, the variation in κ⊥ is deemed to be small over the temperatures of

interest. It is true that the perpendicular thermal diffusivity does have a density dependence

as κ⊥ ∼ n2, and the ramifications of ignoring this dependence are discussed later.

Adding self consistent thermal diffusivity should allow the heat generated by ohmic

heating to leave the generation site and propagate to colder portions of the plasma. Fur-

thermore, if the boundary is held cold, the anisotropic nature of the model used for thermal

diffusivity should facilitate a sharper delineation of plasma and vacuum regions in the model.

In the plasma region, heat will tend to follow the closed field lines, staying in the closed flux

region and only leaking into the open field line region on the much slower time scale deter-

mined by κ⊥. Conversely, on the open field lines in the vacuum region, heat should freely

flow to the boundary, leaving behind a cold region of open field lines.

As expected, and seen in figure 3.3, the inclusion of temperature dependent parallel

thermal diffusivity makes clear in the temperature contours the extent of the plasma volume.

The inclusion of this term greatly enhances the verisimilitude of the model and paves the

way for future additions to the model by causing the temperature to behave more like it

does experimentally, leading to a clear boundary between plasma and vacuum.

3.4 Adding initial temperature and density profiles

Before current is driven in a CTH experimental shot, klystrons are engaged, with the

dual purpose of ionizing the background neutral gas and heating the resulting plasma through

ECRH. Due to the localized nature of the heating, this process is difficult to model in

NIMROD. The klystrons remain energized during the ohmic portion of a discharge, but the

majority of heating at that point comes from ohmic heating. Though unable to directly

reproduce the effects of the ECRH, by setting an initial temperature and density profile the

state of the plasma at the onset of current drive can be modeled.
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Figure 3.3: Current density (black) and temperature (red) at 1ms for a simulation with
ohmic heating, a constant electrical diffusivity of 630m2/s, a constant loop voltage of 1V,
and anisotropic heat conduction, with κ||/κ⊥ = 105. These values were chosen for illustrative
purposes and do not reflect experimental conditions. The anomalous heating from figure 3.2
has been remedied by the parallel heat conduction. Note also the effect of the perpendicular
heat conduction, smoothing the temperature to a peaked profile.
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NIMROD does not differentiate between closed flux surfaces (where the plasma is) and

open field lines (where there should be little plasma). Thus, there is no straightforward way

to set profiles such that there is a clear plasma region and a clear “vacuum” region. Recall

the temperature evolution equation (equation 2.7):

nα
γ − 1

(
∂

∂t
+ ~vα · ∇

)
Tα = −pα∇ · ~vα−

↔
Πα: ∇~vα + nα∇ ·

(↔
χα ·∇Tα

)
+Qα (3.13)

In the case of ~vα = 0, Qα = 0, the temperature evolution becomes:

nα
γ − 1

∂Tα
∂t

= +nα∇ ·
(↔
χα ·∇Tα

)
(3.14)

Recall, also, that
↔
χα contains the thermal conductivites parallel and perpendicular to the

magnetic field. As seen before, these thermal conductivities are also parameters that can be

manipulated in NIMROD. Therein lies the path to setting initial temperature profiles for

CTH modeling in NIMROD. First, the magnetic field is prescribed as before. Then, the entire

simulation domain is set to the desired maximum temperature except at the boundary, which

is set near 0. Setting constant values for κ|| and κ⊥ such that κ|| >> κ⊥, the temperature

evolution equation is advanced. This results in heat on open field lines flowing out to the

perpetually cold boundary while heat on the closed field lines remains in that region. The

density profile is then set as a multiple of the resultant temperature profile.

Note that this process constitutes a further pre-processing step for a “full” NIMROD

run. The workflow is now:

1. Load magnetic field as prescribed by Schlutt et al.6

2. Load initial temperature and density profiles as described above

3. Apply loop voltage

The ability to model the initial temperature and density profiles is essential to our mod-

eling and understanding of the system as a whole. As previously described, the experiment
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(a) (b) (c)

Figure 3.4: Evolution of temperature when setting an initial temperature profile. This
simulation only evolves the temperature, with no plasma current being driven. (a) The
desired maximum temperature is set over the domain except the wall, which is kept cold.
(b) The temperature evolves with anisotropic thermal diffusivity. Heat on open field lines
flows to the cold boundary, heat on closed field lines stays in plasma volume. (c) Final state
used as initial conditions in model.

begins with an initial plasma with a finite density and temperature. Without the ability to

set an initial temperature and density profile in the model, simulations would begin in a state

dissimilar from the experiment. Furthermore, as will be discussed in the next chapter, an

initial temperature and density are essential for setting plasma parameters such as resistivity

to realistic values.

3.5 Adding temperature dependent resistivity

As was done with the perpendicular thermal diffusivity, other derived plasma parameters

can be self-consistently calculated. An especially important physical parameter for the evo-

lution of the plasma is the resistivity. From Spitzer,26 we have the following approximation

for the resistivity:

η|| ≈
me

2e2neτe
(3.15)
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Where me is the mass of the electron, e is the charge of the electron, ne is the electron

density, and τe is the collisional relaxation time for the plasma. Using the definition of τe

from equation 3.9 in equation 3.15, the temperature dependence of the plasma resistivity

can be seen:

η|| ≈
e2lnΛ

√
me

12
√

2π3/2ε20(kTe)
3/2

(3.16)

Since the parallel and perpendicular resistivities in the Spitzer model only differ by a

factor of 2, NIMROD uses one overall value of the resistivity. Since resistivity is inversely

proportional to the temperature, adding this term to the model should result in lowered

resistivity in the heated region. This, in turn, should drive more current in these regions.

In the NIMROD model, the temperature dependent nature of the resistivity is repre-

sented as

η = Max

(
Min

(
η0

(
T

T0

)−3/2
, ηmax

)
, ηmin

)
, (3.17)

where η0 is a reference resistivity calculated for a temperature of T0 and ηmax and ηmin

are the maximum and minimum values, respectively, η is allowed to take. η0, T0, ηmax and

ηmin are all set at runtime in the code, and can thus be easily manipulated during a run.

The inclusion of temperature dependent resistivity is important to the model in that it

allows for realistic resistivity profiles. In the original model, resistivity was set as constant

across the domain except near the edges, where it was artificially raised. That artificial

raising of the resistivity is no longer needed as, in conjunction with the temperature depen-

dent thermal conductivity, temperature dependent resistivity enforces a resistive layer in the

vacuum region. The temperature dependent thermal conductivity ensures that the vacuum

region remains cold, while the temperature dependent resistivity preferentially drives current

in the hotter portions of the plasma.
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3.6 Adding time dependent loop voltage

The ohmic transformer in CTH is pulsed during the course of an experimental shot to

drive current in the plasma. This rapid change in the current driven in the solenoid produces

a similarly rapid change in the magnetic flux through the center of CTH. The central solenoid

can be considered the primary winding of a transformer, with the changing magnetic flux

(Φ) through the primary winding inducing an electric field according to Faraday’s law

−dΦ

dt
=

∮
~E · d~l, (3.18)

in the secondary winding. In the case of CTH, the secondary winding is the plasma. This

electric field drives current in the plasma.

Previously, a constant loop voltage had been used. To more accurately model CTH

plasmas, a time dependent model was adopted in which the experimental loop voltages were

averaged (there are four separate measurements) and the result imported into NIMROD.

These measurements by their nature include the plasma response to the applied electric field

when a plasma is present. To obtain the unperturbed loop voltage for a plasma shot, an

identical shot was taken in the absence of a plasma. For a comparison of the perturbed and

unperturbed loop voltage, see figure 3.5. These unperturbed loop voltages are used in this

work.

As the loop voltage is the major drive of current in the model, having a model for the

time behavior of the loop voltage is important to modeling the current rise in the plasma.

While linear loop voltages are sufficient later in the shot and for proof of principle runs, to

fully model the dynamics of the current rise requires a non-linear model of the loop voltage

to match the rapidly changing conditions in that portion of the discharge.

For more information on the initialization of the NIMROD model for CTH using the

items mentioned in this chapter, see appendix C.
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Figure 3.5: Comparison of perturbed (orange) and unperturbed (blue) loop voltage. Note
the lower amplitude of and wiggles in the perturbed loop voltage. The diagnostic which
measures the loop voltage also captures the response of the plasma to the ohmic drive.
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Chapter 4

Comparison of Full Model To Experiment

4.1 Model of shot 13030823

4.1.1 Introduction and shot overview

Discharges in the CTH begin with a background magnetic field provided by coils external

to the vacuum vessel. The plasma is then both initially ionized and heated with the input

of microwaves from a klystron used for ECRH. If a driven plasma current is desired, charged

capacitor banks are discharged through the central solenoid, inducing current in the plasma.

Diagnostics on the machine are then able to measure various aspects of the discharge, such

as Rogowski coils which measure the total current driven in the plasma and a three-chord

interferometer which measures the line-averaged density across three chords in a vertically

symmetric cross-section.

The evolution of the CTH plasma varies based on a number of variables such as the

rotational transform of the background magnetic fields, the strength of the current drive, and

the duration and magnitude of neutral gas fueling from the edge of the plasma. A feature seen

during the initial current rise in many shots is a momentary hesitation in the current. Using

V3FIT to reconstruct the plasma equilibrium when these hesitations occur, the rotational

transform is seen to be near a low order rational value near the edge of the plasma. Also, the

signal from an array of magnetic pickup coils sensitive to changes in the poloidal magnetic

field fluctuates during these times, indicating an increase of magnetic activity. Both of these

pieces of evidence suggest that some MHD process is inhibiting current flow in the plasma.
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Figure 4.1: Overview of CTH shot 13030823 showing measured plasma current (top), mea-
sured dBθ/dt (middle), and V3FIT calculated edge rotational transform (bottom). The
hesitations in plasma current are reflected in the dBθ/dt signal as fluctuations. During cur-
rent hesitations, V3FIT calculates the rotational transform at the edge of the plasma to be
near a low-order rational value.
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4.1.2 Goals of run

Shot 13030823 was chosen for its pronounced current hesitations early in the current

rise as is seen in figure 4.1. If the activity in the plasma which is causing the hesitations in

the current is MHD-based, NIMROD should be able to accurately model it. While islands

were observed in the initial modeling of Schlutt, no hesitations in current were observed.

With an improved, self consistent model, however, we can further investigate the dynamics

of this critical phase of the plasma. Thus, the goals of this run are:

1. Calibrate improved NIMROD model for investigations of CTH shots

2. Use NIMROD to look for current hesitations in the current rise phase

3. Identify possible causes for current hesitations

4.1.3 Model specifics

Equations solved

As referenced in Chapter 3, the model used in this work is greatly enhanced from the

model used by Schlutt. The full set of equations solved in this model run is given by:

µ0
~J = ∇× ~B, (4.1)

∂ ~B

∂t
= −∇× ~E + κdiv B∇∇ · ~B, (4.2)

ρ
∂~v

∂t
+ ρ~v · ∇~v = ~J × ~B −∇p+ νρ∇~v, (4.3)

∂n

∂t
+ ~v · ∇n = −n∇ · ~v, (4.4)

n

γ − 1

(
∂

∂t
+ ~v · ∇

)
T = −p∇ · ~v−

↔
Π: ∇~v −∇ · ~q + ηJ2, (4.5)

~E = −~v × ~B + η ~J. (4.6)
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Initial conditions

In NIMROD, since the resistivity is calculated based on plasma parameters, the density

and the temperature work in concert to affect the rate at which current is driven in the

plasma. As the goal of this work is to investigate hesitations in the current rise thought to

be caused by magnetic islands, it is important to accurately represent this current rise in the

model. Thus, the choice of initial density and temperature profiles is crucial to accurately

modeling this initial phase of the plasma.

In attempting to model the onset of ohmic current in NIMROD, a logical choice for

the peak initial density is that density which returns a synthetic diagnostic signal closest

to experiment. The line-averaged electron density for shot 13030823 measured by the inter-

ferometer is shown in figure 4.2. For a line-averaged density of 8 × 1017m−3, this yields a

maximum density of ∼ 1018m−3. It is found that no matter the initial temperature used for

this density the resistivity is low enough that the ohmic current drive is faster in the model

than in experiment. Moderately raising the density does not bring the modeled ohmic cur-

rent drive in line with that which is seen in experiment, see figure 4.3. This disparity between

experiment and model suggests that there is some mechanism by which the resistivity of the

plasma is being increased that is not captured in the model. To match the rate of current

rise early in time, a peak density of ne ≈ 1019m−3 was used, with the shape of the density

profile set as a multiple of the temperature profile used.

On CTH, there are no diagnostics which measure the temperature profile during an

ohmic shot. In the absence of this knowledge, the profile shown in figure 3.4c is used. Once

an initial density was chosen, the initial maximum temperature was altered until the initial

current rise in the plasma closely matched that seen in experiment (see figure 4.4). An

initial maximum temperature of 30eV was chosen through this process. Though a maximum

temperature of 25eV produced a closer match in plasma current over the window shown, a

maximum temperature of 30eV was a better match for longer.
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Figure 4.2: Measured line-averaged electron density from an interferometer for a chord at
the mid-plane (black) and equidistant above (red) and below (blue) the mid-plane for the
full shot (a) and the current ramp phase (b).
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Figure 4.3: Effect of varying background densities on the rate of ohmic current drive at T = 0
eV to drive as little plasma current as possible. At n = 1017m−3 (blue) and n = 1018m−3

(orange) the modeled plasma current overtakes experiment (black) while for n = 1019m−3

(purple) it does not.
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Figure 4.4: Plasma current comparison between experiment (black) and NIMROD with
initial peak temperature of 30 eV (red), 25 eV (green), 20 eV (purple), 15 eV (gray), 10 eV
(orange) and 5 eV (blue). 30 eV was chosen over 25 eV as the initial temperature for the
modeling in section 4.1.4 due to the favorable comparison with experimental values later in
time.
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Figure 4.5: Comparison of plasma current from experiment (black) with NIMROD model
(orange). The plasma current matches well early in time, but as hesitations are missed in
the model, the currents begin to diverge. Vertical lines represent times shown in later time
sequence figures.

As mentioned in Chapter 3, NIMROD can self consistently calculate the resistivity and

parallel thermal diffusivity of the plasma. Values for these coefficients were calculated for

T = 30eV.

4.1.4 Presentation of results

Figure 4.5 shows the evolution of the total plasma current as modeled with NIMROD

compared to the plasma current as measured in experiment. The first thing to note is the

good agreement between experiment and model early in time. At the first few moments

of current drive this is expected, as the temperature and density were chosen so that the

initial current rise in the model would match experiment. It is promising to note that the

agreement extends until the beginning of the current hesitations seen in experiment
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Figure 4.6: Comparison of rotational transform as calculated by V3FIT (blue) and NIM-
ROD (orange) early in the current ramp. Though the NIMROD model misses the current
hesitations seen in experiment and reflected in V3FIT, the rotational transform matches well
between NIMROD and V3FIT. Note the greater extent of the NIMROD profiles as well as
the downward turn near the edge of the V3FIT profiles. These are thought to be caused by
the absence of physical limiters in the NIMROD model.
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Using V3FIT, it is possible to obtain profiles of the rotational transform for this shot.

Similarly, NIMROD has functionality which allows for the calculation of rotational transform

(see appendix B). These two measurements are compared in figure 4.6, and show good

agreement early in time when the plasma current in the model and experiment match well.

The current hesitations observed in the experimental current drive are not reproduced

in the model. It is expected that these hesitations are due to large islands growing at rational

surfaces near the edge of the plasma. In the model, however, no island growth is seen during

the early stage of the ohmic current drive. Figure 4.7 illustrates this point, showing surface

of section plots at times corresponding to current hesitations in experiment. The data in

the figure is generated by first choosing a point in space and following the magnetic field

from that point. When the field returns to the toroidal plane in which the initial point was

chosen, the location of the crossing is recorded. This process is repeated hundreds of times

and for various starting locations to produce a surface of section plot.

Furthermore, as is illustrated in figure 4.6, the rotational transform near the center

of the plasma calculated by V3FIT continues to match well with the rotational transform

calculated from NIMROD, despite the lack of current hesitations in the model. Both V3FIT

and NIMROD show the ι- = 1/6 and ι- = 1/5 surfaces at nearly the same location in the

plasma at t4 = 1.9ms and t5 = 2.4ms, respectively. Though the presence of these surfaces

in the plasma does not cause hesitations in the model, the good agreement of the rotational

transform profiles near the center of the plasma further suggests that the initial conditions

chosen for the model are acceptable for this shot.

The V3FIT calculated rotational transform has a dip near the edge of the plasma. This

sharp feature is not reproduced in the NIMROD model. It is thought that this discrepancy

is caused by differences in boundary conditions in the two models. While the NIMROD

domain is limited by the vacuum vessel, blocks are installed in CTH which physically limit

the extent of the plasma. These physical limiters are included in the V3FIT model, leading
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Figure 4.7: Time sequence of surface of section plots early in the current ramp at φ = 0.
Though many rational values of ι- are being traversed, so magnetic islands grow in the plasma
volume.
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(d) t = 5.7ms
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(e) t = 6.0ms
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Figure 4.8: Time sequence of surface of section plots late in the current ramp at φ = 0. A
symmetry-preserving m = 15, n = 5 island chain grows in the plasma, as seen in (b). The
growth of this chain begins more island growth, with an m = 5, n = 2 and an m = 12, n = 5
chain growing in (d) and (e). An m = 2, n = 1 island grows near the magnetic axis in (f).
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(a) t = 0.0ms (b) t = 0.9ms

(c) t = 1.5ms (d) t = 1.9ms

(e) t = 2.4ms (f) t = 3.0ms

Figure 4.9: Time sequence of parallel plasma current density (λ = µ0J ·B/B2) early in the
current ramp at φ = 0. The current forms a hollow profile.
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(a) t = 4.1ms (b) t = 4.4ms

(c) t = 4.8ms (d) t = 5.7ms

(e) t = 6.0ms (f) t = 7.5ms

Figure 4.10: Time sequence of parallel plasma current density (λ = µ0J ·B/B2) late in the
current ramp at φ = 0. As islands grow in the plasma, they have a noticeable effect on the
plasma current density profiles. When islands are small and symmetry-preserving, the edge
of the current density profile becomes wavy, as is seen in (a)-(d). As the islands, grow, so
does their effect on the plasma current, as seen in (e) and (f).
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(a) t = 0.0ms (b) t = 0.9ms

(c) t = 1.5ms (d) t = 1.9ms

(e) t = 2.4ms (f) t = 3.0ms

Figure 4.11: Time sequence of temperature early in the current ramp at φ = 0. The
perpendicular thermal diffusivity and initial temperature profile create a peaked temperature
profile from the hollow current density profiles of figure 4.9.
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(a) t = 4.1ms (b) t = 4.4ms

(c) t = 4.8ms (d) t = 5.7ms

(e) t = 6.0ms (f) t = 7.5ms

Figure 4.12: Time sequence of temperature late in the current ramp at φ = 0. As islands
grow in the plasma, they have a noticeable effect on the temperature profiles. These effects
are not as marked as in the current density profiles of figure 4.10, however.
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also to the decreased radius of the plasma as seen in figure 4.6. Adding physical limiters

similar to those installed on CTH to the NIMROD model is further discussed in Chapter 5.

Continuing to evolve the model, island growth is observed, beginning with an ι- = 1/3

chain of islands forming near the edge of the plasma, seen in figure 4.8b. These islands

are symmetry-preserving, meaning that they reflect the five-fold periodicity of the machine.

Since they are symmetry preserving, these islands are small and do not appreciably affect

the current density or temperature profiles, as shown in figure 4.10b and 4.12b. Once island

growth begins in the model, many more islands are observed. Though the islands are initially

symmetry-preserving, as seen in figure 4.8b, a symmetry-breaking ι- = 1/2 island follows, as

seen in figure 4.8f.

The emergence of islands in the model is accompanied by a growth in the magnetic

energy. Illustrated in figure 4.13, the growth of the magnetic energy evolves in two “modes”:

one involving the n = 5± 1 toroidal modes and one involving the n = 5± 2 toroidal modes.

Recall from equation 3.17 that the resistivity in NIMROD is modeled as

η = Max

(
Min

(
η0

(
T

T0

)−3/2
, ηmax

)
, ηmin

)
. (4.7)

By changing the value of η0 just before the magnetic modes begin to grow, it is possible to

investigate the resistivity dependence of the mode in an attempt to determine its nature.

Figure 4.16 shows the effect of varying the resistivity on the growth rate of the mode.

It is seen that the growth rate varies as γ ∼ η1/3. This dependence is the same as the

resistivity scaling of the growth rate of the resistive interchange mode.27 Though this scaling

dependence suggests that the mode is a resistive interchange mode, it is not conclusive.

Magnetic islands are typically associated with the tearing mode, though the growth rate for

resistive tearing modes varies as γ ∼ η3/5.27 Some tearing modes do not follow this scaling,

though, including the double-tearing mode28 which was seen in the work of Schlutt, et al.6

A more careful study of the dynamics of the mode, including a detailed investigation of
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Figure 4.13: Growth of magnetic energy for n = 1 (red) and n = 2 (blue) as a function
of time. The magnetic energy growth in these two modes is representative for all modes
n = 5j±1 and n = 5j±2 (see figures 4.14 and 4.15). A symmetry-preserving m = 15, n = 5
island is seen beginning at t = 4.4 ms.

the mode onset timing and any physical flows associated with mode growth, is necessary to

ascertain the nature of the mode.

Evolving the model further still, a stochastic region emerges near the edge of the plasma

when an m = 5, n = 2 island chain appears, as is seen in figure 4.8e. A large, ι- = 1/2

island chain then grows near the center of the plasma, eventually swamping out the original

magnetic axis. This stochastic region and large island chain substantially modify the current

density and temperature profiles, as shown in figures 4.10e-f and 4.12e-f.
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Figure 4.14: Growth of magnetic energy for n = 5j ± 1 with j = 1, 2, 3, 4. All of the modes
follow behavior similar to the n = 1 toroidal mode, seen in figure 4.13.
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Figure 4.15: Growth of magnetic energy for n = 5j ± 2 with j = 1, 2, 3, 4. All of the modes
follow behavior similar to the n = 2 toroidal mode, seen in figure 4.13.
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Figure 4.16: Dependence of growth rate of n = 5j ± 1 magnetic mode on resistivity. The
fit line has a slope of γ = 0.337. The growth rate of the observed magnetic mode varies
similarly to that of the resistive interchange mode (γ = η1/3).
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4.2 Constant current investigation of island growth

4.2.1 Introduction and motivation

As was seen in the previous section, large island growth is not seen until the rotational

transform in the plasma reaches ι- = 1/2. It is expected, however, that large islands are

causing the current hesitations observed in experiment early in time. To investigate whether

or not the conditions in the model allow for the growth of large, symmetry breaking islands

for rotational transforms ι- < 1/2, the total plasma current is held constant.

4.2.2 Model specifics

In the previous section, the plasma current was calculated self-consistently in the model,

with the largest driver being the experimental loop voltage. The most effective way to hold

the plasma current constant is to establish a feedback loop in which the loop voltage is

altered to give the desired result. Instead of the experimental trace, the loop voltage at any

time would then be given by

V = Vold + α(δt)(I0 − I) (4.8)

where Vold is the loop voltage at the previous time step, α is a constant which governs the

rate at which the loop voltage can be changed (user defined), δt is the time step, and I0 is

the desired plasma current.

The model will be restarted at a point in time just before the ι- = 1/3 surface has entered

the plasma. The 1/3 surface is chosen as it is the next lowest order rational surface below

1/2 for which symmetry-breaking islands are not observed. Also, if successful, symmetry-

breaking ι- = 1/3 surfaces should be quite large. It is necessary to restart the simulation just

before the ι- = 1/3 surface enters the plasma due to the fact that, while constant in total,

the current density in the plasma will redistribute, increasing the rotational transform.
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Figure 4.17: Loop voltage (left) and plasma current (right) for simulation holding Ip constant.
The loop voltage control given in equation 4.8 is activated at the dashed line.

4.2.3 Presentation of results

To fix the plasma current, the loop voltage drops considerably as can be seen in figure

4.17. Though different in magnitude, this is qualitatively similar to the dips in loop voltage

observed during current hesitations in experiment seen in figure 3.5. The fact that the loop

voltage drops during these times of constant plasma current makes sense. For a run such

as this where the plasma current is held constant, the reduction in loop voltage is caused

by the fact that the imposed loop voltage is more than is necessary to drive the desired

current. Only a fraction is necessary to maintain the driven current. For the case of current

hesitations in experiment, the drop in loop voltage is most likely a result of the changing

magnetic structure of the plasma.

A chain of symmetry preserving islands grow at the ι- = 1/3 surface as seen in figure

4.18b. These islands are, initially, similar in size and location to those seen in the previous

run. As the current density continues to redistribute, this island chain is pushed toward the

edge of the plasma. After further redistribution, this symmetry preserving chain merges in

to a large, symmetry breaking chain. This process is illustrated in figure 4.19.

Analogous to figure 4.13, the magnetic energy as a function of time is plotted in figure

4.20. Comparing the times in figure 4.18 with the magnetic energy in figure 4.20, two
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Figure 4.18: Time sequence of surface of section plots at φ = 0 for constant Ip simulation
showing the growth and merging of ι- = 1/3 islands. Red surfaces have rotational transform
ι- = 1/3 ± 0.005. (b) The ι- = 1/3 surface enters in a wide band in the middle of the
plasma with an m = 15, n = 5 island formed near the edge of that region. (c)-(d) Increasing
rotational transform splits the ι- = 1/3 surface in two. (e) The m = 15, n = 5 island begins
to merge. (f) The fully merged m = 3, n = 1 island.

51



0.55 0.60 0.65
0.00

0.05

0.10

0.15

0.20

0.25

(a) t = 5.0ms

0.55 0.60 0.65
0.00

0.05

0.10

0.15

0.20

0.25

(b) t = 5.1ms

0.55 0.60 0.65
0.00

0.05

0.10

0.15

0.20

0.25

(c) t = 5.2ms

Figure 4.19: Closeup at φ = 0 of one set of islands merging showing only selected surfaces.
Red surfaces have rotational transform ι- = 1/3 ± 0.005. (a) The ι- = 1/3 surface forms an
m = 15, n = 5 island chain. (b) The chain begins merging, with the middle three islands
combining first. (c) The outer islands combine with the inner islands and the ι- = 1/3 surface
now forms an m = 3, n = 1 chain.
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Figure 4.20: Growth of magnetic energy for n = 1 (red) and n = 2 (blue) as a function of
time. As in figure 4.13, the magnetic energy growth in these two modes is representative for
all modes n = 5j ± 1 and n = 5j ± 2.
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observations arise: the presence of symmetry-preserving islands in the plasma volume slightly

precedes the increase in magnetic energy in the n = 5j ± 1 modes, and the growth in the

n = 5j ± 2 mode roughly corresponds to the complete merger of the ι- = 1/3 island chain.

It has been shown through this run that large, symmetry-breaking islands can be formed

for ι- < 1/2. One issue with this run, however, is the time scale over which these islands are

formed. In experiment, current hesitations occur over tenths of milliseconds. The process of

merging the symmetry-preserving m = 15, n = 5 island chain into the symmetry breaking

m = 3, n = 1 chain takes place over the course of milliseconds in the model. This difference

in time scales suggests that the current physical model my not be sufficient for modeling

the current hesitations. If the hesitations are caused by the merging of symmetry-preserving

islands, additional terms may be needed in Ohm’s law to speed up the merging time scale.

This is discussed further in chapter 5.

4.3 Decreasing perpendicular thermal transport

4.3.1 Introduction and motivation

It is expected that the current hesitations in experiment are caused by islands growing

near the edge of the plasma. The previous section illustrates that the growth of large,

symmetry breaking islands is possible for rotational transforms below 1/2, where symmetry

breaking islands were first observed in the initial model. To reproduce current hesitations,

then, it may be necessary to have these larger islands in the plasma earlier in time.

One variable which could have a large effect on the formation of islands in the early part

of the current ramp is the perpendicular thermal diffusion. Compare, for example, the shape

of the current density profiles shown in figure 4.10e and 4.10f to the temperature profiles

in figure 4.12e and 4.12f, and note that the temperature profiles are more diffuse than the

current density profiles. Since the temperature feeds directly into the current density by

way of the temperature dependent resistivity, it is possible that the thermal diffusivity is

too high, wiping out any edge perturbations in the temperature and current density early
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in the shot which could lead to the development of islands. Since the perpendicular thermal

diffusivity is set as a constant, one way to test this is to lower it.

4.3.2 Model specifics

Recall that the perpendicular thermal diffusivity was set for temperatures and densities

not expected near the edge of the plasma. From equations 3.11 and 3.9, the perpendicular

thermal diffusivity varies as κ⊥ ∼ n2, making this mismatch in thermal diffusivity a very

possible culprit for the lack of hesitations in the model. A perpendicular thermal diffusivity

that is set too high would result in a smearing of the temperature over any features on the

edge which may lead to island growth early in the shot.

For this simulation, the perpendicular thermal diffusivity is decreased by a factor of

10, which translates to a decrease in the ‘local density’ of
√

10 ∼ 3. Changing only the

perpendicular thermal diffusivity causes a sharper rise in the plasma current early in time,

as is seen in figure 4.21. To more closely conform to the rate of ohmic current drive in

experiment, the maximum temperature was lowered to a value of T = 15eV. No other

changes were made between this model and the model of section 4.1.

4.3.3 Presentation of results

Figure 4.22 shows a comparison of the experimentally observed plasma current and that

calculated with NIMROD. As before, the initial rate of ohmic current drive in the model

matches well with experiment, even past the point used for comparison when setting the

initial temperature. This is further evidence that the manner in which initial density and

temperature are set is appropriate for the modeling of this system.

Early in the shot, as is seen in figure 4.24, large symmetry-breaking island chains grow in

the plasma. These islands appear first as symmetry-breaking chains, as opposed to merging

from symmetry-preserving chains into symmetry-breaking chains as was seen in the previ-

ous section. As current is driven and the rotational transform increases, island chains are
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Figure 4.21: Comparison of plasma current from experiment (black) and from NIMROD
model with lowered value of perpendicular thermal diffusivity for initial peak temperatures
of T = 30eV (blue) and T = 15eV (orange). The lower κ⊥ drives current in the model faster
than before. To agree with the rate of plasma current drive in experiment, the peak of the
initial temperature profile must be lowered to 15 eV.
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observed for all rotational transforms of the form 1/m for m = 10 to m = 4, when the

simulation is halted. These islands have a marked effect on the temperature and current

density profiles, as can be seen in figures 4.25 and 4.26.

The growth of these islands is accompanied by a growth in the magnetic energy as was

seen in section 4.1. Like that original mode growth, the growth in this case is split chiefly

into two modes: one in which the modes with n = 5j ± 1 grow and one in which the modes

with n = 5j ± 2 grow, as can be seen in figure 4.27.

Using the same method as section 4.1.4, the resistivity is changed just before the onset

of the mode growth to determine the dependence of the growth rate on the resistivity. As

is seen in figure 4.28, the growth rate of the magnetic energy scales as γ ∼ η1/3. Again, this

suggests that the mode is a resistive interchange mode, but is not conclusive.

Looking closer at the times when these islands occur, it is seen that these times coincide

with current hesitations in experiment. Figure 4.23 illustrates this for the first three island

chains which are observed in the model, showing times during which the ι- = 1/9, ι- = 1/8,

and ι- = 1/7 surfaces are at the edge of the plasma. For the purposes of the figure, the edge

of the plasma is defined as the island chain causing a noticeable difference to the plasma

shape without having a closed flux surface which surrounds it. Note that, while the currents

have diverged by the time the ι- = 1/7 mode has entered the plasma, the time frame observed

still matches well with the current hesitation observed in experiment.
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Figure 4.22: Plasma current comparison between experiment (black) and NIMROD model
with a lowered value of perpendicular thermal transport (orange). As in 4.5, the NIM-
ROD plasma current matches well early in time with the experimental plasma current. As
hesitations are missed in the model, however, the currents diverge.
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Figure 4.23: Current comparison highlighting times in which the ι- = 1/9 (between dashed
lines), ι- = 1/8 (between dotted lines), and ι- = 1/7 (between dot-dashed lines) island chains
are at the edge of the plasma. The times when these symmetry breaking islands appear near
the edge of the plasma correspond well to the times of early hesitations in experiment.
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Figure 4.24: Surface of section plots at φ = 0 for a lower value of perpendicular thermal
diffusivity. Symmetry-breaking magnetic islands appear early in the model, with ι- = 1/9
shown in (b)-(c), ι- = 1/8 shown in (d)-(e), and ι- = 1/7 and ι- = 1/6 shown in (f).
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(c) t = 1.15ms (d) t = 1.27ms

(e) t = 1.40ms (f) t = 1.79ms

Figure 4.25: Time sequence of current density (λ = µ0J · B/B2) contours at φ = 0 for a
lower value of perpendicular thermal transport. The current is driven in a hollow profile,
similar to figure 4.9, but the profiles are heavily affected by the presence of magnetic islands.

61



(a) t = 0.00ms (b) t = 1.06ms

(c) t = 1.15ms (d) t = 1.27ms

(e) t = 1.40ms (f) t = 1.79ms

Figure 4.26: Time sequence of temperature contours at φ = 0 for a lower value of perpen-
dicular thermal transport. The temperature profiles are heavily affected by the presence of
magnetic islands. The lower value of κ⊥ keeps heat closer to where it is generated, resulting
in changing the initially peak profile in (a) to the hollow profile in (f).
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Figure 4.27: Growth of magnetic energy for n = 1 (red) and n = 2 (blue) as a function of
time for model with lower value of perpendicular thermal diffusivity. As in figure 4.13, the
magnetic energy growth in these two modes is representative for all modes n = 5j ± 1 and
n = 5j ± 2.
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Figure 4.28: Dependence of growth rate of n = 5j ± 1 magnetic mode on resistivity. The
fit line has a slope of γ = 0.330. The growth rate of the observed magnetic mode varies
similarly to that of the resistive interchange mode (γ = η1/3).
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Chapter 5

Results, conclusions, and discussion

5.1 Model changes

For this work, many changes were made to the computational model first implemented

by Schlutt et al.6 The model first used was a simplified “proof of principle” model. In

order to bring the model more in line with the physical reality, changes were necessary.

The elements added in this work fall into two categories: additional physics and plasma

initialization.

5.1.1 Additional physics

Ohmic heating was added as a source of energy in the model. This process occurs in

all systems in which current is carried in a resistive medium. The inclusion of this term in

the NIMROD model produces heat where current is driven in the model, as is seen in figure

3.2. This constitutes an important first step in realistic modeling in that it steps away from

the zero-β model used in previous work and provides a path to changing the temperature

which, in turn, controls many plasma variables.

As the thermal diffusivity is a function of the plasma temperature, accurate modeling of

the current rise phase requires a reflection of this dependence. Thus, a model of the diffusivity

reflecting the temperature dependence calculated in the Braginskii model is included. This

is implemented in NIMROD as

χ|| = Max

(
Min

(
χ0

(
T0
T

)5/2

, χmax

)
, χmin

)
(5.1)
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where χ|| is the parallel thermal diffusivity, χ0 is the parallel thermal diffusivity calculated

for a reference temperature T0, and χmax and χmin are the maximum and minimum values

of χ||.

Like the thermal diffusivity, the resistivity also varies as a function of temperature.

Using the Spitzer model, this dependence is represented in the code as

η = Max

(
Min

(
η0

(
T

T0

)−3/2
, ηmax

)
, ηmin

)
, (5.2)

where η0 is a reference resistivity calculated for a temperature of T0 and ηmax and ηmin

are the maximum and minimum values, respectively, η is allowed to take. This is a crucial

aspect of the model in regards to physical fidelity, as the resistivity is an important control

on the rate at which the current is driven.

To accurately model the current rise in the plasma, a time dependent loop voltage

was introduced to the model. This loop voltage mimics the driving force of the ohmic

transformer installed on CTH, inducing current in the plasma. The loop voltage is measured

on the machine, but, if measured during a plasma shot, the resulting trace includes the

plasma response. To remove the plasma response and drive current with a loop voltage as

seen by the plasma, a separate shot can be taken using the same properties for the ohmic

transformer, but with no plasma present. This loop voltage is used in the model.

5.1.2 Plasma initialization

CTH plasmas are initially stellarator plasmas heated by ECRH. As such, before the

onset of current drive, there is some initial temperature and density profile present. To

model this, a uniform temperature is set over the entire domain except for the boundary,

which is kept near zero. The temperature equation is advanced in time with χ||/χ⊥ ∼ 105

to force heat on open field lines to the perpetually cold boundary while heat on closed field

lines remains there. In this way, a nearly uniform temperature is set over the plasma volume,
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while the “vacuum” region is set to be cold. The plasma density is then set as a multiple of

the temperature.

5.2 Computational results

5.2.1 CTH model with improvements

Initial modeling of the CTH was carried out using the code changes mentioned previously

with physical parameters calculated for T = 30eV and n = 1019m−3 and initial maxima of

the temperature and density profiles set accordingly. The temperature used is similar to the

temperature previously measured in the stellarator phase of CTH plasmas, but the density

is set somewhat higher than the density during that phase to allow for current rise times

which are similar to what is seen in experiment.

With these parameters set, the rate of current rise matches quite favorably with exper-

iment early in the shot. This similarity persists beyond the first few current hesitations in

the experiment, which are not reproduced in the model. Similarly, the rotational transform

profiles match well at these early times, despite the lack of current hesitations in the model.

Both the V3FIT reconstructions and the NIMROD model agree that the hesitation seen in

experiment occur when the rotational transform at the edge of the plasma is near a low-order

rational number.

Early in time, very little distortion in the shape of flux surfaces is observed. As time

progresses, however, small islands begin to develop in the plasma column, starting with

an ι- = 1/3 chain. While these small island chains have little effect on the temperature

and current density profiles, large islands follow shortly after which show a much greater

distortion of these profiles. Eventually, a merged ι- = 1/2 island chain emerges, encompassing

the original magnetic axis.

As magnetic islands begin to form in the plasma, the magnetic energy begins to spike

for off symmetry toroidal modes (that is, modes with n 6= 0, 5, 10, ...). This growth is seen

to vary with resistivity as γ ∼ η1/3, similar to the resistive interchange mode.
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5.2.2 Constant current run

The hesitations in current drive seen in experiment are expected to be caused by mag-

netic islands. Initial modeling of the current rise showed a lack of islands in the plasma

volume during the hesitations, though large islands were observed much later in time. In

order to test that the conditions in the model were appropriate for modeling larger islands

for ι- < 1/2, the total plasma current was held constant just before the ι- = 1/3 surface

entered the plasma by manipulation of the driving loop voltage. This arrangement allowed

for the ι- = 1/3 surface to remain in the plasma volume for much longer than in the original

experiment.

As the ι- = 1/3 surface entered the plasma, a small chain of m = 15, n = 15 islands

formed. This island chain eventually merged, forming a larger m = 3, n = 1 chain. Though

this showed that driving large islands for ι- < 1/2 is possible in the model, the time-scale for

the formation of the islands was much longer than that seen in experiment.

5.2.3 Lower perpendicular thermal conductivity

As the islands which are expected to cause the hesitations in the current rise are thought

to be near the edge, the perpendicular thermal conductivity was lowered in an attempt to

model that region of the plasma better. The lower thermal conductivity was expected to

sharpen the edge gradients by keeping more heat in the plasma volume.

Lowering the perpendicular thermal conductivity proved to have a profound impact on

the model. Large, symmetry breaking islands are seen in the plasma volume starting at

ι- = 1/10. For the lower values of ι-, the islands are situated near the edge of the plasma

at the same time that hesitations are observed in experiment. These islands, in turn, have

a large effect on the profile of the current density, distorting the current and providing a

possible pathway for the hesitations.

Though large islands were observed early in the current rise, current hesitations were

not reproduced in the model. The reason the hesitations were not reproduced is an open
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question, but a few possibilities exist which may explain their absence. For example, it is

possible that differences in limiter geometry between experiment and model could lead to

artificially longer energy confinement times in the model. Also, this work was carried out

using a single-fluid model. The effects which cause the hesitations may be due to two-fluid

effects, such as an increased growth rate in the islands or the disparity in the temperature

of the two fluids. Further, energy loss mechanisms such as ionization of and radiation from

background neutrals and impurities were not considered in this work but may play a role in

the evolution of the current hesitations.

5.3 Further work

As current hesitations were not reproduced in this work, more improvements to the

model are necessary to that end. First, recall equations 2.8 and 2.9

~E = −~v × ~B + η ~J +
1

ne
~J × ~B +

me

n2
e

[
∂ ~J

∂t
+∇ · ( ~J~v + ~v ~J)− e

me

(∇pe +∇·
↔
Πe)

]
, (5.3)

~E = −~v × ~B + η ~J. (5.4)

By limiting the model to a single-fluid model, there are many terms that are being disre-

garded. The Hall term ( 1
ne
~J× ~B), for example has been shown to increase the growth rate of

some instabilities.29 The inclusion of this term may result in the speeding up of time-scales in

the model and allow the islands to grow more, and thus disturb the plasma more profoundly,

before they propagate away from the edge.

In this work, the plasma size was constrained by the vacuum vessel. The experiment,

however, contains carbon, molybdenum, and stainless steel blocks which serve to limit the

extent of the plasma before it reaches the vacuum vessel. This reduced plasma radius may

have a dramatic effect on the behavior of the plasma. As is seen in figure 4.25, the current

density is heavily modified by the presence of magnetic islands in the model. Figure 5.1 shows

the location of the physical limiter in the experiment overlaid on the current density of figure
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4.25d at the appropriate poloidal angle. Notice that the current at the edge which is being

modified by the magnetic islands is now limited much sooner than the model assumption of

being limited on the vacuum vessel.

During an ohmic shot, currents are driven in the CTH vacuum vessel and the frame

which holds the helical coil due to the pulsing of the ohmic transformer. These currents

produce an error field in the experiment which is not present in the NIMROD model. The

structure of this field is complicated by the fact that the CTH vacuum vessel is not a perfect

torus, but has large ports protruding from it. Though accurate modeling of this error field

is difficult it may be necessary, as error fields can seed magnetic islands in the plasma.

Finally, since much of the physics of interest to fusion research happens much later in

the discharge, it may be preferential to initialize the model at that later point and evolve

from there. This method would avoid many of the difficulties encountered in this work and

would make for a more robust use of the model, as effects present in the experiment during

the initial stages of a discharge which are not conducive to being modeled by an MHD code

(such as ionization of background neutrals) would not negatively effect the physical fidelity

of the model. Work is currently being undertaken at Auburn University to this end.

70



Figure 5.1: Location and extent of molybdenum limiter at φ = 348◦ overlaid on current
density (λ = µ0J ·B/B2) contours at the same angle. Note the overlap of the limiter and the
plasma current. This shorter path to the boundary could reduce the driven plasma current,
possibly producing hesitations.
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Appendix A

Synthetic Diagnostics - NIMNOSTICS

A.1 Introduction

A major hurdle in comparing the results of experiment and model has been the differ-

ences in the data that each produces. Modeling results are usually profiles of basic plasma

physics variables ( ~J, ~B, etc.). Data from experiment is typically a localized measure of

plasma properties indirectly related to those basic variables. The goal of a synthetic diag-

nostic is to produce the signal the experimental diagnostic would produce, given a plasma

state defined by the model. In this way, experiment and model can compare like quantities.

Using synthetic diagnostics to compare experiment and model is not a new idea. Cur-

rently, synthetic diagnostics are being developed for use with many codes and experiments.30

Equilibrium reconstruction codes, such as V3FIT,12 routinely use synthetic diagnostics in

their calculations.

This appendix outlines a standardized system of synthetic diagnostics developed inde-

pendently of code base. This approach allows for a more robust and expedient development

of synthetic diagnostic signals while broadening their application and giving independent

code bases access to these tools.

A.2 Code structure

NIMNOSTICS is a group of scripts written in Python geared to facilitating the use of

synthetic diagnostics through a unified format. There are two parts to a synthetic diagnostic

signal: the representation of the diagnostic, which includes all of the conversions needed to

calculate the expected signal from the model output, and the output of the plasma model.
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In NIMNOSTICS these two essential parts are divorced completely, making it easy to use

diagnostics which have already been modeled on output from different models.

Model representations in NIMNOSTICS are self contained Python classes which extend

the base class model. These classes can be structured however is most convenient, with

the only caveat being that there is a method named get data which takes as arguments the

plasma variable to calculate and the Cartesian point at which to calculate it. get data should

return the plasma variable requested (with vector quantities in cartesian representation) and

should be the only method which needs to be called after initialization to obtain data. The

base class has a place-holder method built in which returns an error if not replaced in the

model definition. All input (passing file names, opening files, pre-calculations, etc.) should

be done in the inherent . init method. All output from the model class should be in

Cartesian coordinates.

Similarly, diagnostics in NIMNOSTICS are self contained Python classes which extend

the base class diagnostic. The only requirements for these classes are that there is a method

get signal which takes as an argument the model from which to calculate a signal. The

base class has a place-holder method build in which returns an error if not replaced in the

diagnostic definition.

A.3 Example

While the specifics of diagnostics change from machine to machine, the underlying

mathematics which governs the behavior of the diagnostics should not change. Since this

is the case, it is useful to define first basic diagnostic classes and then later specify the

diagnostic for a particular use. As an example, take the three-chord interferometer installed

on CTH and used in chapter 4. At the core of the diagnostic is a line-integrated density

measurement. This measurement can be modeled as

nexperiment =

∫ ~rf
~ri
nmodel(~r)d~r

|~rf − ~ri|
(A.1)
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Figure A.1: Chords of the three-channel interferometer on CTH.

where nexperiment is the line-integrated density measurement as would be seen in exper-

iment and nmodel(~r) is the density from the model. Note that this model is completely

independent of the fact that this is a measurement on CTH; this model is simply for a

line-integrated density.

To localize this measurement to CTH requires knowledge of the exact location of the

diagnostic on the machine. With that knowledge, it is easy to set up the three chords as

they are on CTH. This has been done for the simulations presented here. Namely, when

setting the initial density, an ad hoc density source was considered to imitate the increasing

density seen in figure 4.2b. Though the density source did not prove useful, the application

of NIMNOSTICS to the problem was valuable, reproducing line averaged density traces used

to set the density ramp rate.
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Appendix B

NIMROD Calculation of Rotational Transform

The calculation of the rotational transform is a very important step in understanding

the structure of a plasma. A method for calculating the rotational transform had been

implemented in NIMROD, but would fail to accurately calculate the rotational transform

near the magnetic axis. In the course of this work, an improved method for calculating the

rotational transform was included in the NIMROD suite, described here.

The process described here proceeds in the following steps:

1. Field lines are separated into two groups: those which remain in the boundary for the

duration of the integration (i.e. closed field lines) and those which exit the boundary

(i.e. open field lines); open field lines are discarded

2. The centroid of each field line is calculated

3. The maximum distance between a field line’s centroid and a point on that field line is

calculated; the centroid of field line with the shortest maximum distance is chosen to

represent the magnetic axis

4. A “poloidal” angle is calculated around the magnetic axis for each point in a field line,

accumulating factors of 2π along the way

5. The resulting data is fit to a truncated Fourier series plus a linear term; the magnitude

of the linear term is the rotational transform

The Fourier series was truncated at third order in this work as the higher order terms did

not appreciably improve the calculation.
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B.1 Separation of field lines

In the normal course of field line tracing in NIMROD, lines are advanced until one of

three stoping criteria is achieved: 1) the field line exits the computational domain, 2) the field

line reaches a set terminal length, 3) the field line crosses the initial plane a terminal number

of times. Field lines which exit the computational domain are both uninteresting and may

result in the calculation of the magnetic axis to be thrown off. To avoid that complication,

these field lines are removed from the calculation. These field lines are identified by the fact

that the field lines are stored in array with a fixed length. When this array is initialized,

a large, positive value is set as the data at each point, larger than would be calculated in

the normal course of field line tracing. Immediately after the field line exits the domain,

integration is halted along that field line and the remainder of the array is unchanged. Thus,

comparing the maximum value in the field line arrays to the initialized value, it is possible

to discover field lines which left the computational domain.

B.2 Centroid calculation

After the field lines which cross the boundary are separated from those which stay inside

the boundary, the centroid of each retained orbit is calculated. This is done by means of a

simple average in r and z

rcent =
1

N

N∑
i=1

ri, (B.1)

zcent =
1

N

N∑
i=1

zi (B.2)

where N is the number of points in an orbit, ri is the r coordinate of the i-th point in the

orbit and zi is the z coordinate.
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B.3 Magnetic axis choice

For each orbit, the distance between each point on that orbit and the centroid previously

calculated for that orbit is calculated. The maximum distance for each orbit is then compared

to that of each other orbit and the orbit with the smallest maximum difference is assumed

to be closest to the magnetic axis. The centroid calculated for this orbit is chosen as the

magnetic axis.

B.4 Calculation of “poloidal” angle

After the magnetic axis is determined, the orbits are moved to be centered around it.

Then, setting the positive x-axis as θ = 0, a pseudo-poloidal angle is calculated for each

point on the orbit. In this calculation, factors of 2π are preserved each time the orbit passes

the positive x-axis.

B.5 Calculation of rotational transform

With the “poloidal” angle tabulated, the rotational transform can be calculated. Figure

B.1 shows the poloidal angle as a function of puncture number for an example orbit on a

CTH surface of section plot. In a cylindrical system with circular flux surfaces, this plot

would be a straight line, and the slope divided by 2π would be the rotational transform.

As CTH is a toroidal machine with decidedly non-circular flux surfaces, the poloidal angle

calculated varies non-linearly. While the rotational transform is still just the underlying

slope of the plot divided by 2π, to obtain a better estimate of the rotational transform it

is useful to fit the trace to a higher order function in order to minimize the effects of the

wiggles. Thus, the poloidal angle is fit to the function

θ = c+ ιx+
3∑

n=1

an cos(nx) +
3∑

n=1

bn sin(nx) (B.3)

where x is the puncture number and the rotational transform is given as ι- = ι/2π.
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Figure B.1: “Poloidal” angle as a function of puncture number
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Appendix C

Using NIMROD to model CTH

This appendix serves as a guide for using NIMROD to model CTH as was done in this

work. It assumes a small amount of knowledge of the NIMROD suite of codes.

C.1 Initial magnetic field

C.1.1 mgrid

Creating the file which contains the magnetic field normal to the vacuum vessel at

the boundary requires access to the mgrid code. This code will calculate the field using a

filamentary model of the CTH coils, given in a “cth-dot” file. The current in the coils is

then given as input to mgrid through a name-list input file of the following form:

&MGRID_NLI

TASK=’CIRC_TOR_MGRID’

MGRID_EXT=’cth.18b.mo.f5sa’

RMAJOR=0.75

AMINOR=0.30

NPHI=100

NTHETA=32

EXTCUR_MGRID(1)=3145.45

EXTCUR_MGRID(2)=724.67

EXTCUR_MGRID(3)=96.56

EXTCUR_MGRID(4)=-250.73

EXTCUR_MGRID(5)=0
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EXTCUR_MGRID(6)=-1366.22

EXTCUR_MGRID(7)=0

EXTCUR_MGRID(8)=0/

Here MGRID EXT is the file which contains the model of the CTH coils, RMAJOR and

RMINOR set the major and minor radii of the CTH torus, NPHI determines the number of

toroidal modes, NTHETA determines the number of poloidal modes, and EXTCUR MGRID(*)

are the currents in each of the coils described in MGRID EXT. Mgrid will produce a file with

the named “ctg.” the value of MGRID EXT (in this case “ctg.cth.18b.mo.f5sa”). To use the

freshly produced file from mgrid in NIMROD, rename it to “cth.txt” and delete the header

material (the first line of “cth.txt” should be numbers).

C.1.2 Importing to NIMROD

The NIMROD input file is an extensive list of name-lists. While it is best to familiarize

oneself with most of the options available, a full rundown of all of the variables is not the

intent of this document. As such, only the important variables will be discussed here, and

will be divided into their respective name-lists.

NIMROD Variable Explanation Value
gridshape 2D shape of the grid ’rect’

geom periodic shape of the domain ’tor’
xo major radius of grid 0.75

xmas minor radius of grid 0.3
mx # of radial grid points 24
my # of poloidal grid points 24

poly degree polynomial degree of finite elements 5

lphi # of Fourier modes= 2lphi/3 + 1 7
poly distribution how to space nodes ’gll’

Table C.1: &grid input variables describing the NIMROD mesh

The values in table C.1 reflect those used in this work. They were chosen as a com-

promise between speed and accuracy. These values do not change throughout the process
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of modeling CTH. Figure C.1 shows the poloidal grid produced using the values in ta-

ble C.1. The uneven spacing of the nodes is due to the use of Gauss-Lobatto spacing

(poly distribution=’gll’) which can result in better conditioned matrices for the large

values of lphi necessary for CTH runs.

Setting the magnetic field in NIMROD has two main steps. First, the magnetic field nor-

mal to the vacuum vessel is loaded into NIMROD using NIMSET. The important variables

for that are as follows:

NIMROD Variable Explanation Value
elecd electric diffusivity 109

zero bnorm whether or not |B| = 0 normal to the vacuum vessel F

Table C.2: &physics input variables for loading fields into NIMROD

NIMROD Variable Explanation Value
dtm maximum time step 10−13

divbd ∇ · ~B cleaning constant 109

Table C.3: &numerical input variables for loading fields into NIMROD

NIMROD Variable Explanation Value
pert cos internal switch on positive/negative -1

heat ion source internal switch ’stell’

Table C.4: &closure input variables for loading fields into NIMROD

Setting the variables in C.4 tells nimset to run the specific subset of code geared to

importing the data from “cth.txt”. After running nimset, a message will appear with a

value for a variable called be0. That variable sets the value of the magnetic field at the

center of the vacuum vessel.

For the second step of the process, change the following variables:
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Figure C.1: The NIMROD grid produced by the inputs in table C.1 representing CTH. The
uneven spacing of the nodes is due to setting poly distribution=’gll’. This setting uses
Gauss-Lobatto spacing which can result in better conditioned matrices for the large values
of lphi necessary for CTH runs.
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NIMROD Variable Explanation Value
be0 toroidal magnetic field at center of vacuum vessel 0.57749

Table C.5: &equil input variables for setting the initial magnetic field

NIMROD Variable Explanation Value
pert cos internal switch on positive/negative -1

heat ion source internal switch ’none’

Table C.6: &closure input variables for setting the initial magnetic field

Note that the value set for be0 will vary depending on the input fields. Always set it to

the value output from nimset. Running nimrod should diffuse the field into the computational

domain. The length of the calculation is controlled by:

NIMROD Variable Explanation Value
nstep maximum number of steps 3500
tmax maximum value of t in seconds 300

Table C.7: &numerical input variables for controlling the length of the simulation

C.2 Initial temperature profile

After setting the magnetic field, setting the initial temperature profile follows similarly.

First, nimset must be called with the following variables:

NIMROD Variable Explanation Value
init type switch to initialize from previous dump file ’reset’
reset file dump file to initialize from ’dump.reset’

Table C.8: &init input variables for resetting from a dump file

beta is used to set temperature profiles in nimset, so it is set to 0 to avoid complications

due to that.
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NIMROD Variable Explanation Value
be0 toroidal magnetic field at center of vacuum vessel 0.57749
beta plasma β 0

Table C.9: &equil input variables for setting an initial temperature profile

NIMROD Variable Explanation Value
dtm maximum time step 10−11

divbd ∇ · ~B cleaning constant 102

Table C.10: &numerical input variables for setting an initial temperature profile

NIMROD Variable Explanation Value
pert cos internal switch on positive/negative -1

heat ion source internal switch ’stell’
set eq temp internal switch T
odd pert str Te in eV to be set everywhere but boundary 30

Table C.11: &closure input variables for setting an initial temperature profile

Running nimset under these conditions will set the electron temperature to 30eV every-

where except the boundary, which will remain at 0eV. To propagate the temperature, a few

switches must be thrown.

NIMROD Variable Explanation Value
be0 toroidal magnetic field at center of vacuum vessel 0.57749
beta plasma β 1

Table C.12: &equil input variables for advancing an initial temperature profile

Note that the value of beta here will not make any difference to the evolution as long

as it is positive; if beta is zero, nimrod will not advance the temperature.

The values of k perp and k pll may be adjusted to the user’s needs. After setting these

values, running nimrod will advance the temperature. When the initial temperature is at a

satisfactory state, it is advisable to set eqn model=’all’ (the default value) so that all of the

plasma variables are advanced.
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NIMROD Variable Explanation Value
pert cos internal switch on positive/negative -1

heat ion source internal switch ’none’
set eq temp internal switch T
odd pert str Te in eV to be set everywhere but boundary 30
eqn model variable to advance ’T’
k perp perpendicular thermal diffusivity 105

k pll parallel thermal diffusivity 1010

p model model for thermal diffusivity ’aniso1’

Table C.13: &closure input variables for advancing an initial temperature profile

C.3 Initial density profile

The initial density is set very similarly to the initial temperature. To set the initial

density, run nimset with the following parameters:

NIMROD Variable Explanation Value
init type switch to initialize from previous dump file ’reset’
reset file dump file to initialize from ’dump.reset’

Table C.14: &init input variables for resetting from a dump file

NIMROD Variable Explanation Value
be0 toroidal magnetic field at center of vacuum vessel 0.57749
beta plasma β 0
ndens maxiumum density 1019

Table C.15: &equil input variables for setting an initial density profile

NIMROD Variable Explanation Value
pert cos internal switch on positive/negative -1

heat ion source internal switch ’stell’
set eq temp internal switch T
odd pert str Te in eV to be set everywhere but boundary 30
set eq nd internal switch T

Table C.16: &closure input variables for setting an initial density profile

86



C.4 Final suggestions

As there are many switches which get toggled while setting up a CTH model in NIM-

ROD, there are many easy mistakes to make in an input file. Below are tables of the proper

settings for a NIMROD run of interest and possible symptoms which may arise from using

incorrect settings:

NIMROD Variable Name-list Value Symptom
be0 &equil input see output of nimset in C.1.2 magnetic fields misaligned
beta &equil input 1 temperature not evolving

heat ion source &closure input ’none’ anomalous heating

Table C.17: Common pitfall variables
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