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Abstract

With the advancements in science and ever changing technology to collect data, func-

tional data have become common these days, especially in various fields such as neuroscience,

chemometrics, e-commerce and computer science. Thus, in last two decades a vast amount of

new statistical methodologies to analyze such data, so-called, functional data analysis, have

been developed. Much research has been done in various areas of functional data analysis

like functional linear regression, functional logistic regression, functional ANOVA, functional

principal component analysis and functional outlier detection.

Just as in ordinary multiple regression analysis, variable selection is an important problem

in the functional regression framework. The area of functional variable selection is seldom

discussed in functional data analysis. The classical existing functional variable selection

methods are all based on minimizing the penalized residual sum of squares, which is non-

robust in nature, in the presence of outliers. In this work, we study robust variable selection

methods for functional regression model with a scalar response and functional predictors in

the presence of outliers.

Essentially, we consider ways that minimize the effect of outliers on the parameter estima-

tor and selector. Since multiple parameters exist for a functional predictor group variable

selection methods are used for selecting functional predictors that select grouped variables

rather than individual variables. We consider the problem of selecting functional predictors

using the L1 regularization in a functional linear regression model with a scalar response and

functional predictors in the presence of outliers.
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Four estimation approaches are discussed: functional LAD- group LASSO, functional

Weighted LAD- group LASSO, functional LAD- Adaptive group LASSO and functional

Weighted LAD- Adaptive group LASSO. We present an extensive simulation study and a

real world example to illustrate the performance of the proposed estimators.
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Chapter 1

Functional Data Analysis

1.1 Introduction

Functional data analysis has become increasingly frequent and important in diverse fields of

sciences, engineering, and humanities, in the last two decades. Imperative data pertaining

to these fields is functional in nature, for instance, genomics data, fMRI data, DTI data,

weather data.

Functional data analysis has basically the same goals as those of any other branch of statis-

tics, as pointed out in Ramsay and Silverman [26] . These include:

• Representing the data in ways that helps further analysis.

• Displaying the data in a way that highlights various characteristics.

• Studying significant sources of pattern and variation among the data.

• Explaining variation in a dependent variable using independent variable information.

• Comparing several sets of data with respect to certain types of variation, where different

sets of data can contain different sets of replicates of the same functions, or different

functions for a common set of replicates.

Functional data analysis includes techniques like functional logistic regression, functional

linear regression, functional ANOVA, functional principal component analysis, functional

outlier detection, functional linear discriminant analysis, functional variable selection, to list

a few. Several authors such as Ferraty and Vieu [9], Ramsay and Silverman [26], Bali et. al

[2], Cardot and Sarda [4], Gertheiss et al [11] have explored several areas of functional data
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analysis.

Functional data are usually observed and recorded discretely as n pairs (tj, yj), and yj is a

snapshot of the function at time tj. This can be expressed in notation as

yj = x(tj) + εj (1.1)

where the error term εj contributes to a roughness to the raw data.

Time is so often the continuum over which functional data are recorded, but certainly other

continua, such as spatial position, frequency, weight, etc. may be involved. The term “func-

tional” in reference to observed data refers to the intrinsic structure of the data rather than

to their explicit form. The basic principle of functional data analysis is to think of observed

data functions as single entities, rather than merely as a sequence of individual observa-

tions. Functional data analysis uses the fact that functions defined on a specific domain

form an inner product vector space and can be treated algebraically like vectors. This helps

in executing the counterparts of ordinary multivariate statistical methods in functional space

rather than in the space spanned by vectors of individual observations.

For example, fMRI data shown in Figure 1.1 [32], are considered functional for the same

reason. Data delivered by the functional magnetic resonance imaging (fMRI) scans can

be considered continuous functions of time sampled at the inter-scan interval and can be

treated as functional data. Another example of functional data is annual Canadian weather

dataset [26] which includes mean monthly temperatures at 35 Canadian weather stations,

as shown in Figure 1.2. This dataset can be treated as functional data because the data

(temperatures) are collected over 12 months (time). In addition, the underlying function x

is assumed to be smooth, so that a pair of adjacent data values, yj and yj+1 are necessarily

linked together to some extent and unlikely to be too different from each other. If this

smoothness property did not apply, there would be nothing much to be gained by treating

the data as functional rather than just multivariate.

2



Figure 1.1: fMRI Images
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Figure 1.2: Annual Canadian Weather Data
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By smooth, it usually means that function x possesses first or higher order derivatives. Usu-

ally the discrete data yj, j = 1, . . . , n is used to estimate the function x and at the same

time a certain number of its derivatives, as described next.

Representing functions using basis functions:

Assuming that a functional datum for replication i arrives as a set of discrete measured

values, yi1, . . . , yin, the first task is to convert these values to a function xi with values xi(t)

computable for any desired argument value t. If the discrete values are assumed to be error-

less, then the process is interpolation, but if they have some observational error that needs

removing, then the conversion from discrete data to functions may involve smoothing.

The use of linear combinations of basis functions is a well adapted computational device to

represent functions. The curve x can be estimated using K known basis functions φk, as

below:

x(t) = ΣK
k=1akφk(t) (1.2)

which, in matrix notation becomes

x(t) = aTφ (1.3)

where, φ is the functional vector whose elements are the basis functions φk(t) and a is the

vector of length K of the coefficients ak.

Basis expansion method, in effect is a way to represent the infinite dimensional world of

functions within the finite-dimensional framework of vectors like a. K, therefore becomes

the new dimension. There are several ways to choose K, some of which are described in

Ramsay and Silverman [26]. However, It would be a mistake to infer that this simply re-

duces functional data analysis to multivariate data analysis, as the choice of basis system

plays an important role here. Technically, basis functions should have features that match
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to the functions being estimated. To summarize, most commonly used basis system these

days are Fourier basis for periodic data, B-spline basis for non-periodic data and Wavelet

bases where derivatives are not required, for functional data analyses.

Next we provide the following tools and summary statistics for functional data:

• The size of a function x is measured by the norm of the function x, ‖ x ‖. A basic

type of norm is L2 norm given by

‖ x ‖2= < x, x >=

∫
x2

where < x, x > is the inner product of x.

• The size of the second derivative of a function x, that is, |D2x(t)| or [D2x(t)]2 is used

to measure its curvature at argument t.

• The functional mean:

x̄(t) = N−1ΣN
i=1xi(t) (1.4)

It is the average of the functions point-wise across N records.

• The variance function:

varX(t) = (N − 1)−1ΣN
i=1[xi(t)− x̄(t)]2 (1.5)

and the standard deviation function is the square root of the variance function.

• The covariance function:

covX(t1, t2) = (N − 1)−1ΣN
i=1[(xi(t1)− x̄(t1))(xi(t2)− x̄(t2))] (1.6)

5



The covariance function summarizes the dependence of records across different t1 and t2.

Basically, functional summary statistics are extensions of ordinary univariate summary

statistics to functional data.

1.2 Functional Regression Model

Functional data are different from ordinary data because there is assumed to be an underlying

curve describing the data. Functional Data can be considered a set of data consisting of a

sequence (Xi, Yi) for i = 1, 2, . . . , N . Different set-ups of Xi and Yi give rise to the following

regression models as described in Ramsay and Silverman [26]:

1. A model with both functional response and functional predictor(s): In this case, the

observed data are in the form of (Xij(t), Yi(t) : t ε T ), where i = 1, . . . , N , j = 1, . . . , p

and T is the support of the functional response and functional predictors which need

not be same for all the predictors. Here both Xj(t) and Yi(t) are real functions defined

on some interval of <. The model is defined as,

Yi(t) = α(t) + Σp
j=1

∫
T
Xij(t)βj(t)dt+ εi(t), i = 1, . . . , N ; j = 1, . . . , p (1.7)

where Yi(t) is the functional response, α(t) is the intercept function, β(t) is the coeffi-

cient function and εi(t) is the residual function.

2. A model with a functional response and scalar predictor(s): The observed data in this

case are in the form of (Xij, Yi(t) : t ε T ), where i = 1, . . . , N , j = 1, . . . , p and T is

the support of the functional response. The model is as below,

Yi(t) = α(t) + Σp
j=1Xijβj(t) + εi(t), i = 1, . . . , N ; j = 1, . . . , p (1.8)

where Yi(t) is the functional response, Xij is the scalar predictor, α(t) is the intercept

function, β(t) is the coefficient function and εi(t) is the residual function.
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3. A model with a scalar response and functional predictor(s): In this case, the observed

data are in the form of (Xij(t), Yi : t ε T ), where i = 1, . . . , N , j = 1, . . . , p and T is

the support of the functional predictor(s). The model becomes,

Yi = α + Σp
j=1

∫
T
Xij(t)βj(t)dt+ εi, i = 1, . . . , N ; j = 1, . . . , p (1.9)

where Yi is the scalar response, α is the intercept, β(t) is the coefficient function and

εi is a sequence of iid centered random variables uncorrelated with Xi.

A functional model can be thought of as a continuous version of Multivariate Linear Regres-

sion. The link between predictors and responses is analyzed through the above relations.

In this dissertation, we focus on the model described in equation (1.9). We develop robust

variable selection methods for this model scenario. There has been an evolving literature

devoted to understanding the performance of estimation of functional predictors. Escabias

et al. [7], Denhere and Billor [5], Boente and Fraiman [3], Gervini [12], Bali et al. [2], Sawant

et al. [29], Goldsmith et al. [15] and Ogden and Reiss [25] proposed some robust parameter

estimation techniques in functional logistic regression model, functional principal component

analysis and generalized functional linear models, respectively.

Just as in ordinary data analysis, variable selection is also an important aspect of functional

data analysis. Functional data suffer from high dimensionality and multicollinearity among

functional predictors. This could lead us to wrong model selection and hence wrong scientific

conclusions. Collinearity also gives rise to issues of over fitting and model misidentification.

So it is very important to perform variable selection on functional covariates. With sparsity,

variable selection effectively identifies the subset of significant predictors, which improves

the estimation accuracy and therefore, enhances the model interpretability. However, in the

presence of outliers, that are curves deviating from the remaining of functional data, the
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effective and correct selection of significant functional covariates become even more chal-

lenging.

Not much work has been done in the area of variable selection for functional predictors

in functional regression models. Gertheiss et al. [11], Matsui and Konishi [22], Lian [18],

Zhu and Cox [38] and Zhaoa et al. [37] proposed some variable selection techniques for

functional predictors via L1 and L2 regularizations, for instance, using various roughness

penalties like gLASSO, Wavelet based- LASSO, gSCAD for the generalized functional lin-

ear models. However, these methods do not work well in the presence of outliers. Since

these variable selection techniques are all based on the estimation of the coefficient functions

in which the estimates are obtained by minimizing the penalized residual sum of squares,

which is known to be non-robust in nature. Thus, there is a need for a robust variable

selection method which is resistant to outliers. Lilly and Billor [19] have proposed group

LAD − LASSO for multiple regression model, but to our knowledge, there is no work that

has been done in the area of robust variable selection of the functional linear model.

1.3 Summary and Discussion

In this chapter we provide an insight on functional data , functional data analysis and

different functional regression models. We also describe the research problem we considered

for this dissertation. To summarize, in this dissertation we propose new methodologies that

minimize the effect of outliers in the estimation and selection of the functional covariates

in functional linear models. In this research work, we consider the problem of selecting

functional predictors using the L1 regularization in a functional linear regression model with

a scalar response and functional predictors in the presence of outliers. The first step that we

take is to reformulate the functional linear model as a multiple linear one by approximating

the functional covariates as a linear combination of an appropriate basis as discussed in

Ramsay and Silverman [26]. Then we apply robust methods like functional LAD-group

LASSO, LAD-Adaptive group LASSO, Weighted LAD-group LASSO and Weighted LAD-
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Adaptive group LASSO procedures for selection of grouped variables where each functional

predictor is assumed to have grouped parameters.
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Chapter 2

Variable Selection Methods

In this chapter, we review existing variable selection methods, based on different penalty

functions, for both ordinary data and functional data. Section 2.1 presents some variable

selection methods for ordinary Multiple Regression Model and Section 2.2 discusses all the

classical existing variable selection methods for functional data to our knowledge.

2.1 Variable Selection Techniques for Multiple Regression Model

In this section, we review variable selection methods using penalized estimation for ordinary

data . Consider the following standard multiple regression model for an ordinary data (xij, yi)

with p predictors.

y = Xβ + ε (2.1)

where y is an n × 1 vector of response yi, X is n × p matrix of predictors Xij, β is

an p × 1 vector of coefficients βj and ε is n × 1 vector of errors εi for i= 1, . . . , n; j =

1, . . . , p. Moreover, the εi are assumed to be statistically independent, each with mean 0 and

(unknown) standard deviation σ.

In general, the estimates of the unknown coefficients βj can be considered as minimizers of

1
2
‖ y −Xβ ‖2 +λ∗Σp

j=1|βj|q (2.2)

where λ∗ = nλ/q and 0≤ q ≤ 2.

This is a general case of PLS (Penalized Least Squares) estimation with Lq penalty, where

λ is the shrinkage parameter. Different values of q and λ give the following special cases of
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PLS Regression:

1) The OLS (ordinary least squares) regression (λ = 0)

If λ is 0, then we get ordinary least squares regression, which does not use any penalization.

2) The Ridge regression (q = 2)

PLS becomes Ridge regression if the value of q is 2. Ridge regression is an L2 regularization

method developed by Hoerl and Kennard [16] in 1970.

The estimates of the regression coefficients by this method β̂ are

β̂ = argmin
β

(‖ y −Xβ ‖2 +λΣp
j=1β

2
j ) (2.3)

Here λ is the shrinkage parameter that controls the size of the coefficients and the amount

of regularization. Also as λ ↓ 0, we obtain the least squares solutions and as λ ↑ ∞ , we get

β̂ridgeλ=∞ = 0, that is, intercept-only model.

3) The LASSO (q = 1)

If the value of q is 1, then PLS is called LASSO. LASSO is a variable selection method which

stands for Least Absolute Shrinkage and Selection Operator. Since ridge regression fails to

provide a parsimonious model with few parameters, Tibshirani [30] introduced an improved

method LASSO in 1996. This method is an L1 regularization technique that simultane-

ously performs model selection and parameter estimation by shrinking certain coefficients

to exactly 0, excluding those predictors from the model. The other, non-zero, coefficients

represent variables that are relevant to the model.

The estimates of the regression coefficients by the LASSO method β̂ are

β̂ = argmin
β

(1
2
‖ y −Xβ ‖2 +λΣp

j=1|βj|). (2.4)
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In general a good penalty function should result in an estimator with the following three

desired properties.

1. Unbiasedness: The resulting estimator is nearly unbiased when the true unknown param-

eter is large to avoid unnecessary modeling bias.

2. Sparsity: The resulting estimator is a thresholding rule, which automatically sets small

estimated coefficients to zero to reduce model complexity.

3. Continuity: The resulting estimator is continuous to avoid instability in model prediction.

The Lq penalty functions described above do not simultaneously satisfy the mathematical

conditions for unbiasedness, sparsity, and continuity. But the following two penalty func-

tions called SCAD ( developed by Fan and Li [8] ) and Adaptive LASSO (developed by

Zou [39]), give estimators that satisfy these three desired properties. Next we provide the

details of these penalties.

4) SCAD

Since the Lq penalty functions described previously do not posses the three desired properties

mentioned above, Fan and Li [8] in 2001, propose a continuous differentiable penalty function

called SCAD (Smoothly Clipped Absolute Deviation). SCAD penalty function is symmetric

and have singularities at the origin to produce sparse solutions. Furthermore, SCAD is also

bounded by a constant to reduce bias and satisfies certain conditions to yield continuous

solutions. Fan and Li [8] also show that SCAD has oracle property that is, it works as well

as if the correct sub-model were known in advance.

The estimates of the regression coefficients by the SCAD method β̂ are minimizers of

`(β) + nΣp
j=1pλ(|βj|)

where `(β) is a loss function of β and pλ(|βj|) is the SCAD penalty.
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The first derivative of pλ(|βj|) is given by

p′λ(|β|) = λ{I (|β| ≤ λ) +
(aλ− |β|)+

(a − 1 )λ
I (|β| > λ)} (2.5)

for some a > 2 and θ > 0. In practice, the best pair (λ, a) can be searched for over the

two-dimensional grids using some criteria, such as cross-validation and generalized cross-

validation.

5) Adaptive LASSO

Since there are scenarios in which the LASSO selection is not consistent, therefore to over-

come this problem, Zou [39] propose a new version of the LASSO, the Adaptive LASSO

in 2006. Adaptive LASSO uses data dependent adaptive weights for penalizing different

coefficients in the L1 penalty. The LASSO penalizes all the coefficients using same λ, but

the Adaptive LASSO enforces different weights on different coefficients.

The estimates of regression coefficients by the Adaptive LASSO method β̂ are

β̂ = argmin
β

(1
2
‖ y −Xβ ‖2 +λΣp

j=1νj|βj|) (2.6)

where νj are data adaptive weights. For a given γ > 0, the weight νj can be defined as

νj = 1
|β̈j |γ

, where β̈j is an initial estimate of βj. For example, β̂(ols) can be used as an initial

estimate of βj. Zou [39] also show that the Adaptive LASSO possesses the oracle property,

which means it performs as well as if the true underlying model were given in advance.

Furthermore, in many statistical modeling problems, known grouping structures of the vari-

ables arise naturally. Several methods have been proposed for variable selection that respect

grouping structure in variables. Below we discuss the group versions of some methods pro-

vided above.
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6) Group LASSO

Group LASSO (gLASSO) is a natural extension of the LASSO and selects variables in a

grouped manner. It is proposed by Yuan and Lin [36] in 2006.

For this consider independent observations (yi, xi), i = 1, . . . , n where, xi = (x′i1, . . . , x
′
iM)′

and xim represents a group of predictors. Then the linear regression model with M group of

predictors is defined as

Y = α + ΣM
m=1xmβm + ε (2.7)

where α ε < is the intercept, each βm is a vector whose components are the regression

coefficients for the mth group of predictors and Yn×1 is the vector of responses.

The coefficients are defined as

β̂ = argmin
β

(||Y −Xβ||22 + λΣM
m=1||βm||2) (2.8)

where λ is a tuning parameter and β = (α, β′1, . . . , β
′
M)′. The penalty is a mixture of L1 and

L2 regularization methods, the LASSO and the Ridge regression penalties.

7) Adaptive group LASSO

Adaptive group LASSO (agLASSO) is the group version of the Adaptive LASSO. It is

proposed by Wang and Leng [34] to overcome the limitations of gLASSO, like estimation

inefficiency and selection inconsistency.

Consider the same model defined in (2.7), then the Adaptive group LASSO based estimator

minimizes the following objective function:

Q(β) = argmin
β

(||Y −Xβ||22 + ΣM
m=1λm||βm||2) (2.9)

As can be seen, the key difference between the agLASSO and gLASSO is that the agLASSO

allows for different tuning parameters for different factors. Such a flexibility in turn produces
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different amounts of shrinkage for different factors. Intuitively, if a relatively larger amount

of shrinkage is applied to the zero coefficients and a relatively smaller amount is used for the

nonzero coefficients, an estimator with a better efficiency can be obtained.

2.2 Variable Selection Techniques for Multiple Functional Regression Model

In this section, we review variable selection methods for functional data existing in literature.

These methods include variable selection techniques for functional predictors via L1 and L2

regularizations, for instance, using roughness penalties like Wavelet based-LASSO, Group

SCAD (gSCAD) and Group LASSO (gLASSO). Variable selection of the functional predictors

based on non- group structured methods fails since multiple parameters exist for a functional

predictor. Therefore, group based methods are used for selecting functional predictors since

they selects grouped variables rather than individual variables.

Consider a functional regression modeling setup where the response Yi is scalar for the ith

subject and X1, X2, . . . , Xp are the squared integrable random curves, Xj : TI ⊂ < → < and

Xi1, Xi2, . . . , Xip denote their independent realizations, respectively.

For the sake of simplicity, each Xij is considered to be observed without measurement error

at a grid of time points {tj1, tj2, . . . , tjNj}. Then a functional linear model with the scalar

response and p functional predictors can be defined as :

Yi = α + Σp
j=1

∫
TI
Xij(t)βj(t)dt+ εi, i = 1, . . . , N. (2.10)

The main object of interest in this model is to estimate the regression coefficient functions

which are assumed to be smooth and squared integrable. The random error terms εi are

assumed to be independent normally distributed with mean 0 and variance σ2. α is a scalar

parameter and βj(t) is a parameter function for j = i, . . . , p.

To overcome infinite dimensionality issue which is inherent with functional data, a multivari-

ate generalization can be applied to this functional form of the model using basis expansion.
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The curves Xij(t) can be discretized on a finite grid and expressed as linear combination of

basis functions:

Xij(t) = ΣK
b=1aijbφjb(t) (2.11)

where φjb(t) are the known basis functions and aijb are the corresponding coefficients.

The coefficient functions βj can also be expressed as linear combination of some known basis

functions as:

βj(t) = ΣK
b=1cjbφjb(t) (2.12)

where φjb(t) are the known basis functions (need not be the same as used for Xij(t)) and cjb

are the unknown corresponding coefficients. These basis coefficients become the predictors

in the transformed space, that need to be estimated.

After these modification to Xij(t) and βj(t) the model in (2.10) can be written in matrix

form as:

Y = Zβ + ε. (2.13)

We summarize the existing functional variable selection methods in the following:

1) Wavelet based - LASSO

Wavelet based-LASSO method is proposed by Zhao et al [37]. Wavelets are the basis func-

tions that can be used to efficiently approximate other functions with relatively few nonzero

wavelet coefficients. The construction of a wavelet family starts with two related and suit-

ably chosen orthonormal basic functions: the scaling function φ and the mother wavelet ψ.

Both the βj(t) function and the functional predictors Xij(t) in model (2.10) are expressed

in terms of their wavelet components.
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The wavelet coefficients become the predictors in the transformed space. The LASSO

estimates for the coefficients of the regression model (2.13) is obtained by

β̂λ = argmin
β

1

2
(Y − Zβ)′(Y − Zβ) + λΣp

j=1|βj|, (2.14)

where λ is a nonnegative tuning parameter, chosen by K-fold cross validation (CV ).

2) Group SCAD

Group SCAD (gSCAD) penalty for functional data has been proposed in two different sce-

narios by Matsui and Konishi [22] and Lian [18]. We discuss both approaches below:

(i) gSCAD By Matsui and Konishi [22]

In this method, Gaussian basis functions expansion is used for both βj(t) function and the

functional predictor Xij(t) in model (2.10) and then a penalized log-likelihood function is

maximized

`λ(θ) = `(θ)− nΣM
m=1pλ(||b∗m||2) (2.15)

where l(θ) = Σn
a=1logf (yα|xα; θ) is a log-likelihood function, pλ(.) is a SCAD penalty func-

tion, b∗m are parameter vectors and ‖ b∗m ‖2 =
√

(b∗m
TGmb∗m), with the pm × pm positive

semi- definite matrix Gm. The first derivative of the SCAD penalty p(.) is given by (2.5).

As mentioned in Section 2.1, the SCAD penalty possesses nice properties like Sparsity, Con-

tinuity, unbiasedness and oracle property.

(ii) gSCAD By Lian [18]

In this method functional principle component analysis (FPCA)-based estimation is com-

bined with gSCAD. As suggested by Mercer’s theorem and Karhunen-Loève theorem, the

basis can be taken to be the eigenfunctions of the covariance operator K, where if k(s, t) =
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Cov(X(s), X(t)) then K is given by:

KX(t) =

∫
X(t)k(s, t)ds. (2.16)

The coefficients aijb in (2.11) in this case are called the functional principal components scores

of the functional data. Eigen basis functions can be estimated using various techniques. Some

of the methods are described in Ramsay and Silverman [26].

To select functional predictors simultaneously, the following criterion function is minimized

`(θ) + nΣp
j=1pλ(||βj||2)

where `(θ) is least squares loss function, ||.||2 is the L2 norm and pλ(.) is the SCAD penalty

as defined in (2.5).

Furthermore, Wang et al. [35] proposed using same group SCAD penalty for estimating

varying-coefficient models with scalar predictors and a functional response.

3) Functional group LASSO

Functional group LASSO is proposed by Gerthesis et al. [11] in 2013. In this method the

curves Xij(t) are discretized as Riemann Integration as below:

∫
Xij(t)βj(t)dt ≈ ΣmXij(tm)βj(tm). (2.17)

The coefficient functions βj are defined using B- spline basis functions as described in (2.12).

The following objective function is minimized in this method:

`(β) + Pλ,ϕ(βj) (2.18)
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where `(β) is a least square loss function and Pλ,ϕ(βj) is the penalty function defined by

Meier et al. [23].

Specifically,

Pλ,ϕ(βj) = λ(||βj||22 + ϕ||β ′′

j ||22)1/2 (2.19)

where ||.||22 =
∫

(.)2dt is the L2 norm and β
′′
j is the second derivative of βj.

Here, λ is the parameter that controls sparseness and ϕ is the smoothing parameter that

controls smoothness of the coefficients. As the sparsity parameter λ increases, the estimated

coefficient functions β(t)’s are shrunk and at some value, set to zero. As the smoothing

parameter ϕ increases, the departure from linearity is penalized stronger and thus the esti-

mated curves become closer to a linear function. Smaller values for ϕ result in very wiggly

and difficult to interpret estimated coefficient functions. For optimal estimates (in terms

of accuracy and interpretability), an adequate (λ, ϕ) combination has to be chosen. λ and

ϕ are selected via K-fold cross-validation. The most commonly used values of K are 5 and 10.

4) Functional Adaptive group LASSO

Functional Adaptive group LASSO is also proposed by Gerthesis et al. [11].

The penalty function Pλ,ϕ(βj) in equation (2.23) is modified as below for this method:

Pλ,ϕ(βj) = λ(κj||βj||22 + ϕνj||β
′′

j ||22)1/2. (2.20)

where the weights κj and νj are chosen in a data-adaptive way. The choice of weights

is meant to reflect some subjectivity about the true parameter functions and to allow for

different shrinkage and smoothness for the different covariates. One possibility for choosing

the weights is to use initial parameters estimates, based on smoothing solely, but without

using sparseness-assumptions. Adaptive estimation has been shown to reduce the number

of false positives considerably in penalty-based variable selection.
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2.3 Summary and Discussion

In this chapter we provided a literature review of some of the variable selection methods

for ordinary multiple regression model and all variable selection methods for functional re-

gression model to our knowledge. We notice that, since multiple parameters exist for a

functional predictor, so the methods which select grouped variables rather than individual

variables, should be used for functional regression models. We also notice that the variable

selection methods in the functional linear regression literature are merely special cases of

the penalized least squares regression and, as a result, suffer from the presence of outliers.

Some outlier resistant methods such as Maronna and Yohai [21] have been proposed to ad-

dress the robustness in estimation of the functional parameters. However, to our knowledge,

no robust method has been proposed for simultaneous parameter estimation and selection

for functional regression models. This sets up the bases for our work proposed in the next

chapters, where we introduce four robust variable selection methods for functional regression

model. These methods are called functional LAD- group LASSO, functional LAD- Adap-

tive group LASSO, functional WLAD- group LASSO and functional WLAD- Adaptive group

LASSO. Functional LAD- group LASSO and functional LAD- Adaptive group LASSO are

discussed in Chapter 3 and functional WLAD- group LASSO, functional WLAD- Adaptive

group LASSO are discussed in Chapter 4.
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Chapter 3

Robust Group Variable Selection Methods for Multiple Functional Model in the Presence

of Outliers in the Response Variable

3.1 Introduction

Variable selection is an important problem in functional regression analysis, just as in ordi-

nary regression analysis. Usually, a large number of predictors are introduced at the initial

stage of the regression model to mitigate possible modeling biases. However, including un-

necessary predictors can vitiate the estimation and prediction efficiency of the resulting

procedure. On the other hand, omitting an important explanatory variable may produce

biased parameter estimates and prediction results.

Functional variable selection problem when multiple functional observations exist is fairly

new research problem in functional regression model, therefore only a few studies have been

published on this statistical problem. Because functional regression coefficients in a multiple

functional regression model are far more complicated than scalar regression coefficients in

classical multiple linear regression, selection of functional predictors for predicting the re-

sponses, even if p, the number of functional predictors, is small, requires the development

of new variable selection methodologies or the extension of the existing ones to the multiple

functional regression model.

Further, since multiple parameters exist for a functional predictor, so a group structure based

techniques, which select grouped variables rather than individual variables, should be used

for functional models. Therefore, since variable selection is an important task in functional

regression analysis, a number of methods, including the functional group LASSO [11] and

functional group SCAD [18], [22] have been proposed.

The variable selection methods in the functional linear regression literature are special cases
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of the penalized least squares regression and, as a result, the presence of outliers has a seri-

ous effect on the resulting estimators. Some outlier resistant loss functions such as biweight

Maronna and Yohai [21] have been proposed to address the robustness in estimation of the

functional parameters. However, to our knowledge, no robust method has been proposed

that carries out robust parameter estimation and variable selection simultaneously for func-

tional regression models.

In this chapter we propose to use a combination of the well known robust loss function

least absolute deviation (LAD) and penalty function group LASSO, where the functional

parameters are estimated and selected through the minimization of the sum of the absolute

value of the errors and penalizing the parameter functions. This method is called functional

LAD-group LASSO (LAD-gLASSO). However, in this method same amount of penalty is

applied to all the parameters. In order to reflect some subjectivity about the true parameter

functions and to allow for different shrinkage and smoothness for the different functional

predictors, in this chapter we also propose an alternative penalty function based on adap-

tive weights for the penalized estimation criterion. This method is called functional LAD-

Adaptive group LASSO (LAD - agLASSO).

The LAD regression method, which is a special case of the M -estimation method, is partic-

ularly well-suited to the heavy-tailed error distributions. However, it is well-known that the

LAD based method is only resistant to the outlier in the response variable, but not resistant

to the outliers in the explanatory variables (leverage points). Wang and Leng [33] also point

out that combining the LAD and the LASSO methods can only produce estimators that

are only resistant to the outliers in the response variable.

To deal with the outliers in the functional explanatory variables we propose a weighted ver-

sion of the functional LAD- gLASSO method. This method is called functional Weighted

LAD-gLASSO (WLAD- gLASSO). This method is not only resistant to outliers in the re-

sponse variable but also minimizes the effect of the leverage points by introducing weights
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which are only dependent on the explanatory variables. This method is discussed in chap-

ter 4. In chapter 4, we also provide an adaptive version of the functional WLAD-gLASSO

in which adaptive LASSO penalty criterion is used to assign different weights to different

coefficients to penalize them differently. This method is called functional Weighted LAD-

Adaptive group LASSO (WLAD- agLASSO).

3.2 Methodology

In order to estimate the parameter functions based on multivariate variable selection idea

we follow two steps. The first step is to formulate the given functional model in a usual

multiple regression model form to overcome infinite dimensionality issue which is inherent

with functional data. The second step is to apply a robust variable selection method based

on robust version of group LASSO that would select the influential functional predictors in

predicting the response.

In this section we will first give a description for a functional regression model with a scalar

response and functional predictors and present a method to reformulate this model as an

ordinary multiple regression model.

As mentioned in chapter 1, functional data are usually sampled discretely over a continuum,

usually time and we assume that there is an underlying curve describing data. In the usual

functional regression modeling setup, we assume that the response Yi is scalar for the ith

subject and X1, X2, . . . , Xp are the squared integrable random curves, Xj : TI ⊂ < → <

and Xi1, Xi2, . . . , Xip denote their independent realizations, respectively.

We also assume that the mean function of the underlying trajectories, Xj is equal to zero.

For the sake of simplicity, each Xij is considered to be observed without measurement error

at a dense grid of time points {tj1, tj2, . . . , tjNj}. Then a functional linear model with the

scalar response and p-functional predictors can be defined as :

Yi = α + Σp
j=1

∫
TI
Xij(t)βj(t)dt+ εi, i = 1, . . . , N. (3.1)
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Our main intent in this model is to estimate the regression coefficient functions, which are

assumed to be smooth and squared integrable. The random error terms εi are assumed to

be independent normally distributed with mean 0 and variance σ2. α is a scalar parameter

and βj(t) is a parameter function for j = 1,. . . , p.

To overcome infinite dimensionality problem, we use basis approximation method. This

requires the use of pre-set basis functions expansion for approximation of the parameter

functions, βj(t) as well as for approximation of the functional predictors, Xij(.). The choices

of basis functions are associated with characteristics of the parameter functions and func-

tional predictors and they do not have to be the same basis functions. Then the integral in

(3.1) can be approximated by Riemann sum as

∫
Xij(t)βj(t)dt ≈ ΣmXij(tm)βj(tm) (3.2)

where,

βj(t) = Σl
b=1cjbφjb(t) (3.3)

Here Φj(t) = (Φj1(t), . . . ,Φjl(t)) is a finite basis and cjb are the corresponding basis coeffi-

cients for b = 1,. . . , l.

Using (3.2) and (3.3), the integral on the right side of the model equation in (3.1) approxi-

mates to the following:

∫
Xij(t)βj(t)dt ≈ Σb{δjΣmXij(tjm)φj(tjm)}cjb = ΣbΦijbcjb = ΦT

ijcj (3.4)

where δj = tjm−tj,m−1, cj = (cj1, . . . , cjl)
T ,Φij = (Φij1, . . . ,Φijl)

T and Φijb = δjΣmXij(tjm)φjb(tjm).

for i = 1,. . . , N and j = 1,. . . , p.

The new model in the usual multiple regression form is then written as

Yi = α + Σp
j=1Φ

T
ijcj + εi, i = 1, . . . , N (3.5)
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where Φij are known and α and cj’s are the unknown regression coefficients that need to

be estimated. In general, due to preset grouping structure of the parameters cj’s, methods

using ordinary penalty function cannot be applied directly to functional data. In partic-

ular, group variable selection methods are employed for functional predictors. One of the

main assumptions in functional regression model as in classical multiple regression model

is that data should be homogeneous, that is free of outliers. However this is almost never

true in real life. Therefore, it is desirable to develop statistical methods that is robust to

such curves that behave differently from the remaining curves in a functional data. In the

following sections we propose two robust functional variable selection methods, which are

based on shrinkage estimation, in the presence of outliers in the response variable. These

are: functional LAD group LASSO (functional LAD-gLASSO) and functional LAD Adaptive

group LASSO (functional LAD- agLASSO).

3.2.1 Functional LAD- group LASSO

First we discuss functional LAD-gLASSO and then functional LAD- agLASSO in the next

section 3.2.2. For the simultaneous estimation of the parameter functions and sparseness of

the solution, Gertheiss et al. [11] proposed a sparsity-smoothness penalty technique, which

is based on the group LASSO penalty function, given by

Σn
i=1(Yi − α− Σp

j=1Φij
Tcj)

2 + Pλ,ϕ(βj) (3.6)

where Pλ,ϕ(βj) is the group LASSO penalty function defined by Meier et al. [23].

However, as discussed in Section 3.1 this method is based on minimization of least squares

and thus suffers from the presence of outliers, therefore necessitating a different type of

approach to handle this issue. Let us write the objective function in general as

Σn
i=1ρ(Yi − α− Σp

j=1Φij
Tcj) + Pλ,ϕ(βj) (3.7)
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where ρ is a loss function, which is robust in nature to take into account the effect of outliers.

There are several robust loss functions such as biweight function. For our research we choose

ρ to be an absolute value function which gives us a new criterion called functional LAD-group

LASSO. According to this criterion, α and cj can be estimated by minimizing the following:

Σn
i=1|Yi − α− Σp

j=1Φij
Tcj|+ Pλ,ϕ(βj) (3.8)

where Pλ,ϕ(βj) is the penalty function as introduced by Meier et al. [23] and used by Gerthesis

et al. [11] for functional variable selection. Specifically,

Pλ,ϕ(βj) = λ(||βj||22 + ϕ||β ′′

j ||22)1/2 (3.9)

where ||.||22 =
∫

(.)2dt is the L2 norm and β
′′
j is the second derivative of βj.

Here, λ is the parameter that controls sparseness and ϕ is the smoothing parameter that

controls smoothness of the regression coefficient functions. As the sparsity parameter λ

increases, the estimated coefficient functions β(t)’s are shrunk and at some value, set to

zero. As the smoothing parameter ϕ increases, the departure from linearity is penalized

stronger and thus the estimated curves become closer to a linear function. Smaller values for

ϕ result in very wiggly and difficult to interpret estimated coefficient functions. For optimal

estimates (in terms of accuracy and interpretability), an adequate (λ, ϕ) combination has

to be chosen. λ and ϕ are selected via K-fold cross-validation, in which the prediction error

of the model is minimized, which is discussed in details in Section 3.3.3. Then we redefine

the penalty function Pλ,ϕ(βj) in (3.9), as proposed by Gerthesis et al. [11].

Pλ,ϕ(βj) = λ(cj
T (Cϕ,j)cj)

1/2 (3.10)
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where Cϕ,j = Ψj + ϕΩj is a l x l symmetric and positive definite matrix, Ψjis a l x l matrix

whose (b, k)th element is
∫
φjb(t)φjk(t)dt and Ωj is a l x l matrix whose (b, k)th element is∫

φ
′′

jb(t)φ
′′

jk(t)dt for b, k = 1, . . . , l.

Further Cϕ,j can be decomposed using Cholesky decomposition as following:

Cϕ,j = Lϕ,jL
T
ϕ,j (3.11)

where Lϕ,j is non-singular lower triangular matrix. Now using (3.10) and (3.11), equation

(3.8) reduces to the following:

Σn
i=1|Yi − α− Φ̃T

ij c̃j|+ λΣp
j=1||c̃j|| (3.12)

where c̃j = LTϕ,jcj and Φ̃ij = L−1ϕ,jΦij.

Now α̂ and ĉj’s are the minimizers of (3.12) and the coefficient function β(t) is estimated by

β̂j(t) = Σl
b=1φjb(t)ĉjb for j = 1, . . . , p.

3.2.2 Functional LAD- Adaptive group LASSO

Because the group LASSO applies same amount of shrinkage to all of the regression coeffi-

cients, this method is not consistent in terms of model selection (Fan and Li [8] ). Efficiency

can also suffer due to the one shrinkage parameter (Zou [39] ). As a result, an adaptive

tuning parameter is introduced, which assigns a different tuning parameter for each group,

allowing the shrinkage to vary from group to group. The same problems arise for LAD-

gLASSO as well.

In this section we consider a different penalty function to allow for different shrinkage and

smoothness for the different covariates. The penalty is supposed to be adaptive in nature.

The functional gLASSO penalty function discussed in section 3.2.1 imposes same penalty on

all the coefficient functions, whereas the adaptive penalty reflects some subjectivity about the

true parameter functions. We call this method as functional LAD- Adaptive group LASSO
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(LAD - agLASSO).

Reconsider the equation (3.7):

Σn
i=1|Yi − α− Σp

j=1Φij
Tcj|+ Pλ,ϕ(βj) (3.13)

here, Pλ,ϕ(βj) is the Adaptive LASSO penalty function as introduced by Zou [39] and used

by Gerthesis et al. [11] for functional variable selection. Specifically,

Pλ,ϕ(βj) = λ(κj||βj||22 + νjϕ||β
′′

j ||22)1/2 (3.14)

where ||.||22 =
∫

(.)2dt is the L2 norm, β
′′
j is the second derivative of βj, κj and νj are the

data adaptive weights.

The choice of weights κj and νj is meant to reflect some subjectivity about the true parame-

ter functions and to allow for different shrinkage and smoothness for the different covariates.

One possibility for choosing the weights is to use initial parameters estimates, based on

smoothing solely, but without using sparseness-assumptions.

Consider a generalized functional linear model with multiple functional covariates, and let

β̈j
′

s, be the initial estimates of the coefficient functions β
′
js, using for example, quantile re-

gression implemented in the R package quantreg. Then, the adaptive weights can be defined

as κj = 1/ ‖ β̈j ‖ and νj = 1/ ‖ β̈j
′′ ‖. Further we consider the following three versions of

Adaptive LASSO:

Adapt 1: In Adapt 1, weights κj are considered 1, which means only smoothness is

concern. That is, only weights νj are used in the penalty function. The following function

is minimized in this method:

Σn
i=1|Yi − α− Σp

j=1Φij
Tcj|+ λ(||βj||22 + νjϕ||β

′′

j ||22)1/2. (3.15)
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Adapt 2: In Adapt 2, weights νj are considered 1, which means only shrinkage is concern.

That is, only weights κj are used in the penalty function. The following function is minimized

in this method:

Σn
i=1|Yi − α− Σp

j=1Φij
Tcj|+ λ(κj||βj||22 + ϕ||β ′′

j ||22)1/2. (3.16)

Adapt 3: In Adapt 3, both weights κj and νj are used in the penalty function, which

means both smoothness and shrinkage are concern for different covariates. The following

function is minimized in this method:

Σn
i=1|Yi − α− Σp

j=1Φij
Tcj|+ λ(κj||βj||22 + νjϕ||β

′′

j ||22)1/2. (3.17)

3.2.3 Choosing the tuning parameters

In this section we discuss how the tuning parameters λ and φ in (3.8) and (3.13) are selected.

We consider K-fold cross-validation to select λ and φ. Explicitly, the original sample is

randomly split into K smaller sets (roughly equal-sized). For each of the K folds, a model is

trained using (K -1) of the folds as training data. The resulting model is validated on the

remaining part of the data using the prediction error of the model given by sum of squared

errors Σi(Yi−Ŷi)2. The K estimates of the prediction error are averaged and the values of the

tuning parameters that minimize the overall prediction error are selected by the criterion.

Most commonly used values of K in the literature are 5 and 10.

Next, in order to show the goodness of the proposed methods we perform a numerical study

in which a Toy example is considered and then a simulation study is conducted. Furthermore,

we show a real data application of the proposed methods.
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3.3 Numerical Study

In this section we provide the numerical performance of the methods proposed in this chapter.

We consider the following three models for numerical study:

• Model (0): No outliers in the scalar response Y and the functional predictors X(t).

• Model (1): Presence of outliers in the scalar response Y only.

• Model (2): Presence of outliers both in the scalar response Y and the functional

predictors X(t).

We take following steps to carry out the numerical study:

A. Generating data:

Generating Functional Predictors Xj(t): The functional predictors X(t) are

generated similarly as in Tutz & Gerthesis [31] from

Xij(t) = [σ(t)]−1Σ5
r=1(aijrsin(πt(5− aijr)/150)−mijr) (3.18)

where i is the number of curves, j is the number of different predictors, aijr ∼ U(0,5), mijr

∼ U(0,2π) and σ(t) is defined so that var[Xij(t)] = 0.01.

Generating Y : Response Y is generated from:

Yi = α +

∫
T
βj(t)Xij(t)dt+ εi (3.19)

where i is the number of curves, j is the number of predictors and εi ∼ N(0, 4).
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B. Contamination of data

Contamination of Y :

In order to create outliers in response Y , the errors ε are generated from the standard nor-

mal distribution, the t-distribution with 2 degrees of freedom, and the t-distribution with 7

degrees of freedom. Several contamination levels (0%, 15%, 25% and 40%) are considered.

However, we only present the results for 0% and 15% contamination levels. In addition, we

provide information based on other attempted contamination levels and comment on empir-

ical breakdown point based on toy example and simulation study.

Contamination of functional predictors Xj(t):

We consider contaminating Xj(t) at 15% level to produce functional outliers. We also con-

sidered other contamination levels, 0%, 25% and 40%, but only the result based on 0% and

15% will be given. The contamination process is carried out as described by Fraiman &

Muniz [10]. The following three types of outlier curves are considered:

• Case (1): Asymmetric contamination Zij(t) = Xij(t)+cM where c is 1 with probabil-

ity q and 0 with probability 1- q and q = {0%; 15%}; M is the contamination constant

size equal to 10 and Xij(t) is as defined in (3.18).

• Case (2): Symmetric contamination Zij(t) = Xij(t)+cσM where Xij(t), c and M are

as defined before and σ is a sequence of random variables independent of c that takes

the values 1 and - 1 with probability 0.5.

• Case (3): Partial contamination Zij(t) = Xij(t) + cσM if t > T and Zij(t) = Xij(t)

if t <T , where T ∼ U [0, 10].
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Numerical Study for functional LAD-gLASSO

First we present numerical study for functional LAD-gLASSO, in which Toy example and

simulation study are presented.

3.3.1 Toy Example

For Toy example we consider two functional covariates X1(t) and X2(t) which are observed

at 50 equidistant points in (0, 50). 50 replications of each predictor are generated. The data

are generated as described in (3.18) and (3.19). We set up the model where the response Y

is related to the X1(t) and not to X2(t). The true model is :

Yi = α +

∫ 50

0

β1(t)Xi1(t)dt+ εi (3.20)

where i = 1, . . . , 50 and εi ∼ N(0, 4).

The parameter function β1(t) corresponding to X1(t) has a sine-wave function shape as

shown in Figure 3.1. We consider contaminating both Xi1(t) and Xi2(t) at 15% level. The

effects of these different types of contamination on Xi1(t) at 15 % level are shown in Figure

3.2. We apply functional LAD-gLASSO to all three model settings: Model (0), Model (1)

and Model (2). The results are as following.

Model (0): No outliers in the scalar response Y and the functional predictors X(t).

First we apply our proposed method functional LAD-gLASSO to Model (0) and compare it

with classical functional gLASSO. Model (0) has neither outliers in scalar response Y nor

in the functional predictors X1(t) and X2(t). The response Y is dependent only on the first

predictor X1(t). Figure 3.3 shows the fitting results of functional LAD-gLASSO and classical

functional gLASSO method. We use rq.fit.lasso () function from the R package quantreg to

implement our proposed method and the R package grplasso for the classical gLASSO. In

Figure 3.3, the green curves display the true functions β1(t) and β2(t); the red and blue
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Figure 3.2: The contaminated Xi1(t) curves for contamination cases 1- 3 (q = 15%).

dashed lines display the estimations done by classical functional gLASSO and the functional

LAD- gLASSO, respectively. The combination of λ and ϕ for boh functional LAD-gLASSO

and the classical functional gLASSO is (λ = 10, ϕ = 10). We can see in Figure 3.3 that

both methods estimate the relevant coefficient β1(t) close to its true value and exclude the

irrelevant coefficient β2(t) from the model.
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Figure 3.3: Fitting results for the comparison of functional LAD-gLASSO (blue) and classical
functional gLASSO (red) for Model (0)(0% contamination).

Model (1): Presence of outliers in the scalar response Y only.

Secondly, we apply our proposed method to the Model (1). Model (1) has outliers only in

scalar response Y . The functional predictors X1(t) and X2(t) are free of outliers. Also the

response Y depends only the first predictor X1(t) and not on X2(t). Since X2(t) is irrelevant

to the true model, so it should be excluded from the model by the applied method. Figure

3.4 shows the comparison of the classical functional gLASSO with the new proposed method

functional LAD-gLASSO. R package quantreg was employed again to execute our proposed

method. In Figure 3.4, the green solid curves display the true functions β1(t) and β2(t), the

red and blue dashed lines display the estimations done by classical functional gLASSO (λ

= 10, ϕ = 10) and the functional LAD- gLASSO(λ = 10, ϕ = 100), respectively. Figure

3.4 shows that our proposed method is not only able to exclude the irrelevant predictor

X2(t) from the model, but is also able to provide good estimation of relevant predictor X1(t)

compared to the classical method. In short, the classical method does poor estimation and

shrinkage, in its comparison to the our proposed robust method.
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Figure 3.4: Fitting results for the comparison of functional LAD-gLASSO (blue) and classical
functional gLASSO (red) for Model (1)(15% contamination).

Model (2): Presence of outliers in both scalar response Y and functional predic-

tors X(t).

Thirdly, we apply our proposed method to Model (2). Model (2) has outliers both in scalar

response Y and functional predictors X1(t) and X2(t). All three cases of contamination

Case 1(Asymmetric contamination), Case 2 (Symmetric contamination) and Case 3 (Partial

contamination) are considered for both functional covariates. The contamination of func-

tional covariates is done as described above. Also only the first covariate X1(t) is relevant

to the true model and X2(t) being irrelevant should be excluded from the model. Figure 3.5

shows the fitting results of classical functional gLASSO and new functional LAD-g LASSO

method. Again R package quantreg is utilized to execute the proposed method. In Figure

3.5, the green curves are the true coefficient functions β1(t) and β2(t), the red dashed lines

represent the estimation done by classical functional gLASSO and the blue lines represent

the estimation done by the functional LAD- gLASSO. Figure 3.5 shows that the performance

of functional LAD- gLASSO reduces in the presence of outliers in explanatory variables, as
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Figure 3.5: Fitting results for the comparison functional LAD-gLASSO (blue) and classical
functional gLASSO (red) for Model (2)(15% contamination).
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expected. The combinations of (λ, ϕ) for Case 1, Case2 and Case 3 contamination cases for

functional LAD- gLASSO are (λ = 10, ϕ = 10), (λ = 1, ϕ = 10) and (λ = 10, ϕ = 100),

respectively. The combinations of (λ, ϕ) for Case 1, Case2 and Case 3 contamination cases

for classical functional gLASSO are (λ = 1, ϕ = 10), (λ = 10, ϕ = 10) and (λ = 10, ϕ =

10), respectively. Both methods functional LAD- gLASSO and classical functional gLASSO

perform poorly in both variable estimation and selection.

3.3.2 Simulation Study

To elucidate the performance of the proposed method functional LAD- gLASSO, we conduct

simulation study in a variety of settings. We use the same technique as described above to

generate as well as contaminate the data for simulation study. We consider the following:

1) 300 observations for the scalar response Y .

2) Ten functional predictors are considered. We generate 300 sample curves for each Xj(t)

which are observed at 300 equidistant time points.

3) The true model is

Yi = α +
5∑
j=1

∫ 300

0

βj(t)Xij(t)dt+ εi. (3.21)

where, εi ∼ N(0,4), and the parameter functions βj(t) are observed at 300 equidistant points

in (0, 300). The shapes of βj(t) are as shown in Figure 3.6. We can see in Figure 3.6 that

the β6(t) - β10(t) are essentially 0. The true model in (3.21) depends only on β1(t) - β5(t).

In simulation study, we compare the performance of the proposed method functional LAD-

gLASSO with classical functional gLASSO in terms of estimation and selection of variables

for three different model scenarios Model (0), Model (1) and Model (2), as described previ-

ously. Again the contamination is done for 15% in Model (1) and Model (2).
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First we consider the squared errors (SE) to assess the performance of the proposed method.

The Squared Error is

SE =

∫
(β̂j(t)− βj(t))2dt (3.22)

where β̂j(t) and βj(t) are the estimated and true coefficient functions, respectively.

Squared errors are observed in 50 independent simulation runs for Model (0), Model (1) and

Model (2). Figures 3.6 and 3.7 show the boxplots of the squared errors for Model (0) and

Model (1), respectively. Figures 3.8 - 3.10 show the boxplots for all three cases of contamina-

tion for Model (2). The blue and red boxplots in these figures correspond to the functional

LAD-gLASSO and the classical functional gLASSO, respectively.

Then we consider the Mean Squared Errors (MSE) and the Mean Absolute Error (MAD)

of prediction to assess the predictive ability of the proposed method. The Mean Squared

Errors of prediction is

MSE =
1

n

∑
i

(Yi − Ŷi)2 (3.23)

The Mean Absolute Error of prediction is

MAD =
1

n

∑
i

|Yi − Ŷi| (3.24)

For MSE and MAD of prediction, we generate data with 5000 observations. Mean Squared

Errors and the Mean Absolute Errors are observed in 50 independent simulation runs for

Model (0), Model (1) and Model (2). Figure 3.11 shows the boxplots of the mean squared

errors and mean absolute errors for Model (0). Figure 3.12 shows the boxplots of the mean

squared errors and mean absolute errors for Model (1) at 15% of the response variable.

Figures 3.13 and 3.14 show the boxplots for all three cases of contamination for Model (2).
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We can see in Figures 3.6 and 3.11 that functional LAD- gLASSO, which is represented by

blue color, performs equally well as classical functional gLASSO, which is represented by red

color for Model (0) settings, that is when there are no outliers in the data. Also we can see

in Figures 3.7 and 3.12 that the proposed method functional LAD- gLASSO performs better

than classical functional gLASSO for Model (1) settings, that is when there are outliers

in response variable only. Furthermore, we notice in Figures 3.8- 3.10 and Figures 3.13-

3.14, that our proposed method functional LAD- gLASSO does not perform any better than

classical functional gLASSO for Model (2) settings, that is when there are outliers in both

response and predictor variables.
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Figure 3.13: Comparison of MSE of functional LAD-gLASSO (blue) and classical functional
gLASSO (red) at 15% contamination for Model(2).
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Figure 3.14: Comparison of MAD of functional LAD-gLASSO (blue) and classical functional
gLASSO (red) at 15% contamination for Model(2).
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Furthermore, we examined how many times each variable is selected in 50 independent sim-

ulation runs for Model (0), Model (1) and Model (2) using both functional LAD- gLASSO

and classical functional gLASSO. For Model (2) setting we considered only Case 1 (Asym-

metric contamination). Tables 3.1 and 3.2 show the proportion of simulation runs for which

each predictor is selected using functional LAD- gLASSO and classical functional gLASSO,

respectively. We see in Tables 3.1 and 3.2 that the true predictors X1(t)−X5(t) are selected

more frequently and predictors X6(t)−X10(t) which are irrelevant to the true model are less

frequently selected by the functional LAD- gLASSO compared to the classical functional

gLASSO for Model (1) settings, that is, when the outliers are present in response variable

only. That is, the percentage of true positives and true negatives is higher for functional

LAD- gLASSO for Model (1) compared to classical functional gLASSO. We also note that

functional LAD- gLASSO and classical functional gLASSO perform equally well for Model

(0) and Model (2) settings. That is, both methods give same performance in both situations

when the data are free of outliers and also when data has outliers in the functional predictors.

X1(t) X2(t) X3(t) X4(t) X5(t) X6(t) X7(t) X8(t) X9(t) X10(t) Avg.modelsize
Model (0) 1 1 1 0.98 0.96 0.58 0.20 0.26 0.22 0.20 6.40
Model (1) 1 1 1 0.96 0.98 0.70 0.26 0.20 0.22 0.14 6.46
Model (2) 1 0.95 1 0.94 0.93 0.83 0.82 0.83 0.82 0.70 9.36

Table 3.1: Proportions of runs with respective functional predictor being selected and average
model size using functional LAD-gLASSO.

X1(t) X2(t) X3(t) X4(t) X5(t) X6(t) X7(t) X8(t) X9(t) X10(t) Avg.modelsize
Model (0) 1 1 1 0.92 0.94 0.50 0.24 0.30 0.32 0.26 6.48
Model (1) 1 1 1 0.90 0.94 0.98 0.72 0.80 0.76 0.82 8.92
Model (2) 1 0.84 1 1 0.86 0.96 0.94 0.98 0.92 0.90 9.40

Table 3.2: Proportions of runs with respective functional predictor being selected and average
model size using classical functional gLASSO.
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Furthermore, we consider 25% and 40% contamination levels for Model (1) and Model (2)

settings for Toy example and simulation study presented above. We see that our proposed

method functional LAD- gLASSO still performs better than classical functional gLASSO at

25%, but breaks down empirically at 40%. That is, functional LAD- gLASSO performs no

better than classical functional gLASSO at contamination level of 40%.

Numerical Study for functional LAD- agLASSO

Next we perform numerical study for functional LAD- agLASSO. In the numerical study

for functional LAD- gLASSO , we note that it does not perform well for Model (2) settings,

that is, when both response and explanatory variables have outliers. Therefore, for the

numerical study of functional LAD- agLASSO we consider only Model (1) settings, that is,

when outliers are present in the response variable only. Also functional LAD- agLASSO is

supposed to give better results compared to functional LAD- gLASSO as discussed in section

3.2.2.

We consider the following Model (1):

Model (1): Presence of outliers both in the scalar response Y only.

Data are generated as described in (3.18) and (3.19). Response Y is contaminated at 15

% level using the same method described previously. For this numerical study we consider

four functional covariates Xj(t). 100 curves for each these predictors are generated and each

curve is observed at 50 equidistant points in (0, 50). The true model is as:

Yi = α +

∫ 50

0

β1(t)Xi1(t)dt+

∫ 50

0

β3(t)Xi3(t)dt+ εi (3.25)

where i = 1,. . . , 100 and εi ∼ N(0, 4).

The shapes of parameter functions are as shown in Figure 3.15. The model is set up where

the response is related only to X1(t) and X3(t).
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Figure 3.15: β1(t), β2(t), β3(t) and β4(t), respectively.

We apply all three versions Adapt 1, Adapt 2 and Adapt 3 of our second proposed method

functional LAD- agLASSO (as described in section 3.2.2) to Model (1). Model (1) has outliers

only in scalar response Y and the functional predictors Xj(t)s are free of outliers. Also the

response Y depends only on the first predictor X1(t) and the third predictor X3(t). Second

predictor X2(t) and fourth predictor X4(t) are irrelevant to the true model and should be

excluded from the model by the applied method. We compare functional LAD-agLASSO with

functional LAD-gLASSO and classical functional agLASSO. Classical functional agLASSO

is discussed in section 2.2. Figures 3.16 - 3.18 show the comparison of the functional LAD-

agLASSO (blue), the classical functional agLASSO (black) and functional LAD-gLASSO

(red).

The initial estimates β̈j of the functional predictors that are required for adaptive LASSO

are obtained using pfr() function in the R package refund. R package quantreg is employed

again to execute our proposed method. The green solid curves in Figures 3.16 - 3.18 display

the true functions βj(t). We can see in these figures that all three versions of functional LAD-

agLASSO reduce the number of false positives compared to both functional LAD-gLASSO
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Figure 3.16: Fitting results of true beta functions (green) using classical functional agLASSO
(black), functional LAD-gLASSO (red) and functional LAD-agLASSO (blue) (Adapt 1) at
15% contamination of Y for Model (1).

and classical functional agLASSO. Also the comparison of three versions of functional LAD-

agLASSO indicates that Adapt 3 performs better than Adapt 1 and Adapt 2 in terms of

estimation of true positives.
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Figure 3.17: Fitting results of true beta functions (green) using classical functional agLASSO
(black), functional LAD-gLASSO (red) and functional LAD-agLASSO (blue) (Adapt 2) at
15% contamination of Y for Model (1).
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Figure 3.18: Fitting results of true beta functions (green) using classical functional agLASSO
(black), functional LAD-gLASSO (red) and functional LAD-agLASSO (blue) (Adapt 3) at
15% contamination of Y for Model (1).
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Simulation Study

Next we perform a simulation study to assess the performance of the functional LAD-

agLASSO. This time we consider only Adapt 3, as it performs better than Adapt 1 and Adapt

2. We observe MSE and MAD of prediction along with SE in 50 independent simulation

runs for Model (1). Figures (3.19), (3.20) and (3.21) show the boxplots of SE, MSE and

MAD, respectively. In these figures blue boxplots correspond to functional LAD-agLASSO,

red boxplots correspond to functional LAD-gLASSO and yellow boxplots correspond to clas-

sical functional agLASSO. All these figures reveal that functional LAD-agLASSO outper-

forms both functional LAD-gLASSO and classical functional agLASSO.
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Figure 3.21: Comparison of MAD of prediction for functional LAD-agLASSO (blue), func-
tional LAD-gLASSO (red) and classical functional agLASSO (yellow) at 15% contamination
for Model(1).
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Furthermore, Table 3.3 shows the proportions of 50 simulation runs with the respective

functional predictor being selected and average model size using functional LAD- agLASSO,

functional LAD- gLASSO and classical functional gLASSO. We see in Table 3.3 that the true

predictors X1(t) and X3(t) are selected most frequently and predictors X2(t) and X4(t) which

are irrelevant to the true model are less frequently selected by the functional LAD- agLASSO

compared to functional LAD- gLASSO and classical functional gLASSO. To summarize, the

percentage of false positives and false negatives reduces when functional LAD- agLASSO is

used.

X1(t) X2(t) X3(t) X4(t) Avg. Model Size
Functional LAD-agLASSO 1 0.36 1 0.28 2.64
Functional LAD-gLASSO 1 0.38 0.94 0.46 2.78
Classical functional agLASSO 1 0.66 0.86 0.78 3.30

Table 3.3: Proportions of runs with respective functional predictor being selected and average
model size.

Additionally, we examine functional LAD- agLASSO at 25% and 40% contamination levels

for Model (1) settings for simulation study presented above. We see that, this method also

breaks down at 40% contamination level, but performs better than both functional LAD-

gLASSO and classical functional agLASSO at contamination level of 25%.

3.4 Real Data Application

We apply our methods that are proposed in this chapter to the analysis of weather data

used by Matsui & Konishi [22], available in Chronological Scientific Tables 2005, selecting

variables concerning weather information. We use weather data observed at 79 stations in

Japan. The data set includes monthly and annual total observations averaged from 1971

to 2000: monthly observed average temperatures (TEMP), average atmospheric pressure

(PRESSURE), time of daylight (DAYLIGHT), average humidity (HUMIDITY) and annual

total precipitation. The aim of the analysis is to select and estimate the variables that have
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Figure 3.22: Weather Data.

a relationship with the response variable, annual total precipitation. Since the data are

collected over time for 12 months, it can be treated as functional data. Figure 3.22 shows

predictors in weather data, represented by functions observed at 12 points. In Figure 3.22,

the group of curves shows presence of a few outliers, that is trajectories that are in some way

different from the rest in the predictor variables. Specifically Figure 3.24 shows that curves

78 and 79 in both TEMP and PRESSURE variables and curves with shapes 1, 2 and 3 in

the HUMIDITY variable are the outliers, as detected by Sawant [29] using robust functional

principal component analysis. Figure 3.24 shows an outlier in the scalar response, annual

total precipitation. To summarize this data have outliers in both functional predictors and

the scalar response (annual total precipitation).

The response (annual total precipitation) is continuous. We use the functional linear model

(3.1) with our proposed approaches to determine the most useful variables. But since our

methods, which are proposed in this chapter, work better when there are no outliers in the

predictors, so we consider removing outliers from the functional predictors before applying
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Figure 3.23: Outliers in Weather Data.
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Figure 3.24: Outliers in response, annual total precipitation.

57



our proposed methodologies (functional LAD-gLASSO and functional LAD- agLASSO). Af-

ter removing outliers from functional predictors, only the response variable is left with an

outlier. Now we can safely use our proposed methods.

First we apply our proposed method functional LAD- gLASSO to the weather data. Fig-

ure 3.25 shows the estimated coefficient functions when using the functional LAD- gLASSO

method. The PRESSURE variable is excluded from the model. According to these results,

the PRESSURE variable does not seem to have a significant relationship with the precipi-

tation. Secondly, we apply our proposed method functional LAD- agLASSO to the weather

data. The fitting results are shown in Figure 3.26. The PRESSURE and DAYLIGHT are ex-

cluded from the model. The results indicate that there is no significant relationship between

these variables and the precipitation. The remaining variables, TEMP and HUMIDITY, can

be considered to relate significantly to the precipitation. We also apply classical functional

group LASSO to this data set. The results are shown in Figure 3.27. It is clear from this

figure that classical functional group LASSO is not able to exclude any variable(s) from the

model, in the presence of outliers in the response variable.

Furthermore, we generate 50 bootstrap samples from the weather data. For each bootstrap

sample, functional regression modeling is performed using functional LAD- gLASSO, func-

tional LAD-agLASSO and classical functional gLASSO. We examine how many times each

variable is selected. The results are shown in Table 3.4. These results reveal that functional

LAD- agLASSO gives us the smallest model size and classical functional gLASSO gives the

highest model size among three methods. Also the mean TEMP is selected most frequently

among the four variables, followed by the HUMIDITY by functional LAD-agLASSO. This

reveals significant relationships of these variables to the precipitation. On the other hand,

the average PRESSURE and DAYLIGHT are less frequently selected by functional LAD-

agLASSO. From the results, there seems to be less of a significant relationship between these

variables and the precipitation.
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Figure 3.25: Estimated Variable Coefficients for Weather data using functional LAD-
gLASSO.
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Figure 3.26: Estimated Variable Coefficients for Weather data using functional LAD-
agLASSO.
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Figure 3.27: Estimated Variable Coefficients for Weather data using classical functional
gLASSO.

TEMP PRESSURE HUMIDITY DAYLIGHT Avg. Model Size
Functional LAD-gLASSO 1 0.58 0.94 0.92 3.44
Functional LAD-agLASSO 1 0.46 0.98 0.38 2.82
Classical functional gLASSO 0.90 1 0.96 0.98 3.84

Table 3.4: Proportions of runs with the respective functional predictor being selected and
average model size.

3.5 Summary and Discussion

We considered two robust variable selection procedures for functional linear regression models

in the presence of outliers, where various functional predictors are considered but only a few

of these are actually related to the scalar response. Typical variable selection procedures for

functional models do not consider the issue of outliers while selecting the useful predictors,

and thus may suffer from wrong models. Our proposed procedures simultaneously select and

estimate the important functional variables.

We found that our proposed methods perform well in terms of prediction error as well as

mean squared errors for the estimated coefficient functions compared to classically fitting a
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model without taking outliers into consideration. The false positive and false negative rates

are also quite low for our methods. We also noted that our proposed method functional

LAD- agLASSO performs better than functional LAD- gLASSO and among three versions

of functional LAD- agLASSO, Adapt 3 performs the best. We also notice that our proposed

methods still perform better than classical methods at 25% contamination level, but break

down empirically at contamination level of 40%. That is, functional LAD- gLASSO and

functional LAD- agLASSO perform no better than classical functional gLASSO and classical

functional agLASSO, respectively at contamination level of 40%.

Furthermore, our proposed methods do not work perform better when there are outliers only

in response variable compared to when there are outliers in both response and functional

predictors.

In the following chapter, we propose two methodologies WLAD- gLASSO and WLAD- ag

LASSO, that take into account the effect of outliers in functional predictors to overcome the

limitations of our methods proposed in this chapter.
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Chapter 4

Robust Group Variable Selection Methods for Multiple Functional Regression Model in the

Presence of Outliers in the Response and Explanatory Variables

4.1 Introduction

In Chapter 3 we considered the problem of variable selection for functional regression model

in the presence of outliers. We developed two robust functional variable selection techniques

called functional LAD- gLASSO and functional LAD- agLASSO, which perform better than

classical variable selection method, functional gLASSO.

But these robust methods give better results when outliers are present in y direction only.

These robust techniques being based on simple LAD are highly sensitive to outliers in the x

direction, therefore necessitating a different type of approach to handle this issue. Weighted

LAD regression estimation has been proposed by Ellis and Morgenthaler [6], Hubert and

Rousseeuw [17], Giloni et al. [13] and Giloni et al. [14], to deal with outliers in predictors

for ordinary multiple regression model. Recently, Arslan [1] has proposed Weighted LAD−

LASSO (WLAD-LASSO) as a robust variable selection method to handle the issue of outliers

in response and explanatory variables for ordinary multiple regression model. But to our

knowledge no such method exists for functional regression model. Therefore, in this chapter,

we consider a new criterion called functional Weighted LAD- group LASSO, abbreviated as

WLAD- gLASSO that takes into account the effect of outliers in both y and x direction

for functional regression model with a scalar response and functional predictors. It is a

weighted version of functional LAD- gLASSO. This method is not only resistant to outliers

in the response variable but also minimizes the effect of outliers in explanatory variable

(leverage points), by introducing weights which are dependent on the explanatory variables

only. These weights are introduced to downweight the leverage points and thus reducing
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their effect on the estimation process. We also provide an adaptive version of this method

in which adaptive LASSO penalty criterion is used to assign different weights to different

coefficients to penalize them differently. We call this method functional Weighted LAD-

Adaptive group LASSO abbreviated as (WLAD- agLASSO).

4.2 Methodology

Reconsider a functional linear model with the scalar response and p-functional predictors

from (3.1):

Yi = α + Σp
j=1

∫
TI
Xij(t)βj(t)dt+ εi, i = 1 , . . . ,N . (4.1)

where, the random error terms εi are assumed to be independent normally distributed with

mean 0 and variance σ2. α is a scalar parameter and βj(t) is a parameter function for

j = 1, . . . , p.

We apply the same method described in section 3.2 to the model in (4.1), to overcome the

inherent infinite dimensionality problem and reformulate it as an ordinary multiple regression

model. This gives us the same model in (3.5):

Yi = α + Σp
j=1Φ

T
ijcj + εi, i = 1, . . . , N. (4.2)

where Φij are known and α and cj’s are the unknown regression coefficients that need to be

estimated.

Next we propose our method WLAD- gLASSO by modifying our previously proposed method

functional LAD- gLASSO in Chapter 3.

4.2.1 Functional WLAD- groupLASSO

Reconsider the objective function for LAD- gLASSO in (3.8)

Σn
i=1|Yi − α− Σp

j=1Φij
Tcj|+ Pλ,ϕ(βj). (4.3)
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where, Pλ,ϕ(βj) is the penalty function as introduced by Meier et al. [23].

For WLAD- gLASSO criterion we introduce weights wi to the function in (4.3), which are

determined by a robust measure of predictors and are chosen to downweight the leverage

points. Then the objective function for WLAD- gLASSO is given by:

Σn
i=1wi|Yi − α− Σp

j=1Φij
Tcj|+ Pλ,ϕ(βj). (4.4)

The penalty function Pλ,ϕ(βj) is also modified using the same method described in section

3.2.1, which reduces the objective function in (4.4) for WLAD- gLASSO criterion to the

following:

Σn
i=1wi|Yi − α− Φ̃T

ij c̃j|+ λΣp
j=1||c̃j||. (4.5)

Now α̂ and ĉj’s are the minimizers of (4.5). The tuning parameters λ and ϕ are chosen via K

fold cross-validation as described in section 3.2.3. The weights wi in (4.5) are obtained using

the robust distances of the predictors so that the outlying observations in the x direction will

have large distances and the corresponding weights will be small. Therefore, it is expected

that the resulting regression estimator will be robust against the outliers in the response

variable and leverage points.

The weights are computed using the weight definition given in Hubert and Rousseeuw [17].

Specifically the algorithm to find the weights is as following:

1. Calculate the robust location and scatter estimates, µ̃ and Σ̃ for the location vector and

the scatter matrix of the data x1, x2, . . . , xn ε <p. One can use high breakdown point

location and scatter estimators such as MCD (Minimum Covariance Determinant).

The idea behind MCD is to find observations whose empirical covariance matrix has

the smallest determinant, yielding a pure subset of observations from which to compute

standards estimates of location and covariance. The Minimum Covariance Determinant

estimator (MCD) has been introduced by Rousseeuw in [27]. The implementation in
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R package rrcov uses the Fast MCD algorithm of Rousseeuw and Driessen [28] to

approximate the minimum covariance determinant estimator.

2. Compute the robust distances: RD(xi) = (xi − µ̃)T Σ̃−1(xi − µ̃).

3. Calculate the weights wi = min
{

1, p
RD(xi)

}
for i = 1, . . . , n.

4.2.2 Functional WLAD- Adaptive groupLASSO

In this section we consider an adaptive penalty function for functional WLAD- gLASSO to

allow for different shrinkage and smoothness for the different covariates. The penalty in

(4.4) penalizes the coefficient functions by the same amount but the adaptive version of this

penalty will reflect some subjectivity about the true parameter functions. This criterion that

incorporates adaptive penalty is called functional WLAD- agLASSO.

For this, reconsider equation (4.4):

Σn
i=1wi|Yi − α− Σp

j=1Φij
Tcj|+ Pλ,ϕ(βj). (4.6)

Here Pλ,ϕ(βj is the same adaptive LASSO penalty given in (3.14), that is,

Pλ,ϕ(βj) = λ(κj||βj||22 + νjϕ||β
′′

j ||22)1/2. (4.7)

where ||.||2 =
∫

(.)2dt is the L2 norm, β
′′
j is the second derivative of βj, κj and νj are the

data adaptive weights. The weights κj and νj are calculated the same way as described in

section 3.2.2. Hence, the objective function minimized by functional WLAD- agLASSO is:

Σn
i=1wi|Yi − α− Σp

j=1Φij
Tcj|+ λ(κj||βj||22 + νjϕ||β

′′

j ||22)1/2. (4.8)

Next, in order to show the optimality of the proposed methods we perform a numerical study

in which a simulation study is conducted. Furthermore, we show a real data application of

the proposed methods.
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4.3 Numerical Study

In this section we provide the numerical performances of the methods proposed in this

chapter. We consider the following model, Model (2) from section 3.3, for the numerical

studies:

• Model (2): Presence of outliers in both scalar response Y and functional predictors

X(t).

First we present the numerical study for our proposed method functional WLAD- gLASSO

and then for functional WLAD- agLASSO.

4.3.1 Numerical Study for functional WLAD- gLASSO

For the numerical study of functional WLAD- gLASSO we generate two functional covariates

X1(t) and X2(t) from (3.18). 100 replications of each of Xj(t) are observed at 50 equidistant

time points in (0, 50). Response Y is generated for 100 functional curves from (3.19). The

true model is as:

Yi = α +

∫ 50

0

β1(t)Xi1(t)dt+ εi. (4.9)

where i = 1, . . . , 100 and εi ∼ N(0,4).

The parameter function β1(t) has an exponential function shape and the parameter function

β2(t) is essentially zero, as shown in Figure 4.1. The model is set up where the response is

related only to X1(t). Both response Y and functional predictors Xj(t) are contaminated

at 15 % level using the same method described in section 3.3. All three cases of contam-

ination, Case 1(Asymmetric contamination), Case 2 (Symmetric contamination) and Case

3 (Partial contamination) of functional predictors Xj(t) are taken into account. We apply

functional WLAD-gLASSO to Model (0), Model (1) and Model (2) setting and compare it

with functional LAD-gLASSO, proposed in Chapter 3 and with classical functional gLASSO.
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Figure 4.1: β1(t) and β2(t), respectively.

The results are as following.

Model (0): No outliers in the scalar response Y and the functional predictors X(t).

First we apply our proposed method functional WLAD-gLASSO to Model (0) and compare

it with functional LAD-gLASSO and classical functional gLASSO. Model (0) has neither

outliers in scalar response Y nor in the functional predictors X1(t) and X2(t). The response

Y is dependent only on the first predictor X1(t). Figure 4.2 shows the fitting results of func-

tional WLAD-gLASSO, functional LAD-gLASSO and classical functional gLASSO method.

We use functions rq.fit.lasso () and CovMcd () from R packages quantreg and rrcov, respec-

tively to execute our proposed method, functional WLAD-gLASSO. R package quantreg is

also used for functional LAD-gLASSO. For classical functional gLASSO, we use R package

grplasso. In Figure 4.2, the green curves display the true functions β1(t) and β2(t); the pur-

ple, blue and red dashed lines display the estimations done by functional WLAD-gLASSO,

functional LAD-gLASSO and classical functional gLASSO, respectively. The combinations
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Figure 4.2: Fitting results for the comparison of functional WLAD-gLASSO (purple), func-
tional LAD-gLASSO (blue) and classical functional gLASSO (red) for Model (0) (0% con-
tamination).

of λ and ϕ for functional WLAD-gLASSO, functional LAD-gLASSO and the classical func-

tional gLASSO are (λ = 1, ϕ = 10), (λ = 10, ϕ = 10) and (λ = 10, ϕ = 100), respectively.

We can see in Figure 4.2 that all methods estimate the relevant coefficient β1(t) close to its

true value and exclude the irrelevant coefficient β2(t) from the model.

Model (1): Presence of outliers in the scalar response Y only.

Secondly, we apply our proposed method to the Model (1). Model (1) has outliers only

in scalar response Y . The functional predictors X1(t) and X2(t) are free of outliers. Also

the response Y depends only the first predictor X1(t) and not on X2(t). Since X2(t) is

irrelevant to the true model, so it should be excluded from the model by the applied method.

Figure 4.3 shows the comparison of functional WLAD-gLASSO, functional LAD-gLASSO

and classical functional gLASSO method. We use functions rq.fit.lasso () and CovMcd ()
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Figure 4.3: Fitting results for the comparison of functional WLAD-gLASSO (purple), func-
tional LAD-gLASSO (blue) and classical functional gLASSO (red) for Model (1) (15% con-
tamination).

from R packages quantreg and rrcov, respectively to execute functional WLAD-gLASSO. R

package quantreg is used for functional LAD-gLASSO. For classical functional gLASSO, we

use R package grplasso. In Figure 4.3, the green curves display the true functions β1(t)

and β2(t); the purple, blue and red dashed lines display the estimations done by functional

WLAD-gLASSO, functional LAD-gLASSO and classical functional gLASSO, respectively.

The combinations of λ and ϕ for functional WLAD-gLASSO, functional LAD-gLASSO and

the classical functional gLASSO are (λ = 10, ϕ = 10), (λ = 1, ϕ = 10) and (λ = 10, ϕ = 100),

respectively. Figure 4.3 shows that functional WLAD-gLASSO and functional LAD-gLASSO

not only exclude the irrelevant predictor X2(t) from the model, but also estimate relevant

coefficient β1(t) close to its true value, compared to the classical functional gLASSO.
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Model (2): Presence of outliers in both scalar response Y and functional predic-

tors X(t).

Finally, we apply our proposed method functional WLAD- gLASSO to Model (2). Model

(2) has outliers both in scalar response Y and the functional predictors X1(t) and X2(t).

All three cases of contamination, Case 1(Asymmetric contamination), Case 2 (Symmetric

contamination) and Case 3 (Partial contamination) are considered for functional covariates.

Also the first covariate X1(t) being relevant to the true model should be kept and X2(t) being

irrelevant should be excluded from the model, by the applied method. Figure 4.4 shows the

fitting results of functional WLAD- gLASSO, functional LAD-gLASSO and classical func-

tional gLASSO. We use functions rq.fit.lasso () and CovMcd () from R packages quantreg and

rrcov, respectively to execute our proposed method, functional WLAD-gLASSO. R package

quantreg is also used for functional LAD-gLASSO. For classical functional gLASSO, we use

R package grplasso. In Figure 4.4, the green curves are the true coefficient functions β1(t)

and β2(t), the purple lines represent the estimation done by functional WLAD- gLASSO,

the blue lines represent the estimation done by functional LAD- gLASSO and the red lines

represent the estimation done by classical functional gLASSO. We can see in Figure 4.4 that

the functional WLAD- gLASSO excludes the irrelevant predictor X2(t) from the estimated

model, and estimates relevant predictor X1(t) close to its true value at fixed combinations

of (λ = 10, ϕ = 102), (λ = 1, ϕ = 10) and (λ = 10, ϕ = 10) for the three cases of contam-

ination, Case 1(Asymmetric contamination), Case 2 (Symmetric contamination) and Case

3 (Partial contamination), respectively. In contrast to functional WLAD- gLASSO, both

classical functional gLASSO and functional LAD- gLASSO perform poorly in both variable

selection and estimation.
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Figure 4.4: Fitting results for the comparison of functional WLAD-gLASSO (purple), func-
tional LAD-gLASSO (blue) and classical functional gLASSO (red) for Model (2) (15% con-
tamination).
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Simulation Study

Next we conduct a simulation study to assess the performance of functional WLAD- gLASSO.

The results of this simulation study reveals better performance of functional WLAD- gLASSO

compared to functional LAD- gLASSO and classical functional gLASSO. For the simulation

study the data are generated from (3.18) and (3.19). Specifically, we consider the following:

1) 1000 observations for the scalar response Y .

2) Two functional predictors are considered. We generate 1000 sample curves for each Xj(t)

which are observed at 300 equidistant time points in (0, 50).

3) The true model is

Yi = α +

∫ 50

0

β1(t)Xij(t)dt+ εi. (4.10)

where, i = 1, . . . , 1000 and εi ∼ N(0,4). The parameter function β1(t) is observed at 300

points in (0, 50). The shapes of βj(t) are as shown in Figure 4.3. We can see in Figure 4.5

that β2(t) is essentially 0. The true model in (4.6) depends only on β1(t).

In simulation study, we compare the performance of the proposed method functional WLAD-

gLASSO with functional LAD-gLASSO and classical functional gLASSO, in terms of esti-

mation and selection of variables for three different cases of contamination of Model (2).

For simulation study we only consider Model (2), as functional WLAD-gLASSO performs

best in the presence of leverage points, compared to functional LAD-gLASSO and classical

functional gLASSO. The contamination is done for 15% in Model (2) using the method de-

scribed in Section 3.3. The response Y is contaminated at 15% and functional predictors X1

and X2 are also contaminated at 15% for three cases of contamination, Case 1(Asymmetric

contamination), Case 2 (Symmetric contamination) and Case 3 (Partial contamination).

First we consider the squared errors (SE) described in (3.22) to assess the performance of

the proposed method. Squared errors are observed in 100 independent simulation runs for

three cases of contamination of Model (2). Figure 4.5 shows the boxplots of the squared
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errors for Case 1 (Asymmetric contamination), Case 2 (Symmetric contamination) and Case

3 (Partial contamination) for Model (2). The purple, blue and red boxplots in this figure

correspond to functional WLAD-gLASSO, functional LAD-gLASSO and classical functional

gLASSO, respectively.

Then we consider the Mean Squared Errors (MSE) and the Mean Absolute Error (MAD)

of prediction described in (3.23) and (3.24), respectively to assess the predictive ability of

the proposed method. Mean Squared Errors and the Mean Absolute Errors are observed in

150 independent simulation runs for three cases of contamination for Model (2). Figures 4.6

and 4.7 show the boxplots of MSE and MAD of prediction for all three cases of contamina-

tion for Model (2), respectively. In these figures, purple, blue and red boxplots correspond

to functional WLAD-gLASSO, functional LAD-gLASSO and classical functional gLASSO,

respectively.

We see in Figures 4.5 - 4.7, that the proposed method functional WLAD- gLASSO (purple)

performs better than functional LAD-gLASSO (blue) and classical functional gLASSO (red)

for all three cases of contamination for Model (2) setting, that is when there are outliers

in both response variable and functional predictors. Also once again, we notice in these

figures that our method functional LAD- gLASSO purposed in Chapter 3 does not perform

any better than classical functional gLASSO for Model (2) settings, that is when there are

outliers in both response and predictor variables.

To summarize, the proposed method functional WLAD- gLASSO performs better when there

are outliers both in response and explanatory variables compared to both functional LAD-

gLASSO and classical functional gLASSO.

73



0
2

4

Case 1

β 1
(t)

0
2

4

Case 2

β 1
(t)

0
2

4

Case 3

β 1
(t)

0.
0

1.
5

3.
0

S
E

0.
0

1.
0

S
E

0.
0

1.
5

3.
0

S
E

-1
.0

0.
0

1.
0

β 2
(t)

-1
.0

0.
0

1.
0

β 2
(t)

-1
.0

0.
0

1.
0

β 2
(t)

0.
0
1.
0
2.
0

S
E

0.
0

1.
0

S
E

0.
0

0.
6

S
E

Figure 4.5: SE for the comparison of functional WLAD-gLASSO (purple), functional LAD-
gLASSO (blue) and classical functional gLASSO (red) for Model (2) (15% contamination).
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Figure 4.6: MSE of prediction for the comparison of functional WLAD-gLASSO (purple),
functional LAD-gLASSO (blue) and classical functional gLASSO (red) for Model (2) (15%
contamination).
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Figure 4.7: MAD of prediction for the comparison of functional WLAD-gLASSO (purple),
functional LAD-gLASSO (blue) and classical functional gLASSO (red) for Model (2) (15%
contamination).
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4.3.2 Numerical Study for functional WLAD- agLASSO

Next we perform numerical study for functional WLAD-agLASSO. The performance of func-

tional WLAD- agLASSO is assessed by simulation study. In this section we only consider the

following Model (2) from Section 3 in Chapter 3, as functional WLAD-gLASSO performs

best in the presence of outliers in x direction, compared to functional LAD-gLASSO and

classical functional gLASSO:

• Model (2): Presence of outliers in both scalar response Y and the functional predictors

X(t).

We consider two functional covariates X1(t) and X2(t) each of which is generated from (3.18).

100 curves for each of Xj(t) are observed at 50 equidistant points in (0, 50). Response Y is

generated for 100 functional curves from (3.19). The true model is as:

Yi = α +

∫ 50

0

β1(t)Xi1(t)dt+ εi. (4.11)

where, i = 1, . . . 100 and εi ∼ N(0,4).

The shapes of parameter functions β1(t) and β2(t) are shown in Figure 4.8. The model is

set up where the response is related only to X1(t).

Both response Y and functional predictors Xj(t) are contaminated at 15 % level using the

methods described in Section 3.3. All three cases of contamination, Case 1(Asymmetric

contamination), Case 2 (Symmetric contamination) and Case 3 (Partial contamination), of

functional predictors Xj(t) are considered.

We apply our proposed method functional WLAD- agLASSO to Model (2). Model (2) has

outliers both in scalar response Y and the functional predictors X1(t) and X2(t). All three

cases of contamination, Case 1(Asymmetric contamination), Case 2 (Symmetric contamina-

tion) and Case 3 (Partial contamination), are considered for the functional covariates. Also

only the first covariate X1(t) is relevant to the true model and X2(t) being irrelevant should
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Figure 4.8: β1(t) and β2(t) , respectively.

be excluded from the model. We compare functional WLAD- agLASSO with functional

WLAD- gLASSO and classical functional agLASSO. Figure 4.9 shows the fitting results of

functional functional WLAD- agLASSO (blue), WLAD-g LASSO (purple) and classical func-

tional agLASSO (red). In Figure 4.9, the green curves are the true coefficient functions β1(t)

and β2(t).

The proposed method functional WLAD-agLASSO is executed using R packages quantreg,

rrcov and refund. Specifically, functions CovMcd () in R package rrcov and pfr () in R

package refund are used to compute weights wi and the initial estimates β̈j of the coefficients,

respectively. R package grplasso is used for the execution of classical functional agLASSO.

Figure 4.9 shows that the functional WLAD- agLASSO estimates relevant predictor X1(t)

close to its true value at fixed combinations of (λ = 10, ϕ = 10), (λ = 1, ϕ = 10) and (λ

= 10, ϕ = 102) for Case 1(Asymmetric contamination), Case 2 (Symmetric contamination)

and Case 3 (Partial contamination), respectively compared to functional WLAD- gLASSO

and classical functional agLASSO.
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Figure 4.9: Fitting results for the comparison of functional WLAD- agLASSO (blue), func-
tional WLAD-gLASSO (purple) and classical functional agLASSO (red) for Model (2) (15%
contamination).
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Simulation Study

Furthermore, we conduct a simulation study for functional WLAD- agLASSO, where it is

compared with functional WLAD-gLASSO and classical functional agLASSO. Model (2)

setting is considered. The data are generated and contaminated at 15% using the methods

described in Section 3.3. We generate two functional predictors and 1500 observations for

each predictor. Each curve is observed at 200 equidistant points in (0, 100).

First we consider the squared errors (SE) described in (3.22) to assess the performance of

the proposed method. Squared errors are observed in 100 independent simulation runs for

three cases of contamination of Model (2). Figure 4.10 shows the boxplots of the squared

errors for Case 1 (Asymmetric contamination), Case 2 (Symmetric contamination) and Case

3 (Partial contamination) for Model (2). The blue, purple and red boxplots in this figure

correspond to functional WLAD- agLASSO, functional WLAD-gLASSO and classical func-

tional agLASSO, respectively.

Secondly, we consider the Mean Squared Errors (MSE) and the Mean Absolute Error

(MAD) of prediction described in (3.23) and (3.24), respectively to assess the predictive

ability of the proposed method. Mean Squared Errors and the Mean Absolute Errors are

observed in 150 independent simulation runs for three cases of contamination for Model

(2). Figures 4.11 and 4.12 show the boxplots of MSE and MAD of prediction for all three

cases of contamination for Model (2), respectively. Functional WLAD- agLASSO, functional

WLAD-gLASSO and classical functional agLASSO are represented by blue, purple and red

boxplots, respectively, in these figures.

We see in Figures 4.10 - 4.12, that the proposed method functional WLAD- agLASSO (blue)

performs better than functional WLAD-gLASSO (purple) and classical functional agLASSO

(red) for all three cases of contamination for Model (2) setting, that is when there are outliers

in both response variable and predictors. We also notice that classical functional agLASSO

performs worse among the three methods.
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Figure 4.10: SE for the comparison of functional WLAD-agLASSO (blue), functional WLAD-
gLASSO (purple) and classical functional agLASSO (red) for Model (2) (15% contamination).
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Figure 4.11: MSE of prediction for the comparison of functional WLAD-agLASSO (blue),
functional WLAD-gLASSO (purple) and classical functional agLASSO (red) for Model (2)
(15% contamination).
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Figure 4.12: MAD of prediction for the comparison of functional WLAD-agLASSO (blue),
functional WLAD-gLASSO (purple) and classical functional agLASSO (red) for Model (2)
(15% contamination).
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Furthermore, Tables 4.1 - 4.3 show the proportions of 50 simulation runs with the respec-

tive functional predictor being selected and average model size using functional WLAD-

agLASSO and functional WLAD- gLASSO for three cases of contamination, Case 1(Asym-

metric contamination), Case 2 (Symmetric contamination) and Case 3 (Partial contamina-

tion), respectively. For this we generate 10 functional predictors, which are observed at 300

equidistant time points in (0, 100). Each predictor has 500 replications. The shape of the

corresponding 10 coefficients is same as given in Figure 3.6, which shows that only first 5

predictors are relevant to the true model and remaining 5 are irrelevant to the true model.

We see in these tables that the true predictors X1(t) − X5(t) are selected most frequently

and predictor X6(t) − X10(t) which are irrelevant to the true model are less frequently se-

lected by the functional WLAD- agLASSO compared to functional WLAD- gLASSO. In

other words, the percentage of false positives and false negatives reduces when functional

WLAD- agLASSO is used.

X1(t) X2(t) X3(t) X4(t) X5(t) X6(t) X7(t) X8(t) X9(t) X10(t) Avg. Model Size
Functional WLAD- agLASSO 1 1 1 0.98 0.98 0.28 0.34 0.22 0.26 0.38 6.44
Functional WLAD- gLASSO 1 1 1 0.98 0.96 0.26 0.38 0.30 0.22 0.48 6.58

Table 4.1: Proportions of runs with respective functional predictor being selected and average
model size for Case 1(Asymmetric contamination).

X1(t) X2(t) X3(t) X4(t) X5(t) X6(t) X7(t) X8(t) X9(t) X10(t) Avg. Model Size
Functional WLAD- agLASSO 1 1 1 0.96 0.98 0.30 0.28 0.32 0.34 0.28 6.46
Functional WLAD- gLASSO 1 1 1 0.94 0.98 0.32 0.36 0.32 0.30 0.56 6.78

Table 4.2: Proportions of runs with respective functional predictor being selected and average
model size for Case 2 (Symmetric contamination).

X1(t) X2(t) X3(t) X4(t) X5(t) X6(t) X7(t) X8(t) X9(t) X10(t) Avg. Model Size
Functional WLAD- agLASSO 1 1 1 0.98 0.96 0.28 0.28 0.32 0.24 0.36 6.42
Functional WLAD- gLASSO 1 1 1 0.92 0.94 0.32 0.32 0.38 0.36 0.30 6.54

Table 4.3: Proportions of runs with respective functional predictor being selected and average
model size for Case 3 (Partial contamination).
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4.4 Real Data Application

We notice that the weather data set considered in Chapter 3, has outliers in both re-

sponse (precipitation) and functional variables (TEMP, PRESSURE, HUMIDITY and DAY-

LIGHT). Therefore, this data set is a good candidate for the real data application of our

methods proposed in this chapter. Unlike the weather data analysis we presented in Chapter

3, we do not need to remove any outliers before applying our proposed methods functional

WLAD-gLASSO and WLAD- agLASSO.

First we apply our proposed method functional WLAD- gLASSO to the weather data. Fig-

ure 4.13 shows the resulting estimated coefficient functions. The PRESSURE variable is

excluded from the model. According to the resulting model, PRESSURE variable does not

seem to have a significant relationship with the precipitation. Secondly, we apply our pro-

posed method functional WLAD- agLASSO to the weather data. The fitting results are

shown in Figure 4.14. This time PRESSURE and DAYLIGHT are excluded from the model.

The results indicate that there is no significant relationship between these variables and the

precipitation. The remaining variables, TEMP and HUMIDITY, may relate to the precipi-

tation.

We also apply functional LAD- gLASSO to weather data set to compare the resulting model

with the model that it provided in Section 3.4. In Section 3.4, outliers were removed from

functional predictors before applying functional LAD- gLASSO, so that the data has out-

liers only in response. But in this section we apply functional LAD- gLASSO to the original

weather data, that is in the presence of outliers in both response and predictors. The re-

sults are shown in Figure 4.15. On comparison of Figures 4.15 and 3.25, it is clear that

functional LAD- gLASSO is not able to exclude any variable(s) from the model, in the pres-

ence of outliers both in response variable and functional predictors. Furthermore we apply

functional LAD- agLASSO to the weather data set. The results are shown in Figure 4.16,

in which we see that PRESSURE is excluded from the model. This shows that functional

LAD- agLASSO gives smaller model size compared to functional LAD- gLASSO even in the
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presence of outliers in both response and functional predictors.

Additionally, we generate 50 bootstrap samples from the weather data. For each bootstrap

sample, functional regression modeling is performed using functional WLAD- gLASSO, func-

tional WLAD- agLASSO, functional LAD- gLASSO and functional LAD- agLASSO. We

examine how many times each variable is selected. The results are shown in Table 4.4. The

table shows that functional WLAD- agLASSO gives us the smallest model size and func-

tional LAD- gLASSO gives the highest model size among four methods. Also the mean

TEMP is selected most frequently among the four variables, followed by HUMIDITY by

functional WLAD- agLASSO. This reveals significant relationships of these variables to the

precipitation. On the other hand, the average PRESSURE and DAYLIGHT are less fre-

quently selected by functional WLAD- agLASSO. From the results, there seems to be less

of a significant relationship between these variables and the precipitation.

TEMP PRESSURE HUMIDITY DAYLIGHT Avg. Model Size
Functional WLAD- agLASSO 1 0.36 0.98 0.40 2.74
Functional WLAD- gLASSO 1 0.38 0.96 0.66 3.00
Functional LAD- gLASSO 1 0.94 0.98 0.96 3.88
Functional LAD- agLASSO 1 0.90 0.98 0.92 3.80

Table 4.4: Proportions of runs with the respective functional predictor being selected and
average model size.
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Figure 4.13: Estimated Variable Coefficients for Weather data using functional WLAD-
gLASSO.
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Figure 4.14: Estimated Variable Coefficients for Weather data using functional WLAD-
agLASSO.
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Figure 4.15: Estimated Variable Coefficients for Weather data using functional LAD-
gLASSO.
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Figure 4.16: Estimated Variable Coefficients for Weather data using functional LAD-
agLASSO.
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4.5 Summary and Discussion

In this chapter we considered two robust variable selection procedures, functional WLAD-

gLASSO and functional WLAD- agLASSO, for functional linear regression models in the

presence of outliers both in response and explanatory variables. These methods fix the limi-

tations of the methods proposed in Chapter 3. We found that our proposed methods perform

well in terms of prediction error as well as mean squared errors for the estimated coefficient

functions compared to fitting a model without taking outliers in x direction into consider-

ation. We also notice that the false positive and false negative rates are low for functional

WLAD- agLASSO compared to functional WLAD- gLASSO.

Further the examination of our proposed methods at 25% and 40% contamination levels,

reveals that the proposed methods still perform better than other methods at 25% contami-

nation level, but break down empirically at contamination level of 40%. That is, functional

WLAD- gLASSO and functional WLAD- agLASSO perform no better than functional LAD-

gLASSO at contamination level of 40%.

Furthermore, in the following chapter, we explore the theoretical properties of our proposed

methods.
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Chapter 5

Theoretical Properties

5.1 Introduction

As pointed out in Chapter 2, in general a good penalty function should result in an estimator

with the following three desired properties.

1. Unbiasedness: The resulting estimator is nearly unbiased when the true unknown param-

eter is large to avoid unnecessary modeling bias.

2. Sparsity: The resulting estimator is a thresholding rule, which automatically sets small

estimated coefficients to zero to reduce model complexity.

3. Continuity: The resulting estimator is continuous to avoid instability in model prediction.

Since the properties of consistency, sparsity, and the oracle property do not hold for the

group LAD − LASSO and WLAD − LASSO (Fan and Li [8]), but hold for their adaptive

versions ( Lilly [20]) in multiple regression model we will not attempt to explore these prop-

erties for the functional LAD − gLASSO and WLAD − gLASSO. In this study we only

focus on the behavior of our proposed estimator functional LAD − agLASSO.

Consistency properties of estimation and shrinkage with adaptive group LASSO penalty

have been established in the literature (Wang and Leng [34]) for ordinary multiple regres-

sion. In the functional regression framework, Zhaoa et al. [37] have established the estimation

consistency property of Wavelet- based LASSO estimator and Lian [18] has proved the esti-

mation and selection consistency properties for functional gSCAD estimator. Lian [18] and

Zhaoa et al. [37] have the same functional model settings as ours, that is a model with scalar

response and functional predictors. Furthermore, Wang et al. [35] have established the oracle
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property of functional gSCAD estimators for functional response model with time varying

coefficients. Lian [18] also points out that estimation and selection consistency properties

can also be established for functional Adaptive LASSO based estimator obtained from the

method based on combining PC estimation with and gSCAD. The main theoretical prop-

erties like estimation and selection consistency, of functional LAD-agLASSO estimator are

considered in this chapter.

We should show that in our context the estimation procedure functional LAD- agLASSO

can consistently estimate the functional coefficients as well as consistently identify the true

model. However, extending these theoretical results to multiple functional regression is not

trivial.

5.2 Preliminary Study for Consistency Properties of functional LAD−agLASSO

In this section we study the theoretical properties mainly, the estimation consistency and

selection consistency of functional LAD- agLASSO estimator.

Reconsider the equation (3.7):

Σn
i=1|Yi − α− Σp

j=1Φij
Tcj|+ Pλ,ϕ(βj) (5.1)

here, Pλ,ϕ(βj) is the adaptive LASSO penalty function as discussed in Chapter 3. Specifi-

cally,

Pλ,ϕ(βj) = λ(κj||βj||2 + νjϕ||β
′′

j ||2)1/2 (5.2)

where ||.||2 =
∫

(.)2dt is the L2 norm, β
′′
j is the second derivative of βj, κj and νj are the

data adaptive weights.

89



Then we redefine the adaptive LASSO penalty function Pλ,ϕ(βj) as,

Pλ,ϕ(βj) = λ(cj
T (κjΨj + νjϕΩj)cj)

1/2 (5.3)

where Ψj, Ωj and cj are the same as defined in (3.10) .

Further we can simplify (5.3) as

Pλ,ϕ(βj) = λ(κjcj
T (Ψj +

νj
κj
ϕΩj)cj)

1/2 (5.4)

Pλ,ϕ(βj) = λ
√
κj(cj

T (Ψj +
νj
κj
ϕΩj)cj)

1/2 (5.5)

Pλ,ϕ(βj) = λκ
′

j(cj
T (Ψj + ν

′

jΩj)cj)
1/2 (5.6)

where κ
′
j =
√
κj and ν

′
j =

νj
κj
ϕ

Pλ,ϕ(βj) = λκ
′

j(cj
T (C̃j)cj)

1/2 (5.7)

where C̃j = Ψj + ν
′
jΩj is a l x l symmetric and positive definite matrix. Further C̃j can be

decomposed using Cholesky decomposition as following:

C̃j = RjR
T
j (5.8)

where Rj is non-singular lower triangular matrix. Now using (5.7) and (5.8), our model in

(5.1) reduces to the following:

Σn
i=1|Yi − α− ZT

ijbj|+ λΣp
j=1κ

′

j ‖ bj ‖ (5.9)
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where bj = RT
j cj and Zij = R−1j Φij.

Now α̂ and b̂j’s are the minimizers of (5.9).

For simplicity, define the response vector as Y = (y1, . . . , yn)T , the design matrix as Z =

(Z1, . . . , Zn)T and let α = 0. Then the objective function J(b) for functional LAD- agLASSO

estimator can be written in the matrix form as:

J(b) =‖ Y − Zb ‖1 +λ

p∑
j=1

κ
′

j ‖ bj ‖ (5.10)

where ‖ . ‖1 is the L1 norm.

We denote the true regression coefficients by β = ((β(1))T , (β(2))T )T with β(1) = (β1, . . . , βs)
T ,

s ≤ p containing all non vanishing components of β and βs+1 = . . . = βp ≡ 0.

We want to prove that under certain assumptions, functional LAD- agLASSO estimator has

1. (Estimation consistency) ‖ β̂j − βj ‖ = op(1), 1 ≤ j ≤ p.

2. (Selection consistency) β̂s+1 = . . . = β̂p ≡ 0 with probability converging to 1.

Note that the study of optimal convergence rates for multiple functional regression problem

is more complicated and is not attempted here. Also the objective function J(b) is merely

the counterpart of functional regression model in ordinary multiple regression. Therefore,

to establish the consistency properties for functional LAD- agLASSO estimator, we believe

that the ideas presented in Wang and Leng [34], Meier et al. [23] and Lilly [20] where they

prove the consistency properties of agLASSO estimator and LAD−agLASSO estimator for

ordinary multiple regression model, respectively. Furthermore, the consistency properties

can also be established for functional WLAD − agLASSO estimator using the ideas from

Wang and Leng [33], Giloni et al [13], Giloni et al [14] and Lilly [20]. These properties will

be studied in details as a future research.
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Chapter 6

Conclusion

In this dissertation, we explored the area of robust variable selection for the functional re-

gression model, which has functional predictors and a scalar response. An ample amount of

work has been done in various areas of functional data analysis but the area of functional

variable selection is seldom discussed. But just as in ordinary multiple regression analysis,

variable selection is an important problem in the functional regression framework. Especially,

robust variable selection methods for functional regression model do not exist in literature to

our knowledge. Therefore, in this dissertation we considered the problem of robust variable

selection for functional regression model in the presence of outliers. Essentially, we consid-

ered ways that minimize the effect of outliers on the parameter estimator and selector, since

the classical existing functional variable selection methods are all based on minimizing the

penalized residual sum of squares, which is non- robust in nature, in the presence of outliers.

Also since multiple parameters exist for a functional predictor so group variable selection

methods are used for selecting functional predictors that select grouped variables rather than

individual variables. In this work, we proposed robust variable selection methods using the

L1 regularization for functional regression model with a scalar response and the functional

predictors in the presence of outliers.

Firstly, we proposed a robust variable selection technique functional LAD-group LASSO

(LAD- gLASSO), which uses a combination of a well known robust loss function LAD

(Least Absolute Deviation) and equally known group LASSO (Least Absolute Shrinkage

and Selection) penalty function, for simultaneously estimating and selecting significant func-

tional predictors in a functional regression model in the presence of outliers. However, in
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this method same amount of penalty is applied to all the parameters. In order to reflect

some subjectivity about the true parameter functions and to allow for different shrinkage and

smoothness for the different functional predictors, we then proposed another method func-

tional LAD- Adaptive group LASSO (LAD- agLASSO), which uses an alternative penalty

function based on adaptive weights for the penalized estimation criterion.

Secondly, we propose another robust variable selection technique, functional Weighted LAD-

group LASSO (WLAD- gLASSO), which is a weighted version of the functional LAD-gLASSO

method. It is well known that the LAD based method is only resistant to the outlier in the

response variable, but not resistant to the outliers in the explanatory variables, which means

functional LAD- gLASSO method remains robust only when outliers are present in y direc-

tion. Therefore, to deal with the outliers in the functional explanatory variables we proposed

functional WLAD- gLASSO. This method is not only resistant to outliers in the response

variable but also minimizes the effect of the leverage points by introducing weights which

are only dependent on the explanatory variables. We also provided an adaptive version of

the functional WLAD-gLASSO in which adaptive LASSO penalty criterion is used to assign

different weights to different coefficients to penalize them differently. This method is called

functional Weighted LAD- Adaptive group LASSO (WLAD- agLASSO).

We presented an extensive simulation studies and a real world example to illustrate the per-

formances of the proposed estimators. We also provide preliminary study for the Consistency

property of one our proposed methods, functional LAD- agLASSO.
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6.1 Future Work

In this dissertation, we have shown promising results for functional LAD- gLASSO , func-

tional LAD- agLASSO, functional WLAD- gLASSO and functional WLAD- agLASSO for

the functional regression model with a scalar response and multiple functional predictors,

in the presence of outliers. We would like to generalize these methods for generalized func-

tional linear model where any link function can be used. We would also like to apply our

proposed methodologies to an imaging dataset such as fMRI data. We also want to study

the robustness properties of functional LAD- agLASSO and WLAD- agLASSO and prove

their theoretical properties as well.
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