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Abstract

This dissertation first revisits the mean reversion properties of relative stock prices when

the US and the UK sever as reference countries. We present strong evidence of nonlinear

mean reversion of the stock price indices of OECD countries relative to that of the UK.

However, the panel nonlinear unit root test failed to reject the null of nonstationarity even

when the UK served as the reference country. The results appear inconsistent. Via principal

component analysis and extensive Monte Carlo simulations, we demonstrate a potential

pitfall in using panel unit root tests with cross-section dependence when a stationary common

factor dominates nonstationary idiosyncratic components in small samples. We believe the

empirical findings in this chapter provide useful implications for international asset market

participants.

In the second chapter, we studied the impact of exchange rate shock on the commodity

prices using VAR (Vector Autoregressive) Model, a forecasting technique in time series anal-

ysis. We report that first, the long-run adjustment of prices is very slow. Prices typically

take 8 to 12 months to stabilize except for the oil prices which stabilize in about 4 months.

Second, the responses of commodities are heterogeneous. Some commodities, like wheat,

cocoa beans, beef, pork, chicken, bananas, oranges, and soft wood, under-correct, i.e. the

price elasticities of these commodities are less than one. Others, like corn, lamb, sugar, hide,

and crude oil adjust on par with the exchange rate movement. Finally, the prices of the

commodities like barley, peanuts, rice, sunflower oil, olive oil, rubber, aluminum, nickel, and

coal, over-correct. This might call for price stabilization policy implications especially for

the developing countries.

The third chapter deals with the ordering of recursively identified VAR models and

reports potentially useful facts that show under what circumstances these impulse response
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functions are robust to this so-called Wold ordering. This adds important technical contri-

butions to the existing multivariate time series model literature.
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Chapter 1

Introduction

In international finance it is important to know whether relative prices are mean revert-

ing. If so, one can diversify international portfolios by short-selling well performing assets

and purchasing poorly performing assets to obtain excess returns as shown by Balvers et al.

(2000). Such a strategy is called the contrarian investment strategy, and it may imply that

stocks become less risky in the long run and are attractive for long-term investors (Spierdijk

et al. (2012)). On the contrary, if deviations are permanent, one should short worse per-

forming assets while buying better performing ones, because winner-loser reversals are not

likely to happen. This is called the momentum strategy.

In the first chapter we present strong evidence of nonlinear mean reversion of the stock

price indices of OECD countries relative to that of the UK. However, the panel nonlinear unit

root test failed to reject the null of nonstationarity even when the UK served as the reference

country. The results appear inconsistent. Via principal component analysis and extensive

Monte Carlo simulations, we demonstrate a potential pitfall in using panel unit root tests

with cross-section dependence when a stationary common factor dominates nonstationary

idiosyncratic components in small samples. We believe the empirical findings in this chapter

provide useful implications for international asset market participants.

In the second chapter, We studied the impact of exchange rate shock on the commodity

prices using VAR (Vector Autoregressive) Model, a forecasting technique in time series anal-

ysis. We report that first, the long-run adjustment of prices is very slow. Prices typically

take 8 to 12 months to stabilize except for the oil prices which stabilize in about 4 months.

Second, the responses of commodities are heterogeneous. Some commodities, like wheat,

cocoa beans, beef, pork, chicken, bananas, oranges, and soft wood, under-correct, i.e. the
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price elasticities of these commodities are less than one. Others, like corn, lamb, sugar, hide,

and crude oil adjust on par with the exchange rate movement. Finally, the prices of the

commodities like barley, peanuts, rice, sunflower oil, olive oil, rubber, aluminum, nickel, and

coal, over-correct. This might call for price stabilization policy implications especially for

the developing countries.

The third chapter discusses potentially useful facts about the robustness of the IRF.

Beard et al. (2012) investigated the effect of an increase in kidney donations from deceased

donors on those from live donors. They show that the responses of live donantion and waiting

times to the deceased donation are invariant to the ordering of live donation and waiting

time, when the deceased donation is ordered first. We extend these results to a more general

framework. We report potentially useful facts that show under what circumstances these

impulse response functions are robust to this so-called Wold ordering. This adds important

technical contributions to the existing multivariate time series model literature.

2



Chapter 2

Nonlinear Mean Reversion across National Stock Markets

2.1 Introduction

It is an interesting question in international finance whether asset arbitrage in interna-

tional stock markets implies that deviations between stock indices are short-lived. If so, one

can diversify international portfolios by short-selling well performing assets and purchasing

poorly performing assets to obtain excess returns as shown by Balvers et al. (2000). Such a

strategy is called the contrarian investment strategy, and it may imply that stocks become

less risky in the long run and are attractive for long-term investors (Spierdijk et al. (2012)).

On the contrary, if deviations are permanent, one should short worse performing assets while

buying better performing ones, because winner-loser reversals are not likely to happen. This

is called the momentum strategy.

Since the end of the 1980s, a lot of research work has examined mean reversion in

international stock markets. Fama and French (1988) and Poterba and Summers (1988)

were the first to provide the evidence in favor of mean reversion. Fama and French state

that 25-40% of the variation in 3-5 year stock returns can be attributed to negative serial

correlation. Poterba and Summers (1988) found that a substantial part of the variance of the

US stock returns is due to a transitory component. However, Richardson and Smith (1991)

showed that if the small-sample bias is controlled, there is be no evidence for long-term mean

reversion. Kim et al. (1991) report very weak evidence of mean reversion in the post-war

era. Jegadeesh (1991) shows that mean reversion in stock prices is entirely concentrated in

January.

An array of researchers investigated possible cointegration properties of the stock indices

and their fundamental variables. For example, Campbell and Shiller (2001) examine the

3



mean-reverting behavior of the dividend yield and price-earnings ratio over time. If stock

prices are high in comparison to company fundamentals, it is expected that adjustment

toward an equilibrium will be made. They find that stock prices contribute most to adjusting

the ratios towards an equilibrium level.

Balvers et al. (2000) considered relative stock price indices of eighteen OECD countries

compared to a world index to get around the difficult task of specifying a fundamental

or trend path. Under the assumption that the difference between the trend path of one

country’s stock price index and that of a reference index is stationary, and that the speeds

of mean reversion in different countries are similar, they found substantial evidence of mean

reversion of relative stock price indices with a half-life of approximately 3.5 years. Similar

evidence has been reported by Chaudhuri and Wu (2004) for 17 emerging equity markets.

The assumption of a constant speed of mean reversion may be too restrictive, however,

since the speed of mean reversion may depend on the economic and political environment, and

also it may change over time. For example, Kim et al. (1991) conclude that mean reversion

is a pre-World War II phenomenon only. Poterba and Summers (1988) find that the Great

Depression had a significant influence on the speed of mean reversion. Additionally, their

panel unit root test may have a serious size distortion problem in the presence of cross-section

dependence (Phillips and Sul (2003)). Controlling for cross-section dependence, Kim (2009)

reports much weaker evidence of mean reversion of relative stock prices across international

stock markets.

In recent work, Spierdijk et al. (2012) employed a wild bootstrap method to get the

median unbiased estimation and a rolling window approach to a long horizon data (1900-

2009) for their analysis. They find that stock prices revert more rapidly to their fundamental

value in periods of high economic uncertainty, caused by major economic and political events

such as Great Depression and the start of World War II. They report a statistically significant

4



mean reversion for most of their sub-sample periods, but their panel test results don’t seem

to match their univariate test results very well.1

Wälti (2011) studied the relationship between stock market co-movements and mone-

tary integration. He reports that greater trade linkages and stronger financial integration

contribute to greater stock market co-movements.2

In the present paper, we revisit the findings by Balvers et al. (2000). We re-examine the

mean reversion of the relative stock price in international stock markets by using nonlinear

unit root tests in addition to linear tests. Nonlinear models have been widely used in the

study of financial data including exchange rates to account for state-dependent stochastic

behavior due to market frictions such as transaction costs; examples include Obstfeld and

Taylor (1997), Sarno et al. (2004), Lo and Zivot (2001), Sarno et al. (2004), Kim and Moh

(2010) and Lee and Chou (2013) and to the study of commodity prices (for example, Balagtas

and Holt (2009), Holt and Craig (2006), and Goodwin et al. (2011)) to address nonlinear

adjustments towards the equilibrium due to costly transactions, government interventions,

or different expectations by individuals (Arize (2011)).

Using a nonlinear unit root test (ESTAR), we find strong evidence of nonlinear mean

reversion of relative stock prices when the UK serves as the reference country. We find

very little evidence of linear mean reversion irrespective of the choice of the reference index.

In addition, we employ a series of panel unit roots tests: the linear panel unit root test

(Pesaran (2007)) and a newly developed nonlinear panel (PESTAR) unit root test (Cerrato

et al. (2011)). These tests allow different mean reversion rates across countries and also

allow for cross sectional dependence. Thus, our approach is less restrictive than Balvers

et al. (2000) and should give more statistically reliable results.

1For example, with the US benchmark, only France shows mean reversion with the univariate test but
there is a solid stationarity with the panel test.

2Also the author concludes that lower exchange rate volatility and joint EMU membership are associ-
ated with stronger stock market comovements. The joint significance of these two variables indicates that
monetary integration raises return correlations by reducing transaction costs coming from exchange rate
uncertainty, and through the common monetary policy and the convergence of inflation expectations leading
to more homogeneous valuations.
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We find no evidence of mean reversion from these panel unit root tests, a result which

seems to be inconsistent with the univariate ESTAR test results with the UK as the ref-

erence index that provide strong evidence of mean reversion. To look into this seemingly

conflicting statistical result, we conducted a principal component analysis via the PANIC

method developed by Bai and Ng (2004). We note empirical evidence of stationarity of the

estimated first common factor or cross-section means that served as proxy variables for the

common factor in Pesaran (2007) and Cerrato et al. (2011) with the UK reference. When the

stationary first common factor dominates idiosyncratic components that are quite persistent

or even nonstationary, the panel unit root tests that filter out the stationary common factor

may yield evidence against stationarity in the short-run, while the univariate test rejects the

null of nonstationarity. Via Monte Carlo simulations, we confirm this conjecture.

In sum, our findings imply that the contrarian investment would be useful when na-

tional equity prices deviate sufficient from the UK stock index, while one may employ the

momentum strategy with the US as a reference.

The rest of the paper is organized as follows. Section 2 constructs our baseline model of

the relative stock indices. Sections 3 and 4 report univariate and panel unit root test results,

respectively. Section 5 discusses our results using a dynamic factor analysis framework.

Section 6 establishes and provides simulation results. Section 7 concludes.

2.2 The Baseline Model

We use a model of a stochastic process for national stock indices, employed in Kim

(2009), that is a revised model of Balvers et al. (2000).

Let pi,t be the the national stock index and fi,t be its fundamental value in country i, all

expressed in natural logarithms. We assume that pi,t and fi,t obey nonstationary stochastic

processes. If pi,t and fi,t share a unique nonstationary component, deviations of pi,t from fi,t

must die out eventually. That is, pi,t and fi,t are cointegrated with a known cointegrating

vector [1 − 1]. Such a stochastic process can be modeled by the following error correction

6



model.

∆(pi,t+1 − fi,t+1) = ai − λi(pi,t − fi,t) + εi,t+1, (2.1)

where 0 < λi < 1 represents the speed of convergence and εi,t is a mean-zero stochastic

process from an unknown distribution. The fundamental value fi,t is not directly observable,

but is assumed to obey the following stochastic process:

fi,t = ci + pw,t + υi,t, (2.2)

where ci is a country-specific constant, pw,t denotes a reference stock index price, and υi,t is

a zero-mean, possibly serially correlated stationary process from an unknown distribution.

Combining (4.1) and (4.12) and after controlling for serial correlation, we obtain the

following augmented Dickey-Fuller equation for the relative stock price, ri,t = pi,t − pw,t, for

country i.

ri,t = αi + ρiri,t−1 +
k∑
j=1

βi,j∆ri,t−j + ηi,t, (2.3)

That is, ri,t measures deviations of the stock index in country i from a reference index at

time t. Note that ρi ∈ (0, 1) is the persistence parameter of the stock index deviation for

country i.

It is easy to see that (4.5) is equivalent to Equation (4) in Balvers et al. (2000). It

should be noted, however, that (4.5) does not require the homogeneity assumption for the

convergence rate λ.3 Furthermore, we do not need to impose any distributional assumptions

on ηt.
4

3In order to derive (4) in Balvers et al. (2000) from (1), one has to assume λi = λw where w refers to the
reference country. Otherwise, the unobserved term P ∗i

t+1 in their equation (1) cannot be cancelled out and
remains in their estimation equation.

4Balvers et al. (2000) use Andrews (1993)’s methodology to calculate the median unbiased estimates and
the corresponding confidence intervals, which requires Gaussian error terms.
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2.3 Univariate Unit Root Tests

2.3.1 Data

Following Balvers et al. (2000), we use a panel of yearly observations of the Morgan

Stanley Capital International (MSCI) stock price indices for 18 Developed Market group

countries during the period 1969 to 2012 to test for mean reversion. The observations are

end-of-period (December) value-weighted gross index prices in US dollar terms that include

dividends. Table 1 provides summary statistics for the deviations of the logarithm of the

relative stock indices of 17 countries to the two reference countries, US and UK respectively.

The mean values of the index deviations relative to the US index range from -0.981 for

Italy to 1.583 for Hong Kong, and the standard deviations vary from 0.235 for UK to 0.709

for Japan. The mean values of the stock index deviations relative to the UK index range

from -1.252 for Italy to 1.312 for Hong Kong, and the standard deviations vary from 0.235

for US to 0.639 for Japan. We also checked the normality of the data using the Jarque-Bera

test. The test rejects the null hypothesis of normality at the 5% significance level for 3 and

6 countries with the US index and with the UK index, respectively.5

In the following two subsections for univariate tests we will drop country specific index

i in the formulas for notational simplicity.

2.3.2 Linear Unit-Root Test Analysis

We first implement univariate linear unit root tests employing the following conventional

augmented Dickey-Fuller (ADF) test.

rt = α + ψt+ ρrt−1 +
k∑
j=1

βj∆rt−j + ηt, (2.4)

5The Jarque-Bera test tends to reject the null hypothesis more often for higher frequency financial data.
The test unanimously rejects the null of normality when we use the monthly frequency data. All results are
available from authors upon requests.
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where ψ = 0 for the ADF test with an intercept only. We implemented the test for the

deviations of the logarithms of national stock price indices relative to that of the reference

country (US or UK). Results are reported in Table 2.

When the US index serves as the reference, the test rejects the null of nonstationarity

for 6 out of 17 countries at the 10% significance level when an intercept is included (Belgium,

France, Germany, Hong Kong, Norway, and the UK). Allowing for trend stationarity, the

test rejects for one additional country (Sweden) at the 5% level. When the UK index is

used as the reference, the test rejects the null for 6 out of 17 countries when an intercept

is included. Allowing the time trend, the test rejects for 3 additional countries (Italy, the

Netherlands, and Sweden).

A rejection of the null hypothesis of nonstationarity implies that the national stock

index tends to synchronize with that of the reference country, because deviations of the

stock price from the reference index are not permanent. That is, short-selling a better-

performing stock index and buying the other would generate financial gains on average. Put

differently, stationarity of rt suggests that a contrarian strategy would perform well for the

pair of the national stock index and the reference index.

Confining our attention only to such linear piecewise convergence, our findings imply

limited evidence in favor of the contrarian strategy, even though we observe a little stronger

evidence using the contrarian strategy when the UK index serves as the reference.

2.3.3 Nonlinear Unit-Root Test Analysis

It is known that the linear ADF test has low power when the true data generating

process (DGP) is nonlinear. One way to get around this difficulty is to use a nonlinear unit-

root test. For this purpose, we revise the linear model (2.4) to a nonlinear model by allowing

transitions of the stock price deviation rt between the stationary and the nonstationary

regime. Stock prices may adjust to long-run equilibrium only when the deviation is big

enough in the presence of a fixed transaction cost. Then, rt may follow a unit root process

9



locally around the long-run equilibrium value. We employ a variation of such stochastic

processes that allows gradual transitions between the regimes. Specifically, we assume the

following exponential smooth transition autoregressive process for rt.

rt = rt−1 + ξrt−1{1− exp(−θr2t−d)}+ εt, (2.5)

where θ is a strictly positive scale parameter so that 0 < exp(−θr2t−d) < 1, and d is a

delay parameter. Note that when rt−d is very big, that is, when national stock price indices

substantially deviate from the reference index, exp(−θr2t−d) becomes smaller, converging

to 0, which implies that the stochastic process (2.5) becomes a stationary AR(1) process

(1 + ξ = ρ < 1). On the other hand, if rt−d is close to zero, then rt becomes a unit root

process. Alternatively, (2.5) can be rewritten as,

∆rt = ξrt−1{1− exp(−θr2t−d)}+ εt, (2.6)

Note that ξ is not identified under the unit root null hypothesis, which results in the so-

called “Davies Problem.” To deal with it, Kapetanios et al. (2003) transformed it as follows

(assuming d = 1):

∆rt = δr3t−1 + εt (2.7)

using the Taylor series expansion. They show that, under the unit root null, the least squares

t-statistic for δ has the following asymptotic distribution

1
4
W (1)2 − 3

2

∫ 1

0
W (1)2 ds√∫ 1

0
W (1)6 ds

(2.8)
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where W (z) is the standard Brownian motion defined on s ∈ [0, 1]. When error terms (εt)

are serially correlated, equation (8) can be augmented as follows

∆rt = δr3t−1 +
k∑
j=1

βj∆rt−j + εt. (2.9)

We tested the data for both when an intercept is included and when an intercept and

time trend are included. Results are shown in Table 3.

With the US index, the test rejects the null hypothesis of nonstationarity only for two

countries, Hong Kong and the UK. With the UK as the reference country, however, the test

rejects the null hypothesis for 10 countries at the 10% significance level. Allowing a time

trend, the test rejects the null for an additional 2 countries, the Netherlands and Sweden.

In combination with the results from the linear test results, our empirical findings yield a

maximum of 14 rejections out of 17 countries at the 10% significance level, while we obtained

a maximum 7 rejections out of 17 when the US serves as a reference country.6 These findings

imply that the UK stock index may be used as an anchor index in constructing international

equity portfolios. When deviations of national equity indices from the UK index are large, one

may short better performing assets while buying worse performing assets, since winner-loser

reversals are likely to happen. When the US stock index serves as the reference, one should

employ the momentum strategy because deviations of equity prices seem to be permanent.

2.4 Panel Unit Root Tests with Cross-Section Dependence Consideration

It is known that the univariate ADF test has low power in small samples. In this

section we employ a series of panel unit root tests that are known to increase power over the

univariate tests (Taylor and Sarno (1998)).

6Note that the linear test shows the relative prices of France and Norway vis-à-vis the UK are stationary,
whereas the ESTAR does not. This may be due to the fact that the ESTAR test uses Taylor approximation
and could miss some useful information. See Kim and Moh (2010) for some discussion on the issue.
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As Phillips and Sul (2003) pointed out, however, the so-called first-generation panel

unit root tests such as Maddala and Wu (1999), Levin et al. (2002), and Im et al. (2003)

are known to be seriously over-sized (reject the null hypothesis too often) when the data is

cross-sectionally dependent. We first test this issue by employing the statistic proposed by

Pesaran (2004) described below in Equation (2.10).

CD =

√
2T

N(N − 1)

(
N−1∑
i=1

N∑
j=i+1

ρ̂i,j

)
d→ N(0, 1) (2.10)

where ρ̂i,j is the pair-wise correlation coefficients from the residuals of the ADF regressions

(2.4). We report results in Table 4. The results imply a very strong degree cross-section

dependence. In what follows, therefore, we employ available second-generation panel unit

root tests with cross-section dependence consideration.

2.4.1 Linear Panel Unit-Root Test Analysis

We first employ Pesaran (2007)’s cross-sectionally augmented panel ADF (PADF) test

given by,

CIPS(N, T ) = tN,T = N−1
N∑
i=1

ti(N, T ), (2.11)

where ti(N, T ) is the t-statistic for bi from the following least squares regression,

∆ri,t = ai + biri,t−1 + cir̄t−1 +

p∑
j=0

dij∆r̄t−j +

p∑
j=1

δij∆ri,t−j + ei,t. (2.12)

Here, r̄t is the cross-section average at time t, which proxies the common factor component

for i = 1, ..., N . Note that this is a cross-sectionally augmented version of the IPS (Im et al.

(2003)) test.

We report test results in Table 5. In contrast to empirical evidence from Balvers et al.

(2000), we obtain very weak panel evidence of stationarity even at the 10% significance level
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when we control for cross-section dependence, irrespective of the choice of the reference coun-

try. This implies that the strong evidence of stationarity in Balvers et al. (2000) could have

been due to size distortion caused by a failure to account for the cross-section dependence.

2.4.2 Nonlinear Panel Unit-Root Test Analysis

We next explore the panel evidence of nonlinear stationarity by employing a test pro-

posed by Cerrato et al. (2011). This test is an extension of the nonlinear ESTAR unit root

test by Kapetanios et al. (2003) to a panel version test in combination with the methodology

suggested by Pesaran (2007) to address the issue of cross-section dependence.

For this, we rewrite Equation (2.6) as the following set of equations.

∆ri,t = ξiri,t−1{1− exp(−θr2i,t−d)}+ εi,t, and εi,t = δift + ui,t (2.13)

where δi is a country-specific factor loading, ft is a common factor, and ui,t is a (possibly

serially correlated) idiosyncratic shock. Cerrato et al. (2011) suggest the following nonlinear

cross-section augmented IPS-type statistics:

tN,T = N−1
N∑
i=1

ti(N, T ) (2.14)

where ti(N, T ) is the t-statistic for βi,0 from the following least squares regression,

∆ri,t = αi + βi,0r
3
i,t−1 + γi,0r

3
t−1 +

p∑
j=1

(βi,j∆ri,t−j + γi,j∆r
3
t−j) + ei,t, (2.15)

where r̄t is the cross-section average at time t, which proxies the common factor component

for i = 1, ..., N . In the absence of cross-section dependence, γi,j = 0 for all i and j, and the

test statistic is reduced to nonlinear ESTAR test in Equation (2.9).

We report test results in Table 6. It is interesting to see that the test does not reject

the null hypothesis for both reference cases at the 10% significance level. This is somewhat
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puzzling because we obtained strong evidence of nonlinear stationarity from the univariate

ESTAR tests when the UK serves as the reference country. Since the panel test (2.14) has the

alternative hypothesis that states that there are stationary ri,t for i = 1, ..., N1 and N1 > 0,

and the univariate test rejects the null for 12 out of 17 countries, it would be natural to

expect panel evidence of stationarity. Yet, we do not find it. To look into this apparent

contradiction further, we turn to a dynamic factor analysis in what follows based on the

following conjecture.

If the first common factor is stationary and has dominating effects on ri,t in the short-

run, the stochastic properties of ri,t may resemble those of stationary variables even when

the idiosyncratic component is nonstationary. Even though the nonstationary idiosyncratic

component will dominate the stationary common factor in the long-run, unit root tests for

finite horizon observations may reject the null of nonstationarity.

2.5 Dynamic Factor Analysis

In this section, we attempt to understand seemingly inconsistent statistical evidence

from the univariate and the panel unit root test when the UK serves as the base country.

We note that the panel unit root tests from the previous section control for the cross-section

dependence by taking and including the first common factor in the regression. We employ

the following factor structure motivated by the framework of the PANIC method by Bai and

Ng (2004), described as follows. First we write

ri,t = ai + λ
′
ift + ei,t

(1− αL)ft = A(L)ut

(1− ρiL)ei,t = Bi(L)εi,t

(2.16)

where ai is a fixed effect intercept, ft = [f1 . . . fr]
′

is a r × 1 vector of (latent) common

factors, λi = [λi,1 . . . λi,r]
′

denotes a r × 1 vector of factor loadings for country i, and ei,t is
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the idiosyncratic error term. A(L) and Bi(L) are lag polynomials. Finally, we assume that

ut, εi,t, and λi are mutually independent.

Estimations are carried out by the method of principal components. When ei,t is sta-

tionary, ft and λi can be consistently estimated irrespective of the order of ft. If ei,t is

integrated, however, the estimator is inconsistent because a regression of ri,t on ft is spuri-

ous. PANIC avoids such a problem by applying the method of principal components to the

first-differenced data. That is,

∆ri,t = λ
′

i∆ft + ∆ei,t (2.17)

for t = 2, · · · , T . Let ∆ri = [∆ri,2 · · ·∆ri,T ]′ and ∆r = [∆r1 · · ·∆rN ]. After proper nor-

malization,the method of principal components for ∆r∆r′ yields estimated factors ∆f̂t, the

associated factor loadings λ̂i, and the residuals ∆êi,t = ∆ri,1 − λ̂
′
i∆f̂t. Re-integrating these,

we obtain the following

f̂t =
t∑

s=2

∆f̂s, êi,t =
t∑

s=2

∆êi,s (2.18)

for i = 1, · · · , N .

Bai and Ng (2004) show that when k = 1, the ADF test with an intercept can be used

to test the null of a unit root for the single common component f̂t. For each idiosyncratic

component êi,t, the ADF test with no deterministic terms can first be applied. Then, a panel

unit root test statistic for these idiosyncratic terms can be constructed as follows.

Pê =
−2
∑N

i=1 ln pêi − 2N

2
√
N

d→ N(0, 1), (2.19)

In Table 7, we report the linear and nonlinear unit root test for the estimated first

common factor. The tests reject the null of nonstationarity only for the case with the UK,

which implies that the first common factor is likely to be stationary.

In Figure 1, we plot the first five common factors and their relative portions of the

stock price deviations with the UK as the reference. Starting with initial 50% observations,

we use a recursive method to repeatedly estimate five common factors along with shares of
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variations explained by each common factor from each set of samples. The graph shows that

the first common factor explains roughly about 45% of total variations, while other common

factors play substantially smaller roles.7 Put differently, the stationary first common factor

seems to play a dominant role in determining the stochastic properties of ri,t in the short-

run.8 Also, we estimate idiosyncratic factor loading coefficients (λi) in Equation (2.16) that

measure country-specific degrees of dependence of ri,t on the common factor. Estimates are

reported in Figure 2. The results show that the first common factor represents each of ri,t

fairly well with a few exceptions of Hong Kong and Singapore.9

Note on the other hand that this first common factor resembles the dynamics of the

proxy common factor (cross-section means) in Equation (2.12) and (2.15) as we can see in

Figure 2.

In addition to evidence of the linear and nonlinear stationarity of the common factor

with the UK shown in Table 7, we compare the speeds of transitions from the ESTAR model

specification for the common factors with the US and with the UK. For this purpose, we esti-

mate the scale parameter θ in Equation (2.5) via the nonlinear least squares (NLLS) method

to evaluate the speed of transitions across the stationarity and nonstationarity regimes. Note

that we cannot estimate ξ and θ separately in Equations (2.6). Following Kapetanios et al.

(2003), we assume ξ = −1.

We report a sample transition function estimate along with the 95% confidence bands

in Figure 3. We note that the transition function for the common factor with the US

reference may be consistent with nonstationarity, because the 95% confidence band of θ

hits the zero lower bound, and we cannot reject the possibility of a single regime, which is

the nonstationarity regime.10 With the UK, the confidence band of the transition function

remains compact (θ̂ was 1.308 and the standard error was 0.570).

7Similar patterns were observed when the US is the reference country.
8It will be eventually dominated by nonstationary idiosyncratic component in the long-run.
9Similar patterns were again observed when the US serves as the reference country.

10θ̂ was 1.746 and the standard error was 1.018, implying a negative value for the lower bound ( θ̂−1.96·s.e.).
Since θ is bounded below zero, the estimate assumes 0 for the lower bound.
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This evidence explains why the panel unit root tests fail to reject the null of nonsta-

tionarity, even when the univariate test rejects the null for many countries. To control for

cross-section dependence, the test procedures incorporated in Equations (2.12) and (2.15)

take out the dominant stationary common component, but leave the nonstationary idiosyn-

cratic components. Hence, the panel tests might fail to reject the null of nonstationarity.

However, the univariate unit root tests may reject the null because the dominant stationary

component overpower the idiosyncratic component. We confirm this conjecture via Monte

Carlo simulations in the next section.

2.6 Further investigation on Panel Results: Monte Carlo Simulation Analysis

We implement an array of Monte Carlo simulations in this section to see how plausible

our conjecture from the previous section is. For this purpose, we construct 17 time series that

have a factor structure with a nonlinear stationary common factor motivated by our panel

ESTAR model. We assume that each of the 17 idiosyncratic components is nonstationary.

That is, 17 time series variables xi,t share the following common component.

ft = ft−1 + ξft−1{1− exp(−θf 2
t−1)}+ µt, (2.20)

where ξ is set at −1 following Kapetanios et al. (2003). The DGP assumes θ = 1.308, which

is the estimate from the previous section for the 17 relative stock price indices relative to the

UK. In addition to Equation (2.20), we generate 17 independent nonstationary idiosyncratic

components that are to be added to the common factor to construct each time series as

follows:

xi,t = λift + εi,t. (2.21)

and

εi,t = εi,t−1 + ui,t, (2.22)
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where ui,t ∼ N(0, 1). We used factor loading estimates (λi) from the PANIC estimations

in the previous section. Then we employ a nonlinear univariate unit root test and the

panel nonlinear unit root test. Repeating this process many times, we expect to see strong

evidence of stationarity from the univariate tests and weak evidence from the panel tests in

small samples, but weak evidence of stationarity from both types of tests in large samples

where nonlinear idiosyncratic components must eventually dominate the stationary common

factor.

We ran 3,000 Monte Carlo simulations for five different numbers of observations: 50,

100, 200, 300, and 500. In Table 8, we report the percentage of the mean and the median of

the the frequency of the rejections of the null of unit roots out of 17 at the 5% significance

level for the univariate ESTAR tests. For the panel test, we report the rejection rate at the

5% level for each exercise.

We confirm our conjecture by these simulations. When the number of observation

is small, e.g., 50, the univariate ESTAR test rejects the null for many series about 50%

frequency on average. This tendency disappears quickly as the number of observation in-

creases. For example, when the number of observations is 500, only about 1 rejections out

of 17 variables were observed. For all cases, the panel ESTAR that removes the effect of

the stationary common factor rejected the null with near 0.5% frequency. Therefore, our

empirical evidence suggests that stock indices with the UK as the reference country possess a

dominating common factor that is nonlinear stationary, which makes it possible to profitably

utilize a contrarian strategy when deviations are big.

2.7 Concluding Remarks

We revisited the topic of mean reversion in national stock prices across international

stock markets relative to the US and the UK using the Morgan Stanley Capital International

annual gross stock index data for 18 developed countries. We found strong evidence of mean

reversion for a maximum 14 out of 17 countries in the case of the UK (but not the US)
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as the reference country, while very weak evidence of linear mean reversion was observed

irrespective of the choice of the reference country.

Implementing panel version linear unit root tests while controlling for cross-section de-

pendence provided weak evidence of stationarity in the univariate tests. The panel nonlinear

unit root test also failed to reject the null of nonstationarity even when the UK served as

the reference country. The results appear inconsistent.

To resolve this seeming puzzle, we estimated a common factor, then tested the null

of nonstationarity with linear and nonlinear stationarity alternatives. Our tests strongly

favor the stationarity for the first common factor from the panel when the UK serves as the

reference country. These results imply that the first common factor with the UK is stationary

and dominates nonstationary idiosyncratic components in small samples. That is, when the

first common factor dominates the nonstationary idiosyncratic component, the panel unit

root test that removes the influence of the stationary common factor may yield evidence

against stationarity even though it behaves as a stationary variable in finite samples, even

though it will become dominated by nonstationary variables in the long-run. Our Monte

Carlo simulation analysis confirms our conjecture.

Our empirical findings suggest that the UK equity index may be used as an anchor in

managing international equity portfolios. Big deviations of national equity prices from the

UK index may be accompanied by winner-loser reversal soon. Therefore, one may consider

short-selling better performing assets while buying worse performing ones. On the contrary,

one should employ the momentum strategy with the US index, because deviations of equity

prices are more likely to be permanent.
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Figure 2.1: Cumulative Share of Variation by Five Common Factors: UK

Note: A recursive method is used to repeatedly estimate the first five common factors

using the initial 50% observations as the split point. We report shares of variations

explained by the common factors from each set of samples.
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Figure 2.2: Factor Loading Coefficients Estimation: UK

Note: We report factor loading coefficients (λi) in Equation (16). They represent the

country-specific dependence on the common factor.
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Figure 2.3: First Common Factor Estimates: UK

Note: We report two measures of the common factor: the first common factor (dashed

line) via the PANIC (Bai and Ng, 2004) and the cross section mean (solid) as in Pesaran

(2007).
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Figure 2.4: Transition Function Estimates

Note: We report graphs of one minus the exponential transition function 1−exp(−θx2)

for the common factor estimates with the US and the UK. We used θ = 1.746 for the

US reference and θ = 1.308 for the UK reference, obtained from the data. Dashed

lines are 95% confidence bands. The lower bound for the US is negative, so we used 0

because θ is bounded below zero.
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Table 2.1: Summary Statistics

Base Country: US
ID Country Mean Std Dev Skewness Kurtosis JB Min Max
1 Aus −0.414 0.341 −0.363 2.443 1.500 −1.239 0.132
2 Aut 0.179 0.521 0.163 2.834 0.241 −0.927 1.047
3 Bel 0.683 0.352 −0.503 3.464 2.196 0.000 1.267
4 Can 0.013 0.357 −0.202 2.761 0.394 −0.915 0.597
5 Den 0.729 0.363 −0.265 2.784 0.585 −0.144 1.420
6 Fra 0.179 0.240 0.035 3.572 0.594 −0.295 0.565
7 Ger 0.150 0.255 0.748 3.570 4.596 −0.338 0.699
8 HK 1.583 0.531 −0.312 4.125 2.962 0.000 2.615
9 Ita −0.981 0.436 0.687 3.712 4.286 −1.715 0.000
10 Jap 0.770 0.709 0.376 2.979 1.014 −0.191 2.345
11 Net 0.718 0.404 −0.088 2.054 1.659 −0.224 1.260
12 Nor 0.469 0.403 0.654 4.778 8.733 −0.465 1.237
13 Sing 0.767 0.514 0.287 4.215 3.235 −0.253 1.843
14 Spa −0.282 0.457 −0.110 3.305 0.254 −1.361 0.851
15 Swe 0.819 0.518 0.117 1.906 2.243 −0.258 1.732
16 Swi 0.418 0.258 −0.061 2.869 0.057 −0.189 0.833
17 UK 0.271 0.235 −0.593 4.944 9.298 −0.461 0.694

Base Country: UK
ID Country Mean Std Dev Skewness Kurtosis JB Min Max
1 Aus −0.684 0.375 −0.225 2.247 1.378 −1.413 0.063
2 Aut −0.092 0.541 0.910 4.223 8.615 −1.048 1.508
3 Bel 0.412 0.294 0.112 3.740 1.071 −0.169 1.165
4 Can −0.258 0.440 −0.086 3.192 0.120 −1.121 0.859
5 Den 0.458 0.362 0.347 3.084 0.877 −0.304 1.358
6 Fra −0.091 0.214 0.388 3.930 2.629 −0.549 0.602
7 Ger −0.121 0.281 1.631 8.696 77.207 −0.539 0.867
8 HK 1.312 0.424 −0.024 3.317 0.185 0.000 2.077
9 Ita −1.252 0.515 0.291 3.436 0.949 −1.991 0.141
10 Jap 0.499 0.639 0.491 3.038 1.728 −0.467 1.741
11 Net 0.447 0.302 −0.526 5.337 11.766 −0.384 0.832
12 Nor 0.198 0.426 0.988 5.015 14.271 −0.670 1.503
13 Sing 0.496 0.500 0.726 5.758 17.404 −0.458 1.479
14 Spa −0.553 0.573 0.204 4.719 5.596 −1.576 1.312
15 Swe 0.548 0.457 −0.121 4.193 2.654 −0.293 1.404
16 Swi 0.147 0.278 0.355 4.238 3.653 −0.363 0.816
17 US −0.271 0.235 0.593 4.944 9.298 −0.694 0.461

Note: JB refers the Jarque-Bera statistics, which has asymptotic χ2 distribution with

2 degrees of freedom. For the US reference, most of the stock index deviation shows

normality except for Norway and the UK whereas the stock index deviations for 6

countries (Austria, Germany, the Netherlands, Norway, Singapore and the US) show

non-normality with the UK reference.
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Table 2.2: Univariate Linear Unit Root Tests

US UK
ADFc ADFt ADFc ADFt

Aus -1.895 -1.722 -2.042 -1.499
Aut -1.651 -2.268 -1.746 -2.659
Bel -2.526∗ -2.420 -3.099† -3.098∗

Can -1.260 -1.247 -1.537 -1.466
Den -2.060 -2.401 -2.285 -2.422
Fra -2.663∗ -2.804 -3.592‡ -3.553∗

Ger -2.667∗ -2.671 -3.036† -3.326∗

HK -3.275† -3.692‡ -3.621‡ -4.204‡

Ita -2.278 -2.735 -2.452 -3.067∗

Jap -1.030 -1.992 -1.172 -2.627
Net -1.717 -1.416 -2.047 -3.394†

Nor -3.013† -3.005 -2.963† -3.084
Sing -2.268 -2.666 -2.139 -2.865
Spa -1.840 -1.806 -1.794 -1.696
Swe -1.303 -3.452† -1.773 -3.866†

Swi -2.161 -2.726 -2.270 -2.380
UK -2.637∗ -2.680 - -
US - - -2.637∗ -2.680

Note: ADFc and ADFt denote the augmented Dickey-Fuller test statistic when an

intercept and when both an intercept and time trend are present, respectively. *, †,
and ‡ denote significance levels at the 10%, 5%, and 1% level, respectively.
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Table 2.3: Univariate Nonlinear Unit Root Tests

US UK
NLADFc NLADFt NLADFc NLADFt

Aus -1.094 -1.078 -2.321 -1.440
Aut -1.488 -2.113 -2.788∗ -3.448†

Bel -1.904 -1.763 -3.076† -3.211∗

Can -1.883 -1.971 -3.469† -2.978
Den -1.930 -2.725 -3.923‡ -3.321∗

Fra -2.502 -2.503 -2.484 -2.473
Ger -2.508 -2.541 -2.697∗ -2.798
HK -2.641∗ -2.817 -2.639∗ -3.495†

Ita -2.180 -2.470 -3.095† -4.288‡

Jap -1.244 -1.864 -1.717 -2.044
Net -1.401 -1.344 -1.899 -3.889†

Nor -1.906 -1.962 -2.585 -2.724
Sing -2.132 -2.500 -2.221 -3.007
Spa -2.148 -2.166 -2.613∗ -2.764
Swe -1.416 -2.253 -1.299 -3.246∗

Swi -1.881 -2.628 -2.993† -2.929
UK -4.853‡ -4.858‡ - -
US - - -4.853‡ -4.858‡

Note: NLADFc and NLADFt denote the ESTAR test statistic (Kapetanios et al.,

2003) when an intercept and when both an intercept and time trend are present,

respectively. *, †, and ‡ denote significance levels at the 10%, 5%, and 1% level,

respectively. Asymptotic critical values were obtained from Kapetanios et al. (2003).

Table 2.4: Cross-Section Dependence Test

CSD p-value
US 19.753 0.000
UK 24.586 0.000

Note: This test is proposed by Pesaran (2004).
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Table 2.5: Panel Linear Unit Root Test Results

PADFc PADFt
US -2.056 -2.573
UK -2.012 -2.523

Note: Critical values were obtained from Pesaran (2007). The test fails to reject the

null of nonstationarity for both reference countries.

Table 2.6: Panel Nonlinear Unit Root Test Results

NLPADFc NLPADFt
US -1.345 -1.481
UK -1.471 -1.588

Note: Critical values were obtained from Cerrato et al. (2011). The test fails to reject

the null of nonstationarity for both reference countries.

Table 2.7: Test for the First Common Factor

Linear Nonlinear
ADFc ADFt NLADFc NLADFt

US -2.177 -2.499 -1.289 -1.804
UK -2.845∗ -2.967† -3.728† -3.919†

Note: *, †, and ‡ denote significance levels at the 10%, 5%, and 1% level, respectively.
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Table 2.8: Simulation Results

Univariate ESTAR Panel ESTAR
NLADFc NLADFt NLPADFc NLPADFt

nob=50 Median 41.2 % 47.1 % 0.7 % 0.4 %
Mean 41.6 % 48.3 %

nob=100 Median 29.4 % 35.3 % 0.3 % 0.5 %
Mean 28.5 % 33.6 %

nob=200 Median 17.6 % 17.6 % 0.1 % 0.0 %
Mean 17.2 % 20.5 %

nob=300 Median 11.8 % 11.8 % 0.2 % 0.0 %
Mean 12.9 % 15.0 %

nob=500 Median 5.9 % 11.8 % 0.2 % 0.0 %
Mean 9.4 % 10.8 %

Note: The table shows simulation results. Numbers in the Univariate ESTAR section

represent percentage of the mean and median of the frequency of rejections of the null

of unit roots when univariate ESTAR test is employed for the 3000 iterations. Numbers

in the Panel ESTAR section represent percentage of rejections of the null of unit roots

when the Panel ESTAR test is employed for the 3000 iterations.
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Chapter 3

The Heterogeneous Responses of the World Commodity Prices to Exchange Rate Shocks

3.1 Introduction

During the recent great recession, we have observed big swings of the US exchange rate

that were accompanied by similar and even more volatile movements of world commodity

prices such as oil prices. See Figure 1. In his recent VOX article in December 2014, Jeffrey

Frankel argued that commodity prices declined rapidly in 2014 mainly due to anticipation of

a rise in the interest rate in the US, via the following four channels: the extraction channel

(Hotelling (1931)), the inventory channel (Frankel (1986), Frankel (2014)), the financializa-

tion channel (Hamilton and Wu (2014)), and the exchange rate channel (Frankel (2006)).1

We are particularly interested in the exchange rate channel, noting that world commod-

ity prices tend to exhibit a mirror image of the US dollar exchange rate as can be seen in

Figure 1. Since world commodities are normally denominated in the US dollar, an apprecia-

tion of the US dollar results in an increase in the foreign price of the commodity in the rest

of the world, which will induce adjustments in the commodity price. Since most world com-

modities are highly tradable, it is natural to assume that the law of one price (LOP) holds

at least in the long-run. This paper investigates patterns of the price adjustment process in

the world commodity market in response to unexpected changes in the US dollar exchange

rate.

Since the seminal work of Obstfeld and Rogoff (1995), the profession has developed

New Open Economy Macroeconomics (NOEM), which introduce sticky-price type economic

frictions to open macronomic models. For example, prices of tradable goods are sticky

in terms of exporter’s currency under producer currency pricing (PCP; Obstfeld and Rogoff

1The article is available at http://www.voxeu.org/article/commodity-prices-down-dollars-euros.

29



1995), while prices are sticky in local consumers’ currency under local currency pricing (LCP;

Betts and Devereux 2000, Chari et al. 2002).

PCP implies 100% pass-through of the exchange rate to import prices, whereas the

model results in 0% pass-through to export prices. The converse is true under LCP. Empirical

literature finds mixed evidence for these predictions. For example, Campa and Goldberg

(2002) report limited evidence on the degree of exchange rate pass-through into the import

prices in 23 OECD countries, which is inconsistent with both PCP and LCP. Based on such

empirical findings, some authors employ the assumption that there is a mix of firms using

PCP and LCP in each economy (Choudhri and Hakura 2015). Overall, sticky prices seem

to play an important role for the pass-through mechanism. Gopinath et al. (2014) offer a

review of this literature.

What about the exchange rate pass-through to world commodity prices? There have

been many studies on this issue, including Ridler and Yandle (1972), Dornbusch (1987),

Fleisig and van Wijnbergen (1985), Giovannini (1988), Gilbert (1989), and Radetzki et al.

(1990). But this issue has been somewhat overlooked in the current literature even though

the profession started to pay an attention to the linkage between the exchange rate and

commodity prices since the Great Recession, as one can note from Jeffrey Frankel’s afore-

mentioned VOX article.

Since world commodities are highly tradable, one may expect that the Law of One

Price (LOP) should hold in the world commodity market at least in the long-run, because

commodity arbitrages will occur otherwise (Goldberg and Verboven 2005, Eckard 2004, Pip-

penger and Phillips 2008).2 Then an appreciation (depreciation) of the US dollar will result

in a fall (rise) in dollar denominated commodity prices. In the presence of price stickiness,

however, actual adjustments of the world commodity prices may not take place immediately

in response to an exchange rate shock.

2There is a strand of studies that suggests evidence of the failure of the law of one price, such as Engel
and Rogers (1999), Asplund and Friberg (2001), Goldberg and Verboven (2005). But Pippenger and Phillips
(2008) maintain that all tests that fail to support the LOP are due to the result of ignoring important
practical implications of arbitrage.
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In what follows, we attempt to answer the following questions. First, how quickly do

commodity prices adjust to the long-run equilibrium when there’s an exchange rate shock?

Is the speed of adjustment constant over time? Secondly, how homogeneous are the long-run

responses of commodity prices to exchange rate shocks? Are long-run price elasticities near

one? Third, what are the policy implications of the volatility of the comoodity price?

We used monthly frequency world commodity prices from the IMF data base and es-

timated impulse response functions of commodity prices to exchange rate shocks using a

recursively identified VAR framework. We further estimated dynamic exchange rate elastic-

ities of the commodity prices. Our major findings are as follows. First, commodity prices

tend to slowly adjust to their long-run equilibrium when the exchange rate shock occurs.

Initial responses are typically much weaker than longer run responses, which implies a high

degree price stickiness in the short-run. Most prices take 8 to 12 months to stabilize. One

notable exception is oil prices which stabilize in about 4 months. Second, the responses of

commodity prices exhibit high degree heterogeneity. Some commodities such as beef, pork,

and logs under-correct to the exchange rate shock, that is, the price elasticities of these com-

modities are less than one. Some others, like corn, lamb, sugar, hide, and crude oil adjust

on par with the exchange rate movement. Prices of the commodities like barley, peanuts,

rubber, aluminum, and nickel over-correct.

For those commodities that over-react to the exchange rate shock, their prices in the

rest of the world (outside the US) tend to rise permanently higher in the long-run when

the US dollar depreciates unexpectedly. That is, US dollar exchange rate shocks would

generate high volatility in these commodity prices. Put differently, not only fundamental

demand/supply factors, but also financial factors may be responsible for the highly volatile

movements in commodity prices we observed recently, which calls for attention from policy-

makers to financial markets dynamics in order to help stabilize commodity prices in the local

markets.
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The rest of the chpater is organized as follows. In Section 3.2, we present our baseline

VAR model framework and analytical representations of the dynamic elasticity and our

measure of price stickiness. Section 3.3 reports our major empirical findings. Section 4

concludes.

3.2 The Empirical Model

Let pit be the log of the price of commodity i at time t, denominated in the US dollar

and et be the log of the nominal effective exchange rate given as the price of US $1 in terms

of a basket of major foreign currencies. Most of commodity prices (pit) we consider seem

to follow nonstationary stochastic processes, as does the nominal exchange rate (et).
3 Since

most series are integrated I(1) processes, we propose the following regression model with

first differenced variables.

∆pit = ci + λi∆et + εit, (3.1)

where ci denotes the time invariant idiosyncratic intercept, λi is the commodity specific

coefficient on the dollar appreciation rate and εit is the idiosyncratic error term that might

capture disturbances in the demand-supply (fundamental) condition.

To measure dynamic effects of the exchange rate shock on each commodity price, we

extend the model in (4.1) to the following bivariate vector autoregressive (VAR) model for

log differences in the nominal exchange rate (4et) and the commodity price (4pit),

xt = a+ B(L)xt−1 + Cut (3.2)

where xt = [4et,4pit], B(L) denotes the lag polynomial matrix, ut is a vector of normal-

ized underlying shocks, and C is a matrix that describes the contemporaneous relationships

3Unit root test results are available upon request.
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between 4et and 4pit. By putting 4et first, we impose an assumption that US dollar ap-

preciation rates are not contemporaneously influcenced by commodity price inflation within

one month.4

We obtain the conventional orthogonalized impulse-response function (OIRF) for 4et

and 4pit as follows.

θpe(j) = E (∆pt+j|ue,t = 1,Ωt−1)− E (∆pt+j|Ωt−1) , (3.3)

θee(j) = E (∆et+j|ue,t = 1,Ωt−1)− E (∆et+j|Ωt−1) ,

where Ωt−1 is the adaptive information set at time t− 1. Note that we normalize the size of

the exchange rate shock to be one. Note also that the OIRFs in (4.3) are the same as the

generalized impuluse-response function (GIRF) proposed by ?, because 4et is ordered first.

We report the response function of level variables by cumulatively summing these response

functions. That is,

φpe(j) =

j∑
s=0

θpe(j), φ
e
e(j) =

j∑
s=0

θee(j) (3.4)

We also define the dynamic elasticity of a commodity price at time t + j with respect

to the exchange rate as follows.

ηpe(j) =
φpe(j)

φee(j)
(3.5)

Note that ηpe(j) measures the elasticity of the commodity price with the time of impact

(j = 0) as a reference point, because φ(·) measures cumulative responses of differenced

variables from the initial steady state. All estimates are accompanied by the 95% confidence

bands by taking 2.5% and 97.5% percentiles from residual-based bootstrap. In our empirical

study below we consider a one percent positive shock in the exchange rate. Then ηpe(0) is the

initial elasticity , the initial response of the commodity price, while ηpe(∞), is the long-run

elasticity when the responses are stabilized (24 months after the shock in our study.)

4This assumption seems to be reasonable, because it is hard to imagine that innovations in a single
commodity market generate substantial fluctuations in the US dollar exchange rate.
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In what follows, we also report a substantial degree price stickiness in the short-run

from a majority of response functions even though these goods are highly tradable world

commodities. We propose the following measures of price stickiness,

ζpe (1) = ηpe(∞)− ηpe(0) or ζpe (2) =
ηpe(0)

ηpe(∞)
. (3.6)

The first is the difference of the long-run and the initial elasticity indicating how much more

to be adjusted before the price is stabilized. And the second measure is the ratio of initial

response to the long-run elasticity. It shows the percentage of the initial price adjustment

to the long-run stabilized price.

3.3 Data Descriptions and the Empirical Findings

We used 49 primary commodity prices and the nominal US dollar exchange rate from

January 1980 to November 2014. All commodity prices are denominated in the US dollar.

We obtained the commodity price data from the International Monetary Fund (IMF) website.

See Table 1 for data descriptions of all commodities: 23 items in the Food category (7 cereals,

5 vegetable oils, 4 meats, 3 seafoods, 4 other foods), 4 beverages, 9 agricultural raw materials,

8 metals, and 5 fuel prices. The foreign exchange rate is the trade-weighted average of the

value of the US dollar against a subset of the major currencies (TWEXMMTH) obtained

from the Federal Reserve Economic Data (FRED).5

3.3.1 Price Adjustments and Short-Run Price Stickiness

In Table 2, we report impulse-response function estimates of all 49 commodity prices

when there is a one percent unexpected increase in the exchange rate. We report the initial

response, φpe(0) as well as the long-run response, φpe(∞), of the commodity price to the

exchange rate shock. The long-run responses are measured by the response function after

5Major currency index includes the Euro Area, Canada, Japan, United Kingdom, Switzerland, Australia,
and Sweden.
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two years, which is long enough for the deviation to die out. We also report the long-run

response of the exchange rate to its own shock, φee(∞). All point estimates are accompanied

by the 95% confidence bands that are obtained by 2000 nonparametric bootstrap replications.

There are couple of notable findings. First, exchange rate responses to the exchange rate

shock are very similar in all 49 VAR models. After the initial 1% shock, the exchange rate

increases for a while, then settles down to about 1.4%, exhibiting a mild hump-shape response

function (see Figure 2, for example). All 95% confidence bands for φee(∞) seem compact

and again very similar in shape and size. Second, unlike the exchange rate responses, the

response function estimates of the commodity prices are quite heterogeneous. For example,

the initial responses φpe(0) are insignificant at the 5% level and often negligible for 24 out of

49 prices. That is, we observe high degree price stickiness on impact even though these are

highly tradable world commodities. We obtained statistically insignificant responses even in

the long-run for 18 out of 49 prices, which is about 37% of all world commodity prices we

consider.

In Figure 2, we report three set of impulse-response function estimates from the Food-

Cereal category. As we mention previously, the responses of the exchange rate to the 1%

exchange rate shock are very similar. They all show a mild degree hump-shape and stabilize

around 1.4% in less than a year.

Responses of the cereal price are not uniform as can be seen in Figure 2. The barley

price falls 2.5% in about 8 months, exhibiting an over-reaction as it responses more than

the exchange rate changes in the long-run. The maize (corn) price falls 1.4 % in about 12

months which is on par with the exchange rate response, whereas the wheat price falls 0.8%

in about 12 months a lot less than exchange rate response. Overall the commodities in the

Cereal category show substantial and statistically significant responses with an exception of

wheat (see Table 2). We also note substantial degree price stickiness in the short-run. Most

cereals negatively responded, which is correct sign but far less than 1%. For example, φpe(0)

of the maize price was virtually 0%. Initial responses were often insignificant too.
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The commodities in the meat subcategory show negligible and insignificant responses to

the exchange rate shock with an exception of lamb (See Figure 3). For example, Poultry price

show virtually no meaningful responses with the very narrow confidence band. Interestingly,

the response of Lamb price exhibits a mirror image of the exchange rate response all the

time. It’s initial response was -1% that exactly offsets the 1% exchange rate shock. The

long-run response point estimate was -1.46%, which is quite similar to that of the exchange

rate in absolute value, which again offset the innovation in the exchange rate.

Agricultural raw materials show a wide range of heterogeneous responses. See Figure

4. Overall, forestry products such as Soft Logs and Soft Sawnwood show virtually no re-

sponses since the impact of the shock. Other products in this category show negligible initial

responses (price-stickiness) but substantial price correction in about 8 months that are sta-

tistically significant. For instance, the rubber price drops only about 0.7% on impact but

exhibits 3% correction within a year.

The prices of the items in the Metals category exhibit overall large and significant

responses especially in the long-run with an exception of Zinc. See Figure 5. Most prices

show substantial degree initial corrections as well. For example, the copper and the lead

prices drop by more than 1% responding to the 1% exchange rate shock. The prices of nickel

and aluminum show over-corrections in the long-run, implying a price fall in the rest of the

world.

Among prices in the fuel category, all 4 oil prices decline initially by about 0.8%, then

quickly reach to the long-run equilibrium of about -1.4% decreases in about 4 months, which

offsets the increase in the exchange rate. See Figure 6. That is, oil prices show a midly

sluggish adjustment in the short-run, but quickly restore the price before the exchange rate

shock. The response of the Coal price show very sluggish adjustment in the short-run, but

eventually over-correct the exchange rate shock in about 8 months.
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3.3.2 Dynamic Elasticity Analysis

Estimates for the dynamic elasticity in the long-run, ηpe(∞), are reported in Table 3

and its 95% confidence bands for the reported point estimates from 2000 nonparametric

bootstraps are also included in the table. Note that ηpe(j) > 1 implies an over-correction of

the world commodity price in response to the exchange rate shock, while ηpe(j) < 1 represents

an under-correction.

We note that dynamic elasticity estimates greatly range from 0.05 (Soft Log) to −2.13

(Rubber). Elasticity estimates were highly significant for 31 out of 49 prices at the 5% level.

We illustrated distribution of the dynamic elasticity in Figure 7 and calculated it’s moments

as mean = -0.98, standard error = 0.075, skewness = -0.08, and Kurtosis = 2.65. The median

is −1.02. We also employed t-test and the the value is t = 0.293.

Dynamic elasticites for all cereal prices are significant with an exception of wheat. We

observe an over-correction for the prices of barley, ground nut, and rice in the long-run,

which implies higher volatility of these prices when the exchange rate shock occurs. That

is, those countries that have high dependence on these grain products, probably developing

countries, will face much higher domestic prices when exchange rate shocks occur. Maize,

soybean meal, and soybean prices seem to (just) correct for the exchange rate shock just

enough to maintain similar domestic prices. Dynamic elasticity estimate of wheat implies

an under-correction, which is insignificant.

Most other food category prices and beverage prices show small and insignificant elas-

ticity estimates with a couple of exceptions. Majority agricultural raw materials, metals,

and fuel category prices exhibit highly significant dynamic elasticity estimates, which im-

plies an active adjustment of the commodity price in response to the exchange rate shock.

For example, oil prices show a just-correction from the short- to the long-run, which implies

that exchange rate shock cause virtually no change in the domestic price in the rest of the

world.
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Lastly, we report our measures of price stickiness based on ζpe in (4.8). Note that when

ζpe (1) is different from zero (negative in this exercise) or ζpe (2) is smaller than one, the variable

adjust more actively in the long-run, which may give some information about price-stickiness

in the short-run. As we can see in Table 4 and Figure 9, the mean and the median of ζpe (1)

estimate are very different from zero. We also calculated its moments as mean = −0.82,

median= -0.75, skewness = -0.25 Kurtosis = 2.56. That is, we observe very high degree

price-stickiness in the short-run from the world commodity prices. From the alternative

measure of stickiness, ζpe (2), we find similar substantial price-stickiness behavior that the

mean and the median are very different from one.

In a nutshell, irrespective of high degree tradability, we found substantial price rigidities

in the world commodity markets in the short-run.

3.4 Interpretation of Price Responses

In Figure 8 the long run elasticity distribution is center around −1.00. We can interpret

this that, overall, the commodity prices respond to the exchange rate shock in a way such

that the the Law of One Price holds in the long-run.

However, in the short-run most of commodity prices respond less than the initial shock

of the exchange rate (1% rise). From Figure 7 we observe that there are two modes. In

particular some of them drop close to 1% but more of the commodity prices drop a lot less

than the initial exchange rate shock, which shows substantial degree of price stickiness. What

would cause these different responses? We believe this has to to with the market structure.

From our observation, for the commodities whose market is local or domestic less adjustment

is necessary. In the Cereal category, the prices of U.S. market based commodities drop a lot

less than 1%. For example, corn price drops by only 0.08%, soybean by 0.54%, soybean meal

by 0.52 % and wheat by 0.31% (see Figure 2.) The commodities in the Meat category show

this tendency explicitly. Beef, pork and poultry markets are in the US showing very little

initial responses whereas lamb market is in the UK and its price responses almost as much
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as the exchange rate with the initial response of 1% drop to accommodate the exchange

rate rise. (see Figure 3.) Similar price adjustment is observed for the Seefood category,

shrimp market is domestic and its price under-reacts but fishmeal and salmon market are

foreign and their responses (fishmeal price drops by 0.82 % and salmon by 1.11%) are almost

full. Most of the metal markets are in the UK and their prices respond fully or over to the

exchange rate change (see Figure 5). The markets for oil is highly integrated and their prices

adjust quickly and fully with the initial response −0.8% to the long-run response −1.47% in

average (see Figure 6).

3.5 Concluding Remarks

This paper employs a VAR model to study how world commodity prices respond to

exchange rate shocks. In the absence of economic friction, world commodity prices should

adjust perfectly to changes in the exchange rate, because world commodities are denominated

in the US dollar. Even though world commodities are highly tradable, we find a substantial

degree of short-run price stickiness in a majority of cases. It takes 8 to 12 months for most

prices to reach a long-run equilibrium, even though long-run responses are quite different

across commodities. We also introduce a measure of price stickiness given by φpe(∞)−φpe(0),

i.e., the difference between the long-run and the short-run elasticity of commodity prices

with respect to the exchange rate. Our estimates range from −2.23 to 0.53. The mean

measure is −0.85, which is quite different from 0, the case of instant adjustment.

We also find that the responses of commodity prices differ even within the same category.

For example, in the Cereal category, the long-run response varies from −0.79% for wheat

to −2.54% for peanuts. Among the 7 cereals, barley, peanuts and rice prices over-correct,

soybeans, soybean meal and corn prices adjust to the exchange rate change, and wheat

price under-corrects. Only oil prices show homogeneous responses within their category. We

introduced the concept of dynamic elasticity and further characterized the heterogeneous

responses. Long-run elasticities range from −2.13% for rubber to 0.05% for soft logs. About
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15 commodity prices including oil prices have long-run elasticity close to −1, i.e., they adjust

to the exchange rate shock so that the local price remains the same. About 17 commodity

prices including some food prices over-react, implying that these prices are more volatile than

the exchange rate. Thus, local prices of these goods would rise if the US dollar depreciates

unexpectedly, which may call for price stabilization policies.

Figure 3.1: Commodity Price and the USD Exchange Rate

Note: The IMF commodity index was obtained from the IMF website. The USD ex-

change rate is the nominal effective exchange rate relative to major currencies obtained

from the Federal Reserve Economic Data (FRED).
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Figure 3.2: Impulse-Response Function Estimates: Food-Cereal

Note: All impulse-response function estimates are obtained from a bivariate VAR with

the nominal exchange rate ordered first. 95% confidence bands were obtained from

2000 nonparametric bootstrap simulations.
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Figure 3.3: Impulse-Response Function Estimates: Food-Meat

Note: All impulse-response function estimates are obtained from a bivariate VAR with

the nominal exchange rate ordered first. 95% confidence bands were obtained from

2000 nonparametric bootstrap simulations.
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Figure 3.4: Impulse-Response Function Estimates: Ag Raw Material

Note: All impulse-response function estimates are obtained from a bivariate VAR with

the nominal exchange rate ordered first. 95% confidence bands were obtained from

2000 nonparametric bootstrap simulations.
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Figure 3.5: Impulse-Response Function Estimates: Metals

Note: All impulse-response function estimates are obtained from a bivariate VAR with

the nominal exchange rate ordered first. 95% confidence bands were obtained from

2000 nonparametric bootstrap simulations.
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Figure 3.6: Impulse-Response Function Estimates: Fuel

Note: All impulse-response function estimates are obtained from a bivariate VAR with

the nominal exchange rate ordered first. 95% confidence bands were obtained from

2000 nonparametric bootstrap simulations.
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Figure 3.7: Distribution of Initial Responses

Note: We estimated non-parametric Kernel distribution using the Gaussian Kernel.
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Figure 3.8: Distribution of Long Run Elasticity

Note: We estimated non-parametric Kernel distribution using the Gaussian Kernel.
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Figure 3.9: Distribution of Price Stickiness

Note: We estimated non-parametric Kernel distribution using the Gaussian Kernel.
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Table 3.1: Data Descriptions

Category ID IMF Code Commodity

Cereal 1 PBARL Barley, Canadian no.1 Western Barley

2 PGNUTS Groundnuts (peanuts), cif Argentina

3 PMAIZMT Maize (corn), U.S. No.2 Yellow, FOB Gulf of Mexico

4 PRICENPQ Rice, 5 percent broken milled white rice, Thailand price

5 PSMEA Soybean Meal, Chicago Soybean Meal Futures

6 PSOYB Soybeans, U.S. soybeans, Chicago Soybean futures contract

7 PWHEAMT Wheat, No.1 Hard Red Winter, FOB Gulf of Mexico

Vegetable Oil 8 PROIL Rapeseed oil, crude, fob Rotterdam

9 POLVOIL Olive Oil, ex-tanker price U.K.

10 PPOIL Palm oil, Malaysia Palm Oil Futures

11 PSOIL Soybean Oil, Chicago Soybean Oil Futures

12 PSUNO Sunflower oil,US export price from Gulf of Mexico

Meat 13 PBEEF Beef, Australian and New Zealand 85% lean fores

14 PLAMB Lamb, frozen carcass Smithfield London

15 PPORK Swine (pork), 51-52% lean Hogs, U.S. price

16 PPOULT Poultry (chicken), Whole bird spot price

Seafood 17 PFISH Fishmeal, Peru Fish meal/pellets 65% protein, CIF

18 PSALM Fish (salmon), Farm Bred Norwegian Salmon, export price

19 PSHRI Shrimp, No.1 shell-on headless

Other Foods 20 PBANSOP Bananas, Central American and Ecuador, FOB U.S. Ports

21 PORANG Oranges, miscellaneous oranges CIF French import price

22 PSUGAISA Sugar, Free Market, Coffee Sugar and Cocoa Exchange

23 PSUGAUSA Sugar, U.S. import price

Beverage 24 PCOCO Cocoa beans, International Cocoa Organization cash price

25 PCOFFOTM Coffee, Arabica,New York cash price

26 PCOFFROB Coffee, Robusta, New York cash price

27 PTEA Tea, Mombasa, Kenya, US cents per kilogram

Ag Raw 28 PLOGORE Soft Logs, Average Export price from the U.S. for Douglas Fir

29 PLOGSK Hard Logs, Best quality Malaysian meranti, import price Japan

30 PSAWMAL Hard Sawnwood, Dark Red Meranti, C & F U.K port

31 PSAWORE Soft Sawnwood, average export price of Douglas Fir, U.S. Price

32 PCOTTIND Cotton, Cotton Outlook ’A Index’, CIF Liverpool

33 PWOOLC Wool, coarse, 23 micron, Australian Wool Exchange spot quote

34 PWOOLF Wool, fine, 19 micron, Australian Wool Exchange spot quote

35 PRUBB Rubber, Singapore Commodity Exchange, 1st contract

36 PHIDE Hides, Heavy native steers, over 53 pounds, US, Chicago
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Category ID IMF Code Commodity

Metals 37 PALUM Aluminum, 99.5% minimum purity, LME spot price, CIF UK ports

38 PCOPP Copper, grade A cathode, LME spot price, CIF European ports

39 PIORECR Iron Ore Fines 62% FE spot (CFR Tianjin port), China import

40 PLEAD Lead, 99.97% pure, LME spot price, CIF European Ports

41 PNICK Nickel, melting grade, LME spot price, CIF European ports

42 PTIN Tin, standard grade, LME spot price

43 PURAN Uranium, NUEXCO, Restricted Price, Nuexco exchange spot

44 PZINC Zinc, high grade 98% pure

Fuel 45 PCOALAU Coal, Australian thermal coal, 12,000- btu/pound

46 POILAPSP Crude Oil (petroleum), Price index, 2005 = 100

47 POILBRE Crude Oil (petroleum), Dated Brent, light blend 38 API, fob U.K.

48 POILDUB Oil; Dubai, medium, Fateh 32 API, fob Dubai Crude Oil

49 POILWTI Crude Oil (petroleum), West Texas Intermediate 40 API

Note: We obtained all commodity price data from the IMF website. The sample period

is from January 1980 to November 2014.
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Table 3.2: Impulse-Response Function Estimates

Commodity Prices Exchange Rates
ID IMF Code φpe(0) 95% C.I φpe(∞) 95% C.I φee(∞) 95% C.I
1 PBARL −0.71 [−1.20,−0.24] −2.47 [−3.93,−1.25] 1.37 [1.06, 1.77]
2 PGNUTS −0.32 [−0.75, 0.10] −2.55 [−4.23,−1.02] 1.39 [1.08, 1.77]
3 PMAIZMT −0.08 [−0.49, 0.33] −1.38 [−2.59,−0.25] 1.38 [1.09, 1.75]
4 PRICENPQ −0.21 [−0.55, 0.11] −1.80 [−2.92,−0.73] 1.34 [1.05, 1.72]
5 PSMEA −0.54 [−0.95,−0.15] −1.52 [−2.86,−0.32] 1.41 [1.10, 1.80]
6 PSOYB −0.52 [−0.94,−0.12] −1.59 [−2.85,−0.45] 1.41 [1.10, 1.81]
7 PWHEAMT −0.31 [−0.69, 0.03] −0.79 [−1.99, 0.30] 1.38 [1.08, 1.76]
8 PROIL −1.06 [−1.49,−0.63] −1.84 [−3.20,−0.55] 1.40 [1.09, 1.77]
9 POLVOIL −1.10 [−1.36,−0.86] −2.01 [−2.96,−1.17] 1.36 [1.07, 1.72]
10 PPOIL −0.54 [−1.10, 0.00] −1.16 [−2.98, 0.59] 1.39 [1.08, 1.75]
11 PSOIL −0.37 [−0.80, 0.05] −1.26 [−2.57, 0.06] 1.40 [1.09, 1.79]
12 PSUNO −0.26 [−0.85, 0.25] −1.95 [−3.56,−0.54] 1.30 [1.01, 1.66]
13 PBEEF 0.05 [−0.18, 0.31] −0.25 [−0.80, 0.33] 1.39 [1.09, 1.76]
14 PLAMB −1.00 [−1.23,−0.78] −1.46 [−2.24,−0.72] 1.38 [1.08, 1.76]
15 PPORK 0.27 [−0.35, 0.90] −0.43 [−1.81, 0.98] 1.38 [1.08, 1.76]
16 PPOULT 0.11 [−0.01, 0.23] 0.05 [−0.34, 0.44] 1.39 [1.09, 1.78]
17 PFISH −0.82 [−1.12,−0.53] −1.34 [−2.55,−0.26] 1.38 [1.07, 1.74]
18 PSALM −1.11 [−1.37,−0.85] −1.54 [−2.41,−0.83] 1.39 [1.09, 1.78]
19 PSHRI −0.11 [−0.36, 0.15] −0.61 [−1.50, 0.31] 1.37 [1.07, 1.75]
20 PBANSOP 0.29 [−0.73, 1.31] −0.74 [−1.93, 0.48] 1.36 [1.08, 1.73]
21 PORANG −1.11 [−1.85,−0.45] −0.58 [−1.93, 0.60] 1.37 [1.07, 1.75]
22 PSUGAISA −0.59 [−1.20, 0.00] −1.44 [−3.30, 0.32] 1.36 [1.07, 1.72]
23 PSUGAUSA −0.05 [−0.24, 0.15] −0.48 [−1.33, 0.43] 1.38 [1.07, 1.73]
24 PCOCO −0.63 [−0.98,−0.28] −0.18 [−1.23, 0.86] 1.38 [1.07, 1.75]
25 PCOFFOTM −0.06 [−0.55, 0.41] −1.15 [−2.77, 0.23] 1.38 [1.07, 1.75]
26 PCOFFROB −0.41 [−0.81,−0.04] −1.47 [−2.98,−0.19] 1.39 [1.07, 1.76]
27 PTEA −0.24 [−0.68, 0.20] −0.86 [−1.97, 0.38] 1.39 [1.09, 1.78]
28 PLOGORE 0.06 [−0.31, 0.48] 0.07 [−0.67, 0.83] 1.39 [1.09, 1.76]
29 PLOGSK −1.19 [−1.53,−0.85] −0.79 [−1.99, 0.34] 1.39 [1.08, 1.78]
30 PSAWMAL −0.82 [−1.11,−0.55] −0.97 [−2.01,−0.04] 1.39 [1.09, 1.76]
31 PSAWORE 0.22 [−0.13, 0.56] −0.08 [−0.58, 0.39] 1.40 [1.09, 1.79]
32 PCOTTIND −0.22 [−0.54, 0.11] −1.26 [−2.70,−0.01] 1.42 [1.10, 1.83]
33 PWOOLC −0.80 [−1.16,−0.46] −1.79 [−3.05,−0.72] 1.42 [1.09, 1.81]
34 PWOOLF −0.37 [−0.74, 0.00] −1.74 [−3.16,−0.53] 1.40 [1.08, 1.80]
35 PRUBB −0.79 [−1.30,−0.31] −3.02 [−4.66,−1.71] 1.42 [1.10, 1.81]
36 PHIDE 0.05 [−0.41, 0.55] −1.35 [−2.42,−0.32] 1.35 [1.06, 1.72]
37 PALUM −0.69 [−1.11,−0.29] −2.57 [−4.10,−1.33] 1.42 [1.09, 1.81]
38 PCOPP −1.19 [−1.66,−0.76] −1.94 [−3.46,−0.61] 1.37 [1.06, 1.72]
39 PIORECR −0.06 [−0.36, 0.23] −1.27 [−2.25,−0.36] 1.42 [1.09, 1.82]
40 PLEAD −1.12 [−1.60,−0.64] −1.66 [−3.23,−0.25] 1.35 [1.04, 1.71]
41 PNICK −1.01 [−1.63,−0.44] −2.93 [−5.01,−1.10] 1.41 [1.09, 1.80]
42 PTIN −0.99 [−1.33,−0.64] −1.32 [−2.73,−0.02] 1.40 [1.09, 1.78]
43 PURAN −0.31 [−0.84, 0.17] −1.82 [−3.69,−0.22] 1.46 [1.11, 1.89]
44 PZINC −0.75 [−1.22,−0.32] −1.06 [−2.74, 0.45] 1.40 [1.09, 1.77]
45 PCOALAU −0.27 [−0.78, 0.13] −2.30 [−3.84,−1.02] 1.33 [1.03, 1.69]
46 POILAPSP −0.81 [−1.38,−0.27] −1.51 [−2.88,−0.29] 1.39 [1.09, 1.78]
47 POILBRE −0.88 [−1.48,−0.30] −1.51 [−3.00,−0.21] 1.40 [1.10, 1.79]
48 POILDUB −0.70 [−1.27,−0.17] −1.43 [−2.83,−0.19] 1.39 [1.09, 1.78]
49 POILWTI −0.80 [−1.38,−0.24] −1.42 [−2.83,−0.15] 1.39 [1.09, 1.77]

Note: We report responses of level variables that are obtained by cumulative summing

responses of differenced variables. Long-run response functions are measured by the

25-period ahead response function estimates. 95% confidence bands are obtained by

taking 2.5% and 97.5% percentiles from 2000 nonparametric bootstrap iterations.
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Table 3.3: Dynamic Elasticity Estimates

ID IMF Code ηpe(∞) 95% C.I. Id IMF Code ηpe(∞) 95% C.I.
1 PBARL −1.80 [−2.74,−1.00] 26 PCOFFROB −1.06 [−2.02,−0.15]
2 PGNUTS −1.83 [−2.96,−0.80] 27 PTEA −0.62 [−1.46, 0.27]
3 PMAIZMT −0.99 [−1.81,−0.18] 28 PLOGORE 0.05 [−0.48, 0.62]
4 PRICENPQ −1.34 [−2.09,−0.56] 29 PLOGSK −0.57 [−1.37, 0.25]
5 PSMEA −1.08 [−1.90,−0.24] 30 PSAWMAL −0.70 [−1.35,−0.03]
6 PSOYB −1.13 [−1.93,−0.35] 31 PSAWORE −0.05 [−0.40, 0.28]
7 PWHEAMT −0.57 [−1.38, 0.22] 32 PCOTTIND −0.88 [−1.74,−0.01]
8 PROIL −1.32 [−2.22,−0.42] 33 PWOOLC −1.26 [−1.95,−0.55]
9 POLVOIL −1.47 [−2.13,−0.89] 34 PWOOLF −1.25 [−2.02,−0.43]
10 PPOIL −0.84 [−2.11, 0.42] 35 PRUBB −2.13 [−2.90,−1.34]
11 PSOIL −0.90 [−1.75, 0.05] 36 PHIDE −1.00 [−1.71,−0.24]
12 PSUNO −1.50 [−2.90,−0.39] 37 PALUM −1.82 [−2.63,−1.03]
13 PBEEF −0.18 [−0.58, 0.24] 38 PCOPP −1.42 [−2.29,−0.48]
14 PLAMB −1.05 [−1.59,−0.53] 39 PIORECR −0.90 [−1.58,−0.27]
15 PPORK −0.31 [−1.35, 0.70] 40 PLEAD −1.24 [−2.18,−0.20]
16 PPOULT 0.04 [−0.25, 0.32] 41 PNICK −2.08 [−3.33,−0.85]
17 PFISH −0.98 [−1.80,−0.19] 42 PTIN −0.94 [−1.90,−0.02]
18 PSALM −1.11 [−1.62,−0.62] 43 PURAN −1.25 [−2.29,−0.17]
19 PSHRI −0.44 [−1.14, 0.22] 44 PZINC −0.76 [−1.88, 0.34]
20 PBANSOP −0.55 [−1.46, 0.33] 45 PCOALAU −1.73 [−2.79,−0.77]
21 PORANG −0.42 [−1.32, 0.46] 46 POILAPSP −1.08 [−2.04,−0.21]
22 PSUGAISA −1.06 [−2.29, 0.25] 47 POILBRE −1.08 [−2.07,−0.15]
23 PSUGAUSA −0.35 [−0.96, 0.30] 48 POILDUB −1.03 [−1.99,−0.14]
24 PCOCO −0.13 [−0.91, 0.63] 49 POILWTI −1.02 [−1.95,−0.11]
25 PCOFFOTM −0.83 [−1.90, 0.19]

Mean: -0.98 Median: -1.02 skewness = -0.05 Kurtosis = 2.66

Note: The long-run dynamic elasticity ηpe(∞) is calculated by φpe(∞)/φee(∞). Long-

run response functions are again measured by the 25-period ahead response function

estimates. 95% confidence bands are obtained by taking 2.5% and 97.5% percentiles

from 2000 nonparametric bootstrap iterations. We employed the T-test and t=0.293.

52



Table 3.4: Price Stickiness Estimates- measure 1

ID IMF Code ηpe(∞)− ηpe(0) Id IMF Code ηpe(∞)− ηpe(0)
1 PBARL -1.09 26 PCOFFROB -0.64
2 PGNUTS -1.51 27 PTEA -0.38
3 PMAIZMT -0.92 28 PLOGORE -0.01
4 PRICENPQ -1.13 29 PLOGSK 0.62
5 PSMEA -0.54 30 PSAWMAL 0.12
6 PSOYB -0.60 31 PSAWORE -0.27
7 PWHEAMT -0.26 32 PCOTTIND -0.67
8 PROIL -0.25 33 PWOOLC -0.46
9 POLVOIL -0.37 34 PWOOLF -0.88
10 PPOIL -0.29 35 PRUBB -1.34
11 PSOIL -0.53 36 PHIDE -1.05
12 PSUNO -1.24 37 PALUM -1.12
13 PBEEF -0.23 38 PCOPP -0.23
14 PLAMB -0.05 39 PIORECR -0.84
15 PPORK -0.59 40 PLEAD -0.11
16 PPOULT -0.07 41 PNICK -1.07
17 PFISH -0.16 42 PTIN 0.04
18 PSALM 0.01 43 PURAN -0.93
19 PSHRI -0.34 44 PZINC -0.01
20 PBANSOP -0.84 45 PCOALAU -1.45
21 PORANG 0.68 46 POILAPSP -0.27
22 PSUGAISA -0.47 47 POILBRE -0.21
23 PSUGAUSA -0.30 48 POILDUB -0.33
24 PCOCO 0.50 49 POILWTI -0.22
25 PCOFFOTM −0.78

Mean: −0.47 Median: −0.37 Skewness: −0.01 Kurtosis: 2.66

Note: We employed the T-test and t= -6.543
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Table 3.5: Price Stickiness Estimates - measure 2

ID IMF Code ηpe(0)/ηpe(∞) Id IMF Code ηpe(0)/ηpe(∞)
1 PBARL 0.39 26 PCOFFROB 0.39
2 PGNUTS 0.18 27 PTEA 0.38
3 PMAIZMT 0.08 28 PLOGORE 1.24
4 PRICENPQ 0.16 29 PLOGSK 2.08
5 PSMEA 0.50 30 PSAWMAL 1.17
6 PSOYB 0.46 31 PSAWORE -4.04
7 PWHEAMT 0.54 32 PCOTTIND 0.24
8 PROIL 0.81 33 PWOOLC 0.63
9 POLVOIL 0.75 34 PWOOLF 0.29
10 PPOIL 0.65 35 PRUBB 0.37
11 PSOIL 0.41 36 PHIDE -0.05
12 PSUNO 0.17 37 PALUM 0.38
13 PBEEF -0.30 38 PCOPP 0.84
14 PLAMB 0.95 39 PIORECR 0.06
15 PPORK -0.88 40 PLEAD 0.91
16 PPOULT 2.87 41 PNICK 0.49
17 PFISH 0.84 42 PTIN 1.05
18 PSALM 1.00 43 PURAN 0.25
19 PSHRI 0.25 44 PZINC 0.99
20 PBANSOP -0.53 45 PCOALAU 0.16
21 PORANG 2.61 46 POILAPSP 0.75
22 PSUGAISA 0.56 47 POILBRE 0.81
23 PSUGAUSA 0.15 48 POILDUB 0.68
24 PCOCO 4.84 49 POILWTI 0.78
25 PCOFFOTM 0.07

Mean: 0.58 Median: 0.49 Skewness: −0.04 Kurtosis: 11.03

Note: We employed the T-test and t= -2.64
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Chapter 4

On the Robustness of the Impulse-Response Function of Recursively Identified VAR Models

Abstract

As pointed out by Lütkepohl (1991), the impulse response function from recursively

identified vector autoregressive models is not, in general, invariant to the ordering of the

variables in the VAR. This paper reports potentially useful facts that show under what

circumstances these impulse response functions are robust to this so-called Wold ordering.

We demonstrate that all response functions to innovations in a group of the variables with

known orderings are invariant to the order of remaining variables in the system among all

possible alternative orderings as long as the former group is ordered first. We demonstrate

that this fact applies to all recursively identified VAR models either by the short-run or by

the long-run restrictions. Same principle applies to the vector error correction models too.

55



4.1 Introduction

Since the seminal work of Sims (1980), the impulse-response function (IRF) analysis

for recursively identified Vector Autoregress (VAR) models has been frequently used in the

empirical macroeconomic literature. As pointed out by Lütkepohl (1991), for instance, the

IRFs are not invariant to the ordering of the variables in the VAR. That is, recursively

identified VAR analysis may be subject to the so-called Wold-ordering problem. Pesaran

and Shin (1998) introduced the generalized impulse-response function (GIRF) analysis for

linear VAR models. However Kim (2013) demonstrated that the GIRF actually generates

IRFs from a set of identifying assumptions that conflict each other.

This paper discusses potentially useful facts about the robustness of the IRF. Beard

et al. (2012) investigated the effect of an increase in kidney donations from deceased donors

on those from live donors. They show that the responses of live donantion and waiting times

to the deceased donation are invariant to the ordering of live donation and waiting time,

when the deceased donation is ordered first.

We extend these results to a more general framework. Suppose that there are two vectors

of endogenous variables in a VAR, xt and zt. xt comes with a known Wold ordering while we

don’t have any a priori information on the ordering for zt. The present paper demonstrate

that the IRFs to the variables in xt shocks are independent of orderings for zt. That is, any

arbitrary re-shuffling of zt is irrelevant to IRFs to xt shocks.

The organization of the present paper is as follows. Section 2 provides analytical demon-

strations for our major findings. In Section 3, we discuss the potential benefit of our findings.

Section 4 concludes.

4.2 Robustness

Consider the following VAR system with k endogenous variables.

yt = B1yt−1 + · · ·Bpyt−p + Cut, (4.1)
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where C denotes the lower-triangular matrix that governs the contemporaneous relationships

between the structural shocks, ut. We write yt as

yt = [xt, zt]
′ .

and we assume that xt is a l×1 vector of endogenous variables with a known Wold ordering,

while zt is a (k − l) × 1 vector of endogenous variables with no a priori information as to

the ordering.

Let F be the kp× kp state-space representation matrix of (4.1):

F =

 B1 · · ·Bp

Ik(p−1) 0

 ,
where Ik(p−1) is a k(p− 1)× k(p− 1) identity matrix, while 0 is a k(p− 1)× 1 null vector.

∂Etyt+h
∂ut

= Fkk(h)C, (4.2)

where Fkk(h) denotes the top-left k × k sub-matrix of Fh. The C matrix can be identified

by the following Choleski decomposition.

Σ = CC′, (4.3)

where Σ is the least squares variance-covariance matrix estimate, which is symmetric and

positive definite, thus C, its associated Choeski factor, is the unique lower-triangular matrix.
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4.2.1 Responses to a Scalar xt

Assume that xt is a scalar variable, that is, p = 1. (4.3) is then the following..

 σxx σxz

σxz Σzz

 =

 cxx 0

cxz Czz


 cxx c′xz

0 C′zz

 (4.4)

=

 c2xx cxxc
′
xz

cxxcxz cxzc
′
xz + CzzC

′
zz


Also, assume that q = 2, that is, zt = [yt, zt]

′
. It turns out that the Choleski factor for this

system is the following.

C =


√
σxx 0 0

σxy√
σxx

√
σyy −

σ2
xy

σxx
0

σxz√
σxx

σxxσyz−σxyσxz√
σ2
xxσyy−σxxσ2

xy

√
σzz − σ2

xz

σxx
− (σxxσyz−σxyσxz)2

σ2
xxσyy−σxxσ2

xy

 (4.5)

where σij denotes (i, j)th element of Σ. Note that the h-period ahead impulse-response

functions of all variables to the shock to the first variable is the following.


fxx(h) fxy(h) fxz(h)

fyx(h) fyy(h) fyz(h)

fzx(h) fzy(h) fzz(h)

 ∗

cxx

cxy

cxz

 =


cxxfxx(h) + cxyfxy(h) + cxzfxz(h)

cxxfyx(h) + cxyfyy(h) + cxzfyz(h)

cxxfzx(h) + cxyfzy(h) + cxzfzz(h)

 (4.6)

=


∂Etxt+h

∂ux,t

∂Etyt+h

∂ux,t

∂Etzt+h

∂ux,t

 ,

where fij(h) is the (i, j)th element of Fkk(h).

Suppose now that we change the ordering for zt = [yt, zt]
′

to z̃t = [zt, yt]
′
. That

is, we re-shuffle zt while keeping xt in the first. Note that there is no change in Fkk(h)
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other than locations of its elements, because F is obtained from a reduced form equation

by equation OLS estimations. Note also that the first column of C does not change other

than the locations of the second and the third components. That is, the h-period ahead

impulse-response functions of all variables to the shock to the first variable is,


fxx(h) fxz(h) fxy(h)

fzx(h) fzz(h) fzy(h)

fyx(h) fyz(h) fyy(h)

 ∗

cxx

cxz

cxy

 =


cxxfxx(h) + cxzfxz(h) + cxyfxy(h)

cxxfzx(h) + cxzfzz(h) + cxyfzy(h)

cxxfyx(h) + cxzfyz(h) + cxyfyy(h)

 (4.7)

=


∂Etxt+h

∂ux,t

∂Etzt+h

∂ux,t

∂Etyt+h

∂ux,t

 ,

which confirmed our claim for this tri-variate VAR. It is straightforward to see that the same

results apply to cases for any finite number q. In a nutshell, the impulse-response functions

to the variable ordered first are the same for any Wold-ordering for zt. One the contrary,

the response functions to the zt variables change when we shuffle the ordering for zt.

4.2.2 Responses to Shocks to xt Variables

Now consider the cases when p ≥ 2. For example, let xt = [xt, yt]
′

and zt = [zt, wt]
′
.

Then, the Choleski decomposition for this quad-variate VAR is the following.



σxx σxy σxz σxw

σxy σyy σyz σyw

σxz σyz σzz σzw

σxw σyw σzw σww


=



cxx 0 0 0

cxy cyy 0 0

cxz cyz czz 0

cxw cyw czw cww





cxx cxy cxz cxw

0 cyy cyz cyw

0 0 czz czw

0 0 0 cww


(4.8)

It turns out the first two columns of C are,
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cxx =
√
σxx, cxy =

σxy√
σxx

, cxz =
σxz√
σxx

, cxw =
σxw√
σxx

, (4.9)

and

cyy =

√
σyy −

σ2
xy

σxx
, cyz =

σxxσyz − σxyσxz√
σ2
xxσyy − σxxσ2

xy

, cyw =
σxxσyw − σxyσxw√
σ2
xxσyy − σxxσ2

xy

(4.10)

Note that re-shuffling zt = [zt, wt]
′

to z̃t = [wt, zt]
′
does not change the first two columns of

C other than the locations of its elements. Recall F(h) is ordering free so is Fkk(h). Because

the h-period ahead impulse-response functions to the shock to the first two variables, [xt, yt]
′
,

are determined by Fkk(h) and the first two columns of C, they are the same irrespective

to the Wold ordering for zt. Again, the response functions to zt variables are not robust

to different orderings for zt. Further generalization of p > 2 and q > 2 is cumbersome but

straightforward. The following remark summarizes.

4.2.3 Long-Run Assumptions

Blanchard and Quah (1990) proposed an identifying scheme that relies on the long-run

proposition in economics. Consider a reduced form VAR model

B(L)yt = εt

where B(L) = I − B1L − · · · − BpL
p. Let C be the Choleski factor of the symmetric and

positive definite matrix

B(1)−1ΣB(1)−1
′

(4.11)

Then the h-period ahead impulse-response function can be calculated by

Fkk(h)B(1)C, (4.12)
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where F again is the kp × kp state-space representation matrix and Fkk(h) denotes the

top-left k × k sub-matrix of Fh.

Consider a k-variate finite order VAR with [xt, zt]
′
. Given a known Wold ordering for

xt, it can be similarly demonstrated that the impulse-response functions to the xt variable

shocks are the same for any arbitrary orderings for zt. The same applies to VECM models

and VAR models with differenced variables.

4.3 Concluding Remarks

This study claims that all response functions to innovations in a group of the variables

with known orderings are invariant to the order of remaining variables in the system among

all possible alternative orderings as long as the former group is ordered first. Similarly we can

demonstrate this fact applies to all recursively identified VAR models either by the short-run

or by the long-run restrictions. Same principle applies to the vector error correction models

too.

61



Chapter 5

Conclusions

This dissertation focuses on quantitative methods and time series econometrics and their

application to Applied Macroeconomics fields such as international finance and commodity

prices. In the first chapter I studied time series properties of national stock prices using newly

developed econometric techniques including nonlinear panel unit root tests. I believe my

empirical findings in this chapter provide useful implications for international asset market

participants. In the second chapter, I studied the impact of exchange rate shock on the

commodity prices using VAR (Vector Autoregressive) Model, a forecasting technique in time

series analysis. The findings in this chapter has important policy implications especially for

the developing countries. The third chapter adds important technical contributions to the

existing multivariate time series model literature that all response functions to innovations

in a group of the variables with known orderings are invariant to the order of remaining

variables in the system among all possible alternative orderings as long as the former group

is ordered first.
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