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Abstract 

Accurate and fast estimation of state of charge (SOC) and water loss during battery operations 

plays an important role in the prevention of over-charge and over-discharge and optimal control 

strategy of charging, which requires a model that has great performance in accuracy, algorithm 

robustness, computational efficiency, numerical stability, and cost. For SOC estimation, most 

researchers focus on electric equivalent circuit model (ECM) and electrochemical model. The 

latter is based on electrochemical and thermal principles which are capable of representing the 

details of cell behavior, it is more accurate. However, it cannot be applied to real time applications, 

due to high computational time. The ECM is relatively simple, but limited to represent a narrow 

range of operating behaviors not considering the effects of temperature and aging. Therefore, there 

is a need for the development of a method that considers the effects of temperature and aging and 

also has real time capability. In water loss estimation, the qualitative analysis is proposed.  

A Second order ECM with an extended Kalman filter (EKF) is used to estimate the SOC of an 

AGM lead acid battery. Considering the model parameter dependence on temperature and aging, 

the EKF is designed to identify model parameters online. Because the ECM shows poor 

performance when the battery is under constant voltage (C.V.) charging, the new EKF and 

Coulomb counting are combined. Then, given the relationship between capacity and temperature, 

the capacity-temperature model is added to the new method. With this proposed method, SOC 

estimation error can be reduced to 3% at various temperatures and aging processes.  

In water loss estimation, this thesis is the first to propose and test a method to measure the 

mass of the decomposed water of an AGM lead acid battery. Through calibration of the reaction 

rate of decomposed water, a water loss estimation algorithm is presented. The comparison between 
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simulation and experimental results proves the accuracy of this water loss estimation method. The 

algorithm shows that water loss can be minimized by limiting the maximum voltage and 

temperature during charging. 
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Chapter 1: Introduction 

1.1  Background  

Increased amounts of electronic devices in vehicles and electrically driven actuators used for 

improvement of fuel economy has changed operating conditions for batteries. The performance of 

conventional lead acid batteries used for start, lights, and ignition (SLI) should be improved to 

meet those new electrical loads requirements.  The battery itself should deliver more power over 

a long cycle life and ensure less maintenance. Absorbed Glass Mat (AGM) lead acid battery is one 

of the lead acid technologies widely used for those applications because of increased power and 

energy density, and longer cycle life than regular flooded and maintenance free type lead acid 

batteries. In addition, the prediction of the states of batteries has obtained more attention because 

of new electric load profiles that electronic devices and actuators consume. State-of-Charge (SOC) 

allows the Battery Management System (BMS) to protect the battery from overcharging or over-

discharging, and finally reduce battery failure. Moreover, the information of SOC can also be used 

to make better control strategies to regenerate energy from braking or output power for acceleration, 

and save fuel. The water loss should also be monitored, since lack of water in the electrolyte 

decreases ion conductivity, and affects battery performance. The amount of water loss can be used 

as a sign for replacement of the battery.   

1.1.1  AGM lead acid battery 

AGM lead acid battery is a type of the valve-regulated lead acid (VRLA) battery that has small 

gas channels in the electrolyte, the oxygen generated in the positive electrode during overcharging 

or float-charging can be transported to the negative electrode and reused. This process of 

recombination is called closed oxygen cycle (COC) that can substantially reduce the water loss, 

 
 



since the water consumed for side reactions during charging can be compensated by regeneration 

from the reaction of hydrogen and oxygen. As a result, it becomes maintenance-free [1]. In fact, 

the AGM lead acid battery is completely sealed and there is no way to refill the water, and too 

much water loss will lead to battery failure. Consequently, water loss is one of the most important 

operational parameters although the amount of decomposed water is less than conventional lead 

acid batteries.  Although lack of water affects battery performance due to a decrease of ion 

conductivity of the electrolyte, lack of water causes accelerated side reactions and faster battery 

degradation, which leads to shorter battery cycle life.  

 

Figure 1: Schematic representation of the internal COC in AGM lead acid battery [1]. 

1.1.2  Definition of State of Charge (SOC) 

SOC is defined as the ratio between the dischargeable charge capacity in a cell (Qreleasable) and 

the maximum charge capacity at full charge (Qmax). For a fresh battery, Qmax is the rated charge 

capacity (Qrated); Qmax decreases as the cell ages. SOC can be expressed in percentage as equation 

(1), and the value can vary between 0 to 100%.   
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%100×=
rated

releasable

Q
Q

SOC , 
(1) 

where Q has a unit of ampere-hours (Ah). Qreleasable and Qmax are measurements of electrons 

inside of the battery.  

1.1.3  The measurement and estimation method of SOC 

Lead acid batteries use three major materials, lead (Pb), lead oxide (PbO2) and sulfuric acid 

(H2SO4) and are called Pb\ PbO2\ H2SO4 system. The main reaction of the battery is as follows,  

OHPbSOSOHPbOPb
ech

edisch

24
arg

arg

422 222 +
 ←
 →

++ . 
(2) 

For reduction and oxidation of the reaction, electrons, sulfate ions (SO4
2-) and hydrogen ions 

(H+) are participated. The current can be determined by electrons that flow through an external 

circuit or ions that are transported through the electrolyte from anode to cathode, which are called 

electron current and ion current respectively. 

This process is depicted in Figure 2. The orange plates are electrodes, the blue is the electrolyte, 

the black dots are the sulfate ions (SO4
2-), the white dots are the hydrogen ions (H+), and the yellow 

dots are electrons. When the current flows externally from negative to positive, H+ is transported 

to and consumed at the anode internally, while the electrons move from cathode to anode externally. 

During the discharging reaction, the concentrations of SO4
2- , H+, Pb, and PbO2 decrease.  

SOC can be estimated by either the number of ions present in active material or the number of 

electrons or change of mass of active materials.  
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Figure 2: Currents in a micro cell. 

SOC estimation can be classified according to following principles, as summarized in Table 1. 

Table 1: Classification of SOC estimation method 

Principle Method Application 

Ion concentration Direct measurement of ion concentration in electrolyte Lab 

Open circuit voltage (OCV) Industry 

Electrochemical model Full order model (FOM) Lab / Industry 

Reduced order model (ROM) 

Ion concentration  

& Active material 

Impedance Lab 

Empirical model Industry  

Equivalent circuit model (ECM) Industry  

Active material Direct measurement of quantity of active materials in 

anode and cathode 

Lab 

Resistance Lab 

Electrons Coulomb counting Industry  

 

1.2 Literature review 

According to the description in subsection 1.1.3, SOC estimation can be classified according 

to the following principles, as summarized in Table 1. 
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 In Table 1 the method of SOC estimation can be classified in three types, which will be 

discussed in more details in the following subsection 1.2.1-1.2.3.  

1.2.1  Ion concentration 

Theoretically, ion concentrations like protons, H+, can be directly measured using sensors. 

However, the sensors are very expensive and difficult to integrate in the glass mat of the battery 

because the electrolyte is absorbed by the glass mat and no liquid electrolyte is presented. 

Moreover, ion concentration in the electrolyte is not always in an equilibrium state when the 

battery is in operation.   

Open circuit voltage (OCV) can be used for estimation of SOC. After the battery is rested 

sufficiently, the concentration is uniformly distributed and the terminal voltage becomes the OCV 

that represents the difference of equilibrium potentials of two electrodes. The equilibrium potential 

of an electrode is a function of stoichiometric number and ion concentrations. The number of ions 

in the negative electrode can be used to calculate SOC. 

OCV can be measured by charging or discharging a cell with a low current for a finite time 

and rest periods until fully charged or discharged [2]. SOC is then obtained by integrating the 

current during loading, which is called the Coulomb counting method. A corresponding SOC to 

OCV results in a relationship for OCV-SOC [3] that can be experimentally produced and stored in  

a lookup table for online application. However, if there is current continuously flowing from or 

into the battery, the equilibrium state cannot be reached, which results in erroneous prediction of 

OCV [3].  

It is assumed that there is no OCV-SOC relationship change during cycling of the battery, if 

SOC is expressed with relative capacity [4]. Temperature dependence is considered in multiple 
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lookup tables. A typical OCV-SOC curve of lead acid battery is plotted in Figure 3, where the red 

circles are the data points measured, and the blue line is fitting result with fifth order polynomial.  

 

Figure 3: Typical OCV-SOC curve of lead acid battery. 

In general, the OCV method is relatively accurate only under the condition that the battery 

reaches an equilibrium state after a long rest. The direct measurement of OCV does not need any 

extra models. In contrast, OCV can be estimated based on models during operations. 

1.2.2 Active material  

Another potential direct measurement method is based on the measurement of active material 

of the anode or the cathode. The weight of active materials is determined based on design 

specification on the capacity of the battery.  
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One coulomb (C) is the amount of electric charge carried by a current of 1 A flowing for 1 s 

through the cross-section of an electric conductor (1C = 1As), Therefore, the unit ampere-hour is 

adopted, C3600Ah1 = . We also know C/mol500,96F1 = . 

The quantity of electricity (electric charge) of 1F can be expressed in Ah, like equation,  

Ah/mol80.26
s/h3600

C/mol500,96
1 ==FQ . 

(3) 

The atomic weight of Pb is equal to 207.21 g/mol. Two electrons of each Pb atom take part in 

the electrochemical reactions of charge or discharge in lead acid battery. The equivalent weight of 

Pb, eq
Pbg  is equal to,  

g/mol61.1032/g/mol12.207 ==eq
Pbg . (4) 

We denote as δ0
Pb the electrochemical equivalent weight per Ah of a given active material, 

10 Ahg866.3Ah/mol8.26/g/mol61.103 −⋅==Pbδ . (5) 

The equation means when 1Ah of electricity flows through the lead acid battery, 3.866g Pb are 

oxidized at the negative plates during discharge or released during charge of the battery.  

Similarly, the δ0
PbO2 is equal to 4.463 g/Ah and the δ0

H2SO4 is equal to 3.66 g/Ah. According to 

the density of the anode or cathode, the SOC can be calculated. Therefore, the battery needs to be 

opened and cannot be used anymore with this method. It can only be used in a lab to analyze the 

active material of the anode and the cathode. 

Due to the fact that the Pb/PbSO4 and PbO2/PbSO4 have different resistances, another method 

is presented. Resistance (R) is voltage divided by a DC current, written as R=ΔV/ΔI. In application, 

the voltage change and current in a short time can be used to calculate the R, and a lookup table 
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can be built to estimate SOC. Multiple lookup tables are needed to cover the range of expected 

temperatures.  

 

Figure 4: Nyquist plot of the AGM lead acid battery. 

The Impedance model, the electrochemical model, and the equivalent circuit model are based 

on ion concentration and active material. The resistance and diffusion of H2SO4 solution are based 

on the concentration of the solution. Considering both ion concentration and active material, 

another method, Impedance model, is proposed. Impedance (Z) can be calculated with voltage 

divided by an AC current, written as
, 

where ( )ItjeVV φω _=  and ( )ItjeII φω _= . This 

equation is similar to the resistance model except there is a phase change. Impedance of the battery 

is measured by 1mHz to 1KHz AC signal [1]. This measurement is accomplished with the use of 

I
VZ =
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an Electrochemical Impedance Spectroscopy (EIS) machine manufactured by Gamry. The Nyquist 

plot of an AGM lead acid battery is shown in Figure 4. When the EIS curves of the battery at 

different SOCs are fitted to a battery ECM, the parameters of ECM over SOC may be extracted 

and saved in a lookup table [5].  

In application, the parameters of ECM are measured using an impedance spectroscope and 

curve fitting. The SOC is obtained by the lookup table. A severe drawback of the Z method is that 

a specific AC current is required which is difficult to achieve during real time application [6]. 

1.2.3 Electron 

Coulomb counting calculates SOC by counting the number of electrons by integrating the 

measured current over time, resulting in units of ampere-seconds [7]. The method is very easy to 

implement, but has several drawbacks [8]. On one hand, it is difficult to find out the initial SOC 

experimentally, thus history data is needed, which may already have an offset error [3]. On the 

other hand, since this method is based on current integration, any sensor offset errors will 

accumulate and further reduce estimation accuracy [9]. The initial SOC is defined to be zero or 

one hundred percent when the battery is fully discharged or charged. The side reactions like self-

discharge would lead to the initial error as well.  

1.3 Experimental Setup 

The author designed and constructed several battery test stations at Auburn University. Those 

test stations can be used to charge and discharge a battery with any desired current profile and 

ambient temperature, including the EIS measurement of the AGM lead acid battery. All of 

experiments have conducted with AGM lead acid battery, which specifications are as shown in 

Table 2. 
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Table 2: Specifications of the AGM lead acid battery in experiments 

Manufacturer Johnson Control Inc. 

Part Number: H6-AGM 

Capacity @20Hr 70Ah 

Cold Cranking Amps (CCA) @0oF 680A 

Weight: 21.1Kg 

Battery Height: 190mm 

Battery Length: 278mm 

Battery Width: 175mm 

Rated Voltage: 12V 

Operated Voltage: 10.5-14.5V 

1.3.1  Test equipment  

A test station wiring diagram is show in Figure 5, and Figure 6 shows a photograph of the test 

station. The equipment are set on a metal rack with one shelf for the computer, one for the 

electronic load, one for the power supply, and one for the data acquisition (DAQ) board, over-

charge and over-discharge protector, and DC power supply,  with the computer peripherals on top. 

The capability and specifications of the test station are shown in Table 3.  
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Figure 5: Test station wiring diagram. 

 

Figure 6: Test station photograph. 
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Table 3: Performance of the test station 

Term  Values 

Max. charge current 50A 

Max. discharge current 125A 

Range of the ambient temperature -20~60 oC 

Data acquisition  Channel 16 Analog input channels 

24 Digital input/output channels 

2 Analog output channels  

Frequency 625 kS/s 

Resolution  1 mA (current) 

0.01mV (voltage)  

Frequency of EIS 1mHz~1kHz 

 

1.3.2  Software programming 

National Instruments LabVIEW software is used to control the test station. The program works 

in four modes, including constant current (C.C.), constant voltage (C.V.), constant capacity (C.Q.) 

charging/discharging, and EIS mode ranging from 1mHz to 1kHz.  

A screenshot of the front control panel is shown in Figure 7. 
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Figure 7: LabVIEW front panel screenshot. 

1.4  Structure 

The basic structure of the thesis is shown as following: 

1. Introduction 

This section involves the research background, literature review, and experiment setup.  

2. SOC estimation 

In section 2.1, the equivalent circuit model is introduced. The state of the battery is then 

analyzed in section 2.2.  The principles of Kalman filter are introduced in section 2.3. A new 

method that combined Kalman filter and online parameter identification is also introduced in this 

section. The experimental results and analysis are shown in the last section of this chapter.  
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3. Improvement of SOC estimation method 

In this chapter, the SOC estimation method is improved considering C.V. charge mode and 

capacity-temperature model, and a novel SOC estimation method is presented in section 3.1 and 

section 3.2. In the last section, the experimental results and analysis are shown.  

4. Water loss estimation 

The subsection 4.1 describes the principles of water loss of a lead acid battery. The subsection 

4.2 introduces the experiment setup. Based on the results of those experiments, the algorithm of 

water loss estimation is developed. In subsection 4.3. The results of water loss estimation are 

shown. 

5. Conclusion  
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Chapter 2: SOC estimation 

  A review of published papers on estimation of State-of-charge (SOC) has revealed that the 

estimation methods for the lead acid battery can be classified based on the usage of models or not.  

Coulomb Counting and Open Circuit Voltage (OCV) or Impedance model, Empirical model, 

Equivalent circuit model (ECM) and electrochemical full order and reduced order model (FOM 

and ROM) are the typical methods. Advantages and disadvantages of the methods are summarized 

in Table 4.  

The Coulomb counting and OCV based estimation of SOC do not need any models and the 

accuracy is relatively low. The empirical model requires many experiments and has difficulty 

finding the set of parameters, while ECM, FOM and ROM can be used to estimate OCV and as a 

result, the SOC of the battery. Accurate construction of the models is required and is very 

challenging because of cell characteristics determined by complex chemical reactions inside of the 

cell. By modeling each reaction with partial differential equations, the dynamics of the cell can be 

clearly described. The chemical reaction rate inside each of the electrodes is dependent on SOC, 

temperature, and the capacity of the battery. The mass or charge diffusion needs to be considered 

since the exchange current density is not always evenly distributed in each electrode.  In the 

publications [10-12], electrochemical and thermal models are preferred for such applications. 

Since such models are described based on the electrochemical and thermal principles and use 

coupled partial differential equations, high computational time is needed and it is not efficient for 

real time application. Therefore, ECM is preferred by industries.  
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Table 4: Overview of SOC estimation methods 

Technique Principles Advantage Disadvantage 

Coulomb 

counting 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)

= 𝑆𝑆𝑆𝑆𝑆𝑆(0) −
∫ 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝑡𝑡
0
𝑄𝑄max

× 100% 

Easy implementation and low 

cost 

Measurement errors accumulate 

Unable to estimate initial SOC 

Self-discharge not accounted for 

OCV OCV-SOC values 

stored in lookup table 

Easy implementation and low 

cost 

Ohmic voltage drop and over potentials must be removed 

Highly sensitive to temperature and aging 

Identical batteries may have slight variations in OCV curve 

Impedance Impedance is a 

function of SOC at a 

certain temperature 

Provides insight in to dynamics 

of multiple internal 

components 

Highly sensitive to temperature, current and aging 

Requires constant AC amplitude 

Empirical 

model 

𝑉𝑉t = 𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆) Easy implementation 

Fast calculation 

Can only be used under certain conditions 

ECM Voltage source: 

𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆)  

Resistance and 

capacity 

Simple to construct RC circuit 

Relatively low computational 

power required 

The parameters of ECM are highly sensitive to temperature 

and aging 

Unable to provide physical characteristics of the battery 

FOM and 

ROM 

Ion concentration 

Over-potential 

Heat generation 

Describes physical cell 

limitations and heat generation 

rate  

Relatively high computational power required 

  

 
 



 

2.1 Equivalent circuit model 

 

Figure 8: Creation of an equivalent circuit model (ECM). 

The principle of equivalent circuit model is shown in Figure 8. There are two major difficulties 

in model application. First, to improve model accuracy, the order of the model should be high, 

which would lead to model complexity. Second, some mechanism cannot be completely described 

by the circuit model, including constant voltage charging and over discharging.  

 
 



2.1.1 Simple model 

The Simple battery model and the correctional model are widely used in battery power 

estimation. The simple battery model consists of open circuit voltage (OCV), equivalent resistance 

(R0), and terminal voltage (Vt), as shown in Figure 9. This model’s application is limited by the 

requirement of SOC estimation accuracy, since the resistance dependence to SOC and aging is not 

considered.  

 

Figure 9: Simple model of lead acid battery. 

The simple model of the lead acid battery is shown in Figure 9. The resistance of the battery is 

not a constant, but a variable which depends on battery SOC. The resistance can be calculated with 

the following equation.  

k
0

SOC
R

ESR = . 
(6) 

where R0 is the initial resistance when the battery is fully charged; k is a function of current 

rate, which is determined by electrode geometry, porosity, and additives in the electrolyte.  

2.1.2  Thevenin model 

Another widely used model is the Thevenin model, which consists of a voltage source E0, 

internal resistor R0, capacitor C1 of the electrode, and R1 responsible for activation overpotential 
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between electrode and electrolyte, as shown in Figure 9. The disadvantage of this model is that it 

does not consider the effects of current direction and side reactions on battery performance.     

 

Figure 10: Thevenin battery model. 

Figure 10 shows an improved Thevenin model, which takes consideration of internal resistance 

for self-discharge and the double layer effects, but still ignores the effects caused by current 

direction.   

 

Figure 11: Resistive Thevenin battery model. 

The Resistive Thevenin model is shown in Figure 11. The model is developed based on the 

following assumptions: 

1. The electrode is composed of active materials. 
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2. The resistance of the electrode is constant during discharging. 

3. The battery is discharged at a constant current. 

4. Polarization resistance is a linear function of the current density of active materials. 

The internal resistance during charging and discharging is represented by two separate resistors 

together with diodes. However, the transient behavior of the capacitor is not considered in this 

model.  

2.1.3  Dynamic model 

To build the dynamic model, current, voltage, and temperature need to be considered. This 

model consists of parallel resistor-capacitor connected in series, and the resistors and capacitors 

are functions of SOC, temperature, and current direction. The parameters can be measured offline 

then stored in a look-up table, or be estimated online. The equivalent circuit model proposed in 

this work is shown in Figure 12.   

 

Figure 12: Equivalent circuit model. 
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2.2  Battery states analysis 

2.2.1  Battery states during loading 

 

Figure 13: Discharging from rest. 

As shown in Figure 13, at the instant of t=0, the switch is closed and the battery starts discharging. 

The voltage of the first R-C circuit is U1. The current over the resistance 1R  and the capacitor, 1C

is aI1 and bI1  . According to Ohm’s law, the current, aI1  and bI1  can be expressed as, 

1

1
1 R

UI a = ; 
(7) 

dt
dUCI b

1
11 = ; 

(8) 

ba III 11 += . (9) 

Combining equation (7)-(9) results in  

111

11

C
I

CR
U

dt
dU

=+ . 
(10) 

With the boundary conditions of ( ) 001 =U and ( ) IRU =∞1 , the solution becomes, 
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












−=

−

11111
CR
t

eIRU . 
(11) 

Similarly, the voltage of second R-C circuit ( 2U ) is given as, 














−=

−

22122
CR
t

eIRU . 
(12) 

Finally, the terminal voltage of the battery can be calculated with the following equation,  

( ) ( ) 021
2211 11 IReIReIRSOCOCVtV CR

t
CR
t

t −













−−














−−=

−−

 
(13) 

2.2.2  Battery state during relaxation  

Initially, the battery is either charging or discharging at a time instant t and then the switch is 

open. There is no current flowing in and out of the battery. The relationship between voltage and 

current in a parallel resistor-capacitor circuit can be described by Equation (6), but with different 

boundary conditions, ( ) 0,11 0 UU =  and ( ) 01 =∞U , the solution becomes, 

11
0,11

CR
t

eUU
−

= , 
(14) 

22
0,22

CR
t

eUU
−

= . 
(15) 

Finally, the terminal voltage of the battery can be expressed as, 

 ( ) ( ) 00,20,1
2211 IReUeUSOCOCVtV CR

t
CR
t

t −−−=
−−

. 
(16) 

2.2.3  Discretization 

The equations derived for the ECM second order system above are nonlinear in time domain. 

For a discrete system, the equation should be discretized to obtain a difference equation. If the 
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sample time (∆t) is small enough at a time instant tk, the change of current during the time interval 

can be assumed to be constant, the voltage equation for the first R-C circuit can be converted into 

a discrete equation for the sampling interval from  k and k+1 ,  

[ ]










−=

−

11111
CR
t

eIRkU ; 
(17) 

According to ( ) ( ) ( ) ( )000 xxxfxfxf −⋅′+=  , the voltage of R-C circuit in k+1 time can be 

written as an equation (18). 

[ ] [ ] t
t

UkUkU
k

∆
∂
∂

+=+ 1
11 1 . 

(18) 
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Likewise, the voltage equation of the second R-C circuit at time step k+1 can also be rewritten 

as follows,   

[ ] [ ] I
C

tkU
CR
tkU

1
1

11
1 11 ∆

+






 ∆
−=+ , 

(19) 

[ ] [ ] I
C

tkU
CR
tkU

2
1

22
2 11 ∆

+






 ∆
−=+ . 

(20) 

Likewise, the equations to describe terminal voltage during rest can also be discretized as, 

[ ] [ ] 






 ∆
−=+

11
11 11

CR
tkUkU , 

(21) 
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[ ] [ ] 






 ∆
−=+

22
22 11

CR
tkUkU , 

(22) 

Finally, the equation (16) for the battery terminal voltage is rewritten using difference equation, 

[ ] [ ] [ ] [ ] 






 ∆
−

∆
−−




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

 ∆
−−







 ∆
−−=+

21
0

22
2

11
1 111

C
t

C
tRI

CR
tkU

CR
tkUkOCVkVt . 

(23) 

2.3  Parameter identification 

2.5.1  Offline Determination of parameters 

All resistors and capacitors in the model are not constant, but dependent on SOC, current 

direction, temperature, and aging of the battery. There are two approaches to identify the 

parameters, offline and online estimation. For offline measurement of the parameters of R0, R1, R2, 

C1, and C2, the battery is fully charged at first. A constant pulse current is then applied and the 

terminal voltage response is measured until the battery is almost fully discharged. Each of the 

pulses consist of a two hours’ discharging at 1/20 C-rate (3.5A) with a four hours’ relaxation. The 

example of one pulse is shown in Figure 14.  
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Figure 14: Measurement of model parameters using current pulse discharging. 

The internal resistance R0 can be extracted from the voltage difference obtained before and 

after the instant that the discharge current is off. According to Ohm’s law, R0 is the voltage divided 

by the current. The remaining voltage change is used to extract the two parallel RC parameters 

using the following equation, 

1111
210OCV CR

t
kCR

t
k

t eUeUIRV
∆−∆−

+=−− . 
(24) 

0

1

2

3

4
C

ur
re

nt
/A

(a)

0 10 20 30 40 50 60 70 80 90 100 110
10

11

12

13

14

V
t/V

(b)
Time/Hr

26 
 



 

Figure 15: Curve fitting. 

After four hours’ relaxation, it can be assumed that the battery reaches an equilibrium state, 

thus the measured terminal voltage can be considered the OCV at a specific SOC. The voltage 

difference is a second order exponential equation xdxb eceay ⋅⋅ ⋅+⋅= . With the help of the Curve 

Fitting toolbox in Matlab, the parameters can be found with the nonlinear least square method. 

Figure 15 shows a comparison of curve fitting results, where the blue dots are experimental data 

points and the red line is from the curve fit. 

With the pulse discharge and relaxation method, the parameters of the ECM can be estimated 

offline. At 25 oC, the values of the resistors and capacitors of a fresh battery as a function of SOC 

are shown as the circles in Figure 16. In order to apply this relationship between the parameters 
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and SOC of the battery in the ECM, they are fitted by fifth order polynomials, and the fitting results 

are shown in the solid lines of Figure 16. The results show that at both high and low SOC resistance 

is high, while capacitance is low. The similar method is then applied for charging, and the results 

of C.C. and C.V. charging are shown in Figure 17 and Figure 18, respectively. Although both 

Figure 17 and Figure 18 show results during charging, the parameters are very different, because 

they are at constant current and constant voltage mode. When comparing the parameters at 

discharging and charging, the results show similar trend with SOC changes, but the parameter 

values are very different, thus two sets of parameters are used in the model for discharging and 

charging separately.   
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Figure 16: ECM five parameters of a fresh battery from offline estimation at 25oC during 

discharging. 
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Figure 17: ECM five parameters of a fresh battery from offline estimation at 25oC during 

charging (low SOC). 
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Figure 18: ECM five parameters of a fresh battery from offline estimation at 25oC during 

charging (high SOC). 

2.5.2  Temperature dependence of parameters  

The same method is then applied to obtain the parameters of the ECM at various temperatures. 

The results are shown in Figure 19. At different SOCs, temperatures, and charge directions, the 

battery shows different performance. In order to accurately mimic the performance of the battery 

under different load conditions, the model parameters are set to different values according to the 

load conditions.    
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Figure 19: Parameters of the ECM during discharging a fresh battery at different temperatures, 

which are identified with offline parameter estimation algorithm. 

Besides the pulse method mentioned in the previous section, EIS can also be used to extract 

the parameters of the battery. The measured EIS curves at different temperatures are shown in 

Figure 20, where the battery is set to 50% SOC at 25oC. By fitting these curves with model, the 

RC parameters can be extracted, and the results are shown in Figure 21. 
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Figure 20: EIS Nyquist plot of a fresh battery at 50% SOC at different temperatures. 

 

Figure 21: Parameters extracted from Nyquist plots of a fresh battery at 50% SOC at different 

temperatures. 
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2.5.3  Aging dependence of parameters 

An experiment is designed to obtain aging dependent parameters of the battery. Figure 22 

shows the aging profile of a cycle that consists of CC and CV discharging and charging. At the 

beginning of the aging profile, the fully charged battery is discharged at 75A, until the terminal 

voltage reaches the manufacturer’s Vmin of 10.5V. The battery is then discharged at constant 

voltage (10.5V), until the discharging current reaches 3.5A. Then, the battery is charged with 45A, 

until the terminal voltage reaches 14.5V. The battery is then charged in C.V. model, until the 

charging current reaches 7A. Then, the battery rests four hours. The above profile shows one full 

cycle to age the battery, and more details is shown in Figure 23, where capacity and parameters 

are measured at room temperature. For aging tests, the ambient temperature is set to be constant, 

and the following process is applied to battery, that includes capacity test, parameter test, and 8 

times aging cycles, until the capacity of the battery fade reaches 35%. The capacity test consists 

of C.C. charge (1/5 C-rate) and C.V. charge (14.3V) during twenty four hours, four hours’ rest, 

C.C. discharge (1/20 C-rate), and four hours’ rest. The capacity is measured by the C.C. discharge 

method. The parameter measurements are described in section 2.5.1.  

  

 

Figure 22: Aging profile. 

34 
 



 

Figure 23: Flowchart of the aging tests. 

The parameters of the battery at different aging states can be obtained and are shown in Figure 

24. When the battery is being aged, the impedances are measured at different aging states, and the 

Nyquist plot of the impedances are shown in Figure 26. With curve fitting, the parameters at 50% 

SOC at different aging states can be obtained as shown in Figure 27. 

Compared with the results from the pulse method, the results from EIS show a similar trend 

that when the battery is being aged, the resistance increases and the capacitance decreases.  

From the above analysis, the parameters of the battery are affected by SOC, temperature, 

charging direction, charging mode, and aging process. It is very difficult to build a lookup table 

for the parameters considering all these factors. Therefore, an online parameter identification 

algorithm is employed to estimate the parameters of the model and to estimate SOC.  

35 
 



After the battery is used to estimate parameters under the pulses, it is cycled with charging and 

discharging profile to be aged. Once aged, the performance of the battery is different, and the 

parameters of the ECM are different from those of a fresh battery. An example of the parameters 

of the battery at different aging states is shown in Figure 25, where the SOC of the battery at each 

measurement is 50%. When capacity fade is larger, the resistance increases and capacitance 

decreases. Therefore, when building a model to mimic the battery, different sets of parameters 

should be used for the battery at different aging states.    

 

 

Figure 24: Parameters from pulse discharge of the battery at different aging states and different 

SOCs at 25oC. 
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Figure 25: Parameters of equivalent circuit model for EIS at different aging states extracted 

from EIS measurements at 50% SOC at 25oC. 

 

Figure 26: Nyquist plot  of the battery at different aging states,  50% SOC,  25oC. 
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Figure 27: Parameters of equivalent circuit model for EIS at different aging states extracted 

from EIS measurements at 50% SOC at 25oC. 

2.4 Kalman filter 

As shown in the previous chapter, the parameters measured offline have shown their 

dependency upon different operating conditions. The model cannot follow dynamics of the battery. 

Therefore, Kalman filter is used to compensate the model errors caused by parameter variations.  

2.4.1  Introduction of EKF 

Kalman Filter is a recursive solution originally used for the discrete-data linear filter problem 

and has been extensively used for many other applications. The Kalman filter consists of a set of 

mathematical equations that provides an efficient computational (recursive) mean of estimating 

the state of a process, in a way that minimizes the mean of the squared error. The filter is very 
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powerful in several aspects by supporting estimations of past, present, and even future states, even 

though the precise nature of the modeled system is unknown.  

When a second order ECM is used in SOC estimation, the linear Kalman Filter cannot be 

applied directly because of nonlinear parameters of the ECM.  Therefore, the model needs to be 

linearized before applying the Kalman filter. This method is called extended Kalman Filter (EKF). 

If all models contain variables that cannot be directly measured, the choice of error variances, Q 

and R might be difficult. If improperly chosen, the SOC variable of the ECM oscillates and might 

diverge. Therefore, the model is very important for EKF. 

This proposed model is a second order ECM that shows accurate response with relatively 

simple structure. Other Kalman filter techniques include Sigma-Point Kalman filter (SPKF) [13, 

14], unscented Kalman filter (UKF) [15], adaptive extended Kalman filter (AEKF)[2, 10], adaptive 

unscented Kalman filter (AUKF) [2], and dual Kalman filter (DKF) [16]. All Kalman filter 

typically require significant computational time [17]. 

The second order ECM combined with an EKF is proposed [18]. The internal resistance of 

battery (R0) is the only one estimated online because of major cause for voltage drop. AEKF based 

on an improved Thevenin’ model, as shown in Figure 12, is proposed [10]. The authors attempt to 

estimate parameters of the model online, where state variables include [U1, U2, Vt, 1/R1, 1/C1, 1/R2, 

1/C2]T. Others extended the EKF based on  “filter state” cell model, where SOC and the parameters 

of the model are estimated online [19]. The filter state model is an empirical one that is a function 

of current direction, SOC and temperature, which requires many experiments to obtain coefficients 

for the equations.  

Assume the process has a state vector nRx∈  . The process is governed by the non-linear 

equation, 
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( )kkkk wuxfx ,,1 =+ , (25) 

with a measurement nRz∈  that is, 

( )kkk vxhz ,= , (26) 

where the random variable kw and kv  represent the process and measurement noise. An 

approximated state and measurement vector can be described as, 

( )kkkk wuxfx ,,ˆ~
1 =+ , (27) 

( )
kvkk xhz ,

~~ = , (28) 

where kx̂ is a posteriori estimate of the state from a previous time step k+1. 

The following are the new governing equations that linearize an estimate about equation (27) 

and (28), 

( ) kkkkk wxxxx WA +−+≈ ++ ˆ~
11 , (29) 

( ) kkkkk vxxzz VH +−+≈ ~~ , (30) 

where 

• 1+kx  and kz  are the actual state and measurement vectors; 

• 1
~

+kx  and kz~  are the approximate state and measurement vectors from equation  (27) and 

(28); 

• x̂  is a posteriori estimate of the state at step k; 

• the random variable, kw  and kv represent the process and measurement noise as in 

equation (27) and (28); 

• A is the Jacobian matrix of partial derivatives of ( )−f  with respect to x , that is 

[ ]
[ ]

[ ]
( )0,,ˆ, kk

j

i
ji ux

x
f

∂

∂
=A ; 
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• W is the Jacobian matrix of partial derivatives of ( )−f  with respect to w , 

[ ]
[ ]

[ ]
( )0,,ˆ, kk

j

i
ji ux

w
f

∂

∂
=W ; 

• H is the Jacobian matrix of partial derivatives of ( )−h  with respect to x , 

[ ]
[ ]

[ ]
( )0,~

, k
j

i
ji x

x
h
∂

∂
=H ; 

• V is the Jacobian matrix of partial derivatives of ( )−h  with respect to v , 

[ ]
[ ]

[ ]
( )0,~

, k
j

i
ji x

v
h
∂

∂
=V . 

The prediction error and the measurement error is defined as, 

( ) kkkkkx xxxxe
k

ε+−≈−≡ −− 11 ˆ~~ A , (31) 

kkkkz ezze
k

η+≈−≡ ~~~ H . (32) 

The posteriori state estimates for the original non-linear process as, 

( )kkkk

zkk

kkk

zzx

ex
exx

k

~~

~~
ˆ~ˆ

−+=

+=
+=

K

K . 

(33) 

The complete set of EKF is shown in Table 5 and Table 6. 

Table 5: Discrete Kalman filter time update equation 

( )0,,ˆˆ 11 −−
− = kkk uf xx  

TT
1 kkkkkkk WQWAPAP +=−
+  

Table 6: Discrete Kalman filter measurement update equation 

1TTT ))(( −−− += kkkkkkkkk VRVHPHHPK  

( )( )0,ˆˆˆ −− −+= kkkkk h xzKxx  
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( ) −−= kkkk PHKP 1  

The complete picture of the operation of EKF is shown in Figure 28 and the block diagram of 

EKF is shown in Figure 29. 

 

Figure 28: Complete picture of the operation of the EKF. 
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Figure 29: Block diagram of the EKF. 

2.4.2  Application of Kalman Filter 

For SOC estimation based on the ECM, the parameters vary severely and need to be estimated 

accurately for ensuring less errors in the SOC estimation. Therefore, the parameters of the ECM 

and the SOC are defined as the states to be estimated by the EKF.  For the ECM based EKF system, 

the input, u, is the current (I) and the output, z, is the terminal voltage (Vt). As a result, the number 

of states for the system results in eight parameters, [SOC, U1, U2, R0, R1, C1, R2, C2,]T.  

The change of the SOC during one sampling period, ∆t can be calculated by the following 

equation,  

maxQ
tISOC ∆⋅

=∆
.
 

(34) 
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In a vehicle, the normal discharge current is less than 35A, while the max charge current is 

75A. Therefore, the maximum change of the SOC during one sampling period is  

5
max 1098.2

/360070
1.075 −×≈

×
×

=∆
hsAh

sASOC . 
 

From Figure 16, the maximum slope of R0 over SOC, ∂R0/∂SOC is 0.2167 Ω. Thus, the 

maximum change of R0 during one sampling period can be calculated,  

Ω×≈××Ω=∆⋅
∂
∂

=∆ −− 65
max

0
max0 1046.61098.22167.0SOC

SOC
R

R . 
 

The max rate of change of R0 during one sampling period is 

4
6

0

max,0 109
0072.0

1046.6
)min(

−
−

×≈
Ω
Ω×

=
∆

R
R

. 
 

Similarly, the rate of change of R1 is 4
1max,1 1012.4)min(/ −×≈∆ RR , the rate of change of C1 is

4
1max,1 1053.6)min(/ −×≈∆ CC , the rate of change of R2 is 4

2

max,2 1084.6
)min(

−×≈
∆

R
R

, and the rate of 

change of C2 is 4

2

max,2 1025.2
)min(

−×≈
∆

C
C

. During one sampling period that is assumed to be 0.1s, 

the changes of parameters of ECM are very small, so negligible.   

[ ] [ ]kRakR 010 1 =+  

[ ] [ ]kRakR 121 1 =+  

[ ] [ ]kCakC 131 1 =+  

[ ] [ ]kRakR 242 1 =+  

[ ] [ ]kCakC 252 1 =+  

 

where a1 to a5 are chosen to be close to 1.  
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The linearized state equation and the output variable are as follows,  
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(35) 

( ) 1,01,21,111, +++++ −−−= kkkkkkt RIUUSOCOCVV , (36) 

,where Qmax is the maximum capacity  of the battery, and a1-a5 are the changing rate of the 

parameters in the ECM.  

After a linearization, equation (35) and (36) can be rewritten in a state space form as, 

kkk uxx BA +=+1 , (37) 

11 ++ = kk xz C , (38) 

where, 
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For SOC estimation, the system should be observable to apply EKF, where the rank of the 

observability matrix of (39) is examined. If the matrix has a full rank, the system becomes 

observable.  
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(39) 

To meet the requirements of observability, the coefficients of a1-a5 must have different values. 

Therefore, a1=1, a2 = 0.995, a3=0.99, a4=1.005, and a5=1.01 are chosen.  

The first term in equation (36) presents the relationship between SOC and OCV that are 

obtained experimentally. A fully charged battery is discharged at a 1/20 C-rate for two hours and 
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then rested for four hours while Tamb remains a constant 25oC. Until the terminal voltage reached 

the manufacturer’s Vmin of 10.5V, this process is repeated. The SOC at the end of each pulse is 

calculated using Coulomb counting. The terminal voltage at the end of each rest is regarded as 

OCV at that SOC, because the four hours is considered to be sufficient for the battery to reach a 

state of chemical equilibrium. The terminal voltage profile of OCV discharge pulses is shown in 

Figure 30. 

 

Figure 30: Terminal voltage during OCV measurement. 

Initial value of   SOC is 100%, and the maximum capacity of the battery (Qmax) is measured 

experimentally beforehand. To minimize any measurement errors, a high accurate current sensor 

is used in this test and calibrated beforehand. Both measured OCVs and SOCs are then linked to 

generate the OCV-SOC curve, as shown in Figure 31. 
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Figure 31: OCV-SOC curve. 

In application, the OCV/SOC curve is fitted with the fifth order of polynomial. The coefficients 

are shown in Table 7. 
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Table 7: Coefficients of the OCV/SOC function 

Coefficient 
1b  2b  3b  4b  5b  6b  

Value 7.134 -21.21 24.36 -13.44 5.086 11.05 

According the above function, the
SOC
OCV
∂
∂ , as a function of SOC, can be calculated as shown in 

Figure 32. 
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Figure 32: 
SOC
OCV
∂
∂ -SOC curve. 

2.5  Results and analysis 
2.5.1  SOC estimation with offline identification method 

To test the performance of the proposed SOC estimation algorithm, a series of tests are 

designed, including full discharge, full charge, pulse discharge, and three types of different drive 

cycles. The load profile of these tests is plotted in the following sections. During the tests 

experimental data is collected, including time, current, voltage, and temperature. There are four 

thermocouples used to measure the temperature at cathode, anode, battery housing surface, and 

the ambient. Before all the tests start, SOC of the battery is set to be 100% with equilibrium state, 

so the polarization of R-C circuit is 0. One of the main tasks of the EKF is to correct initial SOC 

that the ECM might has based on the error between the battery and the ECM voltage. To test the 
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performance of the ECM based EKF, the initial SOC of the model is set to be 79%, which results 

in an error of 21%. The estimated SOC is then compared with the true SOC, where the true SOC 

during each test is calculated by Coulomb counting with an initial SOC obtained from an 

OCV/SOC look-up table. Then, the SOC information is used to detect whether the battery is at a 

Fully Charge or End of Discharge, or to forward it for other algorithms.    

The parameters of the ECM can be estimated offline. However, the accuracy of SOC estimation 

is limited to loading conditions. For example, the voltage, current, and temperature of a fresh 

battery during full discharging are plotted in Figure 33, and the true SOC and estimated SOC are 

plotted in Figure 34. When SOC is high or low, the estimation error is large, because the parameters 

have been changed quickly at both high and low SOC ranges.  

 

Figure 33: Discharging and rest. 

 

11

12

13

14

V
t/V

0

100

200

C
ur

re
nt

/A

0 5 10 15 20 25
24.5

25

25.5

26

Time/Hr

Te
m

pe
ra

tu
re

/o C

 

 
anode
cathode
surface
ambient

50 
 



 

Figure 34: Simulated SOC and its error of a fresh battery using offline parameters during 

discharging and rest at 25oC. 

Figure 35 shows the voltage, current, and temperature of a fresh cell during a full cycle that 

consists of constant current charging, constant voltage charging, rest, constant current discharging, 

and another rest. The comparison of experimental and simulation SOC are shown in Figure 36. 

For most of the tests, the estimation results have been matched well with experimental results. 

However, the error becomes large at high and low SOC ranges, especially when there are changes 

of current direction. Moreover, the error is large during charging at C.V. mode, where the current 

is getting smaller.    
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Figure 35: Single cycle at 25oC. 

 

 

Figure 36: Simulated SOC and its error of a fresh battery using offline parameters during single 

cycle at 25oC.  
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The algorithm is also tested during pulse discharge, and the results are shown in Figure 37 and 

Figure 38. Similarly, the accuracy is good in the medium range of SOC, while the error becomes 

large at both high and low SOC ranges.  

  

Figure 37: Pulse discharging 

The results of all the above tests have shown that the accuracy particularly at both high and 

low SOC ranges needs to be improved. Since the parameters of the ECM change quickly in those 

ranges, an online parameter identification method is used to reduce SOC errors.  
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Figure 38: Simulated SOC and its error of a fresh battery using the offline parameters 

estimation during pulse discharging at 25oC. 

2.5.2  Reduction of SOC estimation errors using online parameter identification  

Performance of the new algorithm with the online parameter identification algorithm is 

evaluated for all the three tests conducted in 2.5.1.  

The simulation results of SOCs and estimation errors are shown in Figure 39, Figure 40, and 

Figure 41. Compared with the SOC estimation results in 2.5.1, the errors of the estimation with 

the online parameter algorithm is further reduced that becomes less than 3%. Inaccuracy of SOC 

and low SOC ranges or those caused by changes in the current direction are improved. . In addition, 

initial SOC errors are also reduced.    

-50

0

50

100

S
O

C
/%

 

 
experiment
estimation

0 10 20 30 40 50 60 70 80 90 100
-30

-20

-10

0

E
rro

r o
f S

O
C

/%

Time/Hr

54 
 



 

Figure 39: Simulated SOC and its error of a fresh battery using online parameter estimation 

during discharging and rest at 25oC. 
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Figure 40: Simulated SOC and its error of a fresh battery using online parameter estimation 

during a single cycle at 25oC. 

 

Figure 41: Simulated SOC and its error of a fresh battery using online parameter estimation 

during pulse discharging at 25oC. 
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ECM with the online parameter estimation algorithm is also tested using three cycles obtained 

from a vehicle. The estimation results of parameters of the ECM are shown in Figure 42, where 

the blue and red curves are the parameters with online and offline identification method, 

respectively.  

The comparison shows that the two sets of parameters tend to stay close, but there are some 

discrepancies when the current changes direction. Figure 42 proves the online parameters 

identification algorithm works for a fresh battery at 25oC. The voltage, current, and temperature 

during drive cycle I are plotted in Figure 43, and the SOC estimation results and error are plotted 

in Figure 44. The proposing algorithm can accurately estimate the SOC of the battery with errors 

that are less than 3% throughout the drive cycle. However, the estimation error during charging at 

C.V. mode is still very large, which needs to be improved. 
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Figure 42: Estimated ECM parameters of a fresh battery during pulse discharging at 25oC. 

 

Figure 43: Drive cycle I. 
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Figure 44: Simulated SOC and its error of a fresh battery using online parameters during drive 

cycle I at 25oC. 

2.5.3 Sensitivity analysis of parameter coefficients   

In equation (35), the values of a1 to a5 should all be close to 1 because the change of the 

parameters with respect to time is very slow. The larger the value is, the faster is the increase of 

the parameter. Likewise, the smaller the value is, the faster is the decrease of the parameter. For 

both cases, the stability of the battery model can become worse, and it takes more time for the 

parameters to reach its true value, although there is a correction with EKF. The following values 

are tested during a pulse discharge, where the experimental data of voltage, current, and 

temperature are shown in Figure 37, and the parameter estimation and SOC estimation are shown 

in the following sequence: 

1. a1=1, a2 = 1.02, a3=0.99, a4=1.005, and a5=1.01 (Figure 42 and Figure 41); 

2. a1=1, a2 = 1.03, a3=0.99, a4=1.005, and a5=1.01 (Figure 45 and Figure 46); 

3. a1=1, a2 = 0.97, a3=0.99, a4=1.005, and a5=1.01 (Figure 47 and Figure 48); 
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4. a1=1, a2 = 1.04, a3=0.99, a4=1.005, and a5=1.01 (Figure 49 and Figure 50); 

5. a1=1, a2 = 1, a3=1, a4=1, and a5=1 (Figure 51 and Figure 52); 

6. a1=1.01, a2 = 1.01i, a3=1.01, a4=1.01, and a5=1.01 (Figure 63 and Figure 54); 

In this work, the parameters are set as shown in 1, and the estimation results of parameters of 

the ECM are shown in Figure 42 and Figure 41. The errors of SOC estimation results are less than 

3%. Then the value of a1 is changed to 1.03, 0.97, and 1.04, while all the others are kept the same 

result. From Figure 45 to Figure 50, the results show that if a1 is set too large or too small, the 

parameter estimation becomes inaccurate, which leads to an inaccurate SOC estimation. Then, the 

parameters are set as the same value 1 or 1.01, the results are shown in Figure 51 and Figure 54. 

Due to the matrices A and C of the model, if a1 to a5 have the same value, the observability of the 

model becomes vulnerable, especially for parameters, C1 and C2. 

Based on the response time of the model and the accuracy of the SOC estimation, the 

parameters of a1 to a5 are optimized.  
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Figure 45: Parameter estimation (a1=1, a2 = 1.03, a3=0.99, a4=1.005, and a5=1.01) 

 

Figure 46: SOC estimation (a1=1, a2 = 1.03, a3=0.99, a4=1.005, and a5=1.01) 
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Figure 47: Parameter estimation (a1=1, a2 = 0.97, a3=0.99, a4=1.005, and a5=1.01) 

 

Figure 48: SOC estimation (a1=1, a2 = 0.97, a3=0.99, a4=1.005, and a5=1.01) 
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Figure 49: Parameter estimation (a1=1, a2 = 1.04, a3=0.99, a4=1.005, and a5=1.01) 

 

Figure 50: SOC estimation (a1=1, a2 = 1.04, a3=0.99, a4=1.005, and a5=1.01) 
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Figure 51: Parameter estimation (a1=1, a2 = 1, a3=1, a4=1, and a5=1) 

 

Figure 52: SOC estimation (a1=1, a2 = 1, a3=1, a4=1, and a5=1) 
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Figure 53: Parameter estimation (a1=1.01, a2 = 1.01, a3=1.01, a4=1.01, and a5=1.01) 

 

Figure 54: SOC estimation (a1=1.01, a2 = 1.01i, a3=1.01, a4=1.01, and a5=1.01) 
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 In this chapter, the SOC estimation algorithm with the ECM based EKF is described, where 

these parameters in the model are identified online and offline method. The batteries used to collect 

experimental data and test the algorithm are AGM lead acid batteries. The simulation results of 

SOC under four load profiles show that the ECM based EKF with online parameter identification 

works well at constant temperature except for C.V. charge. Although the parameter identification 

is considered with temperature change, the EKF cannot consider the change of capacity with 

temperature. The following chapters introduces how the SOC estimation algorithm can be further 

improved. 
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Chapter 3: Improvement of SOC estimation  

In chapter 2, an ECM based EKF algorithm for SOC estimation was discussed. The parameters 

of the ECM were identified by an online or offline estimation methods. However, the EKF cannot 

accurately estimate the parameters under certain operating conditions, when the battery is charged 

in C.V. mode, or when there is a significant temperature change. This chapter focuses on how to 

improve this algorithm for SOC estimation. A novel combined SOC estimation method based on 

extended Kalman filter and Coulomb counting for starting engines, lighting and ignition (SLI) 

system is proposed, as it can effectively consider effects of parameter changes of ECM caused 

during  C.V. charging, by varying temperature and aging process. In section 3.1, the principles of 

this proposed method are described. In section 3.2, improvements of the method considering 

temperature and aging are described. In section 3.3, results of SOC estimation and analysis using 

this method are described.  

3.1  SOC estimation during C.V. charging 

 As shown in Chapter 2, the SOC estimation during C.V. charging is not accurate because of 

rapid changes of the parameters changes. When the terminal voltage of the battery reaches 14.3V, 

the current is reduced, so that the terminal voltage can be kept equal to or less than 14.3V.  To 

measure the parameters in C.V. charging mode, the following experiment has been made.  

1. Charge the battery with 14A C.C. mode to 14.3V at room temperature 

2. Keep 14.3V C.V. charging, when the capacity increases 7Ah, followed by four 

hours’ rest to relax the battery, and record the data. 

3. Repeat step 2, until the total charged capacity is equal to capacity of the battery 
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The same parameter estimation method described in section 2.3 is applied to obtain the 

parameters, as shown in Figure 18. It turns out that RC parameters change significantly with time, 

therefore, the online identification method cannot identify the parameters accurately.  

In Chapter 1.1.3, Coulomb counting is introduced as a possible solution for the SOC estimation. 

Coulomb counting is pretty simple. However, initial SOC errors and measurement errors of the 

current sensor cause errors that cannot be removed. On the other hand, these errors can be corrected 

by the model based EKF that does not work well for the CV charging mode. Therefore, a 

combination of these two methods is proposed to estimate SOC accurately under any loading 

conditions, even with an initial error.   

The principle of the combined two methods is shown in Figure 55. The charging and 

discharging status of the battery is first monitored. When the battery is discharged or charged in 

C.C. mode, and the voltage is less than 14V, the ECM based EKF is applied to estimate SOC. 

Once the battery voltage reaches 14V and the battery is in C.V. charging mode, the ECM based 

EKF stops estimating. Instead, the SOC is estimated with Coulomb counting until the battery stops 

C.V. charging more than 50s, then the ECM based EKF resumes. More details of this combination 

method are shown in the flowchart of Figure 56.  The initial SOC is set to be 50%. The initial 

values of parameters of ECM are the same values of a fresh battery at 50% SOC. The EKF is 

applied after 50s. The initial errors are reduced. The terminal voltage determines if battery is 

charged in C.C. mode or C.V. mode. If the battery is charged in C.V. mode, the Coulomb counting 

is used to estimate SOC, otherwise the ECM based EKF is used. 
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Figure 55: Principle of the novel combined SOC estimation method. 

 

Figure 56: Flowchart of the combined SOC estimation method. 

3.2  Effects of temperature on SOC estimation 

Although the RC parameters in the ECM can be identified with the KF online, the model shows 

a large discrepancy when there is a significant change in battery temperature. The change of the 

temperature leads to not only change of the activation overpotentials that the RC parameter 

represents, but also the capacity of the battery.  
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To measure the capacity dependence on temperature, an experiment has been set up according 

to the following procedures:  

1. Fully charge the battery with C.C. and C.V. mode in twenty four hours at room 

temperature, followed by four hour rest to relax the battery. 

2. Set the thermal chamber to a specific temperature. 

3. Put the battery in the thermal chamber for four hours to make sure that the working 

temperature reaches that specific temperature.  

4. Completely discharge the battery with a constant current of 3.5A, and record the data.  

Repeat steps 1 through 4 with all of the temperatures. The maximum capacity at that specific 

temperature is measured according to Coulomb counting. The measured maximum capacity at 

various temperatures is shown in Table 1 and plotted in Figure 57. The red point in Figure 57 is 

the experimental data and the blue line is a fitted curve by a second order polynomial that can be 

written in Equation (41). The coefficients of the second order polynomial are listed in Table 8. 

Table 8: Measured capacity of fresh battery at different temperatures 

Temperature (oC) Capacity (Ah) 

-15 56.14 

-10 57.73 

-5 60.26 

0 63.31 

5 66.39 

10 68.72 

15 72.07 

20 72.83 

25 73.74 
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30 75.59 

35 76.94 

40 76.2 

45 74.51 

50 73.82 

55 72.46 

60 71.84 

 

Figure 57: Capacity of a battery at different temperatures. 

The empirical equation (41) shows that the capacity is a function of temperature.  

( ) 32
2

1 dTdTdTQ ++= , (41) 

where the coefficients of the second order polynomial are summarized in Table 9. 

Table 9: Coefficients of the empirical equation for capacity at different temperatures 

Coefficient  Value 
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 p y  p
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d1 31049.7 −×−  [Ah/oC2] 

d2 0.5718           [Ah/oC] 

d3 64.44             [Ah] 

  

If the Qmax25 is known, the capacity at a current temperature is adjusted using equation (42).  

The Q(T) in equation (42) is an empirical equation (41). Likewise, if the Qmax25 and temperature T 

are known, the current capacity can be modified using equation (42). 

( ) ( ) ( ) 25max
324

25maxmax 8739.0108.7100157.1
74.73

QTTTQQTQ +×+×−== −−  
(42) 

3.3 Results and analysis 

3.3.1  SOC estimation of a fresh battery during C.V. charging 

In order to test the method that combines the ECM based EKF with the Coulomb counting 

method, simulation results are compared with those of experiments during two drive cycles. The 

load profiles of drive cycle I and II are shown in Figure 57 and Figure 59, respectively. The 

corresponding SOC estimation with the new algorithm are shown in Figure 58 and Figure 60, 

respectively. The results show that even with a big initial error, the ECM based EKF can correct 

the error by measuring the terminal voltage, the error can be reduced to 5% quickly. Although the 

SOC range is very wide during both drive cycle I and II, and the battery is operated at C.V. 

charging mode, the estimation error becomes less than 5%. Compared with the results from the 

model without Coulomb counting in Figure 44, its performance is much better.  From the results 

in Figure 58 and Figure 60, both methods are complemented, the disadvantages of both methods 

can be minimized. 
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Figure 58: Simulated SOC and its error of a fresh battery using the combined method during 

drive cycle I at 25oC. 
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Figure 59: Drive cycle II. 

 

Figure 60: Simulated SOC and its error of a fresh battery using the combined method during 

drive cycle II at 25oC. 
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obtained from the results of a full charge-rest-discharge-rest cycle, and the results are shown in 

Figure 61. Since the RC parameters are identified online, the temperature dependence of capacity 

needs to be considered to improve the model.   

 

Figure 61: Simulated and experimented terminal voltage, SOC, and error of SOC of a fresh 

battery using the combined algorithm during a full cycle at 25oC. 

3.3.2  Effects of temperature on capacity for SOC estimation of a fresh battery 

The effects of temperature on capacity are considered using the empirical equation. The same 

drive cycle tests are conveyed as those in3.3.1, and the results are shown in Figure 62 and Figure 

63. The initial condition for the SOC estimation is listed as shown in Table 10, where the model 

is significantly improved by considering the capacity that depends upon temperature. The error 

can be further reduced to less than 2%. One more drive cycle is used to test this method, where the 

experiment and simulation results are compared as shown in Figure 64 and Figure 65. During pulse 

charging and discharging, the SOC estimation error remains also stays below 2%. 
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Table 10: Initial condition of SOC estimation 

Variables Values 

SOC 79% 

R0 5mΩ 

R1 30 mΩ 

C1 20kF 

R2 15 mΩ 

C2 10kF 

Qmax 68.81Ah 
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Figure 62: Simulated SOC and its error of a fresh battery using the combined method during 

drive cycle II at 25oC without considering capacity variation. 
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Figure 63: Simulated SOC and its error of a fresh battery using the combined method during 

drive cycle I at 25oC with the capacity update. 
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Figure 64: Drive cycle III at 25oC, including the response of voltage, current, and temperature. 
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Figure 65: Simulated SOC and its error of a fresh battery using the combined method during 

drive cycle III at 25oC with capacity update. 
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3.3.3  Effects of temperature and aging on the SOC estimation 

 

Figure 66: Simulated and experimented response of voltage, current, temperature and SOC.  

The RC parameters of the ECM are affected not only by battery SOC and, temperature, but 

also by degradation. In order to test the effectiveness of the online parameter identification 

algorithm, the model is tested at different levels of degradation. For a fresh battery, the maximum 

capacity is measured at 25oC which is 72.8Ah. The battery is then set to 0% SOC and a full cycle 

is applied to the battery, including a full charging at CC/CV mode, a five hours’ rest, and a full 

discharge at C.C. mode. The current, temperature and voltage waveforms are shown in Figure 66. 

The true SOC of the battery is calculated by integration of current with respect to time, the 

estimated SOC is calculated from the combined model using the ECM based EKF and Coulomb 

counting method. The comparison between experimented and estimated SOC is shown in blue and 

red curves in (d) of Figure 66. The results show that even with a 20% initial SOC error, the model 
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can correct the error and reach the true SOC within 50s with the feedback of the measured terminal 

voltage.     

After the battery is cycled, the maximum capacity is measured at 25oC for every 20 cycles. 

The battery is then cycled under the load condition shown in the above analysis. After 20 cycles, 

the battery capacity is faded to 95%, which is 69Ah. At the same time, the active materials inside 

of the battery also changes, the RC parameters of the ECM should also be updated to meet the 

changes caused by degradation. With the online parameter identification algorithm, the model can 

estimate the battery SOC accurately, and the results are shown in Figure 67. The comparison shows 

that the model can identify the parameters and estimate SOC accurately, even when the battery is 

aged. 
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Figure 67: Simulated response of voltage, current, temperature, and SOC of an aged battery 

with 5% capacity fade. 

Finally, the battery is cycled for another 50 cycles. Similar to the previous test, the maximum 

capacity is measured, and the capacity is faded to 51%, which is 37.5Ah. The battery is then cycled 

under the load condition shown in Figure 67. The SOC estimation results are shown in Figure 68. 

Even with a large capacity fade, the method can still accurately estimate the SOC with the online 

parameter identification method.  
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Figure 68: Simulated response of voltage, current, temperature, and SOC of an aged battery 

with 49% capacity. 

In this section, the SOC estimation results of the method are tested with a battery at different 

stages of degradation, including 0%, 5%, and 41% capacity fades. Although the dynamics of the 

battery changes when the battery is aged, the ECM based EKF can still accurately estimate the 

battery SOC with the online parameter identification algorithm considering temperature and aging 

effects. 
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Chapter 4: Water loss 

Water loss in the electrolyte caused by side reaction is one of the disadvantages of an AGM 

lead acid battery, and decreased ion conductivity. Thus, estimation of water loss is very desirable 

to keep the same performance of the battery at the beginning state. In this chapter, reasons for 

water loss and a method to measure water loss are analyzed. The amount of the water loss will be 

measured experimentally and also be estimated with a mathematical model. 

4.1  Theory  

The following three subsections focus on the theoretical aspects which are the main side 

reactions that lead to water loss. Section 4.1.1 deals with the general lead acid battery design and 

working principles of an AGM lead acid battery that includes absorbent glass mat and safety valve. 

Section 4.1.2 discusses the side reactions which lead to water loss. Lastly, section 4.1.3 will focus 

on the rate of the side reaction. 

4.1.1  Design and working principles of an AGM lead acid battery 

Two electrodes of different materials immersed in electrolyte can comprise an electrochemical 

power source, whereby the different potentials are formed at the two electrodes. Similarly, this 

potential difference generates the electromotive force of the electrochemical power source that 

makes the electric current flow between the two electrodes (anode and cathode) that are connected 

to a conductor with a load. Electrochemical reactions proceed at the interfaces of electrodes and 

electrolyte; it involves electrons transfer between the electrode surface and ions from the solution. 

The lead acid battery as an electrochemical power source, includes lead dioxide (PbO2) as the 

anode, lead (Pb) as the cathode and a solution of sulfuric acid (H2SO4) as the electrolyte. The 

reaction of lead dioxide reduction (
+−+ →+ 24 2 PbePb ) and of lead oxidation (

−+ +→ ePbPb 22
) 
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are utilized in lead acid batteries. As a rechargeable electrochemical power source, the reactions 

in lead acid battery are reversible. Therefore, the reaction of the lead acid battery can be described 

as,  

 

Positive electrode: 
OHPbSOeHSOPbO

ech

edisch

24
arg

arg
2
42 224 +

 ←
 →

+++ −+−

, 

(43) 

Negative electrode: 
−− +

 ←
 →

+ ePbSOSOPb
ech

edisch

24
arg

arg
2
4

, 

(44) 

Cell reaction:  
OHPbSOSOHPbOPb

ech

edisch

24
arg

arg

422 222 +
 ←
 →

++

. 

(45) 

The equilibrium potential of negative electrode can be calculated by Nernst equation, 

κln0
// 44 nF

RTEE PbSOPbPbSOPb += , 
(46) 

where, R is the universal (or ideal) gas constant; T is temperature; n is the number of electrons; 

F is the Faraday constant; 0E is the standard potential of the electrode; and κ  is the equilibrium 

constant of the electrochemical reaction. According to the law of mass action, κ  is equal to the 

ratio between the concentrations (or more precisely the activities,α ) of the oxidized and reduced 

products of the reaction. The activity of the solid phase is equal to 1. For this action the κ  is, 

−⋅
=

2
4

4

SOPb

PbSO

αα
α

κ . 
(47) 
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The standard potential of the Pb/PbSO4 electrode (
0

/ 4PbSOPbE ) is equal to the electrode potential 

at
12

4
=−SO

α
. According to the principles of electrochemical thermodynamics, the standard 

potential corresponds to the increase in Gibbs free energy (
0G∆  cal), 

nF
GE PbSOPb

0
0

/ 4

∆
= . 

(48) 

The sign of 
0G∆  is determined by convention. It is negative when a reduction process takes 

place at the electrode. We obtain that,  

( )
nF

GGG
E

PbSOPbSO
PbSOPb

000
0

/

2
44

4

∆+∆−∆−
=

−

. 

(49) 

The values for
0

4PbSOG∆ , 
0

2
4
−∆

SO
G

and 
0
PbG∆ are form the Table 2.1 of references [1]. Finally, the 

equilibrium potential of negative electrode is calculated as, 

−−−= 2
44

lg029.0358.0/ SOPbSOPbE α , (50) 

Similarly, the equilibrium potential of positive electrode can be calculated though the same 

way,  

−+−−= 2
4242

lg029.0lg059.0118.0683.1/ SOOHPbSOPbO pHE αα
. 

(51) 

The electromotive force (EMF) of the lead acid battery can be calculated by equation (52). 











+=

OH

SOHEMF
2

42lg059.0041.2
α
α

. 
(52) 

The EMF of the lead acid battery is the difference in equilibrium potentials of positive and 

negative electrodes. It is also called the open circuit voltage (OCV). 
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4.1.2  The side reactions leading to water loss  

The electrolyte of the lead acid battery is a solution of sulfuric acid that is composed of sulfuric 

acid and water. Therefore, the side reaction of water must be considered. The reaction of the 

decomposition of water are shown equations (53) and (54), 

222 HeH →+ −+
, (53) 

−+ ++→ eHOOH 442 22 . (54) 

According to the Nernst equation (46),  0
2OE  can be calculated by equation (48), where the 

Gibbs free energy is listed in Table 2.1 of references [1], VEO 228.10
2
= . 0

2HE is defined to be 0V 

in electrochemical theory. The equilibrium constant κ  in the reaction of decomposition of water 

is only affected by the pressure of the gas, because the concentration of water is constant.  

The equilibrium potential of water can be calculated by equations (55) and (56), 

22
lg015.0059.0228.1 OO PpHE +−= ,  (55) 

22
lg029.0059.0 HH PpHE −−= . (56) 

Finally, the decomposition voltage of water in the electrolyte can be calculated with equation 

(57), 

22222
lg029.0lg015.0228.1// HOOH PPE

OH
+−= . (57) 

where, 
2OP  and 

2HP are the pressures of hydrogen and oxygen inside of the battery, respectively. 

For the safety of the battery, the pressure is low, usually less than 2 psi.  The decomposition voltage 

of water is less than 1.22V which is far below the manufactory’s minimum voltage of the battery 

(Vmin=1.75V). Water decomposition and lead corrosion are to be accepted as unwanted secondary 

reactions in lead-acid batteries.   

88 
 



The lead acid battery is a Pb/H2SO4/H2O system. The lead compounds involved in this system 

are lead oxide (PbO), lead sulfate (PbSO4), monobasic lead sulfate (PbO·PbSO4), tribasic lead 

sulfate (3PbO·PbSO4·H2O), tetrabasic lead sulfate (4PbO·PbSO4), lead dioxide (PbO2) and red 

lead (Pb3O4). Although the solubilities of lead sulfate and lead dioxide in the electrolyte are very 

low, the Pb2+ and Pb4+ ions remain in the electrolyte. The relationships of transformations of lead 

compounds are shown in Figure 69. 

 

Figure 69: Relationships of transformations of lead compounds in Pb/H2SO4/H2O system. 

The involved chemical and electrochemical reactions and their equilibrium states in the 

Pb/H2SO4/H2O system are presented in Table 11. 

None of these electrochemical or chemical reactions leads to water loss. Only water direct 

decomposition causes water loss. The operating voltage is always larger than the potential that 

causes water loss and the water loss take places all the time. 
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In charging, the electrons in water decomposition come from the power supply. The action 

equations are shown in equation (53) and (54). While at rest, the electrons come from the discharge 

of the battery. Which is called self-discharge. The action equations can be written as equations (58) 

and (59). 

224
arg

422 2
1 OOHPbSOSOHPbO edischself ++ →+ −

 

(58) 

24
arg

42 HPbSOSOHPb edischself + →+ −
 (59) 

The valve-regulated lead acid battery (VRLA) has small gas channels in the electrolyte 

allowing the gas phase transport of oxygen to the negative electrode where it is reduced. The AGM 

lead acid battery achieves this characteristic by the application of absorbent glass mat separators 

which are soaked in the acid so that no liquid acid is left in the cell. 

In conclusion, there are two side reactions that lead to water loss. One is hydrogen evolution 

at the negative electrode, and the other is oxygen evolution at the positive electrode. These side 

reactions take place during all operations of the battery charging, discharging and rest. 

4.1.3  Speed of side reaction 

The reaction of water decomposition is also called gassing. Two kinds of gases (hydrogen and 

oxygen) are generated by this reaction. In charging, the overall side reaction equation can be 

written as,  

222 22 OHOH +→ . (60) 
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Table 11: Electrochemical and chemical reactions that proceed in the system Pb/H2SO4/H2O [1] 

 Reaction Equilibrium potential 
1 OHPbSOeHSOPbO 24

2
42 224 +=+++ −+−

 −+−=
4

lg029.0118.0685.1
HSOh pHE α

 
OHPbSOeHHSOPbO 2442 223 +=+++ −+−

 −+−= 2
4

lg029.0088.0628.1
SOh pHE α

 
2 OHPbSOPbOeHSOPbO 24

2
42 2462 +⋅=+++ −+−

 −+−= 2
4

lg015.0088.0468.1
SOh pHE α

 
3 OHOHPbSOPbOeHSOPbO 224

2
42 438104 +⋅⋅=+++ −+−

 −+−= 2
4

lg007.0074.0325.1
SOh pHE α

 
4 OHOPbeHPbO 2432 2443 +=++ −+

 pHEh 059.0122.1 −=  
5 OHPbOeHPbO 22 22 +=++ −+

 pHEh 0591.0107.1 −=  
6 −−+ +=++ 44 2 HSOPbeHPbSO  −−−−=

4
lg029.0029.0302.0

HSOh pHE α
 

−− +=+ 2
44 2 SOPbePbSO  −−−= 2

4
lg029.0358.0

SOhE α
 

7 OHSOPbeHPbSOPbO 2
2

44 242 ++=++⋅ −−+
 −−−−= 2

4
lg015.0029.013.0

SOh pHE α
 

8 OHSOPbeHOHPbSOPbO 2
2

424 44863 ++=++⋅⋅ −−+
 −−−= 2

4
lg007.0044.0030.0

SOh pHE α
 

9 OHPbeHPbO 222 +=++ −+
 pHEh 059.0028.0 −=  

10 OHPbSOHSOPbSOPbO 24
2

44 22 +=++⋅ +−

 −+= 2
4

lg5.04.8
SOhE α

 
11 ( ) OHPbSOPbOHSOOHPbSOPbO 24

2
424 2223 +⋅=++⋅⋅ +−

 −+= 2
4

lg5.06.9
SOhE α

 
12 ( ) OHOHPbSOPbOeHSOOPb 224

2
443 43381434 +⋅⋅=+++ −+−

 −+−= 2
4

lg007.0103.0730.1
SOh pHE α

 
13 OHPbOeHOPb 243 322 +=++ −+

 pHEh 059.0076.1 −=  
14 OHPbSOPbOHSOPbO 24

2
4 324 ⋅⋅=++ +−

 −+= 2
4

lg5.06.14
SOhE α
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It is a first-order reaction. According to the reaction rate law, the reaction rate can be written 

as, 

2
OHcc 2

ακ=r . (61) 

where, 2
OH2

α expresses the activity of the water, and the constant κ is the rate coefficient of the 

reaction. 

Similarly, the overall side reaction of self-discharging can be written as, 

2224422 2
122 OHOHPbSOSOHPbPbO +++→++

 

(62) 

Since the PbO2 and Pb are both in the solid phase, the activities of both are 1. Therefore, the 

reaction rate of the overall side reaction of self-discharging is  

2
SOHss 42

ακ=r  (63) 

The OCV is the electromotive force that is based on the equilibrium potential of electrodes. 

The equilibrium potential of electrodes is a function of activity. According to the Nernst equation, 

the relationship between OCV and activity is built. ( )OCVf=α . 

If the SOC is known, the concentration of H2SO4 at 25oC can be calculated by SOC definition, 

such as ( )SOCfC =
42SOH . 

The effect of temperature on the OCV can be expressed as a function based on temperature, 

OCV at 25oC and concentration of H2SO4. ( )
42SOH,CTgOCV =  

The reaction rate of the side reaction causing water loss is,  
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( )[ ]
( )[ ]2s

2
SOHss

2
c

2
OHcc

,

,

42

2

SOCTfr

SOCTfr

κακ

κακ

==

==
 

(64) 

In this thesis, because the range of operating temperature of the battery and algorithm operation 

speed are considered, we ignore the effect of temperature. Therefore, the reaction rate of side 

reaction is,  

( )[ ]
( )[ ]22

SOHss

22
OHcc

42

2

SOCfr

SOCfr

s

c

κακ

κακ

==

==
 

(65) 

The amount of water loss can be calculated by the following equations, 

Charging: 

 
∫ ∫==

t t
dtMdtrMm

0 0

2
OHcOHcOHOH 2222

ακ  (66) 

Self-discharge: 
∫ ∫==

t t
dt

M
dtr

M
m

0 0

2
SOHs

OH
s

OH
OH 42

22

2 22
ακ  

(67) 

where, OH2
M is the molar mass of water, which is 18 g/mol. 

4.2  Experiments  

The following three subsections focus on finding out the reaction rates of side reactions.  

Section 4.2.1 introduces the measurement system of pressure. Section 4.2.2 discusses the 

maximum pressure of the battery and the free inner volume of the battery. Finally, section 4.2.3 

describes how to calculate the reaction rate. 

4.2.1  Pressure measurement system  

Figure 70 shows the measurement system of pressure. It is comprised of a pressure sensor, 

electronic valve, manual valve, injector, sample bag, connectors and hose. This system is designed 

to test the reaction rate of water decomposition during charging, discharging and rest ( cκ  and sκ  
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in equation (65)). In this system, as the original safety valve of the battery cannot be controlled, is 

replaced by an electric valve. When the current pressure is larger than maximum pressure (Pmax), 

the electronic valve will reduce the pressure. The Pmax should be measured, the electronic valve 

can be set to work exactly the same as the original valve.  

The manual valve and injector works to test the maximum pressure of the battery and the inner 

volume of the battery. The pressure sensor can convert the air pressure into a voltage signal that 

can be measured and recorded by a PC. The sample bag collects the gas for gas analysis.  

 

Figure 70: Measurement system of pressure. 

Battery 

Pressure 
sensor 

Injector*  

Electronic 
valve  

Manual valve  

Sample bag 

*: For calibration  
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4.2.2  Maximum pressure and inner volume of the battery 

The application of small gas channels in the electrolyte cannot completely eliminate the 

gassing. In order to avoid the lead acid battery exploding due to water evaporation of electrolyte, 

the lead acid battery should install a sealed shell that has a safety valve.  

This valve release gas, when the inner pressure is too high. According to the design 

requirement of different manufacturers, this value of the limit pressure of the valve usually is 1.0-

2.0 psi. The pressure limit is called the maximum pressure of the battery (Pmax). 

Before the calculation of the reaction rate, the maximum pressure should be tested. The steps 

to measure it are as follows.  

1. Turn off the electronic valve; 

2. Turn on the manual valve; 

3. Push piston, inject air; 

4. Turn off the manual valve; 

5. Remove injector, Pull piston;  

6. Repeat step 3~6; 

7. Record the max pressure (maximum allowable pressure of the safety valve: Pmax). 

Another important parameter of the system is the inner free space of the battery (Vsys) which is 

used to calculate the amount of water that decompose.  

When the electric valve is cut off, the manual valve is turned on. In the initial conditions, the 

pressure is P1, the temperature is T1, the volume of injector is Vin, and the inner free space of the 

battery is Vsys. According to the ideal gas equation of the state, the state of the system is,  

( ) 1inys1 nRTVVP s =+  (68) 
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After Vair air is injected in a battery, the pressure and temperature are changed to P2 and T2. 

The state of the system is, 

( ) 2airinsys2 nRTVVVP =−+ . (69) 

The inner free space of the battery can be calculated by equation (70), 

air
1221

12
insys V

TPTP
TPVV
−

−= . 
(70) 

Table 12 is the experimental data collected during this process. According to equation (70), 

using the least square method (LS), the inner free space (Vsys) is calculated. Vsys = 83.1 ml. 

Table 12: Experimental data of inner free space of the battery 

Injected 

volume (ml) 

0 1 2 3 4 5 6 7 8 9 10 

∆P (psi) 0 0.019 0.056 0.100 0.144 0.189 0.231 0.276 0.318 0.365 0.405 

 

4.2.3  Reaction rate 

The experimental data of voltage, current, temperature, and change in pressure are shown in 

Figure 71. The goal of this experiment is to calculate the water loss by measuring the pressure 

change during battery operation. Terminal voltage and current of the battery are plotted in Figure 

71 (a) and (b).. First, this battery is charged by C.C. and C.V. The current in C.C. mode is 45A and 

then rested for two hours. Temperature and difference between air pressure and battery pressure 

and is shown in Figure 71 (c) and (d) is shown in. 

The pressure change (Figure 71 (d)) is used to calculate water loss. The flowchart of the 

calculation is shown in Figure 72, where nout and ngen denote the molar quantity of the released 
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gas the generated gas. Before the test, the initial pressure (P0) and temperature (T0) are measured 

and the pressure and temperature are measured during charging and discharging. If the pressure 

is less than Pmax, the ngen is calculated by equation (71), otherwise the nout is calculated by 

equation (72). Finally, the mass of water loss is calculated by equation (73), where Mgas is the 

molar mass of oxygen and hydrogen.  

. 








−+=

0

0

T
P

T
P

R
V

nn
k
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outgen

 

(71) 
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
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
−+=

0
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P
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V

nn
k

ksys
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(72) 

gasgenloss Mnm =  
(73) 

 

Figure 71: Experimental data of voltage, current, temperature and pressure change. 
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Figure 72: Flowchart of the measurement of water loss. 

The amount of water loss is shown in Figure 73. Using equation (65) and the results of the 

amount of water loss, the reaction rate of water loss can be fitted. 91021.8 −×=cκ  and

111043.1 −×=sκ . 
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Figure 73: Amount of water loss in charging and rest. 

4.3  Results of water loss 

Figure 74 shows the voltage, current, temperature, and the change in pressure of a fresh battery 

during a full cycle that consists of constant current charging, constant voltage charging, rest, 

constant current discharging, constant voltage discharging, and another rest. The estimation of 

water loss is shown in Figure 75. After about nine hours’ test, predicted water loss was 0.42µg. 

Most of the water loss takes place at the end of C.C. charging and the beginning of C.V. charging, 

where the SOC, voltage, and temperature are very high.  

The voltage, current, temperature, and the change of the pressure of an aged battery during 

multi-cycles is shown in Figure 76. Every single cycle consists of constant current charging, 

constant voltage charging, rest, constant current discharging, constant voltage discharging, and 
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another rest. Figure 77 shows the result of water loss estimation. After 4 cycles, the total water 

loss was 1.8µg, and 0.45µg in each cycle, which matches the test results in a single cycle of Figure 

75. Similar to the previous tests, most of the water loss takes place at the end of C.C. charging and 

the beginning of C.V. charging, where all the SOCs, voltages, and temperatures are very high. 

Figure 78 shows the voltage, current, temperature, and the change in pressure of a used cell 

during a random current. It is testing the algorithm in normal application. The result of water loss 

in this process is shown in Figure 79. Different from the previous two tests, the water loss is not 

much, the temperature keeps 40oC, and the voltage is less than 13V.  

The results of water loss estimation plotted in Figure 75, Figure 77, and Figure 79 show good 

match with measurements, although there are some errors, because the effect of temperature is 

ignored in this algorithm. Consideration of the effect of temperature could make the algorithm 

more accurate. Moreover, all the results show that high SOC, over temperature and voltage leads 

to more water loss, which results in fast battery degradation. Therefore, the BMS should monitor 

the SOC, voltage, and temperature of the battery, and control the battery usage in real application 

to prolong the battery’s cycle life.   
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Figure 74: Experimental data of a fresh battery during a full cycle (C.C. charging, C.V. 

charging, rest, C.C. discharging, C.V. discharge and rest) at 40oC, including voltage, current, 

temperature, and change of pressure. 
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 Figure 75 Estimation of water loss during a full cycle at 40oC. 
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Figure 76: Experimental data of an aged battery during multi-cycle test at 40oC, including 

voltage, current, temperature, and change of pressure. 
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Figure 77: Estimation of water loss during multi-cycle test at 40oC. 
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Figure 78: Experimental data of a fresh battery during random charge and discharge at 40oC, 

including voltage, current, temperature, and change of pressure. 
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Figure 79: Estimation of water loss in a randomly charging and discharging cycle. 
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Chapter 5: Conclusion and future work 

5.1  Conclusion 

5.1.1  SOC estimation  

This work focuses on developing an SOC estimation method for the AGM lead acid battery 

operating at various temperatures and aging states. The proposing SOC estimation method 

combined two methods. One is Coulomb counting that works in C.V. charging and is improved 

by a capacity-temperature model.  The other method is based on second order ECM, where the 

EKF is used for error correction. The state of the system includes the SOC and the parameters of 

the ECM. The parameters are identified online. The new method works well in C.C. charging, C.V. 

charging, and C.C. discharging at various temperatures.  

Through a set of drive cycle data, the simulation results show the accuracy, practicability, and 

reliability of the novel SOC estimation method. 

5.1.2  Water loss estimation 

This thesis proposes a new method to measure water loss of an AGM lead acid battery. The 

mass of water loss is calculated based on the measured pressure change taking place inside the 

battery. Using this method, the side reaction rate is also calculated. The mass of water loss, which 

becomes hydrogen and oxygen gas after decomposition, is estimated by the reaction rate. The 

comparison between simulation and experiment results shows accurate estimation of the water loss.  

5.2  Future work 

• For SOC estimation, further development of ECM for CV mode is needed. 

• For estimation of water loss, effects of temperature and aging process should be 

considered.  In addition, effects of water loss should be considered for efficiency of 
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charging, estimation of capacity and aging process including OCV. The effects of water 

loss can be explain in three categories.  

First, the gases are generated from water in electrolyte, which process dissipates a lot of energy, 

particularly when charging and affects charging efficiency. 

 Second, oxygen produced by the gassing plays a very important role in the positive plate. 

During gassing, the oxygen evolved at the positive plate surface penetrates through the corrosion 

layer to the lead grid and oxidizes its surface to PbO2. The obtained PbO2 layer has a high Ohmic 

resistance. If the rate of PbO2 formation is higher than the rate of its oxidation to PbO2, a thick 

layer of PbO2 with a high Ohmic resistance forms on the grid surface which leads to a high 

polarization of the plate on discharge and eventually causes a capacity loss [1]. 

Third, when gassing occurs, the concentration of the electrolyte increases because of water 

loss. Effects of the electrolyte concentration of H2SO4 on aging process are summarized in Figure 

80. 
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Figure 80: Effects of concentration of H2SO4 on lead acid degradation. 

The most important effect of water loss is the change of OCV that V is directly related to the 

electrolyte concentration (See Chapter 4). When the concentration increases, the OCV tends to 

increase, which is shown in equation (52). For SOC estimation, the OCV-SOC curve is assumed 

to be unchangeable with battery conditions. Considering water loss, the OCV-SOC curve should 

be updated during aging.  
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