TRIS(1,3-DIHYDROXY-2-PROPYL)AMINE, A PLANAR TRIALKYLAMINE:

SYNTHESIS, STRUCTURE, AND PROPERTIES.

A POTENTIAL PRECURSOR TO

HYPERVALENT NITROGEN

Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This dissertation does not include proprietary or classified information

> Yuanping Jie

Certificate of Approval:

Edward J. Parish
Professor
Chemistry and Biochemistry

Susanne Striegler
Assistant Professor
Chemistry and Biochemistry

Peter D. Livant, Chair
Associate Professor
Chemistry and Biochemistry

Thomas E. Albrecht-Schmitt Associate Professor
Chemistry and Biochemistry

[^0]TRIS(1,3-DIHYDROXY-2-PROPYL)AMINE, A PLANAR TRIALKYLAMINE: SYNTHESIS, STRUCTURE, AND PROPERTIES.

A POTENTIAL PRECURSOR TO HYPERVALENT NITROGEN

Yuanping Jie

A Dissertation
Submitted to
The Graduate Faculty of
Auburn University
In Partial Fulfillment of the
Requirements for the
Degree of
Doctor of Philosophy

Auburn, Alabama
May 11, 2006

TRIS(1,3-DIHYDROXY-2-PROPYL)AMINE, A PLANAR TRIALKYLAMINE:

SYNTHESIS, STRUCTURE, AND PROPERTIES.

A POTENTIAL PRECURSOR TO
HYPERVALENT NITROGEN

Yuanping Jie

Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon request of individuals or institutions and at their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

VITA

Yuanping Jie, daughter of Chuanlin Jie and Xiulan Bao, was born on March 26, 1966, in Luan, Anhui province, the People’s Republic of China. She graduated with a Bachelor of Science degree in Chemistry in 1988 from Anhui Normal University. She received her M.S. degree in Organic Chemistry in 1991 from East China Normal University. From 1991 to 2001, she worked for Shanghai Chemical Reagent Research Institute. In 1991, she married Jie Liang, son of Huading Liang and Bangzhi Zhao. They have one daughter, Zhongling Liang. She entered the Graduate School at Auburn University, Auburn, Alabama in January, 2003.

DISSERTATION ABSTRACT

TRIS(1,3-DIHYDROXY-2-PROPYL)AMINE, A PLANAR TRIALKYLAMINE:
 SYNTHESIS, STRUCTURE, AND PROPERTIES.

A POTENTIAL PRECURSOR TO
HYPERVALENT NITROGEN

Yuanping Jie

Doctor of Philosophy, May 11, 2006
(M.S., East China Normal University, 1991)
(B.S., Anhui Normal University, 1988)

184 Typed Pages

Directed by Peter D. Livant

The hindered amine tris(1,3-dihydroxy-2-propyl)amine, $\mathbf{3 6}$, is a potential precursor to possible examples of nitrogen hypervalency. There are no simple, effective, and general methods to synthesize hindered tertiary amines. Extending previous work in our laboratory on $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$-catalyzed insertions of carbenoids into $\mathrm{N}-\mathrm{H}$ bonds, we achieved a synthesis of 36 in five steps and 49\% overall yield. Starting from commercially available dihydroxyacetone dimer, our synthesis makes $\mathbf{3 6}$ available in multigram quantities.

Some properties and structure of $\mathbf{3 6}$ have been studied. The $p \mathrm{~K}_{\mathrm{a}}$ of $\mathbf{3 6}$ was found to be 3.08 ± 0.03, a low value for a tertiary amine. The X-ray crystal structure of $\mathbf{3 6}$ showed the nitrogen is essentially planar (sum of C-N-C angles 359.05(7) ${ }^{\circ}$), and the average $\mathrm{C}-\mathrm{N}$ bond length (1.454 \AA) was shorter than normal. An explanation of this bond contraction is offered. The oxidation potential $\mathrm{E}_{1 / 2}{ }^{\mathrm{ox}}$ of $\mathbf{3 6}$ measured by cyclic voltammetry was found to be 0.88 V . The oxidation was reversible; oxidations of ordinary tertiary amines are usually irreversible. The X-ray crystal structure of $\mathbf{3 6} \cdot \mathbf{H C l}$ revealed a severely flattened tetrahedral geometry about nitrogen (average $\mathrm{H}-\mathrm{N}-\mathrm{C}$ angle 102.3°).

The reaction of 36 with boric acid led to a "one- boron" compound, 67 (2,8,9-tris(hydroxymethyl)-5-bora-1-aza-4,6,11-trioxytricyclo[3.3.3.0 ${ }^{1,5}$]undecane) and a "two-boron" compound, 69 (1,7-dibora-11-aza-2,6,8,14,15,17-hexaoxytetracyclo[8.4.2.2. ${ }^{7,12} 0^{4,11}$]octadecane). The X-ray crystal structure of 67 showed a dative bond between nitrogen and boron $(1.6875(13) \AA)$. Compound 69 is very hydrolytically unstable, but the X-ray crystal structure of a complex of 69 with pyridine confirmed the presence in 69 of two borons.

The reaction of 36 with $\mathrm{Z}-\mathrm{Si}(\mathrm{OEt})_{3}(\mathrm{Z}=\mathrm{Me}, \mathrm{Ph})$ led to analogous "one-silicon" and "two-silicon" compounds. The X-ray crystal structures of both two-silicon compounds revealed a nearly symmetrical SiNSi array $(Z=M e)$ and an unsymmetrical one $(\mathrm{Z}=\mathrm{Ph})$.

ACKNOWLEDGMENTS

I would like to express my heartfelt appreciation to my advisor Dr. Peter Livant. Not only has he given me invaluable academic guidance but also he has given my family much assistance.

I thank all of my committee members for their time spent on this dissertation.
I thank the faculty in the Chemistry and Biochemistry Department for their teaching.
I thank my group members and my friends for their cooperation and help.
Last but not least, I would like to thank my parents, my husband and my daughter for their support during this work.

Style manual or Journal used: Journal of Organic Chemistry
Computer software used: Microsoft Word 2000 and ChemDraw

CONTENTS

LIST OF TABLES xi
LIST OF SCHEMES xii
LIST OF FIGURES xiii
I. INTRODUCTION 1
1.1. Hypervalent bond 1
1.1.1.Three-center four-electron (hypervalent) bond 3
1.1.2. Extended hypervalent bond (5c-6e bond) 8
1.2. Hypervalent compounds based on second row elements 10
1.3. Hypervalent nitrogen 15
1.3.1. Potential difficulties in forming hypervalent nitrogen 15
1.3.2. Some attempts to synthesize hypervalent nitrogen species 16
1.3.3. Ideas for the synthesis of precursors to hypervalent $10-\mathrm{N}-5$ species 18
1.3.4. New target precursor for $10-\mathrm{N}-5$ species 22
I I. RESULTS AND DISCUSSION 26
2.1. The synthesis of tertiary amine $\mathbf{3 6}$ 26
2.1.1. Previous work in our lab. 26
2.1.2. The synthesis of compound 36 starting with dihydroxyacetone 28
2.1.3. Some properties of tertiary amine $\mathbf{3 6}$. 39
2.2. Tris(1,3-dihydroxy-2-propyl)amine 36 incorporating
some main group elements 49
2.2.1. Reactions of $\mathbf{3 6}$ with various sources of boron 50
2.2.2. Reactions of $\mathbf{3 6}$ with various sources of silicon. 64
2.3. Synthesis of tertiary amine $\mathbf{8 6}$ 76
II I. CONCLUSIONS 79
I V. EXPERIMENTAL 81
V. REFERENCES. 96
V I. APPENICES 107
Appendix 1 108
Appendix 2 117
Appendix 3 126
Appendix 4 140
Appendix 5 149
Appendix 6 162

LIST OF TABLES

1. Some reactions of hindered secondary amines with diazo compounds catalyzed by $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ 29
2. h for various trialkylamines 41
3. Structure parameters of $\mathbf{3 6}$ and some unhindered trialkylamines from x-ray crystallography 43
4. Geometries of protonated trialkylamines 46
5. The "triple" hydrogen bonding interaction of some tertiary amine cations. 47
6. Geometric parameters of $\mathbf{6 7}$ and TEAB 57
7. Geometric data of $\mathbf{7 1}$ from X-ray crystallography 62
8. Some structural feature of silatranes, $\mathrm{ZSi}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$. 68
9. Some interesting structural parameters of $\mathbf{7 4}, \mathbf{7 6}$ compared to $\mathbf{8 0}, \mathbf{8 1}$ from x-ray crystallography 72

LIST OF SCHEMES

1. Modes of creation of a 3c-4e bond in pentacoordinate hypervalent molecules 4
2. Failure to prepare $\mathbf{3 6}$ by reductive amination 28
3. Initial investigations into the synthesis of $\mathbf{3 6}$ 30
4. Route from dihydroxyacetone to tertiary amine 36 32
5. Possible pathways in the reaction of $\mathbf{3 6}$ with $(\mathrm{MeO})_{3} \mathrm{~B}$ 50
6. The reaction of 36 with $\mathrm{H}_{3} \mathrm{BO}_{3}$ 60

LIST OF FIGURES

1.1 The three-center four-electron bonding scheme for elements E and L
 3

1.2 (a) Linear $3 \mathrm{c}-4 \mathrm{e} \sigma$ bonding scheme for $\mathrm{F}_{3}{ }^{-}$(b) $3 \mathrm{c}-4 \mathrm{e} \pi$-bonding for the allyl anion 6
1.3 Trigonal bipyramidal molecular structure of PF_{5} 6
1.4 Pseudo-TBP molecular structure of $\mathrm{PCl}_{4} \mathrm{~F}$ and SF_{4} 7
1.5 Examples of the N-X-L designation system 7
1.6 Approximate molecular orbital model of the 5c-6e bond 9
1.7 The synthesis of $10-\mathrm{C}-5$ compound 5 11
1.8 Hypervalent compounds with O-C-O pincer ligands 11
1.9 Precursors to O-C-O pincer ligands for synthesis of hypervalent carbon species 12
1.10 Some hypervalent carbon compounds with Akiba's O-C-O pincer ligands 12
1.11 The synthesis of hypervalent boron species 13
1.12 Synthesis of hypervalent boron compounds 19 14
1.13 Synthesis of hypervalent boron compounds 20 14
1.14 Conceptual steps in the conversion of an $8-\mathrm{N}-3$ species to a $10-\mathrm{N}-5$ species 19
2.1 Complex of dirhodium tetraacetate with Lewis base B 35
2.2 NMR spectra of compound 36 in $\mathrm{D}_{2} \mathrm{O}$ 38
2.3 The X-ray crystal structure of compound $\mathbf{3 6}$ 40
2.4 Orbital interaction diagram for an $\mathrm{N}-\mathrm{CHA}_{2}$ fragment 43
2.5 Comparison of basicities of $\mathbf{3 6}$ and other trialkylamines 44
2.6 The X-ray crystal structure of compound $\mathbf{3 6} \cdot \mathrm{HCl}$ 45
2.7 Oxidation potentials ($\mathrm{E}_{1 / 2}{ }^{\mathrm{OX}}$) of several sterically congested trialkylamines 47
2.8 NMR spectra of reaction of $\mathbf{3 6}$ with (MeO$)_{3} \mathrm{~B}$. 52
2.9 NMR spectrum of reaction of $\mathbf{3 6}$ with boric acid 54
2.10 X-ray crystal structure and some structural data for TEAB 55
2.11 X-ray crystal structure of one-boron compound 67 56
2.12 X-ray crystal structure of compound 71 61
2.13 NMR spectra of compound 75 66
2.14 NMR spectra of compound 77 67
2.15 X-ray crystal structure of compound 74 70
2.16 X-ray crystal structure of compound 76 71
2.17 NMR spectra of compound $\mathbf{8 2}$ 75
2.18 NMR spectra of compound $\mathbf{8 5}$ 78

INTRODUCTION

The Octet Rule which was provided by Lewis ${ }^{1}$ and Langmuir ${ }^{2}$ has been considered a central dogma governing chemical bonding in organic molecules for a long time. The Octet Rule means molecular electron bonds are most stable when the atoms achieve a noble gas configuration. However, it is clear that this rule has its limitations. For example, PCl_{5} has ten electrons about the phosphorus. More surprisingly, XeF_{4} and XeF_{2} were synthesized by Claassen, Selig, and Malm ${ }^{3}$ in 1962. According to the Octet Rule, the rare-gas atoms should be inert due to their full valence shells. The Octet Rule has never been able to provide a good theoretical treatment for such compounds. Obviously a new theory to explain these compounds was needed.

1.1 Hypervalent bond

In 1969, J. I. Musher ${ }^{4}$ established the concept of hypervalent molecules: they are ions or molecules having elements bearing more electrons than the octet (nine or more) within a valence shell. He also suggested there were two methods to form hypervalent bonds: (1) make up a dsp ${ }^{3}$ or $d^{2} s^{3}$ orbital by hybridization using higher-lying d orbitals or (2) make up highly ionic orbitals revising (modifying) the basic idea of Lewis that a bond is formed by a localized pair of two electrons.

The expansion of the octet has traditionally been explained by participation of d orbitals in hybridization. Smith and coworkers ${ }^{5}$ used the experimentally determined bond lengths of XeF_{2} and XeF_{4} to support covalent models with ten electrons in the xenon
valence shell of XeF_{2}, and twelve electrons in the xenon valence shell of XeF_{4}. In explanation of the bonding schemes, they used the then-popular theory of an $\mathrm{sp}^{3} \mathrm{~d}$ hybridized configuration for XeF_{2}, and $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridized configuration for XeF_{4}. d-Orbitals cannot be utilized to hold extra electrons if the energy gap between $n(s p)$ and $n(d)$ is too large. The second row elements (i.e. $\mathrm{Li}-\mathrm{Ne}$) have high-energy d orbitals, therefore traditionally hypervalency has been thought possible only for third row elements (i.e. $\mathrm{Na}-\mathrm{Ar}$) and beyond.

In 1951, Pimentel ${ }^{6}$ and, independently, Rundle ${ }^{7}$ set up the basis for new developments in this area by proposing the idea of a three-center four-electron (3c-4e) bond, employing molecular orbital theory. However, the idea of a $3 \mathrm{c}-4 \mathrm{e}$ bond was widely ignored initially. It gradually came to be used only when d orbital hybridization apparently could not be supported. So Pimentel and Spratley ${ }^{8}$ refuted the conclusions that Smith and coworkers had drawn about covalent models for XeF_{2} and XeF_{4}, and they insisted that the bonding scheme involved the $3 \mathrm{c}-4 \mathrm{e}$ interaction. Later, Musher ${ }^{4}$ further developed the theory of hypervalent bonding that Pimentel had proposed in 1951, and introduced hybrid orbital wave functions, atomic "geminals," for this type of bond. Schleyer and Reed ${ }^{9}$ investigated the bonding of hypervalent molecules theoretically and reached the conclusion that employing dsp ${ }^{3}$ or $\mathrm{d}^{2} \mathrm{sp}^{3}$ is not at all correct and rather misleading. Through this and the efforts of Kutzelnigg and coworkers, ${ }^{10}$ the idea of a $3 \mathrm{c}-4 \mathrm{e}$ bond has become supported and is now generally accepted.

1.1.1 Three-center four-electron ("hypervalent") bond

A 3c-4e bond is formed from three adjacent p-type atomic orbitals arranged in a line with lobes lying along the internuclear axis. These overlap in a σ-fashion to form three molecular orbitals (see Figure 1.1). Two electrons are in a bonding molecular orbital and two are in a nonbonding orbital. "According to the fundamental description of a 3c-4e bond, one pair of bonding electrons is delocalized to the two ligands (substituents),

Figure 1.1. The three-center four-electron bonding scheme for elements E and L
resulting in the charge distribution of almost -0.5 charge on each ligand and almost +1.0 charge on the central atom. ${ }^{11}$ In order to experimentally construct a $3 c-4 e$ bond in pentacoordinate hypervalent molecules, four ways were proposed by Akiba ${ }^{11,18}$ (Scheme 1). (1) Add two free radicals from ligands to combine with an unshared pair of electrons in the central atom's p-orbital. (2) Add two unshared pairs of electrons to coordinate to a central atom's vacant p-orbital. (3) Add a pair of unshared electrons of one ligand to the σ^{*} orbital of a $\mathrm{Z}-\mathrm{X}$ bond in a cationic molecule. (4) Add a pair of unshared electrons of one ligand to the σ^{*} orbital of a $\mathrm{Z}-\mathrm{X}$ bond of a neutral molecule (e.g., silicon compounds).

(1)

(3)

(2)

(4)

Scheme 1 Modes of creation of a 3c-4e bond in pentacoordinate hypervalent molecules

When X is carbon, method (4) is similar to the transition state of the $\mathrm{S}_{\mathrm{N}} 2$ reaction.Therefore sometimes hypervalent compounds are referred to as "frozen transition states."

For example, pentacoordinate hypervalent carbon compound $\mathbf{1}^{16}$ and boron compound 2^{17} correspond to method (2) above.

1

2

Compared to a normal covalent bond (i.e. a $2 \mathrm{c}-2 \mathrm{e}$ bond) in which no electrons occupy any nonbonding or antibonding orbitals, in a 3c-4e bond the nonbonding molecular orbital is the highest occupied molecular orbital (HOMO). A 3c-4e bond is referred to as an electron-rich, orbital-deficient bond. A hypervalent bond will be weak and long in comparison with a normal covalent bond. As implied in the hypervalent bonding scheme of Figure 1.1, appreciable electron density is strongly localized on the axial ligands. The
apical bond is much more polarized than the equatorial ones. Thus the axial ligands should be electron-withdrawing groups while the central atom must be comparatively electropositive for the purpose of stabilizing the electron density distribution. Some calculated data and experimental evidence on phosphorus hypervalent compounds $\left(\mathrm{PH}_{\mathrm{x}} \mathrm{F}_{5}\right.$ $\mathrm{x},{ }^{14} \mathrm{PCl}_{\mathrm{x}} \mathrm{F}_{5-\mathrm{x}}{ }^{15}$) supported this aspect of hypervalent bonding theory. In all of these phosphoranes the axial positions were occupied with fluorines in preference to hydrogens or chlorines.

The $3 \mathrm{c}-4 \mathrm{e}$ bond model was first applied to trihalide ions $\left(\mathrm{X}_{3}{ }^{-}, \mathrm{XY}_{2}^{-}\right.$, and $\left.\mathrm{XYZ}^{-}\right)$and bifluoride ion $\left(\mathrm{HF}_{2}^{-}\right)$by Rundle. ${ }^{7}$ It was able to explain that the trihalide ions were linear and the bonds were slightly longer and presumably slightly weaker than the corresponding ordinary halogen-halogen bonds. For example, the I-I bond length (1.16 \AA) of $\mathrm{I}_{3}{ }^{-}$is longer by 10% than that of diiodine ($1.06 \AA$). In 1985, Martin ${ }^{12}$ and coworkers used the 3c-4e molecular orbital model for $\mathrm{F}_{3}{ }^{-}$, which should be a quite unstable hypervalent compound. The three-center bonding scheme for the trifluoride anion is shown in Figure 1.2(a). The σ-delocalized orbitals involving σ overlap of p -orbitals are analogous to the three-center bonding in the allyl anion (Fig. 1.2(b)). Three-center bonding like that shown in Figure 1.2(a) is sometimes called a " σ-allyl" system. The structure of $\mathrm{F}_{3}{ }^{-}$was calculated at two levels (DZP (a polarized double- ζ set)/ACCD (approximate coupled clusters with double substitutions) and TZP (a polarized triple- ζ)/ACCD). In both cases the structure of $\mathrm{F}_{3}{ }^{-}$was found to be linear with equivalent bonds. At the DZP/ACCD level, the F-F bond length was calculated to be $1.711 \AA$, while at the TZP/ACCD level it was $1.701 \AA$, which was about $0.3 \AA$ longer than that of $\mathrm{F}_{2}\left(\mathrm{~F}-\mathrm{F}: 1.412 \AA\right.$). The bonding in $\mathrm{F}_{3}{ }^{-}$
(a)

$[\mathrm{F}-\mathrm{F}-\mathrm{F}]^{-}$
(b)

Figure 1.2 (a) Linear $3 \mathrm{c}-4 \mathrm{e} \sigma$ bonding scheme for $\mathrm{F}_{3}{ }^{-}$(b) $3 \mathrm{c}-4 \mathrm{e} \pi$-bonding for the allyl anion.
could be described as a 3c-4e bond involving only p-orbitals. In agreement with this is the ACCD charge distribution in the ion $\left(\mathrm{F}_{3}{ }^{-}\right)$, which puts a -0.51 charge on each apical fluorine and $\mathrm{a}+0.03$ charge on the central fluorine.

Normally hypervalent molecules have a trigonal bipyramidal (TBP) or pseudo TBP geometry ${ }^{13}$ that employs two types of bonding: hypervalent bonding for the two axial ligands, and normal covalent bonding to the equatorial ligands. The molecular structure of PF_{5} in Figure 1.3 is an example of true TBP geometry. It is composed of three $\mathrm{P}-\mathrm{F}$ bonds in the equatorial plane and one axial 3c-4e bond. The apical (or axial) bond (1.577 \AA) is longer and weaker than the equatorial bond ($1.534 \AA$).

Figure 1.3 Trigonal bipyramidal molecular structure of PF_{5}

But the term pseudo TBP is most employed to describe hypervalent species because most hypervalent species have a distorted TBP geometry. This may be the result of one or more ligands being different than the others, or one or more ligands being replaced by a lone pair of electrons. This is illustrated in Figure 1.4.

Figure 1.4 Pseudo-TBP molecular structure of $\mathrm{PCl}_{4} \mathrm{~F}^{20}$ and $\mathrm{SF}_{4}{ }^{19}$

The $\mathrm{N}-\mathrm{X}-\mathrm{L}$ designation ${ }^{21}$ is a convenient notation system to describe the structure of hypervalent species: N represents the number of electrons associated with the valence shell of the central atom, X is the symbol of the central atom (Groups 1,2 13-18), L is the number of ligands directly bonding the central atom X . In general, hypervalent compounds are those compounds with $\mathrm{N}>8$, i.e. the octet is expanded. According to the $\mathrm{N}-\mathrm{X}-\mathrm{L}$ designation, multiple bonds are counted as polarized single bonds no matter the actual character of the bonds. Following are some examples to illustrate the N-X-L system. (Figure 1.5).

Figure 1.5 Examples of the $\mathrm{N}-\mathrm{X}-\mathrm{L}$ designation system

1.1.2 Extended hypervalent bond (5c-6e bond)

In 1988, Farnham ${ }^{27}$ and coworkers reported that tris(dialkylamino)sulfonium per-fluoro-2-methyl-2-pentyl carbanion reacted with perfluoroalkyl iodides $\left(\mathrm{R}_{\mathrm{f}} \mathrm{I}\right)$ to give a novel structure of the form $\left[\mathrm{R}_{\mathrm{f}}-\mathrm{I}-\mathrm{F}-\mathrm{I}-\mathrm{R}_{\mathrm{f}}\right]$. The crystal structure analysis and high-level $a b$ initio calculation proved that bonding in this form was a five-center, six-electron hypervalent σ bond with fluorine at the central position, not an ion-dipole complex. In the calculations of Farnham et al. on this 5c-6e bond, the negative charge was localized at the central and terminal positions. In order to stabilize a $5 \mathrm{c}-6 \mathrm{e}$ bond, the central and terminal positions should be occupied by the more electronegative elements, with less electronegative elements at the other two positions. In the $3 \mathrm{c}-4 \mathrm{e}$ bond only the terminal positions should be occupied by electronegative elements and the central position by more electropositive atoms. The electronic density distribution of the $5 \mathrm{c}-6 \mathrm{e}$ bond differs from that of the $3 \mathrm{c}-4 \mathrm{e}$ bond. So Farnham et al. called the 5c-6e bond an extended hypervalent σ bond. In 1989, Dixon ${ }^{28}$ et al. gave other examples of $5 c-6 e$ hypervalent bonding, i.e. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}\left([\mathrm{F}-\mathrm{Xe}-\mathrm{F}-\mathrm{Xe}-\mathrm{F}]^{+}\right)$and $\mathrm{XeIF}_{3}(\mathrm{~F}-\mathrm{Xe}-\mathrm{F}-\mathrm{I}-\mathrm{F})$. The electronic structures of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$ and $\mathrm{Xe}_{2} \mathrm{IF}_{3}$ were calculated by using $a b$ initio molecular orbital theory with polarized, split-valence basis sets.

Anthraquinone $\mathbf{3}$ and 9 -methoxyanthracene $\mathbf{4}$ were synthesized by Nakanishi ${ }^{29}$ and coworkers. The structures of $\mathbf{3}$ and $\mathbf{4}$ were determined by X-ray crystallography, which revealed the linear alignment of five $\mathrm{C}-\mathrm{Se} \cdots \mathrm{O} \cdots \mathrm{Se}-\mathrm{C}$ atoms in $\mathbf{3 a}$ and $4 \mathbf{4}$. The Se-O distances in 3a and 4a are 2.673-2.688 \AA and 2.731-2.744 \AA respectively, which are
about 25% shorter than the sum of van der Waals radii of the atoms. This evidence strongly supported the extended hypervalent $\left[\sigma^{*}\left(\mathrm{C}_{\mathrm{i}}-\mathrm{Se}\right) \cdots \mathrm{n}_{\mathrm{p}}(\mathrm{O}) \cdots \sigma^{*}\left(\mathrm{Se}-\mathrm{C}_{i}\right)\right] 5 \mathrm{c}-6 \mathrm{e}$

$\mathbf{3 a} Y=\mathrm{H}$
$\mathbf{3 b} \mathrm{Y}=\mathrm{Cl}$

$$
\begin{aligned}
& \mathbf{4 a}(\mathrm{R}=\mathrm{OMe}, \mathrm{Y}=\mathrm{H}) \\
& \mathbf{4 b}(\mathrm{R}=\mathrm{H}, \mathrm{Y}=\mathrm{H}) \\
& \mathbf{4 c}(\mathrm{R}=\mathrm{H}, \mathrm{Y}=\mathrm{Cl})
\end{aligned}
$$

interactions in $\mathbf{3 a}$ and $\mathbf{4 a}$. They suggested that $5 \mathbf{c}-6 \mathrm{e}$ bond should be constructed by the combination of the two hypervalent $n_{p}(\mathrm{O}) \cdots \sigma^{*}\left(\mathrm{Se}-\mathrm{C}_{i}\right) 3 \mathrm{c}-4 \mathrm{e}$ interactions through the central $n_{p}(O)$. The quantum chemical calculations performed on $\mathbf{3 a}, \mathbf{4 a}$ and $\mathbf{4 b}$ suggested that the origin of the linear alignment of the five $\mathrm{C}-\mathrm{Se} \cdots \mathrm{O} \cdots \mathrm{Se}-\mathrm{C}$ atoms in $3 \mathbf{a}$ and $\mathbf{4 a}$ was stabilization due to 5c-6e extended hypervalent 5c-6e bonding. An approximate molecular orbital model which summarizes Nakanishi's ideas is shown in Figure 1.6. ${ }^{29}$

Figure 1.6 Approximate molecular orbital model of the 5c-6e bond

1.2 Hypervalent compounds based on second row elements

Since Claassen, Selig, and Malm ${ }^{3}$ synthesized the xenon fluorides in 1962, there have been many papers published dealing with either the synthesis of new hypervalent species, the calculated and experimental geometries of hypervalent compounds, or descriptions of hypervalent bonding schemes. Especially in the past twenty years, many different hypervalent compounds of elements from the third row or below were synthesized and studied. ${ }^{11}$ However, by contrast, just a few hypervalent compounds based on second row elements were synthesized or even detected. Only hypervalent compounds of boron, carbon, and fluorine have been reported, and there exist only a few examples of these compounds.

The first 10-F-2 hypervalent fluorine species was reported by Ault and Andrew ${ }^{30}$ in 1976. It was the highly unstable trifluoride anion $\mathrm{F}_{3}{ }^{-}$generated by simultaneous deposition of an $\mathrm{Ar} / \mathrm{F}_{2}$ mixture with CsF , RbF or KF . All three alkali metal trifluorides $\left(\mathrm{M}^{+} \mathrm{F}_{3}{ }^{-}\right)$ were detected at low temperature by Raman and infrared spectroscopy.

The chemists most successful at synthesizing and characterizing second row hypervalent species of carbon and boron are J. C. Martin and Kin-ya Akiba. They have prepared and characterized a series of compounds with boron and carbon hypervalent centers.

In 1979, Forbus and Martin ${ }^{31}$ used the reaction in Figure 1.7 to prepare the first directly observable pentavalent carbon species (10-C-5), an analogue to the transition state in the Walden inversion mechanism. ${ }^{1} \mathrm{H}$ NMR spectroscopy and, in the case of $\mathrm{X}=\mathrm{F},{ }^{19} \mathrm{~F}$ NMR spectroscopy were used to confirm that the structure of 5 was the symmetrical trigonal bipyramidal geometry, not an unsymmetrical 8-C-4 species, such as 6.

Ar = 2,6-dimethoxyphenyl

5, $\mathrm{E}=\mathrm{OMe}$

6, $\mathrm{E}=\mathrm{OMe}$

Figure 1.7 The synthesis of $10-\mathrm{C}-5$ compound 5^{31}

Whereas very useful trianionic OCO pincer ligands (Figure 1.8) have been used to synthesize hypervalent phosphorus, sulfur, and iodine species, ${ }^{32}$ application of these ligands to prepare hypervalent species from second row elements hasn't been reported.

Figure 1.8 Hypervalent compounds with O-C-O pincer ligands ${ }^{33}$

Recently, Kin-ya Akiba and coworkers designed new kinds of ligands (Figure 1.9) for synthesis of a series of hypervalent carbon compounds (Figure 1.10) and boron species. ${ }^{34}$ NMR spectra were used to confirm these hypervalent carbon species 10-12. In addition, Akiba and coworkers were able to obtain crystals of $\mathbf{1 0}$ and 12. X-ray analysis

$7^{16,34}$

$8^{33,34}$

$\mathrm{Ar}^{1}=p-\mathrm{Tol}, p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
$\mathbf{9}^{18}$

Figure 1.9 Precursors to O-C-O pincer ligands for synthesis of hypervalent carbon species

$10^{16,33,34}$
11^{34}
12^{18}

Figure 1.10 Some hypervalent carbon compounds with Akiba's O-C-O pincer ligands
showed a symmetrical structure (10-C-5) where the two C-O distances were almost identical, and longer than that of a covalent C-O bond, but shorter than the sum of the van der Waals radii.

The first hypervalent boron compounds were reported by Lee and Martin ${ }^{35}$ in 1984 (Figure 1.11). They used pyridine diol 13 as starting material to synthesize isolable 10-B5 and 12-B-6 hypervalent boron species 16 and $17 .{ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$-, and ${ }^{19} \mathrm{~F}$-NMR were all used to confirm the structures of $\mathbf{1 6}$ and 17, but the very important evidence in support of these geometries was ${ }^{11} \mathrm{~B}$ NMR chemical shifts. Compounds $\mathbf{1 6}\left({ }^{11} \mathrm{~B}\right.$ NMR, $\left.-20.1 \mathrm{ppm}\right)$ and 17
(${ }^{11} \mathrm{~B}$ NMR, -122.9 ppm) both displayed ${ }^{11} \mathrm{~B}$ chemical shifts much farther upfield than any chemical shifts previously observed for 8-B-4 type compounds.

13

14

15

16

17

Figure 1.11 The synthesis of hypervalent boron species ${ }^{35}$

The first fully characterized hypervalent boron species was reported in 2000 by Akiba and coworkers. ${ }^{36}$ As shown in Figure 1.12, they used the versatile tridentate anthracene ligand 18 to synthesize hypervalent (10-B-5) boron compounds 19. Crystals of 19a-19c for X-ray analysis were obtained. The X-ray analysis showed the sum of the bond angles around the central boron of 19 are all 360.0°, which means that in each case the central boron atom is planar with sp^{2} hybridization. The two $\mathrm{B}-\mathrm{OMe}$ bond lengths are identical (2.436 \AA in 19c) or almost identical ($2.379 \AA$ and $2.441 \AA$ in 19a, $2.398 \AA$ and $2.412 \AA$ in

Figure 1.12 Synthesis of hypervalent boron compounds 19

19b). These bond lengths are longer than those of covalent B-O bonds (1.394-1.400 \AA), ${ }^{36}$ but shorter than the sum of the van der Waals radii ($3.48 \AA$) ${ }^{37}$

Recently, hypervalent boron compounds 20a-20c were synthesized by Akiba and coworkers as shown in Figure 1.13. ${ }^{34}$ The results of X-ray crystallographic analysis of 20a-20c were very interesting. The structures of 20a and 20b were almost symmetrical, the two B-O distances almost identical.

Figure 1.13 Synthesis of hypervalent boron compounds $\mathbf{2 0}^{34}$

1.3 Hypervalent nitrogen

1.3.1 Potential difficulties in forming hypervalent nitrogen

There have been three major reasons advanced for the reluctance of second row elements to expand their valence octet: (i) steric hindrance, (ii) high electronegativity and high first ionization potentials, and (iii) an inability to utilize d-orbitals.

The inability to utilize d-orbitals in the bonding scheme of second row elements has been cited in many papers as the reason second row elements are resistant to becoming hypervalent. ${ }^{14,38-42}$ But both quantum calculations and experimental results have proved that the role of d-orbitals in hypervalent bonding is not as crucial as many had thought. ${ }^{9,10,38,40,42}$ For sulfur hexafluoride, Reed and Weinhold ${ }^{43}$ found that the d-orbital contribution to the bonding system is small. ${ }^{14,38-42}$ They commented, "The total 3d population in SF_{6}, however, is only around 0.25 e , the $3 \mathrm{~d}_{\sigma}$ population (0.16 e) being only onesixth of what would be required for $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridization on sulfur....We therefore concur with the suggestions of MacLagan and Kutzelnigg that models of $s p^{3} d$ and $s p^{3} d^{2}$ hypervalent bonding in non-metals should no longer be taught in chemistry courses."

Steric hindrance is another reason for the failure of second row elements to bond to five or more ligands. The second row elements have very small atomic radii and the repulsion between the ligands is very strong.

Also harmful to the possible hypervalency of second row elements is their very high first ionization potentials, which means second row elements are reluctant to donate electrons to the axial ligands as shown in the hypervalent bonding scheme of Figure 1.1.

Compared to carbon and boron, nitrogen has a smaller atomic radius and higher first IP. These could be reasons that the syntheses of hypervalent species of nitrogen are
particularly difficult. Fluorine has a smaller atomic radius and higher first IP than nitrogen. But a hypervalent fluorine is required to coordinate only two ligands linearly (e.g. $\mathrm{F}_{3}{ }^{-}$). The lack of steric repulsion between ligands in $\mathrm{F}_{3}{ }^{-}$may in fact overcome the destabilizing effects of having a highly electronegative central atom. As previously discussed, hypervalent carbon, boron, and fluorine species have been observed, but evidence for a hypervalent nitrogen species or even transient hypervalent nitrogen species ${ }^{41,44}$ have been very difficult to obtain.

1.3.2 Some attempts to synthesize hypervalent nitrogen species

In 1916, Schlenk ${ }^{45}$ believed he had synthesized pentacoordinate pentavalent nitrogen as in the following equations. But he failed.

$$
\begin{array}{llc}
\mathrm{Ph}_{3} \mathrm{CNa}+\mathrm{Me}_{4} \mathrm{NCl} & -\ldots \rightarrow & \mathrm{Ph}_{3} \mathrm{C}-\mathrm{NMe}_{4} \\
\mathrm{PhCH}_{2} \mathrm{Na}+\mathrm{Me}_{4} \mathrm{NCl} & \ldots-\cdots & \mathrm{PhCH}_{2} \mathrm{NMe}_{4} \\
\mathrm{Ph}_{2} \mathrm{NK}+\mathrm{Me}_{4} \mathrm{NCl} & -\cdots \rightarrow & \mathrm{Ph}_{2} \mathrm{~N}^{2} \mathrm{NMe}_{4} \tag{3}
\end{array}
$$

In 1947, Wittig ${ }^{46}$ also tried to make a hypervalent nitrogen species as in equation 4. He got nitrogen ylides instead of hypervalent nitrogen species. Fortunately, this led to the eventual discovery of phosphorus ylides.

Hellwinkel and Seifert ${ }^{47}$ thought it should be possible to add a fifth ligand to an ammonium salt lacking α-hydrogens as in equation 5 . The experimental results showed that they were not successful.

Nishikida and Williams ${ }^{48}$ reported a 9-N-4 species, trifluoramine oxide radical anion $\mathrm{F}_{3} \mathrm{~N}^{\bullet}-\mathrm{O}^{-}$, in which the three fluorines were equivalent. It was detected and identified by a second-derivative ESR spectrum of a γ-irradiated solid solution of $5 \mathrm{~mol} \% \mathrm{~F}_{3} \mathrm{NO}$ in SF_{6} recorded at $-170^{\circ} \mathrm{C}$ after irradiation at $-190^{\circ} \mathrm{C}$. However, this radical anion is only stable at very low temperature. It loses F^{-}above 102 K to form $\mathrm{F}_{2} \mathrm{~N}-\mathrm{O}^{\bullet}$.

Hypervalent ammonium radicals (9-N-4), in which the nitrogen atoms have nine valence electrons, were reported by Scott et al. ${ }^{49}$ Transient organic hypervalent ammonium radicals were produced in the gas phase by one-electron reduction of their ammonium ion counterparts, via collisional electron transfer (equation 6). Neutralization-reionization mass spectrometry was used to investigate hypervalent ammonium radicals and to study their dissociations.

NF_{5} (10-N-5) was speculated to be formed from $\mathrm{NF}_{3}-\mathrm{F}_{2}$ either by fission-fragment radiolysis at room temperature ${ }^{50}$ or irradiation by 3-MeV bremsstrahlung at $-196{ }^{\circ} \mathrm{C}^{51}$ or from $\mathrm{NF}_{4} \mathrm{AsF}_{6}$ by pyrolysis at $175{ }^{\circ} \mathrm{C} .{ }^{52}$ However, in 1988 Christe, et al. ${ }^{53}$ summarized all previous attempts, and finally concluded that five fluorines do not have enough space to bond to nitrogen. That means the repulsion between fluorines in NF_{5} is very strong. However, Grohmann and coworkers recently discovered compound 21. ${ }^{54}$ The nitrogen atom in $\mathbf{2 1}$ is in the center of a trigonal bipyramidal cluster of five gold atoms. The goldgold interactions are presumably attractive. The nitrogen is hypercoordinate, not hypervalent.

1. 3. 3 Ideas for the synthesis of precursors to hypervalent $10-\mathrm{N}-5$ species

From the previous review, one might wonder whether it is possible to synthesize a hypervalent nitrogen species. In our group, we have long been interested in seeing whether nitrogen can be made to form $10-\mathrm{N}-5$ systems. To design such a system is challenging.
a) Planarity at nitrogen. According to the hypervalent bonding scheme shown in Figure 1.1, oxidizing an $8-\mathrm{N}-3$ species to a $10-\mathrm{N}-5$ species involves changing the geometry at nitrogen as shown in Figure 1.14. Changing the pyramidal geometry of nitrogen to the planar geometry (step 1, Figure 1.14) will impose an energy cost. However, if one were to begin with an amine having a planar ground state geometry, step 1 and its energy cost would be eliminated.

Figure 1.14 Conceptual steps in the conversion of an $8-\mathrm{N}-3$ species to a $10-\mathrm{N}-5$ species

We know some amines have a planar geometry. For examples, the nitrogen atoms in following amines all have a planar geometry. The bicyclo[3.3.3]undecane system is an

22^{55}

25^{58}

23^{56}

26^{59}

$24{ }^{57}$

27^{60}
obvious motif in 22, 23, and $\mathbf{2 4}$. So some confidence can be gained that synthesizing some precursors of $10-\mathrm{N}-5$ species including a planar nitrogen geometry is a possible goal, although it may turn out to be an elusive one requiring either extreme ingenuity or conditions.
b) Suitable axial ligands. As discussed, a 3c-4e bond has an accumulation of partial negative charge on the apical ligands and partial positive charge on the central atom. This charge distribution can be stabilized by using very electronegative apical ligands. Obviously, each apical ligand must have an orbital capable of good overlap with that of the central element. Not only should the central atom be more electropositive in order to stabilize the partial positive charge on the hypervalent atom, but the equatorial ligands should be electropositive for the same purpose.
c) Five-membered ring effect. Westheimer found that 10-P-5 species in which a five-membered ring that included an apical and an equatorial ligand in the trigonal bipyramidal geometry were several orders of magnitude more stable than model 10-P-5 species in which the five-membered ring was absent. ${ }^{61}$ This has been called the "fivemembered ring effect." Martin, et al. found the "five-membered ring effect" was also manifested in sulfurane (10-S-4) chemistry. ${ }^{62}$ The evidence for "five-membered ring effect" was tested by a series of hydrolysis experiments. Sulfurane 28 is extremely reactive

toward water, producing the hydrolysis products alcohol and sulfoxide very fast at low temperature (eq. 7). ${ }^{63}$ However, sulfurane 29 hydrolyzes very slowly (eq. 8), and $\mathbf{3 0}$ does not hydrolyze even after refluxing for two hours in HCl solution or aqueous sodium hydroxide (eq. 9). ${ }^{62 f, 64}$ Kinetic and calorimetric ${ }^{65}$ studies showed that the five-membered

29

ring effect provided 10-12 kcal/mol stabilization for pseudo TBP sulfuranes such as $\mathbf{3 0}$ relative to acyclic analogue $\mathbf{2 8}$.

So the use of a bidentate ligand or ligands to form a five-membered ring spanning an apical and an equatorial position in a TBP geometry would be extremely useful. We think that it is wise to include the five-membered ring effect in one's design of a $10-\mathrm{N}-5$ species, guessing that the species will have a TBP or pseudo-TBP geometry.
d) Framework to ensure collinear $\mathbf{Z}-\mathbf{N}-\mathrm{Z}$ array. We require to hold atoms above and below nitrogen at a distance suitable for bonding to nitrogen. Our idea is to trap nitrogen in a pre-formed pseudo TBP structure.

According to these considerations, Dr. John Northcott, a former student in our group, synthesized compound 31, which reacted with excess THF• BH_{3} complex to produce $32 .{ }^{66}$

In fact, x -ray crystallography showed 32 contained a THF of crystallization as shown in 33. Unfortunately, it was impossible to prepare 32 free of coordinating solvent, so it could not be determined experimentally whether this B-N-B array is intrinsically $\mathbf{3 4}$ or 35. The $a b$ initio calculations indicated that the system 34 (with the symmetrical 3c-2e [BNNB] array) is only $2.66 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the system 35 (with the unsymmetrical $[\mathrm{B}-\mathrm{N} \quad \mathrm{B}]$ array).

34

35

1.3.4 New target precursor for $10-\mathrm{N}-5$ species.

a) Precursor $\mathbf{3 6}$ for $\mathbf{1 0 - N}-\mathbf{5}$ species

Compared to 31, the symmetry of $\mathbf{3 6}$ should be higher than $\mathbf{3 1}$ and should have less steric hindrance. So we think 36 may be a better precursor for 10-N-5 species. Compound

36 is an extension of the well-known triethanolamine, 37. Reaction of suitable reagents with the three hydroxy groups of triethanolamine produces so-called"atranes" 38 or $\mathbf{3 9}$

36

37
$(\mathrm{E}=\mathrm{B}, \mathrm{Al}, \mathrm{Si}, \mathrm{P}, \mathrm{Sn}, \mathrm{Ge}$, etc.). Compounds 38 and 39 have been made and there has been much discussion about the length of the dative bond made between nitrogen and the other

$(E=B, A l, P)$
38

($\mathrm{E}=\mathrm{Si}, \mathrm{Ge}$)
39
heteroatom, the geometry enforced by this fourth bond, and the properties. ${ }^{67}$ We hope $\mathbf{3 6}$ could incorporate some main group elements just like triethanolamine to provide $\mathbf{4 0}$ and 41. As mentioned before, molecules like $\mathbf{4 0}$ or $\mathbf{4 1}$ may have a static unsymmetrical structure 42, a static symmetrical structure with a 3-center bond 43 or a dynamic structure.

Compounds $\mathbf{4 0}$ and $\mathbf{4 1}$ are σ-allyl cation analogues. To create the possibility of nitrogen hypervalency, two electrons must be added to $\mathbf{4 0}$ (or 41) to become σ-allyl anion analogues in which N is engaged, in a formal sense, in five single bonds.

36

42

43

b) Precursor 45 for 10-N-5 species

As discussed, the five-membered ring as a design element seems like a good idea. How about a six-membered ring? In view of Alder's studies of ring size effects on bridgeheadbridgehead interactions in bicyclic compounds, ${ }^{68}$ it may be well to explore variants of the proposed systems in which other ring sizes are present. One example, 46 (or 47), and its precursor 45 are shown.

RESULTS AND DISCUSSION

2.1 The synthesis of tertiary amine 36 .

2.1.1 Previous work in our lab.

Tertiary amine $\mathbf{3 6}$ can be regarded as an analogue of triisopropylamine, which is among the most sterically hindered tertiary amines prepared to date. ${ }^{70}$ There are only a few reported syntheses of triisopropylamine, and most of them required rather harsh conditions. ${ }^{60,70,71}$ There are many methods for the synthesis of hindered secondary amines, but there are few general methods available for the preparation of extremely hindered tertiary amines, and these give the hindered amine product in low or modest yields. In 2001, Minmin Yang et al. ${ }^{72}$ collected all reported routes to such compounds. These are shown in equations 10-15. There seems to be no simple, general method for the synthesis of extremely hindered tertiary amines. In fact, many approaches for synthesizing tertiary amine $\mathbf{3 6}$ in our laboratory were fruitless. ${ }^{77}$

18\%

74%
In 1999, Scott, Krülle, Finn, Nash, Winters, Asano, Butters and Fleet ("SKFNWABF") ${ }^{78}$ also failed to synthesize 36 (Scheme 2). As shown in Scheme 2, dihydroxyacetone dimer 48 underwent reductive amination to produce intermediate primary amine 49 , secondary amine 50 , but not hindered tertiary amine 36 . So tertiary amine 36 would be expected to be a challenging synthetic target.

Fortunately, recent work in our laboratory ${ }^{79}$ pointed to a possible synthesis of tertiary amine 36. That work involved the Rh -stabilized carbene $\mathrm{N}-\mathrm{H}$ insertion reaction (eq. 16). ${ }^{80}$ Using this reaction, it was possible to produce sterically hindered tertiary amines, a
facet of this reaction which had been previously unexplored. In our laboratory, we have been exploring carbenoid $\mathrm{N}-\mathrm{H}$ insertion into various congested secondary amines. Some results are shown in Table 1. ${ }^{72,81}$ These results gave us confidence that the N-H insertion methodology might be used successfully to prepare 36.

Scheme 2 Failure to prepare 36 by reductive amination

2.1.2 The synthesis of compound 36 starting with dihydroxyacetone

Based on SKFNWABF's work ${ }^{78}$ and previous work in our laboratory, we decided to use cheap, commercially available dihydroxyacetone as the starting material. Our work in realizing this plan is shown in Scheme 3. We envisioned making secondary amine 50 by reductive amination (see Scheme 2) and using a carbenoid N -H insertion to complete the carbon skeleton of 36 .

Table 1. Some reactions of hindered secondary amines with diazo compounds catalyzed by $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$
Amine

In order for the $\mathrm{N}-\mathrm{H}$ insertion to succeed, the OH groups must be protected. We initially decided to protect the OH groups prior to the reductive amination. SKFNWABF's method for preparing 50 using unprotected dihydroxyacetone involved ion exchange chromatography to isolate the water-soluble product. We felt that OH-protected

Scheme 3. Initial investigations into the synthesis of $\mathbf{3 6}$

58
$51 \mathrm{Rh}_{2}(\mathrm{OAc})_{4}$
PhH , reflux

59

56
40, $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$
PhH , reflux

${ }^{a}$ TBDMS $=$ tert-butyldimethylsilyl ${ }^{b}$ DMP $=$ 2,2-dimethoxypropane
dihydroxyacetone would give a protected, organic-soluble analogue of 50 which would simplify isolation. Considering that TBDMS ethers ${ }^{82}$ are more stable than TMS ethers and are easy to deprotect, first we chose TBDMSCl as protecting reagent. With DMF as solvent, imidazole as catalyst, dihydroxyacetone dimer reacted with TBDMSCl to produce 55 in very high yield (92.0%). We tried to prepare 56 from 55 by a reductive
amination reaction. Sodium cyanoborohydride or sodium triacetoxyborohydride was used as reducing reagent, ammonium chloride or ammonium acetate was used as amination reagent, and a variety of reaction times and temperatures were chosen. Unfortunately, we always got an intractable mixture. We failed to produce 56 from 55, perhaps because the TBDMS group is too large.

Then 2,2-dimethoxypropane was chosen as protecting reagent. According to previous work in our laboratory, dihydroxyacetone dimer 48 reacted with 2,2-dimethoxypropane (DMP) to give 53, not the desired 54 (eq. 17). ${ }^{79}$

48
${ }^{a}$ DMP $=$ 2,2-dimethoxypropane

53

54
not formed

Rather than protect dihydroxyacetone, we prepared 50 by the method of SKFNWABF. ${ }^{78}$ With compound 50 in hand, we wanted to use TBDMS as a protecting group for the hydroxyls. Secondary amine 50, catalyzed by imidazole, reacted with TBDMSCl in DMF solvent to afford compound 56 in good yield (78.5 \%). However, the carbenoid insertion into the N - H bond of 56 went poorly. In refluxing benzene, dimethyl diazomalonate (DDM) catalyzed by $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$, reacted with protected secondary amine 56 to afford 57 in very low yield (5\%). Again, the steric bulk of the TBDMS group may be a factor here. When we used DMP as protecting reagent with secondary amine 50 to afford protected secondary amine 58 , the subsequent $\mathrm{N}-\mathrm{H}$ insertion to form 59 went smoothly. The target 36 was obtained after 59 was reduced and the acetonide protecting
groups were removed. The overall synthesis of tertiary amine 36 in five steps from dihydroxyacetone dimer is shown in Scheme 4, and discussed in more detail in the following sections.

Scheme 4. Route from dihydroxyacetone to tertiary amine 36

a) Synthesis of Acetonide 58

The first two steps of our synthesis are based on the work of SKFNWABF. ${ }^{78}$ The first step was carried out by the method of SKFNWABF, but we modified the second step. In the second step, according to the literature method, secondary amine 50 reacted with

DMP in DMF and acetone catalyzed by concentrated sulfuric acid, then solid sodium bicarbonate was used to neutralize the reaction solution. The solvent was removed on the rotary evaporator and the residue was partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate, and the organic layer was washed with brine, dried with MgSO_{4}, filtered, and concentrated to give 78% crude product 58 . In our hands, the yield ranged from 30% to 70%. Also, this crude product 58 didn't work for the next step ($\mathrm{N}-\mathrm{H}$ insertion reaction). According to the paper, ${ }^{78}$ pure 58 was obtained through the recrystallization from ether and hexane (however the yield was not reported). When we used this method to purify 58, we got a very low yield. Perhaps the following two reasons caused the yield to vary so widely: (i) solid sodium bicarbonate does not dissolve in DMF/acetone solvent, so it is hard to completely neutralize the reaction solution. If the reaction solution cannot be totally neutralized, some protonated 58 still exists, and this protonated 58 will dissolve in the aqueous layer. Because it will not be extracted into ethyl acetate, it will lead to low yield. (ii) After removal of most of the solvent, a sticky solid was formed. The removal of the remainder of the DMF was difficult because of the high boiling point of DMF. Furthermore, the product 58 dissolves in DMF. The residual DMF will also entrain the secondary amine 58 to dissolve in the aqueous layer.

In our improved method, secondary amine $\mathbf{5 0}$ was dissolved in methanolic HCl to form $\mathbf{5 0} \cdot \mathrm{HCl}$. Then $\mathbf{5 0} \cdot \mathrm{HCl}$ was reacted with DMP in DMF, catalyzed by p-toluenesulfonic acid monohydrate ${ }^{83}(p-T s O H)$. The solution was neutralized with triethylamine. The mixture was concentrated in vacuo, the residue diluted with triethylamine and ethyl acetate. The ammonium salts were simply filtered off, and the solvent evaporated to afford crude product 58. This crude product could be purified by column chromatography (73\%)
or crystallized from hexane (82%). Compared to the SKFNWABF method, we simplified the workup and improved the yield from 78% (crude yield of $\mathrm{SKFNWABF}^{78}$ method) to 82% (purified yield of our improved method). Furthermore, we got very pure 58. This is very important for the next step: the $\mathrm{N}-\mathrm{H}$ insertion reaction.

b) Synthesis of tertiary amine 59 through N - H insertion reaction of rhodium(II)

carbenoids

The insertion of a carbene or carbenoid generated from a diazocarbonyl compound into an $\mathrm{N}-\mathrm{H}$ bond is a very useful process which leads to $\mathrm{C}-\mathrm{N}$ bond formation. Also, since the desired compound $\mathbf{3 6}$ has hydroxymethyl groups which can be generated by the reduction of ester groups, dimethyl diazomalonate ("DDM") was chosen as the source of carbenoid. DDM was synthesized by a diazo transfer reaction (eq. 19). ${ }^{84}$

Dirhodium tetraacetate-catalyzed insertion of DDM into the NH bond of secondary amine 58 is the key step for synthesizing hindered tertiary amine 36. However, dirhodium tetraacetate is well-known to form strong complexes with Lewis bases (including some amines), ${ }^{85}$ which may inhibit the catalytic decomposition of DDM (Figure 2.1). In fact, Porter and his coworkers ${ }^{86}$ found that the catalytic activity of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ was totally
inhibited by primary amines. This result is relevant to the N - H insertion reaction used to prepare tertiary amine 59 . If the secondary amine 58 we used was impure, and included a

Figure 2.1 Complex of dirhodium tetraacetate with Lewis base B
little of the corresponding primary amine (i.e., the acetonide of 49), when the $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ catalyst was added, the reaction solution immediately become red-brown instead of the normal green color of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$. The red-brown color of the reaction solution indicated that $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ was poisoned. ${ }^{87}$ After 10 h of refluxing in benzene, the reaction mixture showed by TLC unreacted DDM and 58 remaining. In such cases the yield of tertiary amine 59 was very low. The purity of acetonide 58 is therefore of crucial importance for this reaction. Fortunately, very pure crystalline 58 can be simply obtained by crystallization from hexane. In this key $\mathrm{N}-\mathrm{H}$ insertion step, the yield was improved from 71% (using 4 mole $\left.\% \mathrm{Rh}_{2}(\mathrm{OAc})_{4}\right)^{79}$ to 81% (using 2 mole $\% \mathrm{Rh}_{2}(\mathrm{OAc})_{4}$).

Compared to acetonide 58, DDM is easy to prepare. ${ }^{84 \mathrm{a}}$ In order to attempt to drive all acetonide 58 to the desired tertiary amine $\mathbf{5 9}$, excess DDM was employed. However, it is very hard to convert all acetonide 58 to tertiary amine $\mathbf{5 9}$, even though 50% excess DDM was used. By TLC analysis, amine 58 still was present after DDM had disappeared. But the yield was improved from 81% to 84% by using a 20% excess of DDM (the yield was the same even when 50% excess DDM was used).

c) Reduction of diester 59

In order to reduce the ester groups of 59 to alcohols, the most commonly used reagents are lithium aluminum hydride (LAH) ${ }^{88}$ and lithium borohydride. ${ }^{89}$ According to previous work in our lab, ${ }^{79}$ reduction of tertiary amine 59 with lithium borohydride afforded a mixture of the fully reduced diol, the partially reduced monoalcohol, and starting material 59, which never disappeared completely even when excess lithium borohydride was used.

So, we chose LAH as reducing reagent. ${ }^{79,87,88 \mathrm{a}}$ The reduction of 59 with LiAlH_{4} afforded the corresponding diol $\mathbf{6 0}$ at room temperature in THF under nitrogen. The yield of diol $\mathbf{6 0}$ was related to the ratio of diester 59 to LiAlH_{4}. The 1:6 molar ratio of diester 59 to LAH was the best ratio, affording 93\% isolated yield of diol $\mathbf{6 0}$. The yield of diol 60 could not be improved by using a larger excess of LAH; the diester 59 spot was still visible by TLC at the end of the reaction. But unreacted diester 59 is easy to recycle. The crude product was applied to a silica gel column. About 5\% low-polarity starting material 59 was eluted first with hexane/EtOAc 1:3. Polar product 60 could be eluted next with ethyl acetate. The yield of diol $\mathbf{6 0}$ based on recovered starting material is $\mathbf{9 8 \%}$.

d) Deprotection of acetonide 60

The acetonide functionality is commonly used as a protecting group for hydroxyl groups in polyhydroxylated compounds due to its stability to mildly acidic as well as basic conditions. ${ }^{82}$ As a consequence, many methods have been developed for deprotection. ${ }^{82,90}$ Basically, deprotection of acetals requires the use of protic or Lewis acids. However, many of these methods suffer from disadvantages such as high acidity, long reaction times, inconvenient work up, unsatisfactory yields. Recently, some alternative
methods have been developed, including acid ion-exchange resins, ${ }^{91}$ silica-supported sodium hydrogen sulfate as a heterogeneous catalyst, ${ }^{92}$ and lanthanum(III)nitrate hexahydrate. ${ }^{93}$

Acetonide $\mathbf{6 0}$ is a tertiary amine. At first, we thought if protic acids were employed as catalysts to deprotect the acetal groups of $\mathbf{6 0}$, the nitrogen would be protonated to form a salt (e.g. 61). We know that a salt like 61 would be soluble in water, and insoluble or sparingly soluble in organic solvents. So it would be challenging to purify $\mathbf{6 1}$ and get free tertiary amine 36.

First, we tried to use insoluble acidic matrices such as silica supported sodium hydrogen sulfate in THF, ${ }^{92}$ or acidic ion-exchange resin (Amberlyst) in ethanol as catalysts to deprotect acetonide 60. ${ }^{91}$ However, neither method worked for our compound 60. Previous work in our lab showed HCl solution needed long reaction times. ${ }^{79}$ Finally, trifluoroacetic acid in aqueous THF was employed to cleave the acetal groups of 60, affording tertiary amine 36 and its trifluoroacetate salt. This mixture was applied to an ionexchange resin column, Amberlite, IR-120, H^{+}. The column was eluted with water first, and then a solution of 1 M aqueous ammonia. A white sticky liquid was obtained. The sticky liquid was kept on the vacuum line overnight, and it became a white solid. NMR spectra showed it was our target compound 36. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (in $\mathrm{D}_{2} \mathrm{O}$) of compound $\mathbf{3 6}$ are shown in Figure 2.2.

The ${ }^{13} \mathrm{C}$ NMR spectrum of 36 is easily assigned: According to the DEPT spectrum of 36, we knew the resonance at 61.0 ppm should be from carbon D , and 56.8 ppm peak is due to carbon E (methanol, 49.2 ppm by definition) in $\mathrm{D}_{2} \mathrm{O}$. The ${ }^{1} \mathrm{H}$ NMR spectrum for 36 is analyzed as follows: the multiplet at 3.16 ppm is from H_{c}. The two AB quartets at

Figure 2.2 NMR spectra of compound 36 in $\mathrm{D}_{2} \mathrm{O}$. Top: $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ spectrum of 36 (HDO was set to 4.80 ppm). Bottom: $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ spectrum (A trace of $\mathrm{CH}_{3} \mathrm{OH}$ is present as a chemical shift standard)
3.50-3.58 ppm are from H_{a} and H_{b}, which means H_{a} and H_{b} are magnetically nonequivalent. So H_{a} and H_{b} couple with each other and are also split by H_{c}. A factor here is the chiral carbon (E) and hydrogen bonding shown below. Because of the hydrogen

36
bonds, $\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{D}}$ and $\mathrm{C}_{\mathrm{D}}-\mathrm{O}$ bonds cannot rotate freely, which results in H_{a} and H_{b} protons being more magnetically non-equivalent than in a freely rotating system. The ${ }^{1} \mathrm{H}$ NMR spectrum of 36 in $\mathrm{DMSO}-\mathrm{d}_{6}$ showed a triplet for the OH proton at 4.91 ppm . This means exchange of the OH protons was slow in this solvent, which very tentatively lends weight to the suggestion that H -bonding might be strong enough to hinder bond rotation.

2.1.3 Some properties of tertiary amine 36

In order to further prove the structure of 36, we worked very hard to get a single crystal of 36. Finally, we grew a very beautiful single crystal of 36 from THF solution. The structure of $\mathbf{3 6}$ as determined by X-ray crystallography is shown in Figure 2.3. For clarity, hydrogens bound to carbon have been omitted. Hydrogens bound to oxygen were located and refined during solution of the structure.

From this X-ray crystal structure of $\mathbf{3 6}$, the distance between $\mathrm{O}_{4}---\mathrm{H}_{3}, \mathrm{O}_{2}---\mathrm{H}_{1}$ is $1.80778 \AA, 1.91697 \AA$ respectively. These distances are shorter than the sum of van der Waals contact distance $(2.6 \AA)^{113}$ of $\mathrm{H} \cdots \mathrm{O}$ for $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond system. It is clear there are intramolecular hydrogen bonds $\left(\mathrm{O}_{4} \cdots \mathrm{H}_{3}, \mathrm{O}_{2} \cdots \mathrm{H}_{1}\right)$ in 36, just as the ${ }^{1} \mathrm{H}$ NMR spectrum suggested.

Figure 2.3 The X-ray crystal structure of compound 36. Atoms are represented as spheres of arbitrary diameter. Hydrogens bound to carbon have been omitted.

More importantly, this crystal structure proves the nitrogen of 36 is essentially planar. There are two ways to quantify the planarity of nitrogen in tertiary amines. One is the sum of C-N-C angles, which will be 360° for a perfectly planar nitrogen. Another is the distance from nitrogen to the plane defined by the three carbons bound to nitrogen, which we will denote as " h ". In tertiary amine 36, the sum of C-N-C angles is $359.05(7)^{\circ}$, and h is $0.082 \AA$. In Table 2, the h of $\mathbf{3 6}$ is compared to h for an ordinary trialkylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$
and several sterically congested trialkylamines. It is clear that $\mathbf{3 6}$ is one of the most planar trialkylamines known (taking the term "trialkylamine" to refer to nitrogen bound to three

Table 2. h for various trialkylamines

Trialkyl
amine

saturated (i.e. sp^{3}) carbons). Compound 36 is the key precursor of hypervalent nitrogen (10-N-5) for our project. As was previously discussed, oxidizing an $8-\mathrm{N}-3$ species to a $10-\mathrm{N}-5$ species includes changing the geometry of nitrogen from a pyramidal to a planar geometry, which will impose an energy cost. Now the tertiary amine $\mathbf{3 6}$ already has an almost planar geometry and the energy cost of changing geometry would be eliminated. So it should be a better precursor of hypervalent nitrogen species than 31.

The average $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}\left(\mathrm{sp}^{3}\right)$ bond length among 1042 trialkylamines is 1.469 ± 0.014 \AA, with the middle 50% in the range $1.460-1.476 \AA .{ }^{97}$ Remarkably, the average of the three $\mathrm{C}-\mathrm{N}$ bond lengths in 36 is $1.4545(11) \AA$; that is, the $\mathrm{C}-\mathrm{N}$ bonds of 36 are extremely short. Considering the steric crowing around nitrogen (every α-carbon is branched), one might have predicted long $\mathrm{C}-\mathrm{N}$ bonds rather than short ones.

To explain this anomaly, we offer a qualitative argument based on orbital interactions. Consider planar 36, shown below (with $\mathrm{CH}_{2} \mathrm{OH}$ groups replaced by the letter A).

The Newman projection down an $\mathrm{N}-\mathrm{C}$ bond suggests that the nitrogen p -orbital will interact with adjacent orbitals involved in A-C-A σ-bonding. In particular, the specific

36
sidechain orbital shown, an antibonding 2 a " orbital, is of proper symmetry for an interaction with the p-orbital of nitrogen, also a". A more complete orbital diagram is given in Figure 2.4. The strength of the favorable $\mathrm{N} 2 \mathrm{p}-2 \mathrm{a}$ " interaction is inversely proportional to $\Delta \mathrm{E}$. When $\mathrm{A}=\mathrm{CH}_{3}$, the antibonding 2 a " orbital is relatively high-lying, and the stabilization of the planar form by this orbital interaction is modest. However, as A becomes more electronegative, all the sidechain orbitals move to lower energy while the N 2 p orbital remains unchanged. This decreases $\Delta \mathrm{E}$ and in turn strengthens the filled-unfilled orbital interaction favoring the planar form of the amine. Having A $=\mathrm{CH}_{2} \mathrm{OH}$ provides significant stabilization of the planar amine. When $\mathrm{A}=\mathrm{Cl}$, the amine is absolutely planar, as noted in Table 2. The strengthening of the N 2 p - sidechain interaction along this series results in progressively shorter C-N bonds. In triisopropylamine $\left(\mathrm{A}=\mathrm{CH}_{3}\right)$, the C-N bond length is $1.469(1) \AA$ (at $\mathrm{T}=84 \mathrm{~K}) ;{ }^{94}$ in $36\left(\mathrm{~A}=\mathrm{CH}_{2} \mathrm{OH}\right)$, it is $1.4545(11) \AA$; in $\mathrm{N}\left(\mathrm{CHCl}_{2}\right)_{3}(\mathrm{~A}=\mathrm{Cl})$, it is $1.418(2) \AA^{96}{ }^{96}$

Some interesting structural parameters of $\mathbf{3 6}$ from x-ray crystallography compared to various trialkylamines are shown in Table 3.

Figure 2.4. Orbital interaction diagram for an $\mathrm{N}-\mathrm{CHA}_{2}$ fragment
Table 3. Structural parameters of $\mathbf{3 6}$ and various trialkylamines from X-ray crystallography

Compound	$h(\AA)$	Sum of C-N-C Angles ($\left.{ }^{\circ}\right)$	C-N Bond Lengths (A) $)^{a}$
$\mathbf{3 6}$	0.082	$359.05(7)$	$1.4509(11), 1.4561(11), 1.4566(10)$
$\mathrm{NMe}_{3}{ }^{b}$	0.454	331.9	$1.448,1.448,1.448$
$\mathrm{NEt}_{3}{ }^{b}$	0.467	\square^{c}	\square^{c}
$\mathrm{NEt}_{3}{ }^{d}$	0.444	335.1	$1.490,1.517,1.514$
$\mathrm{NEt}_{3}{ }^{e}$	0.425	336.0	$1.471,1.475,1.471$
N()$_{3}^{b, f}$	0.292	348.6	$1.469(1)$
$\mathrm{N}\left(\left)_{3}^{b, g}\right.\right.$	0.282	349.2	$1.469(1)$

${ }^{a}$ Italics indicate an average value ${ }^{b}$ reference $94{ }^{c}$ disorder ${ }^{d}$ Brady, S. F.; Singh, M. P.;
Janso, J. E.; Clardy, J. Org. Lett. 2000, 2, 4047. ${ }^{e}$ Born, M.; Mootz, D.; Schaefgen, S. Z. Naturforsch, Teil B1995, 50, 101. ${ }^{f} T=84 \mathrm{~K}^{g} T=118 \mathrm{~K}$

The pK_{a} of 36 was measured by titration of a 0.01 M aqueous solution of 36 with standard 0.01 M HCl at $25^{\circ} \mathrm{C}$, and was found to be 3.08 ± 0.03. (We thank Dr. Yu Qin of this Department for performing this measurement). When compared with simple trialkylamines like triethylamine (Figure 2.5), it is clear that $\mathbf{3 6}$ is an unusually weak base.

The diminished basicity of $\mathbf{3 6}$ might be due to difficulty in deforming the essentiallyplanar nitrogen of $\mathbf{3 6}$ to accommodate the additional ligand $\left(\mathrm{H}^{+}\right)$in the conjugate acid. Examination of X-ray crystal structure of $\mathbf{3 6} \cdot \mathrm{HCl}$ (Figure 2.6) lends support to this idea. (As a product of another experiment (vide infra), $\mathbf{3 6} \cdot \mathrm{HCl}$ was available).

36

$$
\mathrm{p} K_{\mathrm{a}}=3.08
$$

62
$\mathrm{p} K_{\mathrm{a}}=10.71^{98 \mathrm{a}}$

$\mathrm{p} K_{\mathrm{a}}=7.78^{98 \mathrm{~b}}$

Figure 2.5. Comparison of basicities of 36 and other trialkylamines

As shown in Table 4, the ammonium cation derived from 36 is severely flattened at nitrogen. Indeed it is even more deformed than the ammonium cation derived from triisopropylamine. ${ }^{94}$

According to Hamilton's ${ }^{113}$ tabulation, the $\mathrm{H} \cdots \mathrm{O}$ distance is $2.6 \AA$ in an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding system. From the X-ray crystal structure of $\mathbf{3 6} \cdot \mathrm{HCl}$, we can see the "triple" intramolecular hydrogen bond $\left(\mathrm{H}_{1} \cdots \mathrm{O}_{4}, \mathrm{H}_{1} \cdots \mathrm{O}_{5}, \mathrm{H}_{1} \cdots \mathrm{O}_{6}\right)$ in $\mathbf{3 6} \cdot \mathrm{HCl}$. It is very similar to what Holmes ${ }^{114}$ reported in compounds 63A, 63B, and 64. The "triple" hydrogen bonding interactions of some tertiary amine cations are summarized in Table 5.

Figure 2.6. The X-ray crystal structure of compound $\mathbf{3 6} \cdot \mathrm{HCl}$. Atoms are represented as spheres of arbitrary diameter. Hydrogens bound to carbon are not shown.

Table 4. Geometries of protonated trialkylamines

	Average N-C length (\AA)	Average H-N-C angle $\left({ }^{\circ}\right)$	Average C-N-C angle $\left(^{\circ}\right)$	Number of examples ${ }^{a}$
Uncongested $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$ $\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$	1.48	107.5	111.4	49
Congested $($ acyclic $)$ $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)_{3} \mathrm{NH}^{+b}$ $\left(\left(\mathrm{HOCH}_{2}\right)_{2} \mathrm{CH}\right)_{3} \mathrm{NH}^{+c}$ $36 \cdot \mathrm{HCl}$	1.50	107.0	111.8	21

${ }^{a}$ Examples found in the Cambridge Crystallographic Database. ${ }^{b}$ Bock, H.;
Göbel, I.; Bensch, W.; Solouki, B. Chem. Ber. 1994, 127, 347-351 ${ }^{\text {c }}$ This work

63A

Ph ${ }^{\prime}$ Ph

63B

64
$\mathrm{E}_{1 / 2}{ }^{\mathrm{ox}}$ of 36 (eq. 20) was found to be 0.88 V from cyclic voltammetry on 36 (Au electrode, in aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}, 100 \mathrm{mV} / \mathrm{sec}$ scan rate, 0 to $1.5 \mathrm{~V}, \mathrm{Ag} / \mathrm{AgCl}$ reference electrode). (We thank Dr. Wei Zhu of this Department for performing this measurement). This is in the same range as other hindered tertiary aliphatic amines (Figure 2.7). ${ }^{87}$

Table 5. "Triple" hydrogen bonding interactions of some tertiary ammonium cations

tertiary anime cations	$d_{\mathrm{N}-\mathrm{H}}(\AA)$	$d_{\mathrm{O}--\mathrm{H}}(\AA)$	Avg of $d_{\mathrm{O}--\mathrm{H}}(\AA)$
		2.22	
${\mathbf{3 6} \square \mathrm{HCl}^{a}}$	0.90	2.26	2.22
		2.18	
$\mathbf{6 3 A}^{\boldsymbol{b}}$	0.91	2.40	
		2.26	2.3
$\mathbf{6 3 B}^{b}$	0.91	2.24	
		2.18	2.50
$\mathbf{6 4}^{\boldsymbol{b}}$	0.91	2.37	

${ }^{a}$ This work. ${ }^{b}$ see ref. 114

0.715 V

0.800 V

0.870 V

0.910 V

Figure 2.7. Oxidation potentials $\left(\mathrm{E}_{1 / 2}{ }^{\mathrm{ox}}\right)$ of several sterically congested trialkylamines

However, in contrast to other sterically unhindered tertiary amines, the redox process for $\mathbf{3 6}$ was reversible. This suggests that the radical cation derived by oxidation of $\mathbf{3 6}$ is
kinetically stable. Usually, for unhindered tertiary amines, the radical cation will lose α $\mathrm{H} \cdot$ to form the iminium cation (eq. $21(a)$), or lose $\alpha-\mathrm{H}^{+}$to form different products (eq. 21 (b)) according to electrochemical oxidation conditions (for example, secondary amine $\mathrm{R}_{2} \mathrm{NH}$ and aldehyde ${ }^{115 \mathrm{a}}$ under water) as shown below ${ }^{115}$ (eq. 21). The $\mathrm{C}-\mathrm{H}_{\alpha}$ bond can
(a)

 [21]

(c) unhindered amine radical cation

(d) 36^{+}
achieve periplanarity with the N p-orbital (i.e. dihedral angle $=0^{\circ}$ or 180° as shown in (c)). Thus the loss of $\alpha-\mathrm{H} \cdot$ or $\alpha-\mathrm{H}^{+}$is rapid and the redox process for unhindered tertiary amines is not usually reversible. However, in $\mathbf{3 6}^{\mathbf{+}}$, the $\alpha-\mathrm{H}$ is in the nodal plane of the p orbital of nitrogen (dihedral angle $=90^{\circ}$ as shown in (d)). This strongly disfavors loss of $\alpha-\mathrm{H} \cdot$ or $\alpha-\mathrm{H}^{+}$and since rotating the sidechain so that the $\mathrm{C}-\mathrm{H}_{\alpha}$ bond is periplanar with the nitrogen p-orbital is sterically very difficult, the radical cation of 36 is relatively longlived.

Amine hexaol 36 is a highly atypical and fascinating tertiary amine. We hope it will prove to be useful in the synthesis of $\mathbf{4 1}, \mathbf{4 4}$, or similar systems.

2.2 Tris(1,3-dihydroxy-2-propyl)amine 36 incorporating some main group elements

Triethanolamine reacts with a variety of main group element reagents to form the large and extensively studied class of compounds called atranes, ${ }^{67}$ e.g. $\mathbf{3 8}, 39$ (eqs 22 and 23). Amine hexaol 36 may be thought of as a "doubled" analogue of triethanolamine. So with 36 in hand, we explored a variety of reagents which might be used analogously to form compounds 40, or 41 (eqs 24 and 25).

2.2.1 Reactions of 36 with various sources of boron

"Double closure" of $\mathbf{3 6}$ to $\mathbf{4 0}$ or $\mathbf{4 1}$ is not without potential problems. Consider the reaction of 36 with " EX_{3} " reagent $\mathrm{B}(\mathrm{OMe})_{3}$, for example (see Scheme 5). To reach 40 (E $=B$), six transesterification steps are required. Intermediate 65 is formed after the first

Scheme 5 Possible pathways in the reaction of 36 with $(\mathrm{MeO})_{3} \mathrm{~B}$

transesterification. The next transesterification may proceed either intramolecularly or intermolecularly. The latter is illustrated in Scheme 5 as path a. Further steps of this type type would eventually lead to polymeric products. Intramolecular transesterification may occur in one of two ways, shown in Scheme 5 as paths b and c. Path b could be called the "inter-sidearm" mode of cyclization, and path c the "intra-sidearm" mode of cyclization.

Path b is the only path which would lead to the desired product 40. Path b involves formation of an eight-membered ring and path c a six-membered ring, which would tend to favor path c over path b on entropic grounds. However, the B-N dative bond possible in path b (66) may provide an enthalpic driving force sufficient to favor path b over path c. If paths b and c, as well as subsequent transesterification steps, are reversible, and if the reaction is carried out under conditions of thermodynamic control, it is possible that 40 could represent the deepest thermodynamic sink and so be formed in high yield regardless of whether path b or c is preferred. Against the background of such considerations, investigations of the "double closure" of 36 were undertaken.

a) The reaction of 36 with trimethyl borate, $(\mathbf{M e O})_{3} B$

A well-investigated method to prepare boratranes is transesterification of trialkylborates with tris(2-hydroxyalkyl)amines ${ }^{98}$ (eq. 26). Normally, the reaction occurs upon

short heating of the reagent mixture without any solvent. ${ }^{99}$ So, the first source of boron tried with 36 was trimethyl borate. Under N_{2}, the reaction proceeded on heating excess trimethyl borate and 36. Unfortunately the product didn't dissolve in most organic solvents, but very easily dissolved in $\mathrm{D}_{2} \mathrm{O}$. The NMR spectra are shown in Figure 2.8. The ${ }^{1} \mathrm{H}$ NMR spectrum was complex, but the ${ }^{13} \mathrm{C}$ NMR spectrum appeared much simpler. Peak A is methanol (as chemical shift standard), peak B and peak C are due to starting material 36. The other three peaks are from the product in this reaction. We tried to purify it, but it was insoluble in most common organic solvents. Our attempts to purify the product failed, so finally we gave up.

Figure 2.8 NMR spectra of the product of reaction of $\mathbf{3 6}$ with (MeO) $)_{3} \mathrm{~B}$. (a) $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum (b) $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum

b) The reaction of 36 and boric acid, $\mathrm{H}_{3} \mathrm{BO}_{3}$

The simplest route to prepare boratranes is esterfication of boric acid by tris(2-hydroxyalkyl)amines ${ }^{98}$ (eq. 27). The second source of boron tried with 36 was boric acid.

$$
\begin{equation*}
\mathrm{B}(\mathrm{OH})_{3}+\left(\mathrm{HOCHRCH}_{2}\right)_{3} \mathrm{~N} \longrightarrow \sqrt{\mathrm{~B}\left(\mathrm{OCHRCH}_{2}\right)_{3} \mathrm{~N}}+3 \mathrm{H}_{2} \mathrm{O} \tag{27}
\end{equation*}
$$

A mixture of boric acid and 36 in DMF was heated under nitrogen (oil bath $130-150{ }^{\circ} \mathrm{C}$). A white precipitate formed after several hours. This white precipitate also didn't dissolve in most organic solvents $\left(\mathrm{CHCl}_{3}\right.$, acetone, THF, ethyl acetate, ether, DMF, DMSO), and very easily dissolved in $\mathrm{D}_{2} \mathrm{O}$ (the NMR spectra were the same as in Figure 2.8). So it's hard to determine its structure. But in an NMR tube, this white solid dissolved in DMSOd_{6} after heating for $2-3 \mathrm{~h}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra are shown in Figure 2.9. The mass spectrum showed molecular ions at $\mathrm{m} / \mathrm{e} 247$, and $\mathrm{m} / \mathrm{e} 246$, in the intensity ratio $5: 1$, as well as peaks at m/e 208, 148, and 44. The elemental analysis was (C, 43.88; H, 7.28; N, 5.55). Based on these data, this white solid may be assigned the structure 67 or 68 (cal'd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{~B}$: C 43.76; H 7.34; N 5.67; molecular weight $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{6}{ }^{11} \mathrm{~B}=247 \mathrm{~g} / \mathrm{mol}$, $\left.\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{6}{ }^{10} \mathrm{~B}=246 \mathrm{~g} / \mathrm{mol}\right)$. For convenience we will refer to this compound as

67

68
the "one-boron" compound. Structure 67, a "triptych," implies a transannular dative bond between boron and nitrogen, and structure 68 implies none. Does the one-boron compound resemble triethanolamine borate (TEAB, $38 \mathrm{E}=\mathrm{B}$), which was proved to have the

Figure 2.9 NMR spectra of the reaction of 36 with boric acid. (DMSO- d_{6} solvent) Top: $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum. Bottom: $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum.
triptych structure? ${ }^{100}$ The X-ray crystal structure, intramolecular bond distances and angles of TEAB are shown in Figure 2.10. ${ }^{\text {100c }}$
(a) The molecular structure of TEAB with some bond distances (\mathbb{A}).

(b) Bond angles			
$\mathrm{O}(1)-\mathrm{B}-\mathrm{O}(2)$	114.8	$\mathrm{~B}-\mathrm{O}(1)-\mathrm{C}(1)$	107.3°
$\mathrm{O}(2)-\mathrm{B}-\mathrm{O}(3)$	113.4	$\mathrm{~B}-\mathrm{O}(2)-\mathrm{C}(2)$	107.0
$\mathrm{O}(3)-\mathrm{B}-\mathrm{O}(1)$	115.4	$\mathrm{~B}-\mathrm{O}(3)-\mathrm{C}(3)$	108.5
$\mathrm{~N}-\mathrm{B}-\mathrm{O}(1)$	103.7	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(4)$	105.3
$\mathrm{~N}-\mathrm{B}-\mathrm{O}(2)$	103.5	$\mathrm{O}(2)-\mathrm{C}(2)=\mathrm{C}(5)$	105.4
$\mathrm{~N}-\mathrm{B}-\mathrm{O}(3)$	103.3	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(6)$	104.6
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(5)$	114.0	$\mathrm{~N}-\mathrm{C}(4)-\mathrm{C}(1)$	102.6
$\mathrm{C}(5)-\mathrm{N}-\mathrm{C}(6)$	114.8	$\mathrm{~N}-\mathrm{C}(5)-\mathrm{C}(2)$	101.7
$\mathrm{C}(6)-\mathrm{N}-\mathrm{C}(4)$	114.2	$\mathrm{~N}-\mathrm{C}(6)-\mathrm{C}(3)$	102.6
$\mathrm{~B}-\mathrm{N}-\mathrm{C}(4)$	103.5		
$\mathrm{~B}-\mathrm{N}-\mathrm{C}(5)$	104.1		
$\mathrm{~B}-\mathrm{N}-\mathrm{C}(6)$	104.4		

Figure 2.10. X-Ray crystal structure and some structural data for TEAB ${ }^{100 c}$

In order to distinguish $\mathbf{6 7}$ from 68, we tried to grow a crystal of the one-boron compound. Crystallization from DMSO/ethyl acetate (open to air for several days) gave a crystal suitable for X-ray analysis. The X-ray analysis (Figure 2.11) revealed that the one-boron compound has the triptych structure 67, and the existence of the transannular

Figure 2.11 X-ray crystal structure of one-boron compound 67. Hydrogens bonded to carbon have been omitted.

B-N bond is confirmed by the experimental distance of $1.6875(13) \AA$. This is comparable with the sum of the van der Waals radii of boron and nitrogen, $3.11 \AA,{ }^{101 a}$ and the sum of
the covalent $\mathrm{B}-\mathrm{N}$ bond, $1.58 \AA .{ }^{101 \mathrm{~b}}$ The average $\mathrm{C}-\mathrm{N}-\mathrm{C}$ and $\mathrm{B}-\mathrm{N}-\mathrm{C}$ bond angles are $115.88(7)^{\circ}$ and $101.87(7)^{\circ}$, respectively. All five-membered rings, e.g.

N-B-O(3)-C(5)-C(8), are non-planar. Some geometric parameters of 67 and TEAB are summarized in Table 6. From the X-ray crystal structure (Figure 2.11) of one-boron 67, one may note there is no intramolecular hydrogen bonding in 67 .

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 7}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$ showed a triplet for the OH proton at 5.025 ppm . This means exchange of the OH protons was slow in this solvent, which provides evidence to the suggestion that H -bonding might be strong enough to somewhat hinder bond rotation.

Table 6. Geometric parameters of 67 and TEAB

Compound	Average N-C length (\AA)	Average B-O length (\AA)	B-N length (\AA)	Average C-N-C angle $\left({ }^{\circ}\right)$	Average B-N-C angle $\left({ }^{\circ}\right)$	Average O-B-O angle $\left({ }^{\circ}\right)$
$\mathbf{6 7}^{a}$	$1.5093(12)$	$1.4380(13)$	$1.6875(13)$	$115.88(7)$	$101.88(7)$	$114.62(9)$
TEAB^{b}	1.49	1.43	$1.647(9)$	114.3	104.0	$114.7(6)$

${ }^{\text {a }}$ This work ${ }^{b}$ ref. 100c
Initially, we thought the reaction of 36 with boric acid produced solely the one-boron compound 67; the two-boron compound 69 was not detected in this reaction (eq. 28).

We were interested in testing the strength of the internal B-N dative bond of 67 by reacting 67 with various nucleophiles, e.g. pyridine or triethylamine (eq. 29).

67 70

We repeated the reaction of equation 28 to obtain some white solid. When we had done so several times, we were faced with results that were confusing. Sometimes the white solid product very easily dissolved in pyridine. Sometimes it was very hard to dissolve in pyridine, even after heating for several hours. We also found this white solid was very moisture sensitive (open to air just a few minutes). Eventually, we noted this white solid was very easily dissolved in pyridine before it hydrolyzed in moist air. After it was hydrolyzed, it was very hard to dissolve in pyridine. But the hydrolyzed product easily dissolved in DMSO- d_{6} and the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were those of the oneboron compound 67 (Figure 2.9).

At this point, we realized the white precipitate in equation 28 was not compound 67, but rather it was possibly the two-boron compound 69, which dissolves in pyridine. Compound 69 then hydrolyzes rapidly to one-boron compound 67 , which does not dissolve in pyridine.

To confirm this proposal, we very carefully did the reaction of equation 28 at different temperatures under nitrogen, with attention paid to the exclusion of moisture. At rt, no precipitate was formed after 36 and boric acid in DMF were stirred for one day. No reaction occurred according to the NMR spectra. The same reaction was done at $85-90^{\circ} \mathrm{C}$
for one day and also no white precipitate was formed. But some white solid was obtained after DMF was very carefully removed under nitrogen. This white solid did not dissolve in pyridine, but it dissolved in DMSO- d_{6}. The NMR spectra were the same as 67 (Figure 2.9). However, at a reaction temperature over $130^{\circ} \mathrm{C}$, some white precipitate was formed after approximately 4-6h. This white precipitate easily dissolved in pyridine.

In order to determine the molecular structure of the precipitate formed at $130^{\circ} \mathrm{C}$, it was carefully dissolved in pyridine under nitrogen and the excess pyridine was slowly removed in a stream of nitrogen. A very nice crystal was formed. X-ray analysis revealed that this white crystal was 71, a complex of two-boron compound 69 with one pyridine (Figure 2.12).

71
Consequently, when tertiary amine 36 reacted with boric acid in DMF, at various reaction temperatures, the product could be one-boron 67 (reaction temperature below $100^{\circ} \mathrm{C}$) or "two-boron" 69 (reaction temperature over $100^{\circ} \mathrm{C}$). So, equation 28 must be revised; the real product (white precipitate) is the two-boron compound 69 (eq. 30). The one-boron compound 67 dissolved in DMF, DMSO, but did not dissolve in pyridine and triethylamine. Perhaps the dative bond between nitrogen and boron in 67 is sufficiently strong that 67 doesn't react with nucleophiles such as pyridine or triethylamine. Twoboron compound $\mathbf{6 9}$ didn't dissolve in most organic solvents including DMF and DMSO, however it very easily dissolved in pyridine because of reacting with pyridine to form compound 71. That means in the two-boron compound there was weaker or no dative
bond between nitrogen and boron compared to one-boron compound. Thus the boron of 69 has stronger electrophilicity and reacts with pyridine (a nucleophile). Both 69 and 71 are extremely moisture sensitive, hydrolyzing to give one-boron compound 67 as shown in Scheme 6.

Scheme 6. Reaction of 36 with $\mathrm{H}_{3} \mathrm{BO}_{3}$

69

71

For 71, the crystal structure is shown in Figure 2.12. The unit cell contains two independent molecules, labeled A and B. The X-ray analysis revealed that 71 has a "trip-tych-and-cage" structure. Some structural parameters of 71 are shown in Table 7. The existence of the transannular (i.e. triptych) B-N bond is confirmed by the B-N distance of 1.701(4) \AA (average of molecules A and B). The "cage" B $\cdots \cdot \mathrm{N}$ distance is 3.093(4) \AA (average of molecules A and B). The average C-N(3)-C and B-N(3)-C bond angles are $115.8(2)^{\circ}$ and $101.99(13)^{\circ}$, respectively. Compared to TEAB and one-boron 67, the triptych B-N $\left(\mathrm{sp}^{3}\right)$ dative bond in $71(1.701(4) \AA)$ is longer and weaker than that of TEAB (1.647(9) Å) and 67 (1.6875(13) Å).

Figure 2.12. X-ray crystal structure of compound 71. There are two independent molecules in the unit cell. Atoms are represented by spheres of arbitrary diameter. All hydrogens have been omitted.

Formation of two-boron compound 69 (and its hydrolysis to 67) is amazingly easy. We found the one-boron compound 67 could be prepared by mixing 36 and excess boric acid together in a mortar and grinding it for 5-10 minutes with a pestle. Excess boric acid was removed by washing with hot THF and very pure 67 was obtained in more than 98% yield.

Table 7. Geometric data of 71 from X-ray crystallography

Entry	Average $\mathrm{N}-\mathrm{C}$ length (Å)	$B-\mathrm{N}^{a}$ length (Å)	$B-N^{b}$ length (Å)	Average $\mathrm{C}-\mathrm{N}^{a}$-C angle (${ }^{\circ}$)	Average $\mathrm{B}-\mathrm{N}^{a}-\mathrm{C}$ angle (${ }^{\circ}$)
71(A) ${ }^{\text {c }}$	1.505(3)	$\begin{aligned} & 1.7029 \\ & 3.0911 \end{aligned}$	1.642(4)	115.8(2)	101.99(13)
71(B) ${ }^{\text {c }}$	1.495(4)	$\begin{aligned} & 1.6992 \\ & 3.0958 \end{aligned}$	$1.645(4)$	115.8(2)	101.93(2)

${ }^{a}$ Tertiary amine nitrogen ${ }^{b}$ Pyridine nitrogen ${ }^{c}$ The labels A and B refer to two independent molecules in the unit cell

c) Some properties of $\mathbf{6 7}$

1. Stability with water and nucleophilic reagents

In 1960, Steinberg and Hunter ${ }^{102}$ reported the hydrolysis rate of boratrane is 130 times as slow as that of triethylborate under neutral conditions. Such a result suggested an equilibrium between two boratrane forms with planar and tetrahedral boron configuration, the tetrahedral configuration having a $\mathrm{B} \leftarrow \mathrm{N}$ bond. From the kinetic data, a hydrolysis mechanism includes initial $\mathrm{B} \leftarrow \mathrm{N}$ bond cleavage (equation 31). ${ }^{103}$

A $B \leftarrow N$ dative bond also exists in 67 , according to the X-ray crystal structure of oneboron compound 67 . This dative bond should stabilize 67 . The following facts will prove it.

NMR spectra in $\mathrm{D}_{2} \mathrm{O}$ demonstrated that $\mathbf{6 7}$ only partially hydrolyzed to tertiary amine 36 at rt and the hydrolysis ratio did not change several days later. That means $\mathbf{6 7}$ could
not be hydrolyzed completely in water at rt . And $\mathbf{6 7}$ was stored in a small white vial for almost 17 months under air at rt . The NMR spectra of $\mathbf{6 7}$ (in DMSO- d_{6}) illustrated that no 67 was hydrolyzed to tertiary amine 36 . So, 67 is very stable at rt.

Attack of a nucleophilic reagent at the boron atom of $\mathbf{6 7}$ should be slowed by the existence of the $B \leftarrow N$ transannular bond. This decreases the electrophilicity of the boron of 67. Perhaps, it is the reason that boratrane 67 is very hard to dissolve in pyridine and triethylamine, even after heating it.

2) Reaction of 67 with $\mathrm{Z}-\mathrm{Si}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}(\mathrm{Z}=\mathrm{Me}, \mathrm{Ph})$

In DMF, mixtures were obtained when 67 reacted with $\mathrm{Z}-\mathrm{Si}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}(\mathrm{Z}=\mathrm{Me}, \mathrm{Ph})$ at a molar ratio of 1:1. The mixtures were starting material 67, one-boron one-silicon compound 72 and two-silicon compound 73 . But only 73 was obtained when the reaction ratio was $1: 2$. That means the siloxane is more stable than the borate for tertiary amine 36.

d) Properties of two-boron compound 69

As discussed, two-boron compound 69 is extremely moisture sensitive and insoluble in virtually all organic solvents. It did not melt or sublime at $350-400{ }^{\circ} \mathrm{C}$ in vacuum (2-5 Torr). So, it is difficult to determine its molecular structure.

2.2.2 Reactions of 36 with various sources of silicon

a) Reactions with $\mathrm{Z}-\mathrm{Si}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}(\mathrm{Z}=\mathrm{Ph}, \mathrm{Me})$

Phenylsilatrane was first prepared by Finestone ${ }^{104}$ through azeotropic distillation of triethanolamine and phenyl triethoxysilane with benzene (eq. 33). The same method was employed for the synthesis of silatranes by Frye and coworkers. ${ }^{105}$
$\mathrm{PhSi}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}+\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N} \longrightarrow \mathrm{PhSi}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}+3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

This method of transesterification of Si-substituted trialkoxysilanes was also used in the case of tertiary amine 36 to try to synthesize two-silicon silatranes (eq. 34). This method in DMF solution was successful in our hands in preparing two-Me two-Si compound 76 and two-Ph two-Si compound 75 in high yield (> 90%). TLC was employed to follow the reactions. During these reactions, there were two new spots on TLC plates.

The more polar spot of the two gradually disappeared. Finally, there was only one new spot, which was identified as the two-Si compound, (either $\mathbf{7 4}$ or $\mathbf{7 6}$). The more polar spots which disappeared during the course of the reaction were regarded as intermediate one-Si compounds 75 and 77. These materials were obtained by stopping the reaction at the point at which the concentration of the polar intermediate was greatest, and

74

75

76

77
performing silica gel chromatography of that reaction mixture. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were consistent with the proposed structures of 75 and 77. (Figure 2.13 and 2.14)

Silatranes were the first examples of atrane to be reported ${ }^{105}$ and have been reviewed exhaustively by Voronkov. ${ }^{106}$ The molecular structure of silatranes has been elucidated by X-ray crystal structural and conformational methods. Bond angles and lengths, including distances in silatranes $\left(\mathrm{ZSi}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right)$ could presumably range between $1.87 \AA$ (the sum of the covalent radii of silicon and nitrogen) and $3.65 \AA$ (the sum of the van der Waals radii of silicon and nitrogen). ${ }^{107}$

The reported longest $\mathrm{Si} \leftarrow \mathrm{N}$ distance in a silatrane is in 78 (2.89(1) \AA), which is 21% shorter than the sum of the van der Waals radii. ${ }^{116}$ The shortest one is in 79 (1.965(5) A.). ${ }^{117}$

78

79

However, in almost all of the silatranes which have been studied, the distance between the silicon and nitrogen is in the range 2.0-2.4 \AA. This distance is considerably

Figure 2.13 NMR spectra of compound 75. $\left(\mathrm{CDCl}_{3}\right.$ solvent) Top: $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum. Bottom: $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum.

Figure 2.14 NMR spectra of compound 77. $\left(\mathrm{CDCl}_{3}\right.$ solvent) Top: $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum. Bottom: $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum.
shorter than the sum of van der Waals radii of the silicon and nitrogen atoms. This is persuasive evidence for the existence of a transannular interaction between the silicon and nitrogen in silatranes.

In silatranes $\mathrm{ZSi}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$, the $\mathrm{Si} \leftarrow \mathrm{N}$ dative bond length is essentially dependent on the substituent (Z) at the silicon atom (see Table 8). Thus, for example, the presence of an electron-withdrawing substituent at the silicon atom $\left(\mathrm{Cl}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}, 3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)$ should shorten the $\mathrm{Si} \leftarrow \mathrm{N}$ bond length.

Table 8. Some structural features of silatranes $\mathrm{ZSi}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$

Entry	Z	Si-N length (\AA)	Si-Z length (\AA)	$\mathrm{Si-O}$ length (\AA)	Average O-Si-O Angle($)$	Average Z-Si-O Angle()
1^{a}	$\mathrm{Me}_{2} \mathrm{O}^{+}$	1.965	1.830	1.642	120.0	96.4
2^{b}	Cl	2.02	2.15	1.65	120.0	
3^{b}	ClCH_{2}	2.12	1.91	1.67	119.0	96.0
4^{b}	$3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	2.12	1.91	1.66	119.0	96.0
5^{b}	$\mathrm{Ph}(\gamma)$	2.13	1.89	1.65	118.0	96.0
6^{a}	EtO	2.152	1.658	1.648	118.9	93.6
7^{b}	CH	2.17	1.87	1.67	118.0	93.0
8^{b}	$\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{3}$	2.18	1.88	1.66	119.0	
9^{b}	Et	2.21	1.88	1.66	118.0	
10^{b}	c	2.89	2.29	1.65	110.0	108

${ }^{a}$ ref. $117{ }^{b}$ ref. $106^{\text {c }}\left(\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{P}\right)_{2} \mathrm{PtCl}$

Does a dative bond between the silicon and nitrogen exist in compounds 74-77? Our greatest interest is in compounds 74 and 76. The nitrogen in 74 and $\mathbf{7 6}$ should be considered hypervalent $(10-\mathrm{N}-5)$ if there is a maximal transannular interaction between the
silicon and nitrogen in $\mathbf{7 4}$ or $\mathbf{7 6}$. The solid-state structures of $\mathbf{7 4}$ and $\mathbf{7 6}$ will certainly offer unambiguous structural information. Therefore, we tried to grow crystals of 74 and 76. Recrystallization of $\mathbf{7 4}$ from benzene and $\mathbf{7 6}$ from hexane gave nice crystals suitable for X-ray analysis. The X-ray crystal structures are shown in Figure 2.15 and Figure 2.16. The results of X-ray crystallographic studies on 74 and 76 are summarized and compared to those for 1-methylsilatrane $\mathbf{8 0}$ and 1-phenylsilatrane $\mathbf{8 1}$ in Table 9.

80

81

From Table 9, it is clear the distances between silicon and nitrogen in 74 and 76 are significantly shorter than the sum of van der Waals radii for the silicon and nitrogen atoms, $3.65 \AA .{ }^{106}$ This provides evidence for the existence of an attractive transannular interaction between silicon and nitrogen in $\mathbf{7 4}$ and 76. That means there exists to some extent a $5 \mathrm{c}-6 \mathrm{e}$ bond $(\mathrm{C} \cdots \mathrm{Si} \cdots \mathrm{N} \cdots \mathrm{Si} \cdots \mathrm{C})$ in 74 and 76.To the extent the $5 \mathrm{c}-6 \mathrm{e}$ description applies, the nitrogens in 74 and 76 would be hypervalent ($10-\mathrm{N}-5$). But the $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ and C-Si-O angles in 74 and 76 are closer to pure tetrahedral values than the corresponding

Figure 2.15 X-ray crystal structure of compound 74. Atoms are represented by spheres of arbitrary diameter. All hydrogens have been omitted.

Figure 2.16. X-ray crystal structure of compound 76. The unit cell contains two independent molecules. Atoms are represented by spheres of arbitrary diameter. All hydrogens have been omitted.

Table 9. Some interesting X-ray structural parameters of 74, $\mathbf{7 6}$ compared to 80, $\mathbf{8 1}$

Compound	Average N-C Length (Å)	Si-N Length (\AA)	Si-C Length (A)	Average C-Si-O Angle (${ }^{\circ}$)	Sum of $\mathrm{C}-\mathrm{N}-\mathrm{C}$ Angle (${ }^{\circ}$)	Average O-Si-O Angle (${ }^{\circ}$)
$74{ }^{a}$	1.4652	$\begin{aligned} & 2.7662 \\ & 3.0182 \end{aligned}$	$\begin{aligned} & 1.8592 \\ & 1.8531 \end{aligned}$	$\begin{aligned} & 104.99(16) \\ & 107.47(17) \end{aligned}$	359.0(3)	$\begin{aligned} & 113.56(18) \\ & 111.39(18) \end{aligned}$
76(A) ${ }^{\text {a }}$	1.452(6)	$\begin{aligned} & 2.8717 \\ & 2.9736 \end{aligned}$	$\begin{aligned} & 1.829(5) \\ & 1.826(5) \end{aligned}$	$\begin{aligned} & 106.8(2) \\ & 107.9(2) \end{aligned}$	359.9(4)	$\begin{aligned} & 112.0(2) \\ & 111.0(2) \end{aligned}$
76(B) ${ }^{\text {a }}$	1.455(5)	$\begin{aligned} & 2.8808 \\ & 2.9607 \end{aligned}$	$\begin{aligned} & 1.829(5) \\ & 1.833(5) \end{aligned}$	$\begin{aligned} & 107.8(3) \\ & 106.8(2) \end{aligned}$	359.9(4)	$\begin{aligned} & 111.1(2) \\ & 112.0(2) \end{aligned}$
80^{b}	1.47	2.17	1.87	93	342	118
81($\alpha)^{c}$	1.46	2.19	1.88	97	345	119
81(β) ${ }^{\text {d }}$	1.46	2.15	1.91	97	342	118
$\underline{81(\gamma){ }^{e}}$	1.47	2.13	1.89	96	339	118

${ }^{a}$ This work. The labels A and B refer to independent molecules in the unit cell ${ }^{b}$ ref. 110^{c} ref. 111a ${ }^{d}$ ref. 111b ${ }^{e}$ ref. 111c
angles in $\mathbf{8 0}$ and 81. Distances between silicon and nitrogen are longer in $\mathbf{7 4}$ and $\mathbf{7 6}$ than in 80 and 81. Perhaps this is due to the absence of a strong transannular interaction between silicon and nitrogen in 74 and 76 . So, it is hard to say to what extent a transannular interaction exists between silicon and nitrogen in 74 and 76.

b) Reaction with $\mathrm{Si}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{4}$

In 1960, Finestone ${ }^{104}$ tried to use transesterification to synthesize 1-ethoxysilatrane (equation 35). He failed to obtain pure 1-ethoxysilatrane due to the low melting point

$$
\begin{equation*}
\mathrm{Si}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{4}+\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OSi}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}+3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \tag{35}
\end{equation*}
$$

reported $\left(35-37^{\circ} \mathrm{C}\right)$. However, Fry, Vogel and Hall using the same method synthesized 1-ethoxysilatrane. ${ }^{105}$ Maybe we can also use this method to produce 82 (eq. 36).

Under $\mathrm{N}_{2}, \mathbf{3 6}$ and tetraethoxysilane were heated (oil bath below $100^{\circ} \mathrm{C}$) in DMF solution. Some white solid was obtained after removal of solvent. This white solid partly dissolved in CDCl_{3}. NMR spectra showed it was 82. But it was not pure and not stable.

It gradually deposited a white precipitate from CDCl_{3} solution. This white precipitate didn't dissolve in any organic solvent $\left(\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{CHCl}_{3}, \mathrm{THF}, \mathrm{CH}_{3} \mathrm{OH}\right.$, DMF, DMSO, acetone, ether) or $\mathrm{H}_{2} \mathrm{O}$. We got the white precipitate directly from the reaction solution if the reaction temperature was over $130^{\circ} \mathrm{C}$. We thought this precipitate might be the polymer 83. But the elemental analysis results demonstrate it is not the simple polymer 83.

83

84

The elemental analysis results were as follows: Calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NSi}_{2} \mathrm{O}_{7}$: $\mathrm{C}, 35.40 ; \mathrm{H}$, 4.95; N, 4.59. Found: C, 21.65; H, 4.69; N, 2.47. A copolymer like $84(n / m=2.5)$ fits the elemental analysis more closely; Calculated for 84 : C, 21.59 ; H, 4.03; N, 2.80. Found: C, 21.65; H, 4.69; N, 2.47.)

c) Reaction with $\mathbf{H S i}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)$ to form 85

First we tried to use transesterification method (eq. 38) to synthesize 85. We failed to obtain 85. Instead, a white precipitate was always formed which didn't dissolve in any organic solvent. We repeated this reaction and used CaH_{2} to dry DMF. This time, no precipitate was formed. After removal of solvent, some solid was obtained. This solid easily dissolved in chloroform. NMR spectra (Figure 2.17) were consistent with 82, not 85, as the product of this reaction.

36
85

Voronkov and coworkers ${ }^{106}$ thought the reactivity of the $\mathrm{Si}-\mathrm{H}$ bond in trichloro-, triacetoxy- and trialkoxysilanes didn't permit the preparation of 1-hydrosilatrane and its derivatives. Maybe this is the reason we failed to produce $\mathbf{8 5}$ by the method shown in equation 37. But Voronkov and coworkers ${ }^{119}$ performed the reaction of 1-hydrosilatranes with alcohols and phenols in the presence of sodium alkoxide or phenoxide to form the corresponding 1-organoxysilatranes (eq. 38). We dried DMF by adding CaH_{2} and letting it stand for two days. This DMF was used in the reaction of 36 with $\mathrm{HSi}(\mathrm{OEt})_{3}$ without filtration or distillation. So, the solvent may have contained basic species (e.g. CaH_{2} or $\left.\mathrm{Ca}(\mathrm{OH})_{2}\right)$. A by-product of the formation of $\mathbf{8 5}$ is ethanol. Under basic conditions, as Voronkov found, ethanol may react with $\mathbf{8 5}$ to form 82. (eq. 39).

Figure 2.17 NMR spectra of compound $82\left(\mathrm{CDCl}_{3}\right.$ solvent). Top: $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum. Bottom: $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum.

$$
\begin{equation*}
\mathrm{HSi}\left(\mathrm{OCHRCH}_{2}\right)_{3} \mathrm{~N}+\mathrm{ROH} \xrightarrow{\mathrm{RO}^{-}} \mathrm{ROSi}\left(\mathrm{OCHRCH}_{2}\right)_{3} \mathrm{~N}+\mathrm{H}_{2} \tag{38}
\end{equation*}
$$

In 1967, Zelchan and Voronkov found an interesting method for preparing difficultly accessible 1-hydrosilatranes. That was the transesterification of trialkoxysilanes with the corresponding boratranes (eq. 40). ${ }^{108,109}$

$$
\begin{align*}
& \mathrm{HSi}\left(\mathrm{OR}^{\prime}\right)_{3}+\mathrm{B}\left(\mathrm{OCHRCH}_{2}\right)_{3} \mathrm{~N} \xrightarrow{\mathrm{Al}\left(\mathrm{OR"}^{\prime \prime}\right)_{3}} \quad \mathrm{HSi}\left(\mathrm{OCHRCH}_{2}\right)_{3} \mathrm{~N} \tag{40}\\
& \mathrm{R}=\mathrm{H}, \mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} ; \mathrm{R}^{\prime \prime}=\text { alkyl }
\end{align*}
$$

The synthesis was carried out by heating a mixture of one-boron 67 and triethoxysilane in DMF under nitrogen. A white solid was obtained after removal of the solvent. NMR spectra showed it was $\mathbf{8 5}$. However, does a dative bond between the silicon and nitrogen exist in compound 85 ? The nitrogen in $\mathbf{8 5}$ should be hypervalent ($10-\mathrm{N}-5$) if there is a transannular interaction between the silicon and nitrogen in 85 . Therefore, we tried to grow up a crystal of $\mathbf{8 5}$. Unfortunately, it was not successful.

2.3 Synthesis of tertiary amine 86

Tertiary amine $\mathbf{3 6}$ has six hydroxyl groups. It dissolves only in very polar organic solvents (DMF, DMSO) or water. Most reactions of $\mathbf{3 6}$ require the use of DMF as solvent. Reaction work-up is inconvenient because DMF has a high boiling point.

Therefore, we protected the hydroxyl groups of $\mathbf{3 6}$ using $\mathrm{ClSi}\left(\mathrm{CH}_{3}\right)_{3}$ (eq. 41). Compound 86 dissolves in many low polarity organic solvents. Compound $\mathbf{8 6}$ was prepared as shown in equation 41 in 82% yield.

36
86

Figure 2.18 NMR spectra of compound $85\left(\mathrm{CDCl}_{3}\right.$ solvent). Top: $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum. Bottom: $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum.

CONCLUSIONS

1. A very interesting precursor to a proposed hypervalent $10-\mathrm{N}-5$ species, very hindered hexaolamine 36, was imagined many years ago in our group. But many approaches for synthesizing tertiary amine 36 in our laboratory were fruitless. Fortunately, we have finally achieved the preparation of 36 with an overall yield of 49%, which was obtained in five steps by using cheap, commercially available dihydroxyacetone dimer as the starting material.
2. Some properties and structure of $\mathbf{3 6}$ have been studied. The $p \mathrm{~K}_{\mathrm{a}}$ of $\mathbf{3 6}$ was found to be 3.08 ± 0.03, a low value for a tertiary amine. The X-ray crystal structure of $\mathbf{3 6}$ showed the nitrogen is essentially planar (sum of C-N-C angles $359.05(7)^{\circ}$), and the average C-N bond length (1.454 \AA) was shorter than normal. An explanation of this bond contraction is offered. The oxidation potential $\mathrm{E}_{1 / 2}{ }^{\mathrm{ox}}$ of 36 measured by cyclic voltammetry was found to be 0.88 V . The oxidation was reversible; oxidations of ordinary tertiary amines are usually irreversible.
3. The X-ray crystal structure of $\mathbf{3 6} \cdot \mathrm{HCl}$ revealed a severely flattened tetrahedral geometry about nitrogen (average $\mathrm{H}-\mathrm{N}-\mathrm{C}$ angle 102.3°). That is the reason why tertiary amine 36 is an unusually weak base.
4. The reaction of $\mathbf{3 6}$ with boric acid is very easily led to a "one- boron" compound, 67 which is very stable. The X-ray crystal structure of 67 showed a dative bond between
nitrogen and boron (1.6875(13) \AA).
5. Under nitrogen, "two-boron" compound $\mathbf{6 9}$ was formed in the reaction of $\mathbf{3 6}$ with boric acid in DMF solution. The compound 69 is very hydrolytically unstable, but the Xray crystal structure of a complex (71) of $\mathbf{6 9}$ with pyridine confirmed the presence in $\mathbf{6 9}$ of two borons.
6. The reaction of $\mathbf{3 6}$ with $\mathrm{Z}-\mathrm{Si}(\mathrm{OEt})_{3}(\mathrm{Z}=\mathrm{Me}, \mathrm{Ph})$ led to analogous "one-silicon" and "two-silicon" compounds. The X-ray crystal structures of both two-silicon compounds revealed a nearly symmetrical SiNSi array ($\mathrm{Z}=\mathrm{Me}$) and an unsymmetrical one $(\mathrm{Z}=\mathrm{Ph})$.
7. The " $2 \mathrm{H}, 2 \mathrm{Si}$ " compound 85 was prepared by the reaction of "one-boron" compound 67 with $\mathrm{HSi}(\mathrm{OEt})_{3}$.
8. The reaction of $\mathbf{3 6}$ with $\mathrm{HSi}(\mathrm{OEt})_{3}$ in the basic DMF solution led to form " 2 EtO , 2Si" compound 82.

Experimental

General: DMF was dried by stirring with calcium hydride, followed by distillation under vacuum after removing calcium hydride, and then storage over calcium hydride. Benzene, THF, and toluene were distilled over sodium benzophenone ketyl under nitrogen. Acetone was dried with anhydrous calcium sulfate followed by distillation after removing calcium sulfate and storage over 4A molecular sieves. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ and other reagents used in the syntheses were purchased from the Aldrich Chemical Company and were used without further purification.

Melting points were determined on a Mel-Temp ${ }^{\circledR}$ apparatus in open capillaries and are uncorrected.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker AC-250 (operated at 250 and 62.5 MHz respectively) and Bruker Avance-400 (operated at 400 and 100 MHz respectively) spectrometers. TMS (0.00 ppm) was used as internal standard for ${ }^{1} \mathrm{H}$ NMR chemical shifts in all solvents except deuterium oxide, in which case, HDO was used as an internal reference (4.80 ppm). ${ }^{11} \mathrm{~B}$ NMR was referenced to boron trifluoride etherate as 0.00 ppm . The results are reported as parts per million and coupling constant are reported in Hz . The spin multiplicities are indicated by the symbols s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m (multiplet) and br (broad). DEPT experiments were
conducted at $\theta=135^{\circ}$. A z-gradient magnitude-mode COSY microprogram was used to record COSY spectra.

In ${ }^{13} \mathrm{C}$ NMR, chemical shifts were reported in ppm relative to the centerline of the multiplet for deuterium solvent peaks $\left(\mathrm{CDCl}_{3}, 77.23 \mathrm{ppm} ; \mathrm{DMSO}-\mathrm{d}_{6}, 39.51 \mathrm{ppm}\right.$; acetone $\left.-\mathrm{d}_{6}, 29.92 \mathrm{ppm}\right)$. For deuterium oxide, methanol was used as an internal reference (49.2 ppm).

Mass spectral data were obtained using either a Finnegan 3300 or a VG 7070E mass spectrometer using a solid probe. The results are presented in terms of intensity percentage relative to the base peak.

Elemental analysis was performed by Atlantic Microanalytical Lab, GA.
X-ray crystallography was performed on a Bruker SMART APEX CCD X-ray diffractometer by Dr. Thomas Albrecht-Schmitt and his graduate students.

Some reactions were followed by thin-layer chromatography (TLC) using pre-coated silica gel plates and visualized using a Mineralight UVGL-25 lamp, or by exposure to iodine vapor, or dipping in KMnO_{4} solution. Column chromatography was performed on Sorbent Technologies silica gel ($60 \AA$) and eluted with the indicated solvent system.

Bis(1,3-dihydroxy-2-propyl)amine, 50. Sodium cyanoborohydride (10.0 g, 159 mmol) dissolved in 50 mL methanol was added dropwise to a solution of dihydroxyacetone dimer ($28.7 \mathrm{~g}, 159 \mathrm{mmol}$) and ammonium chloride ($2.84 \mathrm{~g}, 53.0$ $\mathrm{mmol})$ in a mixture of methanol $(400 \mathrm{~mL})$ and acetic acid $(40.0 \mathrm{~mL})$. After stirring for 20 to 24 h , aqueous hydrochloric acid ($2.00 \mathrm{M}, 100 \mathrm{~mL}$) was added and stirring was continued for 4 h . The reaction was concentrated on a vacuum rotary evaporator. The sticky liquid residue was dissolved in methanol (100 mL), filtered and concentrated once
more. The viscous residue was dissolved in water and applied to an ion-exchange column (Amberlite, IR-120, H^{+}) prepared as described in the following paragraph. The column was eluted with water first, and then a solution of aqueous ammonia (1.00 M). The solvent was removed to give secondary amine 50, a hygroscopic sticky liquid (yield 80 $87 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{H}}: 2.98(2 \mathrm{H}$, quin, $J=5.6, \mathrm{NCH}), 3.58(4 \mathrm{H}, \mathrm{dd}, J=$ $\left.6.6,11.8, \mathrm{OCH}_{2}\right), 3.65\left(4 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.6,11.8, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(62 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{C}}: 57.6$ $(\mathrm{NCH}), 61.3\left(\mathrm{OCH}_{2}\right)$.

Preparing ion exchange column. The resin (Amberlite, IR-120, H^{+}) was soaked in $7 \% \mathrm{HCl}$ solution 24 h twice (fresh HCl solution for second time). The ion exchange column was set up as an ordinary chromatography column. The column was flushed with deionized water until the eluate was neutral, at which time the column was ready for use.

Bis(4,4-dimethyl-3,5-dioxanyl)amine, 58. Method A: Under nitrogen, acetone (30 $\mathrm{mL})$, 2,2-dimethoxypropane $(10.0 \mathrm{~mL}, 81.6 \mathrm{mmol})$ and concentrated sulfuric acid (1.00 $\mathrm{mL})$ were added to a solution of $50(1.71 \mathrm{~g}, 10.4 \mathrm{mmol})$ in DMF $(10.0 \mathrm{~mL})$ at room temperature. An initially formed precipitate gradually dissolved. The reaction mixture was stirred for 4 h , after which solid sodium bicarbonate (5.00 g) was added until the pH had risen to 7 (overnight). The solvent was removed on the rotary evaporator and the sticky residue was partitioned between ethyl acetate $(100 \mathrm{~mL})$, and water $(50.0 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$, and organic layer was washed with brine (50 mL), dried with MgSO_{4}, filtered, and concentrated. The residue was purified with column chromatography (elution solvent; hexane:ethyl acetate $=1: 1$ to 1:10) (yield 30-70\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 1.41\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.42(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CCH}_{3}\right), 2.75(2 \mathrm{H}, \mathrm{tt}, J=4.1,6.8, \mathrm{NCH}), 3.62\left(4 \mathrm{H}, \mathrm{dd}, J=6.8,11.7, \mathrm{OCH}_{2}\right), 3.93(4 \mathrm{H}$,
dd, $\left.J=4.1,11.7, \mathrm{OCH}_{2}\right) \cdot{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 23.2,24.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 50.0$ $(\mathrm{NCH}), 64.7\left(\mathrm{CH}_{2}\right), 98.4\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right)$.

Method B: Secondary amine $50(4.00 \mathrm{~g}, 24.2 \mathrm{mmol})$ was dissolved in methanol (60 $\mathrm{mL}), 37.5 \% \mathrm{HCl}$ solution (10 mL) was added and stirred for 2 h at rt . The solvent was removed on the rotary evaporator. The residue was dissolved in DMF (40 mL). Under nitrogen, PTSA ($0.700 \mathrm{~g}, 3.60 \mathrm{mmol}$) and 2,2-dimethoxypropane ($10.0 \mathrm{~mL}, 81.6 \mathrm{mmol}$) were added to the solution. The resulting clear solution was allowed to stir overnight (at least 12 h$)$ at which time $\mathrm{Et}_{3} \mathrm{~N}(0.600 \mathrm{~mL}, 4.00 \mathrm{mmol})$ was added and allowed to stir for an additional 10 min . The mixture was concentrated in vacuo and treated with $\mathrm{Et}_{3} \mathrm{~N}(3.40$ $\mathrm{mL}, 24.2 \mathrm{mmol}$) and EtOAc (150 mL). The precipitate was removed via filtration and the filtrate was concentrated. The residue was purified as method A to obtain $58(4.30 \mathrm{~g}$, 73.0%) or crystallized from hexane to give 82% yield.
p-Acetamidobenzensulfonyl azide, 87..112 At $0^{\circ} \mathrm{C}$, a solution of sodium azide (16.2 $\mathrm{g}, 0.250 \mathrm{~mol}$) in 50 mL water was added dropwise to a suspension of p-acetamidobenzenesulfonyl chloride ($50.0 \mathrm{~g}, 0.220 \mathrm{~mol}$) and tetrabutylammonium iodide $(0.500 \mathrm{~g})$ in $500 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was allowed to reach rt and was stirred overnight. The organic layer was separated and washed with water $(2 \times 80 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give pure product $87(49.7 \mathrm{~g}, 95.7 \%)$, mp 107-109 ${ }^{\circ} \mathrm{C} .\left(\right.$ Lit. $\left.{ }^{112} 106-108{ }^{0} \mathrm{C}\right)$

Dimethyl diazomalonate (DDM), 51. To a stirred solution of dimethyl malonate (14.3 g, 0.110 mol) and p-acetamidobenzenesulfonyl azide ($29.4 \mathrm{~g}, 0.120 \mathrm{~mol}$) in acetonitrile $(600 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise triethylamine $(22.2 \mathrm{~g}, 0.220 \mathrm{~mol})$. The mixture was allowed to reach rt and was stirred for 18 h . The mixture was filtered and the
filtrate was evaporated under reduced pressure. The residue was washed with ether/hexanes (1:1), filtered, and the solvent was evaporated. Further purification by column chromatography (hexanes/ethyl acetate $=4: 1$) gave light yellow liquid (15.2 g , $86.7 \%) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 3.85(\mathrm{~s})$.

Dimethyl 2-(N,N-bis(4,4-dimethyl-3,5-dioxanyl)amino)malonate, 59. Under N_{2}, to a solution of acetonide amine $58(0.980 \mathrm{~g}, 4.00 \mathrm{mmol})$ in benzene $(20 \mathrm{~mL})$, was added 0.760 g DDM (4.80 mmol) and rhodium(II)acetate dimer ($32.0 \mathrm{mg}, 0.0700 \mathrm{mmol}$) at rt . The mixture was heated to reflux and continued for 2.0 to 2.5 h , at which time TLC showed the absence of diazo compound and acetonide amine. The solvent was removed in vacuo. The residue was purified by silica gel chromatography (EtOAc/hexane 1:3 v/v), which yielded white tertiary amine $59(1.25 \mathrm{~g}, 83.3 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}$: 1.36, $1.40\left(12 \mathrm{H}, 2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.34(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{NCH}), 3.72(4 \mathrm{H}, \mathrm{dd}, J=6.9,12.0,4 \mathrm{OCH})$, $3.77\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.96(4 \mathrm{H}, \mathrm{dd}, \mathrm{OCH}) ; 4.99(1 \mathrm{H}, \mathrm{s}, \mathrm{NCHCO}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 23.0,24.3\left(\mathrm{CCH}_{3}\right), 51.4(\mathrm{NCH}), 52.6\left(\mathrm{OCH}_{3}\right), 63.5\left(\mathrm{NCH}_{2} \mathrm{O}\right), 64.3$ (NCHCO), $98.2\left(\mathrm{OCCH}_{3}\right), 170.3(\mathrm{CO})$.

2-(N,N-bis(4,4-dimethyl-3,5-dioxanyl)amino)-1,3-propanediol, 60. Tertiary amine $59(0.380 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in THF (4 mL) and added dropwise to a suspension of LAH $(0.230 \mathrm{~g}, 6.00 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$. The reaction was stirred overnight at room temperature and then were added sequentially water $(0.230 \mathrm{~mL}), 15 \%$ sodium hydroxide $(0.230 \mathrm{~mL})$ and water $(3 \times 0.230 \mathrm{~mL})$. The mixture was filtered and the filtrate was evaporated. The residue was purified by silica gel chromatography (ethyl acetate) to give a colorless sticky liquid $\mathbf{6 0}(0.300 \mathrm{~g}, 93.0 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 1.38,1.45\left(12 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.15(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.27(1 \mathrm{H}$, quint, NCH$)$,
$3.47\left(2 \mathrm{H}, \mathrm{dd}, J=7.4,10.7, \mathrm{CH}_{2} \mathrm{OH}\right), 3.59\left(2 \mathrm{H}, \mathrm{dd}, J=10.9,6.05, \mathrm{CH}_{2} \mathrm{OH}\right), 3.71(4 \mathrm{H}$, dd, $\left.J=12.0,5.5, \mathrm{CH}_{2} \mathrm{O}\right), 3.82\left(4 \mathrm{H}, \mathrm{dd}, J=12.0,9.54 \mathrm{CH}_{2} \mathrm{O}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 20.4,27.0,49.1,58.8,62.3,63.7,97.7$.

Tris(1,3-dihydroxy-2-propyl)amine, 36. At $0^{\circ} \mathrm{C}$, trifluoroacetic acid (1.00 mL) was added to a solution of $\mathbf{6 0}(1.49 \mathrm{~g}, 4.67 \mathrm{mmol})$ in THF and $\mathrm{H}_{2} \mathrm{O}\left(25 \mathrm{~mL}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=4: 1\right.$ $(\mathrm{v} / \mathrm{v}))$. The resulting solution was allowed to warm to rt and was left overnight. Then solvent was removed in vacuo. The residue was purified on an ion exchange column (Amberlite, IR-120, H^{+}). The column was eluted with water first, and then a solution of aqueous ammonia (1 M). The solvent was removed to give white solid tertiary amine 7 $(1.10 \mathrm{~g}, 92.0 \%) . \mathrm{mp}>190^{\circ} \mathrm{C}($ dec. $) ; p \mathrm{~K}_{\mathrm{a}}=3.08\left(\mathrm{~T}=25^{\circ} \mathrm{C}, 0.01 \mathrm{M}\right.$, titrant: 0.1 N HCl standard solution). $\mathrm{E}_{1 / 2}=0.88 \mathrm{~V}\left(\mathrm{rt}, 0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}\right.$, in water, Au electrode); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{H}}: 3.16(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.54\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{D}_{2} \mathrm{O}$, methanol, 49.2) $\delta_{\mathrm{C}}: 56.8,61.0 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right) \delta_{\mathrm{H}}: 2.91(3 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH}), 3.31\left(12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.91(6 \mathrm{H}, \mathrm{q}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta_{\mathrm{C}}: 57.1$, 61.8; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{6}$: C, 45.18; H, 8,85; N, 5.85. Found: C, 45.02; H, 8.82; N, 5.74. A crystal $0.32 \mathrm{~mm} \times 0.20 \mathrm{~mm} \times 0.39 \mathrm{~mm}$ was selected for X-ray crystallography with $0.71073 \AA(\mathrm{Mo} \mathrm{K} \alpha$) radiation. Unit cell dimensions $a=10.915(2) \AA, b=8.9100(18)$ $\AA, c=23.635(5) \AA, \alpha=\beta=\gamma=90^{\circ} ; Z=8$. Ambient temperature, absorption coefficient $=0.114 \mathrm{~mm}^{-1} ; 2858$ reflections were collected, 2682 independent $\left(\mathrm{R}_{\mathrm{int}}=0.0239\right),-14 \leq h$ $\leq 14,-11 \leq k \leq 11,-31 \leq l \leq 30$; Full-matrix least-squares on F^{2}, data-to-parameter ratio $=$ 16.8, Goodness-of-fit $1.026, \mathrm{R} 1=0.0361, \mathrm{wR} 2=0.1009(\mathrm{I}>2 \sigma(\mathrm{I})), \mathrm{R} 1=0.0378, \mathrm{wR} 2=$
0.1032 (all data); extinction coefficient $=0.0235(19)$. Complete details are given in Appendix 1.

1,3-Bis(tert-butyldimethylsilyloxy)-2-propanone, 55. At $0^{\circ} \mathrm{C}$, tert-butyldimethylsilyl chloride $(2.11 \mathrm{~g}, 14.0 \mathrm{mmol})$ was added to a stirred solution of 1,3-dihydroxyacetone dimer ($504 \mathrm{mg}, 2.80 \mathrm{mmol}$) and imidazole ($958 \mathrm{mg}, 14.1 \mathrm{mmol}$) in DMF (4 mL) and the mixture was stirred at rt for 7 h . It was cooled to $0^{\circ} \mathrm{C}$, water $(15 \mathrm{~mL})$ was added and the reaction mixture was extracted with ether $(2 \times 15 \mathrm{~mL})$. The organic layer was washed with brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by column chromatography (hexane/ethyl acetate $15: 1(\mathrm{v} / \mathrm{v})$) to give $55(0.820 \mathrm{~g}, 92.0 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 4.46\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 0.96(18 \mathrm{H}, \mathrm{s}$, $\left.\operatorname{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.13\left(12 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(62.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}:-5.4,18.5,25.9$, 68.0, 208.8.

Bis(1,3-di-tert-butyldimethylsilyloxy-2-propyl)amine, 56. Under N_{2}, at $0^{\circ} \mathrm{C}$, TBDMSCl $(1.36 \mathrm{~g}, 9.00 \mathrm{mmol})$ was added to a solution of bis(1,3-dihydroxy-2propyl)amine $50(0.300 \mathrm{~g}, 1.80 \mathrm{mmol})$ and imidazole $(0.610 \mathrm{~g}, 9.00 \mathrm{mmol})$ in DMF (3 mL). The mixture was gradually warmed to rt and stirred for $3-4 \mathrm{~h}$. Workup was the same as compound 55 to give white solid compound $56(0.880 \mathrm{~g}, 78.5 \%) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 3.57\left(8 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.74(2 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{NCH}), 0.89(36$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.03\left(24 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 63.0,58.8$, 25.9, 18.3, -5.39, -5.41. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{71} \mathrm{NO}_{4} \mathrm{Si}_{4}: \mathrm{C}, 57.91 ; \mathrm{H}, 11.50 ; \mathrm{N}, 2.25$.

Found: C, 58.11; H, 11.62; N, 2.23; EI-MS, m/e: $622\left(\mathrm{M}^{+}\right), 606,564,490,477,412,330$, 274, 186, 147, 71, 53.

56 + DDM, 57. Under N_{2}, a mixture of dimethyl diazomalonate (DDM) (0.240 g , $1.50 \mathrm{mmol})$, protected secondary amine $56(0.620 \mathrm{~g}, 1.00 \mathrm{mmol})$ and rhodium(II)acetate $(15.0 \mathrm{mg}, 0.0300 \mathrm{mmol})$ in dry benzene $(10 \mathrm{~mL})$ was heated (oil bath $55-60^{\circ} \mathrm{C}$) overnight. The solvent was removed under reduced pressure. The residue was purified by column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to give the title compound $(0.300 \mathrm{~g}$, $40.0 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 4.95(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCOO}), 3.68-3.86(14 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{OSi}$ and $\left.\mathrm{OCH}_{3}\right), 3.23(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 0.88\left(36 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.34(24 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 170.7,64.6,62.8,58.9,52.0,25.9,18.2$, 14.1, -5.6; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{77} \mathrm{NO}_{8} \mathrm{Si}_{4}$: C, $55.88 ; \mathrm{H}, 10.32$; N, 1.86; Found: C, 56.11; H, 10.38; N, 1.89. EI-MS, m/e: 751(M-1), 736, 692, 662, 606, 462, 404, 330, 316, 253.

2,8,9-Tris(hydroxymethyl)-5-bora-1-aza-4,6,11-trioxatricyclo[3.3.3.0 ${ }^{1,5}$]-

undecane, ("one-boron compound"), 67. Method A: Under nitrogen, the mixture of tertiary amine $36(100 \mathrm{mg}, 0.420 \mathrm{mmol})$ and $\mathrm{H}_{3} \mathrm{BO}_{3}(25.8 \mathrm{mg}, 0.420 \mathrm{mmol})$ in DMF (3.00 mL) was heated (oil bath $165-175^{\circ} \mathrm{C}$) for $3-5 \mathrm{~h}$. Solvent was removed in a gentle stream of N_{2} providing white solid product. The product was further purified by washed with hot THF and then keeping on the vacuum line for 2 days to give the title compound 67 ($101 \mathrm{mg}, 97.0 \%$) mp: 222-223.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{\left.-\mathrm{d}_{6}\right)} \delta_{\mathrm{H}}: 4.50(3 \mathrm{H}, \mathrm{t}$, $\mathrm{OH})$, 3.73-3.79 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $3.57\left(3 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right)$, $3.44\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.31-3.37(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$) $\delta_{\mathrm{C}}: 64.2,62.0,57.2$; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{~B}$: C, 43.73; H, 7.37; N, 5.67. Found: C, 43.88; H, 7.28; N, 5.55. EI-MS, m/e: $247\left(\mathrm{M}^{+}\right)$, $246,208,148,44$. A crystal $0.156 \mathrm{~mm} \times 0.160 \mathrm{~mm} \times 1.540 \mathrm{~mm}$ was selected for X-ray crystallography with $0.71073 \AA(\mathrm{Mo} \mathrm{K} \alpha$) radiation: monoclinic $a=16.9503(11) \AA$, $b=$ 16.9503(11) $\AA, c=14.8701(10) \AA, \alpha=\beta=\gamma=90.00^{\circ} ; Z=16,2651$ reflections were
collected, 2615 independent, $-22 \leq h \leq 22,-22 \leq k \leq 22,-19 \leq l \leq 19$. The structure was solved by direct methods with refinement by full-matrix least squares on F^{2}, Goodness-of-fit 1.056, resulting in final R indices of $\mathrm{R} 1=0.0316$, wR2 $=0.0804(I>2 \sigma(I)), \mathrm{R} 1=$ 0.0319, wR2 $=0.0807$ (all data). Full details are given in Appendix 2.

Method B: Tertiary amine $36(0.478 \mathrm{~g}, 2.00 \mathrm{mmol})$ and $\mathrm{H}_{3} \mathrm{BO}_{3}(0.310 \mathrm{~g}, 5.00 \mathrm{mmol})$ were mixed together and ground thoroughly with a mortar and pestle. First the mixture became wet, and grinding was continued until it became very dry. THF (60 mL) was added and refluxed for 2 h . The mixture was filtered (hot) to give white solid product 67 ($0.482 \mathrm{~g}, 97.6 \%$).

Reaction of 67 with pyridine. Under N_{2}, at rt , the mixture of compound 67 (50.0 $\mathrm{mg})$ and pyridine (3.00 mL) was stirred overnight. Compound 67 didn't dissolve in pyridine. Then the mixture was heated to reflux for 3-4 h . The solid still didn't dissolve in pyridine. After filtration, the solvent was removed to give some white solid. NMR showed it still was compound 67 . So 1-B compound didn't react with pyridine.

1,7-Dibora-11-aza-2,6,8,14,15,17-hexaoxatetracyclo[8.4.2.2.,12 $0^{4,11}$]octadecane,

 ("two-boron compound"), 69. Under N_{2}, the solution of tertiary amine 36 (200 mg , $0.840 \mathrm{mmol})$ and boric acid ($104 \mathrm{mg}, 1.68 \mathrm{mmol}$) in DMF (10 mL) was heated (oil bath $145-155^{\circ} \mathrm{C}$) for 4-6 h (A stream of nitrogen was used to carefully to blow off some water drops which formed on flask neck). After 3 h heating, some solid was formed. The solvent was removed (the best way is to use nitrogen to blow off DMF) to give white solid (234 mg). It does not dissolve in most organic solvents and is very moisture sensitive, hydrolyzing to the one-boron compound, $\mathrm{mp}>260^{\circ} \mathrm{C}$.Two-boron•pyridine compound, 71. Method A: Under N_{2}, compound 69 (60.0 mg) was added to pyridine $(2.50 \mathrm{~mL})$. At rt, stirred for 4-5 hand then the solvent was slowly blown off by nitrogen to give white crystalline compound 71 ($85.1 \mathrm{mg}, 87.5 \%$) This white crystal is very moisture-sensitive, hydrolyzing to $67 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta_{\mathrm{H}}: 8.79(2 \mathrm{H}, \mathrm{dd}$, pyridine $), 8.08(1 \mathrm{H}, \mathrm{tt}$, pyridine $), 7.64(2 \mathrm{H}, \mathrm{m}$, pyridine $), 4.15(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 3.95\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.62-3.75\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta_{\mathrm{C}}: 143.9,141.7,125.5,63.9,63.6,57.3 ; \mathrm{mp}>40^{\circ} \mathrm{C}$ (dec.). A crystal $0.34 \times 0.16 \times 0.16$ mm was selected for X-ray crystallography with $0.71073 \AA$ radiation: monoclinic $a=$ $11.5031(8) \AA, b=11.6639(8) \AA, c=12.9997(9) \AA, \alpha=97.56(3)^{\circ}, \beta=92.13(3)^{\circ}, \gamma=$ $117.95(3)^{\circ} ; Z=4 ; 7490$ reflections were collected, 4658 independent, $-15 \leq h \leq 15,-15 \leq$ $k \leq 15,-17 \leq l \leq 17$. Full-matrix least- squares refinement on F^{2}, data-to-parameter ratio $=$ 17.3, Goodness-of-fit $=1.092, \mathrm{R} 1=0.0762, \mathrm{wR} 2=0.2046(I>2 \sigma(I)), \mathrm{R} 1=0.1132$, $\mathrm{wR} 2=0.2235$ (all data). The structure revealed the compound had crystallized as a pyridine adduct. Full details are given in Appendix 3.

Method B: Under N_{2}, a solution of tertiary amine 36 ($100 \mathrm{mg}, 0.420 \mathrm{mmol}$) and pyr $\cdot \mathrm{BH}_{3}(0.11 \mathrm{~mL}, 0.84 \mathrm{mmol}, 8 \mathrm{M})$ in DMF was stirred overnight at rt . The solvent was slowly blown off by nitrogen to give white crystal 2 B•pyridine $\mathbf{7 1}(154 \mathrm{mg}, 89 \%)$ directly.

2Phe2Si compound, 74. Phenyl triethoxysilane ($0.606 \mathrm{~mL}, 2.52 \mathrm{mmol}$) was added to the solution of tertiary amine $36(100 \mathrm{mg}, 0.420 \mathrm{mmol})$ in DMF $(2.50 \mathrm{~mL})$. Under N_{2}, the solution was heated (oil bath $135-145^{\circ} \mathrm{C}$) for $4-6 \mathrm{~h}$ (or TLC may be used to follow the reaction). The solvent was removed under reduced pressure and the residue was purified
by recrystallization from xylene to afford white solid compound $74(159 \mathrm{mg}, 84 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 7.69(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.39(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.81\left(6 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}\right)$, $3.74\left(6 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.50(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 134.3,131.9$, 130.5, 128.0, 61.1, 57.6; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NSi}_{2} \mathrm{O}_{6}$: C, 56.86; H, 5.68; N, 3.16. Found: C, 56.90; H, 5.85; N, 3.17. A crystal $0.325 \mathrm{~mm} \times 0.290 \mathrm{~mm} \times 0.280 \mathrm{~mm}$ was selected for X-ray crystallography with $0.71073 \AA(\mathrm{Mo} \mathrm{K} \alpha)$ radiation: monoclinic, $a=$ $10.483(2) \AA, b=11.489(2) \AA, c=17.440(4) \AA, \alpha=90.00^{\circ}, \beta=101.86(3)^{\circ}, \gamma=90.00^{\circ} ; Z$ $=4 ; 4672$ reflections were collected, 3223 independent, $-13 \leq h \leq 13,-15 \leq k \leq 15,-23 \leq l$ ≤ 22. Full-matrix least-squares refinement on F^{2}, data-to-parameter ratio $=17.2$, Goodness-of-fit $=1.819, \mathrm{R} 1=0.1253, \mathrm{wR} 2=0.2892$ (all data), $\mathrm{R} 1=0.0977, \mathrm{wR} 2=$ $0.2747(I>2 \sigma(I))$. The complete details are given in Appendix 4.
"One-phenyl-one-silicon" (1Ph-1Si) compound, 75. The solution of tertiary amine $36(200 \mathrm{mg}, 0.820 \mathrm{mmol})$ and phenyl triethoxysilane ($0.820 \mathrm{~mL}, 3.36 \mathrm{mmol}$) in DMF (5 mL) was heated (oil bath $130-145^{\circ} \mathrm{C}$). TLC was used to follow the reaction. The reaction was stopped immediately when the spot of $1 \mathrm{Ph}-1 \mathrm{Si} 75$ was detected (acetone solvent, KMnO_{4} as visualization reagent) on TLC plate. The solvent was removed under reduced pressure and the residue was purified by column chromatography with ethyl acetate and acetone as eluent to give $2 \mathrm{Ph} \bullet 2 \mathrm{Si} 74(40 \mathrm{mg})$ and $1 \mathrm{Ph} \bullet 1 \mathrm{Si}(148 \mathrm{mg}, 40 \%) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{HMz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.69(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.34(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.18(3 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.58-3.78(12$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.42(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 134.3,134.2,129.9$, 127.9, 61.8, 61.1, 57.0; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NSiO}_{6}: \mathrm{C}, 52.77$; H, 6.79 ; N, 4.10; Found: C, 52.39; H, 6.83; N, 4.08.
"Two-methyl-two-silicon" (2Me-2Si) compound, 76. Tertiary amine 36 (100 mg, $0.420 \mathrm{mmol})$ was added to a solution of methyl triethoxysilane $(0.500 \mathrm{~mL})$ and DMF $(2.50 \mathrm{~mL})$. The mixture was heated (oil bath $95-120^{\circ} \mathrm{C}$) for $7-9 \mathrm{~h}$ until TLC indicated no starting tertiary amine 36 . The solvent was removed under reduced pressure to afford white solid compound $76(122 \mathrm{mg}, 91.0 \%)$. This was further purified by recrystallization with hexanes, $\mathrm{mp}>325{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 3.63\left(6 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}\right), 3.55(6$ $\left.\mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.29(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}}: 60.8,57.2,-4.9$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NSiO}_{6}$: C, 41.36; H, 6.63; N, 4.38. Found: C, 41.51; H, 6.71; N, 4.39; EI-MS, m/e, $319\left(\mathrm{M}^{\dagger}\right), 298,284,257$. A crystal $0.183 \mathrm{~mm} \times 0.138 \mathrm{~mm} \times 0.113 \mathrm{~mm}$ was selected for X-ray crystallography with $0.71073 \AA(\mathrm{Mo} \mathrm{K} \alpha$) radiation: monoclinic, $a=$ $10.2030(6) \AA, b=11.1393(7) \AA, c=26.179(2) \AA, \alpha=90.0000(10)^{\circ}, \beta=98.2610(10)^{\circ}, \gamma$ $=90.0000(10)^{\circ} ; Z=8 ; 7280$ reflections were collected, 4542 independent, $-13 \leq h \leq 13,-$ $14 \leq k \leq 14,-34 \leq l \leq 34$. Full-matrix least-squares refinement on F^{2}, data-to-parameter ratio $=17.2$, Goodness-of-fit $=1.053, \mathrm{R} 1=0.1389, \mathrm{wR} 2=0.3176($ all data $), \mathrm{R} 1=$ $0.1010, \mathrm{wR} 2=0.2919(I>2 \sigma(I))$. The complete details are given in Appendix 5.

One-methyl-one-silicon (1Me-1Si) compound, 77. The solution of tertiary amine $\mathbf{3 6}$ ($200 \mathrm{mg}, 0.840 \mathrm{mmol}$) and $\operatorname{MeSi}(\mathrm{OEt})_{3}(0.680 \mathrm{~mL}, 3.40 \mathrm{mmol})$ in DMF $(6 \mathrm{~mL})$ was heated (oil bath $120-135^{\circ} \mathrm{C}$). The reaction was followed by TLC. After 4 h , the spot of $2 \mathrm{Me}-2 \mathrm{Si} 76$ compound was detected on the TLC plate. The solvent was removed under reduced pressure to give some sticky residue. This residue was purified as follows: hexanes (55 mL) was added to the residue and refluxed for 5-10 minutes, filtered (hot), filtrate was evaporated to give 2Me-2Si 76 (87 mg). The solid (insoluble in hexanes) was
purified by column chromatography to give $1 \mathrm{Me} \bullet 1 \mathrm{Si} 77(89 \mathrm{mg}, 39 \%)$ and tertiary amine $36(60 \mathrm{mg})$ (acetone and methanol as solvent). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 4.69$ (3 $\mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.51-3.67\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.34(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta_{\mathrm{C}}: 61.6,60.9,57.0,-4.5$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NSiO}_{6}: \mathrm{C}, 42.99 ; \mathrm{H}$, 7.58; N, 5.01; Found: C, 42.91; H, 7.39; N, 5.58.

Attempts to synthesize two-hydrogen-two-silicon compound 85. Method A: Under nitrogen, the solution of tertiary amine $36(100 \mathrm{mg}, 0.420 \mathrm{mmol})$ and triethoxysilane (154 $\mu \mathrm{L}, 0.840 \mathrm{mmol}$) in DMF (3 mL) was heated (oil bath $110-130^{\circ} \mathrm{C}$) for $6-8 \mathrm{~h}$, at which time TLC (ethyl acetate as solvent) indicated no tertiary amine remained and also some white solid was formed. The reaction was halted, the solvent was removed under reduced pressure to give a white solid. This solid was washed DMF, benzene, acetone and then put on vacuum for 4 days to give white solid (120 mg). It didn't dissolve in any solvent $\left(\mathrm{H}_{2} \mathrm{O}\right.$, DMF, DMSO, alcohols, CHCl_{3}, acetone, acetonitrile, ethyl acetate, trifluoroacetic acid).

Method B: Under N_{2}, the solution of 67 compound ($100 \mathrm{mg}, 0.410 \mathrm{mmol}$) and triethoxysilane ($149 \mu \mathrm{~L}, 0.820 \mathrm{mmol}$) in DMF (3 mL) was heated (oil bath $80-110^{\circ} \mathrm{C}$). The reaction was followed by TLC. After about 4 h, no 67 compound was detected on TLC plate. The solvent was removed under reduced pressure to give white solid. This solid was dissolved in xylene, filtered and the xylene was removed to give $2 \mathrm{H} \bullet 2 \mathrm{Si} \mathbf{8 5}$ $(102 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 4.22(2 \mathrm{H}, \mathrm{s}, \mathrm{HSi}), 3.69\left(6 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}\right), 3.58$ $\left(6 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 3.34(3 \mathrm{H}, \mathrm{tt}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}}: 60.5,57.4$.

Reaction of tertiary amine 36 with tetraethoxysilane. Under N_{2}, the solution of tertiary amine $36(100 \mathrm{mg}, 0.420 \mathrm{mmol})$ and tetraethoxysilane $(0.500 \mathrm{ml}, 2.24 \mathrm{mmol})$ in

DMF (3 mL) was heated (oil bath $135-145^{\circ} \mathrm{C}$) overnight. Some white precipitate was formed. The precipitate was filtered and filter cake was washed with water, benzene and acetone to give white solid 0.1 g . This white solid didn't dissolved in any solvent. The elemental analysis results were: C, 21.65; H, 4.69; N, 2.47.

Reaction of tertiary amine 36 with $\mathbf{S i C l}_{4}$. The solution of tertiary amine $\mathbf{3 6}$ (100 $\mathrm{mg}, 0.420 \mathrm{mmol}$) in DMF (3 mL) was cooled to $-5^{\circ} \mathrm{C}$, then silicon tetrachloride (96.5 $\mu \mathrm{L}, 0.840 \mathrm{mmol}$) was added dropwise. The reaction mixture was warmed gradually to room temperature and an initially formed precipitate dissolved. The reaction was stirred for 4 h at rt (after 1.5 h , the solution became cloudy and some precipitate was formed again). The reaction mixture was filtered to give 120 mg of a white solid. This was dissolved in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and filtered. The filtrate was concentrated under reduced pressure to give white solid (91.7 mg). This was recrystallized from methanol to give white crystal. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{H}}: 3.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} ; 2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.90(2 \mathrm{H}$, q, $\left.\mathrm{CH}_{2}\right), 2.68(2 \mathrm{H}, \mathrm{t}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{C}} ; 63.5,57.6$. The X-ray crystal structure showed it was tertiary amine HCl salt $\mathbf{3 6} \cdot \mathbf{H C l}$. A crystal $0.278 \mathrm{~mm} \times 0.165 \mathrm{~mm}$ x 0.280 mm was selected for X-ray crystallography with $0.71073 \AA(\mathrm{Mo} \mathrm{K} \alpha$) radiation: monoclinic $a=6.8972(4) \AA, b=8.2335(5) \AA, c=11.2422(7) \AA, \alpha=92.2850(10)^{\circ}, \beta=$ $102.8470(10)^{\circ}, \gamma=91.2820(10)^{\circ} ; Z=2 ; 3019$ reflections were collected, 2805 independent, $-9 \leq h \leq 9,-10 \leq k \leq 10,-14 \leq l \leq 14$. Full-matrix least-squares refinement on F^{2}, data-to-parameter ratio $=12.4$, Goodness-of-fit $=1.068, \mathrm{R} 1=0.0313$, wR2 $=$ 0.0842 (all data), $\mathrm{R} 1=0.0297, \mathrm{wR} 2=0.0831(I>2 \sigma(I))$. Full details are given in Appendix 6.

Protected tertiary amine, 86. At $0^{\circ} \mathrm{C}$, trimethylsilyl chloride ($0.480 \mathrm{~mL}, 3.78$ $\mathrm{mmol})$ was added to a stirred solution of tertiary amine $\mathbf{3 6}(100 \mathrm{mg}, 0.420 \mathrm{mmol})$ and imidazole ($260 \mathrm{mg}, 3.78 \mathrm{mmol}$) in DMF $(10 \mathrm{~mL})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and stirred for 4 h at rt . Water $(20 \mathrm{~mL})$ was added to the reaction solution at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted with ether $(3 \times 20 \mathrm{~mL})$ and the organic layer was washed with brine $(2 \times 15 \mathrm{~mL})$, dried with sodium sulfate and evaporated. The residue was purified by column chromatography on silica gel using hexane:ethyl acetate (20:1) as the eluent to give $230 \mathrm{mg}(82 \%)$ of compound $\mathbf{8 6}$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 3.60\left(12 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right), 3.06(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 0.15\left(54 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 62.9,58.1,-0.3$; Anal. Cacld for $\mathrm{C}_{27} \mathrm{H}_{69} \mathrm{NO}_{6} \mathrm{Si}_{6}: \mathrm{C}, 48.23 ; \mathrm{H}, 10.34 ; \mathrm{N}$, 2.08; Found: C, 48.51; H 10.56; N, 2.21.

Reaction of tertiary amine 36 with aluminum isopropoxide. This reaction was tried several times under the following conditions (in all reactions the molar ratio of tertiary amine 36 and aluminum isopropoxide was 1:2): (a) benzene as solvent, the mixture was refluxed for 6-8 h. (b) DMF as solvent, the mixture was heated (oil bath 125$135^{\circ} \mathrm{C}$) for 6-8 h. (c) 1:1 benzene and DMF (v/v) as solvent, the solution was stirred overnight at rt . Under these conditions, all gave a white precipitate, $\mathrm{mp}>260^{\circ} \mathrm{C}$. This white precipitate didn't dissolve in any organic solvent (DMF, DMSO, alcohols, CHCl_{3}, acetone, acetonitrile, ethyl acetate). It just dissolved in hot water and was hydrolyzed to tertiary amine 36 .

REFERENCES

1. Lewis, G. N. J. Am. Chem. Soc. 1916, 38, 762.
2. Langmuir, I. ibid. 1919, 41, 868.
3. Claassen, H. H.; Selig, H.; Malm, J. G. J. Am. Chem. Soc. 1962, 84, 3593.
4. Musher, J. I. Angew. Chem. Int. Ed. Engl. 1969, 8, 54.
5. Argon, P. A.; Begun, G. M.; Levy, H. A.; Mason, A. A.; Jones, C. G.; Smith, D. F. Science 1963, 139, 842.
6. Pimentel, G. C. J. Chem. Phys. 1951, 19, 446.
7. Hackand, R. J.; Rundle, R. E. J. Am. Chem. Soc. 1951, 73, 4321.
8. Pimentel, G. C.; Spratley, R. D. J. Am. Chem. Soc. 1963, 85, 826.
9. Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434.
10. Kutzelnigg, W. Angew. Chem. Intern. Ed. Engl. 1984, 23, 272.
11. Akiba, K. Chemistry of Hypervalent Compounds, Chapter 1, Wiley-VCH: New York, 1999.
12. Cahill, P. A.; Dykstra, C. E.; Martin, J. C. J. Am. Chem. Soc. 1985, 107, 6359.
13. Hayes, R. A.; Martin, J. C. Studies in Organic Chemistry, Vol.19, Chapter 8, Elsevier, 1985.
14. (a) Kutzelnigg, W.; Kiel, F. J. Am. Chem. Soc. 1975, 97, 3632. (b) Hoffmann, R.;

Howell, J. M.; Meutterties, E. L. ibid.1972, 94, 3047.
15. Murrell, J. N.; Scollary, C. E. J. Chem. Soc., Dalton Trans. 1976, 818.
16. Akiba, K.-y.; Yamashita, M.; Yamamoto, Y.; Nagase, S. J. Am. Chem. Soc. 1999, 121, 10644.
17. Yamashita, M.; Watanabe, K.; Yamamoto, Y.; Akiba, K.-y. Chem. Lett. 2001, 1104-1105.
18. Akiba, K.-y.; Moriyama, Y.; Mizozoe, M.; Inohara, H.; Nishi, T.; Yamamoto, Y.;

Minoura, M.; Hashizume, D.; Iwasaki, F.; Takagi, N.; Ishimura, K.; Nagase, S. J. Am. Chem. Soc. 2005, 127, 5893.
19. Tolles, W. M.; Gwinn, W. D. J. Chem. Phys. 1962, 36, 1119.
20. Macho, C.; Minkwitz, R.; Rohmann, J.; Steger, B.; Wolfel, V.; Oberhammer, H. Inorg. Chem., 1986, 25, 2828.
21. Perkins, C. W.; Martin, J. C.; Arduengo, A. J.; Lau, W.; Alegria, A.; Kochi, J. K. J. Am. Chem. Soc. 1980, 102, 7755.
22. a) Nguyen, T. T.; Martin, J. C. J. Am. Chem. Soc. 1980, 102, 7382. b) Nguyen, T. T.; Wilson, S. R.; Martin, J. C. J. Am. Chem. Soc. 1986, 108, 3803.
23. Peterson, S. W.; Willett, R. D.; Houston, J. L. J. Chem. Phys. 1973, 59, 453.
24. Holloway, J. H.; Kaucic, V.; Martin-Rovet, D.; Russell, D. R.; Schrobilgen, G. J.;

Selig, H. Inorg. Chem. 1985, 24, 678.
25. Christe, K. O.; Wilson, W. W. Inorg. Chem. 1989, 28, 3275.
26. Ruff, O.; Klein, R. Z. Anorg. Chem. 1931, 201, 245.
27. Farnham, W. B.; Dixon, D. A.; Calabrese, J. C. J. Am. Chem. Soc. 1988, 110, 8453.
28. Dixon, D. A.; Arduengo, III, A. J.; Farnham, W. B. Inorg. Chem. 1989, 28, 4589.
29. a) Nakanishi, W.; Hayashi, S.; Itoh, N. J. Org. Chem. 2004, 69, 1676. b) Nakanishi, W.; Hayashi, S.; Furuta, T.; Itoh, N.; Nishina, Y.; Yamashita, M.; Yamamoto, Y. Phosphorus, Sulfur, and Silicon and the Related Elements 2005, 180, 1351.
30. Ault, B. S.; Andrews, L. J. Am. Chem. Soc. 1976, 98, 1591.
31. Forbus, T. R. Jr.; Martin, J. C. J. Am. Chem. Soc. 1979, 101, 5057.
32. a) Hellwinkel, D.; Krapp, W. Chem. Ber. 1978, 111, 13. b) Segall, Y.; Granoth, I. J. Am. Chem. Soc. 1978, 100, 5130. c) W.-Henderson, L.; Nguyen, T. T.; Martin, J. C. J. Org. Chem. 1991, 56, 6565. d) Lam, W. Y.; Martin, J. C. J. Am. Chem. Soc. 1977, 99, 1659. e) Lam, W. Y.; Martin, J. C. J. Am. Chem. Soc. 1981, 103, 120.
33. Yamashita, M.; Mita, Y.; Yamamoto, Y.; Akiba, K.-y. Chem. Eur. J. 2003, 9, 3655.
34. Yamashita, M.; Yamamoto, Y.; Akiba, K.-y.; Hashizume, D.; Iwasaki, F.; Takag, N.; Nagase, S. J. Am. Chem. Soc. 2005, 127, 4354.
35. Lee, D. Y.; Martin, J. C. J. Am. Chem. Soc. 1984, 106, 5745
36. Yamashita, M.; Yamamoto, Y.; Akiba, K.-y.; Nagase, S. Angew. Chem. Int. Ed. 2000, 39, 4055.
37. Dean, J. A. Lange's Handbook of Chemistry, $11^{\text {th }}$ ed., McGraw-Hill, New York, 1973, pp. 3-9.
38. Musher, J. I. J. Am. Chem. Soc. 1972, 94, 1370.
39. Rauk, A.; Allen, L. C.; Mislow, K. J. Am. Chem. Soc. 1972, 94, 3035.
40. Florey, J. B.; Cusachs, L. C. ibid. 1972, 94, 3040.
41. Dewar, M. J. S.; Healy, E. Organometallics 1982, 1, 1705.
42. Schwenzer, G. M.; Schaefer III, H. F. J. Am. Chem. Soc. 1975, 97, 1393.
43. Reed, A. E.; Weinhold, F. J. Am. Chem. Soc. 1986, 108, 3586.
44. Jorgensen, W. L.; Evanseck, J. D.; Blake, J. F. ibid. 1987, 109, 2347.
45. a) Schlenk, W.; Holtz, J. Chem. Ber. 1916, 49, 603 b) Schlenk, W.; Holtz, J. Chem. Ber. 1917, 50, 274.
46. Wittig, G.; Wetterling, M. Liebigs Ann. Chem. 1947, 557, 193.
47. Hellwinkel, D.; Seifert, H. Liebigs Ann. Chem. 1972, 762, 29.
48. a) Nishikida, K.; Williams, F. J. Am. Chem. Soc. 1975, 97, 7166 b) Hasegawa, A.; Hudson, R. L.; Kikuchi, O.; Nishikida, K.; Williams, F. J. Am. Chem. Soc. 1981, 103, 3436.
49. a) Wolken, J. K.; Nguyen, V. Q.; Turecek, F. J. Mass Spectrometry 1997, 32, 1162. b) Shaffer, S. A.; Wolken, J. K.; Turecek, F. J. Am. Soc. for Mass Spectrometry 1997, 8, 1111. c) Shaffer, S. A.; Sadilek, M.; Turecek, F. J. Org. Chem. 1996, 61, 5234. d) Shaffer, S. A.; Turecek, F. J. Am. Soc. for Mass Spectrometry.1995, 6, 1004
50. Miller, A. R.; Tsukimura, R. R.; Velten, R. Science (Washington, D. C.) 1967, 688.
51. Goetschel, C. T.; Campanile, V. A.; Curtis, R. M.; Loos, K. R.; Wagner, C. D.; Wilson, J. N. Inorg. Chem. 1972, 11, 1696.
52. Solomon, I. J.; Keith, J. N.; Snelson, A. J. Fluorine Chem. 1972/73, 2, 129.
53. a) Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1976, 15, 1275. b)

Christe, K. O.; Wilson, R. D.; Goldberg, I. B. Inorg. Chem. 1979, 18, 2575. c)

Christe, K. O.; Wilson, W. W.; Schrobilgen, G. J.; Chirakal, R. V.; Olah, G. A. Inorg. Chem. 1988, 27, 789.
54. a) Grohmann, A.; Riede, J.; Schmidbaur, H. Nature 1990, 345, 140. b) Angermaier, K.; Schmidbaur, H. Inorg. Chem. 1995, 34, 3120.
55. a) Leonard, N. J.; Coll, J. C. J. Am. Chem. Soc. 1970, 92, 6685. b) Coll, J. C.; Crist, D. R.; Barrio, M. C. G.; Leonard, N. J. ibid. 1972, 94, 7092. c) Leonard, N. J.; Coll, J. C.; Wang, A. H. J.; Missavage, R. J.; Paul, I. C. ibid. 1971, 93, 4628. d) Wang, A. H. J.; Missavage, R. J.; Byrn, S. R.; Paul, I. C. ibid. 1972, 94, 7100. e) Halpern, A. M. J. Am. Chem. Soc. 1974, 96, 7655. f) Aue, D. H.; Webb, H. M.; Bowers, M. T. J. Am. Chem. Soc. 1975, 97, 4136.
56. Alder, R. W.; Sessions, R. B.; Mellor, J. M.; Rawlings, M. F. J. Chem. Soc., Chem. Commun. 1977, 747.
57. Alder, R. W.; Goode, N. C.; King, T. J.; Mellor, J. M.; Miller, B. W. J. Chem. Soc., Chem. Commun. 1976, 173.
58. Newkome, G. R.; Majestic, V.; Fronczek, F.; Atwood, J. L. J. Am. Chem. Soc. 1979, 101, 1047.
59. Gaensslen, M.; Gross, U.; Oberhammer, H.; Rüdiger, S. Angew. Chem. Intl. Ed. Engl. 1992, 31, 1467.
60. Bock, H.; Goebel, I.; Havlas, Z.; Liedle, S.; Oberhammer, H. Angew. Chem. Int. Ed. Engl. 1991, 30, 187.
61. a) Westheimer, F. H. Accs. Chem. Res. 1968, 1, 70. b) Taylor, S. D.; Kluger, R. J. Am. Chem. Soc. 1992, 114, 3067. c) Cox, J. R. Jr.; Wall, R. E.; Westheimer, F. H.

Chem. Ind. 1959, 929. d) Eberhard, A.; Westheimer, F. H. J. Am. Chem. Soc. 1965, 87, 253. e) Aksnes, G.; Froyen, P. Phos. Sulf, Silicon 1991, 63, 45. f) Hudson, R. F.; Brown, C. Accs. Chem. Res. 1972, 5, 204. g) Aksnes, G.; Bergesen, K. Acta Chem. Scand. 1965, 19, 931. h) Cremer, S. E.; Trivedi, B. C.; Weitl, F. L. J. Org. Chem. 1971, 36, 3226.
62. a) Cameron, D. R.; Thatcher, G. R. J. J. Org. Chem. 1996, 61, 5986. b) Thatcher, G. R. J.; Cameron, D. R. J. Chem. Soc., Perkin Trans. 2 1996, 767. c) Davis, R. E. J. Am. Chem. Soc. 1962, 84, 599. d) Pagdin, N.; Pine, A. K.; Tillett, J. G.; vanWoerden, H. F. J. Chem. Soc. 1962, 3835. e) Kaiser, E. T; Katz, I. R.; Wulfers, T. F. J. Am. Chem. Soc. 1965, 87, 3781. f) Martin, J. C.; Perozzi, E. F. J. Am. Chem. Soc. 1974, 96, 3155. g) Martin, J. C. Science 1983, 221, 509.
63. Martin, J. C.; Perozzi, E. F. Science 1976, 191, 154.
64. a) Perozzi, E. F.; Martin, J. C.; Paul, I. C. J. Am. Chem. Soc. 1974, 96, 6735. b) Perozzi, E. F.; Martin, J. C. ibid. 1972, 94, 5519.
65. Astrologes, G. W.; Martin, J. C. ibid. 1977, 99, 4390.
66. Livant, P. D.; Northcott, D. J.; Shen, Y.; Webb, T. R. J. Org. Chem. 2004, 69, 6564.
67. a) Verkade, J. G.; Coord. Chem. Rev. 1994, 137, 233. b) Pinkas, J.; Tang, J.; Wan, Y.; Verkade, J. G. Phos. Sulf. Silicon. 1994, 87, 193.
68. Alder, R. W. Tetrahedron, 1990, 46, 683.
69. Timosheva, N. V.; Chandrasekaran, A.; Day, R. O.; Holmes, R. R. Organometallics 2001, 20, 2331.
70. Kuffner, F.; Koechlin, W. Monatsh. Chemie. 1962, 93, 476.
71. Whitehead, W.; Imperial Chemical Industries, Ltd. Brit. Pat. 659,980; Chem. Abstr. 1951, 45, 8547.
72. Yang, M.; Wang, X.; Li, H.; Livant, P. J. Org. Chem. 2001, 66, 6729.
73. Eisele, G.; Simchen, G. Synthesis, 1978, 757.
74. Guzier, F. S.; Jr.; Torres, F. F. J. Org. Chem. 1993, 58, 1604.
75. Stachel, S. J.; Ziller, J. W.; Van, Vranken, D. L. Tetrahedron Lett. 1999, 40, 5811.
76. Wieland, G.; Simchen, G. Liebigs Ann. Chem. 1985, 2178.
77. Gilman, A. M. "Synthesis of Hindered Tertiary Amine as Possible Precursor to Hypervalent Nitrogen" Ph. D. dissertation, Auburn University, 1988.
78. Scott, D. A.; Krülle, T. M.; Finn, M.; Nash, R. J.; Winters, A. L.; Asano, N.;

Butters, T. D.; Fleet, G. W. J. Tetrahedron Lett. 1999, 40, 7581.
79. Li, Hui "Synthesis of Possible Precursor to $10-P-5$ and $10-N-5$ Species" M. S. Thesis, Auburn Unversity, August, 1999.
80. a) Doyle, M. P.; McKervey, M. A.; Ye, T. " Modern Catalytic Methods for Organic Synthesis with Diazo Compounds" (Wiley; 1998) Chapter 8. b) Mass, G. Topics Curr. Chem. 1987, 137, 75. c) Davies, H. M. L. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 4, Chapter 4.8. d) Padwa, A.; Krumpe, K. E. Tetrahedron 1992, 48, 5385. e) Kirmse, G. "Carbene Chemistry" $2^{\text {nd }}$ ed., (Academic, 1971) 409-412. f) Aller, E.; Buck, R. T.; Drysdale, M. J.; Ferris, L.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Sanghere, J. B. J. Chem. Soc. Perkin Trans. 1 1996, 2879.
81. Livant, P.; Jie, Y.; Wang, X. Tetrahedron Lett. 2005, 46, 2113.
82. Greene, T. W. "Protective Groups in Organic Synthesis", New York: Wiley, c1991, 2 nd ed.
83. Hoppe, D.; Schmincke, H.; Kleemann, H.-W. Tetrahedron 1989, 45, 687.
84. a) Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D. Synth. Commun. 1987, 17, 1709. b) Regitz, M. Angew. Chem. Int. Ed. Engl. 1967, 6, 733. c) Regitz, M. Synthesis 1972, 351. d) Regitz, M.; Maas, G. Diazo Compounds: Properties and Synthesis; Academic Press, Orlando, 1986 Chapter 13.
85. a) Doyle, M. P.; Colsman, M. R.; Chinn, M. S. Inorg. Chem. 1984, 23, 3684. b) Cotton, F. A.; Dirkarev, E. V.; Petrukhina, M. A.; Stiriba, S.-E. Polyhedron 2000, 19, 1829. c) Prunchnik, F. P.; Starosta, R.; Kowalska, M. W.; Galdecka, E.; Galdecki, Z.; Kowalski, A. J. Organometal. Chem. 2000, 597, 20.
86. a) Murray-Rust, P.; McManus, J.; Lennon, S. P.; Porter, A. E. A.; Rechka, J. A. J. Chem. Soc., Perkin Trans. 1, 1984, 713. b) Husinec, S.; Juranic, I.; Liobera, A.; Porter, A. E. A. Synthesis, 1988, 721.
87. Yang, M. "Studies in Carbenoid Chemistry: N-H Insertion Reactions Leading to Hindered Tertiary amines, and Double Cyclopropanations of Aromatic Compounds" Ph. D. Dissertation, Auburn University, 2001.
88. a) Brown, W. G. Organic Reactions, New York: John Wiley and Sons, Vol. 6. 1951, 469. b) Adams, R.; Govindachari, T. R. J. Am. Chem. Soc. 1950, 72, 158.
89. Nystrom, R. F.; Chaikin, S. W.; Brown, W. G. J. Am. Chem. Soc. 1949, 71, 3245.
90. a) Kantam, M. L.; Swapna, V.; Santhi, P. L.; Synth. Commun. 1995, 25, 2529. b) Ma, S.; Venanzi, L. M.; Tetrahedron Lett. 1993, 34, 8071. c) Ford, K. L.; Roskamp,
E. J. J. Org. Chem. 1993, 58, 4142. d) Chang, C.; Chu, K. C.; Yue, S. Synth. Commun. 1992, 22, 1217. e) Sarmah, P.; Barua, N. C. Tetrahedron Lett. 1989, 30, 4703.
91. a) Malkoch, M.; Carlmark, A.; Woldegiorgis, A.; Hult, A.; Malmstroem, Eva E. Macromolecules 2004, 37, 2, 322. b) Daniela, I. B.; Takao, K.; Vassya, S. B.; Zornitsa, G. K.; Makoto, U. Molecules 2005, 10, 552. c) Yu, C. C.; Lee, Y.-S.;

Cheon, B. S.; Lee, S. H. Bulletin of the Korean Chemical Society 2003, 24, 8, 1229.
92. Mahender, G.; Ramu, R.; Ramesh, C.; Das, B. Chemistry Lett. 2003, 32, 8, 734.
93. Reddy, S. M.; Reddy, Y. V.; Venkateswarlu, Y. Tetrahedron Lett. 2005, 46, 7439.
94. Boese, R.; Bläser, D.; Antipin, M. Y.; Chaplinski, V.; de Meijere, A. Chem. Commun. 1998, 781.
95. Wyatt, P.; Butts, C. P.; Patel, V.; Voysey, B. J. Chem. Perkin Trans. 1 2000, 4222.
96. Allenstein, E.; Schwarz, W.; Schrempf, E. Z. Anorg. Allg. Chem. 1987, 546, 107.
97. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc. Perkin Trans. II 1987, S1-S19.
98. a) Voronkov, M. G.; Baryshok, V. P. J. Organometallic Chem. 1982, 239 (1),199.
b) Perrin, D. D. Dissociation Constant of Organic Base in Aqueous Solution.

Butterworths: London, 1965; Supplement, 1972.
99. a) Schleppnik, A. A.; Gutsche, C. D. J. Org. Chem. 1962, 27, 3684. b) Ludwig, J. H.; Witsken, K. J. U. S. Patent 3,755,388 (1973).
100. a) Brown, H. C.; Fletcher, E. A. J. Amer. Chem. Soc. 1951, 73, 2808. b)

Greenwood, N. N.; Morris, J. H.; Wright, J. C. Heterocyclic Organoborane

Compounds. Part II. 1964, 4753. c) Taira, Z.; Osaki, K. Inorg. Nucl. Chem. Letters
1971, 6, 509. d) Shishkov, I. F.; Khristenko, L. V.; Rudakov, F. M. Vilkov, L. V.;
Karlov, S. S. Zaitseva, G. S.; Samdal, S. J. Mol. Struct. 2002, 641, 199.
101. (a) Bondi, A. J. Phy. Chem. 1964, 68, 441. (b) Pauling, L. The Nature of the Chemical Bond. Cornell Univ. Press (1960).
102. Steinberg, H.; Hunter, D. L. J. Am. Chem. Soc. 1960, 82, 853.
103. a) Zimmerman, H. K.; Weidmann, H. Liebigs Ann. Chem. 1959, 37, 628. b)

Zimmerman, H. K. Advan. Chem. Ser. 1963, 42, 23.
104. Finestone, A. B. US 2,953,545 (1960); C. A. 55 (1961) 4045.
105. Frye, C. L.; Vogel, G. E.; Hall, J. A. J. Am. Chem. Soc. 1961, 83, 996.
106. Voronkov, M. G.; Dyakov, V. M.; Kirpichenko, S. V. J. Organomet. Chem. 1982, 233, 1.
107. a) Bondi, A. J. Phys. Chem. 1964, 68, 441. b) Kleabe, G. J. J. Organomet. Chem. 1985, 293, 147.
108. Zelchan, G, I.; Voronkov, M. G. USSR 192,209 (1967); C. A., 68 (1968) 105348.
109. Zelchan, G, I.; Voronkov, M. G. Khim. Geterotsikl. Soed. 1967, 371.
110. Parkanyi, R; Buhatsi, R.; Henscei, P. Cryst. Struct. Commun. 1978, 7, 435.
111. a) Turley, J. W.; Boer, F. P.; J. Amer. Chem. Soc. 1968, 90, 5102. b) Kemme, A.; Bleidelis, J.; Solomennikova, I.; Zelchan, G.; Lukevics, E. J. Chem. Soc., Chem. Comm. 1976, 1041. c) Parkanyi, L.; Nagy, J.; Simon, K. 1975, 101, 11.
112. Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D. Synth. Commun. 1987, 17, 1709.
113. (a) Hamilton, W. C.; Ibers, J. A. Hydrogen Bonding in solids, Benjamin, W. A., New York, 1968, Review. (b) Joesten, M. D.; Schaad, L. J. Hydrogen Bonding, Marcel Dekker, INC., New York.
114. Chandrasekaran, A.; Timosheva, N. V.; Day, R. O.; Holmes, R. R. Inorg. Chem. 2003, 42, 3285.
115. (a) Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vilà, N. Langmuir, 2004, 20, 8243-8253. (b) Nelsen, S. F.; Ippoliti, J. T.; J. Am. Chem. Soc. 1986, 108, 4879.
(c) Xu, W.; Mariano, P. S.; J. Am. Chem. Soc. 1991, 113, 1431.
116. Eaborn, R. J.; Odell, K. J.; Pidcock, A.; Scollary, G. J. J. Chem. Soc., Chem. Commun., 1976, 317.
117. Garant, R. J.; Daniels, L. M.; Das, S. K.; Janakiraman, M. N.; Jacobson, R. A.; Verkade, J. G. J. Am. Chem. Soc., 1991, 113, 5728.
118. Cotton, F. A.; Wilkinson, G. Advanced Inorg. Chem., Wiley Interscience; New York, 1968.
119. Voronkov, M. G.; Zelchan, G. I. Khim. Geterotsikl. Soed., 1969, 43.

APPENDICES

APPENDIX 1
CRYSTAL STRUCTURE DATA FOR COMPOUND 36
data_pbca (tertiary amine)

```
_audit_creation_method SHELXL-97
_chemical_name_systematic
_chemical_name_common ?
_chemical_meltīng_point ?
_chemical_formula_moiety ?
-chemical formula-sum
'C9 H15 N
_chemical_formula_weight 233.22
loop_
    _atom_type_symbol
    _atom_type_description
    _atom_type_scat_dispersion_real
    _atom_type_scat_dispersion_imag
    _atom_type_scat_source
    'C' ''C' -0.00\overline{3}3 0.0016
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'H' 'H' 0.0000 0.0000
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'N' 'N' 0.0061 0.0033
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'O' 'O' 0.0106 0.0060
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting ?
_symmetry_space_group_name_H-M ?
loop_
    _symmetry_equiv_pos_as_xyz
    'x, y, z'
    '-x+1/2, -y, z+1/2'
    '-x, y+1/2, -z+1/2'
    'x+1/2, -y+1/2, -z'
    '-x, -y, -z'
    'x-1/2, y, -z-1/2'
    'x, -y-1/2, z-1/2'
    '-x-1/2, y-1/2, z'
_cell_length_a
10.915(2)
_cell_llength_b 8.9100(18)
_cell_length_c 23.635(5)
_cell_angle_\overline{lpha 90.00}
_cell_angle_beta 90.00
_cell-angle-gamma 90.00
_cell_volume
_cell_formula_units_Z 8
_cell_measure\overline{ment_temperature}
193(2)
_cell_measurement_reflns_used
?
```

```
_cell_measurement_theta_min
_cell_measurement_theta_max
    exptl_crystal_description
    exptl-crystal-colour
-exptl-crystal-size max
exptl_crystal_size_mid
exptl_crystal_size_min
exptl_crystal_density_meas
_exptl_crystal_density_diffrn
_exptl_crystal_density_method
_exptl_crystal_F_000
_exptl_absorpt_coefficient_mu
_exptl_absorpt_correction_Eype
_exptl_absorpt_correction_T_min
_exptl_absorpt_correction_T_max
_exptl_absorpt_-process_de\overline{tai}ls
_exptl_special_details
;
    ?
;
_diffrn_ambient_temperature
_diffrn_radiation_wavelength
_diffrn_radiation_type
_diffrn_radiation_source
_diffrn_radiation_monochromator
_diffrn_measuremeñt_device_type
_diffrn_measurement_method-
_diffrn_detector_arēa_resol_mean ?
_diffrn_standard\overline{s_num\overline{b}er - ?}
_diffrn_standards_interval_count ?
_diffrn_standards_interval__time ?
_diffrn_standards_decay_%- ?
_diffrn_reflns_number
_diffrn_reflns_av_R_equivalents
_diffrn_reflns_av_sigmaI/netI
_diffrn_reflns_limit_h_min
__diffrn_reflns_limit_h_max
_diffrn_reflns_limit_-k_min
_diffrn_reflns_limit____max
-diffrn-reflns }\mp@subsup{}{}{-
_diffrn_reflns_limit_l_max 30
-diffrn-reflns-theta-min 1.72
_diffrn_reflns_theta_max 28.32
_reflns_number_total- 2858
_reflns_number_gt
2682
_reflns_threshold_expression >2sigma(I)
```



```
_computing_cell_refinement ?
```

'fine-focus sealed tube'
_diffrn_standards_interval_time ?
_diffrn_standards_decay_\% ?
$\begin{array}{ll}\text {-diffrn_reflns_number - } & 21931 \\ \text {-diffrn_reflns_av R equivalents } & 0.023\end{array}$
_diffrn_reflns_av_sigmaI/netI 0.0136
_diffrn_reflns_limit_h_min
_reflns_threshold_expression
_computing_data_collection
_computing_cell_refinement

```
?
```


193(2)
0.71073

MoK\a
graphite
?
?
?
?
?
-14
14
-11
11
-31
30
1.72
28.32

2858
?
0.39
0.32
0.20
?
1.348
'not measured'
992
0.114
?
?
?
?

. 0239
>2sigma(I)
?

```
_computing_data_reduction ?
computing_structure_solution 'SHELXS-97 (Sheldrick,
1990)'
computing_structure_refinement 'SHELXL-97 (Sheldrick,
1997)'
_computing_molecular_graphics ?
_computing_publication_material ?
_refine_special_details
;
    Refinement of F^2^ against ALL reflections. The weighted
R-factor wR and
    goodness of fit S are based on F F^2^, conventional R-factors
R are based
    on F, with F set to zero for negative F^2^. The threshold
expression of
    F^2^ > 2sigma(F^2^) is used only for calculating R-
factors(gt) etc. and is
    not relevant to the choice of reflections for refinement.
R-factors based
    on F^2^ are statistically about twice as large as those
based on F, and R-
    factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type - full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
-'calc \overline{w}=1/[\\\^\mp@subsup{2}{}{\wedge}(\mp@subsup{\textrm{FO}}{}{\boldsymbol{\pi}}\mp@subsup{2}{}{\wedge})+(0.0650P)^\mp@subsup{2}{}{\wedge}+0.5358P] where
P}=(\mp@subsup{\textrm{FO}}{}{\wedge}\mp@subsup{2}{}{\wedge}+2\mp@subsup{\textrm{FC}}{}{\wedge}\mp@subsup{2}{}{\wedge})/\mp@subsup{3}{}{\prime
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_Ereatment mixed
_refine_ls_extinctiōn_method SHELXL
_refine_ls_extinction_coef 0.0235(19)
_refine_ls_extinction_expression
```



```
_refine_ls_number_reflns 2858
_refine_ls_number_parameters 170
_refine_ls_number_restraints 0
_refine_ls_R_factōr_all 0.0378
_refine-ls_-R-factor_gt 0.0361
_refine-ls_w\overline{R}_factor_ref 0.1032
_refine_ls_wR_factor_gt 0.1009
_refine_ls_goodness_of_fit_ref 1.026
_refine_ls_restrained_\overline{s}_al\overline{l}}1.02
_refine_ls_shift/su_max_ 0.001
_refine_ls_shift/su_mean 0.000
loop_
```

```
    atom_site_label
    atom_site_type_symbol
    _atom_site_fract_x
    _atom_site_fract_Y
    _atom_site_fract_z
    _atom_site_U_iso_or_equiv
    _atom_site_a\overline{dp_tȳpe}
    _atom_site_occupancy
    _atom_site_symmetry_multiplicity
    _atom_site_calc_flag
    _atom_site_refiñement_flags
    _atom_site_disorder_assembly
    __atom_site_disorder_group
O\overline{3}}00
N1 N 0.54025(7) 0.31619(9) 0.37092(3) 0.01954(18) Uani 1 1 d
05 O 0.79707(6) 0.22275(9) 0.46848(3) 0.02734(18) Uani 1 1 d
O2 O 0.70558(7) 0.47638(8) 0.29885(3) 0.03115(19) Uani 1 1 d
O6 O 0.23938(7) 0.41860(9) 0.43489(3) 0.0320(2) Uani 1 1 d.
O1 O 0.57161(7) 0.63151(9) 0.37812(3) 0.03117(19) Uani 1 1 d
O4 O 0.49101(7) -0.00440(8) 0.40596(3) 0.03160(19) Uani 1 1
d
C9 C 0.70469(8) 0.31217(10) 0.44233(4) 0.0238(2) Uani 1 1 d
H9A H 0.7443 0.3895 0.4185 0.029 Uiso 1 1 calc R . .
H9B H 0.6570 0.3644 0.4720 0.029 Uiso 1 1 calc R . .
C8 C 0.54598(8) 0.10566(10) 0.44156(4) 0.0224(2) Uani 1 1 d
H8A H 0.6024 0.0563 0.4686 0.027 Uiso 1 1 calc R . .
H8B H 0.4818 0.1583 0.4635 0.027 Uiso 1 1 calc R .
C7 C 0.44848(8) 0.40750(10) 0.39898(4) 0.02057(19) Uani 1 1
d . . .
H7A H 0.4702 0.4086 0.4401 0.025 Uiso 1 1 calc R . .
C6 C 0.61682(7) 0.21878(9) 0.40556(3) 0.01820(18) Uani 1 1 d
H6A H 0.6689 0.1593 0.3789 0.022 Uiso 1 1 calc R . .
C5 C 0.53957(8) 0.30275(10) 0.30952(4) 0.02108(19) Uani 1 1
d . . .
H5A H 0.4875 0.3874 0.2956 0.025 Uiso 1 1 calc R . .
C4 C 0.66648(9) 0.32921(11) 0.28415(4) 0.0246(2) Uani 1 1 d
H4A H 0.7251 0.2542 0.2991 0.030 Uiso 1 1 calc R . .
H4B H 0.6631 0.3187 0.2425 0.030 Uiso 1 1 calc R . .
C3 C 0.31751(8) 0.34618(11) 0.39490(4) 0.0253(2) Uani 1 1 d
H3A H 0.2855 0.3627 0.3562 0.030 Uiso 1 1 calc R . .
H3B H 0.3181 0.2368 0.4022 0.030 Uiso 1 1 calc R . .
```

C2 C 0.45118(9) 0.57150(11) 0.37894(4) 0.0267(2) Uani 11 d H2A H 0.41590 .57750 .34040 .032 Uiso 1 1 calc R . . H2B H 0.3995 0.6330 0.4044 0.032 Uiso 1 1 calc R . . C1 C 0.48189(9) 0.16001(11) 0.28532(4) 0.0263(2) Uani 11 d H1A H 0.39780 .15020 .30060 .032 Uiso 1 1 calc R . . H1B H 0.4752 0.1710 0.2438 0.032 Uiso 1 1 calc R . . H1 H 0.6136(15) 0.5766(18) 0.3567(6) 0.043(4) Uiso 1 1 d. . H2 H $0.7841(16) 0.4846(17) 0.2956(7) 0.044(4)$ Uiso 11 d. . H3 H 0.5303(14) 0.0024(16) 0.3317(7) 0.039(4) Uiso 11 d. . H4 H 0.4234(16) -0.0281(18) 0.4183(7) 0.047(4) Uiso 11 d. H5 H 0.8444(16) 0.1926(17) 0.4418(7) 0.048(4) Uiso 11 d. . H6 H 0.2589(17) 0.3829(19) 0.4660(8) 0.055(4) Uiso 11 d. .

```
loop
    atom_site_aniso_label
    _atom_site_aniso_U_11
    _atom_site_aniso_U_22
    _atom_site_aniso_U_33
    _atom_site_aniso_U_23
    _atom_site_aniso_U_13
        atom_site_aniso_U-12
\(0 \overline{3} 0.0 \overline{2} 74(4 \overline{)} 0.02 \overline{8} 8 \overline{(4)} 0.0284(4)-0.0075(3)-0.0001(3)-\)
0.0008 (3)
N 1 0.0184(3) 0.0241(4) 0.0162(3)-0.0003(3)-0.0005(2)
0.0048 (3)
\(050.0211(3) \quad 0.0373(4) \quad 0.0237(3) \quad 0.0024(3)-0.0056(2)\)
\(0.0018(3)\)
\(020.0240(4) \quad 0.0257(4) \quad 0.0437(4) \quad 0.0003(3) \quad 0.0061(3)-\)
0.0019 (3)
\(060.0219(3) \quad 0.0467(5) \quad 0.0275(4) \quad 0.0037(3) \quad 0.0055(3)\)
\(0.0099(3)\)
O1 0.0267(4) 0.0252(4) 0.0416(4) -0.0062(3) 0.0022(3)-
0.0024 (3)
\(040.0305(4) \quad 0.0321(4) \quad 0.0321(4)-0.0050(3) \quad 0.0046(3) \quad\) -
0.0139 (3)
C9 0.0216(4) 0.0242(4) 0.0255(4)-0.0015(3)-0.0062(3)-
0.0006 (3)
C8 0.0217(4) 0.0237(4) 0.0220(4) 0.0014(3) -0.0003(3) -
0.0030 (3)
C7 0.0174(4) 0.0239(4) 0.0204(4) -0.0016(3) 0.0002(3)
0.0029(3)
C6 0.0162(4) 0.0199(4) 0.0185(4) 0.0002(3) -0.0013(3)
0.0000 (3)
```

```
C5 0.0199(4) 0.0255(4) 0.0178(4) -0.0007(3) -0.0012(3)
0.0012(3)
C4 0.0247(4) 0.0270(4) 0.0222(4) 0.0001(3) 0.0040(3) -
0.0003(3)
C3 0.0174(4) 0.0327(5) 0.0257(4) -0.0004(4) 0.0016(3)
0.0010(3)
C2 0.0222(4) 0.0248(4) 0.0329(5) -0.0006(4) 0.0001(3)
0.0035(3)
C1 0.0217(4) 0.0333(5) 0.0239(4) -0.0068(4) -0.0037(3) -
0.0005(4)
_geom_special_details
'All esds (except the esd in the dihedral angle between two
l.s. planes)
    are estimated using the full covariance matrix. The cell
esds are taken
    into account individually in the estimation of esds in
distances, angles
    and torsion angles; correlations between esds in cell
parameters are only
    used when they are defined by crystal symmetry. An
approximate (isotropic)
    treatment of cell esds is used for estimating esds
involving l.s. planes.
;
loop
    geom_bond_atom_site_label_1
    _geom_bond_atom_site_label__2
    _geom_bond_distance
    _geom_bond_site_symmetry_2
    _geom_bond_publ_flag
0\overline{3}}\textrm{C}1 \overline{1}.430\overline{6}(13). . ?
O3 H3 0.855(17) . ?
N1 C7 1.4509(11) . ?
N1 C5 1.4561(11) . ?
N1 C6 1.4566(10) . ?
O5 C9 1.4262(11) . ?
O5 H5 0.858(18) . ?
O2 C4 1.4221(12) . ?
O2 H2 0.864(18) . ?
O6 C3 1.4273(11) . ?
O6 H6 0.829(18) . ?
O1 C2 1.4192(12) . ?
O1 H1 0.839(16) . ?
O4 C8 1.4247(11) . ?
O4 H4 0.821(18) . ?
C9 C6 1.5387(12) . ?
C9 H9A 0.9900 . ?
C9 H9B 0.9900 . ?
C8 C6 1.5290(12) . ?
```

```
C8 H8A 0.9900 . ?
C8 H8B 0.9900 . ?
C7 C3 1.5335(12) . ?
C7 C2 1.5364(14) . ?
C7 H7A 1.0000 . ?
C6 H6A 1.0000 . ?
C5 C4 1.5278(13) . ?
C5 C1 1.5301(13) . ?
C5 H5A 1.0000 . ?
C4 H4A 0.9900 . ?
C4 H4B 0.9900 . ?
C3 H3A 0.9900 . ?
C3 H3B 0.9900 . ?
C2 H2A 0.9900 . ?
C2 H2B 0.9900 . ?
C1 H1A 0.9900 . ?
C1 H1B 0.9900 . ?
loop
    geom angle atom site label 1
    _geom_angle_atom_site_label_2
    _geom_angle_atom_site_label_3
    _geom_angle
    _geom_angle_site_symmetry_1
    _geom_angle_site_symmetry_3
    _geom_angle_publ_flag
C\overline{1}}03 \overline{\textrm{H}}3106.0(10) . . ?
C7 N1 C5 119.87(7) . . ?
C7 N1 C6 118.25(7) . . ?
C5 N1 C6 120.93(7) . . ?
C9 O5 H5 106.4(11) . . ?
C4 O2 H2 110.7(10) . . ?
C3 O6 H6 105.1(12) . . ?
C2 O1 H1 107.1(11) . . ?
C8 O4 H4 110.2(11) . . ?
O5 C9 C6 112.54(7) . . ?
O5 C9 H9A 109.1 . . ?
C6 C9 H9A 109.1 . . ?
O5 C9 H9B 109.1 . . ?
C6 C9 H9B 109.1 . . ?
H9A C9 H9B 107.8 . . ?
O4 C8 C6 109.75(7) . . ?
O4 C8 H8A 109.7 . . ?
C6 C8 H8A 109.7 . . ?
O4 C8 H8B 109.7 . . ?
C6 C8 H8B 109.7 . . ?
H8A C8 H8B 108.2 . . ?
N1 C7 C3 114.52(7) . . ?
N1 C7 C2 112.28(7) . . ?
C3 C7 C2 109.72(7) . . ?
N1 C7 H7A 106.6 . . ?
```

```
C3 C7 H7A 106.6 . . ?
C2 C7 H7A 106.6 . . ?
N1 C6 C8 114.54(7) . . ?
N1 C6 C9 110.66(7) . . ?
C8 C6 C9 110.94(7) . . ?
N1 C6 H6A 106.7 . . ?
C8 C6 H6A 106.7 . . ?
C9 C6 H6A 106.7 . . ?
N1 C5 C4 111.95(7) . . ?
N1 C5 C1 116.30(8) . . ?
C4 C5 C1 110.77(7) . . ?
N1 C5 H5A 105.6 . . ?
C4 C5 H5A 105.6 . . ?
C1 C5 H5A 105.6 . . ?
O2 C4 C5 108.58(8) . . ?
O2 C4 H4A 110.0 . . ?
C5 C4 H4A 110.0 . . ?
O2 C4 H4B 110.0 . . ?
C5 C4 H4B 110.0 . . ?
H4A C4 H4B 108.4 . . ?
O6 C3 C7 110.75(8) . . ?
O6 C3 H3A 109.5 . . ?
C7 C3 H3A 109.5 . . ?
O6 C3 H3B 109.5 . . ?
C7 C3 H3B 109.5 . . ?
H3A C3 H3B 108.1 . . ?
O1 C2 C7 112.35(8) . . ?
O1 C2 H2A 109.1 . . ?
C7 C2 H2A 109.1 . . ?
O1 C2 H2B 109.1 . . ?
C7 C2 H2B 109.1 . . ?
H2A C2 H2B 107.9 . . ?
O3 C1 C5 114.65(7) . . ?
O3 C1 H1A 108.6 . . ?
C5 C1 H1A 108.6 . . ?
O3 C1 H1B 108.6 . . ?
C5 C1 H1B 108.6 . . ?
H1A C1 H1B 107.6 . . ?
_diffrn_measured_fraction_theta_max 0.998
_diffrn_reflns_theta_full_ - 28.32
__diffrn_measurēd_fra\overline{ction_theta_full 0.998}
_refine_diff_density_max - 0.3\overline{6}0
_refine__diff__density_min -0.166
__refine_diff__density_rms 0.047
```

APPENDIX 2

CRYSTAL STRUCTURE DATA FOR COMPOUND 67

```
data_face(one boron)
_audit_creation_method SHELXL-97
_chemical_name_systematic
;
    ?
;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum
-'C9 H18 \overline{B N O6'}
_chemical_formula_weight 247.05
loop_
    _atom_type_symbol
    _atom_type_description
    _atom_type_scat_dispersion_real
    _atom_type_scat_dispersion_imag
    _atom_type_scat_source
    'C' ''C' -0.00\overline{3}3 0.0016
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'H' 'H' 0.0000 0.0000
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'N' 'N' 0.0061 0.0033
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'O' 'O' 0.0106 0.0060
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'B' 'B' 0.0013 0.0007
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting ?
_symmetry_space_group_name_H-M ?
loop_
    _symmetry_equiv_pos_as_xyz
    'x, y, z'
    '-x+1/2, -y+1/2, z+1/2'
    '-y, x+1/2, z+1/4'
    'y+1/2, -x, z+3/4'
    'x, -y, z+1/2'
    '-x+1/2, y+1/2, z'
    '-y, -x+1/2, z+3/4'
    'y+1/2, x, z+1/4'
    'x+1/2, y+1/2, z+1/2'
    '-x+1, -y+1, z+1'
    '-y+1/2, x+1, z+3/4'
```

```
    'Y+1, -x+1/2, z+5/4'
    'x+1/2, -y+1/2, z+1'
    '-x+1, y+1, z+1/2'
    '-y+1/2, -x+1, z+5/4'
    'Y+1, x+1/2, z+3/4'
_cell_length_a
_cell_length_b
_cell_length_c
_cell_angle_alpha
_cell_angle_beta
_cell_angle_gamma
_cell_volume
_cell_formula_units_z
_cell_measure\overline{ment_t\overline{emperature}}\mathbf{}\mathrm{ _-}
_cell_measurement_reflns_used
_cell_measurement_theta_min
_cell_measurement_theta_max
    _exptl_crystal_description
    exptl_crystal_colour
_exptl_crystal_size_max
_exptl_crystal_size_mid
_exptl_crystal__size_min
_exptl_crystal_densīty_meas
_exptl_crystal_density_diffrn
_exptl_crystal_density_method
_-exptl_crystal_F_000
_exptl_absorpt_coefficient_mu
_exptl_absorpt_correction_Eype
_exptl_absorpt_correction_T_min ?
_exptl_absorpt_correction_T_max ?
_exptl_absorpt_process_de\overline{taīls ?}
;
    ?
;
_diffrn_ambient_temperature
193(2)
_diffrn_radiation_wavelength
0.71073
MoK\a
_diffrn_radiation_type
_diffrn_radiation_source
_diffrn_radiation_monochromator
'fine-focus sealed tube'
graphite
_diffrn_measuremeñt_device_type
?
_diffrn_measurement_method- ?
__diffrn_detector_arēa_resol_mean ?
_diffrn_standard\overline{s_num\overline{b}er - ?}
_diffrn_standards_interval_count ?
_diffrn_standards_interval__time ?
_diffrn_standards_decay_%
_diffrn_reflns_number
```

16.9503(11)
16.9503 (11)
$14.8701(10)$
90.00
90.00
90.00
4272.4(5)

16
193(2)
?
?
?
?
?
1.540
0.160
0.156
?
1.536
'not measured'
2112
0.126
?
?
?
?

```
_exptl_special_details
```

```
_exptl_special_details
```

```
\begin{tabular}{|c|}
\hline \\
\hline diffrn_radiation_wavelength \\
\hline diffrn_radiation_type \\
\hline diffrn_radiation_source \\
\hline diffrn radiation monochromator \\
\hline diffrn_measurement_device_type \\
\hline diffrn_measurement_method \\
\hline diffrn_detector_arēa_resol_mean \\
\hline diffrn standards number \\
\hline diffrn standards interval count \\
\hline diffrn_standards_interval_time \\
\hline diffrn_standards_decay_\% \\
\hline diffrn_reflns_number \\
\hline
\end{tabular}
?
?
20614
```

-difirn_refins_nuber

```
_diffrn_reflns_av_R_equivalents 0.0257
_diffrn_reflns_av_sigmaI/netI 0.0201
_diffrn_reflns_limit_h_min -22
_diffrn_reflns_limit_h_max 22
-diffrn reflns limit }\mp@subsup{}{}{-}\mathrm{ -min -22
_diffrn_reflns_limit_k_max 22
_diffrn_reflns_limit_l_min -19
_diffrn_reflns_limit_l_max 19
_diffrn_reflns_theta_min 2.40
_diffrn_reflns_theta_max 28.32
_reflns_number_total- 2651
_reflns_number_gt 2615
_reflns_threshold_expression >2sigma(I)
_computing_data_collection ?
_computing_cell_refinement ?
_computing_data_reduction ?
_computing_structure_solution 'SHELXS-97 (Sheldrick,
1990)'
computing_structure_refinement 'SHELXL-97 (Sheldrick,
1997)'
_computing_molecular_graphics ?
_computing_publication_material ?
_refine_special_details
; Refinement of F^^2^ against ALL reflections. The weighted
R-factor wR and
goodness of fit S are based on F^^^^, conventional R-factors
R are based
on F, with F set to zero for negative F^2^. The threshold
expression of
    F^2^ > 2sigma( (F^2^) is used only for calculating R-
factors(gt) etc. and is
    not relevant to the choice of reflections for refinement.
R-factors based
    on F^2^ are statistically about twice as large as those
based on F, and R-
    factors based on ALL data will be even larger.
;
    _refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type - full
_refine-ls_weighting_scheme calc
_refine_ls_weighting_details
-'calc \overline{w}=1/[\\\^\mp@subsup{2}{}{\wedge}(\mp@subsup{\textrm{FO}}{}{\boldsymbol{\pi}}\mp@subsup{2}{}{\wedge})+(0.0673P)^\mp@subsup{2}{}{\wedge}+0.2442P] where
P=(FO^2^+2FC^2^)}/\mp@subsup{3}{}{\prime
    _atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refiñe_ls_\overline{hydrogen_\overline{treatment mixed}}\mathbf{~}\mathrm{ _}
_refine_ls_extinction_method none
```

```
_refine_ls_extinction_coef ?
_refine_ls_abs_structūre_details
```



```
_refine_ls_abs_structure_Flack 0.6(5)
_refine_ls_number_reflns - 2651
-refine-ls_number-parameters 226
_refine_ls_number_restraints 1
_refine_ls_R_factor_all 0.0319
_refine_ls_R_factor_gt 0.0316
_refine_ls_w\overline{R_factor_ref 0.0807}
_refine_ls_wR_factor_gt 0.0804
_refine_ls_goodness_of_fit_ref 1.056
_refine_ls_restrained_\overline{S_all}1.056
_refine_ls_shift/su_max 0.002
_refine_ls_shift/su_mean 0.000
loop
    _atōm_site_label
    _atom_site_type_symbol
    _atom_site_fract_x
    _atom_site_fract_Y
    _atom_site_fract_z
    _atom_site_U_iso_or_equiv
    _atom_site_adp_type
    _atom_site_occupancy
    _atom_site_symmetry_multiplicity
    _atom_site_calc_flag
    _atom_site_refiñement_flags
    _atom_site_disorder_assembly
        atom_site_disorder_group
B\overline{1}}\textrm{B}0.0955\overline{0}(7) 0.36\overline{6}68(7) 0.33552(8) 0.0217(2) Uani 1 1 d .
N1 N 0.03293(5) 0.28950(5) 0.32844(6) 0.01637(16) Uani 1 1 d
O1 0 0.06661(5) 0.41124(5) 0.41000(6) 0.02660(18) Uani 1 1 d
O2 O 0.08735(5) 0.40382(5) 0.24837(5) 0.02675(19) Uani 1 1 d
O3 O 0.17149(5) 0.33075(5) 0.34936(6) 0.02599(19) Uani 1 1 d
O4 O -0.14732(6) 0.29248(6) 0.47798(7) 0.0315(2) Uani 1 1 d
H4 H -0.1544(13) 0.2521(13) 0.5075(17) 0.039(5) Uiso 1 1 d .
O5 O -0.06881(6) 0.25192(5) 0.10899(6) 0.0298(2) Uani 1 1 d
H5 H - 0.0683(13) 0.2093(14) 0.0717(16) 0.048(5) Uiso 1 1 d .
O6 O 0.04810(5) 0.14230(5) 0.46764(5) 0.02376(18) Uani 1 1 d
H6 H 0.0056(17) 0.1249(13) 0.4795(16) 0.048(6) Uiso 1 1 d.
```

C4 C-0.01544(7) 0.39457(6) 0.41842(8) 0.0244(2) Uani $11 d$ H4A H $-0.0471(11) \quad 0.4198(11) 0.3727(13) \quad 0.031(4)$ Uiso 11 d H4B H $-0.0342(10) 0.4120(10) 0.4730(13) \quad 0.026(4)$ Uiso 11 d C5 C 0.05972(7) 0.34632(7) 0.18537(7) 0.0244(2) Uani 11 d. H5A H $0.0408(11) 0.3733(11) 0.1374(13) 0.031(4)$ Uiso 11 d. H5B H $0.1026(10) 0.3123(10) 0.1672(12) 0.025(4)$ Uiso 11 d. C6 C 0.15896(6) 0.25481(7) 0.38828(8) 0.0240(2) Uani 11 d. H6A H $0.1476(11) 0.2580(11) \quad 0.4525(14) \quad 0.030(4)$ Uiso 11 d H6B H $0.2023(12) 0.2249(12) 0.3785(15) 0.038(4)$ Uiso 11 d. C7C-0.02155(6) 0.30497(6) 0.40683(7) 0.01882(19) Uani 11 H7 $\mathrm{H} \cdot \dot{\mathrm{H}}-0.0010(9) 0.2807(8) \quad 0.4561(10) \quad 0.012(3) \mathrm{Uiso} 11 \mathrm{~d}$. C8 C-0.00365(6) 0.30088(6) 0.23701(7) 0.01886(19) Uani 1 1 H8 $\mathrm{H}-0.0442(9) \quad 0.3374(9) \quad 0.2457(12) \quad 0.019(3)$ Uiso 11 d. . C9 C 0.08895(5) 0.22051(6) 0.33631(7) 0.01901(19) Uani 11 d H9 H $0.1074(9) 0.2111(9) 0.2762(11) 0.019(3)$ Uiso 11 d. C10 C - 0.10551(6) 0.27417(7) 0.39802(8) 0.0234(2) Uani 11 d $\dot{H} \dot{O} A \mathrm{H}-0.1068(11) 0.2190(11) 0.3899(13) \quad 0.030(4)$ Uiso 11 d H10B H - 0.1327(12) 0.2985(12) 0.3485(15) 0.038(5) Uiso 11 d C11 C $-0.03248(6) 0.22639(6) 0.19060(7) 0.0217(2)$ Uani $11 d$ H11A H 0.0117(10) 0.1936(9) 0.1803(12) 0.024(4) Uiso 11 d. H11B H -0.0717(10) 0.1984(10) 0.2259(12) 0.025(3) Uiso 11 d C12 C 0.05740(6) 0.14282(6) 0.37226(7) 0.0207(2) Uani 11 d H12A H 0.0098(12) 0.1272(10) 0.3429(14) 0.034(4) Uiso 11 d $\dot{H} 12 \mathrm{~B}$ H $0.0945(10) 0.1030(10) 0.3542(11) \quad 0.029(4)$ Uiso 11 d loop -atom_site_aniso_label
_atom_site_aniso_U_11

```
    _atom_site_aniso_U_22
    _atom_site_aniso_U_33
    -atom_site_aniso_U_23
    _atom_site_aniso_U-13
        -atom-site \({ }^{-}\)aniso \({ }^{-}{ }^{-} 12\)
B \(\overline{1} 0.0 \overline{2} 22(5 \overline{)} 0.02 \overline{0} 5(5) \quad 0.0223(5) \quad 0.0017(4) \quad 0.0001(4)-\)
0.0063 (4)
N1 0.0170(3) 0.0165(3) 0.0156(4) 0.0022(3) 0.0011(3)
\(0.0000(3)\)
O1 0.0288(4) 0.0243(4) 0.0267(4)-0.0039(3)-0.0006(3)-
0.0056 (3)
O2 0.0347(4) 0.0223(4) 0.0232(4) 0.0049(3) -0.0005(3) -
\(0.0092(3)\)
\(030.0192(3) \quad 0.0276(4) \quad 0.0311(4) \quad 0.0057(3) \quad 0.0010(3)-\)
0.0059 (3)
O4 0.0326(4) 0.0284(4) 0.0335(4) 0.0077(3) 0.0157(4)
0.0070 (3)
\(050.0393(5) \quad 0.0302(4) \quad 0.0200(4)-0.0019(3)-0.0072(3)\)
0.0037 (3)
\(060.0233(4) \quad 0.0268(4) \quad 0.0211(4) \quad 0.0040(3) \quad 0.0014(3)-\)
0.0046 (3)
C4 0.0272 (5) 0.0223(4) 0.0237(5) -0.0017(4) 0.0022(4)
0.0011 (3)
C5 0.0283(5) 0.0267(5) 0.0184(5) 0.0037(4) 0.0012(4) -
0.0064 (4)
C6 0.0185(4) 0.0270(5) 0.0264(5) 0.0052(4) -0.0013(4) -
0.0018 (4)
C7 0.0204(4) 0.0202(4) 0.0159(4) 0.0015(3) 0.0034(3)
0.0013 (3)
C8 0.0208(4) 0.0193(4) 0.0164(4) 0.0025(3)-0.0006(3) -
0.0004 (3)
C9 0.0179(4) 0.0190(4) 0.0202(5) 0.0024(3) 0.0011(3)
\(0.0019(3)\)
C10 0.0206(4) 0.0241(5) 0.0254(5) 0.0027(4) 0.0046(4) -
\(0.0002(3)\)
C11 0.0241 (5) 0.0210(4) 0.0199(4) -0.0003(4) -0.0026(4) -
\(0.0009(4)\)
C12 0.0231(4) 0.0175 (4) 0.0215 (5) 0.0022(3) 0.0002(4)
0.0007 (3)
_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)
```

```
    treatment of cell esds is used for estimating esds
involving l.s. planes.
;
loop
    geom_bond_atom_site_label_1
    _geom_bond_atom_site_label_}\mp@subsup{}{}{-
    geom bond-dist\overline{nce}
    _geom_bond_site_symmetry_2
    geom_bond_publ_flag
B1 O1 1.4272(15) . ?
B1 O3 1.4396(14) . ?
B1 O2 1.4473(14) . ?
B1 N1 1.6875(13) . ?
N1 C8 1.5067(12) . ?
N1 C7 1.5101(12) . ?
N1 C9 1.5109(12) . ?
O1 C4 1.4246(14) . ?
O2 C5 1.4306(14) . ?
O3 C6 1.4273(13) . ?
O4 C10 1.4186(13) . ?
O4 H4 0.82(2) . ?
O5 C11 1.4281(13) . ?
O5 H5 0.91(2) . ?
O6 C12 1.4270(13) . ?
O6 H6 0.80(3) . ?
C4 C7 1.5321(15) . ?
C4 H4A 0.97(2) . ?
C4 H4B 0.920(19) . ?
C5 C8 1.5285(14) . ?
C5 H5A 0.91(2) . ?
C5 H5B 0.967(17) . ?
C6 C9 1.5308(14) . ?
C6 H6A 0.98(2) . ?
C6 H6B 0.90(2) . ?
C7 C10 1.5216(14) . ?
C7 H7 0.910(14) . ?
C8 C11 1.5196(14) . ?
C8 H8 0.934(16) . ?
C9 C12 1.5186(13) . ?
C9 H9 0.961(17) . ?
C10 H10A 0.944(19) . ?
C10 H10B 0.96(2) . ?
C11 H11A 0.946(17) . ?
C11 H11B 0.971(17) . ?
C12 H12A 0.95(2) . ?
C12 H12B 0.962(17) . ?
loop
    _geom_angle_atom_site_label_1
    _geom_angle_atom_site_label_2
    _ggeom_angle_atom_site_label__3
```

```
    geom_angle
    _geom_angle_site_symmetry_1
    _geom_angle_site_symmetry_3
    geom angle_publ flag
O\overline{1}}\textrm{B1}\overline{O}3 114.84(1\overline{0}) . . ?
O1 B1 O2 115.59(9) . . ?
O3 B1 O2 113.42(9) . . ?
O1 B1 N1 104.06(8) . . ?
O3 B1 N1 104.08(8) . . ?
O2 B1 N1 102.79(8) . . ?
C8 N1 C7 115.00(8) . . ?
C8 N1 C9 115.32(7) . . ?
C7 N1 C9 117.32(7) . . ?
C8 N1 B1 102.45(7) . . ?
C7 N1 B1 101.63(7) . . ?
C9 N1 B1 101.55(7) . . ?
C4 O1 B1 107.35(8) . . ?
C5 O2 B1 108.74(8) . . ?
C6 O3 B1 107.84(8) . . ?
C10 O4 H4 109.8(16) . . ?
C11 O5 H5 105.8(14) . . ?
C12 O6 H6 108.7(18) . . ?
O1 C4 C7 104.64(8) . . ?
O1 C4 H4A 113.2(11) . . ?
C7 C4 H4A 108.8(11) . . ?
O1 C4 H4B 110.5(10) . . ?
C7 C4 H4B 113.2(10) . . ?
H4A C4 H4B 106.6(15) . . ?
O2 C5 C8 104.15(8) . . ?
O2 C5 H5A 106.7(12) . . ?
C8 C5 H5A 113.7(12) . . ?
O2 C5 H5B 110.1(11) . . ?
C8 C5 H5B 111.6(10) . . ?
H5A C5 H5B 110.3(17) . . ?
O3 C6 C9 104.66(8) . . ?
O3 C6 H6A 112.1(11) . . ?
C9 C6 H6A 111.2(11) . . ?
O3 C6 H6B 108.6(13) . . ?
C9 C6 H6B 109.6(13) . . ?
H6A C6 H6B 110.4(18) . . ?
N1 C7 C10 116.48(8) . . ?
N1 C7 C4 102.57(8) . . ?
C10 C7 C4 114.39(8) . . ?
N1 C7 H7 108.0(9) . . ?
C10 C7 H7 105.8(9) . . ?
C4 C7 H7 109.4(8) . . ?
N1 C8 C11 115.83(8) . . ?
N1 C8 C5 103.22(8) . . ?
C11 C8 C5 114.62(9) . . ?
N1 C8 H8 105.3(11) . . ?
C11 C8 H8 112.1(10) . . ?
C5 C8 H8 104.6(10) . . ?
```

```
N1 C9 C12 118.49(8) . . ?
N1 C9 C6 103.44(8) . . ?
C12 C9 C6 115.13(9) . . ?
N1 C9 H9 105.2(9) . . ?
C12 C9 H9 107.3(9) . . ?
C6 C9 H9 106.3(10) . . ?
O4 C10 C7 108.67(9) . . ?
O4 C10 H10A 108.2(12) . . ?
C7 C10 H10A 111.9(11) . . ?
O4 C10 H10B 108.0(12) . . ?
C7 C10 H10B 111.5(12) . . ?
H10A C10 H10B 108.4(17) . . ?
O5 C11 C8 105.83(8) . . ?
O5 C11 H11A 112.4(11) . . ?
C8 C11 H11A 108.0(10) . . ?
O5 C11 H11B 108.2(10) . . ?
C8 C11 H11B 112.4(10) . . ?
H11A C11 H11B 110.0(15) . . ?
O6 C12 C9 113.21(9) . . ?
O6 C12 H12A 111.1(12) . . ?
C9 C12 H12A 112.1(11) . . ?
O6 C12 H12B 110.2(10) . . ?
C9 C12 H12B 106.3(10) . . ?
H12A C12 H12B 103.3(15) . . ?
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{diffrn_measured_fraction_theta_max}} & 0.999 \\
\hline & & 28.32 \\
\hline diffrn_measured_fracti & theta full & 0.999 \\
\hline refine_diff density_max & \(0.2 \overline{74}\) & \\
\hline refine diff density min & -0.227 & \\
\hline refine diff density rms & 0.053 & \\
\hline
\end{tabular}
```

APPENDIX 3
CRYSTAL STRUCTURE DATA FOR COMPOUND 71

```
data_p-1 (2 boron + pyridine)
_audit_creation_method SHELXL-97
__chemi\overline{cal_name_systematic}
;
    ?
;
    _chemical_name_common ?
    _chemical_melting_point ?
    _chemical_formula_moiety ?
_chemical_formula_sum
    -'C14 H20-B2 N2 O\overline{6}
    _chemical_formula_weight 333.94
loop_
    _atōm_type_symbol
    _atom_type_description
    _atom_type_scat_dispersion_real
    _atom_type_scat_dispersion_imag
    _atom_type_scat_source
    'C' ''C' -0.00\overline{33}}0.001
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'H' 'H' 0.0000 0.0000
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'B' 'B' 0.0013 0.0007
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'N' 'N' 0.0061 0.0033
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'O' 'O' 0.0106 0.0060
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting ?
_symmetry_space_group_name_H-M ?
loop_
    _symmetry_equiv_pos_as_xyz
    'x, y, z'
    '-x, -y, -z'
    _cell_length_a
        11.5031(8)
    _cell_length_-b
        11.6639(8)
    _cell_length_c
    _cell_angle_alpha
        12.9997(9)
        97.56(3)
    _cell_angle_beta
        92.13(3)
_cell_angle_gamma
117.95(3)
-cell-volume
_cell_formula_units_Z
_cell_measurement_temperature
193(2)
_cell_measurement_reflns_used ?
_cell_measurement_reflns_used ?
_cell_measurement_theta_min ?
_cell_measurement_-theta_max ?
```

```
    _exptl_crystal_description
    exptl_crystal_colour
    exptl_crystal_size_max
    _exptl_crystal__size_mid
-exptl-crystal-size-min
    exptl_crystal_densíty_meas
    exptl_crystal_density_diffrn
    exptl_crystal_density_method
    exptl_crystal_F_000
    _exptl_absorpt_coefficient_mu
    _exptl_absorpt_correction_type
    _exptl_absorpt_correction_T_min
_exptl_absorpt_correction_T_max
```



```
_exptl_special_details
;
    ?
    ;
    _diffrn_ambient_temperature
    193(2)
    _diffrn_radiation_wavelength
_diffrn_radiation_type
_diffrn_radiation_source
_diffrn_radiation_monochromator
_diffrn_measurement_device_type
_diffrn_measurement_method
__diffrn_detector_arēa_resol_mean
_diffrn_standards__num\overline{b}
_-diffrn_standards_interval_count
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% - ?
__diffrn_reflns_number - 15700
_diffrn_reflns_av_R_equivalents 0.0351
_diffrn_reflns_av_sigmaI/netI
_diffrn_reflns_limit_h_min
__diffrn_reflns_limit_h_max
_diffrn_reflns_limit_k_min
_diffrn_reflns_limit_k_max
_diffrn_reflns_limit_l_min
_diffrn_reflns_limit_l_max
-diffrn_reflns_theta_min
_diffrn_reflns_theta_min
_reflns_number_total
0.0587
-15
15
-15
-15
1 5
-17
1 7
1.59
28.30
_reflns_number_gt
7490
4658
_reflns_threshold_expression
_computing_data_collection
?
_computing_cell_refinement ?
_computing_data_reduction ?
_computing_struc̄ture_solution 'SHELXS-97 (Sheldrick,
1990)'
0.16
0.16
0.34
?
1.462
    'not measured'
    704
    0.111
    ?
    0.9633
    0.9825
?
;
```

193(2)
0.71073

MoK\a
'fine-focus sealed tube'
graphite
?
?
?
_diffrn_detector_arēa_resol_mean
?
?
_diffrn_standards_interval_count ?
_diffrn_standards_interval_-time ?
_diffrn_standards_decay_\% ?
_diffrn_reflns_number _ 15700
_diffrn_reflns_av_R_equivalents 0.0351
_diffrn_reflns_av_sigmaI/netI 0.0587
_difin_resins_limit_h_min -15
_difin_refins_11mit_h_max 1
_diffrn_reflns_limit_k_max $\quad 1$
-diffrn_reflns ${ }^{-1 i m i t}{ }^{-}{ }^{-}$- min
-diffrn_reflns_limit ${ }^{-1}$ max 1
_diffrn_reflns_theta_max 28.30
-reflns_number_gt 4658
_reflns_threshōld_expression >2sigma(I)
_computing_data_collection ?
_computing_cell_refinement ?
_computing_data_reduction ?
1990)'151551717
. 59
7490
?
?
'SHELXS-97 (Sheldrick,

```
    computing_structure_refinement 'SHELXL-97 (Sheldrick,
1997)'
    _computing_molecular_graphics ?
_computing_publication_material ?
_refine_special_details
;
    Refinement of F^2^ against ALL reflections. The weighted
R-factor wR and
    goodness of fit S are based on F^2^, conventional R-factors
R are based
    on F, with F set to zero for negative F^2^. The threshold
expression of
    F^2^ > 2sigma(F^2^) is used only for calculating R-
factors(gt) etc. and is
    not relevant to the choice of reflections for refinement.
R-factors based
    on F^2^ are statistically about twice as large as those
based on F, and R-
    factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
```



```
P}=(\mp@subsup{\textrm{FO}}{}{\wedge}\mp@subsup{2}{}{\wedge}+2\mp@subsup{\textrm{FC}}{}{\wedge}\mp@subsup{2}{}{\wedge})/\mp@subsup{3}{}{\prime
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refiñe_ls_\overline{hydrogen_E}reatment mixed
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_ref\overline{lns }7490
_refine_ls_number_parameters 433
_refine_ls_number_restraints 0
_refine_ls_R_factōr_all 0.1132
_refine_ls_R_factor_gt 0.0762
_refine_ls_w\overline{R_factor_ref 0.2235}
_refine_ls_wR_factor_gt 0.2046
_refine_ls_goōdness_Of_fit_ref 1.092
_refine-ls-restrainēd \overline{S}}\mathrm{ - \l̄
_refine-ls_shift/su_max`-
_refine_ls_shift/su_mean 0.007
loop
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
```

```
    _atom_site_U_iso_or_equiv
    _atom_site_a\overline{dp_ty}pe-
    _atom_site_occupancy
    _atom_site_symmetry_multiplicity
    _atom_site_calc_flag
    _atom_site_refiñement_flags
    _atom_site_disorder_assembly
    _atom_site_disorder_group
O\overline{1}2 0 0
d . . .
O11 0 0.65986(19) 0.88823(19) 0.17156(15) 0.0360(5) Uani 1 1
d . . .
O10 0 0.70195(18) 0.7971(2) 0.00664(15) 0.0378(5) Uani 1 1 d
O9`O1.00268(19) 0.8396(2) 0.35091(16) 0.0432(5) Uani 1 1 d
O8 O 1.06281(19) 0.7803(2) 0.18288(16) 0.0399(5) Uani 1 1 d
N3 N 0.8404(2) 0.7594(2) 0.19485(16) 0.0277(5) Uani 1 1 d.
O7O 0.9052(2) 0.6110(2) 0.26928(17) 0.0430(5) Uani 1 1 d.
C22 C 0.8905(3) 0.7920(3) 0.0917(2) 0.0313(6) Uani 1 1 d. .
H22A H 0.8637 0.7070 0.0440 0.038 Uiso 1 1 calc R . .
N4 N 0.4918(2) 0.7953(2) 0.02290(18) 0.0341(5) Uani 1 1 d.
C16 C 0.7248(3) 0.6241(3) 0.1924(2) 0.0344(6) Uani 1 1 d . .
```

H16A H 0.68560 .62600 .25960 .041 Uiso 1 1 calc R . .
C19 C 0.8373(3) 0.8700(3) 0.2664(2) 0.0326(6) Uani 11 d.
H19A H 0.90220 .95400 .24470 .039 Uiso 1 1 calc R. .
C17 C 0.6139(3) 0.5770(3) 0.1051(2) 0.0374(6) Uani 1 1 d. .
H17A H 0.65080 .58050 .03730 .045 Uiso 1 1 calc R. .
H17B H 0.54920 .48410 .10680 .045 Uiso 1 1 calc R . .
C21 C 1.0407(3) 0.8598(3) 0.1185(2) 0.0365(6) Uani 1 1 d. .
H21A H 1.08530 .86330 .05440 .044 Uiso 1 1 calc R. .
H21B H 1.07420 .95060 .15650 .044 Uiso 1 1 calc R. .
C20 C 0.7059(3) 0.8709(3) 0.2669(2) 0.0335(6) Uani 11 d.
H20A H 0.63870 .78660 .28480 .040 Uiso 11 calc R. .
H20B H 0.71530 .94250 .32230 .040 Uiso 1 1 calc R. .
C23 C 0.8404(3) 0.8693(3) 0.0372(2) 0.0343(6) Uani 1 1 d . .
H23A H 0.86090 .95180 .08460 .041 Uiso 11 calc R. .
H23B H $0.88700 .8934-0.02540 .041$ Uiso 1 1 calc R . .
C18 C 0.8956(3) 0.8640(3) 0.3715(2) 0.0406(7) Uani 1 1 d. .
H18A H 0.92700 .94830 .41980 .049 Uiso 11 calc R. .

H18B H 0.82830 .79240 .40360 .049 Uiso 1 1 calc R . . B4 B 0.6121(3) 0.7830(3) 0.0838(2) 0.0316(6) Uani 11 d. $\mathrm{C} 24 \mathrm{C} 0.5052(3) 0.8463(3)-0.0640(2) 0.0445(7) \mathrm{Uani} 11 \mathrm{~d}$. H24A H $0.58590 .8738-0.09450 .053$ Uiso 1 1 calc R . . C15 C 0.7909(3) 0.5375(3) 0.1964(3) 0.0438(7) Uani 1 1 d . . H15A H 0.73040 .45380 .21910 .053 Uiso 1 1 calc R . . H15B H 0.81540 .51720 .12670 .053 Uiso 1 1 calc R . . B3 B 0.9661(3) 0.7465(3) 0.2561(3) 0.0356(7) Uani 1 1 d.. C28 C 0.3782(3) 0.7571(3) 0.0655(3) 0.0491(8) Uani 1 1 d. . H28A H 0.36940 .72200 .12840 .059 Uiso 11 calc R. C26 C 0.2869(3) 0.8194(3) -0.0681(3) 0.0546(9) Uani 11 d . H26A H $0.21600 .8274-0.10000 .065$ Uiso 1 1 calc R . . C27 C 0.2741(3) 0.7671(4) 0.0211(3) 0.0581(10) Uani 1 1 d. H27A H 0.19380 .73790 .05230 .070 Uiso 1 1 calc R . . C25 C 0.4038(4) 0.8602(4) -0.1111(3) 0.0553(9) Uani 1 1 d. H25A H $0.41520 .8979-0.17290 .066$ Uiso 1 1 calc R . . $0600.3389(2) 0.6937(2) 0.35640(19) 0.0544(6)$ Uani 11 d. $\dot{\mathrm{N}} 1 \mathrm{~N} 0.1580(2) 0.3929(2) 0.31308(17) 0.0306(5)$ Uani 11 d . $0500.2453(2) 0.6069(2) 0.50763(18) 0.0601(7)$ Uani $11 d$. N2 N 0.4702(2) 0.7917(2) 0.52717(18) 0.0362(5) Uani 11 d. $0300.1175(2) 0.1759(2) 0.22368(18) 0.0512(6)$ Uani $11 d$. $0400.4259(2) 0.5761(2) 0.4439(2) 0.0571(7)$ Uani 11 d. O2 O 0.0227(2) 0.2907(2) 0.14279(18) 0.0572(6) Uani 11 d. O1 O-0.0609(2) 0.1977(2) 0.2980(2) 0.0559(6) Uani 1 1 d. . B2 B $0.3609(3) 0.6539(3) 0.4527(2) 0.0329(7)$ Uani 11 d. . C14 C 0.4302(3) 0.8693(3) 0.5838(2) 0.0440(7) Uani 11 d. H14A H 0.33840 .84270 .58180 .053 Uiso 1 1 calc R . . C10 C 0.5988(3) 0.8291(3) 0.5304(2) 0.0444(7) Uani 1 1 d . . H10A H 0.62660 .77460 .48950 .053 Uiso 1 1 calc R. . C9 C 0.2189(3) 0.6293(3) 0.2958(2) 0.0437(7) Uani 1 1 d. . H9A H 0.22180 .68160 .24090 .052 Uiso 11 calc R . . H9B H 0.15030 .62810 .34010 .052 Uiso 1 1 calc R . .
$\mathrm{C} 7 \mathrm{C} 0.0531(3) 0.4228(3) \quad 0.1668(3) 0.0484(8)$ Uani 11 d.
H7A H -0.0214 0.4298 0.1971 0.058 Uiso 1 1 calc R. .
H7B H 0.06920 .46310 .10280 .058 Uiso 1 1 calc R . .
C4 C 0.2536(3) 0.2631(3) 0.2417(3) 0.0493(8) Uani 11 d.
H4A H 0.28610 .30020 .17800 .059 Uiso 1 1 calc R . .
H4B H 0.30220 .21660 .26100 .059 Uiso 1 1 calc R . . C8 C 0.1756(3) 0.4924(3) 0.2443(3) 0.0482 (8) Uani 11 d .

H8A H 0.24940 .49830 .20300 .058 Uiso 1 1 calc R . . C2 C 0.0867(3) 0.3947(3) 0.4056(3) 0.0491 (8) Uani 11 d.

H2A H 0.03380 .43830 .38690 .059 Uiso 1 1 calc R . . C6 C 0.4083(3) 0.4863(3) 0.3568(3) 0.0458(8) Uani 11 d.

H6A H 0.47270 .45370 .36700 .055 Uiso 1 1 calc R . .
H6B H 0.43110 .53340 .29650 .055 Uiso 1 1 calc R . .
C13 C 0.5205 (3) 0.9867(3) 0.6447(3) 0.0492(8) Uani 11 d.
H13A H 0.49141 .04160 .68320 .059 Uiso 1 1 calc R . .
C5 C 0.2751(3) 0.3706(3) 0.3288(3) 0.0438(7) Uani 11 d.
H5A H 0.25930 .32710 .39190 .053 Uiso 1 1 calc R . .
C12 C 0.6529(3) 1.0233(3) 0.6491(3) 0.0507(8) Uani 1 1 d. .
H12A H 0.71621 .10270 .69210 .061 Uiso 1 1 calc R . .
C3 C 0.1661 (3) 0.4757(3) 0.5067(2) 0.0462 (8) Uani 11 d . .
H3A H 0.1041 0.4658 0.5598 0.055 Uiso 1 1 calc R . .
H3B H 0.22260 .43830 .52890 .055 Uiso 1 1 calc R.
C11 C 0.6927(3) 0.9442(3) 0.5909(3) 0.0524(8) Uani 11 d.
H11A H 0.78400 .96850 .59240 .063 Uiso 1 1 calc R.
C1 C - 0.0146(4) 0.2548(4) 0.4029(3) 0.0603(10) Uani 1 1 d.
H1A H 0.0252 0.20740 .43550 .072 Uiso 1 1 calc R . .
H1B H -0.0886 0.25030 .44180 .072 Uiso 1 1 calc R.
B1 B 0.0463(3) 0.2494(3) 0.2367(3) 0.0423(8) Uani 11 d . .
loop
atōm site aniso label
-atom-site-aniso-U_11
-atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12
O $\overline{1} 20 . \overline{0} 281(\overline{1} 0) \quad 0 . \overline{0} 3 \overline{2} 1(10) \quad 0.0457(11) \quad 0.0024(8)-0.0031(8)$
0.0142 (8)

```
O11 0.0371(11) 0.0366(11) 0.0370(11) 0.0004(8) - 0.0024(8)
0.0218(9)
O10 0.0311(10) 0.0517(12) 0.0333(10) 0.0061(9) 0.0015(8)
0.0225(9)
O9 0.0352(11) 0.0547(13) 0.0401(11) 0.0031(10) - 0.0074(9)
0.0238(10)
O8 0.0306(10) 0.0516(12) 0.0460(12) 0.0166(10) 0.0042(9)
0.0243(9)
N3 0.0260(11) 0.0257(11) 0.0310(11) 0.0050(9) 0.0019(9)
0.0120(9)
O7 0.0385(11) 0.0423(12) 0.0524(13) 0.0157(10) - 0.0017(9)
0.0213(10)
C22 0.0298(13) 0.0377(15) 0.0296(13) 0.0062(11) 0.0042(10)
0.0186(12)
N4 0.0278(12) 0.0360(13) 0.0389(13) 0.0028(10) - 0.0005(9)
0.0168(10)
C16 0.0304(14) 0.0280(13) 0.0418(15) 0.0057(11) - 0.0009(11)
0.0118(11)
C19 0.0322(14) 0.0316(14) 0.0308(14) - 0.0022(11) - 0.0018(11)
0.0148(11)
C17 0.0317(14) 0.0269(14) 0.0478(17) 0.0010(12) - 0.0056(12)
0.0114(11)
C21 0.0291(14) 0.0453(16) 0.0412(16) 0.0136(13) 0.0065(12)
0.0210(13)
C20 0.0324(14) 0.0371(15) 0.0309(14) - 0.0009(11) 0.0003(11)
0.0184(12)
C23 0.0298(14) 0.0438(16) 0.0351(14) 0.0121(12) 0.0065(11)
0.0208(12)
C18 0.0348(15) 0.0490(18) 0.0351(15) 0.0006(13) - 0.0038(12)
0.0198(14)
B4 0.0253(14) 0.0373(16) 0.0342(16) 0.0036(13) - 0.0010(12)
0.0175(13)
C24 0.0401(16) 0.060(2) 0.0423(17) 0.0108(15) 0.0030(13)
0.0308(15)
C15 0.0387(16) 0.0339(16) 0.059(2) 0.0116(14) - 0.0030(14)
0.0172(13)
B3 0.0286(15) 0.0419(18) 0.0387(17) 0.0093(14) - 0.0040(13)
0.0188(14)
C28 0.0389(17) 0.055(2) 0.067(2) 0.0229(17) 0.0146(15)
0.0294(15)
C26 0.0400(18) 0.053(2) 0.073(2) - 0.0034(18) - 0.0120(16)
0.0297(16)
C27 0.0339(17) 0.054(2) 0.095(3) 0.023(2) 0.0113(17)
0.0255(16)
C25 0.059(2) 0.075(2) 0.0452(19) 0.0146(17) - 0.0004(16)
0.042(2)
O6 0.0560(14) 0.0335(11) 0.0624(15) 0.0051(10) - 0.0239(11)
0.0151(10)
N1 0.0302(11) 0.0273(11) 0.0342(12) 0.0011(9) - 0.0037(9)
0.0152(9)
O5 0.0619(15) 0.0450(13) 0.0492(14) - 0.0048(11) 0.0144(12)
0.0083(12)
```

```
N2 0.0376(13) 0.0306(12) 0.0341(12) 0.0016(10) - 0.0032(10)
0.0127(10)
O3 0.0479(13) 0.0364(12) 0.0605(14) - 0.0111(10) - 0.0048(11)
0.0186(10)
O4 0.0470(13) 0.0461(13) 0.0744(16) - 0.0168(11) - 0.0211(11)
0.0279(11)
O2 0.0607(15) 0.0415(13) 0.0551(14) - 0.0040(10) - 0.0248(12)
0.0179(11)
O1 0.0412(13) 0.0377(12) 0.0671(16) -0.0066(11) 0.0012(11)
0.0053(10)
B2 0.0354(16) 0.0266(15) 0.0347(16) 0.0019(12) 0.0000(13)
0.0144(13)
C14 0.0425(17) 0.0361(16) 0.0489(18) - 0.0029(13) - 0.0058(14)
0.0183(14)
C10 0.0388(17) 0.0408(17) 0.0463(18) 0.0014(13) 0.0019(13)
0.0147(14)
C9 0.0559(19) 0.0331(15) 0.0406(16) 0.0060(12) - 0.0092(14)
0.0211(14)
C7 0.059(2) 0.0453(18) 0.0440(18) - 0.0070(14) - 0.0186(15)
0.0327(16)
C4 0.054(2) 0.0422(18) 0.054(2) - 0.0085(15) - 0.0102(15)
0.0311(16)
C8 0.0539(19) 0.0373(17) 0.0468(18) 0.0090(14) - 0.0170(15)
0.0176(15)
C2 0.0428(17) 0.0405(17) 0.0490(19) -0.0028(14) 0.0126(14)
0.0096(14)
C6 0.0375(16) 0.0447(17) 0.0567(19) - 0.0092(14) - 0.0079(14)
0.0263(14)
C13 0.058(2) 0.0352(16) 0.0512(19) - 0.0055(14) - 0.0060(15)
0.0234(15)
C5 0.0384(16) 0.0385(16) 0.0568(19) - 0.0052(14) - 0.0042(14)
0.0242(14)
C12 0.056(2) 0.0301(16) 0.0499(19) - 0.0001(14) -0.0128(15)
0.0103(14)
C3 0.0449(17) 0.0408(17) 0.0379(16) 0.0038(13) 0.0071(13)
0.0089(14)
C11 0.0378(17) 0.0437(19) 0.059(2) 0.0031(15) - 0.0032(15)
0.0076(14)
C1 0.048(2) 0.049(2) 0.059(2) 0.0085(17) 0.0076(17)
0.0023(16)
B1 0.0397(18) 0.0318(17) 0.0454(19) - 0.0071(14) - 0.0117(15)
0.0136(14)
_geom_special_details
All esds (except the esd in the dihedral angle between two
l.s. planes)
    are estimated using the full covariance matrix. The cell
esds are taken
    into account individually in the estimation of esds in
distances, angles
```

and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.

```
;
```

loop
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
$0 \overline{1} 2 \mathrm{C} 1 \overline{7} 1.4 \overline{1} 0(3)$. ?
O12 B4 1.449(4) . ?
O11 C20 1.406(3) . ?
O11 B4 1.436(4) . ?
O10 C23 1.418(3) . ?
O10 B4 1.436(4) . ?
O9 C18 1.415(4) . ?
O9 B3 1.435(4) . ?
O8 C21 1.427(3) . ?
O8 B3 1.436(4). ?
N3 C22 1.503(3) . ?
N3 C19 1.503(3) . ?
N3 C16 1.508(3) . ?
N3 B3 1.703(4) . ?
07 C15 1.414(4) . ?
07 B3 1.436(4). ?
C22 C23 1.508(4) . ?
C22 C21 1.528(4) . ?
C22 H22A 1.0000 . ?
N4 C24 1.327(4) . ?
N4 C28 1.336(4) . ?
N4 B4 1.642(4) . ?
C16 C17 1.513(4) ?
C16 C15 1.527(4) . ?
C16 H16A 1.0000 . ?
C19 C20 1.516(4) . ?
C19 C18 1.525(4) . ?
C19 H19A 1.0000.?
C17 H17A 0.9900 . ?
C17 H17B 0.9900 . ?
C21 H21A 0.9900 . ?
C21 H21B 0.9900 . ?
C20 H20A 0.9900 . ?
C20 H20B 0.9900 . ?
C23 H23A 0.9900 . ?
C23 H23B 0.9900 . ?
C18 H18A 0.9900 . ?
C18 H18B 0.9900 . ?

```
C24 C25 1.382(4) . ?
C24 H24A 0.9500 . ?
C15 H15A 0.9900 . ?
C15 H15B 0.9900 . ?
C28 C27 1.371(5) . ?
C28 H28A 0.9500 . ?
C26 C27 1.362(5) . ?
C26 C25 1.369(5) . ?
C26 H26A 0.9500 . ?
C27 H27A 0.9500 . ?
C25 H25A 0.9500 . ?
O6 C9 1.372(4) . ?
O6 B2 1.445(4) . ?
N1 C2 1.484(4) . ?
N1 C5 1.499(4) . ?
N1 C8 1.501(4) . ?
N1 B1 1.700(4) . ?
O5 C3 1.364(4) . ?
O5 B2 1.438(4) . ?
N2 C10 1.328(4) . ?
N2 C14 1.346(4) . ?
N2 B2 1.645(4) . ?
O3 C4 1.399(4) . ?
O3 B1 1.437(4) . ?
O4 C6 1.375(4) . ?
O4 B2 1.418(4) . ?
O2 C7 1.398(4) . ?
O2 B1 1.431(4) . ?
O1 C1 1.400(4) . ?
O1 B1 1.423(5) . ?
C14 C13 1.379(4) . ?
C14 H14A 0.9500 . ?
C10 C11 1.374(5) . ?
C10 H10A 0.9500 . ?
C9 C8 1.482(4) . ?
C9 H9A 0.9900 . ?
C9 H9B 0.9900 . ?
C7 C8 1.505(4) . ?
C7 H7A 0.9900 . ?
C7 H7B 0.9900 . ?
C4 C5 1.492(4) . ?
C4 H4A 0.9900. ?
C4 H4B 0.9900 . ?
C8 H8A 1.0000 . ?
C2 C1 1.490(5) . ?
C2 C3 1.493(4) . ?
C2 H2A 1.0000 . ?
C6 C5 1.480(4) . ?
C6 H6A 0.9900 . ?
C6 H6B 0.9900 . ?
C13 C12 1.372(5) . ?
C13 H13A 0.9500 . ?
```

```
C5 H5A 1.0000 . ?
C12 C11 1.368(5) . ?
C12 H12A 0.9500 . ?
C3 H3A 0.9900 . ?
C3 H3B 0.9900 . ?
C11 H11A 0.9500 . ?
C1 H1A 0.9900 . ?
C1 H1B 0.9900 . ?
loop
    _geom_angle_atom_site_label_1
    _geom_angle_atom_site_label_2
    _geom_angle_atom_site_label_3
    _geom_angle
    _geom_angle_site_symmetry_1
    _geom_angle_site_symmetry_3
    geom_angle_publ_flag
C\overline{17} O1\overline{2}}\mathrm{ B4 1र्19.0(彷) . . ?
C20 O11 B4 119.2(2) . . ?
C23 O10 B4 119.5(2) . . ?
C18 O9 B3 109.0(2) . . ?
C21 O8 B3 107.8(2) . . ?
C22 N3 C19 115.2(2) . . ?
C22 N3 C16 116.2(2) . . ?
C19 N3 C16 116.0(2) . . ?
C22 N3 B3 101.68(19) . . ?
C19 N3 B3 102.4(2) . . ?
C16 N3 B3 101.88(19) . . ?
C15 O7 B3 109.1(2) . . ?
N3 C22 C23 116.2(2) . . ?
N3 C22 C21 102.8(2) . . ?
C23 C22 C21 114.6(2) . . ?
N3 C22 H22A 107.6 . . ?
C23 C22 H22A 107.6 . . ?
C21 C22 H22A 107.6 . . ?
C24 N4 C28 119.1(3) . . ?
C24 N4 B4 122.6(2) . . ?
C28 N4 B4 118.2(2) . . ?
N3 C16 C17 116.5(2) . . ?
N3 C16 C15 103.2(2) . . ?
C17 C16 C15 115.5(2) . . ?
N3 C16 H16A 107.0. . ?
C17 C16 H16A 107.1 . . ?
C15 C16 H16A 107.0 . . ?
N3 C19 C20 117.0(2) . . ?
N3 C19 C18 102.8(2) . . ?
C20 C19 C18 115.2(2) . . ?
N3 C19 H19A 107.1 . . ?
C20 C19 H19A 107.1 . . ?
C18 C19 H19A 107.1 . . ?
O12 C17 C16 112.6(2) . . ?
O12 C17 H17A 109.1 . . ?
```

```
C16 C17 H17A 109.1 . . ?
O12 C17 H17B 109.1 . . ?
C16 C17 H17B 109.1 . . ?
H17A C17 H17B 107.8 . . ?
O8 C21 C22 104.7(2) . . ?
O8 C21 H21A 110.8 . . ?
C22 C21 H21A 110.8 . . ?
O8 C21 H21B 110.8 . . ?
C22 C21 H21B 110.8 . . ?
H21A C21 H21B 108.9 . . ?
O11 C20 C19 114.2(2) . . ?
O11 C20 H2OA 108.7 . . ?
C19 C20 H2OA 108.7 . . ?
O11 C20 H20B 108.7 . . ?
C19 C20 H20B 108.7 . . ?
H20A C20 H2OB 107.6 . . ?
O10 C23 C22 112.1(2) . . ?
O10 C23 H23A 109.2 . . ?
C22 C23 H23A 109.2 . . ?
O10 C23 H23B 109.2 . . ?
C22 C23 H23B 109.2 . . ?
H23A C23 H23B 107.9 . . ?
O9 C18 C19 106.2(2) . . ?
O9 C18 H18A 110.5 . . ?
C19 C18 H18A 110.5 . . ?
O9 C18 H18B 110.5 . . ?
C19 C18 H18B 110.5 . . ?
H18A C18 H18B 108.7 . . ?
O10 B4 O11 115.8(2) . . ?
O10 B4 O12 114.0(2) . . ?
O11 B4 O12 113.6(2) . . ?
O10 B4 N4 103.7(2) . . ?
O11 B4 N4 103.4(2) . . ?
O12 B4 N4 104.4(2) . . ?
N4 C24 C25 121.2(3) . . ?
N4 C24 H24A 119.4 . . ?
C25 C24 H24A 119.4 . . ?
O7 C15 C16 105.9(2) . . ?
O7 C15 H15A 110.6 . . ?
C16 C15 H15A 110.6 . . ?
O7 C15 H15B 110.6 . . ?
C16 C15 H15B 110.6 . . ?
H15A C15 H15B 108.7 . . ?
O9 B3 07 115.0(3) . . ?
O9 B3 O8 115.4(3) . . ?
O7 B3 O8 114.4(3) . . ?
O9 B3 N3 103.0(2) . . ?
O7 B3 N3 103.3(2) . . ?
O8 B3 N3 103.3(2) . . ?
N4 C28 C27 122.0(3) . . ?
N4 C28 H28A 119.0 . . ?
C27 C28 H28A 119.0. . ?
```

```
C27 C26 C25 118.8(3) . . ?
C27 C26 H26A 120.6 . . ?
C25 C26 H26A 120.6 . . ?
C26 C27 C28 119.3(3) . . ?
C26 C27 H27A 120.3 . . ?
C28 C27 H27A 120.3 . . ?
C26 C25 C24 119.6(3) . . ?
C26 C25 H25A 120.2 . . ?
C24 C25 H25A 120.2 . . ?
C9 O6 B2 122.0(2) . . ?
C2 N1 C5 116.5(2) . . ?
C2 N1 C8 116.4(3) . . ?
C5 N1 C8 114.6(2) . . ?
C2 N1 B1 101.7(2) . . ?
C5 N1 B1 102.0(2) . . ?
C8 N1 B1 102.1(2) . . ?
C3 O5 B2 121.3(3) . . ?
C10 N2 C14 119.3(3) . . ?
C10 N2 B2 120.5(2) . . ?
C14 N2 B2 120.2(2) . . ?
C4 O3 B1 109.2(2) . . ?
C6 O4 B2 124.0(2) . . ?
C7 O2 B1 108.4(2) . . ?
C1 O1 B1 109.0(2) . . ?
O4 B2 O5 116.2(3) . . ?
O4 B2 O6 114.4(3) . . ?
O5 B2 O6 111.9(3) . . ?
O4 B2 N2 103.4(2) . . ?
O5 B2 N2 104.8(2) . . ?
O6 B2 N2 104.4(2) . . ?
N2 C14 C13 121.0(3) . . ?
N2 C14 H14A 119.5 . . ?
C13 C14 H14A 119.5 . . ?
N2 C10 C11 122.0(3) . . ?
N2 C10 H10A 119.0 . . ?
C11 C10 H10A 119.0 . . ?
O6 C9 C8 117.1(3) . . ?
O6 C9 H9A 108.0 . . ?
C8 C9 H9A 108.0 . . ?
O6 C9 H9B 108.0 . . ?
C8 C9 H9B 108.0 . . ?
H9A C9 H9B 107.3 . . ?
O2 C7 C8 107.7(3) . . ?
O2 C7 H7A 110.2 . . ?
C8 C7 H7A 110.2 . . ?
O2 C7 H7B 110.2 . . ?
C8 C7 H7B 110.2 . . ?
H7A C7 H7B 108.5 . . ?
O3 C4 C5 107.6(3) . . ?
O3 C4 H4A 110.2 . . ?
C5 C4 H4A 110.2 . . ?
O3 C4 H4B 110.2 . . ?
```

```
C5 C4 H4B 110.2 . . ?
H4A C4 H4B 108.5 . . ?
C9 C8 N1 117.6(3) . . ?
C9 C8 C7 119.3(3) . . ?
N1 C8 C7 103.7(2) . . ?
C9 C8 H8A 104.9 . . ?
N1 C8 H8A 104.9 . . ?
C7 C8 H8A 104.9 . . ?
N1 C2 C1 105.0(3) . . ?
N1 C2 C3 118.3(3) . . ?
C1 C2 C3 119.4(3) . . ?
N1 C2 H2A 104.0 . . ?
C1 C2 H2A 104.0 . . ?
C3 C2 H2A 104.0 . . ?
O4 C6 C5 117.4(3) . . ?
O4 C6 H6A 107.9 . . ?
C5 C6 H6A 107.9 . . ?
O4 C6 H6B 108.0 . . ?
C5 C6 H6B 108.0 . . ?
H6A C6 H6B 107.2 . . ?
C12 C13 C14 119.3(3) . . ?
C12 C13 H13A 120.4 . . ?
C14 C13 H13A 120.4 . . ?
C6 C5 C4 119.8(3) . . ?
C6 C5 N1 118.8(2) . . ?
C4 C5 N1 104.9(2) . . ?
C6 C5 H5A 103.7 . . ?
C4 C5 H5A 103.7 . . ?
N1 C5 H5A 103.7 . . ?
C11 C12 C13 119.3(3) . . ?
C11 C12 H12A 120.4 . . ?
C13 C12 H12A 120.4 . . ?
O5 C3 C2 117.0(3) . . ?
O5 C3 H3A 108.1 . . ?
C2 C3 H3A 108.1 . . ?
O5 C3 H3B 108.1 . . ?
C2 C3 H3B 108.1 . . ?
H3A C3 H3B 107.3 . . ?
C12 C11 C10 119.1(3) . . ?
C12 C11 H11A 120.4 . . ?
C10 C11 H11A 120.4 . . ?
O1 C1 C2 107.6(3) . . ?
O1 C1 H1A 110.2 . . ?
C2 C1 H1A 110.2 . . ?
O1 C1 H1B 110.2 . . ?
C2 C1 H1B 110.2 . . ?
H1A C1 H1B 108.5 . . ?
O1 B1 O2 117.0(3) . . ?
O1 B1 O3 114.5(3) . . ?
O2 B1 O3 113.3(3) . . ?
O1 B1 N1 103.4(2) . . ?
O2 B1 N1 103.3(2) . . ?
```

```
O3 B1 N1 103.0(2) . . ?
    diffrn_measured_fraction_theta_max 0.990
_diffrn-reflns t\overline{heta full- - 28.30}
-diffrn'measurē fra\overline{ction theta full 0.990}
_refine-diff density max - 1.3\overline{0}1
_refine_diff_density_min -0.561
_refine_diff__density_rms 0.065
```

APPENDIX 4
CRYSTAL STRUCTURE DATA FOR COMPOUND 74

```
data_final(2Ph,2Si)
    _audit_creation_method SHELXL-97
    __chemi\overline{cal_name_systematic}
;
    ?
;
_chemical_name_common ?
    chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum
-'C21 H25 N N O6 Si\
_chemical_formula_weight 443.60
loop_
    _atom_type_symbol
    _atom_type_description
    _atom_type_scat_dispersion_real
    _atom_type_scat_dispersion_imag
    _atom_type_scat_source
    ''C' 'C' -0.00\overline{3}3 0.0016
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'H' 'H' 0.0000 0.0000
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'N' 'N' 0.0061 0.0033
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'O' 'O' 0.0106 0.0060
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'Si' 'Si' 0.0817 0.0704
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting ?
_symmetry_spac\overline{e_group_name_H-M ?}
loop_
    _symmetry_equiv_pos_as_xyz
    'x, y, z'
    '-x, y+1/2, -z+1/2'
    '-x, -y, -z'
    'x, -y-1/2, z-1/2'
cell_length_a
_cell_length_b
_cell_-length_c
_cell_angle_\overline{alpha}
10.483(2)
11.489(2)
17.440(4)
_cell_angle_beta
90.00
101.86(3)
_cell_angle_gamma
90.00
_cell_volumē 2055.7(7)
_cell_formula_units_Z
_cell_measure\overline{ment_t\overline{emperature}}\mathbf{}\mathrm{ _-}
4
193(2)
__cell_measurement_reflns_used
?
_cell_measurement_theta_min
```

```
_cell_measurement_theta_max
    exptl_crystal_description
    exptl_crystal_colour
    exptl_crystal_size_max
_exptl_crystal_-size_mid
-exptl-crystal-size-min
    exptl-crystal-densíty meas
    exptl_crystal_density_diffrn
    exptl_crystal_density_method
    exptl_crystal_F_000
    _exptl_absorpt_coefficient_mu
_exptl_absorpt_correction_type
_exptl_absorpt_correction_T_min
_exptl_absorpt_correction_T_max
_exptl_absorpt_process_de\overline{Tails}
_exptl_special_details
;
    ?
;
_diffrn_ambient_temperature
193(2)
_diffrn_radiation_wavelength
_diffrn_radiation_type
_diffrn_radiation_source
_diffrn_radiation_monochromator
_diffrn_measurement_device_type
_diffrn_measurement_method
_-diffrn_detector_arēa_resol_mean
_diffrn_standard\overline{s_num\overline{b}er}
_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% - ?
__diffrn_reflns_number - 16579
__diffrn_reflns_av_R_equivalents 0.0689
_diffrn_reflns_av_sigmaI/netI 0.0632
_diffrn_reflns_limit_h_min
_diffrn_reflns_limit_h_max
_diffrn_reflns_limit_k_min
_diffrn_reflns_limit_k_max
_diffrn_reflns_limit_-_-min
_diffrn_reflns_limit_l_max 22
_diffrn_reflns_theta_min 2.39
__diffrn_reflns_theta_max 28.36
_reflns_number_total- 4672
_reflns_number_gt
-13
-15
15
-23
3223
_reflns_threshold_expression
_computing_data_collection
?
_computing_cell_refinement
?
_computing_data_reduction
0.71073
MoK\a
    'fine-focus sealed tube'
graphite
?
?
-diffrn-standard\overline{s}num\overline{ber -}
?
-dir_ ?
13
22
2.39
28.36
4672
>2sigma(I)
?
```

```
_computing_structure_solution 'SHELXS-97 (Sheldrick,
1990)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick,
1997)'
_computing_molecular_graphics ?
_computing_publication_material ?
_refine_special_details
; Refinement of F^^2^ against ALL reflections. The weighted
R-factor wR and
    goodness of fit S are based on F^2^, conventional R-factors
R are based
    on F, with F set to zero for negative F^2^. The threshold
expression of
    F^2^ > 2sigma(F^2^) is used only for calculating R-
factors(gt) etc. and is
    not relevant to the choice of reflections for refinement.
R-factors based
    on F^2^ are statistically about twice as large as those
based on F, and R-
    factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
-ccalc \overline{w}=1/[\\s^2^(F\mp@subsup{O}{}{\star}\mp@subsup{2}{}{\wedge})+(0.1000P)^\mp@subsup{2}{}{\wedge}+0.0000P] where
P}=(\mp@subsup{\textrm{FO}}{}{\wedge}\mp@subsup{2}{}{\wedge}+2\mp@subsup{\textrm{FC}}{}{\wedge}\mp@subsup{2}{}{\wedge})/\mp@subsup{3}{}{\prime
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refin̄e_ls_\overline{hydrogen_E}rreatment mixed
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_ref\overline{nss}4672
_refine_ls_number_parameters 271
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.1253
_refine_ls__-_factor_gt 0.0977
_refine_ls_w\overline{R}_factor_ref 0.2892
_refine_ls_wR_factor_gt 0.2747
_refine_ls_goōdness_Of_fit_ref 1.819
_refine- ls restrainēd \overline{S}
_refine_ls_shift/su_māx
_refine_ls_shift/su_mean 0.026
loop_
_atom_site_label
_atom_site_type_symbol
```

```
    _atom_site_fract_x
    _atom_site_fract_y
    _atom_site_fract_z
    _atom_site_U_iso_or_equiv
    _atom_site_a\overline{dp_typpe-}
    _atom_site_occupancy
    -atom_site_symmetry_multiplicity
    _atom_site_calc_flag
    _atom_site_refiñement_flags
    _atom_site_disorder_assembly
    _atom_site_disorder_group
Sī1 Si \({ }^{-} 0.48 \overline{8} 82(9) 0 . \overline{5} 5136(10) 0.22916(5) 0.0266(3)\) Uani 11 d
Si2 Si 0.83179(9) 0.61170(10) 0.53180(5) 0.0274(3) Uani 11 d \(0600.8433(3) 0.4768(3) 0.50714(18) 0.0461(8)\) Uani \(11 d\). \(0100.3960(3) 0.6020(3) 0.28613(16) 0.0447(9)\) Uani 11 d. \(0300.5467(3) 0.4240(3) 0.25279(17) 0.0478(9)\) Uani \(11 d\). N1 N 0.6531(3) 0.5809(3) 0.37369(18) 0.0276(7) Uani 11 d. \(0500.6835(3) 0.6390(3) 0.54200(16) 0.0458(9)\) Uani 11 d. \(0200.5979(3) 0.6443(3) 0.21421(17) 0.0473(9)\) Uani \(11 d\). C10 C 0.3772(4) 0.5344(4) 0.1321(2) 0.0294(8) Uani 11 d. C16 C 0.9398(3) 0.6346(4) 0.6289(2) 0.0297(9) Uani 1 1 d. .
``` \(0400.8786(3) 0.7007(3) 0.47127(16) 0.0449(8)\) Uani \(11 d\). C6 C 0.8721(3) 0.6778(4) 0.3897(2) 0.0339(10) Uani 1 1 d. . H6A H 0.91660 .60340 .38380 .041 Uiso 1 1 calc R . . H6B H 0.91790 .74040 .36720 .041 Uiso 1 1 calc R . . C19 C 1.0988(4) 0.6674(4) 0.7770(2) 0.0391(10) Uani 1 1 d. H19A H 1.15260 .67860 .82740 .047 Uiso 1 1 calc R . . C7 C 0.5905(4) 0.3807(4) 0.3307(2) 0.0306(8) Uani 1 1 d. .

H7A H 0.62470 .30070 .32840 .037 Uiso 11 calc R . .
H7B H 0.51600 .37730 .35750 .037 Uiso 11 calc R . . C8 C 0.6972(4) 0.4586(4) 0.3774(2) 0.0396(10) Uani 1 1 d. . H8A H 0.77420 .45410 .35180 .047 Uiso 1 1 calc R . . C9 C 0.7391(4) 0.4116(4) 0.4602(2) 0.0308(9) Uani 1 1 d. .

H9A H 0.66330 .41250 .48590 .037 Uiso 11 calc R . . H9B H 0.76720 .32970 .45750 .037 Uiso 11 calc R. .

C4 C 0.7277(4) 0.6544(4) 0.2573(2) 0.0350(10) Uani 1 1 d. .
H4A H 0.77040 .72160 .23740 .042 Uiso 1 1 calc R. H4B H 0.77700 .58330 .24970 .042 Uiso 11 calc R. C21 C 0.9342(4) 0.5594(4) 0.6908(2) 0.0345(10) Uani 11 d.

H21A H 0.87470 .49610 .68260 .041 Uiso 1 1 calc \(R\) C15 C 0.2534(4) 0.4864(4) 0.1262(2) 0.0331(9) Uani 1 1 d. . H15A H 0.22670 .46150 .17240 .040 Uiso 1 1 calc R. . C5 C 0.7306(4) 0.6712(4) 0.3449(2) 0.0362(10) Uani 1 1 d. .

H5A H 0.68880 .74790 .35120 .043 Uiso 11 calc R . .
C3 C 0.5894(3) 0.6950(4) 0.4811(2) 0.0335(9) Uani 1 1 d. .
H3A H 0.62810 .76660 .46400 .040 Uiso 1 1 calc R. .
H3B H 0.51220 .71770 .50210 .040 Uiso 11 calc R .
C20 C 1.0138(4) 0.5750(5) 0.7640(2) 0.0398(11) Uani 11 d.
H20A H 1.00950 .52190 .80510 .048 Uiso 1 1 calc R .
C18 C 1.1059(4) 0.7445(4) 0.7165(2) 0.0393(10) Uani 11 d.
H18A H 1.16460 .80830 .72520 .047 Uiso 1 1 calc R. C2 C 0.5475(4) 0.6154(4) 0.4117(2) 0.0358(10) Uani 1 1 d. .

H2A H 0.51260 .54280 .43150 .043 Uiso 11 calc R . .
C13 C 0.2068(5) 0.5121(5) -0.0134(3) 0.0474(12) Uani 1 1 d
H13A H \(0.14990 .5036-0.06310 .057\) Uiso 1 1 calc R . . C11 C 0.4118(4) 0.5744(5) 0.0634(2) 0.0410(11) Uani 1 1 d.

H1iA H 0.49410 .61050 .06590 .049 Uiso 11 calc R .
C1 C 0.4354(3) 0.6714(4) 0.3526(2) 0.0333(9) Uani 11 d.
H1A H 0.36040 .68410 .37800 .040 Uiso 1 1 calc R. .
H1B H 0.46380 .74820 .33660 .040 Uiso 11 calc R . .
C17 C 1.0268(4) 0.7274(4) 0.6435(2) 0.0347(9) Uani 1 1 d. .
H17A H 1.03190 .78030 .60240 .042 Uiso 1 1 calc R. .
C14 C 0.1682(4) 0.4740(4) 0.0543(2) 0.0407(11) Uani 1 1 d.
H14A H 0.08470 .44000 .05130 .049 Uiso 1 1 calc R.
C12 C 0.3273(5) 0.5618(5) \(-0.0080(2) 0.0509(13)\) Uani 11 d.
H12A H \(0.35300 .5880-0.05420 .061\) Uiso 11 calc R. .
loop
_atōm_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
```

    atom_site_aniso_U_13
    atom site aniso U 12
    S\overline{i}10.\overline{0}248(\overline{5})\quad0.0\overline{3}0\overline{7}(7)}0.0233(5) 0.0025(4) 0.0028(4
0.0006(4)
Si2 0.0234(5) 0.0339(8) 0.0240(5) - 0.0006(4) 0.0026(4) -
0.0018(4)
O6 0.0384(17) 0.050(2) 0.0441(17) 0.0014(15) - 0.0054(13) -
0.0031(14)
O1 0.0301(14) 0.065(3) 0.0354(15) - 0.0146(14) - 0.0009(12)
0.0077(14)
O3 0.066(2) 0.037(2) 0.0325(15) - 0.0032(13) - 0.0101(14)
0.0041(16)
N1 0.0258(15) 0.0233(19) 0.0377(17) 0.0059(13) 0.0160(13)
0.0013(13)
O5 0.0367(15) 0.066(3) 0.0335(15) - 0.0006(14) 0.0033(12)
0.0062(15)
O2 0.0335(15) 0.068(3) 0.0372(15) 0.0146(15) 0.0007(12) -
0.0106(15)
C10 0.0298(18) 0.030(2) 0.0275(17) 0.0039(15) 0.0030(14)
0.0027(15)
C16 0.0232(16) 0.036(2) 0.0298(17) - 0.0046(16) 0.0050(13)
0.0014(15)
O4 0.0426(17) 0.055(2) 0.0350(15) - 0.0009(14) 0.0043(12) -
0.0131(15)
C6 0.0244(17) 0.050(3) 0.0278(17) 0.0022(17) 0.0069(13) -
0.0067(16)
C19 0.0270(18) 0.055(3) 0.0327(19) - 0.0077(19) 0.0005(15)
0.0002(18)
C7 0.0371(19) 0.024(2) 0.0263(17) 0.0012(14) - 0.0032(14) -
0.0006(16)
C8 0.036(2) 0.042(3) 0.039(2) 0.0012(18) 0.0041(16) -
0.0029(18)
C9 0.0324(19) 0.027(2) 0.0305(18) 0.0017(15) 0.0003(14) -
0.0043(16)
C4 0.0258(17) 0.050(3) 0.0295(18) 0.0048(17) 0.0063(14) -
0.0090(17)
C21 0.0302(19) 0.044(3) 0.0289(18) - 0.0011(17) 0.0040(15) -
0.0039(17)
C15 0.0294(18) 0.036(3) 0.0331(19) 0.0020(16) 0.0035(14)
0.0040(16)
C5 0.0318(19) 0.040(3) 0.037(2) 0.0043(18) 0.0090(15) -
0.0036(17)
C3 0.0245(17) 0.043(3) 0.0318(18) - 0.0046(17) 0.0033(14)
0.0068(16)
C20 0.032(2) 0.061(3) 0.0260(18) 0.0002(18) 0.0047(15) -
0.0007(19)
C18 0.0288(19) 0.046(3) 0.041(2) - 0.0134(19) 0.0036(16) -
0.0067(18)
C2 0.0309(19) 0.043(3) 0.0331(19) - 0.0005(17) 0.0066(15)
0.0033(17)
C13 0.045(2) 0.057(3) 0.033(2) 0.000(2) - 0.0104(18) 0.003(2)

```
```

C11 0.036(2) 0.053(3) 0.0318(19) 0.0104(19) 0.0017(16) -
0.005(2)
C1 0.0242(17) 0.047(3) 0.0284(17) -0.0010(17) 0.0038(13)
0.0065(16)
C17 0.0305(18) 0.037(3) 0.0357(19) -0.0026(17) 0.0047(15)
0.0021(17)
C14 0.032(2) 0.047(3) 0.038(2) 0.0021(19) -0.0035(16)
0.0040(18)
C12 0.058(3) 0.068(4) 0.0254(19) 0.014(2) 0.0046(18) -
0.001(3)
_geom_special_details
;
All esds (except the esd in the dihedral angle between two
l.s. planes)
are estimated using the full covariance matrix. The cell
esds are taken
into account individually in the estimation of esds in
distances, angles
and torsion angles; correlations between esds in cell
parameters are only
used when they are defined by crystal symmetry. An
approximate (isotropic)
treatment of cell esds is used for estimating esds
involving l.s. planes.
;
loop
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label__2
geom bond distance
_geom_bond_site_symmetry_2
geom_bond_publ_flag
Si1 03-1.606(4) . ?
Si1 O2 1.624(3) . ?
Si1 O1 1.634(3) . ?
Si1 C10 1.859(4) . ?
Si2 O4 1.616(3) . ?
Si2 O6 1.619(4) . ?
Si2 O5 1.631(3) . ?
Si2 C16 1.851(4) . ?
O6 C9 1.435(5) . ?
O1 C1 1.397(5) . ?
O3 C7 1.431(4) . ?
N1 C2 1.458(5) . ?
N1 C8 1.477(6) . ?
N1 C5 1.467(5) . ?
O5 C3 1.444(5) . ?
O2 C4 1.417(4) . ?
C10 C11 1.400(5) . ?
C10 C15 1.394(5) . ?

```
```

C16 C17 1.392(6) . ?
C16 C21 1.393(6) . ?
O4 C6 1.435(4) . ?
C6 C5 1.530(5) . ?
C19 C20 1.374(7) . ?
C19 C18 1.392(6) . ?
C7 C8 1.529(6) . ?
C8 C9 1.519(5) . ?
C4 C5 1.535(5) . ?
C21 C20 1.385(5) . ?
C15 C14 1.389(5) . ?
C3 C2 1.507(6) . ?
C18 C17 1.383(5) . ?
C2 C1 1.536(5) . ?
C13 C12 1.372(7) . ?
C13 C14 1.396(6) . ?
C11 C12 1.379(6) . ?
loop
geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
O3 Si1 O2 113.51(19) . . ?
O3 Sil O1 114.17(18) . . ?
O2 Si1 O1 113.0(2) . . ?
O3 Sil C10 105.80(17) . . ?
O2 Sil C10 104.78(16) . . ?
O1 Sil C10 104.39(16) . . ?
O4 Si2 O6 112.49(18) . . ?
O4 Si2 O5 111.96(18) . . ?
O6 Si2 O5 109.73(18) . . ?
O4 Si2 C16 107.25(17) . . ?
O6 Si2 C16 108.29(18) . . ?
O5 Si2 C16 106.88(16) . . ?
C9 O6 Si2 124.2(3) . . ?
C1 O1 Sil 126.6(2) . . ?
C7 O3 Si1 126.2(3) . . ?
C2 N1 C8 119.9(3) . . ?
C2 N1 C5 119.2(4) . . ?
C8 N1 C5 119.9(3) . . ?
C3 O5 Si2 121.8(3) . . ?
C4 O2 Sil 126.8(3) . . ?
C11 C10 C15 117.9(3) . . ?
C11 C10 Sil 121.3(3) . . ?
C15 C10 Sil 120.8(3) . . ?
C17 C16 C21 117.6(3) . . ?
C17 C16 Si2 122.1(3) . . ?
C21 C16 Si2 120.4(3) . . ?

```
```

C6 O4 Si2 125.0(3) . . ?
O4 C6 C5 111.0(3) . . ?
C20 C19 C18 120.0(4) . . ?
O3 C7 C8 111.0(3) . . ?
N1 C8 C9 113.9(4) . . ?
N1 C8 C7 110.3(3) . . ?
C9 C8 C7 109.6(4) . . ?
O6 C9 C8 113.3(3) . . ?
O2 C4 C5 111.0(3) . . ?
C20 C21 C16 121.4(4) . . ?
C14 C15 C10 121.6(4) . . ?
N1 C5 C6 114.0(3) . . ?
N1 C5 C4 110.6(3) . . ?
C6 C5 C4 109.4(3) . . ?
O5 C3 C2 111.3(4) . . ?
C19 C20 C21 120.0(4) . . ?
C17 C18 C19 119.5(4) . . ?
N1 C2 C3 114.0(3) . . ?
N1 C2 C1 110.9(3) . . ?
C3 C2 C1 110.0(4) . . ?
C12 C13 C14 119.7(4) . . ?
C12 C11 C10 120.4(4) . . ?
O1 C1 C2 111.9(4) . . ?
C18 C17 C16 121.6(4) . . ?
C15 C14 C13 119.2(4) . . ?
C13 C12 C11 121.2(4) . . ?
_diffrn_measured_fraction_theta_max 0.911
_diffrn_reflns_theta_full_ - 28.36
__diffrn_measurēd_fra\overline{ction_theta_full 0.911}
_refine_diff_density_max - 1.3\overline{97}
__refine__diff__density_min -0.448
_refine__diff__density_rms 0.103

```

APPENDIX 5
CRYSTAL STRUCTURE DATA FOR COMPOUND 76
```

data_p21n (2Me 2Si)
_audit_creation_method SHELXL-97
_chemical_name_systematic
;
?
;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_melting_point ?
_chemical_formula_sum
-'C11 H21-N O6 Si\overline{2}
_chemical_formula_weight
319.47
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
TC' 'C' - 0.00\overline{3}3 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'N' 'N' 0.0061 0.0033
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'Si' 'Si' 0.0817 0.0704
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting ?
__symmetry_spac\overline{e_group_name_H-M ?}
loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x+1/2, y+1/2, -z+1/2'
'-x, -y, -z'
'x-1/2, -y-1/2, z-1/2'
cell_length_a
_cell_length_a
_cell_length_c 26.179(2)
_cell-angle_\overline{lpha}
26.179(2)
_cell_angle_beta
_cell_angle_gamma
_cell_volume
_cell_formula_units_Z
_cell_measure\overline{ment_temperature}
193(2)
_cell_measurement_reflns_used
?
_cell_measurement_theta_min
98.2610(10)
90.0000(10)
2944.5(3)
?
;
8

```
```

_cell_measurement_theta_max
exptl crystal description ?
_exptl_crystal_colour ?
-exptl-crystal_size max
_exptl_crystal_size_mid 0.138
0.183
exptl-crystal-size-min 0.113
exptl_crystal_density_meas
exptl_crystal_density_diffrn
_exptl_crystal_density_method
_exptl_crystal_F_000
_exptl_absorpt_cöefficient_mu
_exptl_absorpt_correction_type
_exptl_absorpt_correction_T_min
_exptl_absorpt_correction_-T_max
__exptl_absorpt_process_de\overline{tai}ls
_exptl_special_details
;
?
;
_diffrn_ambient_temperature
_diffrn_radiatiōn_wavelength
_diffrn_radiation_type
_diffrn_radiation_source
_diffrn_radiation_monochromator
_diffrn_measuremeñt_device_type
__diffrn_measurement_method- ?
_diffrn_detector_arēa_resol_mean ?
_diffrn_standards\overline{s_num\overline{b}er - ?}
_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% - ?
_diffrn_reflns_number 29407
_diffrn_reflns_av_R_equivalents 0.0527
__diffrn_reflns_av_sigmaI/netI 0.0523
_diffrn_reflns_limit_h_min
__diffrn_reflns_limit__h_max
_diffrn_reflns_limit__k_min
__diffrn_reflns_limit__k_max
-diffrn-reflns }\mp@subsup{}{}{-}\mathrm{ limit }\mp@subsup{}{}{-1}\mathrm{ -min -3
-diffrn-reflns-limit}\mp@subsup{}{}{-}\mp@subsup{}{}{-}-\operatorname{max}3
_diffrn_reflns_theta_mín 1.57
_diffrn_reflns_theta_max 28.30
_reflns_number_total- }728
_reflns_number_gt 4542
_reflns_threshold_expression >2sigma(I)
_computing_data_collection ?
_computing_cell_refinement ?
_computing_data_reduction ?

```
```

    computing_structure_solution 'SHELXS-97 (Sheldrick,
    1990)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick,
1997)
_computing_molecular_graphics ?
_computing_publication_material ?
_refine_special_details
;
Refinement of F^2^ against ALL reflections. The weighted
R-factor wR and
goodness of fit S are based on F^ (2^, conventional R-factors
R are based
on F, with F set to zero for negative F^2^. The threshold
expression of
F^2^ > 2sigma( (F^2^) is used only for calculating R-
factors(gt) etc. and is
not relevant to the choice of reflections for refinement.
R-factors based
on F^2^ are statistically about twice as large as those
based on F, and R-
factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
-calc \overline{w}=1/[<br>\mp@subsup{s}{}{\wedge}\mp@subsup{2}{}{\wedge}(F\mp@subsup{O}{}{\boldsymbol{N}}\mp@subsup{2}{}{\wedge})+(0.1833P)^\mp@subsup{2}{}{\wedge}+4.1469P] where
P}=(\mp@subsup{\textrm{FO}}{}{\wedge}\mp@subsup{2}{}{\wedge}+2\mp@subsup{\textrm{FC}}{}{\wedge}\mp@subsup{2}{}{\wedge})/\mp@subsup{3}{}{\prime
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_\overline{hydrogen_Ereatment mixed}
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_reflns }728
_refine_ls_number_parameters 361
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.1389
_refine_ls_R_factor_gt 0.1010
_refine_ls_-w\overline{R}_factor_ref 0.3176
_refine_ls_wR_factor_gt 0.2919
_refine-ls_gooodness_of fit_ref 1.053
_refine-ls_restrainē_\overline{S}_al\overline{l}}1.05
_refine_ls_shift/su_mäx 0-019
_refine_ls_shift/su_mean 0.002
loop_
atom_site_label
_atom_site_type_symbol
_atom_site_fract_x

```
```

    atom_site_fract_Y
    atom_site_fract_z
    _atom_site_U_iso_or_equiv
    _atom_site_a\overline{dp_type}
    _atom_site_occupancy
    _atom_site_symmetry_multiplicity
    _atom_site_calc_flag
    _atom_site_refinement_flags
    _atom_site_disorder_assembly
    atom_site_disorder_group
    ```
Sī1 Si \(0.17 \overline{2} 14(12)\) 0.02308(12) \(0.21167(5) 0.0360(3)\) Uani 11
d . . .
Si2 Si 0.72677(12) -0.00490(12) 0.30450(5) 0.0358(3) Uani 1
1 d. .
Si3 Si 0.43038(13) 0.77084(14) -0.04806(5) 0.0403(4) Uani 1
1 d . . .
Si4 Si 0.98766(12) 0.76011(12) 0.04252(5) 0.0355(3) Uani 11
d . . .
\(\mathrm{N} 1 \mathrm{~N} 0.4448(3) 0.0087(3) 0.25741(13) 0.0279(8)\) Uani 11 d.
\(\dot{\mathrm{N}} 2 \mathrm{~N} 0.7135(3) 0.7642(3)-0.00160(13) 0.0299(8) \mathrm{Uani} 11 \mathrm{~d}\).
O1 O 0.2481(4) 0.1264(4) 0.18562(17) 0.0623(12) Uani 11 d.
O2 O 0.1770(3) 0.0413(5) 0.27364(15) 0.0622(12) Uani 11 d.
O3 O \(0.2226(4)-0.1134(4) 0.20063(17) 0.0573(11)\) Uani \(11 d\)
O4 O 0.7127(4) 0.0979(4) 0.26035(19) 0.0664(12) Uani 11 d.
\(0500.6405(4) 0.0274(4) 0.35035(16) 0.0633(12)\) Uani 11 d.
\(0600.6833(4)-0.1359(4) 0.28068(16) 0.0594(11)\) Uani 11 d
\(0700.5157(3) 0.8396(4)-0.08778(13) 0.0480(9)\) Uani 11 d.
O8 O 0.4440(3) 0.8398(4) 0.00739(13) 0.0478(9) Uani \(11 d\).
\(0900.4741(3) 0.6305(3)-0.04018(15) 0.0490(9)\) Uani 11 d.
\(\dot{\mathrm{O}} 1000.9801(3) 0.8301(4)-0.01240(14) 0.0481(9)\) Uani 11 d
\(01100.9081(3) 0.8304(3) 0.08328(13) 0.0462(9)\) Uani 11 d.
\(01200.9405(3) 0.6212(3) 0.03409(14) 0.0444(8)\) Uani 11 d.
C1 C 0.3662(5) 0.1879(4) 0.2072(2) 0.0451(12) Uani 11 d.
H1A H 0.34900 .23440 .23780 .054 Uiso 11 calc R. .
H1B H 0.39230 .24500 .18150 .054 Uiso 1 1 calc R . .
C2 C 0.4795(5) 0.0995(5) 0.2231(2) 0.0458(12) Uani 1 1 d. .

H2A H 0.50110 .05920 .19120 .055 Uiso 11 calc R .
C3 C 0.6019(5) 0.1738(5) 0.2467(2) 0.0496(13) Uani 1 1 d . .
H3A H 0.62280 .23430 .22140 .060 Uiso 11 calc R . .
НЗВ Н 0.58180 .21680 .27770 .060 Uiso 11 calc R . .
C4 C 0.2709(4) -0.0005(5) 0.31373(18) 0.0403(11) Uani 11 d
H4A H 0.2674-0.0893 0.3145 0.048 Uiso 1 1 calc R. .
H4B H 0.24830 .02960 .34700 .048 Uiso 11 calc R . . C5 C 0.4122(5) 0.0390(5) 0.3082(2) 0.0476(12) Uani 1 1 d . .

H5A H 0.41590 .12840 .31160 .057 Uiso 1 1 calc R .
C6 C 0.5092(5) -0.0130(5) 0.35209(18) 0.0445(12) Uani 11 d
H6A H 0.48190 .01060 .38550 .053 Uiso 11 calc R. .
H6B H \(0.5068-0.10170 .34990 .053\) Uiso 11 calc R. .
C7 C 0.3558(4) -0.1447(4) 0.19404(19) 0.0377(10) Uani 11 d
H7A H \(0.3826-0.09780 .16510 .045\) Uiso 1 1 calc R. .
H7B H 0.3598-0.2310 0.1854 0.045 Uiso 1 1 calc R. .
C8 C 0.4516(5) -0.1186(4) 0.2436(2) 0.0419(11) Uani 11 d.
H8A H 0.4254-0.1684 0.2723 0.050 Uiso 1 1 calc R. .
C9 C 0.5917(5) -0.1551(5) 0.2346(2) 0.0433(12) Uani 1 1 d.
H9A H 0.5924-0.2408 0.2247 0.052 Uiso 1 1 calc R. .
H9B H \(0.6186-0.10690 .20610 .052\) Uiso 1 1 calc R .
C10 C \(-0.0026(5) 0.0323(6) 0.1839(2) 0.0521(14)\) Uani 11 d.
H1OA H -0.0364 0.1127 0.1899 0.078 Uiso 1 1 calc R. .
H10B H \(-0.0533-0.02760 .20030 .078\) Uiso 11 calc R. .
H10C H -0.0118 0.0168 0.1467 0.078 Uiso 1 1 calc R . .
C11 C 0.9005(5) -0.0113(6) 0.3335(2) 0.0523(14) Uani 1 1 d.
H11A H \(0.9556-0.02970 .3068\) 0.079 Uiso 1 1 calc R . .
H11B H \(0.9120-0.07390 .36000 .079\) Uiso 1 1 calc R . .
H11C H 0.9270 0.0664 0.3492 0.079 Uiso 1 1 calc R.
C12 C 0.6324(5) 0.9069(5) -0.07160(19) 0.0426(11) Uani 1 d
H12A H \(0.61360 .9684-0.04630 .051\) Uiso 1 1 calc R . .
H12B H \(0.65950 .9489-0.10170 .051\) Uiso 11 calc R . .
C13 C 0.7460(4) 0.8267(4) -0.04697(17) 0.0358(10) Uani 11 d
H13A H \(0.76180 .7646-0.07300 .043\) Uiso 1 1 calc R . .
C14 C 0.8715(5) 0.9014(5) -0.0352(2) 0.0449(12) Uani 11 d.
H14A H \(0.89290 .9375-0.06760 .054\) Uiso 1 calc R . .
H14B H \(0.85660 .9675-0.01140 .054\) Uiso 1 1 calc R . .
C15 C 0.5370(5) 0.8112(5) 0.05159(18) 0.0445(12) Uani 11 d
H15A H 0.52610 .72600 .06090 .053 Uiso 1 1 calc R . .
H15B H 0.51900 .86130 .08100 .053 Uiso 1 1 calc R . .

C16 C 0.6790(5) 0.8321(4) 0.04195(17) 0.0358(10) Uani 11 d - . .

H16A H 0.68650 .91900 .03330 .043 Uiso 1 1 calc R . .
C17 C 0.7761 (5) 0.8093(5) 0.09097(18) 0.0424(11) Uani 11 d

H17A H 0.7539 0.8624 0.1188 0.051 Uiso 1 1 calc R . .
H17B H 0.76720 .72520 .10210 .051 Uiso 1 1 calc R . .
C18 C 0.6032(5) 0.5846(4) -0.0434(2) 0.0419(11) Uani 11 d.
H18A H 0.6282 \(0.6058-0.07750 .050\) Uiso 1 1 calc R . . H18B H 0.6014 0.4960-0.0409 0.050 Uiso 1 1 calc R . .
C19 C 0.7069(4) 0.6338(4) -0.00112 (19) 0.0371 (10) Uani 1 1 d
H19A H 0.68090 .60910 .03280 .045 Uiso 1 1 calc R .
C20 C 0.8414(5) 0.5775(5) -0.0050(2) 0.0432(12) Uani \(11 d\).
H20A H \(0.83490 .4892-0.00180 .052\) Uiso 1 1 calc R . .
H2OB H \(0.86690 .5957-0.03920 .052\) Uiso 1 1 calc R . .
C21 C 0.2559(5) 0.7748(7) -0.0765(2) 0.0630(17) Uani 11 d.
H21A H \(0.20250 .7340-0.05350 .095\) Uiso 1 I calc R . .
H21B H \(0.24490 .7342-0.11000 .095\) Uiso 1 1 calc R . .
H21C H 0.2269 0.8585-0.0812 0.095 Uiso 1 1 calc R. .
C22 C 1.1627(5) 0.7566(5) 0.0708(2) 0.0476(12) Uani 11 d.
H22A H 1.1721 0.7150 0.1041 0.071 Uiso 1 1 calc R . .
H22B H 1.1960 0.83890 .07590 .071 Uiso 1 1 calc R . .
H22C H 1.2138 0.71410 .04740 .071 Uiso 1 1 calc R . .
loop
_atō_site_aniso_label
-atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12
S호 \(0 . \overline{0} 271(\overline{6}) \quad 0.0 \overline{4} 1 \overline{4}(7) \quad 0.0392(7)-0.0087(5) \quad 0.0035(5)\)
0.0020 (5)

Si2 \(0.0261(6) \quad 0.0444(8) \quad 0.0368(7)-0.0007(5) \quad 0.0044(5)\)
0.0006 (5)

Si3 0.0289(6) 0.0531(8) 0.0378(7)-0.0038(6) 0.0018(5)
\(0.0083(6)\)
Si4 0.0283(6) 0.0432(7) 0.0339(7) 0.0006(5) 0.0008(5)
0.0024 (5)

N1 0.0331(19) 0.0226(17) 0.0297(18) -0.0029(13) 0.0105(15) -
0.0023 (13)

N2 0.0331(19) 0.0299(18) 0.0274 (18) 0.0008(14) 0.0065 (14)
\(0.0065(14)\)
O1 0.036(2) 0.070(3) 0.077(3) 0.030(2) -0.0032(19)
0.0022 (18)
```

O2 0.0292(18) 0.114(4) 0.045(2) 0.000(2) 0.0096(16) -
0.001(2)
O3 0.044(2) 0.053(2) 0.071(3) - 0.023(2) - 0.0029(18)
0.0006(17)
O4 0.037(2) 0.069(3) 0.092(3) 0.031(2) 0.007(2) - 0.0032(19)
O5 0.036(2) 0.101(3) 0.052(2) - 0.013(2) 0.0043(17) - 0.008(2)
06 0.049(2) 0.063(3) 0.063(3) - 0.011(2) - 0.0062(18)
0.0194(19)
O7 0.0379(18) 0.065(2) 0.0383(19) 0.0071(17) - 0.0028(14)
0.0101(17)
O8 0.0336(17) 0.069(2) 0.0412(19) - 0.0058(17) 0.0054(14)
0.0152(17)
O9 0.0331(18) 0.052(2) 0.060(2) - 0.0044(17) 0.0012(16) -
0.0004(15)
O10 0.0333(17) 0.066(2) 0.044(2) 0.0132(18) 0.0036(14) -
0.0018(17)
O11 0.0399(18) 0.056(2) 0.0410(19) - 0.0122(16) 0.0010(15)
0.0046(16)
O12 0.0338(17) 0.0439(19) 0.052(2) - 0.0022(15) - 0.0049(15)
0.0119(14)
C1 0.038(3) 0.032(2) 0.065(3) 0.010(2) 0.006(2) 0.009(2)
C2 0.038(3) 0.042(3) 0.057(3) 0.011(2) 0.008(2) - 0.001(2)
C3 0.031(2) 0.037(3) 0.080(4) 0.013(3) 0.003(2) - 0.003(2)
C4 0.029(2) 0.061(3) 0.032(2) - 0.008(2) 0.0075(18) - 0.004(2)
C5 0.041(3) 0.059(3) 0.045(3) - 0.009(2) 0.013(2) - 0.005(2)
C6 0.031(2) 0.074(4) 0.028(2) - 0.006(2) 0.0051(18) - 0.008(2)
C7 0.035(2) 0.037(2) 0.040(2) - 0.0117(19) - 0.0011(19)
0.0048(18)
C8 0.044(3) 0.039(3) 0.042(3) - 0.002(2) 0.004(2) 0.002(2)
C9 0.040(3) 0.045(3) 0.043(3) - 0.012(2) - 0.002(2) 0.015(2)
C10 0.034(3) 0.065(4) 0.056(3) - 0.013(3) 0.000(2) 0.003(2)
C11 0.033(3) 0.074(4) 0.050(3) - 0.001(3) 0.003(2) 0.000(2)
C12 0.042(3) 0.049(3) 0.036(2) 0.011(2) 0.000(2) 0.008(2)
C13 0.035(2) 0.044(3) 0.028(2) 0.0033(19) 0.0052(18)
0.0037(19)
C14 0.039(3) 0.052(3) 0.042(3) 0.014(2) 0.001(2) - 0.003(2)
C15 0.040(3) 0.064(3) 0.030(2) - 0.002(2) 0.010(2) 0.015(2)
C16 0.040(2) 0.037(2) 0.031(2) -0.0018(18) 0.0061(18)
0.0083(19)
C17 0.037(2) 0.061(3) 0.028(2) - 0.002(2) 0.0023(19) 0.007(2)
C18 0.034(2) 0.035(2) 0.054(3) - 0.007(2) - 0.001(2)
0.0030(19)
C19 0.034(2) 0.031(2) 0.044(3) - 0.0030(19) 0.0016(19)
0.0029(18)
C20 0.032(2) 0.042(3) 0.053(3) - 0.014(2) - 0.003(2) 0.010(2)
C21 0.030(3) 0.095(5) 0.062(4) -0.011(3) - 0.003(2) 0.013(3)
C22 0.031(2) 0.060(3) 0.048(3) 0.002(2) - 0.006(2) - 0.002(2)
_geom_special_details
;
All esds (except the esd in the dihedral angle between two
l.s. planes)

```
```

    are estimated using the full covariance matrix. The cell
    esds are taken
into account individually in the estimation of esds in
distances, angles
and torsion angles; correlations between esds in cell
parameters are only
used when they are defined by crystal symmetry. An
approximate (isotropic)
treatment of cell esds is used for estimating esds
involving l.s. planes.
;
loop
_geom_bond_atom_site_label_1
geom_bond_atom_site_label_2
geom_bond_distance
geom_bond_site_symmetry_2
geom_bond_publ_flag
Si1 O1-1.594(4) . ?
Sil O2 1.629(4) . ?
Sil O3 1.644(4) . ?
Si1 C10 1.829(5) . ?
Si2 O4 1.619(4) . ?
Si2 O6 1.624(4) . ?
Si2 O5 1.627(4) . ?
Si2 C11 1.826(5) . ?
Si3 O9 1.630(4) . ?
Si3 O8 1.631(4) . ?
Si3 O7 1.638(4) . ?
Si3 C21 1.829(5) . ?
Si4 O12 1.626(4) . ?
Si4 O10 1.628(4) . ?
Si4 O11 1.631(4) . ?
Si4 C22 1.833(5) . ?
N1 C2 1.431(6) . ?
N1 C5 1.457(6) . ?
N1 C8 1.468(6) . ?
N2 C16 1.453(5) . ?
N2 C19 1.455(6) . ?
N2 C13 1.456(5) . ?
O1 C1 1.430(6) . ?
O2 C4 1.396(6) . ?
O3 C7 1.437(6) . ?
O4 C3 1.416(6) . ?
O5 C6 1.421(6) . ?
O6 C9 1.432(6) . ?
O7 C12 1.420(6) . ?
O8 C15 1.423(6) . ?
O9 C18 1.427(6) . ?
O10 C14 1.423(6) . ?
O11 C17 1.410(6) . ?
O12 C20 1.417(6) . ?

```
```

C1 C2 1.529(7) . ?
C2 C3 1.551(7) . ?
C4 C5 1.533(7) . ?
C5 C6 1.518(7) . ?
C7 C8 1.535(7) . ?
C8 C9 1.537(7) . ?
C12 C13 1.530(6) . ?
C13 C14 1.521(7) . ?
C15 C16 1.524(7) . ?
C16 C17 1.526(6) . ?
C18 C19 1.520(6) . ?
C19 C20 1.526(6) . ?
loop
geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
geom_angle_publ_flag
O1 Si1 O2 112.9(2) . . ?
O1 Sil O3 114.1(2) . . ?
O2 Sil O3 109.0(2) . . ?
O1 Sil C10 107.2(3) . . ?
O2 Si1 C10 106.1(2) . . ?
O3 Si1 C10 107.1(2) . . ?
O4 Si2 O6 111.7(2) . . ?
O4 Si2 O5 111.6(3) . . ?
O6 Si2 O5 109.6(2) . . ?
O4 Si2 C11 107.8(2) . . ?
O6 Si2 C11 108.6(2) . . ?
O5 Si2 C11 107.3(2) . . ?
O9 Si3 O8 110.6(2) . . ?
O9 Si3 O7 111.6(2) . . ?
O8 Si3 O7 111.1(2) . . ?
O9 Si3 C21 107.9(3) . . ?
O8 Si3 C21 107.7(2) . . ?
O7 Si3 C21 107.8(3) . . ?
O12 Si4 O10 111.1(2) . . ?
O12 Si4 Ol1 112.4(2) . . ?
O10 Si4 Ol1 112.5(2) . . ?
O12 Si4 C22 106.7(2) . . ?
O10 Si4 C22 106.6(2) . . ?
O11 Si4 C22 107.1(2) . . ?
C2 N1 C5 121.3(4) . . ?
C2 N1 C8 120.3(4) . . ?
C5 N1 C8 118.3(4) . . ?
C16 N2 C19 119.7(4) . . ?
C16 N2 C13 120.1(4) . . ?
C19 N2 C13 120.1(4) . . ?
C1 O1 Si1 127.6(4) . . ?

```
```

C4 O2 Sil 128.8(3) . . ?
C7 O3 Si1 124.8(3) . . ?
C3 O4 Si2 126.0(4) . . ?
C6 O5 Si2 124.5(3) . . ?
C9 O6 Si2 124.5(3) . . ?
C12 O7 Si3 123.8(3) . . ?
C15 O8 Si3 125.4(3) . . ?
C18 O9 Si3 125.0(3) . . ?
C14 O10 Si4 125.0(3) . . ?
C17 O11 Si4 126.1(3) . . ?
C20 O12 Si4 126.3(3) . . ?
O1 C1 C2 111.1(4) . . ?
N1 C2 C1 112.4(4) . . ?
N1 C2 C3 112.6(4) . . ?
C1 C2 C3 107.4(4) . . ?
O4 C3 C2 110.5(4) . . ?
O2 C4 C5 112.8(4) . . ?
N1 C5 C6 113.1(4) . . ?
N1 C5 C4 111.1(4) . . ?
C6 C5 C4 109.8(4) . . ?
O5 C6 C5 111.7(4) . . ?
O3 C7 C8 110.6(4) . . ?
N1 C8 C7 110.1(4) . . ?
N1 C8 C9 111.8(4) . . ?
C7 C8 C9 108.3(4) . . ?
O6 C9 C8 109.9(4) . . ?
O7 C12 C13 111.7(4) . . ?
N2 C13 C14 112.4(4) . . ?
N2 C13 C12 112.0(4) . . ?
C14 C13 C12 109.3(4) . . ?
O10 C14 C13 111.2(4) . . ?
O8 C15 C16 111.7(4) . . ?
N2 C16 C15 113.2(4) . . ?
N2 C16 C17 111.9(4) . . ?
C15 C16 C17 110.7(4) . . ?
O11 C17 C16 111.8(4) . . ?
O9 C18 C19 112.3(4) . . ?
N2 C19 C18 112.5(4) . . ?
N2 C19 C20 111.5(4) . . ?
C18 C19 C20 110.0(4) . . ?
O12 C20 C19 111.5(4) . . ?
_diffrn_measured_fraction_theta_max 0.994
-diffrn_reflns theta full_ - 28.30
_diffrn_measured_fra\overline{ction_theta_full 0.994}
_refine_diff_density_max - 2.0\overline{35}
_refine_diff__density_min -0.475
_refine_diff_density_rms 0.134

```

APPENDIX 6

CRYSTAL STRUCTURE DATA FOR COMPOUND 36•HCI
```

dta-1 (tert-amine HCl)
_audit_creation_method SHELXL-97
_chemical_name_systematic
;
?
;
chemical name common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical-formula_sum
-'C9 H22 \overline{Cl N O6 Sio'}
_chemical_formula_weight 275.73
loop
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
__atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C'\ -0.00\overline{3}3 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'N' 'N' 0.0061 0.0033
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'Si' 'Si' 0.0817 0.0704
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'Cl' 'Cl' 0.1484 0.1585
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting ?
_symmetry_spac\overline{e_group_name_H-M ?}
loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x, -y, -z'
Cell_length_a
6.8927(4)
8.2335(5)
_cell_length_c 11.2422(7)
_cell_angle_ālpha 92.2850(10)
_cell_angle_beta 102.8470(10)
_cell_angle_gamma 91.2820(10)
Cell-volume 621.22(6)
_cell_formula_units_Z 2
_cell_measurement_temperature 193(2)
_cell_measurement_reflns_used ?
_cell_measurement_theta_min ?
_cell_measurement_theta_max ?
_exptl_crystal_description ?
_exptl_crystal_colour ?
__exptl_crystal_size_max 0.280
_exptl_crystal__size_mid 0.278

```
```

| _exptl_crystal_size_min | 0.165 |
| :--- | :--- |
| _exptl_crystal_density_meas | $?$ |
| _exptl_crystal_density_diffrn | 1.474 |
| _exptl_crystal_density_method | 'not measured' |
| _exptl_crystal_F_000 | 296 |
| _exptl_absorpt_coefficient_mu | 0.325 |
| _exptl_absorpt_correction_Eype | $?$ |
| _exptl_absorpt_correction_T_min | $?$ |
| _exptl_absorpt_correction_T_max | $?$ |
| _exptl_absorpt_process_details | $?$ |

_exptl_special_details
;
?
;
_diffrn_ambient_temperature 193(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK\a
_diffrn_radiation_source
_diffrn_radiation_monochromator
_diffrn_measuremeñt_device_type ?
_diffrn_measurement_method- ?
_diffrn_detector_area_resol_mean ?
_diffrn_standard\overline{s_num\overline{b}er - ?}
_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% - ?
-diffrn_reflns_number - }621
_diffrn_reflns_av_R_equivalents 0.0215
_diffrn_reflns_av_sígmaI/netI 0.0293
_-diffrn_reflns_limit_h_min -9
_diffrn_reflns_limit_h_max 9
_diffrn_reflns_limit_k_min -10
_diffrn_reflns_limit_k_max 10
__diffrn_reflns_limit_l_min -14
_diffrn_reflns_limit_1-max 14
_diffrn_reflns_theta_min 1.86
_diffrn_reflns_theta_max 28.32
_reflns_number_total- 3019
_reflns_number_gt 2805
_reflns_threshold_expression >2sigma(I)
_computing_data_collection ?
_computing_cell_refinement ?
_computing_data_reduction ?
_computing_stru\overline{cture_solution 'SHELXS-97 (Sheldrick, 1990)'}
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics ?
_computing_publication_material ?
_refine_special_details
;
Refinement of F^^2^ against ALL reflections. The weighted R-factor wR
and
goodness of fit S are based on F^^2^, conventional R-factors R are based
on F, with F set to zero for negative F^2^. The threshold expression of
F^2^^}>2\mathrm{ sigma( }\mp@subsup{F}{}{\wedge}\mp@subsup{2}{}{\wedge})\mathrm{ is used only for calculating R-factors(gt) etc. and
is
not relevant to the choice of reflections for refinement. R-factors
based
on F^\mp@subsup{2}{}{\wedge}}\mathrm{ are statistically about twice as large as those based on F, and
R-

```
factors based on ALL data will be even larger. ;
_refine_ls_structure_factor_coef Fsqd
-refine_lsmatrix type full
-refine-ls_weighting_scheme calc
_refine_ls_weighting_details
\({ }^{-}\)'calc \(\overline{\mathrm{w}}=17\left[\mathrm{~S}^{\wedge} 2^{\wedge}\left(\mathrm{FO}^{\boldsymbol{\pi}} 2^{\wedge}\right)+(0.0499 \mathrm{P})^{\wedge} 2^{\wedge}+0.0984 \mathrm{P}\right]\) where \(\mathrm{P}=\left(\mathrm{FO}^{\wedge} 2^{\wedge}+2 \mathrm{FC}^{\wedge} 2^{\wedge}\right) / 3^{\prime}\)
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
-refine_ls_̄̄ydrogen_Ēreatment mixed
refine-1s_extinction_method SHELXL
-refine-ls_extinction_coef 0.079(7)
_refine_ls_extinction_expression
\(\boldsymbol{-}^{\prime} \mathrm{FC}^{\wedge} \star^{\wedge}=\mathrm{kFC}\left[1+0.001 \times \mathrm{FC}^{\wedge} 2^{\wedge} \backslash 1^{\wedge} 3^{\wedge} / \sin (2 \backslash \mathrm{q})\right]^{\wedge}-1 / 4^{\wedge}\),
_refine_ls_number_reflns 3019
_refine_ls_number_parameters 243
_refine_ls_number_restraints 0
_refine_ls_R_factōr_all 0.0313
-refine \({ }^{-1} \mathrm{~s}^{-} \mathrm{R}^{-}\)factor \({ }^{-g t} 0.0297\)
_refine_1s_wR_factor_ref 0.0842
_refine_ls_wR_factor_gt 0.0831
-refine_-ls_goodness_of fit_ref 1.068
_refine_ls_restrainē_s_al̄ 1.068
_refine_ls_shift/su_max 0.004
_refine_ls_shift/su_mean 0.001
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_tȳpe
_atom_site_occupancy
_atom_site_symmetry_multiplicity
-atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
-atom_site_disorder_group
Clı Cl - \(0.50 \overline{100(4)} 0 . \overline{6} 1215(3) 0.81232(2) 0.02694(11)\) Uani \(11 \mathrm{~d} . \quad\).
O3 O \(0.16907(12) 0.17535(9) 1.00167(7) 0.02465(18) \operatorname{Uani} 11 \mathrm{~d} . .\).
O6 O - 0.46385(11) 0.23196(11) 0.56263(8) 0.02730(18) Uani 1 1 d . .
\(050-0.36887(10)-0.10950(9) \quad 0.67299(7) 0.02287(17)\) Uani \(11 \mathrm{~d} . . \quad\).
\(040-0.44110(11) \quad 0.23670(11) 0.85110(8) 0.02757(19)\) Uani \(11 d . \quad\).
N1 N - 0.12595(12) 0.17035(9) 0.73757(7) 0.01493(17) Uani 1 1 d . . .
O2 O \(0.06068(12) 0.51167(9) 0.68675(7) 0.02457(18)\) Uani \(11 \mathrm{~d} . .\).
O1 O \(0.21374(12)-0.00145(10) 0.63643(7) 0.02525(18)\) Uani \(11 \mathrm{~d} . . \quad\).
C9 C \(-0.03559(14) \quad 0.00343(11) \quad 0.75922(8) 0.01628(19)\) Uani \(11 \mathrm{~d} . \quad\).
C8 C \(-0.09609(14) \quad 0.28573(11) \quad 0.85029(8) \quad 0.01631(19)\) Uani \(11 \mathrm{~d} . \quad\).
C7 C \(-0.10335(14) \quad 0.24943(12) \quad 0.62035(8) \quad 0.01748(19)\) Uani \(11 \mathrm{~d} . \quad\).
C6 C \(0.11417(14) 0.30835(12) 0.92611(9) 0.0189(2)\) Uani 11 d. . .
C5 C \(0.18339(14)-0.00913(12) 0.75760(9) 0.0200(2)\) Uani \(11 \mathrm{~d} . \quad\).
C4 C \(-0.16324(14)-0.12016(12) \quad 0.66876(9) 0.0201(2)\) Uani \(11 \mathrm{~d} . \quad\).
C3 C \(0.08093(15) 0.35770(12) 0.62932(9) 0.0203(2)\) Uani \(11 \mathrm{~d} . \quad\). .
C2 C \(-0.24513(15) \quad 0.23409(12) \quad 0.92470(9) \quad 0.0204(2)\) Uani \(11 \mathrm{~d} . \quad\).
C1 C \(-0.29538(15) \quad 0.33850(13) \quad 0.57124(10) 0.0230(2)\) Uani \(11 \mathrm{~d} . \quad\).
H81 H \(-0.1305(18) 0.3884(16) 0.8199(11) 0.015(3)\) Uiso \(11 \mathrm{~d} . \quad\).
H11 H \(-0.309(2) 0.4276(18) 0.6270(13) 0.025(3)\) Uiso \(11 \mathrm{~d} . \quad\).
H91 H \(-0.0506(17)-0.0190(14) 0.8366(11) 0.012(3)\) Uiso 1 1 d . . .
H71 H -0.0960(19) 0.1609(16) 0.5639(12) 0.019(3) Uiso \(11 \mathrm{~d} . \quad\).
```

H21 H -0.228(2) 0.3043(17) 0.9953(13) 0.026(3) Uiso 1 1 d . . .
H62 H 0.211(2) 0.3211(16) 0.8748(13) 0.026(3) Uiso 1 1 d. . .
H32 H 0.200(2) 0.3086(17) 0.6724(12) 0.026(3) Uiso 1 1 d . . .
H42 H -0.1180(19) -0.2238(17) 0.6897(12) 0.020(3) Uiso 1 1 d . . .
H71 H 0.092(2) 0.3724(17) 0.5434(13) 0.027(3) Uiso 1 1 d . . .
H1 H -0.257(2) 0.1446(17) 0.7215(12) 0.022(3) Uiso 1 1 d . . .
H61 H 0.113(2) 0.4085(16) 0.9768(12) 0.021(3) Uiso 1 1 d . . .
H41 H -0.155(2) -0.1014(16) 0.5864(12) 0.022(3) Uiso 1 1 d . . .
H22 H -0.2252(19) 0.1265(17) 0.9487(12) 0.019(3) Uiso 1 1 d . . .
H52 H 0.265(2) 0.0719(17) 0.8119(13) 0.027(3) Uiso 1 1 d . . .
H51 H 0.218(2) -0.1138(18) 0.7879(13) 0.026(3) Uiso 1 1 d . . .
H12 H -0.289(2) 0.3786(18) 0.4915(13) 0.029(3) Uiso 1 1 d . . .
H6' H -0.496(2) 0.1937(19) 0.4931(16) 0.035(4) Uiso 1 1 d . . .
H3' H 0.268(3) 0.203(2) 1.0470(16) 0.038(4) Uiso 1 1 d . . .
H5' H -0.393(3) -0.185(2) 0.7160(16) 0.046(5) Uiso 1 1 d . . .
H1' H 0.332(3) 0.020(2) 0.6446(15) 0.043(4) Uiso 1 1 d . . .
H2' H 0.171(3) 0.546(2) 0.7132(17) 0.051(5) Uiso 1 1 d . . .
H4' H -0.463(3) 0.331(2) 0.8397(16) 0.047(5) Uiso 1 1 d . . .
loop
atom site aniso label
-atom-site-aniso-U 11
_atom_site_aniso_U_22
-atom-site-aniso- U-33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
atom_site_aniso_U_12
C\overline{l}1 0.0}2280(15) 0.0\overline{2}405(15) 0.03115(16) 0.00152(10) 0.00037(10) -
0.00305(10)
O3 0.0229(4) 0.0254(4) 0.0218(4) 0.0040(3) -0.0034(3) -0.0037(3)
06 0.0178(4) 0.0384(4) 0.0232(4) 0.0027(3) -0.0006(3) -0.0043(3)
05 0.0166(3) 0.0217(4) 0.0294(4) 0.0014(3) 0.0038(3) -0.0038(3)
O4 0.0161(4) 0.0266(4) 0.0407(5) 0.0013(3) 0.0081(3) -0.0016(3)
N1 0.0128(4) 0.0154(4) 0.0162(4) -0.0005(3) 0.0028(3) - 0.0010(3)
O2 0.0209(4) 0.0183(3) 0.0332(4) -0.0009(3) 0.0041(3) -0.0029(3)
O1 0.0174(4) 0.0343(4) 0.0248(4) -0.0026(3) 0.0069(3) 0.0013(3)
C9 0.0161(4) 0.0143(4) 0.0180(4) 0.0002(3) 0.0032(3) -0.0002(3)
C8 0.0164(4) 0.0152(4) 0.0174(4) -0.0019(3) 0.0044(3) -0.0010(3)
C7 0.0171(4) 0.0190(4) 0.0160(4) 0.0013(3) 0.0029(3) - 0.0005(3)
C6 0.0179(4) 0.0175(4) 0.0199(4) -0.0013(3) 0.0019(4) -0.0024(3)
C5 0.0160(4) 0.0205(5) 0.0223(5) -0.0009(4) 0.0018(3) 0.0018(3)
C4 0.0171(4) 0.0177(4) 0.0247(5) -0.0038(4) 0.0041(4) -0.0019(3)
C3 0.0191(5) 0.0199(5) 0.0224(5) 0.0020(4) 0.0060(4) -0.0011(4)
C2 0.0193(5) 0.0204(5) 0.0231(5) -0.0017(4) 0.0088(4) -0.0016(4)
C1 0.0184(5) 0.0251(5) 0.0233(5) 0.0046(4) -0.0005(4) 0.0005(4)
_geom_special_details
; All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are
taken
into account individually in the estimation of esds in distances,
angles
and torsion angles; correlations between esds in cell parameters are
only
used when they are defined by crystal symmetry. An approximate
(isotropic)
treatment of cell esds is used for estimating esds involving l.s.
planes.
;
loop
_geom_bond_atom_site_label_1

```
```

    geom bond atom site label 2
    _geom_bond_distānce
        _geom_bond_site_symmetry_2
        _geom_bond_publ_flag
    O3 C6 1.4191(12) . ?
O3 H3' 0.779(18) . ?
O6 C1 1.4230(13) . ?
O6 H6' 0.812(17) . ?
O5 C4 1.4332(12) . ?
O5 H5' 0.838(19) . ?
O4 C2 1.4196(13) . ?
O4 H4' 0.802(19) . ?
N1 C8 1.5264(12) . ?
N1 C9 1.5276(11) . ?
N1 C7 1.5297(12) . ?
N1 H1 0.903(14) . ?
O2 C3 1.4234(12) . ?
O2 H2' 0.79(2) . ?
O1 C5 1.4270(12) . ?
O1 H1' 0.815(19) . ?
C9 C5 1.5193(13) . ?
C9 C4 1.5243(13) . ?
C9 H91 0.924(12) . ?
C8 C6 1.5125(13) . ?
C8 C2 1.5254(13) . ?
C8 H81 0.940(13) . ?
C7 C3 1.5177(13) . ?
C7 C1 1.5314(13) . ?
C7 H71 0.957(13) . ?
C6 H62 0.978(14) . ?
C6 H61 0.984(13) . ?
C5 H52 0.965(14) . ?
C5 H51 0.955(14) . ?
C4 H42 0.936(14) . ?
C4 H41 0.958(14) . ?
C3 H32 0.962(14) . ?
C3 H71 0.997(14) . ?
C2 H21 0.947(14) . ?
C2 H22 0.941(14) . ?
C1 H11 0.966(14) . ?
C1 H12 0.978(15) . ?
loop
geōm_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
geom-angle-site- symmetry 3
_geom-angle_publ_flag

```

```

C1 O6 H6' 108.2(11) . . ?
C4 O5 H5' 106.4(12) . . ?
C2 O4 H4' 105.6(13) . . ?
C8 N1 C9 115.46(7) . . ?
C8 N1 C7 115.15(7) . . ?
C9 N1 C7 116.08(7) . . ?
C8 N1 H1 103.2(8) . . ?
C9 N1 H1 101.6(9) . . ?
C7 N1 H1 102.2(8) . . ?
C3 O2 H2' 105.6(13) . . ?
C5 O1 H1' 105.3(12) . . ?
C5 C9 C4 111.24(8) . . ?

```
```

C5 C9 N1 116.80(8) . . ?
C4 C9 N1 108.34(7) . . ?
C5 C9 H91 108.1(7) . . ?
C4 C9 H91 108.1(7) . . ?
N1 C9 H91 103.7(7) . . ?
C6 C8 C2 113.05(8) . . ?
C6 C8 N1 116.63(8) . . ?
C2 C8 N1 107.74(7) . . ?
C6 C8 H81 105.3(8) . . ?
C2 C8 H81 108.4(8) . . ?
N1 C8 H81 105.2(7) . . ?
C3 C7 N1 116.52(8) . . ?
C3 C7 C1 112.12(8) . . ?
N1 C7 C1 107.38(8) . . ?
C3 C7 H71 107.1(8) . . ?
N1 C7 H71 105.3(8) . . ?
C1 C7 H71 108.0(8) . . ?
O3 C6 C8 111.54(8) . . ?
O3 C6 H62 108.7(8) . . ?
C8 C6 H62 111.6(8) . . ?
O3 C6 H61 110.0(8) . . ?
C8 C6 H61 105.2(8) . . ?
H62 C6 H61 109.8(11) . . ?
O1 C5 C9 111.22(8) . . ?
O1 C5 H52 111.2(9) . . ?
C9 C5 H52 111.9(8) . . ?
O1 C5 H51 109.5(8) . . ?
C9 C5 H51 104.4(8) . . ?
H52 C5 H51 108.2(12) . . ?
O5 C4 C9 110.73(8) . . ?
O5 C4 H42 110.1(8) . . ?
C9 C4 H42 107.8(8) . . ?
O5 C4 H41 106.7(8) . . ?
C9 C4 H41 111.7(8) . . ?
H42 C4 H41 109.8(11) . . ?
O2 C3 C7 111.09(8) . . ?
O2 C3 H32 109.4(8) . . ?
C7 C3 H32 112.4(8) . . ?
O2 C3 H71 109.7(8) . . ?
C7 C3 H71 105.6(8) . . ?
H32 C3 H71 108.5(11) . . ?
O4 C2 C8 109.46(8) . . ?
O4 C2 H21 112.3(8) . . ?
C8 C2 H21 108.7(8) . . ?
O4 C2 H22 106.4(8) . . ?
C8 C2 H22 110.9(8) . . ?
H21 C2 H22 109.1(12) . . ?
O6 C1 C7 110.21(8) . . ?
O6 C1 H11 106.7(8) . . ?
C7 C1 H11 110.1(8) . . ?
O6 C1 H12 111.3(8) . . ?
C7 C1 H12 108.0(8) . . ?
H11 C1 H12 110.5(12) . . ?

```
```

_diffrn_measured_fraction_theta_max

```
_diffrn_measured_fraction_theta_max
-diffrn-reflns t\overline{heta full}
-diffrn-reflns t\overline{heta full}
0.978
0.978
28.32
28.32
-diffrn-measurēd fra\overline{ction theta full 0.978}
-diffrn-measurēd fra\overline{ction theta full 0.978}
_refine_diff_density_max 0.379
_refine_diff_density_max 0.379
_refine_diff_density_min -0.219
_refine_diff_density_min -0.219
_refine_diff__density_rms 0.051
_refine_diff__density_rms 0.051
tertiary amine HCl
tertiary amine HCl
1
```

1

```
```


[^0]:    Stephen L. McFarland
    Acting Dean
    Graduate School

