

Risk Assessment in Software Release Practice in Public Organization
Information Management Systems

by

Vivian L. Martin

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 12, 2015

Keywords: risk assessment in software release practice, software quality, software
implementation, software process, maturity models, software risk models

Copyright 2015 by Vivian L. Martin

Approved by

Linda Dennard, Chair, Professor of Political Science and Public Administration, Auburn
University at Montgomery

Cynthia Bowling, Professor of Political Science
Joseph Vonasek, Assistant Professor of Political Science

James Nathan, Professor of Political Science and Public Administration, Auburn
University at Montgomery

Michael W. Kometer, PhD, Principal Systems Engineer, MITRE Federally Funded
Research and Development Corporation, Montgomery (Professor of Air and Space

Technology at the School of Advanced Air and Space Studies, retired, Maxwell AFB)

ii

Abstract

 The purpose of this paper is to document the United States Air Force’s (USAF)

approach to risk assessment of software during the release phase of development and to

provide material to support improvement recommendations in the USAF approach. The

USAF faces the problem common to all software development projects in that its

organizations must decide how much to test software before releasing it for its intended

purpose. At issue is the accurate assessment of risk that supports decision making and

leads to the appropriate use of resources for testing, including other quality control

measures, and the appropriate acceptance of residual risk at the time of software release.

Organizations that carry out risk assessments are accountable for the efficient and

effective allocation of resources to risk reduction, which makes fidelity in risk assessment

a worthy endeavor for accountability in public administration. The research methodology

was informed by grounded theory and generative social science (Charmaz, 2008; Epstein,

2006) and included lesson drawing (Rose, 1993), and affinity diagramming (Straker,

1995).

This work provides a literature review cast with a wide net to address risk

assessment at the intersection of software development and a public administration

environment. The result is a list of both broad and specific ways in which a USAF

method of risk assessment for software can be improved, an initial version of a software

defect prediction model constructed from the analysis results, and a list of high-level

iii

steps to add the practice of modeling to the tool kit of USAF software professionals. The

steps can be pursued with minimum commitment, by building upon the initial model for

software defect prediction and adding the modeling to risk assessment tasks, in

furtherance of the objective of the research. Additionally, this research provides

suggested entry points to public administration topics suitable for further research with

applicability to software development in the public sector.

iv

Acknowledgments

I am grateful to my parents and spouse for their support across time and space. I

am also grateful for the help of my patient and encouraging committee chair, the

members of my committee, and colleagues in my professional endeavors. The collective

support from family, professors, and colleagues has made this work possible. I thank you

all from the bottom of my heart.

v

Table of Contents

Abstract ... ii

Acknowledgments.. iv

Chapter 1: Introduction ... 1

Chapter 2: Description of Problem and Research ... 5

Chapter 3: Literature Review .. 7

The US Air Force’s Risk-Assessed Level of Test Approach 7

Risk Assessment in Software .. 24

Relevant Public Administration Theory ... 65

Chapter 4: Hypothesis ... 90

Chapter 5: Research Method ... 91

Grounded Theory .. 91

Generative Social Science ... 92

Lesson Drawing .. 94

Affinity Diagramming .. 97

Trends ... 97

Research for RALOT .. 99

Chapter 6: Question 1 ... 101

Chapter 7: Question 2 ... 107

Chapter 8: Question 3 ... 116

vi

Chapter 9: Question 4 ... 129

Chapter 10: Summary and Conclusions .. 132

Future Research .. 133

References ... 140

vii

List of Tables

Table 1. Categories of Weight and Score ..18

Table 2. Output of Risk Graph Values for Defects Inserted ..122

Table 3. Output of Risk Graph Values for Defects Found in Testing123

Table 4. Output of Risk Graph Values for Residual Defects ...125

Table 5. Output of Risk Graph Values for Defects Found in Operations126

viii

List of Figures

Figure 1. Standardized report format ...17

Figure 2. Concepts: Key words and phrases. ...104

Figure 3. Comparison checklist, Version 1. ...105

Figure 4. Checklist and RALOT notes. ...108

Figure 5. Recommendations for concepts ..112

Figure 6. Reasoning to be pessimistic or optimistic. ...114

Figure 7. RALOT scenario for defect prediction model. ...118

Figure 8. AgenaRisk graphs. ..121

Figure 9. Counters to criticism...129

ix

List of Abbreviations

AFOTEC Air Force Operational Test and Evaluation Center

CMU Carnegie Mellon University

DoD Department of Defense

DoDAF Department of Defense Architecture Framework

DoDI Department of Defense Instruction

EA Enterprise Architecture

FOSS Free and Open Source Software

GAO General Accounting Office, after 2004 Government Accountability Office

IT Information Technology

MIL-STD Military Standard

MODIST Models of Uncertainty and Risk for Distributed Software Development

RALOT Risk Assessed Level of Test

RBS Risk Breakdown Structure

USAF United States Air Force

1

Chapter 1: Introduction

 The purpose of this paper is twofold:

• document the United States Air Force’s (USAF) approach to risk assessment of

software during the release phase of development and

• provide material to support improvement recommendations in the USAF

approach.

The expectation for this research was that additional methods could be adapted to the

USAF’s needs and over time incorporated into USAF practice. A primary motivation for

this research was firsthand experience with software development in a public

administration environment and the researcher’s professional desire to improve the

overall performance of software projects with a contribution of information, methods,

and practical recommendations.

 The USAF faces the problem common to all software development projects in

that its organizations must decide how much to test software before releasing it for its

intended purpose. At issue is the accurate assessment of risk that supports decision

making and leads to the appropriate use of resources for testing, including other quality

control measures, and the appropriate acceptance of residual risk at the time of software

release. Organizations that carry out risk assessments are accountable for the efficient

and effective allocation of resources to risk reduction, which makes fidelity in risk

assessment a worthy endeavor for public administration.

2

Federal spending on information technology (IT) is planned to be $86 billion in

2016, of which $37 billion is DoD spending (Office of Management and Budget, 2015, p.

281). Spending on IT has slowed in growth from 7.1 percent annually over the period

2001-2009 to 1.5 percent annually for the period 2009-2016, attributed in part to

improving efficiencies (p. 281). This reflects an ongoing national-level interest in

efficiencies traced to IT expenditures. High fidelity risk assessment can influence testing

and other quality assurance measures to guard against unnecessary expenditures.

This work provides a literature review cast with a wide net to address risk

assessment at the intersection of software development and a public administration

environment. The research methods chosen are reviewed, as well. The research

methodology was informed and compiled from emergent methods and grounded theory

(Charmaz, 2008), generative social science (Epstein, 2006), and included tools and

techniques from affinity diagramming (Straker, 1995) and lesson drawing (Rose, 1993).

Use of affinity diagramming and lesson drawing led to the introduction of additional

methods from Bayesian network modeling (Fenton & Neil, 2013). The result is a list of

both broad and specific ways in which a USAF method of risk assessment for software

can be improved, an initial version of a software defect prediction model constructed

from the analysis results, and a list of high-level steps to add the practice of modeling to

the tool kit of USAF software professionals. In furtherance of the objective of the

research, the steps can be pursued with minimum commitment, by building upon the

initial model for software defect prediction and adding the modeling to risk assessment

tasks, providing recommendations for improvement. Additionally, this research provided

3

suggested entry points to public administration topics suitable for deeper research and

applicable to software development in the public sector.

This dissertation is composed of 10 Chapters, with Chapter 1 being this

introduction. The other chapters are as follows:

Chapter 2 describes the problem and provides an overview of the research.

Chapter 3 is the literature review and covers an USAF risk assessment process for

testing organizations, risk assessment in the software development domain, and relevant

topics from public administration including defense perspectives.

Chapter 4 presents the hypothesis, composed based on emergent methods

(Charmaz, 2008). The hypothesis is that the USAF RALOT model can be improved due

to recent research and application developments.

Chapter 5 provides research methods consulted for this research, research trends

in public administration research, and the specific research questions.

Chapter 6 answers Question 1, which is: What does a review of the literature

reveal about improvement opportunities in the way of risk assessment and predictive

methods?

Chapter 7 answers Question 2, which is: For selected methods, what does a

comparison with RALOT content reveal about specific opportunities for improvement?

Chapter 8 answers Question 3, which is: Can initial versions of specific

improvements to RALOT be constructed from the results of the analysis?

Chapter 9 answers Question 4, which is: What steps would be needed to refine

and validate the initial version for actual use?

4

Chapter 10 contains a summary, conclusions, and opportunities for further or

deeper research.

5

Chapter 2: Description of Problem and Research

The Unites States Air Force (USAF) faces a problem common to all software

development projects in that its organizations must decide how exhaustively software

should be tested before it is released for its intended purpose. Critical to the process is

the accurate assessment of risk. It is the level and degree of risk which supports decision

making and leads to the determination of the appropriate resources for testing, including

other quality control measures, as well as the acceptance of the appropriate level of

residual risk at the time of software release. Organizations that carry out risk assessments

are accountable for the efficient and effective allocation of resources to accomplish risk

reduction. This makes fidelity in risk assessment a worthy endeavor for public

administration.

The research conducted here consists of a literature review of subjects related to

software development in public administration and defense settings. Considering

software development, the topics fan out from their potential in dealing with risk,

including software risk assessment, modelling techniques, software quality, software

testing, process maturity models, and software project management. Viewed from the

perspectives of public administration and defense, topics crosscut subjects rising out of

the environment addressed in this research. This includes theories of organization,

systems, decision making, project management and implementation, policies and policy

development, risk assessment, accountability, and defense applications and technology

environments for information superiority. The study also includes ideas and concepts

6

drawn from the literature used to guide comparison and model building and used to

organize and aid the research process. Those include sources of risk, finding and

anticipating risk, gauging risk, mitigating risk, and criticisms. Additional specific

variables for modeling arose in the form of design process quality, problem complexity,

defects inserted, testing quality, defects found and fixed, residual defects, operational use,

and defects found in operation (Fenton & Neil, 2013). The study includes model

development for analysis. Model development is mapped between USAF project

characteristics and Fenton and Neil (2013) work specific to defect prediction, with the

prediction of defects remaining to be found in operations a potential measure for residual

risk and improved accuracy in risk assessment. Findings indicate that the USAF’s

method of risk assessment can be improved by employing recent developments in

modeling software organizations’ characteristics that relate to software defects by using

Bayesian network modeling. Future research suggestions include calibrating the Fenton

and Neil (2013) model data with Air-Force-specific data and employing the research

methodologies associated with grounded theory and generative social science (Charmaz,

2008; Epstein, 2006). These approaches can potentially contribute to continuous

improvement in risk assessment and consequently the use of risk assessments in decision

making for software releases and testing formalities.

7

Chapter 3: Literature Review

The literature addressing the research topic being presented can generally be

considered as consisting of three separate areas. First is the documentation of the

USAF’s approach to risk assessment in software projects. Second is the collection of

material related to risk assessment in software development. And third is a collection of

public administration material that contributes to the context of software programs, such

as accountability in public agencies. These three areas focus the research on the

environment of practice and the intersecting perspectives of theory from software

engineering and public administration.

The US Air Force’s Risk-Assessed Level of Test Approach

This section is devoted to the case of the USAF’s Risk Assessed Level of Test

(RALOT) model for assessing risk in a software system component that is in the pipeline

for release. RALOT is a case in point, in practice, maintained and carried out by test

professionals charged with planning for system tests. Software systems subjected to

operational testing in the USAF are typically acquired and developed under U.S.

Department of Defense Instruction (DoDI) 5000.02, Operation of the Defense

Acquisition System. This instruction manual is maintained by the Under Secretary of

Defense (Acquisition, Technology, and Logistics; DoDI 5000.02, p. 1). Further, 5000.02

references a collection of 82 additional tomes of policy, procedures, instructions, memos,

directives, regulations, and concepts of operation (DoDI 5000.02, pp. 8-11). The test

professionals that use RALOT are subject to this set and numerous others that branch

8

from them. The additional collections are unique to their organizations, are recognized

best practices, or form tacitly through combination and practice.

The Air Force Operational Test and Evaluation Center (AFOTEC) is

headquartered at Kirtland Air Force Base, New Mexico. AFOTEC is charged with

implementing testing policy for the U.S. Department of Defense (DoD) and the Air Force

by planning and executing the operational testing of software systems. The AFOTEC

mission statement is as follows: “AFOTEC tests and evaluates new warfighting

capabilities in operationally realistic environments, influencing and informing national

resource decisions” (www.AFOTEC.af.mil, Last updated: Feb 7, 2014, p.1).

AFOTEC is an independent test organization whose responsibilities include

testing in many acquisition scenarios including aircraft-centric weapon systems,

communications, software systems, and systems of systems (Kometer, Burkhart, McKee,

& Polk, 2011). Kometer et al. provided an updated perspective of USAF testing as

impacted by the arrival of the Information Age, the interoperability of systems across

networks, and the concept of capability as a collection of interoperating systems, or

system of systems. Kometer et al. discussed the basic responsibility of the test

professional to make recommendations to decision makers about how to proceed with the

capability under test. That recommendation stems from a prediction about whether or not

a system, or a system of systems, will perform as expected once fielded. These

recommendations are subject to error in that testing outcomes may fail a worthwhile

capability or accept a deficient and possibly harmful one (p. 41). Such recommendations

are complicated by the onset of networked systems interacting to produce a capability

that is delivered in degrees, a characteristic of the Information Age. The authors call for

http://www.afotec.af.mil/

9

creative means such as distributed testing, system of system testing infrastructure, and

combined testing and training events to be used to support future decision makers’ need

to “gauge effectively the risks involved with their decisions for fielding new capability”

(p. 48). In addition to testing, a method of risk assessment in practice is RALOT. The

RALOT method does not address the need to reorient test objectives from localized

system requirements to system of system capabilities. The method is instead aimed at

software components or software intensive systems, but could potentially be augmented

with improvements that could positively contribute to better decision making about

fielding of capabilities, in the Information Age, that include software.

Other USAF organizations are responsible for testing activities, as well. One such

organization is the 605th Test and Evaluation Squadron (TES) a member of the 505th

Command and Control Wing located at Hurlburt Field, Florida. The 605th testing

activities include independent operational testing for a subset of USAF intelligence,

surveillance, and reconnaissance systems as well as performing test management duties

for the USAF Warfare Center and Air Combat Command (USAF 505th Command and

Control Wing, 2013).

AFOTEC and the 605th TES have maintained and used the RALOT model of

determining risk associated with software. RALOT materials facilitate implementation

of the policy document titled, Guidelines for Conducting Operational Test and Evaluation

for Software-Intensive System Increments. The guidelines were circulated as an

attachment to a memorandum from the Director of DoD Operational Test and Evaluation

and addressed to, among others, the testing organizations of the USAF, including

AFOTEC (Guidelines, 2003; Office of the Secretary of Defense, 2003). This 2003 memo

10

was superseded (Guidelines, 2010; Office of the Secretary of Defense, 2010);

Differences introduced by the 2010 version are addressed in a subsequent paragraph and

in general, were intended to streamline procedures.

The terminology of RALOT appears in policies, procedures, and instructions for

systems professionals. The primary sources used for a basic description of RALOT are a

presentation designed to train testing personnel in the use of the model, including its

accompanying documentation, and a spreadsheet designed to capture data relevant to the

risk assessment. The material in the primary sources dates from 2010 to 2014, although

it is not clear when RALOT first matured into a repeatable method with an associated

taxonomy of risk indicators. However, McQueary, in his capacity as director of

Operational Test and Evaluation, provided an interview on the subject of testing to

Defense Acquisition, Technology, and Logistics, in which he mentioned that RALOT had

been in use for several years (McQueary, 2008). Elucidating documents on RALOT are

as follows:

• “Risk Analysis Level of Test (RALOT) Process,” a PowerPoint presentation

authored for the 605th TES and used to brief facilitators. (Sweda & Ratcliffe,

2010)

• “605 TES Risk Assessment Level of Test (RALOT) Process Guidelines,” a

document authored as integrating and supplemental instruction. (Sweda &

Ratcliffe, 2014a)

• Spreadsheet with file name: “CalculatedRALOT(MASTERJan14).xlsx”

which is a multitab Excel product used for data entry and presentation of

questionnaire responses. (Sweda & Ratcliffe, 2014b)

11

Significant to the understanding and roots of the RALOT model are 14 pages of

guidelines in which the word risk appears 38 times (Guidelines, 2003), an indication of

the central theme’s concentration.

The summary that follows consists of (a) the basic categorization of risks

associated with software as noted by policy makers, (b) the synthesis of risk sources and

means to uncover them into procedures for test professionals, (c) the components of a

tactical aid in carrying out an assessment, and (d) the resulting judgment of how much

testing is appropriate. Of note is the underlying motivation for the update to policy that

the guidelines represent. The background speaks to the increased use of commercial

software products and initiatives to streamline acquisition as a call for more responsive

approaches to operational testing (Guidelines, 2003, p. 1). The trajectory for streamlining

continued in the 2010 version, while the basic guidelines and concepts endured

(Guidelines, 2010).

The guidelines provide several definitions that bound scope and focus

practitioners regarding the nature of their work (Guidelines, 2003). In effect, the policy’s

definitions establish conceptually their applicability to those whose organizations

perform testing tasks for software-intensive systems. The qualification of risk as

operational and the qualification of software as an increment provide scope to a variety of

activities that produce software. The software is presumed to be “militarily useful”

(Guidelines, 2003, p. 1) and as an increment is presumed to be on an acquisition track

headed to mission users. Two definitions form the crux of this understanding:

operational risk and increment.

12

• A basic definition of operational risk is “a compound function of the

likelihood and mission impact of an increment’s failure to be operationally

effective and suitable” (Guidelines, 2003, p. 1).

• A basic definition of increment is as follows:

An increment of a software-intensive system is a militarily useful and

supportable operational capability that can be effectively defined,

developed, deployed, and sustained as an integrated entity or building

block of the target system. An increment may be composed of one or

more spirals or other developmental elements (Guidelines, 2003, p. 1).

The categories of risk are suggested and reflect aspects of the source of that risk:

software production, software characteristics, and operational concerns. Each of the six

categories identified is clarified by a series of questions that, when answered, deepen test

professionals’ knowledge of what will be tested. Generalizing from the questions

provides a high-level definition of the categories, as follows:

Development. Characteristics related to the processes followed by the parties

contributing to the production of the software increment are considered developmental.

For example, the questions tie to software developers’ quality programs, mission owners’

approaches to producing and specifying their requirements, and developers’ and mission

owners’ approaches and results from early stage testing, such as prototyping and

integration (Guidelines, 2003, pp. 5-6).

Implementation. Challenges to the user and the benefiting organization in

folding the software into their mission are considered implementation. For example,

questions tie to the preparation and commitment of the users, in terms of personnel skill

13

needs, and the organizations, in terms of operating policies and procedures. A question

notably establishes the recognition that changes to business processes can be associated

with the increment and can drive preparation needs (Guidelines, 2003, pp. 6-7).

Technology. Generic attributes of the technologies employed in the increment are

considered under the heading of technology. For example, dependencies, “commercial

tempo of change” (Guidelines, 2003, p. 7), maturity, integration aspects, source of

technology, and performance history figure into the questions (Guidelines, 2003, p. 7).

The administration capabilities present in the technology are also considered.

Complexity. This category allows for the introduction of complexity measures

across the spectrum of measureable and heuristic scales. For example: “industry standard

complexity metrics” (Guidelines, 2003, p. 7), counts of organizations, proportional and

cumulative change to system components, numbers of technical integration points and

external interfaces, changes to operating systems-level components, modification of low-

level data structures, and the aspects of user interactions with the software (Guidelines,

2003, pp. 7-8).

Safety. A single question focuses on concern for safety regarding hazards to

human operators and their environment from using the system (Guidelines, 2003, p. 8).

Security. Assurances form the basis for the security category in that the system

can be protected, does not introduce vulnerabilities, protects data to the respective

classification level, and does not allow external systems to have unauthorized access

(Guidelines, 2003, p. 8).

In summary, the contribution of these guidelines to the overall focus of risk

assessment is in its organizing principles reflected in the categories above and in the

14

specificity offered by the question set that accompanies each category. In addition to

scope, the guidelines clearly establish risk assessment as an input to test planning for an

increment of software. This mentality did not shift with the superseding memo and

update (Guidelines, 2010; Office of the Secretary of Defense, 2010). The changes

introduced clarified the distinction of business and information systems from other

systems that have risks related to the “potential for loss of life” (Guidelines, 2010, p. 1).

Making this distinction contributed to streamlining the guidance with the removal of the

Level IV category of tests, an implementation change for the RALOT model.

Although the questions posed in the 2003 guidelines serve to focus a risk

assessment and place it in an overarching order with test execution, the training slides

also provide a bridge to the practice of uncovering specific sources of risk (Sweda &

Ratcliffe, 2010). The RALOT process presentation’s target audience includes testing

professionals charged with the decision making associated with selecting testing

formalities. The presentation provides the professionals with the rationale for performing

the tasks found in the guidelines, drills into the processes, and steps through a

spreadsheet-based tool that aids in the collection of inputs that support the assessment.

(Sweda & Ratcliffe, 2014b) The presentation and accompanying documents also provide

an approach for direct connections between knowledge of the system, a scoring

mechanism, and a model for interpreting results, with emphasis on the continuous nature

that risk assessments should imbue (Sweda & Ratcliffe, 2010; 2014a, p. 1).

The activity of gathering inputs and data received detailed support in a

spreadsheet-based tool: Calculated RALOT (Sweda and Ratcliff , 2014b). This support

tool specifically aligns the guidelines’ (Guidelines, 2003; 2010) suggested categories,

15

questions, and probability and impact ranges into a score sheet. It was influenced, as

well, by other material from Sweda and Ratcliff’s research and experience as test

professionals. The spreadsheet contains five tabs. The first tab provides the summary

view of the assessment and the spreadsheet creators took advantage of features in Excel

that allow predetermined lists of values, color coding based on responses, calculations

across cells, and sorting for content of cells. The first tab includes visibility of all

allowable values as well as suggestions for categorizing risk factors and instructions for

modifying the spreadsheet to account for software increment specifics. Test

professionals can capture risk factors in the spreadsheet rows and characterize them using

common themes and in support of the larger process described in Sweda and Ratcliff

(2010, 2014a).

The spreadsheet supports the larger process with columns and calculations leading

up to the choice of the appropriate level of test. A recommended level of test can be

assigned at the risk factor level, allowing for multi-level test events to be planned. The

first column is designated for a text description of the risk factor. Risk factors are

revealed through the larger step-by-step process and Sweda and Ratcliffe’s rule of thumb

is that the number of factors should be no more than 10 (2014a, p. 4). The second

column is designated for a risk category and may include labels tailored to the program,

development phases producing the risk, program management topics (e.g., training and

funding), or operational topics (e.g., readiness for network-centric environments). The

third column is designated for a description of how the risk’s associated failure may be

observed, should it surface in operations. The fourth and fifth columns are designated for

mission impact and likelihood of occurrence, respectively. In addition to common risk

16

numerics, that is the product of impact times probability, the sixth column is designated

as a rating of the difficulty that could be encountered in attempts to expose a flaw

associated with this risk. Columns for impact, probability, and detection rating form the

inputs to a risk priority calculation that is contained in the seventh column. There is an

additional column for recording a risk mitigation strategy. The result of a test

professional completing the spreadsheet is a commonly formatted record, with common

terminology, that supports the test team’s determination of an appropriate level of test.

Table 1 contains the terminology for the parameters of the risk priority

calculation. Each term equates to a number with lowest numbers indicating minor

impact, low probability, and reliable detection methods, while highest numbers indicate

the opposite end of the spectrum. An exception to the scaling is that mission impact

parameters rise by a greater interval with greater impact. This results in a greater weight

for higher impact parameters. The intervals for impact are 1, 3, 7, and 10, rather than a

linear 1, 2, 3, and 4 (Sweda & Ratcliffe, 2014b, p. 1). Multiplying a number from each of

the parameter types results in a product that can be used to rank order the risk factors,

which in turn points to mitigation and testing efforts to be commensurate with perceived

risk. Further the ranking calculations are color coded green (less than 8 is low risk),

yellow (between 9 and 17 is moderate risk), and red (greater than 17 is high risk) as a

visual aid (p. 1).

The spreadsheet includes a standardized presentation format for the results of an

assessment and the application of the assessment to the choice of testing level. Figure 1

depicts the format for results and provides an example of the color coding (Sweda and

Ratcliff, 2014a, p. 8).

17

Table 1

Categories of Impact, Likelihood, and Detection

Mission Impact Likelihood of Occurrence Detection Rating
Minor Very Low Easy

Significant Low Standard
Severe Moderate Complicated

Catastrophic High May Not Find
 Very High

Note. Data are from Sweda and Ratcliffe (2014b).

Figure 1. Standardized report format. 605 TES Risk Assessed Level of Test (RALOT)
Process Guidelines, by Sweda and Ratcliffe, 2014a. [used with permission]

The spreadsheet and ranking are not intended to be developed or used in isolation.

Sweda and Ratcliffe provided step-by-step instructions for using the spreadsheet in the

605th’s process guidelines. (2014a) While the spreadsheet does contain important

definitions of terms and a tab devoted to interpreting the test levels, specific

recommendations and details on its use are provided as a process description.

Brainstorming and a questionnaire that expounds on questions provided in Guidelines

(2003, 2010), are provided in the process document along with phases for the execution

of activities, how activities relate, and examples of testing circumstances to aid and

clarify labeling.

Additional concepts for measures, sources, and degrees of risk from Guidelines

(2003) provide a helpful backdrop for the 605th’s RALOT process. These include

18

mission impact, context, probability of occurrence, and placement of occurrence (when in

development process), also, notions such as core increment and others. The Guidelines

concepts are described below:

Weight, or impact to mission, can have a value ranging from least to most, and

likelihood can also have values ranging from least to most. Impact to mission or weight

is defined as “the impact of the possible failure of the new increment on the mission of

the whole system” (Guidelines, 2003, p. 8). In this context, whole system is used in the

broadest sense of a system, which is any generic and holistic combination of humans,

tools, processes, and environment related in an aspect of function.

Probability of occurrence is a concept derived from the compounding of threats to

success, which is where the categories of development, implementation, technology,

complexity, safety, security, and their respective characteristics come into play. As flaws

in process, preparations, and applied technologies, as well as the human elements of skills

and commitment, accumulate, the probability of failure of the increment also rises.

Additionally, the guidelines’ narrative (Guidelines, 2003) emphasizes the roles of

increment size (smaller is less risky) and complexity (complicated relationships are more

risky).

Another useful concept from the guidelines is called core increment (Guidelines,

2003). A core increment is an exception in that it, by this policy, must be subjected to

full operational testing. The core increment of a system “normally consists of basic

hardware, system software and tools, and fundamental applications” (Guidelines, 2003, p.

1). Subsequent increments, then, are the object of a decision about the degree of testing

to be performed.

19

A central illustration of Guidelines (2003) was the matrix that models degree of

test as a function of effect on mission and failure potential. Each cell of the matrix

contains a test level labeled with Roman numerals I through IV. Those definitions are

explained further in the guidelines document and “are provided as examples, rather than

requirements” (Guidelines, 2003, p. 10). The four levels are as follows:

Level I: The least amount of dedicated operational testing resources is required

for testing at this level. In a Level I test, the results from developmental testing efforts

have considerable credibility. Development contractors are permitted to participate, the

presence of a validated recovery plan mitigates failure possibilities, size and complexity

are minimal, limited early fielding efforts are permitted, and test responsibility can be

delegated (Guidelines, 2003, p. 10).

Level II: Enough operational testing resources to perform over-the-shoulder

participation in developmental testing are required in a Level II test. This means that the

operational test personnel are allowed to provide additional test scenarios to the

developmental test team and observe any test activities. Development contractors are

allowed to participate, limited early fielding is a source of test feedback, and minor risk

associated with software improvements qualifies the increment for Level II testing.

Reporting procedures keep upper-level management informed (Guidelines, 2003, p. 11).

Level III: The amount of operational testing resources required, in addition to

time, includes increased expertise in the areas of mission, testing, and systems. Level III

tests include an independent testing phase or phases, test preparations and execution for

well-scripted test events, potentially more than one test site, and an increased emphasis

on the realism of the test. Responsibility and supervision of latter phases of the test are in

20

the complete control of the independent testing organization. In reporting, independent

evaluations of the operational effectiveness and suitability of the increment accompany

fielding decisions (Guidelines, 2003, pp. 11-12).

Level IV: Level IV tests drive the highest resource requirements for stakeholders

and the testing organization. A Level IV test is reserved for the riskiest attempts to field

an increment. Additional parameters for operational effectiveness and suitability may be

introduced. Independently collected operational test data are broad in scope and receive

the highest consideration. The increment may be described as new. Although full

constraints are imposed, testing professionals may deem parts of the increment suitable

for a lower level of testing (Guidelines, 2003, p. 12).

With the 2010 version of Guidelines, came the streamlining of test levels to

account for the distinctions of information and business systems when compared to other

types of traditional weapon systems (p. 1). This is a key difference in the newer

guidelines which allowed for substitution of three levels of test for information and

business systems. The three test levels are comparable to the original Level I through III

with the exception that the newer Level III test is the most rigorous level described as

applicable to an information and business system. Level IV testing is dropped from the

2010 guidance and is not included in the Calculated RALOT tool or test level

interpretations (Sweda & Ratcliffe, 2014b, p. 1 & 5).

The 605th’s process guide and tool introduce additional interpretations to aid the

interviewing and decision-making roles (Sweda & Ratcliff, 2014a; 2014b). The

abbreviated descriptions in the spreadsheet, for example, expose the rigor of the test

environment and test scenarios. The spreadsheet describes a progression from a

21

development test environment to an operational test environment occurring as the levels

of test increase. This indicates that the fidelity of the testing efforts compared to the

reality of the fielded system increases with test level designation (p. 5). It is the 605th

process guide that explains the cohesive execution of the work to recommend a test level

from risk assessment (Sweda & Ratcliffe, 2014a). The step-by-step process consists of

phases for the execution of activities, indicates how activities relate, and provides

examples of testing circumstances to clarify labeling. The phases mapped to the

spreadsheet are identification, analysis, mitigation, test level determination. Across these

phases are 11 distinct steps that include directions for data entry into the spreadsheet (pp.

4-7); they are:

Step1 initiates the identification phase and is to review documentation about the

software and its operations obtained from the system’s program office (Sweda &

Ratcliffe, 2014a, p. 4).

Step 2 is to compile potential areas of risk. A brainstorm session with team

members assembled from testing, subject matter experts, system operators, and

developers is suggested as a method for identifying candidates (Sweda & Ratcliffe,

2014a, p. 4).

Step 3 is to narrow the potential risk areas into risk factors. Considerations for

this step include critical operational needs specific to the system and failure points, as

well as the input from questionnaires, documentation, and brainstorming. These risk

factors are entered into the first column of the spreadsheet (Sweda & Ratcliffe, 2014a, p.

4).

22

Step 4 is to categorize the risk factors using the suggested terms of “design &

development, net-ready, operational effectiveness, operational suitability, operational

environment, programmatic, and other” (Sweda & Ratcliff, 2014a, p. 4). The categories

are entered into the second column of the spreadsheet

Step 5 initiates the analysis phase and is compilation of a description of how the

potential failure manifests for the user, called “failure mode” (Sweda & Ratcliff, 2014a,

p. 4). The text describing the user’s experience with a failure is entered into the third

column.

Step 6 is the assessment of the risk factor’s potential impact to the system as a

whole or in its role as a member of a system of systems and includes critical operational

issues. Impact is a number reflecting minor to catastrophic consequences that is entered

into the fourth column (Sweda & Ratcliffe, 2014a, p. 5).

Step 7 is determination of the probability and likelihood of failure from potential

threats to success of the effort and is described as a judgment call aggregating from

cumulative threat effects. Each failure mode figures into the determination independently

and can apply during test execution or as has potential for mission operations.

Likelihood of occurrence is a number reflecting very low to very high probability entered

into the fifth column (Sweda & Ratcliffe, 2014a, p. 5-6).

Step 8 is assignment of a detection rating relating to the reliability of the methods

of revealing the failure modes and marks the beginning of the risk mitigation phase.

These ratings are taken from the effort and tools available and necessary to detection.

They range from scenarios where tools are easily and simply executed to situations where

complications may lead to variations in methods and test results. The least reliable

23

situation is that in which a failure mode is designated as one that may escape detection.

The rating is entered in the sixth column (Sweda & Ratcliffe, 2014a, p. 8).

Step 9 is the examination of the calculated risk priority, the number that indicates

the rank of the risk is terms of its potential to cause harm. This calculation is color coded

in the seventh column and may be sorted from highest to lowest to accentuate the highest

priority risks. This indicates which risks should be first for mitigation activities (Sweda

& Ratcliffe, 2014a, p. 7).

Step 10 is to develop strategies for mitigating the risk factors. This entails

proposed ways of reducing the potential impact or occurrence of a failure. Multiple

options may apply and generally speaking include accepting the risk level as is,

monitoring the risk for changes in circumstances before mitigating, researching to

improve on estimates or reduce unknowns, transferring the responsibility for the risk to

others, or choosing a specific mitigation method to act upon. Test descriptions of

mitigation are entered into the eighth column (Sweda & Ratcliffe, 2014a, p. 7).

Step 11 marks the completion of the phases with the entry of a recommended

level of test into the ninth column of the spreadsheet. The selected level must be

communicated in a memorandum, with justifications, to oversight organizations and the

members of the integrated test team, many of whom are likely to have participated in the

risk identification phase (Sweda & Ratcliffe, 2014a, p. 7).

The authors of RALOT and its associated policies acknowledge the importance of

judgment in the process. In the guidelines, aggregation into ratings is ultimately referred

to as a “judgment call” (Guidelines, 2003, p. 3). In the process guide, this deference to

judgment occurs in that risk factors and ratings are supported with qualitative information

24

which is submitted to an automated calculation. The aggregating activity of choosing

levels is performed by the operator of the spreadsheet and entered as data. Comments are

accommodated. A comprehensive set of topics and a diligent investigation are apparent

in the materials. This provides decision makers and stakeholders much needed evidence

to support their actions given the procedural and constraining nature imposed upon them

by of DoDI 5000.02 (2008). Visualizations aid interpretation of the data, and

opportunities to introduce engineering measures of complexity occur through the topics

covering interactions, size, and dependencies. The backbone of RALOT risk assessment

progresses from requirements and development to fielding decisions and is described as

continuous, which allows strategic viewpoints to form in early stages.

Risk Assessment in Software

For the purposes of this research and readability, the literature review for risk in

software engineering and development is generally organized around three domains in an

effort to find the ways existing approaches contribute to an assessment of risk at

deployment time of a software development project. The three domains are in keeping

with the scope of subject matter found in the RALOT methodology and account for many

factors to be as true as possible to the complexity of the environment. The three domains

are software testing, project management, and risk assessment, which also includes a

literal search for risk assessment approaches specific to the software task.

Software testing: The first subsection addresses software testing as a discipline.

The traditional testing approach centers on testing for software quality when the software

operates in its intended system environment. The typical quality characteristics relate to

requirements deficiencies, code deficiencies, and security vulnerabilities. The test results

25

describe how the software deviates from expectations. The underlying assumption is that

deviations have a risk potential and fewer deviations are better. Four variations on this

theme are as follows and are described in subsequent paragraphs with more detail:

• Technical debt: The assertion that a deviation from a standard or the

occurrence of a deficiency can be tolerated but must eventually be addressed

(Allman, 2012).

• The bug bounce (Robin et al., 2005) is an event in tracking defect occurrence.

• Software analysis and complexity metrics.

• Subjective or philosophical approaches.

Software project management: The second subsection addresses software project

management. As a branch of generalized project management, project risk management

provides a body of work relevant to software development projects. The trade space of a

project is assessed for impact due to deviations from the project plans and risk mitigation.

The plans consist of cost, schedule, and performance parameters. Trade-offs consist of

exchanges such as increasing cost in order to decrease schedule and can be risk

motivated. Performance for a software project is often reflected in the characteristics of

the software product, such as the number of features. Variations on this theme are as

follows:

• Process improvement models for consistent attention to quality.

• Information technology (IT) service management, Information Technology

Infrastructure Library for specific descriptions of services.

• Risk management as a practice with leadership visibility.

26

Software risk assessment: A specific search in the area of risk assessment but

limited to software engineering provides a connection to research in decision making and

statistical modeling. The third subsection covers the work done in this area.

Software testing. This material includes testing methods for software programs.

Recent thinking in testing approaches. Chen, Probert, and Sims (2002)

described their highly structured method for choosing regression tests that provide the

biggest payoffs in terms of critical path coverage and risk reduction. Chen et al. first

distinguished between tests that are targeted (i.e., those that hit important business

functions) and tests that are safety (i.e., those that hit riskier areas and are ranked thus).

The tests were characterized by their relationship to activity diagrams as opposed to the

code, making for black box (specification) tests rather than white box (code-based) tests.

The justification for specification-based testing was that code-based testing becomes

unmanageable as components are combined, are larger, or are at a subsystem level of

abstraction.

Choosing a subset of the total test suite for regression testing was based on two

views in Chen et al. (2002): (a) traceability between the requirements (represented in

Unified Modeling Language activity diagrams) and the test cases (specification-based)

and (b) risk exposure as calculated. In specification-based choice, nodes and edges in the

diagram are mapped to test cases. Coders document the change history from the code to

the nodes and edges affected. Testers map defects to test cases. Between these two

relationships and control flow analysis of the delta, i.e., the net change, in the

specification, all elements that underwent a change are identified and corresponding tests

selected.

27

In risk-based choice for safety tests, any remaining test time is devoted to those

tests that further ensure the performance of the software. The tests are ranked for their

coverage of risk and executed accordingly until time and resources are expended. Risk

exposure is calculated familiarly as impact times the probability of occurrence. Chen et

al. (2002) extended the formula by adapting probability with severity and summed risk

exposure to rank end-to-end test scenarios for execution. As scenarios are executed, the

risk exposure is recalculated and remaining tests are ranked again for further execution.

Chen et al. (2002, pp. 1-14) found, by performing a case study of the IBM Websphere

product, that their method exposed more defects than the subjective method of choosing,

that the structured nature allowed for cost savings, and that it provided better overall

coverage for risks and paths than the manually chosen test suite.

Technical debt. Technical debt is the assertion that a deviation from a standard of

performance or the occurrence of a deficiency can be tolerated but must be managed and

eventually addressed. Allman (2012) described Cunningham’s original notion and

collected others’ contributions to the idea that shortcuts or cost-saving measures,

although resulting in known issues with software products, can be tested for and tracked

as technical debt. When the risk or cost associated with living with the defect exceeds

the benefit of deferring the maintenance, the technical debt must be addressed (Allman,

2012).

The bug bounce. Robin et al. (2005) described a threshold for declined risk

beyond which risk is manageable. According to Robin (2005), “Zero-bug bounce is the

point in the project when development finally catches up to testing and there are no active

bugs—at least for the moment” (p. 23).

28

Software analysis and complexity metrics. Automated code analysis is a

method of indicting the quality of code, and therefore the code’s potential to be

troublesome, through accountings of undesirable code characteristics that survive

compilers such as certain kinds and numbers of paths through code, indicators of

modularity in collections of code, and simpler descriptive statistics. A pivotal work in

this area was the McCabe complexity metric, also known as Cyclomatic complexity,

which is a count of paths through blocks of code (McCabe, 1976, p. 308).

An example of the application of software analysis and complexity metrics put

into practice was a case study of Microsoft’s distributed development and its relationship

to code quality by Bird, Nagappan, Devanbu, Gall, and Murphy (2009). In this study, the

code for Vista was analyzed for a variety of metrics to determine how distributed teams

affect the occurrence of flaws (Bird et al., 2009, p. 91). This work by Bird et al.

examined how the geographical dispersion of labor to write code for a large system does

or does not affect the number of defects found after software was released to operations

and found that distinction by geography revealed a negligible difference in the defect

occurrence for the Microsoft Vista development team. Bird et al. listed strategies that can

be used to address other factors that negatively address defect occurrence when teams are

distributed. These included (a) removing competitive situations and pay differences

among sites; (b) removing cultural barriers through collocation in early stages to dispel

trust issues, alleviate perceptions about capabilities, and improve response times in

communications; (c) using synchronous communication tools every day, such as

conference calls; (d) using common sets of software development or project management

tools; (e) establishing consistent code ownership responsibilities for control of software

29

units; (f) sharing schedules with known time frames for milestones; and (g) employing

organizational structures not based on geography to aid employee integration (Bird et al.,

2009, pp. 92-93).

Bessey et al. (2010) described their tenure as pioneers in the business of writing

code that detects bugs in others’ code. This kind of analysis revealed what seemed to be

useful metrics and specifics about bugs, yet encounters with compiler idiosyncrasies,

false positives and false negatives, defensive programmers, and counterintuitive

economics (allowing bugs to remain latent) threatened early tool development and sales

(Bessey et al., 2010, pp. 70-75).

Additionally, Ammar, Nokzadeh, and Dugan (2001) revealed the insufficiency of

considering a single metric in a comparison of analyses of design approaches. In their

work, it took four such metrics to find the differentiator of the group (Ammar et al., 2001,

p. 182).

Subjective approaches. Compare the examples above to a more philosophical

approach to testing provided by Armour (2005):

The challenge in testing systems is that testers are trying to develop a way to find

out if they don’t know that they don’t know something. This is equivalent to a

group of scientists trying to devise an experiment to reveal something they are not

looking for. . . . It is not possible to be wholly deterministic about testing since we

don’t know what to be deterministic about. (p. 15)

Armour (2005) is like Chen et al. in that probability is inserted, but unlike Chen et

al. in that Armour asserted there is an underlying, virtually autonomic, sixth sense

possessed by a good tester able to wring results from the otherwise inefficient practice of

30

dynamic testing. Armour reminded readers of the things testers do to control the

situation of not knowing what they do not know, all of which were more than helpful.

This included heuristic testing strategies such as constructing test cases that covered the

range of possible inputs and outputs or that represent bizarre or unlikely occurrences in

the execution environment. Armour provided the following summary:

If we cannot duplicate, in sufficient detail and with sufficient control, the

situations that will occur in the customer’s environment when we release the

software, we cannot expose these defects. Of course, the customer’s

environment, not being subject to this limitation, usually has no difficulty in quite

publicly demonstrating our lack of knowledge. (p. 17)

This comes from the emergent behavior associated with the myriad of elements in

the mix, including software, hardware, people, events, relationships, dependencies, and

competitors. Gharajedaghi (1999) offered the following definition of emergent behavior:

Emergent . . . properties are the property of the whole, not the property of the

parts, and cannot be deduced from properties of the parts. However, they are a

product of the interactions, not a sum of the actions of the parts, and therefore

have to be understood on their own terms. Furthermore, they don’t yield to the

five senses and cannot be measured directly. If measurement is necessary then

one can measure only their manifestation. (p. 45)

An effective physical example of emergent behavior is an Office Depot rubber

band ball. A ball made by taking equally sized rubber bands and stretching them over

each other until the circumference is roughly a slight stretch of one of the rubber bands.

The ball is nicely spherical and has a nice bounce. Even after removing a band or two.

31

But is there anything a tester can do to one of those rubber bands that will reveal how

high the ball will bounce or in what direction?

Bounce and trajectory are often representative of the very business result sought

by IT consumers. A measure of performance such as profit, time to close a deal, market

share, or air space dominance is the emergent behavior. Nothing in the parts of the IT

system, separated from the environment of the system, is likely to predict the really

desired behavior when provoked with a test. Testers perform all sorts of tests until their

confidence is sufficient (Armour’s good tester) or until they run out of time, or run out of

money (Chen’s efficient use of resources), but only the fielded system tells stakeholders

what they did not know that they did not know. It seems there is no longer the luxury of

employing only ceteris paribus when constructing testing strategies. Ability to respond in

a live environment is mandatory (when things go right or when things go wrong) and the

efficiency of structure is mandatory (arts and crafts are overcome by discipline).

Slocum (2005) offered the following analysis and prediction: Structure and

discipline resulted in the productivity revolution (as in Taylor’s scientific management

[as cited in Shafritz & Hyde, 1997, pp. 30-32] and Ford’s [1922] assembly lines);

structure and discipline gave us the quality revolution (Carnegie Mellon University

[CMU], 2002; Crosby, 1979; Deming, 1986; Humphrey, 1989; Juran, 1988); next will

come the innovation revolution. Slocum asked what each revolution has in common and

noted it systematizes a previously arts-and-crafts effort with discipline, processes, and

measures (Slocum, 2005). The dilemma is that flexibility is required but structure must

prevail. To summarize, software testing supplies a product-focused, measureable

technique; however, it presumes that testing can account for every variable and that a

32

product exists to test. Therefore as indicators of risk, tests are laggards. This lag in

knowledge is a contributor to the items of the problem statement having to do with

accurate risk measurement in a situation, including accumulation of unrecognized,

untimely risk. This transitions into the domain of project management as applied to

software and information technology risk.

Software project management. Project management and the triangle of cost,

schedule, and quality trace back to Martin Barnes, as captured in Boyce’s (2010) history

of project management compiled for the Association of Project Management. Solomon

wrote extensively on the subject and adapted the work to include earned value to

accommodate the U.S. defense industry and to recognize the needs of software

development (Solomon, 2013, p. 28). The field has remarkable reach, adaptation, and

variation as applied in IT.

Process improvement models. The Capability Maturity Model Integration body

of work, originating in 1991, comes from the Carnegie Mellon Software Engineering

Institute (CMU, 2002, p. i) and describes successive levels of process maturity originally

targeting software projects. The evaluation of projects with respect to their achievement

of levels of maturity is believed to indicate lessened risk at the higher maturity levels.

This model has now been generalized into many areas of product and service

management. See also the 1995 work on the model prior to its name change to include

integration work (Paulk, 1994). Adding integration to the concept expanded the scope of

application to include the operation of separate software products as an integrated unit.

The movement’s concentration on process, however, led to a debate on the significance

of process compared to the quality expectation for the end product.

33

The resulting confusion is explored as a broader management issue

(Bhoovaraghavan, Vasudevan, and Chandrand, 1996). Bhoovaraghavan et al. proposed

blending the economics of consumer utility to reveal the presence of innovation, which is

a desirable attribute, whether attributed to process or product. The consumer’s micro

level analysis of the characteristics of the product is a distinguishing factor used to

determine whether any given product is the result of a process innovation or a product

innovation or a mix of the two. Key to their experiments was the notion of a parent

product that serves as an agreed upon point of departure for product lines with

considerable history in their combinations of characteristics (Bhoovaraghavan et al.,

1996, p. 237). Those authors noted that their method of employing consumer choice

research using experiments with constructions of similar products and preference

probabilities is an input to decisions between investment in process innovations and

investment in product innovations. A prescriptive use is that (a) when consumers

demonstrate a desire for a major change in the product relative to their desires,

developers should focus on product innovation, and (b) when consumers demonstrate

relative satisfaction with their choices, developers should focus on process innovation

(Bhoovaraghavan et al., 1996, p. 244).

Life cycle and development models. Life cycle models span a continuum from

comprehensive to evolutionary and are often complemented by engineering methods such

as waterfall for comprehensive, agile for evolutionary, and spiral or incremental for

somewhere in between the two extremes. The processes of DoDI 5000.02 (2008) are

typically known as a waterfall method and are characterized by large-scale, lengthy,

singular projects with gateway milestones between life cycle phases, in spite of efforts to

34

accommodate new methods. The results are held until the end of the project. Spiral

development was coined by Barry Boehm (1988), who wrote the breakthrough

publication to address reducing traditionally large and unwieldy projects into manageable

parts. He described the approach as risk-driven and juxtaposed spiral with waterfall to

make his argument (Boehm, 1988, p. 1). The Agile Manifesto began a body of work to

increase flexibility by creating a stream of even smaller projects, each with working

software delivered (Beck, 2001). Speed of development is often associated with agile

approaches, which are also a source of criticism. An example was the report describing

Silicon Valley’s pursuit of fast implementation for new features and the trade-offs

engineers entertain in the process, at times choosing risk as a parameter of product

improvement (Vance, 2013). With DoDI 5000.02 being the policy governing many

software development organizations, hybrid attempts to meld aspects of development

models continue to surface in projects (West, 2011, p. 1).

IT Service Management, Information Technology Infrastructure Library.

This library of best practices extends the developmental stages of software applications

into the sustainment arena. It was originally documented by the United Kingdom’s

Office of Government Commerce. As businesses sought to maximize the value of their

IT investments, add support of IT to the equation, and avert risk in acquisition strategies,

service management providers (for example, the common help desk for software support)

grew in sophistication as a segment of the industry. Since the 1980s, the Information

Technology Infrastructure Library following has produced many volumes of service

management best practices (Office of Government Commerce, 2007, pp. 3-4).

35

Risk management as a practice. In the generic management sense, risk

management for projects is a soft task of identifying threats to success and mitigating or

eliminating the potential harm. Boehm (1989) made a significant contribution in

applying risk management to software with several publications, one of which is titled

Tutorial: Software Risk Management (1989) and is a popular reference. Schmidt,

Lyytinen, Keil, and Cule (2001) developed a taxonomy of software project risk factors.

In the strategic business sense, risk takes on additional meaning. Taking a risk can be

followed by reaping a reward. Businesses whose strategic advantage is achieved through

technology are in an acute category for understanding risk. See Constantine’s (2001)

collection of essays assembled for managers of software development projects in which

he acknowledges the chaotic state of the practice and offers many perspectives on dealing

with common issues. In the chapter about risk aversion, Pinchot and Callahan pointed

out that some put their organizations at risk through their aversion to risk (as cited in

Constantine, 2001, p. 235).

As seen in the literature reviewed above, characterization of risk for project

management is a common theme, and although aided by documented techniques, it

remains subjective. Although the process and service standards in combination with risk

taxonomies provide choices in methods, how to employ them in combination with each

other or with testing to improve comprehensiveness and accuracy is not addressed.

Software risk assessment. The two previous sections illustrate the reach of

software development projects as an indication of the scope and character of the

environment. A literal search for risk assessment approaches specific to the task of

determining what is more or less tangible about software products revealed extensive

36

attempts to quantify, measure, predict, scale, rank, calibrate, or conduct other activities to

understand the nature of a particular piece of software’s risk qualities and what to do

about them. Various authors have addressed risk assessment. From specialty areas such

as systems architecture and space programs to more generalized sources such as

standards and metrics, the authors referenced below stepped through their viewpoints and

practical research attempts into the matter as follows:

A computer systems expert, Zachman (1987) synthesized a comprehensive model

of information systems by intersecting the components of blueprints for building plans

and bills of material for manufacturing with components of information systems to form

a set of systems architecture viewpoints. In Zachman’s conclusions, he noted that risks

are associated with not producing the entire set of viewpoints, because each represents

important aspects of the system to be reasoned with, such as the perspectives of the

owner, designer, and builder, as well as the system technology itself (pp. 282, 291-292).

Observations from programs fed this view: Boehm (1991) compiled the state of

software risk management in answer to the often dismal performance of systems

development projects while he was the director of the Defense Advanced Research

Project Agency’s Information Science and Technology Office. Boehm noted that a

common quality of successful project leadership is that it includes good risk

management. At that time, those good risk managers were not necessarily using a

common vocabulary of risk, nor were managers cognizant in a concrete way of their

sense of risk exposure. Boehm described the issue of software risk management, “The

emerging discipline of software risk management is an attempt to formalize these risk-

oriented correlates of success into a readily applicable set of principles and practices” (p.

37

33). Boehm provided definitions, formulae, decision trees, task steps, risk item

descriptions, probability estimates, impact generalizations, case studies, cost drivers,

named unsatisfactory outcomes, contour maps of probability and loss, prioritized key

factors, risk management plans, monitoring, life-cycle framework, and a critical success

factor focus. Boehm also recognized the ongoing concern of applied human judgment:

“Risk management can provide you with some of the skills, an emphasis on getting good

people, and a good conceptual framework for sharpening your judgement” (p. 41).

In a technical report prepared for the USAF in 1993, Carr, Konda, Monarch,

Ulrich, and Walker who were researchers at the Carnegie Mellon University Software

Engineering Institute, endeavored to communicate an extensive taxonomy-based

questionnaire used as the pivot point for risk identification methodology. The method

Carr et al. described includes an extensively treated taxonomy for software risks with

developmental links into the Software Development Risk Taxonomy, which they also

transformed into a questionnaire of 194 questions for development staff members (Carr et

al., 1993, p. A-1). The questionnaire was used to elicit software risks, and the results are

compiled for management’s use in mitigation. Among the authors’ lessons learned and

conclusions from their field tests of the questionnaire were observations related to

method, group size, intergroup relationships, problem solving, scheduling, time limits,

and clarifications. For method, the lesson surfaces risks, both expected and surprising.

For group size, an interview group should not exceed five participants but additional

interviews can provide additional coverage. For intergroup relationships, hierarchical

relationships between interviewee and interviewer, between members of an interview

group, and absence of hierarchy (i.e., collegial), affected inhibited behaviors. For

38

problem solving, evoked discussions tended to devolve into problem-solving sessions.

For scheduling, interview scheduling was important to maintaining formality and

avoiding disruptive interruptions. For time limits, 2 hours 30 minutes was the group

session limit. For clarifications, additional sessions for clarifications were indicators for

further analysis (Carr et al., 1993, pp. 19-20).

In a 1999 updated DoD military standard addressing product verification (called

MIL-STD-1540D), the DoD noted, “The large number of independent organizations

involved and the complexity of equipment and software means that extensive verification

of launch and space systems is necessary to reduce the risk of failure” (p. ii). The focus

of the standard was determining a response to the risk of failure on mechanisms that

precipitate failure, where assessment of risk leads to the establishment of testing

requirements using those mechanisms. The generalized notions of verification given

were “analysis, test, inspection, demonstration, similarity, or a combination of these

methods” (DoD, 1999, p. 6). Much of the material appeared to be relevant to software in

combination with hardware components and appeared to acknowledge the combination as

driving the need for extensive verification. Software is called an integral component

throughout the document. However, the authors noted, “Details of other verification

activities required such as for software and for integrated system level requirements are

too extensive for inclusion in this document” (DoD, 1999, p. 70).

Further, risk management is viewed as a life-cycle process calling for the periodic

reassessment of risk elements. Specific factors are provided in a series of tables relating

tests to risks in mitigation categories for technical, cost, and schedule risks. Notable

guidance from this document calls on industry support of a common database for life-

39

cycle data to be used for process improvements (DoD, 1999, p. 16). The specification is

“approved for use by all Departments and Agencies of the Department of Defense”

(DoD, 1999, p. ii).

In a standards based legacy, NASA provided standards and guidance on risk as

related to software as well. As examples, each publication below provided useful risk

assessment and management concepts and practical guidance for software developers,

while the chronological listing provides an indication of progress in the field:

• “Manager’s Handbook for Software Development” (1990) documented the

use of prototype software to mitigate risks related to new technologies (pp. 1-

5).

• “Software Safety NASA Technical Standard” (1997) provided guidance to

ensure risk assessment accompanies plans for testing known as independent

verification and validation and includes a software criticality rating (p. 4).

• “Software Safety Standard” (2004) expanded on the previous version and

provides additional material in guidebook form. NASA acknowledged that

revisions to its standard are regularly warranted and included treatments of

commercial off-the-shelf software and security issues (p. i).

Returning to the architectural viewpoint, Bass, Clements, and Kazman (1998)

described their software architecture analysis method, which is a means of examining the

quality attributes and objectives of desired systems with scenarios and walkthroughs

designed to uncover weaknesses or inappropriate separations of functionality (pp. 194-

206). This type analysis is generally referred to as occurring at the architectural level,

which indicates that abstractions are employed to make determinations about the

40

outcomes at a lower level of detail, which was researched by Yacoub, Ammar, and

Robinson (2000).

Yacoub et al. (2000) referenced and used NASA’s 1997 standard in their article

on architectural-level risk assessment as the source of risk definitions. The basic

definition of risk Yacoub et al. applied to their work is a function of three elements:

frequency of occurrence of a negative event, severity of the event’s impact, and the

uncertainty associated with the occurrence and impact (Yacoub et al., 2000, p. 210). The

article’s focus is on a shift from subjective risk assessment methods to those that are

quantitative. Yacoub et al. proposed tapping known qualities of software and their

quantitative representations, which can be derived from architectural representations.

Those qualities include coupling and complexity, which are also associated with the

appearance of flaws in software that equate to reliability risks. For example, by viewing

software as a collection of components and connectors, the authors could rely on

architectural-level representations to characterize software risk.

This means that risk assessments can be performed without the completed

software product and do not solely rely on the questionnaire and taxonomy-styled

assessments. Dynamic metrics are those captured through the execution of the

architectural model, as in simulation. Yacoub et al. used Unified Modeling Language

and component dependency graphs as the means of capturing the architectural

component’s and connector’s behavior during a simulation of their interactions and noted

a correlation between the occurrence of faults and the complexity with roots to McCabe’s

Cyclomatic measurements (p. 213). Yacoub et al. compiled execution scenarios and used

this to chart a path through the software, which is then accompanied by a probability of

41

occurrence for the scenario. This formed the basis for a component complexity measure

and a connection complexity measure, as each state and each path exercise both

components and connections (Yacoub et al., 2000, p. 213).

Yacoub et al. completed their measured characterization with a number for

severity should failure occur, using a military standard set of definitions and a

corresponding index that allowed ranking. Their method performed better for

differentiating the components with the highest risk when compared to static-based

computations. Yacoub et al. applied traversal of a component dependency graph to

calculate an aggregated risk number from the values assigned the components and

connectors represented on the graph. From this work, they were able to isolate the

software implementations of the highest risk components and connectors for additional

development, design, or test resources. Additionally, they provided an approach for

sensitivity analysis and suggested that future case study results could be used to compare

assessments across subsystems within large-scale systems (Yacoub et al., 2000, pp. 218-

219, 221).

In a contrasting less complicated view of risk, Ramesh and Jarke (2001) noted the

simplicity of the role of requirements traceability in risk assessment and follow-through.

Ramesh and Jarke compiled various works on requirements traceability and its usefulness

with a synthesized view of traceability in practice. They also reported the use of a risk

attribute assigned to a software requirement (e.g., a business need for software to perform

a function). A requirement flagged in this manner with a “technical performance

measure” (Ramesh & Jarke, 2001, p. 70) is given additional visibility throughout its

implementation as a simple means of management.

42

With a work combining many views discussed above and in 2003, the U.S.

General Accounting Office (GAO) produced an executive guide for assessing and

improving the management of enterprise architecture. Note that in 2004, the GAO

changed its name to the Government Accountability Office. The authors began with

applied theory dating to Zachman’s framework and combined with the maturity models

of the 1990s to form a means of assessing the quality of an organization’s enterprise

architecture efforts. The GAO promoted enterprise architecture as a “hallmark of

successful public and private organizations” (p. i) and a critical success factor. The

report mentioned other significant work in this area such as the Federal Enterprise

Architecture Framework published in 1999. The GAO placed value on risk management

as a component of IT investment strategies and associated risk management with the

higher levels of maturity in conducting enterprise architecture functions (pp. 9, 12, 13,

14). The DoD introduced additional sources of enterprise architecture guidance with the

DoD Architecture Framework (DoDAF); the most recent version being 2.02. The

guidance included a section devoted to using the architecture in decision making in which

risk management for technical risks is supported by the information captured in the

architecture products. It included complexity in the flow of information, performance of

components, requirements for throughput, and indicators for deeper examination as

examples of information useful to risk assessments (DoD, 2010, Sect. 6-1, p. 1-2)

Also in 2003, Ni et al. reported on their work employing software to compute risk

indices associated with a power system. Likelihood and severity are basic concepts Ni et

al. employed to quantify risk in a control room situation for potential overloads of the

power system. Their software produced three-dimensional visualizations that allowed

43

high-risk situations to be perceived at high-level viewpoints in models and provided for a

hone-in function that allowed the user to drill into the specifics of the risk sources

occurring at lower levels (Ni et al., 2003, pp. 1170-1171).

In the following year, 2004, Abdelmoez et al., having recognized the growing

importance of software architectures to software engineering, described an architectural-

level attribute called error propagation probability (p. 2) that captures, as a stochastic

characteristic, the event that errors in one architectural component of a software system

will propagate to other components. Using a command and control system as a case,

Abdelmoez et al. conducted a comparison of their analytical computations with their

empirically produced computations (experimental simulations) in which they found “a

fairly meaningful correlation” (p. 9). This result led them to conclude that an

architectural-level specification is useful for estimating error behavior in the planned

system and that future work could extend the usefulness to estimating change impact for

both solution changes and requirements changes (Abdelmoez et al., 2004, p. 9).

In addition to architectural representations, in a 2005 briefing for Ultimus, Inc.,

Barnes, then vice president of Product Management and Marketing, remarked that

models of business process (compared to the architectural components used by

Abdelmoez et al., 2004) served additional purposes by capturing human roles and

responsibilities and their interactions with software solutions. In Barnes’s scenario of

adaptive discovery, what could be construed as an error behavior is simply the occurrence

of an unforeseen, and therefore undefined, use of the IT provided by the solution. At this

stage of deployment, much could be known about the solution. Barnes’s

recommendation was to use the model as a means of capturing and propagating the event

44

and its newly formed rules, respectively, at the time of occurrence because model and

solution were integrated (p. 7). This was a differing viewpoint, in that information

systems projects were said to begin at deployment rather than at the architectural

development stage. While appropriate for many businesslike transactions, a risk

assessment would likely play a role in whether something defined as inherently an error

at a development phase proves simply to be an unforeseen event at execution time.

Determining whether an event was an error or simply unforeseen can be a

qualitative endeavor. Fenton et al. described their work with qualitative factors and

software defect prediction at a conference in 2007. This was a validation effort based in

part on previous work on the MODIST project which was named from the phrase

“Models of Uncertainty and Risk for Distributed Software Development” and devoted to

stochastic models of risk and uncertainty in software (as cited in Agena, 2004; as cited in

Fenton et al. 2007, p. 20). Fenton et al. presented validation efforts for the MODIST

models based on their collection of data from 31 software projects. The MODIST model

was rooted in a Bayesian network of these causal factors for defect insertion: design and

development, specification and documentation, scale of new functionality, testing and

rework, and existing code base (Fenton et al., 2007, p. 20). Fenton et al. prepared a

questionnaire to solicit qualitative data that were coded into ordinate scales for their

validation effort. The authors made several points about the validation. Fenton et al.

were able to accommodate variation in software project characteristics by adjusting the

description question. By capturing the conditional probability tables for Bayesian nodes

from experts, they accounted for the model’s performance from one project to the next

within the same organization. Several data collection issues required attention, such as

45

substituting lines of code counts for function point counts, size affected by reused

software modules, and use of the attributes of the Bayesian approach to handle missing

data. Fenton et al. were able to reach a “very high accuracy” (R2 of .9311) between the

predicted and actual number of defects found in independent testing (p. 9).

Flowing from the semantic likeness of predictable and prone, in 2009, Cataldo,

Mockus, Roberts, and Herbsleb examined several types of dependencies and their

usefulness in explaining failure proneness in software. As a reminder from previous

sections, testing software is a means of eliminating software failures and a means,

therefore, of removing risk from operations. It follows that sources of failure proneness

are relevant to risk discussions, even though, as in the case for Cataldo et al.’s article and

others, risk assessment is not a key word, but instead quality and metrics are recurring

themes. Cataldo et al.’s examination of dependencies was anchored to sources of error.

Cataldo el al. looked at error resulting from dependencies that can be described in further

detail. Errors could be described as originating from developers failing to recognize

dependencies, from control and data flow relationships and dependencies, from logical

coupling dependencies that are masked until exposed by a change to the dependent

components, and from developer organizational workflows in the production of software.

These sources of error are defined as “syntactical, logical, and work dependencies”

(Cataldo et al., 2009, p. 864). Cataldo et al sought to explain the relative impact due to

dependency type as a means to aid in the allocation of resources, because others had

established that dependencies are sources of error proneness. Cataldo et al. measured the

types of dependencies based on release histories. The histories included circumstances

under which components accompany one another in a release. Another circumstance

46

explored was how procedures for producing a changed component consisted of workflow

and coordination among developers accomplishing the modification. From those

measures, Cataldo et al. observed that logical dependencies are more relevant than the

syntactic variety in failure proneness. They suggested further study into the nature of

logical dependencies (Cataldo et al., 2009, p. 876). Notably, Cataldo et al. replicated

their results using data from two unrelated companies. Cataldo et al. cite the difficulty of

achieving external validity when data sources have proprietary concerns about the use of

their data. In this case, Cataldo et al. took extra measures to ensure data sources could

not be identified from characteristics of the data itself (p. 875).

Besides the reluctance attributed to proprietary concerns, other pitfalls of data

collecting in the software development arena befell NASA. In 2011, Gray, Bowes,

Davey, Sun, and Christianson examined the use of NASA’s defect data, collected in

accordance with NASA’s software development guidance and identified 17 papers using

NASA data between 2004 and 2010 (p. 97). Gray et al. listed reasons that software

defect data are difficult to obtain, including that such data can be a negative reflection on

their source. This explained, in part, the popularity of the NASA data set, since it is or

was readily available and easily consumed.

In spite of being readily used, however, Gray et al. noted that NASA data require

considerable preprocessing to be useful in modeling scenarios. Gray et al. found the need

to perform data cleansing tasks against the data set to eliminate duplicated data, keep data

that train a model separated from data that test it, correct the same data from being

classified two mutually exclusive ways, and remove noise, in general. By performing

these tasks, each of the 13 data sets showed “6 to 90 percent less of their original

47

recorded values” (Gray et al., 2011, pp. 97-99). Additionally, they noted that repeated

data affect classifier or group performance, but the impact is specific to the algorithm

used. Naïve Bayes classifiers are resilient to such duplication (Gray et al., 2011, p. 102).

From the field of project management, though narrowed to software projects, V.

Holzmann and Spiegler (2011) applied a general methodology of risk identification and

management to an IT organization. V. Holzmann and Spiegler proposed developing a

risk breakdown structure (RBS) using a bottom-up strategy rather than adopting an

existing taxonomy from others’ research (V. Holzmann & Spiegler, 2011). Through this

method, the IT organization would be able to capitalize on its experiences and form a risk

approach tailored to its circumstance. The object from their viewpoint was the IT project,

rather than any particular software component. Projects initiate software products, and a

successful project includes objectives related to software products. V. Holzmann and

Spiegler included summaries of several project management risk approaches related to

both generic and IT applications. Those included (a) Project Management Institute’s

body of knowledge; (b) Software Engineering Institute’s software risk evaluation for

projects; (c) Boehm’s risk assessment and control approach; (d) approaches organized by

phases, levels, budget and schedule, and project life cycle; and (e) those stemming from

use of an RBS (V. Holzmann & Spiegler, 2011, pp. 538-540).

The definition of an RBS was as follows: “The RBS is a hierarchical structure that

represents the overall project and organizational risk factors and events organized by

group and category” (V. Holzmann & Spiegler, 2011, p. 539). They described various

ready-made structures from a generic perspective and from the source industry (e.g., IT,

construction, and engineering). Of note for IT projects was the Software Engineering

48

Institute’s Software Risk Evaluation’s Taxonomy-Based Questionnaire (Carr et al., 1993;

R. C. Williams, Pendelios, & Behrens, 1999).

Although, a meta-analysis of IT projects that employed risk management yielded

results that were inconclusive, many other studies across industries have revealed a

positive effect when employing risk management (V. Holzmann & Spiegler, 2011, p.

538). Specifically, V. Holzmann and Spiegler performed an analysis of an IT

organization’s lessons-learned documents and constructed an RBS using content analysis

and clustering. The results were affirmed by the organizations’ management and project

leadership through interviews and open forum. The management also viewed the method

itself as preferable to scenario and possibility generation because it used available data.

V. Holzmann and Spiegler also noted compatibility between their resulting risk

dimensions and other studies, as well as the suitability of the RBS as a foundation for

mitigation activities (p. 544).

In 2012 project viewpoint met architecture viewpoint in another treatment of risk.

Bernard (2012) presented risk treated from several perspectives in his enterprise

architecture text that distinguished implementation risk as a characteristic of project

management. In the discussion of implementation risk, Bernard connected

implementation risk to the involvement of stakeholders with increased risk following the

lack of such involvement “in all aspects of project development” (p. 217). Risk in this

respect is something controlled at the project level. Another view of risk is the

architectural effect of threat considerations such that a thread of security and privacy

attributes are integrated throughout the enterprise architecture, which is a higher order

49

architecture than an architecture restricted to the scope of software components (Bernard,

2012, p. 221).

Of interest to the environment of this paper (USAF, military, and public

administration) is Bernard’s (2012) linking of enterprise architecture frameworks to

organizational theory and systems theory. Bernard charted influences from the various

subfields of organizational theory and systems theory (and their concepts) to fields and

concepts encompassed by enterprise architecture. In this way, Bernard accounted for the

derivation of enterprise architecture components from concepts such as Leavitt’s (1965)

juxtaposition of people, structure, tasks, and technology; the Parsons/Thompson (cited in

Bernard, 2012, p.54) model of institutional, managerial, and technical levels; and

Bernard’s variation of an organizational network model accounting for the less

hierarchical themes, lines of business, and largely autonomous units implementing

executive direction (pp. 55-57). Similarly, from systems theory, the concept of risk and

the fields of computer science and operations research are mentioned. However, risk was

associated with uncertainty and subjective exercises for project management and threats

to security and privacy exercises throughout, without diving into specific uses of model

types for simulation or mathematical modeling.

Further, Bernard (2012) made assertions about the use of enterprise architecture in

the U.S. military in his treatment of future trends. He observed the increasing

dependence on information in supporting and performing missions and the broader use of

DoDAF standards in capturing data about IT resources. Bernard mentioned the pursuit of

consolidation of IT capability for efficiency’s sake, achieved through the revelations that

DoDAF models lay plain about duplication of effort as a source of risk. The risk

50

introduced stems from creating single points of failure and the increased exposure to risk

created by more use of the consolidated IT. Bernard recommended that enterprise

architecture professionals “promote a risk adjusted level of interoperability and functional

duplication, and the subsequent cost inefficiency be viewed as acceptable to reduce IT

vulnerabilities” (p. 262).

While efficiency is generally considered a quality attribute, in a 2013 review of

software product quality intuitively related to risk, Wagner generalized about quality

models applicable to the control of quality attributes of software (Wagner, 2013b).

Wagner promoted a continuous approach to quality control, improved and evolved over

time for relevance and effectiveness. In the examination of quality models, a key phrase

from ISO/IEC 25010 surfaced: “Freedom From Risk” (Wagner, 2013b, p. 16). Wagner

(2013b) provided a critique of quality models in which those models of a taxonomic

nature were difficult to decompose into specific definitions and were subject to semantic

disagreements. Models that relied heavily on measures were noted as deficient in their

ability to impart an impact on software quality. Predictive models were critiqued for the

difficulties posed in interpreting equations, dependencies on context, and collection and

agreement on data. Although risk occurred in his discussions, specific interpretations

were limited to the by-products of other discussions, which were mainly the identification

of negative quality factors or test selection concerns (Wagner, 2013b, pp. 40-42, 63, 97,

136, 139, 141, 142, 148, 172).

Wagner (2013b) differentiated a view of software product quality from that of

software process quality (see the Process Improvement Models section above). Wagner

identified approaches such as Capability Maturity Model Integration and ISO 9000 as

51

being process related, associated with additional bureaucratic burdens, and based on the

assumption that “good processes produce good software,” without characterization of the

product itself (Wagner, 2013b, pp. 8-9).

In another work, Wagner (2013a) asked how comprehensive a model must be for

it to be effective (e.g., what depth in quality characteristics is needed for a model to be

useful). Wagner looked for improvement of models over random guessing and found that

a model with as few as 10 measures was 61% accurate and that the presence of expert-

based measures such as an assigned ranking degraded performance by approximately

15% (Wagner, 2013a, pp. 23, 26).

Also in 2013 and with small scale as in Wagner (2013a), Tasse looked at

classifiers for the type of change to a file of code as a short-term predictor of propensity

to defects using the analogy that if two files of code are subject to the same kinds of

changes and, in the past, one of them turned up buggy, the other one would, too. Tasse

concluded that the approach tested performed better than comparisons to data-mining

approaches such as naïve Bayes, BayesNet, and others (pp. 17, 20).

Fenton and Neil compiled a text published in 2013 on the assessment of risk and

the accompanying decision making that captured their work performing the task with

Bayesian networks. The authors provided the components of a Bayesian network in a

definition that included a graphic depiction of dependencies between variables, where

each variable has probability associated with it. The directed graph of nodes and arcs is

not allowed arcs that would cause circular reasoning (an arc cannot reverse course to a

previous node), and each node has a table of probabilities given its parent nodes (Fenton

& Neil, 2013, p. 141). Fenton and Neil addressed the prediction of software defects

52

under the general modeling subject of systems reliability. Fenton and Neil noted

appropriateness for software organizations that have well defined testing phases and data

collection, have expertise for organizational and project-specific probability tables, have

supplemental appreciation for the extensiveness of factors that cannot be well

represented, and appreciate the strength in simplicity of the causal model (Fenton & Neil,

2013, p. 404).

Also in 2013, Walkinshaw added to Fenton and others’ work by offering an

alternative to Bayesian networks as a means of aggregating knowledge (or lack thereof)

about software and making assessments about software quality. Walkinshaw’s

improvements included ways to account for unknowns literally, as opposed to probably,

such that unknowns have labeled representation in the overview of the assessment. The

method also allowed for the sum of probability in a factor to be less than 1 as a way of

capturing profound lack of knowledge for a factor. Additionally, the approach is

adaptable to the myriad of quality frameworks that are available or could be assembled in

the future. Walkinshaw charted the course from software characteristic models to

multiattribute decision analysis to Dempster-Schaefer theory to evidential reasoning to

belief functions for the purpose of constructing algorithms that work the characteristics

and beliefs about a piece of software from the bottom up to an aggregate quality, see his

example case, “Maintainability” (Walkinshaw, 2013, pp. 1-8). Dependencies appear to

have a smaller role and not the same rigor as Fenton’s system reliability approach.

In other algorithm work, Treleaven, Galas, and Lalchand (2013) described an

approach to testing software that combines the need to train models and test software.

They described the use of test data sets in ways that are suitable to both the models and

53

the software implementation incorporating many mathematical models with synthesized

execution. The functional domain for these applications is stock market trading systems,

specifically known as algorithmic trading (Treleaven et al., 2013, p. 76).

There are several overarching topics contained in Treleaven et al.’s (2013) article,

taken in the general context of software risk assessment. One such topic was the

pinpointing of risk from an operational perspective, which was not risk posed by a system

but risk to the success of the mission. Other important topics were the importance and

sensitivity to data selection and quality, as well as the testing method applied in the

highly complex environment.

Treleaven et al. (2013) described the underlying parameters and concerns in the

risk approach that illustrated the areas of operations, data selection, and environment

complexity. A risk reward ratio resulted from the effort to limit size or amount of risk

and to limit types of risks. Thresholds applied to the value at risk triggered actions based

on a rule set. Quality data used in calculations is difficult to acquire and the sensitivity of

outcomes to poor data are acknowledged to be paramount. The testing method, known as

back-testing, combines the needs to train models (algorithms) and test software. The

system is subjected to historical data to reveal how it would have performed under

historical conditions. Two phases characterize the approach. The phase devoted to

optimize model selection, known as in-sample strategy performance, is measured by the

Sharpe ratio. The Sharpe ratio is maximized as it portrays the best trade-off between the

performance (reward) and the risk. The Sharpe ratio then leads to the selection of

strategy for the out-of-sample test phase. Treleaven et al. pointed out that the tests say

nothing of the predicted performance of the system of models (pp. 84-85).

54

It is beneficial to return to a project management viewpoint to consider the

overarching theme of risk assessment. Irizar and Wynn (2013), both IT experts, wrote

about risk epistemologies in the context of project management. For their purposes, risk

had an interpretation as “objective fact” and “subjective construct” (Irizar & Wynn, 2013,

p. 135). The objective fact view of risk alluded to its probabilistic occurrence, whereas

the subjective construct view allowed for additional dimensions, such as experience,

organization, and culture. Those authors proposed that using subjective constructs can

improve the practice of risk management by improving communication between project

managers and stakeholders. Irizar and Wynn researched the degree to which the ideas of

subjective construct already appeared in the literature and how they also appeared in risk

registers. This research supported that the reflection of subjective constructs of risk can

be improved to enhance project successes (Irizar & Wynn, 2013, p. 140).

While Irizar and Wynn (2013) branched from IT to project management, Misirli

and Bener (2014) borrowed from other fields to find application in IT. Misirli and Bener

(2014) reported on the use of Bayesian networks in software engineering decision

making. Misirli and Bener begin with the premise that using Bayesian networks provides

several advantages to decision makers in general and noted specific use in other fields

had also been rewarding. Computational biology and health care are two fields

researched. The advantages Misirli and Bener summarized were as follows:

• Bayesian networks aggregate decision factors into a single model and capture

the supporting data for use over time. Supporting data may include collections

of observations, distributions of historical data, changes in assumptions, and

the influence of expert judgment.

55

• Bayesian networks capture causal information useful in prediction.

• Bayesian networks allow for simulation runs that accommodate hypothetical

changes to factors for seeking optimization.

• Bayesian networks supplement the human ability to reason by extending the

thought process with otherwise humanly incomprehensible amounts of

historical data (p. 533).

Misirli and Bener (2014) also carried out a systematic review of Bayesian

network use in software engineering. By composing three models each for two software

development establishments and evaluating each model’s potential usefulness, they found

that characteristics of the software development establishment could be accounted for and

impacted building a Bayesian network specific to the probability of defects surfacing in

software after release. In the process of composing the six models, Misirli and Bener

employed various methods as suggested by the software engineering community, health

care industry, and biology studies, as well as generalized modeling methods and

techniques.

Misirli and Bener observed: (a) 72% of the published uses of Bayesian networks

in the software engineering field between 1998 and 2012 were to predict quality, with use

in testing and building software increasing over the same period, (b) over half of the

studies primarily employed expert knowledge and a quarter employed software

development artifacts (e.g., architectural depictions), (c) authors were weak in their

details about the inference mechanisms used to build their models with expert knowledge

and existing tools paired in 27.35% of works, (d) categorical variables (assignment of a

value to a labeled group) are popular in that experts find it easier to associate

56

probabilities with categories and they were aware of existing tools that employed the

approach (Misirli & Bener, 2014, pp. 537-540). Their recommendations to software

engineering professionals, after comparing the results of models built for two software

development establishments, were (a) that a hybrid approach is warranted to leverage a

situation, internal and external data on hand, and expertise because they observed

performance improvements by decreasing reliance on expertise and (b) that researchers

should improve their underlying knowledge of Bayesian network construction to select

and justify means of populating model dependencies (structure) and model node

characteristics (parameters such as distributions; Misirli & Bener, 2014, p. 549). Misirli

and Bener explored and addressed possible threats to the validity of their work, such as

bias in data collection through questionnaires (p. 551).

Among Misirli and Bener’s (2014) techniques for identifying dependency was

using a chi-plot as described by Fisher and Switzer (2001). The chi-plot offers

improvement over a scatter diagram in distinguishing patterns of relationships between

variables. The chi-plot diagrams provide visible distinctions when two variables are

independent, dependent in some degree either positively or negatively, or have a complex

relationship. Fisher and Switzer provided an extensive set of reference diagrams to

support the usability of the technique.

To build upon this work, Moreno and Neville (2013) proposed a statistical

hypothesis-testing approach to comparing networks. Moreno and Neville looked for

methods to answer the following question: Given two networks, is the difference between

them statistically significant? Moreno and Neville used observed networks to test

hypotheses about the underlying system. A mixed Kronecker product graph model and

57

threshold statistic was employed to determine whether networks were from the same

distribution or to distinguish them as being from different distributions (Moreno &

Neville, 2013, p. 1163). They also compared methods and concluded that the mixed

Kronecker product graph model approach employed performed well under circumstances

“where only a few networks are available for learning a model of ‘normal’ behavior”

(Moreno & Neville, 2013, p. 1168).

Other types of networks have also been evaluated for similar and additional

reasons. Wahono, Herman, and Ahmad (2014) cited cost as a driver in pursuing defect

prediction because identifying and correcting defective code is expensive, and the

common use of human review and testing is a poor method for finding defects. Wahono

et al. reviewed the shortcomings and strengths of neural networks as a means of

prediction for the presence or absence of software defects. Although neural networks are

viewed as strong in fault tolerance and the handling of nonlinear situations of software

defect data, the methods of constructing the neural network architecture introduce

difficulty in optimizing models. Another peculiarity to software cited is data-set

imbalance that leads to an overly frequent prediction that a unit is not defect prone, which

affects reliability. Wahono et al. proposed making improvements to the construction of

the neural network via genetic algorithms and balancing the issue with data sets via a

“bagging technique” (p. 1952).

Wahono et al. (2014) also noted that although the track record for prediction with

neural networks that are architected with genetic algorithms has variety in application, an

investigation into their use in software defects revealed little. Wahono et al. did find the

imbalance issue had been addressed in software defect scenarios. Generally, they found

58

imbalance is addressed with variations on sampling. Wahono et al.’s proposed method

combines a genetic algorithm for choosing the best neural network parameters and

bagging to address imbalance in data sets, which was a combination they had not found

in use with software defect prediction (p. 1952). In an experiment, Wahono et al. used

NASA data sets divided into 10 equal parts for training purposes and measured them

using the “area under curve” for accuracy (p. 1954). The basic neural net model

performed with mixed results and improved with statistical significance after adding

methods for genetic algorithms and bagging (Wahono et al., 2014, pp. 1954-1955).

Shepperd, Bowes, and Hall (2014) found that the main factor for explaining the

performance of software defect proneness models was the researcher group at 31% (p.

612). Although their expectation was that most variability would be explained by

researchers’ choice of prediction method, the results indicated that method choice had the

least explanatory value of the factors considered (p. 612). The research involved several

steps: (a) the selection of studies based primarily on the prediction of software as either

defective or not defective; (b) a meta-analysis of the 42 selected studies containing 600

empirical reports; (c) calculation of the Matthews correlation coefficient, a common

measure of performance chosen for its comprehensive treatment of the confusion matrix;

and (d) a meta-analysis that involved testing four factor types using analysis of variance

procedures. The four factor types were membership relationships of researchers; chosen

data sets for modeling; measures of system characteristics used; and classifier family,

which is the methodology for prediction (Shepperd et al., 2014, p. 610).

Researcher group as a factor in variability of models was taken a step further

toward individuals in Mockus (2014). In a briefing to professionals in predictive

59

modeling for software engineering, Mockus noted the drawbacks of using statistical

methods with the data available to many software engineers, offered advice, and revisited

usefulness. The drawbacks include an examination of data quality, shortfalls in defect

modeling in general, and the role of individuals harboring a perhaps illogical fascination

with defects at the expense of other risk factors. At issue with data quality is that data

sources for software engineering are not up to the standard of rigor associated with

experiment data that are carefully designed and measured. Software engineers typically

have operational observation instead, which is likely highly variable from one instance to

the next.

Further, Mockus (2014) described three primary areas of concern with the status

of defect prediction: context, absence, and inaccuracy (p. 7). Mockus noted that the

context of the software is often unaccounted for with respect to key characteristics, such

as duplication in user reporting, stability in releases, overall use frequency of software,

and idiosyncrasy related to software project domains. With respect to absence of defects,

he noted a paradox in that defects cannot all be uncovered; however, the more defects

people find, the better the situation to improve the quality of the software; and defects

uncovered through code analysis do not correspond or match to those reported by users of

the software (p.7). Mockus further noted the inaccuracy related to the fact that what

developers count is actually fixes to defects because total defects are never known. From

there, Mockus noted that not every fix is truly a fix, but instead could be fixing a defect

other than the one reported, or the fix may introduce other defects. An additional

problem with defects is that defects are not consistent as a unit of measure. Defects vary

in their impact. Mockus has worked with others regarding the measure of a defect’s

60

impact (Shibab, Mockus, Kamei, Adams, & Hassan, 2011). Mockus asked if the

criticisms of attempting prediction add up to make further pursuit an “irrational behavior”

(p. 11), since their track record for performance is easily impugned. Mockus proposed

that the answer lay in risk assessment, cost–benefit analysis, and historical understanding,

with a shift toward more informed decision making rather than accurate or air-tight

prediction. In the decision-making realm, Mockus related common engineering decisions

about resources to the ability to understand or predict defects. Of common concern was

choosing ways to prevent, find and eliminate, and predict defects. In the prediction

department, Mockus suggested three useful applications: (a) “When to stop testing and

release,” (b) where in code will defects surface, and (c) what is the impact to the

customer (p. 5). Mockus created a scenario describing which software-use domains can

employ the information to their advantage, thereby justifying the effort to understand

defects. For example, IT managers in different industries appreciate defects in different

ways. Managers of medical and safety applications are likely to benefit from

understanding the impact of inoperable software. Communications managers are likely

to benefit from understanding costs to prevent defects. Operators of large-scale

electronics applications are likely to benefit from understanding costs to repair defects

(Mockus, 2014, p. 30). Of note is how these parameters coincide with general risk

management inputs.

Software project domains could include those related to so-called legacy systems.

For an application of grounded theory as a research design, see Khadki, Batlajery, Saeidi,

Jansen, and Hage (2014). The study explored a particular domain of software

engineering to determine the perceptions of its professionals and explained use of

61

grounded theory for its strength in uncovering “new perspectives and insights” (p. 37) in

contrast to methods of a confirming nature. The authors were particularly interested in

the common perception that legacy systems are both obsolete and invaluable to an

organization in performing its operations. Khadki et al. wondered if practitioners shared

the same viewpoint as academia and used as a definition for legacy system a software

system that is resistant to change and critical to operations, such that its failure would

have serious impact (p. 37). Khadki et al. tracked this definition to two IEEE articles on

the subject (Bennett, 1995; Bisbal, Lawless, Wu, & Grimson, 1999). Khadki et al. had

various sources that recorded the efficacy and benefit of modernization projects for these

systems and provided sources for figures stating that as many as 200 billion lines of

legacy code, much of it COBOL, remain useful (pp. 36, 38).

In the course of research, Khadki et al. (2014) interviewed professionals from

government and various types of business and industry on the nature of reliance on

legacy software. The interviewees with experience in legacy modernization projects

identified 11 industry domains: IT services, financial services, government, software

development, consulting, aviation, manpower (security), flower auction, food and dairy,

machinery production, and poultry. The topic of risk and fears surfaces in the interviews

conducted. The risks and fears mentioned included those related to the diminishing

availability of expertise, system failures related to lack of support, modernization project

risks (data migration problems, schedule slips, poor documentation quality, unrealized

return on investment), and organizational discord from technical staff whose professional

strengths are threatened by a modernization project (Khadki et al., 2014). Among the

authors’ conclusions is that while academia regard legacy systems as quagmires and use

62

the risks and fears associated with them as reason to undertake modernization efforts,

practitioners have a differing view on this point. Practitioners tend to view the long-lived

system as a cash cow for its business value, despite issues (p. 43). Khadki et al.

acknowledged authors whose approaches to modernization projects address risk, such as

Seacord, Plakosh, and Lewis (2003) and Sneed (1999). They suggested further research

by academia related to the perception of the quagmire of risks that legacy systems pose.

Perception and understanding motivated the StackExchange (2013) which

provides an online question and answer forum titled “Cross Validated” for the education

and practice of various methods such as those employed by individuals seeking to predict

or otherwise understand occurrence of defects. In a question and answer session

comparing machine learning as a genre to statistical modeling (the site has an internal

scoring system for reputation and usefulness that aids mediation of quality), various

authors provided their perspective on the development of modeling disciplines over a

time span of approximately thirteen years. This particular post included references to

other developing methods, such as data mining, in an attempt to differentiate the

motivations and placement of significance by the groups of scholars and practitioners.

For example, machine learners are distinguished by their emphasis on predictive accuracy

and statisticians by their emphasis on underlying behavior, as well as differences in

preferences for methods of evaluating those qualities (StackExchange, 2013). The thread

of questioning leads to a reconciliation of sorts calling for differing approaches to reflect

on the ways each can improve the body of knowledge by examining the others’ strengths

and weaknesses.

63

From discussions of the predictive methods, above, back to software defects as a

source of risk, G. Holzmann (2014) revisited the use of mathematics in making software

reliable, which he traced back to Dijkstra in 1973. Dijkstra’s article appeared in

American Mathematical Monthly the following year (Dijkstra, 1974). Dijkstra proposed

developing a program and its proof jointly, which falls prey to doubts that programmers

can master the mathematical skill necessary and that a large-scale proof could be

constructed for a large-scale program. G. Holzmann catalogued verification methods that

are now automated in answer to the scale issue, but the question of what the software

should do remains. An incomplete or incorrect answer for what software should be doing

results in verification that is less useful because the result is accepting an incorrect

program. A software specification documents what software should be doing and

verification can be performed with a mathematical discipline or other discipline, but

verification accepting a program written to an incorrect specification is a poor outcome.

G. Holzmann explored the challenge of programming to deal with errors to promote

software’s reliability. From a testing viewpoint, anticipating error circumstances dealt by

reality was previously noted as challenging (Armour, 2005). G. Holzmann used as an

example the Mars Global Surveyor spacecraft, which after “an unexpected combination

of low-probability events” (p. 18) became inoperable and was lost. G. Holzmann

introduced the perspective of “fault intolerance” (p. 19) in recognition of the potential

combination of small risks equating to a large failure. This defensive posture leads

programmers to investigate any possible source of future inconsistency, even though, for

example, a common compiler warning may logically seem immaterial to the

circumstance at the time of coding. Later, its existence could interact with reality in

64

unanticipated ways; intolerance of small issues is proposed to combat those occurrences.

Redundancy is useful as well, because added code can be used to double check assertions

that would otherwise be assumed during execution in the same way back-up hardware

improves the overall reliability of a mechanical device (G. Holzmann, 2014, p. 20).

In the case of the Heartbleed vulnerability, a seemingly low-probability risk

source, it appears that economics may have interfered with the adequate performance of

risk assessment. Heartbleed was nationally reported in April 2014 as a serious flaw in a

software solution called OpenSSL that affected up to 66% of web servers connected to

the Internet, many of which performed services using personal financial data (Kelly,

2014). The flaw allowed those accessing web sites with the prefix https:// of the

OpenSSL solution, which is an additional layer of security over the prefix http://, to be

vulnerable to having their user security information compromised. In the case of

financial transactions, users’ personal access information could be captured by those with

criminal intent. In a follow-up to the discovery of the vulnerability, Kamp (2014) offered

an explanation in “Quality Software Costs Money: Heartbleed Was Free.” His succinct

title references the genre of software production known as Free and Open Source

Software (FOSS). In this model for software development and use, the software is free to

users, the code itself is openly shared, and maintenance is donation dependent. Kamp

described his personal experience in this regard as a contributing programmer to two

other FOSS projects, which was an economics lesson in how to fund a concept such as

FOSS. The article described the FOSS foundations, such as the Apache Foundation, and

the emergence of crowd-sourcing as a method. In the effort to explain the specific

occurrence of the Heartbleed vulnerability in OpenSSL, the author noted that the $2,000

65

in annual donations that the OpenSSL Foundation received to maintain the software

would not cover much effort. A consequence of the bug surfacing included a flood of

dollars, as organizations realized they were impacted and subsequently donated.

However, Kamp noted that FOSS is underfunded, and plenty of open source software is

in use (p. 50). Later reports reported the time lapse between the announcement of the

Heartbleed vulnerability and the onslaught of attackers exploiting it for nefarious

purposes was 4 hours (Weise, 2015).

Weise (2015) who reported that hackers are organizing (i.e., they are no longer

individuals motivated by ego) also elaborated on the activities of hackers with figures

from Symantec’s 2015 Internet threat report that indicated hackers pulled off 312

breaches, which represented a 23% increase from 2013 to 2014 (Symantec, 2015, p. 78).

Symantec additionally reported that one out of every 965 e-mails is a phishing attack

designed to trick recipients into allowing malware to infect their computer (p. 12).

Ransomware attacks in which cyber thieves lock up victims’ computers and hold data for

ransom, and in which paying off then makes victims a good future target, doubled from

4.1 million in 2013 to 8.8 million in 2014 (p. 17).

Relevant Public Administration Theory

The following sections review contributions in the areas of decision making,

implementation, policy development, risk assessment, accountability, and chronological

coverage for completeness that includes research design viewpoints, relevant U.S.

Government Accountability Office reporting, and DoD influences.

Decision making. M. D. Cohen, March, and Olsen (1972) provided the garbage

can theory of decision making that is observable in cases of public organizations

66

describing a decision making logic in which goals and technology are unclear and

participants are transient. The description of an organizational situation in which goals

and technology are unclear and participants are transient appears to have much in

common with software development projects. March’s later work with Cyert included an

epilogue addressing the series of developments in the literature in the time frame

following the original edition (Cyert & March, 1992). Although the original article’s

central ideas of bounded rationality, organizational adaptation, and conflicting interests

address the problem of decisions, Cyert and March (1992) included extensions by way of

economic theory that include reference to Bayesian estimation (pp. 216-217). Attention

mosaics key on the divided attention of participants and on the linkages among solutions,

participants, and situations and their arrival rates, sequences, and temporal characteristics.

From that discussion came the following quote: “At the limit, almost any solution can be

associated with almost any problem—provided they are contemporaries” (Cyert &

March, 1992, p. 235). Recognizing these qualities in administrative settings for software

development is elucidating. Likewise, these works are useful in predicting an

organization’s general ability to make choices in the dynamics of the particular situation

a software release presents. However, use in a specific scenario would require an

information bridge as an underpinning in facing any particular software choice and

adjudicating its risks.

Other decision-making theorists contribute frameworks that are useful in

explaining software dilemmas and perhaps their outcomes, but when considered purely in

stand-alone analyses, they appear to leave a gap in suggesting decision methods or

approaches to specific risk and trade-off assessments. Decisions then happen in the

67

passive voice, such that decision making is better nomenclature than decide. At the same

time, lining up applicable public administration theories to software release processes is

conceptually simplistic so much so that it is a daunting task to make a case for labeling

any public administration literature as irrelevant to the development and implementation

of software. This is particularly true for decision making, which can be bounded

somewhat by its intersections with the development, testing, and fielding aspects of

systems’ life cycles. Decisions happen during development as software products are

chosen to be built, during testing as quality and value are reasoned, and during fielding as

accepting the automation falls to consumers.

The remainder of this subsection on decision making connects the topic to Allison

and Zelikow’s (1999) framework, Lindblom’s (1959, 1979) muddling, and Simon’s

(1997) satisficing, to name a few. The choice of these influences reflects their ready

comparison to later developments in software engineering practice, that are also covered.

Allison and Zelikow’s (1999) framework refers specifically to their work in

analyzing the events and decisions of the Cuban Missile Crisis using the lenses of rational

actor, organizational behavior, and governmental politics (pp. 13, 143, 255). Each of the

three viewpoints are distinguishable and collide in software programs. Engineers, in their

leadership role as Lead Engineer or Chief Engineer, are often the rational actor, as

rationality is in the nature of the engineering discipline. Program administrators

represent organizational behavior through their responsibilities of compliance with

guidelines and procedures. Program managers, mission owners, and acquisition leaders

are drawn into bargaining over requirements and budget control that characterize

governmental politics. These are the players in designing release procedures, making

68

release decisions, and setting policy. Rational and comprehensive approaches, as

described by Lasswell (1965) and discounted by Lindblom’s root discussion to problem

solving and decision making, are natural to engineers, especially when designing a bridge

to cross a river, but not necessarily in software disciplines. Waterfall approaches to

software development have a kinship with Lasswell’s seven decision-making phases.

However, Lindblom’s “Muddling Through” was prophetic (Lindblom, 1959, 1979) to a

much later development in software engineering circles that first gained attention as

spiral development and prototyping with Boehm’s (1988) work. Although Lindblom first

acknowledged incrementalism as a possibly legitimate way to make choices in an

organizational setting, software engineers did not begin exploring the idea in writing and

applying the idea to building, testing, and fielding software until 29 years later.

Simon’s (1997) satisficing (p. 119) which traces to earlier editions of his work,

likewise has an example in software engineering. Using Simon’s earlier work date of

1947 (p. vii), 54 years later marked the arrival of the Agile Manifesto in 2001, in which

repeated deliveries of software that simply works are good enough to sustain progress

(Beck, 2001, p. 2). Etzioni’s (1967) mixed scanning combined aspects from both rational

and incremental decision making to account for the cost of potentially missing

information that may later prove to have been crucial and to provide for ongoing

evaluation of conditions after the decision is made.

It may not be entirely fair to calculate how long it took for software development

to apply decision making theories, because software wasn’t much to think about as far

back as 1947. But with the advent of software development coming after much had been

69

discussed about rational and comprehensive approaches in comparison to

incrementalism; it is reasonable to contemplate.

Implementation. Carrying out policies in practice through program

implementation intersects with software development concerns through repeatability, test

methods, and rollout strategies. Of particular note for this study was the performance of

activities in which interactions among organizations include cooperation with external

organizations and where policy implementation comes with a keen sense of desired

benefit. With that in mind, two works in the genre of policy implementation provide

insight.

The first work was that of Pressman and Wildavsky (1984), which has expanded

to several editions, that to some degree soothes professionals who have faced an

implementation nightmare. The palliative explanation can be extended to many software

professionals. An example is the story behind the USAF’s Expeditionary Combat

Support System, widely reported in 2012 as a pile of software waste that cost taxpayers

$1.1 billion (“$1 Billion Wasted,” 2013; Kanaracus, 2012, p. 1; Shalal-Esa, 2012, p. 1).

In this case commercial software was evaluated to be a suitable solution, but in the

implementation phase the solution failed. To tease apart that which pertains to evaluation

and that which pertains to implementation, as Pressman and Wildavsky discussed,

generically comes in contact with software testing and rollout, because testing is

evaluative and rollout pertains to the actual deployment and fielding of software, an

implementation aspect. Pressman and Wildavsky looked at the advantages and

disadvantages of separating the functions (pp. 201-205) and concluded: “The conceptual

distinction between evaluation and implementation is important to maintain, however

70

much the two overlap in practice, because they protect against the absorption of analysis

into action to the detriment of both” (p. 205). This thought, in combination with the

interorganizational qualities of software development in public administration (e.g.,

testing organizations are independent of developing organizations, which are independent

from mission organizations), results in an implementation environment similar to those

described by O’Toole and Montjoy (1984), yet each type of interdependence occurs

simultaneously and potentially confounds the theory’s use as a predictor (pp. 493, 495).

Policy. In an effort to control and instill accountability, the DoD has a broad

array of policies, procedures, guidelines, instructions, memorandums that are specific to

technology development and too numerous to contemplate. Policies have evolved to

cover the establishment of technology programs, to ensure quality technology products,

and to address time frames of accountability. However, one particular acquisition policy

is a staple to software development, which is “Operation of the Defense Acquisition

System” (DoDI 5000.02, 2008). In this policy, systems are treated broadly and include

the overlap of weapons systems and information systems. This means that weapons

systems, such as aircraft, and information systems, such as software for business needs,

are within scope and jurisdiction, with 2.5 of the 80 pages devoted to distinctions for IT.

This has been challenging for IT programs because administrators must often translate

language intended to guide aircraft manufacturing into language that can be applied to

software development. Recent legislation known as the Federal IT Acquisition Reform

Act was passed in 2014, in part to address the challenges and now requires

implementation. Among the provisions are centralized accountability at agencies’ chief

information office level (Moore, 2014).

71

Risk assessment. The blending of viewpoints between administrative concerns

and software systems concerns has a considerable foundation. For example, Perrow

(1984), Short (1984), Douglas (as cited in Short, 1984), Constantine (2001), and Yourdon

(as cited in Page-Jones, 1988) provided points of intersection. Perrow concentrated his

treatment of risk on “properties of systems themselves” (p. 62) as a means of exposing

the underlying factors common to systems that explain why one system might be more or

less susceptible to an accident. Short took a sociological approach to understanding

perceptions of risk, which is important to human open-mindedness as players in risk-

exposing and risk-inducing processes. Short then integrated research from cognitive

science, behavioral decision theory, and organizational decision theory to note how

human limitations influence risk perception and acceptance (pp. 718-719). Constantine

and Yourdon provided basic engineering definitions of coupling and cohesion (as cited in

Page-Jones, 1988, pp. 57-102) in now classic discussions in software design pivotal to

understanding the software quality of relatedness in execution. Douglas called engineers

to task for failing to consider that an approach to risk, while fact-based and convincing to

those of similar training, can be improved upon in responsiveness by considering, for

example, cognitive psychology (as cited in Short, 1984, p. 718).

The connection between Perrow’s (1984) sources of risk that produce failures in

the broadest sense of systems and qualities of software that become subjects of risk

assessments is not necessarily intuitive. Software interdependencies captured in the

notions of coupling and cohesion are connected to the breakout of complexity and

coupling that led Perrow to his quadrant chart that illustrated combinations of tight and

loose coupling with linear and complex interactions. He used the combinations to

72

describe examples of systems and their propensity toward accidents (e.g., placement of a

chemical plant occurs in the complex interactions, tight coupling quadrant; p. 97).

Seacord et al. (2003) provided an example illustration of similar qualities in software

when documenting a retail supply software system known to the researcher as being a

military logistics system. The diagram is dramatic and quite literal in its representation

of the relationships in the software code shown with lines and boxes (Seacord et al.,

2003, p. 256). A software programmer would not be blamed for running away from this

software, and yet this software remains in operation. This brings about a point of

deficiency in how administrators represent risk assessments to management for action in

software development and release. The risks associated with a chemical plant and

bringing it into production are not on par with those of supply software systems, although

one could have an amusing argument with the comparison. Perrow distinguished an

incident from an accident to clarify such cases: an incident entails damage to lower levels

of a system’s units or subsystems and an accident is the complete failure of the system

having escalated from multiple unit or subsystem failures that interacted in unanticipated

ways (pp.70-71). A need arises to illustrate the propensity to incident or accident brought

about by the employment of software. Perrow’s work emerged as a necessity in pursuit

of such an illustration.

 Accountability. Two examples are provided here of the accountability

expectation with respect to the development of software in the government. The two

examples relate to the continuation of investment under a poor performance situation and

recommendations for accountability in defense financial and business management

systems.

73

 The GAO (2004b) impugned the DoD’s ability to control inventory using its

current set of software systems and its likelihood of improving the situation with the

active investments in future such systems. The investment dollars at stake are presented

as the DoD-requested amount of $19 billion in 2004 to care for 2,274 business systems

(GAO, 2004b). The report indicated that DoD’s compliance with legislation requiring a

review of system improvement projects was lacking, in that $479 million in spending for

projects over $1 million was not vetted by the DoD comptroller (GAO, 2004b).

Additionally, two cited projects were experiencing serious delivery delays, cost overruns,

and capability deficiencies. These two projects were said to “only marginally improve

DoD business operations” and to potentially hamper DoD objectives. The GAO

explanation included process problems in requirements and testing (GAO, 2004b).

 In an additional report, the GAO (2004a) acknowledged the challenge of

attempting an overhaul of its financial and business systems and asserted, “DoD is one of

the largest and most complex organizations in the world” (p. 2). Another statement

indicated, “The department has acknowledged that it confronts decades-old problems

deeply grounded in the bureaucratic history and operating practices of a complex,

multifaceted organization” (GAO, 2004a, p. 11). The GAO also reported that Secretary

Rumsfeld had estimated that improvements to these systems could save 5% annually, if

successful. GAO’s estimate of 1 year’s savings was $22 billion (GAO, 2004a, p. 2). A

project from this domain mentioned in a previous section was ultimately cancelled in

2012, after significant time and money had been spent (“$1 Billion Wasted,” 2013).

 Chronological coverage of environmental influences. This section is organized

approximately by date. In exceptions for readability, some subjects are grouped by date

74

leading to some entries being inserted at earlier points in time. The overarching

chronology casts a broad net on topics influencing the environment in which the RALOT

process is carried out. Shankland (2012) covered the history of an influential

prognostication in technology that dated to 1965 and is still widely viewed as relevant.

One of Intel’s founders, Gordon Moore (Shankland, 2012), posited that chip

improvements (for example, electronics technologies that increase processing speed and

reduce physical size, reduce power requirements, and decrease heat generation all while

decreasing costs) would follow a 2-year cycle. The concept is known as Moore’s law,

after Gordon Moore, an Intel Corporation cofounder; it became widely discussed after

Moore’s (1975) article refining and supporting the forecast. This law explains the rapid

pace of change for computing technologies that is not present in other industries

(Shankland, 2012).

 As previously mentioned, Perrow (1984) provided a characterization of

technological risk. This work and others were later associated with an emergence of the

idea that such risk is a sociological concern (Perrow, 1984). Clarke and Short (1993)

noted the emerging concern and collected common thoughts from fields other than

sociological works. They provided a clarifying set of issues for consideration in

organizational environments of risk and posited that no integrating theories had emerged

to mark the research agenda. Clarke and Short summarized the arguments into six broad

areas, while accounting for miscellany. The key areas of their synthesis are (a) a

comparison of technological and natural disasters, (b) constructionist realities versus

objective risk definition, (c) fairness and responsibility in decisions with risk

components, (d) human error versus systems as structural sources of risk, (e)

75

organizational track records for reliability, and (f) generalized organizational response to

disaster (Clarke & Short, 1993, pp. 376-394).

 Further, Clarke and Short (1993) described their central theme in treating the

subject of risk from the contextual basis of organizational and institutional roles in the

creation, assessment, and response to uncertainty and hazard (p. 375). Within their

reviews, many disciplines are represented with works from psychology, economics,

technologists, engineering, science, practitioners, decision making (in its contexts),

statistics and probability theory, disaster researchers, constructionists, management,

politics (interests and power), information, systems research, marketing and public

relations, highly reliable organization theorists, and law. This observation is also

reflected in the subject matter of the examples and cases cited that, spanning the public

and private sectors, include military, maritime, petroleum industry, health care,

information and systems, housing, aviation, chemical industry, community response, trust

and responsibility in government and science, leadership, transportation regulation,

accountability in government, reliability, toxic waste disposal, organizational learning,

disaster response, nuclear power generation, fishing communities, media and press, and

individual responsibility. It is beneficial to note that this listing specifically calls out

information and systems, making it directly relatable to this research. Also notable is that

most if not all of the other examples are employers of IT in some degree.

 Clarke and Short’s (1993) call for additional research included a prognostication

about the intellectual route of risk. In one scenario, risk research and study become a

topic in the overall subject matter of social problems, “important in its own right” (pp.

395-396) because of its potential for initiating social change and developing social

76

theory. The second scenario plays risk toward a mainstream of generalities in which the

precise study of risk in sociology is no longer needed.

 The year 2000 brought continued recognition of the power of networks and their

impact on IT. Two publications in particular significantly demonstrate this, one applying

network theory and technology to warfare (Alberts, Garstka, & Stein, 2000), the other

applying network theory and technology to democracy (Barney, 2000). Alberts et al.

(2000) collaborated to produce a strategic view of how the network contributes to

information superiority. The research conveyed several concepts of interest to risk in

releasing technologies in the arena of defense. The first concept is the distinction of the

“infostructure” (Alberts et al., 2000, p. 6) as a concatenation and abbreviation of

“information infrastructure,” which is a label for the cost of entry into an environment

that exploits the value proposed by networks. The second concept is the distinction of a

mission capability package and the coevolution of such packages (Alberts et al., 2000,

pp. 210, 227). The third concept is the broad use of the term risk to cover a wide range of

happenstances, such as risks of declining public support, allocating finite resources to

rival needs, increasing operational costs, declining value creation, accumulating

unneeded inventories, being outmaneuvered, threatening life situations, and maintaining

unrelenting operational tempo (Alberts et al., 2000, pp. 20, 37-38, 41, 64, 69, 82). The

coevolution of mission capability packages is the combination of existing infostructure,

experimentation (versus slow traditional research and development), and the elements of

defense processes (e.g., logistics, personnel, training, organization, weapon systems) with

operational tempo being a key theme throughout (Alberts et al., 2000, p. 210).

77

 In other significant work, Barney (2000) approached the potential impact of

network technology on democracy and noted that the nature of the network tends to

negate distinctions between information and communication such that the two working in

tandem create a “giant, expanding database” (p. 92). Barney explored the ability of

governments or capitalists to control the use of networks and what it portends for

economies, enforcement and policing, software ownership, citizen participation, and

ultimately the resulting quality of democracy. The research concluded that the activities

of the governed, in their pursuit of democratic self-government using network

technology, are a poor substitute for the art and science of politics. Those activities,

however devoted to the betterment of democratic practice, actually feed the appearance

of “the periodic registration of private opinions derived from self-interest and propaganda

to stand in for democratic self-government” (Barney, 2000, p. 268). Of note in Barney’s

research was the period of time that it became attractive for network traffic to be

encrypted.

 Barney chose two cases from the 1990s to illustrate political outcomes in testing

the ability of government to control what is released to the network and is consequently

no longer governed in a traditional sense. The first case was used to support the idea that

network technology creates a community immune to law and enforcement (Barney,

2000). Phil Zimmerman, famous for developing encryption protocols, faced a dilemma

with respect to governance and ownership of software. The dilemma presented itself

when it came time for him to decide what to do with his break-through encryption

technology. In the interest of averting undue privacy invasions by states, Zimmerman put

his product on the Internet, making it accessible for free and subsequently endured a 3-

78

year criminal investigation for allegedly violating arms trafficking laws in the United

States that restrict the export of encryption algorithms prior to government approval.

When the U.S. Customs Service closed the investigation, they neither explained the

charges nor the reasons Zimmerman was indicted.

 In a second case, Barney (2000) reported that Daniel Bernstein, a mathematician

and cryptologist, approached a similar circumstance by suing the U.S. State Department

that was requiring him to apply for a permit to export his encryption software. A U.S.

District Court ruled that Bernstein’s source code was a form of free speech, which

prevented enforcement of the permit process. Barney noted that this case illustrated not

an inherent network characteristic as the source of control issues, but instead preexisting

political preference for freedom over order (pp. 240-242). The advent of the Internet

stimulated considerable avenues and perspectives on the impact of IT (e.g., a sociological

impact as well; Cavanagh, 2007).

 The research stream begun by Alberts et al. (2000) continued in a series of

publications from the Center for Advanced Concepts and Technology, which is a

subgroup of the Command and Control Research Program sponsored by the DoD Office

of the Under Secretary of Defense (Acquisition, Technology, and Logistics). This

subgroup devoted effort to demonstrating the significance of the Information Age to

national security and reached into material written previous to the net-centric work to

help distinguish the notion of the Information Age. Many of these publications have

particular relevance for coping with characteristics of IT in a defense environment. For

example, the threads of the Information Age, complexity theory, modeling and

simulation, agility, and decision making are woven into a discussion of command and

79

control functions. Two authors who specifically address the topic of technology risk are

Moffat (2003) and Alberts (2011).

 Moffat (2003) summarized six complexity concepts and related them to qualities

of combat forces in the Information Age. As part of his case that the tools of complexity

analysis can be used in the analysis of warfare, he provided examples from biological,

physical, and economic systems to reach the commonalities necessary to his argument

that such tools are useful in predicting the future of warfare. Further, Moffat played out

conceptual principles through computer-supported war-gaming scenarios, applying the

relationships between complexity concepts and Information Age force qualities. The

mapping included (a) nonlinear interaction of the parts comprising combat forces, (b)

decentralized control in that each combatant action is not dictated from a master point, (c)

self-organization in that seemingly chaotic localized actions conform to order over time,

(d) nonequilibrium order in that conflict is by nature an occurrence far from equilibrium,

(e) adaptation in the coevolution of forces that are continually adapting, and (f)

collectivist dynamics through continuous feedback among combatants and command

structures (Moffat, 2003, p. 49).

 Alberts’s (2011) work progressed from the implications of a platform of network

technology to the application of agility concepts as well as complexity theory. Alberts

applied these ideas to enterprises and their actions in a 2011 publication charting an

agility course for command and control functions. Alberts suggested that organizations

lacking in an appreciation of agility are Industrial Age outfits equipped with Information

Age technologies, such as extensive networks. This is appreciably acute in risk

assessment, starting with distinctions between uncertainty and risk as related to the

80

perceptions of probabilities and exposure to both undesirable results and missed

opportunities. Alberts noted risk assessment is not the linear contemplation of severity

and the probability of occurrence and proposed a third dimension to risk: the

management approach that moves from ignoring the risk to mandatory action (pp. 34-43).

Time frames associated with risk motivated action and acceptance of consequences

combine in Alberts’s description of decision-making components (uncertainty, risk, and

time pressure) that support his introduction to decision making in complex scenarios and

why it is different than decision making in simple or even complicated situations

(Alberts, 2011, p. 46).

 Alberts (2011) concluded that many of the decision-making tools employed are

hampered significantly by complex situations. In demonstration thereof, Alberts posited

that emergent behaviors prevent effective use of decision strategies that break difficult

problems into manageable component problems that can be solved (p. 62). Alberts

described and explored the use of information advantage in addressing better decision

making via military efforts to exploit network technology and the associated criticisms.

For example, net-centric warfare “longs for an enemy worthy of its technological

prowess” (p. 124). Alberts asserted that criticisms in this vein are the result of using

Industrial Age models to evaluate a key transformative characteristic of the Information

Age. Information overload, misguided connectivity, and misinterpreted business case

were areas cited. Alberts reviewed the work associated with the phrase power-to-the-

edge, which labels efforts to exploit the power of networks by making information

increasingly accessible and subject to fewer constraints. An Information Age military is

said to be characterized by its policies of information sharing and collaboration.

81

However, Alberts concluded the organizational structures and mind-sets of militaries still

reflect more of industrialization than information. He asserted that pursuit of agility

addresses the new age that has resulted from complexity. Alberts’s crafted definition of

agility is “the ability to successfully effect, cope with, and/or exploit changes in

circumstances” (p. 188).

 Alberts (2011) provided a series of experiments to aid in the understanding of

how factors in four areas affect characteristics of agility. The four factors are (a)

infostructure agility related to network links and performance applied to sharing and

quality (b) individual agility related to human characteristics applied to cognition and

correctness, (c) organizational agility related to policies and effectiveness, and (d)

compensating agility related to the ability of more agile participants to make up for

deficient agility in others (pp. 256-269). Using experiments comprised of both human

trial information and agent-based modeling, Alberts compared and contrasted the results

of organizational forms (conventional hierarchies to collaborative edge arrangements)

and their performance, given sets of information and correctness outcomes. Notably, the

infostructure in the experiments is held at a constant level of normal performance for

most runs of the models (p. 328). His research findings indicated that some

organizational options are inappropriate in certain situations (e.g., using an edge approach

when information contains high levels of noise takes longer to reach correct outcomes

and using hierarchies when the challenge contains complexity results in poor outcomes).

For Alberts, choosing the most appropriate organizational and informational approach

means choosing the approach that covers the most area of the endeavor space

(requirements for shared knowledge, demands for timeliness, and degree of noise in

82

information). How an option covers this space (operating successfully) is the degree of

its agility (Alberts, 2011, p. 352).

 Using a subset of the models can simulate the impact to agility due to the loss of

infostructure support. The removal of some models explores what happens to the

probability of success in the case of a damaged network and the case of the loss of a

website. Doing so illustrates vulnerability and suggests resilience qualities. Information

lacking trustworthiness could not be accommodated by the agent-based modeling tool

used at the time (Alberts, 2011, pp. 391-401). Alberts asserted that the construction of

the explanatory “model of potential agility” (p. 516) addresses a need to assess whether

an entity can be successful under unexpected circumstances and, though crude, helps

make sense of what it means to be agile.

 Recently from a public administration viewpoint, the impact of network formation

took the tack toward civil networks (Musso and Weare, 2015). This is in contrast to the

flow of network study from Alberts, Garstka, and Stein (2000) and Alberts (2011), which

traversed the topic from literal impacts of technological networks and information

sharing to the importance of network infrastructure in military agility. Musso and Weare

(2015) viewed the network for its human component, rather than technology basis and

centered their research accordingly. They studied the formation of interpersonal

relationships as a part of institutional reform and produced a network simulation of a Los

Angeles city charter reform of 1999 (p. 151). Their purpose was to explore the

relationship between individual motivations in a reform network and the higher-order

structure of the network that emerges (p. 152). While risk is considered in the context of

bonds of trust and engagement in information sharing and risky protest activities (p.153),

83

the motivations of individuals in forming networks, the relationships in civic

engagement, and use of network simulation to explore those relationships, do not appear

to have affinity with risk assessment in software development and release.

 An affinity between low risk software and highly reliable organizations seems

more likely. Powers, Stech, and Burns (2010) noted that highly reliable organizations are

characterized by their formal models and mechanisms for performance measurement and

seek to apply those concepts to team sense making. This paper investigated the reliability

of defense organizations and capabilities such as aircraft carriers and intelligence

agencies. Powers et al. explored the qualities of sense-making teams and proposed a set

of behaviors they derived from sense-making principles as an initial model for

performance. These behaviors, they noted, can be observed in team situations.

 Using an additional research method, Powers et al. (2011) carried out an

experiment in collecting data from an exercise situation by reviewing video recordings.

Powers et al. counted instances of the behaviors in their proposed model. The four-day

collection of observations provided interesting results (for example, more enabling

behaviors occurred than inhibiting behaviors for this group), but Powers et al. concluded

sense-making metrics are just a start in understanding the relationship to performance,

thresholds for tolerance, and usefulness of the behaviors listed (p. 9).

 Others have contributed to the concept of sense-making applied to complex

decisions in defense scenarios. Lafond et al. (2012) carried out a simulation for defense

and security designed to train decision makers that included the sense-making behavior

model. Burns (2014) continued the work into a geospatial defense scenario by employing

Bayesian methods for prognostic and forensic inferences. Burns provided the following

84

definition of sense-making: “a recurring cycle of obtaining evidence and updating

confidence in competing hypotheses, to explain and predict an evolving situation”

(Burns, 2014, p. 6).

 Bankes (2002) investigated the specific case of complex systems and the use of

agent-based modeling and other model types for policy analysis. Bankes noted that for

some results of systems modeling, even the best estimate approach will seriously

underperform due to the phenomenon of deep uncertainty. Bankes proposed “an

ensemble of alternative plausible models” (p. 7264) to address the performance shortfall

while exploiting otherwise unused information about the system under examination in a

process involving iterative analysis. Bankes presented criticisms of statistical decision

theory’s mathematical models with prerequisite knowledge requirements and a discount

of human qualitative and tacit information. Bankes recommended iteratively integrating

computer-based quantitative data with human reasoning pertaining to complex, open

systems (p. 7264). This approach allows ranges of policies to develop through the

deepening knowledge that is being created by ongoing modeling activities of differing

types. Bankes’s examples included simple mathematical models of prediction, Monte

Carlo analyses, uncertainty analyses, graphical regions of policy forecasts, and a

graphical representation of a military combat situation (pp. 7264-7265). This approach

was offered as an alternative to a single policy recommendation based on its performance

in a single agent-based modeling examination. The proposed graphics presented maps of

solution space that allow policy makers to choose combinations of strategy components

rather than static configurations of strategies, which was proposed to account for policy

making in complex adaptive systems, in which the policy making was also adaptive.

85

Bankes’ proposed approach can be used to find the breaking points for particular strategy

sets to prompt additional configurations. Bankes reported successful use for deeply

uncertain, nonlinear, situations of policy contemplation (p. 7266).

 Bankes’ (2002) use of agent-based model concepts illustrated an increased level

of sophistication in modeling when compared to the simple modeling attempt associated

with early decision making theories. In 2001, two articles appeared in American Political

Science Review in a revisit of the original 1972 work on the garbage can model

mentioned earlier in this research as elucidating to the organizational scenario that results

in software being released. The first was a critique by Bendor, Moe, and Shotts (2001)

that included several examinations: (a) the lineage of the garbage can and new

institutionalism, (b) the behavior of the computer model and its programmed constraints,

and (c) the alignment of the model with the accompanying text. Bendor et al.

disassembled the series of works and criticized not only the original authors but also the

community for failing to explore its weaknesses (p. 183). Olsen (2001) responded to the

critique of the garbage can model body of work. In particular, Olsen took issue with the

way Bendor et al. viewed the computer model. Olsen defended the garbage can model as

a reproduction of a common experience: “moving through a series of meetings on

nominally disparate topics, reaching a few decisions, while talking repeatedly with many

of the same people about the same problems” (p. 192). Olsen’s early model could be said

to have provided a glimpse of future possibilities with modeling, now possible on a

grander scale like Bankes’ model because of advances in computation.

 In the same time period that Bankes (2002) explored modeling and Bendor et al.

(2001) critiqued an early modeling attempt, Klinke and Renn (2002) revisited the

86

controversies of risk management. In their view, several of the issues pointed out by

Clarke and Short (1993) remained or were restated, amended, and reduced. The list of

issues was as follows: reality versus construction, public concerns, uncertainty handling,

science and precaution approaches, integrated analytics, and deliberations (Klinke &

Renn, 2002, p. 1072). The primary application studied was centered on hazard to

environment and health in regulatory decision making for which was proposed a

taxonomy of evaluation criteria, tolerance concepts, risk classification scheme, decision

tree, management style map, strategy and instrument matrix, and discourse escalation

guidance (Klinke & Renn, 2002, pp. 1078-1080, 1082, 1083, 1090). Klinke and Renn

provided a visualization of the resulting classifications of risk situations (named by

corresponding Greek mythology characters that evoke the situations in terms of

complexity, confidence, and value judgments) against a backdrop graphic of increasing

scope of damage on one axis and increasing probability of occurrence on the other (p.

1082). They concluded the advantage of distinguishing between types of discourse, each

appropriate to the risk regulation situation, such that procedure and outcome do not

compete for priority. An intelligent combination of deliberation types and risk scenarios

(cognitive and expert, reflective and stakeholders, participatory and normative) provides

democratic legitimation of regulatory (political) decision making (Klinke & Renn, 2002,

p. 1092).

 While Klinke and Renn (2002) used mythology as an arguably unifying

visualization, Macgill and Siu (2005) made a case that risk paradigms did not include

observations about the nature of risk that would unify risk analysis. Macgill and Siu

proposed a new multidimensional paradigm that resulted from their effort to understand

87

the dynamics of a metaview, rather than those constrained by a perspective, such as those

offered from disciplines. The research explored risk analysis perspectives from techno-

engineering, sociocultural, political institutional, economics, and so forth (p. 1108). The

mechanism for illustrating the state of a risk was by its plot on a three-dimensional scale

of expected effect, scientific doubt, and social conflict, with the fourth dimension of

acceptability also recorded (p. 1114). In concluding remarks, Macgill and Siu

commented on the ability of their structure to accommodate rather than replace existing

risk analysis methods and reviewed how their methods of illustration and coding capture

each of five principles of systems analysis credited to Capra (as cited in Macgill & Siu,

2005, pp. 1126-1127). Those principles are definitional (“union of dynamically evolving

risk knowledge of the physical and social worlds,” p. 1110), structural (physical, social,

and resolution), trust and certainty (perceptions of valid knowledge and openness to

accept knowledge), procedural (mediation of the ebb and flow of evolutionary knowledge

attainment), and managerial (self-organizing control of the risk system; pp. 1126-1127).

 From the metaview to an individual’s view, Ito (2015) included a case in which

he personally participated after the tsunami that led to the nuclear disaster at Fukushima

Daiichi in Japan. In this scenario, an ad hoc team accomplished something important to

survivors and those affected that the official response organizations with planning and

resources could not. The team assembled itself from networked colleagues available at

the time of need. These geographically separated experts tapped existing, inexpensive,

easily assembled electronic and software components to provide survivors with

understandable radiation readings from their immediate surroundings. Ito also explained

his notion of “antidisciplinarian” (Ito, 2014, para. 1) as a concept in which the

88

boundaries of disciplines are subject to less emphasis than the “space between the dots”

(Ito, 2014, para. 4). Ito described as common the fate of innovations that attempt to work

in the “space between the dots” (Ito, 2014, para. 4). Those humans that are creative in

this way are rejected by the established disciplines within the reaches of their work,

which leads to a loss of progress. Ito reinvented the MIT Media Lab with this mantra.

Ito described this era of technology as a post-Internet phenomena and titled his

presentation After Internet (2015), in recognition of the disruption.

 In contrast, at earlier stages of network technology circa 1996, a predecessor of

Ito, Nicholas Negroponte, told the World Economic Forum that cyberspace was

uncontrollable and that those saying otherwise were to be doubted (as cited in Barney,

2000, p. 238). Controlling cyberspace may not be so much the issue as exploiting it for

both its strengths and weaknesses.

 Similarly, Johansson (2006) espoused a route to innovation via the intersection of

disciplines, along with the same warning about protected boundaries of established

disciplines (pp. 157-158). Johansson added a perspective that the sheer quantity of ideas

generated relates to the ability of intersections to highlight combinatorial variations in

ideas, thereby increasing the likelihood that a groundbreaking notion will surface

(Johansson, 2006, pp. 91-92).

 This literature review cast a broad net on software risk assessment, relevant public

administration topics, and environmental influences, having first provided background

and a review of material describing the RALOT approach. While the use of

questionnaires figures prominently in the RALOT approach and in the literature of

software risk assessment, the remaining subjects introduced dimensions that are not

89

clearly present, by employing simply reading comprehension, in RALOT. Therefore, this

material was staged as an integral part of the research method, in order to glean from it

opportunities to improve the USAF’s software risk assessment methods and outcomes.

The process to complete the research and the results are documented in the remainder of

the dissertation.

90

Chapter 4: Hypothesis

The RALOT model can be improved due to recent research and application

developments.

This hypothesis was expressed in keeping with a tenet from grounded theory, an

emergent research method (Charmaz, 2008). The applied tenet is “minimizing

preconceived ideas about the research problem and the data” (p. 155). For this reason,

the hypothesis is a simple statement of expectation, which allowed the research methods

and techniques applied to reveal avenues of action and middle-range theoretical

possibilities (pp. 155, 163).

The chapter that follows provides a review of the methods and techniques chosen

as potentially useful to the task of examination of the content of the literature review, in

the overall context of the hypothesis stated above. The review expands on grounded

theory and methods similar to grounded theory. It also includes material on the means

for synthesizing the literature review and making selections from alternative

improvement subject matter. Material on research trends in public administration is also

included.

The research questions are presented after the discussion of the methods and

techniques. This serves the overall objective of this dissertation which is identification of

improvement opportunities for software risk assessment in the USAF.

91

Chapter 5: Research Method

Three methods of inquiry support the identification of the hypothesis and

questions, as well as paths for future research. The first method described is grounded

theory, second is generative social science, third is lesson drawing, and fourth is affinity

diagramming. An additional section reports from a trends article found in Public

Administration Review.

Grounded Theory

Hesse-Biber and Leavy (2010) provided the following description:

Emergent methods are flexible; they can comprise qualitative methods or

quantitative methods or a combination of these two types of methods. Emergent

methods stress the interconnections between epistemology, who can know and

what can be known; methodology, theoretical perspectives and research

procedures that emanate from a given epistemology; and method, the specific

techniques utilized to study a given research problem. (p. 2)

As an emergent method, grounded theory stems from emergent logic, and Charmaz

(2008) qualified emergent methods by adding that they are “inductive, indeterminate, and

open-ended” (p. 155). As a methodology, grounded theory includes a minimalist

approach to preconceptions surrounding the problem and data, simultaneous collection of

data and analysis that iteratively informs, ongoing openness to a variety of explanations,

and construction of mid-range theory from ongoing data analysis (p. 155). As a

92

qualitative view, Charmaz contended that the method emerges and becomes explicit

through employing creativity and imagination, which are necessary to develop theoretical

categories and not only inquiry results. Emergence, in this context, has its roots in the

idea that a whole, or loosely a system, can have characteristics that the parts do not, with

Charmaz noting this includes “movement, process, change” (p. 157).

Grounded theory allows reasoning to move from inductive to abductive processes,

which introduces otherwise unrepresented possibilities. Critiques of the method include

divergence on the application of emergence definitions and their effect, mechanical

interpretations of the process, objective abstraction versus interpretive description, latent

versus explicit main concerns, prescriptive coding techniques, constructivist view of

research components, observation of many cases and researchers’ characteristics, and

adoption of theoretical codes (Charmaz, 2008, pp. 158-161). Charmaz discussed coding

qualitative data, writing memos, clarifying sampling, and recognizing theoretical

saturation (pp. 163-167).

Generative Social Science

Epstein (2006) provided a treatment of the use of agent-based computational

modeling as generative social science under the auspices of Princeton studies in

complexity. Generative science may be characterized as a paired question and

experiment. The generativist’s query is as follows; “How could the decentralized local

interactions of heterogeneous autonomous agents generate the given regularity” (Epstein,

2006, p. 5)? The generativist’s experiment is as follows: “Situate an initial population of

autonomous heterogeneous agents in a relevant spatial environment; allow them to

interact according to simple local rules, and thereby generate—or ‘grow’—the

93

macroscopic regularity from the bottom up” (Epstein, 2006, p. 7). In tracing the first

applications of this concept, Epstein noted that computers were not a prerequisite to

establishing generative science. However, using them today in the agent-based

computation model of an experiment makes large-scale work possible (p. 7). Epstein

provided the following features list that includes heterogeneous agents, autonomous

individual behavior, defined space, interacting neighbor agents, and specifically

“bounded rationality” (pp. 5-6).

Microspecifications are sufficient if they generate the macrostructure of interest

but may yet be only a candidate explanation leading to additional microspecifications that

also result in the macrostructure of interest. These additional results must be compared.

Epstein (2006) provided a motto for generative social science that refers to how the

macroconfiguration is explained and the dynamics of its formation: “If you didn’t grow

it, you didn’t explain its emergence” (p. 8). Epstein further provided a history of the

concept of emergence and challenged what would be a criticism of the overall method

with a specific definition of emergent occurrences: “stable macroscopic patterns arising

from local interaction of agents” (p. 31). This definition and Epstein’s exploration of

other definitions of emergence resulted in his conclusion that generativists accept that an

observed feature of a whole may or may not be explained. This is different from the

classical conclusion that such an explanation is precluded by virtue of emergence itself

(Epstein, 2006, p. 36). Epstein noted that generative science seeks a microspecification

that is sufficient to explain the behavior of the whole while leaving no mystery through

insufficiency or flaw. It is appropriate under the condition of analyzing “spatially

94

distributed systems of heterogeneous autonomous actors with bounded information and

computing capacity” (p. 38).

Epstein (2006) provided several cases of applied agent-based computations, each

accompanied with animations. Notable was Epstein’s model of an adaptive organization

that addresses the following query: “Can one ‘grow’ optimally adaptive organizations

from the bottom up—that is, devise rules of individual behavior that endogenously

generate optimal structural adaptations” (p. 309). Epstein referred the reader to a vein of

literature on the origin and size of firms and attendant topics that include M. D. Cohen et

al.’s (1972) garbage can. No data supported the model, instead support arose from the

execution of rules and their effect on structure of the organizational form, i.e., the model

or organizational form varies with the variation in rules or behaviors. The two basic

organizational models explored are flat and hierarchical. The model successfully

produces dynamic structure behaviors from the execution of the rules. The behavior of

the model can be likened to both profit seeking and military settings. One variation in the

model with a hybrid objective (the organization concerns itself equally with profit and

market share) had surprising results. Where Epstein expected a fixed result (one form of

organization over another, as optimal), the model in these scenarios oscillated between

flat and hierarchical (pp. 309-342).

Lesson Drawing

Rose (1993) provided a concise guide to lesson drawing as can be applied in

public administration scenarios for policy analysis and decision making. Rose described

the quest of public officials for programs (in whole or in part) that are successful in some

instance and have potential to address dissatisfaction that has arisen within their own

95

spheres (pp. 50, 57). These searches extend over time as well as other terrain. Candidate

solutions may exist, either in a historical context or in an organizational or geographical

context that Rose referred to as space (p. 90). Rose posited seven hypotheses about the

likelihood that any given candidate program will have a repeat performance elsewhere

that is successful, defined simply as a working program that evades dissatisfaction.

Those seven hypotheses are described below and include the word “fungible” denoting

that an agreeable outcome can be expected, to some degree, by employing lessons

learned from an outside or previously executed program in a different time (i.e., now) and

different space (i.e., here):

• Fewer unique aspects improve fungibility.

• Substitutable institutions of delivery improve fungibility.

• Resource equivalence improves fungibility.

• Simple structures of cause and effect improve fungibility.

• Smaller introduced change from the new aspects improve fungibility.

• Interdependencies between separate jurisdictions influenced by the same

dissatisfaction improve fungibility.

• Harmonious, shared values between policy makers and the candidate program

improve fungibility (Rose, 1993).

Rose concluded that, for the dimension of time, obstacles a lesson-drawn program faces

become variables. That is, decision-time road blocks can be challenged over the time

frames of the new program’s execution environment (Rose, 1993, pp. 143-144).

James and Lodge (2003) compared Rose’s lesson drawing and another body of

work represented by Dolowitz and Marsh’s (as cited in James & Lodge, 2003)

96

contribution to policy transfer. James and Lodge posited that both approaches lack

distinction on three fronts, which means they have limited usefulness over and above

more specific views of learning and the relationship of policy-making styles to their

respective outcomes (p. 190). The three areas of concern for James and Lodge are (a)

distinction of the two from conventional forms of policy making; (b) distinction of the

precursors to lesson drawing, policy transfer, or conventional; and (c) examination of

why lesson drawing or policy transfer or conventional rationale may have different

effects on policy and success (p. 179).

M. F. Williams (2009) provided a viewpoint of public policy development that

accentuated the technological aspects, such that a comparison of software development

processes and policy development (rule-making, specifically) processes is possible (p.

453). M. F. Williams drew on both software development sources and policy

development sources (such as Rose, 1993) to juxtaposition the software development life

cycle with a similar process developed by Kerwin (2003) to describe the iterations of rule

making. The exercise reflected on the use of E-Rulemaking, which is a blending of the

process of developing the web-based software iteratively with the process of soliciting

stakeholder inputs to regulation development, also iteratively. M. F. Williams warned

that blending the technologies can have an adverse impact in that access to the Internet

excludes some stakeholders, does not seem to be improving the language of regulation

from highly technical to layman’s terms, and must be supplied to students for the

furtherance of communication technologies through the blurring of disciplinary lines

(professional vs. technical genres of communication; p. 461).

97

Affinity Diagramming

A technique for exposing relatedness in topics and new or unnoticed concepts and

ideas was found in Straker’s (1995) practical guide for performing affinity diagramming.

Situations in which an affinity diagram is useful included (a) when seeking to bring order

to disorderly information (fragments, uncertainty, unclear structure), (b) when seeking

consensus with subjective and provocative material but avoiding argumentative

situations, (c) when opinions about existing systems hamper potential to uncover new

solutions, and (d) when creative order has value over logical order (Straker, 1995). The

completed affinity diagram is constructed of groups of subject matter instances with

affinity labels that provide a basic organizational structure to the material and content

revealed during the process.

Straker (1995) provided a process for developing an affinity diagram for a small

group of participants presented with a problem statement. The group collects data about

the problem and then transfers the information to 3 × 5 cards (or Post-It notes) and

shuffles them. In iterations of gathering the cards into groups under header cards and

rearranging them, the group arrives at a diagram documenting their progress. Silence and

feeling are preferred over discussion and logic. Arrows may be added for relationships

(Straker, 1995).

Trends

In keeping with tradition, Public Administration Review editors employed

researchers to report on its efforts to take stock of research represented in its publication

over the period of 2000-2009 (Raadschelders & Lee, 2011). Among the challenges for

such an undertaking was how to categorize topics across current events and historically

98

established subjects, account for the declining contributions from public-administration-

practicing authors, and draw conclusions about future direction and purpose from the

resulting observations. Among those observations were that statistical and empirical

approaches dominated among the methods chosen for pieces during the 10-year period

under review (Raadschelders & Lee, 2011, p. 24); planning, organizing, staffing,

directing, coordinating, reporting, and budgeting (known as POSDCORB and describes

the duties of the chief executive according to Gulick; as cited in Shafritz & Hyde, 1997,

p. 88) remained a dominant topical scheme with variations in titles of seemingly little

significance (Raadschelders & Lee, 2011, p. 27); and an underserved subject surfaced

that related to the material of this paper: science and technology innovation

(Raadschelders & Lee, 2011, p. 27).

Among the conclusions of the PAR inventory were a charge of overspecialization

characterized by statistical and empirical research that is less and less useful to

practitioners and only understood by limited numbers of experts; a call for

interdisciplinary exposure for public administration students designed to encompass the

range of social sciences and implications for policy challenges; and a prediction of the

decline or end of practitioner interest in public administration study: “If quantitative-

statistical, empirical, specialized, studies eclipse a generalist administrative science . . .”

(Raadschelders & Lee, 2011, p. 29). A contrary view appeared in the volume edited by

Hesse-Biber and Leavy (2010), while data supported the idea that quantitative methods

have outpaced qualitative in use for social science. In that volume, Staller, Block, and

Horner (2010) reported that 2004 marked the most recent intersection after which interest

in quantitative methods exceeded interest in qualitative methods, although data from Sage

99

publication frequencies revealed several points in history in which the two jockeyed for

dominance (pp. 32-33). Further, Staller et al. reported, “These methods employing

statistical techniques—which were once utilized only by specialists—are now routinely

expected to be mastered (or at least tackled) by undergraduate students taking basic

research methods courses” (p. 34), thus raising the bar for generalists to accept the

techniques of the specialists.

Research for RALOT

The research method being employed in this study entailed comparing recent

research and development efforts with the content of RALOT to identify characteristics

of approaches that are not represented in the RALOT method. Those additional

approaches were addressed as potential improvements to the RALOT method. A trial

construction of an additional method or methods for the RALOT approach was

assembled using existing supporting material from the new research. A trial method of

refining and validating the new model was proposed. The research method consisted of

four questions:

Question 1: What does a review of the literature reveal about improvement

opportunities in the way of risk assessment and predictive methods?

Question 2: For selected methods, what does a comparison with RALOT content

reveal about specific opportunities for improvement?

Question 3: Can initial versions of specific improvements to RALOT be

constructed from the results of the analysis?

Question 4: What steps would be needed to refine and validate the initial version

for actual use?

100

Answering each question was carried out as follows. Question 1 was answered by

a concept search through the literature review section of this paper for categories of

practiced or proposed means of dealing with risk. The search was as broad as humanly

possible in the time frame allocated and in keeping with emergent and generative

approaches. Chapter 6 contains the analysis of Question 1, in the form of an affinity

diagram. Question 2 was answered by a subjective comparison of the qualities present in

RALOT against those concepts revealed by Question 1. Coding occurred for action and

analytic possibility, in keeping with grounded theory. Chapter 7 contains the comparison

produced in responding to Question 2. Question 3 was answered by selecting a mode of

improvement, using lesson drawing (Rose, 1993) from those exposed by Question 2’s

comparison and constructing a prototypical model of how the improvement could be

implemented, with emphasis on the value potential and feasibility. Chapter 8 contains

the prototypical model of the improvement, a Bayesian network implemented with Agena

software. Question 4 was answered with an implementation strategy and step-wise plan

for the improvement to be introduced into practice, which can be used for further study.

Chapter 9 contains the planning material. Chapter 10 summarizes the results and

recommendations supported.

101

Chapter 6: Question 1

As a reminder, Question 1 was as follows: What does a review of the literature

reveal about improvement opportunities in the way of risk assessment and predictive

methods? The literature review revealed a wide array of topics, techniques and tools, and

insights that are both general and specific, and can potentially improve the fidelity of risk

assessment for the USAF’s software endeavors.

 Question 1 was designed in the broadest sense possible with acknowledgment of

the subject’s depth, breadth, complexity, history, timeliness, scope, and impact that make

the research approaches of grounded theory and generative social science attractive. Risk

is an amorphous topic; software is a generically useful invention. In addition, a wide net

across material seems a practical, if slightly improbable, way to narrow the possibilities

afforded by the generation of many combinations of ideas after two or possibly more

disciplines are seen as relevant to a single endeavor and will form an intersection or a

convergence point (Johansson, 2006).

 A shortcoming is that literature research must be bounded. This is particularly

important to this research, because of the technology environment, and is a reason to

employ the research approaches of Charmaz (2008) and Epstein (2006). The references

are only a sample of possibly applicable concepts bounded by the time and imagination

of the researcher in keywords and intersections that may be contemplated. Conversely,

new or additional information continues to be discovered; even if it is not published or

disseminated. Impacts of software failures are newsworthy, and each new report

102

potentially shapes perceptions of risk. In April 2015, news sources reported that

Starbucks customers were treated to free beverages due to a surprise failure of the point-

of-sale system (Soper, 2015). Starbucks reported a simple omission of a database table

during a routine software release created a global outage and led to millions in lost

revenue (Bishop, 2015). Who was responsible for that release and the reason why they

believed it was okay to release are not yet reported and might not ever be reported.

Likewise, the pace of change in software technology means that new applications are

potentially around every corner. For example, also in April 2015, the Association for

Computing Machinery reported defense command and control applications employing

new “sketch-thru-plan multimodal interfaces” (P. R. Cohen et al., 2015, p.56) with

remarkable user acceptance rates over the previous technology through the concept of

“user juries” (p. 63). Neither of the ideas in quotes surfaced in the literature review in

Chapter 3. Drawing a cut line was a challenge. This illustrates the weakness of any

literature review because of constantly evolving information.

 Several readings of the articles summarized in Chapter 3 revealed a myriad of

inputs suitable for a practitioner charged with developing a comprehensive risk

assessment program for the release of software in a public administration setting. Figure

2, below, captures through categories of key words and phrases in an affinity diagram,

those concepts so that they could be used for the purpose of the comparison in answering

Question 2 (Straker, 1995). The categories that emerge from the key words and phrases

are sources of risk, finding and anticipating risks, gauging risks, mitigating risks, and

criticisms. The purpose of the categories is to aid in the communication of the key words

103

and phrases from Chapter 3 by a loose organization of their context. The exercise could

be improved by expanding the effort to other participating researchers.

 To prepare the content of Figure 2 further for use in answering Question 2, it was

useful to form the key words and phrases into a checklist. The checklist was then used to

look for subject matter in the RALOT material that indicated the concepts behind the key

words and phrases were present. Through these means potential improvements surfaced

for consideration.

 In the preparation of the checklist, an affinity diagram exercise was useful in

elucidating the key words and phrases with conceptual overlap and incremental value

above a central theme. The incremental value stems from the actionable nature of the

resulting collection, an alignment with Charmaz’s advice on coding, pertaining to the

next research question. Charmaz advised that coding in grounded theory, an emergent

method, seeks “actions and theoretical potential” as a distinguishing feature (Charmaz,

2008, p. 163).

 To avoid semantic misgivings that were likely to emerge by overanalysis of the

material, the analysis of key words and phrases stopped with the affinity diagram

preparation. The purpose for gathering the material was not to reconcile or purify the

entirety of the viewpoints with established theories or practice. Rather, the purpose was

to mine the research for ideas and means of improving an existing approach, RALOT.

While blunt criticisms of the works are useful, overanalysis of the works would consume

the study to the detriment of its purpose.

104

Figure 2. Concepts: Key words and phrases.

 The affinity diagram process was continued using guidance from Straker (1995)

and the contents of Figure 2 as the starting point. Straker recommended this type of

approach under several conditions, including the following: “Use it when current

opinions, typically about an existing system, obscure potential new solutions” (Straker,

105

1995, p. 89). The resulting checklist is in Figure 3, Comparison Checklist Version 1.

Order is alphabetic within major headings.

1. Sources of Risk 1.15.3 Cyber attacks - hackers
1.1 Change Cycles 1.15.4 Law enforcement on Internet
1.1.1 Degree of change 1.15.5 Power of networks – misguided connections
1.1.2 Failure to adapt 1.16 Understanding Environment
1.1.3 Inflexibility 1.16.1 Bad duplication
1.1.4 Nature of change 1.16.2 Combinations of small risks equal large impact
1.1.5 Pace of change 1.16.3 Development cognizance of design
1.1.6 Timing demands 1.16.4 Failure to document enterprise
1.1.7 Too big of a hurry 1.16.5 Highly complex environment
1.2 Enterprise management 1.16.6 Nonlinearity
1.2.1 Bad data, latency, error ridden 1.16.7 Single point of failure
1.2.2 Bad decisions – poor judgment 1.16.8 Uncertainty- unknowns – deep uncertainty
1.2.3 Capacity exceeded 2. Finding and Anticipating Risk
1.2.4 Information Overload 2.1 Abstract models – process, architecture
1.2.5 Poor investment decision 2.2 Code analysis
1.2.6 Highly reliable organizations 2.3 Definitions
1.3 Organizational dependencies 2.4 Deviations from standards
1.3.1 Implementation dependencies 2.5 Environment propensity
1.3.2 Infrastructure 2.5 Mathematical proofs
1.3.3 Number of organizations involved 2.6 Questionnaires
1.4 Failure to manage risk 2.7 Risk breakdown structure
1.5 Human subjectivity 2.8 Statistical modeling and simulation
1.5.1 Failure to accept some risk 2.9 Taxonomies and typologies
1.5.2 Ignoring risk 2.10 Testing
1.5.3 Probability perceptions 3. Gauging Risk
1.5.4 Risk perceptions 3.1 Dollars of impact
1.5.5 Sensemaking 3.2 Frequency and probability of occurrence
1.6 Legacy systems modernization projects 3.3 Impact to mission
1.7 Mission expectations 3.4 Measures and counts (metrics)
1.7.1 Bad requirements 3.5 Rankings and league charts
1.7.2 User acceptance low 3.6 Subjective construct
1.7.3 User involvement poor 3.7 States of risk
1.8 Physical threats 3.8 Trade-offs
1.9 Privacy protection 3.9 Visualizations
1.10 Project Management 4. Mitigating Risk
1.10.1 Life cycle views 4.1 Business process models
1.10.2 Low maturity–poor or lacking processes 4.2 Earned value tracking
1.10.3 Low skills–wrong skills 4.3 Good duplication
1.10.4 Mismatches of tools to problems 4.4 Intolerance of small faults
1.10.5 Poor project planning 4.5 Iterative approaches
1.10.6 Poor project management 4.6 Policy – standards – data quality
1.10.7 Project large–investment large 4.7 Predict and intercept
1.10.8 Underfunded development 4.8 Prototypes
1.11 Safety threats 4.9 Project management
1.12 Security threats 4.10 Requirements traceability
1.13 Software quality 4.11 Risk management
1.13.1 Code qualities 4.12 Task distinctions – organizational flexibility
1.13.1.1 Paths 4.13 Testing – better and/or more
1.13.1.2 Dependencies 4.14 Smaller scale projects
1.13.1.3 Modularity 5. Criticisms
1.13.1.4 Size 5.1 Availability of data for statistical methods
1.13.2 Buggy software-defects 5.2 Analytical breakdown structures do not consider emergent behavior
1.13.3 Not enough testing - too much testing 5.3 Esoteric nature of statistical models and specialization
1.14 Operational threats-mission objective threats 5.4 Evidence that experts can reduce effectiveness
1.15 Technology forecasts 5.5 External validity challenges due to data collection inconsistencies
1.15.1 Bad predictions 5.6 Mathematical proofs may not scale to systems levels
1.15.2 After Internet – new technology 5.7 Emergent behavior is problematic
 5.8 What counts? Fixes, defects, changes

Figure 3. Comparison checklist, Version 1.

106

 Several noteworthy observations for the affinity diagram process were (a) for the

researched material, lines of responsibility were not drawn, as was the case for AFOTEC

and the 605th, which are organizations with a specific mission; (b) there are likely some

issues that cannot be resolved; (c) performance of normal duties under typical

organizational schemes, such as project management, engineering, or in defense, threat

assessments, can be confused with risk mitigation. Likewise, the embedding of risk

mitigation activities into routines can be a deliberate strategy; (d) explicit or implicit

assumptions made on the part of risk assessment personnel are likely unavoidable; (e)

keeping scope to software, where risk is concerned, is difficult due to the way software is

employed by organizations; (f) some concepts require quality or value definitions of their

own that are beyond the scope of this paper, such as mission requirements; (g) things

done to mitigate risk may well be the routinization of those things done to find,

anticipate, and gauge risk, thus comprising risk management; (g) it is unclear that the

affinity diagram process improved upon the original list, other than by organizing the

sources of risk material and allowing additional observations.

107

Chapter 7: Question 2

Figure 4 provides the input for answering Question 2, which was as follows: For

selected methods, what does a comparison with RALOT content reveal about specific

opportunities for improvement? A positive result is coded by the locale of the concept’s

coverage in the RALOT material (i.e., concept appears in the policy, questionnaire, or

training). Coding was P, Q, and T, respectively. The coding was executed by two

methods. The first method was searching specific words and phrases directly in the

source files using Adobe Acrobat, Microsoft Word, Excel, and PowerPoint features. The

second method was by using visual scanning and rereading of documents. The second

method was used to confirm or seek possible synonyms and root words that may have

evaded the computer file searches. A single confirmation in a source was enough to rate

a positive observation. No attempt was made to quantify degree of emphasis or

extensiveness of the treatment of the subject, because this paper was not evaluative in

that respect.

108

Concepts
RALOT

notes Concepts
RALOT

notes
1. Sources of Risk 1.15.3 Cyber attacks - hackers -
1.1 Change Cycles P 1.15.4 Law enforcement on Internet -
1.1.1 Degree of change P Q T 1.15.5 Power of networks – misguided connections -
1.1.2 Failure to adapt - 1.16 Understanding Environment
1.1.3 Inflexibility P T 1.16.1 Bad duplication -
1.1.4 Nature of change P Q 1.16.2 Combinations of small risks equal large impact P Q T
1.1.5 Pace of change P 1.16.3 Development cognizance of design Q
1.1.6 Timing demands - 1.16.4 Failure to document enterprise -
1.1.7 Too big of a hurry - 1.16.5 Highly complex environment P Q T
1.2 Enterprise management 1.16.6 Nonlinearity -
1.2.1 Bad data, latency, error ridden P Q 1.16.7 Single point of failure P Q
1.2.2 Bad decisions – poor judgment P 1.16.8 Uncertainty- unknowns – deep uncertainty -
1.2.3 Capacity exceeded - 2. Finding and Anticipating Risk
1.2.4 Information Overload - 2.1 Abstract models – process, architecture P Q
1.2.5 Poor investment decision - 2.2 Code analysis Q
1.2.6 Highly reliable organizations P Q 2.3 Definitions P Q T
1.3 Organizational dependencies - 2.4 Deviations from standards P Q
1.3.1 Implementation dependencies P Q 2.5 Environment propensity P Q T
1.3.2 Infrastructure P Q 2.5 Mathematical proofs -
1.3.3 Number of organizations involved - 2.6 Questionnaires Q T
1.4 Failure to manage risk - 2.7 Risk breakdown structure -
1.5 Human subjectivity - 2.8 Statistical modeling and simulation -
1.5.1 Failure to accept some risk Q 2.9 Taxonomies and typologies -
1.5.2 Ignoring risk P Q T 2.10 Testing P Q T
1.5.3 Probability perceptions P Q 3. Gauging Risk
1.5.4 Risk perceptions - 3.1 Dollars of impact -
1.5.5 Sense making - 3.2 Frequency and probability of occurrence P Q
1.6 Legacy systems modernization projects - 3.3 Impact to mission P Q T
1.7 Mission expectations 3.4 Measures and counts (metrics) P Q
1.7.1 Bad requirements P Q 3.5 Rankings and league charts Q
1.7.2 User acceptance low P 3.6 Subjective construct -
1.7.3 User involvement poor P T 3.7 States of risk Q
1.8 Physical threats Q 3.8 Trade-offs -
1.9 Privacy protection - 3.9 Visualizations Q T
1.10 Project Management Q 4. Mitigating Risk
1.10.1 Life cycle views Q 4.1 Business process models -
1.10.2 Low maturity – poor or lacking
processes

P Q T 4.2 Earned value tracking -

1.10.3 Low skills – wrong skills Q 4.3 Good duplication P Q T
1.10.4 Mismatches of tools to problems Q 4.4 Intolerance of small faults -
1.10.5 Poor project planning Q 4.5 Iterative approaches P Q T
1.10.6 Poor project management Q 4.6 Policy – standards – data quality P Q T
1.10.7 Project large – investment large P Q 4.7 Predict and intercept -
1.10.8 Underfunded development - 4.8 Prototypes P
1.11 Safety threats P Q T 4.9 Project management
1.12 Security threats P Q T 4.10 Requirements traceability P Q
1.13 Software quality 4.11 Risk management -
1.13.1 Code qualities 4.12 Task distinctions – organizational flexibility -
1.13.1.1 Paths Q 4.13 Testing – better and/or more P Q T
1.13.1.2 Dependencies Q 4.14 Smaller scale projects P Q T
1.13.1.3 Modularity Q 5. Criticisms
1.13.1.4 Size 5.1 Availability of data for statistical methods -
1.13.2 Buggy software - defects Q 5.2 Analytical breakdown structures do not consider

emergent behavior
-

1.13.3 Not enough testing - too much
testing

P Q T 5.3 Esoteric nature of statistical models and specialization -

1.14 Operational threats – mission
objective threats

P Q 5.4 Evidence that experts can reduce effectiveness -

1.15 Technology forecasts - 5.5 External validity challenges due to data collection
inconsistencies

-

1.15.1 Bad predictions Q 5.6 Mathematical proofs may not scale to systems levels -
1.15.2 After Internet – new technology P Q T 5.7 Emergent behavior is problematic -
 5.8 What counts? Fixes, defects, changes -

Figure 4. Checklist and RALOT notes. P = policy, Q = questionnaire, and T = training.

109

The concepts for which no positive appearance in the policy, questionnaire, or

training materials occurred are as follows:

• Failure to adapt

• Law enforcement on Internet

• Earned value tracking

• Timing demands

• Power of networks – misguided connections

• Intolerance of small faults

• Too big of a hurry

• Bad duplication

• Predict and intercept

• Capacity exceeded

• Failure to document enterprise

• Risk management

• Information overload

• Nonlinearity

• Task distinctions – organizational flexibility

• Poor investment decision

• Uncertainty – unknowns – deep uncertainty

• Availability of data for statistical methods

• Number of organizations involved

• Mathematical proofs

• Analytical breakdown structures do not consider emergent behavior

110

• Failure to manage risk

• Risk breakdown structure

• Esoteric nature of statistical models and specialization

• Risk perceptions

• Statistical modeling and simulation

• Evidence that experts can reduce effectiveness

• Sense making

• Taxonomies and typologies

• External validity challenges due to data collection inconsistencies

• Legacy systems modernization projects

• Dollars of impact

• Mathematical proofs may not scale to systems levels

• Privacy protection

• Subjective construct

• Emergent behavior is problematic

• Underfunded development

• Trade-offs

• What counts? Fixes, defects, changes

• Cyber attacks – hackers

• Business process models

Of those concepts that did not have representation in the RALOT materials, many

were of a nature to use as slight improvements or updates due to environmental shifts.

For those, the RALOT Questionnaire is recommended for a refresh. Several of the

111

concepts were too broad or soft to lead to anything prescriptive. None of the criticisms

were represented. Figure 5 includes the unrepresented concepts with a suggestion for

incorporating them into the set of RALOT materials. In fulfillment of coding that

highlights actionable areas of concern and potential for research, the coding was as

follows: F = further study, as these needed more specifics than this study allowed or

potentially exceeded the scope of an independent testing organization; Q =

questionnaire, as these could stimulate additional RALOT facilitator interview; P =

policy, as implementation would likely need leadership support or the item reflects an

enterprise concern (e.g., investment related); and T = training, as the means to convey the

concepts to RALOT facilitators.

A short list of practical recommendations flowed from several concepts that had

applicability to the responsibilities of USAF testing organizations and were coded as

recommendations (R). Those were as follows:

• Sensemaking (Powers et al., 2011)

• Statistical modeling and simulation

• Predict and intercept

• Availability of data for statistical methods

• Analytical breakdown structures do not consider emergent behavior

• Esoteric nature of statistical models and specialization

• Evidence that experts can reduce effectiveness

• External validity challenges due to data collection inconsistencies

• Emergent behavior is problematic

• What counts? Fixes, defects, changes

112

Question 2 Input
F Bad duplication
F Failure to adapt
F Mathematical proofs
F Mathematical proofs may not scale to systems levels
F Non-linearity
F Number of organizations involved
F Poor investment decision
F Risk perceptions
F Subjective construct
F Task distinctions- organizational flexibility
F Taxonomies and typologies
F Uncertainty – unknowns – deep uncertainty
F, Q, T Information overload
P Capacity exceeded
P Dollars of impact
P Earned value tracking
P Failure to document enterprise
P Failure to manage risk
P Intolerance of small faults
P Law enforcement on Internet
P Legacy systems modernization projects
P Power of networks – misguided connections
P Risk breakdown structure
P Risk management
P Trade-offs
P Underfunded development
Q, T Business process models
Q, T Cyber attacks - hackers
Q, T Privacy protection
Q, T Timing demands
Q, T Too big of a hurry
R Analytical breakdown structures don’t consider emergent behavior
R Availability of data for statistical methods
R Emergent behavior is problematic
R Esoteric nature of statistical models and specialization
R Evidence that experts can reduce effectiveness
R External validity challenges due to data collection inconsistencies
R Predict and intercept
R Sensemaking
R Statistical modeling and simulation
R What counts? Fixes, defects, changes

Figure 5. Recommendations for concepts. F = further study, P = policy, Q =
questionnaire, T = training, R = Recommended.

Sensemaking and statistical modeling and simulation were both sources of

practical application. The risk assessment technique for statistical modeling and

simulation recommended was the use of defect prediction (e.g., predict and intercept

concept; Fenton & Neil, 2013). This approach was within the means and responsibility

113

of an independent testing organization. Likewise, the precepts of lesson drawing add

credence to the likelihood that the team could be successful with either or both of these

suggestions, as addressed in the next paragraph.

Recall the summary of lesson drawing from Chapter 3, which included criticisms.

Rose (1993) provided a useful thought process for estimating the likelihood of a

workable outcome. Rose targeted large-scale programs of governments. While the

independent testing organization of a defense branch is arguably large scale, its context is

governmental and public administration. Rose’s approach appears to have value in this

instance, as this is a practical matter rather than a theoretical one, from whence the

criticism arises. Perhaps use in this paper serves as a contribution to research on the

specifics of the criticism, but it is not a purpose of the paper. Rose’s hypotheses (Rose,

1993, pp. 120-141) could aid in identifying the advantages and disadvantages of

attempting sensemaking or statistical modeling in the context of USAF software program

responsibilities. Figure 6 contains paraphrasing of Rose’s hypotheses repeated from

Chapter 3, along with advantages and disadvantages for using sensemaking and defect

prediction in the USAF setting.

The application of Rose’s (1993) lesson drawing in Figure 6 suggests a reason to

be optimistic and a reason to follow Rose’s advice “time turns obstacles into variables”

(p. 143), which is encouragement for any practitioner of process improvement. The

advantages, if perhaps superficial, do tend to emerge as a reason to be optimistic, while

the disadvantages tend to suggest Rose’s variables or simple unknowns.

114

Rose’s hypotheses
paraphrased Sensemaking Defect prediction

Fewer unique
aspects improve
fungibility

Pro: Commonality in applications
known from defense systems
scenarios for teams and decision
making
Con: Specifics on unique aspects
would be speculative from data at
hand

Pro: Commonality in applications for
software development and release
Con: Specifics on unique aspects would be
speculative from data at hand

Substitutable
institutions of
delivery improve
fungibility

Pro: Previously applied in context of
defense acquisition policies for
delivery of capability, same rather
than lower bar of substitution
Con: None apparent

Pro: Delivery institutions in form of
software product life cycle viewpoints are
substitutable and are well studied
approaches
Con: Life cycle viewpoints can be
inconsistently applied

Resource
equivalence
improves fungibility

Pro: Team scenarios for defense tasks
imply similar skill resources
Con: Financial data collected for this
paper not at low enough level to
determine specifics

Pro: Speculative, but industry investment in
tool development a plus
Con: Financial data collected for this paper
not at low enough level to determine
specifics

Simple structures of
cause and effect
improve fungibility

Pro: None observed
Con: Cause and effect not deeply
studied here

Pro: Cause and effect structures are
inherent to approach and can be simple
Con: Cause and effect not deeply studied
here
Con: Inherent cause and effect could be
viewed as other than simple

Smaller introduced
change from the new
aspects improve
fungibility

Pro: Degrees of sensemaking
applications can be introduced
incrementally
Con: May create interfering
deviations from previous uses where
sensemaking was effective

Pro: Trials of models can begin from
existing work, before change instituted and
to gauge change needed
Con: Potentially creates wide changes
needed to address the criticisms of its use

Interdependencies
between separate
jurisdictions
influenced by the
same dissatisfaction
improve fungibility

Pro: Several jurisdictions potentially
suffering from dissatisfaction with
ability to deliver software (e.g.,
acquisition, specific missions,
program offices, fund allocators,
GAO)
Con: Potential interdependencies
could be clear only at high levels of
organization, rather than working
levels

Pro: Several government jurisdictions
potentially suffering from dissatisfaction
with ability to deliver software (e.g.,
acquisition, specific missions, program
offices, fund allocators, GAO), industry
interest potentially a plus
Con: Potential interdependencies could be
clear only at high levels of organization,
rather than working levels

Harmonious, shared
values between
policy makers and
the candidate
program improves
fungibility

Pro: Policy makers and program
likely to at least entertain
recommendation based on harmony
between, for example, the policy
memo and questionnaire in use
Con: Value of teamwork across a
team composed of an independent
test organization and the organization
whose product is subject to test could
introduce conflicts

Pro: Contributes to common value placed
on releasing quality software
Con: Criticisms of approach could disrupt
harmony, e.g., requirement to appreciate
the underlying disciplines of the models

Figure 6. Reasoning to be pessimistic or optimistic.

115

Figure 6 also highlighted that studies on the order of disciplined cost–benefit

analysis would be one way to improve the selection (note for resource equivalence, no

data are available from this study). A highly encouraging observation is that inspired by

smaller introduced change. The models available through Fenton and Neil’s (2013) work

with the Agena product allow experimentation with very low investment and little threat,

because experiment results can inform implementation decisions. For that reason, in

answer to Question 2, Question 3 was scoped to defect prediction using Fenton and

Neil’s Bayesian network applications. See also the advantages for such an approach from

Misirli and Bener (2014, p. 533) in Chapter 3.

116

Chapter 8: Question 3

Question 3 was as follows: Can initial versions of specific improvements to

RALOT be constructed from the results of the analysis? From Chapter 7, a promising

suggestion for improvement emerged with Fenton and Neil’s (2013) Bayesian network

applications. This chapter will be used to capture the effort of constructing an initial

Bayesian network model by using Agena software and its out-of-the-box applications.

To the extent practical, the generalized scenario of the RALOT approach will be used as

context for construction of the model’s parameters. Chapter 3 contained the RALOT

background. The data that Agena includes will be used as a starting point for a trial run.

The software used was AgenaRisk Lite Version 6.1 Revision 1859 (Agena, 2015).

The out-of-the-box solution and model for software defect prediction was discussed in

Fenton and Neil (2013, pp. 395-405). The Bayesian network model is illustrated in

Figure 7. This model is useful for estimating residual defects, a metric that could be

input to a decision to declare whether or not testing has been sufficient and release is

warranted. A comparison of a residual defect metric to other decision inputs which

include that all tests have been executed (were they the right tests?), time and money for

testing have been exhausted (should more resources be sought?), and no serious

(detected) defects remain unmitigated (mitigate lesser but known defects as well?) aids

the thought process. Residual defects are those found in operations by users, which is the

least desirable way to discover them (Fenton & Neil, 2013, p. 395). Adding an estimate

for residual defects improves the decision maker’s position, when considering the

117

shortcomings of other decision inputs and effort to improve on those shortcomings. In

the context of the RALOT model, at the completion of a Level I test, the estimate of a

high number of residual defects could bolster the case that additional testing is warranted.

Such additional testing would require justification for funding and schedule delay,

supportable with the modeling effort. This potentially leads to additional understanding

of newly detected defects and detected but unmitigated defects. Roll-out plans could be

adjusted as well, to smaller releases, to accommodate the criticism that only fielding

software tells all about how it will behave in its intended environment.

Note that Figure 7 includes captions for the logic of cause and effect among the

nodes and relationships to the RALOT scenario. For this model, the cause and effect

relationships are intuitive to software professionals, which is an answer to criticism that

these models could be difficult to understand (Fenton & Neil, 2013, p. 404). For

example, see also points from Rose (1993) and Raadschelders and Lee (2011). The

researcher accepted that residual defects are a function of the total defects inserted during

development less the total removed during testing. Likewise, design process quality and

problem complexity can naturally be expected to affect total occurrence of defects.

118

Figure 7. RALOT scenario for defect prediction model.

For a trial run of this model, the following parameters were chosen, using

assumptions, for their representativeness of a defense software project, generalized in

Chapter 3. These assumptions reflect general RALOT conditions of employment.

Design process quality: Choices in the model are very low, low, medium, high,

and very high. A parameter of high can be assumed to correspond to a Capability

Maturity Model rating of Level 3. High is selected. This changes the model from a

uniform distribution across the ranks (each is equally likely at .2) to high being 100%

likely.

Problem complexity: Choices in the model are very low, low, medium, high, and

very high. GAO posits this environment is highly complex (GAO, 2004a, pp. 2, 11). A

parameter of very high is therefore selected, which changes the model from a uniform

distribution across the ranks (each is equally likely at .2) to very high being 100% likely.

119

Defects inserted: This parameter is left to be calculated by the model. The

calculation will be performed using a truncated normal distribution, where the range is 0

to 500 defects. The mean is equal to the value of complexity x (1 - value of design) × 90.

The variance is provided by the model at 300. These values are taken from the model’s

internal data and would need to be recalibrated.

Testing quality: Choices in the model are very low, low, medium, high, and very

high. AFOTEC and related test organizations are assumed to be world-class testing

organizations; therefore, very high is chosen. This changes the model from a uniform

distribution across the ranks (each is equally likely at .2) to very high being 100% likely.

Defects found and fixed: This parameter is left to be calculated by the model. It is

a binomial distribution with number of trials represented by defects inserted and

probability of success represented by testing quality.

Residual defects: Also left to be calculated by the model, residual defects are

represented by which ever number is higher, zero or the difference in defects inserted and

defects found (including those fixed).

Operational use: Choices in the model are very low, low, medium, high, and very

high. For these purposes, very high is chosen, reflecting the assumption that the software

is critical to a fast-paced defense application. This changes the model from a uniform

distribution across the ranks (each is equally likely at .2) to very high being 100% likely.

Defects found in operation: This parameter is left to be calculated by the model.

It is a binomial distribution with number of trials represented by residual defects and

probability of success represented by operational use.

120

The properties of the nodes are located in the software by right clicking on the

node graph and selecting “properties.” The definitions of the nodes provided above came

from the software defect prediction model under node properties.

The run of the model with the parameters set as described above provides a mean

value, or expected value, for those parameters identified as left to the model to calculate.

Those to be calculated by the model were defects inserted, defects found in testing,

residual defects, and defects found in operations.

Figure 8 shows the graphical output of the run described above. The nodes, as

illustrated in Figure 7, are now shown including output from AgenaRisk software. The

nodes for design process quality, complexity, testing quality, and operations use reflect

the assumed value rather than the uniform probability. The nodes for defects inserted,

defects found in testing, residual defects, and defects found in operations now reflect

graphs of the generated statistics. The statistics associated with each calculated node

were exported and are provided in Tables 2 through 5.

121

Figure 8. AgenaRisk graphs.

122

Table 2

Output of Risk Graph Values for Defects Inserted

Lower bound Upper bound Value
0 0.010249034
1 0.010987646
2 0.01174407
3 0.012514871
4 0.01329626
5 0.014084116
6 0.014874013
7 0.015661264
8 0.01644095
9 0.017207984
10 0.017957149
11 0.018683169
12 0.019380759
13 0.020044694
14 0.020669864
15 0.02125136
16 0.021784512
17 0.022264963
18 0.022688739
19 0.023052281
20 0.023352511
21 0.023586871
22 0.023753354
23 0.02385054
24 0.023877613
25 0.023834368
26 0.02372122
27 0.023539195
28 0.023289911
29 0.022975562
30 0.022598879
31 0.022163091
32 0.021671882
33 0.021129344
34 0.02053991
35 0.019908298
36 0.019239457
37 0.018538496
38 0.017810613
39 0.017061051
40 0.01629502
41 42 0.030251555
43 0.013948617
44 0.013166323
45 0.012391319
46 0.011627585
47 0.010878768
48 0.01014816
49 0.009438685
50 0.008752886

123

Table 2 (continued)
Lower bound Upper bound Value

51 0.008092931
52 0.007460604
53 0.006857327
54 0.00628416
55 0.005741825
56 58 0.014284071
59 0.003884551
60 62 0.009443692
63 65 0.006710519
66 67 0.003287827
68 73 0.005940703
74 78 0.002206121
79 89 0.001434948
90 99 1.72E-04
100 101 7.78E-06
102 500 1.24E-05

Risk object Software defect prediction
Node name Defects inserted
Node ID d_in

Summary statistics
Mean 27.27753872
Median 26
Variance 246.9261988
Standard deviation 15.71388554
Lower percentile [25.0] 15
Upper percentile [75.0] 38

Table 3

Output of Risk Graph Values for Defects Found in Testing

Lower bound Upper bound Value
0 0.011562558
1 0.012497193
2 0.013455066
3 0.014430293
4 0.015416353
5 0.016406171
6 0.017392196
7 0.018366482
8 0.019320793
9 0.020246744
10 0.021135909
11 0.021979934
12 0.02277069
13 0.023500431
14 0.024161873
15 0.024748357
16 0.025253938
17 0.025673496

124

Table 3 (continued)
Lower bound Upper bound Value

18 0.026002854
19 0.026238784
20 0.026379121
21 0.026422769
22 0.026369695
23 0.026220938
24 0.025978586
25 0.025645727
26 0.025226325
27 0.024725197
28 0.024147928
29 0.023500746
30 0.022790529
31 0.022024682
32 0.021211028
33 0.020357549
34 0.019472135
35 0.018562416
36 0.017635597
37 0.016698563
38 0.015758507
39 0.014823889
40 0.013902863
41 0.012918025
42 0.01217768
43 0.011221072
44 0.010381669
45 0.009574448
46 47 0.01686931
48 0.007370454
49 0.00671314
50 51 0.011612198
52 54 0.013476014
55 0.00360472
56 59 0.010853223
60 62 0.005243097
63 67 0.005107357
68 78 0.003754735
79 99 6.96E-04
100 101 1.66E-06
102 999 9.96E-06

Risk object Software defect prediction
Node name Defects found in testing
Node ID d_test

Summary statistics
Mean 24.56547505
Median 23
Variance 210.4950043
Standard deviation 14.50844596
Lower percentile [25.0] 14
Upper percentile [75.0] 34

125

Table 4

Output of Risk Graph Values for Residual Defects

Lower bound Upper bound Value
0 0.318698557
1 0.144505085
2 0.124374353
3 0.099356242
4 0.07895764
5 0.06208117
6 0.04776736
7 0.035727807
8 0.026536329
9 0.019819917
10 12 0.029658267
13 0.004427112
14 15 0.0046622
16 0.001224273
17 22 0.002034443
23 33 1.57E-04
34 45 1.10E-06
46 55 3.09E-07
56 78 7.11E-07
79 99 6.49E-07
100 101 6.18E-08
102 999 9.32E-06
Risk object Software defect prediction
Node name Residual defects

 Node ID Residual
 Summary statistics

 Mean 2.765280375
 Median 2
 Variance 12.8405074
 Standard deviation 3.583365373
 Lower percentile [25.0] 0
 Upper percentile [75.0] 4

126

Table 5

Output of Risk Graph Values for Defects Found in Operations

Lower bound Upper bound Value
0 0.335303903
1 0.155708641
2 0.129236028
3 0.100522794
4 0.07746248
5 0.058688291
6 0.043353662
7 0.031169443
8 0.021966061
9 0.015139916
10 12 0.023363264
14 16 0.003645
17 22 0.001416576
23 33 1.13E-04
34 55 1.25E-06
56 99 2.99E-06
100 101 6.22E-08
102 999 7.45E-06
Risk object Software defect prediction
Node name Defects found in operation
Node ID d_operation

Summary statistics
Mean 2.493888724
Median 2
Variance 10.82950678
Standard deviation 3.290821597
Lower percentile [25.0] 0
Upper percentile [75.0] 4

A natural language interpretation of these results could be stated as follows with

rounded numbers, because fractions of a defect are not logical: For a world-class,

independent testing organization engaged in testing software from a mature development

organization able to handle complex situations, the average number of defects removed

during testing is 25. This leaves three residual defects, on average, which are exposed

rather quickly in a highly active mission scenario in the field. In more complicated

127

versions of the model, estimations of the probability of finding a defect and the overall

efficacy of testing are possible, because a series of tests can be accounted for, rather than

treating testing in the aggregate (Fenton & Neil, 2013, pp. 401-404). In other runs of the

model, Fenton and Neil (2013) were able to demonstrate why a popular myth about

defect proneness of a software component should be challenged. Fenton and Neil

provided a training scenario with the software development and test data accumulated

that illustrates that a prerelease unit of software that was found to be relatively bug free is

quite buggy once introduced to operations. This is counter to the idea that a unit that is

prone to defects stays prone to defects, which means the rate of defects surfacing would

be more consistent. Cataldo et al. (2009) noted that software with poorly understood

dependencies is defect prone, as mentioned in Chapter 3.

As the initial model above demonstrates, methods that have potential to improve

the RALOT process are available and can begin with limited commitment. There remain

criticisms, however, to address for using this kind of approach. The criticisms were

introduced in Questions 1 and 2, having been compiled from Chapter 3. The criticisms

are as follows:

• Availability of data for statistical methods.

• External validity challenges due to data collection inconsistencies.

• Analytical breakdown structures do not consider emergent behavior.

• Emergent behavior is problematic.

• Esoteric nature of statistical models and specialization.

• Evidence that experts can reduce effectiveness.

• What counts? Fixes, defects, changes.

128

These constitute the basis for challenges (or obstacles, using Rose’s vocabulary)

that would need to be addressed or considered long term in a trade-off of implications.

Chapter 9 includes a discussion of how these challenges may influence an attempt to

introduce a Fenton & Neil (2013) Bayesian network model to the testing or project

management tool kit of software development and delivery.

129

Chapter 9: Question 4

Question 4 was as follows: What steps would be needed to refine and validate the

initial version for actual use? Figure 9 provides a map to potentially useful ways to

address or live with the criticisms in an implementation strategy or plan. This provided

an input to the steps recommended.

Counters to Criticism
Criticisms Counter Measures

Availability of data for statistical methods Begin with out-of-the-box data while working to understand
its context.

External validity challenges due to data
collection inconsistencies

Begin and augment data collection in house such that
collection methods and consistency can be controlled.

Analytical breakdown structures do not
consider emergent behavior

Use research methods as described by grounded theory
(Charmaz, 2008) and generative social science (Epstein,
2006) in the pursuit of increasingly improved modeling. Emergent behavior is problematic

Esoteric nature of statistical models and
specialization

Employ professional development training and over time
adapt the test discipline to include requirements for skills in
modeling and the underlying statistics and mathematics.

Evidence that experts can reduce
effectiveness

Use modeling’s methods of corralling when and how expert
judgment is employed to understand how it affects outcomes
over time.

What counts? Fixes, defects, changes Use research methods as described by grounded theory
(Charmaz, 2008) and generative social science (Epstein,
2006) in the pursuit of increasingly improved measures and
definitions to use in modeling.
Avoid Mockus’s (2014) charge of being irrationally
preoccupied with defect prediction at the expense of other
means (p. 11)

Figure 9. Counters to criticism.

 Steps for refining and validating the initial version for actual use include the

following, from both a strategic and a practical sense:

 Step 1. Adopt a research mentality for the overall strategy of implementation,

such as described by Charmaz (2008) and Epstein (2006). These approaches are

cognizant of nonlinear problems and emergent behavior, giving them an applicability to

130

software development, test, and release scenarios in public administration. Sensemaking

also may contribute practical team building to this mentality (Burns, 2014, p. 6).

 Step 2. Select a small number of testing professionals to participate in a pilot

project employing the out-of-the-box model. This step could be expanded to include a

search for other vendors that supply such software. Scope the pilot project such that the

objective is a recommendation for a software product that builds and executes models

and a timeline for its rollout.

 Step 3. Add modeling as a topic in professional training for testers and

development personnel. Interest can be generated by the abilities of the out-of-the-box

model, such as manipulated in Chapter 8, to entertain multiple scenarios of quality in

process and feeder parameters, including the distributions associated with defect insertion

during development. Model executions can be quite engaging when challenging beliefs

about defects and their occurrences, display the relative impacts of the quality of

development practice and complexity of the environment, expose the potential of

judgment errors, and provide other insights.

 Step 4. Examine existing metrics programs for their harmony with modeling

projects. Existing test data, prepared in house, can be a baseline upon which to build a

consistent approach to the measures needed to address criticism and produce valid

models. The formal test procedures of AFOTEC and related organizations may be

conducive to standard data collecting.

 Step 5. Prepare management plans for resources. Although the excursion

described in this study was not a great consumer of resources and a version of the

software comes with the Fenton & Neil (2013) book, an organizational commitment

131

would be another matter. More powerful versions of modeling software can be expected

to cost more and perhaps drive a need for engaging consultants. Likewise, the staff

would require training and having an added skill could affect wages long term. A cost–

benefit analysis may be appropriate. Execution of Steps 2 through 4, above, can provide

information to substantiate management plans.

 Step 6. Choose an upcoming test event and contact the development program

office about the potential of being the first to employ a model for decision-making

purposes. It can be argued that confidence in a release decision will be improved. The

first such use will further enlighten plans for organization-wide implementations, as well

as provide inputs for changes to policy and instruments such as the existing RALOT

questionnaire, as suggested in Question 2.

 Step 7. Roll out the modeling capability to additional programs incrementally.

 Step 8. Plan to revisit progress and place recurring evaluations into the overall

practice plans. These evaluations can be part of a process maturity practice (see Chapter

3) already in place for developers or test organizations. Additionally, the mind-sets of

grounded theory, generative social science, and sensemaking would likely lead to

periodic or otherwise reoccurring evaluations and feedback.

 The initial version of the model presented in Chapter 8 demonstrated that a

specific improvement recommendation could come out of the research and analysis

contained in this paper. This improvement could supplement existing practice.

132

Chapter 10: Summary and Conclusions

 The overall conclusion of this research is that the RALOT model can be improved

based on the application of the concepts identified here and the availability of modeling

software designed specifically for software development applications, such as defect

prediction. The literature review provides context, history, and theoretic connections to

risk assessment in the development of software in public administration venues and how

it feeds decisions for testing formality and, ultimately, for decisions regarding the

readiness of software for release. A forecast of defects and associated probabilities,

potentially able to pinpoint discrete software modules within a system, is a decision input

that can only be captured in the RALOT approach through expert judgment using the

existing questionnaire approach. As seen in the literature, some methods have been

impugned by studies concluding that expert inputs actually contributed to less reliability.

With modeling, expert judgment can be isolated and examined for ways to improve or

make its insertion into a decision more explicit. The node characteristics of a Bayesian

network model allow the explicit expression of judgment compared to the existing

method in RALOT, which encourages judgment in the final choice of testing formality as

an umbrella function with an overriding authority rather than as a component function.

There is no call here to eliminate expert judgment, but the results of this study indicated

that it could be better understood. These results can supplement existing practice.

This research potentially benefits the field of software development in public

venues by extending research results from the field of software development and

133

engineering into the research domain of public administration and vice versa. This

research integrates literature in PA and public policy with computational and information

systems literature through the identification of risk assessment improvements that benefit

both; allowing one to inform the other and providing a means for fitting public policy risk

management concerns into information technology models. The intersection of an

administrative task of understanding and decision making with the engineering concerns

of software quality and process exposed the potential for improved efficacy by growing

the use and performance of models and their application in risk taking. It also highlights

criticisms that can be used to identify ways to prevent or overcome the resulting pitfalls.

Public administration topics crosscut and appear throughout the development and release

of software, including the implementation of policy such as DODI 5000.02 during the

acquisition of IT, the myriad of decision-making situations in allocating resources such as

for testing formalities and quality processes, the accountability to taxpayers and media

spotlight of failures, basic project management, and risk management. This list is not

complete without considering the organizations that participate in developing and testing

IT and the complexity of the overall defense environment. A benefit of this research was

derived from the attempt to draw on the software development and public administration

literature with an open aperture for these topics related to what is essentially an

engineering problem.

Future Research

Future research suggestions include implementing and calibrating Fenton and

Neil’s (2013) model with Air-Force-specific data and employing the research

methodologies associated with grounded theory and generative social science (Charmaz,

134

2008; Epstein, 2006). This dissertation also revealed the need for further research

employing a long-term view of the potential of modeling to represent what otherwise

may fall prey to a classic and perhaps defeatist definition of emergent behavior. The

emergent approaches, grounded theory and generative social science, can potentially

contribute to continuous improvement in risk assessment and consequently the use of risk

assessment outcomes in decision making for software releases and testing formalities.

This can reasonably be expected to improve overall accuracy in risk assessment, the

identification of residual risk, and the efficient allocation of resources, as well as affect

policy.

In Figure 5, some topics received a code for further study (F) and are addressed in

some modest way only, by this research. Those topics include non-linearity and

uncertainty. Some additional topics arose in the ways to follow through with the initial

defect prevention model in Figure 7, as discussed in the previous paragraph. The

complete list of 13 topics coded for further study was as follows, but this list can be

improved upon:

• Bad duplication

• Failure to adapt

• Mathematical proofs

• Mathematical proofs may not scale to systems levels

• Non-linearity

• Number of organizations involved

• Poor investment decision

• Risk perceptions

135

• Subjective construct

• Task distinctions- organizational flexibility

• Taxonomies and typologies

• Uncertainty – unknowns – deep uncertainty

• Information overload

As part of the stated research method, this dissertation cast a wide net on the

literature from software engineering and development, as well as public administration

topics. However, the review was pragmatically bounded by time and imagination of the

researcher. Other avenues of deeper literature review could prove fruitful when

intersected with the software risk assessment domain. Some research in the literature

review could be expanded in the a similar vein, such as the project management review

which could be expanded to include a more generalized perspective of management

rather than the view restricted to projects. Likewise some broadly treated subjects could

be brought into focus with specifics, such as a trail from project management to specific

potential risk factors such as the effect of geographic separation on teams. Organization

theory is another public administration interest and a case in point for future research. As

a seed to that future research, several additional topics and authors are suggested as

follows, and conceptually relate to the 13 topics from Figure 5 that were coded for

additional study:

Geographic Separation. Bird et al.’s (2009) strategies for geographically

distributed teams echo research concerns from general management theory. Although

Bird el al.’s references are confined to engineering, work from others provides a general

connection. Kalnins, Swaminathan, and Mitchell’s (2006) research examined

136

organizational learning involving multiple, geographically dispersed organizational units.

Kalnins et al. found that vicarious learning occurred over large distances for franchisees

and their competitors, under multiple conditions of ownership and movement of

employees (p.130). Hong and Vai (2008) researched teams for their ability to share

knowledge as a virtual organization with geographic dispersion in a case study of a

multinational telecommunications company. While acknowledging that supportive

technologies are likely insufficient when used alone, Hong and Vai’s case study

highlighted roles for shared understanding, learning climate, coaching, and job rotation

(pp. 28-31, 33). These works suggest additional risk sources and mitigation strategies

that could be applied to software development, and relate to the further study topics of

task distinctions and organizational flexibility, as well as characterizations based on the

number of organizations involved in meeting objectives, which could be expected to

proliferate with geographic separation.

Organizational structures. Allison and Zelikow (1999) provided a framework

to assess the decision making of the Cuban missile crisis. Additionally, Scott and Davis

(2007) researched similar forms as related to organizational perspectives which were not

explored here. Decision making takes many forms on many levels of organizations

within efforts to produce software, particularly in the regulatory environment of Federal

spending. Examination could reveal ways to streamline structures, account for subjective

constructs (Irizar & Wynn, 2013), or foster adaptable cultures that align with the nature

of software development.

Pace. Vance (2013) noted the trade-offs that software development professionals

entertain when considering how fast to proceed. Responsiveness from a public

137

perspective could yield opportunity for research, particularly when viewed from the

perspective of implementing legislation and supporting technologies on a time table such

as with the Affordable Care Act. Pressure to perform quickly could prove to be an

extraordinary factor for certain scenarios. Discovering which scenarios are more

susceptible to risk from undue schedule pressure could improve successful delivery rates.

The web site for the Affordable Care Act is potentially a specific case of how risk is

perceived by interaction of groups with differing objectives. Yourdon (1997) examines

scheduling trade-offs among such groups as a negotiation. That negotiation occurs

between the group that desires the software and the group that must produce it.

Considerable effort to come to terms with how long and how intense a software

development project should be is both risk perception and investment decision related (p.

77-79).

Enterprise architecture. Bernard (2012) made a connection from organizational

theory to the practice of building and maintaining sets of documents, models, and

diagrams known as an enterprise architecture. The further exploration of the relationship

of enterprise architecture to organizational theory could highlight deficiencies or further

support the practice of enterprise architecture. Having enterprise architecture products

and using them in risk mitigation could be mined further for improvements for risk

assessment. Enterprise architecture products, then, might be expected to have certain

qualities making them more or less suitable for risk assessment purposes, as suggested by

the potential for duplication which can be fostered, as a deliberate course, or exposed for

its ill effects, by enterprise architecture (Bernard, 2012). Bass et al. (1998) provided

practical guidance for architecture quality concerns, including standardizing use of styles

138

and notation. Clements, Kazman, and Klein (2001) explored the evaluation of software

architecture and the connections to system properties. Hubert (2002) proposed the

concept of a “convergent component” that results from the semantic coupling of a

business perspective and a software perspective (p. 60). The business perspective

includes organizations, processes, and resources. Yet, Hubert does not explore the

organizational theory connection further. He posits that the translations between

unaligned business and IT create “sources of error, cost, and risk in projects” (p. 61),

indicating such exploration could be fruitful. Note that the term, business, is often used

synonymously for any mission, public or private. Bernard’s (2012) work on the

organizational theory connection came later and appears to have been novel and thorough

(p. 53), but would require additional research to determine.

Power and politics. Allison and Zelikow (1999) posit power to be a component

of decisions made under the model of organizational behavior in terms of “factored

problems and fractionated power” (p.167) and under the model of governmental politics

in terms of presidential power to persuade and power to impact outcomes (p. 260).

Power’s influence in high risk situations of technology release could also provide

research opportunities when applied to software risk assessment.

Decision making. Bendor (2015) examined incrementalism tradition marking the

75th anniversary of Lindblom (1959). Bendor found no indication that “computer

scientists or applied mathematicians working on optimization via local search have read

anything” Lindblom wrote (Bendor, p.204). Bendor observed that several scientific

communities have independently arrived at “optimization via local search” approaches

(p. 204). This observation suggests that research could trace those independent chains of

139

thought on decision making for additional insight. This could lead researchers to deeper

looks at mathematical proofs and how they scale in systems (Dijkstra, 1974).

Other potential research opportunities. From the broad review of the literature

that was foundational to this dissertation’s research method, many public administration

topics could be mined for additional useful works. An incomplete summary includes (a)

cooptation (Selznick, 1949; O’Toole & Meier, 2004) and (b) planning philosophies as in

Eisenhower and von Moltke (cited in Faley, 2014, p. 133). In summary, this work

included a literature review cast with a wide net to address risk assessment at the

intersection of software development and the public administration environment, with a

central theme of software risk assessment. The result was a list of both broad and

specific ways in which a USAF method of risk assessment for software can be improved,

an initial version of a software defect prediction model constructed from the analysis’

results, a list of high-level steps for adding the practice of modeling to the tool kit of

USAF software professionals, and suggestions for future research.

 140

References

$1 billion wasted on Air Force computer system. (2013, February 8). Retrieved from

http://www.nbcnews.com/video/nightly-news/50749586#50749586

Abdelmoez, W., Nassar, D. M., Shereshevsky, M., Gradetsky, N., Gunnalan, R., Ammar,

H. H., . . . Mili, A. (2004, September 14-16). Error propagation in software

architectures. In IEEE Proceedings of the 10th International Symposium on

Software Metrics. Los Alamitos, CA: IEEE Computer Society. doi:

10.1109/metric.2004.1357923

Agena. (2004). Models of uncertainty and risk for distributed software development

(IST-2000-28749). Retrieved from http://www.agenarisk.com/resources

D7.1%20MODIST%20Method%20and%20Tool%20User%20Manual%20v3.pdf

Agena. (2015). AgenaRisk software. Retrieved from

http://www.bayesianrisk.com/software .html

AFOTEC, Air Force Operational Test and Evaluation Center. Website:

http://www.afotec.af.mil/index.asp

Alberts, D. S. (2011). The agility advantage: A survival guide for complex enterprises

and endeavors. Retrieved from DoD Command and Control Research Program

website: http://www.dodccrp-test.org/ccrp-books

Alberts, D. S., Garstka, J. J., & Stein, F. P. (2000). Network centric warfare: Developing

and leveraging information superiority. Washington, DC: Assistant Secretary of

Defense (C3I/Command Control Research Program).

http://www.nbcnews.com/video/nightly-news/50749586#50749586
http://www.afotec.af.mil/index.asp

 141

Allison, G., & Zelikow, P. (1999). Essence of decision: Explaining the Cuban Missile

Crisis (2nd ed.). New York, NY: Addison Wesley Longman.

Allman, E. (2012). Managing technical debt. Communications of the ACM, 5(5), 50-55.

doi:10.1145/2160718.2160733

Ammar, H. H., Nokzadeh, T., & Dugan, J. B. (2001). Risk assessment of software-system

specifications. IEEE Transactions on Reliability, 50, 171-183.

doi:10.1109/24.963125

Armour, P. G. (2005). The unconscious art of software testing. Communications of the

ACM, 48, 15-18. doi:10.1145/1039539.1039554

Bankes, S. C. (2002). Tools and techniques for developing policies for complex and

uncertain systems. Proceedings of the National Academy of Sciences, 99(suppl

3), 7263-7266. doi:10.1073/pnas.092081399

Barnes, H. (2005, August 30). Key capabilities/approaches for human-centric processes.

Retrieved from http://www.ultimus.com

Barney, D. (2000). Prometheus wired: The hope for democracy in the age of network

technology. Chicago, IL: University of Chicago Press.

Bass, L., Clements, P., & Kazman, R. (1998). SEI series in software engineering:

Software architecture in practice. Reading, MA: Addison Wesley Longman.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., . .

. Thomas, D. (2001). Manifesto for Agile software development. Retrieved from

http://agilemanifesto.org/

Bendor, J. (2015). Incrementalism: Dead yet Flourishing. Public Administration Review,

75(2), 194-205. doi:10.1111/puar.12333

 142

Bendor, J., Moe, T. M., & Shotts, K. M. (2001). Recycling the garbage can: An

assessment of the research program. American Political Science Review, 95, 169-

190. Retrieved from http://www.apsanet.org/apsr

Bennett, K. (1995). Legacy systems: Coping with success. IEEE Software, 12, 19-23.

doi:10.1109/52.363157

Bernard, S. A. (2012). An introduction to enterprise architecture (3rd ed.). Bloomington,

IN: AuthorHouse.

Bessey, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., . . . Engler D.

(2010). A few billion lines of code later: Using static analysis to find bugs in the

real world. Communications of the ACM, 53(2), 66-75.

doi:10.1145/1646353.1646374

Bhoovaraghavan, S., Vasudevan, A., & Chandran, R. (1996). Resolving the process vs.

product innovation dilemma: A consumer choice theoretic approach. Management

Science, 42, 232-246. doi:10.1287/mnsc.42.2.232

Bird, C., Nagappan, N., Devanbu, P., Gall, H., & Murphy, B. (2009). Does distributed

development affect software quality? An empirical case study of Windows Vista.

Communications of the ACM, 52(8), 85-93. doi:10.1145/1536616.1536639

Bisbal, J., Lawless, D., Wu, B., & Grimson, J. (1999). Legacy information systems:

Issues and directions. IEEE Software, 16(5), 103-111. doi:10.1109/52.795108

Bishop, T. (2015). Starbucks back in business: Internal report blames deleted database

table, indicates outage was global. Retrieved from

http://www.geekwire.com/2015/starbucks-back-in-business-internal-report-

blames-deleted-database-table-indicates-outage-was-global/

http://www.geekwire.com/2015/starbucks-back-in-business-internal-report-blames-deleted-database-table-indicates-outage-was-global/
http://www.geekwire.com/2015/starbucks-back-in-business-internal-report-blames-deleted-database-table-indicates-outage-was-global/

 143

Boehm, B. W. (1988). A spiral model of software development and enhancement.

Retrieved from http://csse.usc.edu/csse/TECHRPTS/1988/usccse88-

500/usccse88-500.pdf doi:10.1109/2.59

Boehm, B. W. (1989). Tutorial: Software risk management. Washington, DC: IEEE

Computer Society Press.

Boehm, B. W. (1991). Software risk management: Principles and practices. IEEE

Software, 8, 32-41. doi:10.1109/52.62930

Boyce, D. (2010). A history of the Association for Project Management: 1972-2010.

Buckinghamshire, UK: Association for Project Management.

Burns, K. (2014). Integrated Cognitive-neuroscience Architectures for Understanding

Sensemaking (ICArUS). Retrieved from http://www.mitre.org/sites/default/files

/publications/pr_14-3960-icarus-phase-2-challenge-problem-design-test.pdf

Carnegie Mellon University. (2002) Capability Maturity Model Integration, Version 1.1:

CMMI SM for software engineering continuous representation (CMU/SEI-2002-

TR-028). Pittsburgh, PA: Author.

Carnegie Mellon University CMMI Product Team. (2001). CMMI for Systems

Engineering/Software Engineering, Version 1.1, Staged Representation (CMMI-

SE/SW, V1.1, Staged) (CMU/SEI-2002-TR-002). Retrieved from

http://resources.sei.cmu.edu /library/asset-view.cfm?AssetID=6041

Carr, M. J., Konda, S. L., Monarch, I., Ulrich, F. C., & Walker, C. F. (1993). Taxonomy-

based risk identification (Tech. Rep. CMU/SEI-93-TR-6). Pittsburgh, PA:

Software Engineering Institute, Carnegie Mellon University.

http://csse.usc.edu/csse/TECHRPTS/1988/usccse88-500/usccse88-500.pdf
http://csse.usc.edu/csse/TECHRPTS/1988/usccse88-500/usccse88-500.pdf

 144

Cataldo, M., Mockus, A., Roberts, J. A., & Herbsleb, J. D. (2009). Software

dependencies, work dependencies, and their impact on failures. IEEE

Transactions on Software Engineering, 35, 864-878. doi:10.1109/TSE.2009.42

Cavanagh, A. (2007). Sociology in the age of the Internet. New York, NY: McGraw-Hill

International.

Charmaz, K. (2008). Grounded theory as an emergent method. In S. N. Hesse-Biber and

P. Leavy (Eds.), Handbook of emergent methods (pp. 155-172). New York, NY:

Guilford Press.

Chen, Y., Probert, R. L., & Sims, D. P. (2002). Specification-based regression test

selection with risk analysis. Paper presented at the IBM Centre for Advanced

Studies Conference, Proceedings of the 2002 Conference of the Centre for

Advanced Studies on Collaborative Research, IBM Canada and National

Research Council Canada, Toronto.

Clarke, L., & Short, J. F., Jr. (1993). Social organization and risk: Some current

controversies. Annual Review of Sociology, 19, 375-399.

doi:10.1146/annurev.so.19.080193.002111

Clements, P., Kazman, R., Klein, M. (2001). SEI series in software engineering:

Evaluating software architectures. Reading, MA: Addison Wesley Longman.

Cohen, M. D., March, J. G., & Olsen, J. P. (1972). A garbage can model of organizational

choice. Administrative Science Quarterly, 17, 1-25. doi:10.2307/2392088

Cohen, P. R., Kaiser, E. C., Buchanan, M. C., Lind, S., Corrigan, M. J., & Matthews

Wesson, R. (2015). Sketch-Thru-Plan: A multimodal interface for command and

control. Communications of the ACM, 58(4), 56-65. doi:10.1145/2735589

 145

Constantine, L. L. (2001). Beyond chaos: The expert edge in managing software

development. Boston, MA: Addison-Wesley ACM Press.

Crosby, P. B. (1979). Quality is free. New York, NY: McGraw-Hill.

Cyert, R. M., & March, J. G. (1992). A behavioral theory of the firm (2nd ed.). Malden,

MA: Blackwell.

Deming, W. E. (1986). Out of the crisis. Cambridge, MA: MIT Center for Advanced

Engineering.

Department of Defense. (1999). Space and Missile Systems Center, MIL-STD-1540D,

Department of Defense Standard Practice Product Verification Requirements for

Launch, Upper Stage, and Space Vehicles. El Segundo, CA: Space and Missile

Systems Center.

Department of Defense Architecture Framework, Version 2.02. (2010). Retrieved from

http://dodcio.defense.gov/TodayinCIO/DoDArchitectureFramework.aspx

Dijkstra, E. (1974). Programming as a discipline of mathematical nature. American

Mathematical Monthly, 81(6), 608-612. doi:10.2307/2319209

DODI 5000.02. (2008, December 8). Operation of the Defense Acquisition System.

Retrieved from the Office of the Secretary of Defense Acquisition website:

http://www.acq.osd.mil

/asda/docs/dod_instruction_operation_of_the_defense_acquisition_system.pdf

Etzioni, A. (1967). Mixed-scanning: a 'third' approach to decision-making. Public

administration review, 27(5), 385-392. doi:10.2307/973394

Faley, T. (2014). The Entrepreneurial Arch. Cambridge University Press.

 146

Fenton, N., & Neil, M. (2013). Risk assessment and decision analysis with Bayesian

networks. Boca Raton, FL: Taylor and Francis.

Fenton, N., Neil, M., Marsh, W., Hearty, P., Radlinski, L., & Krause, P. (2007). Project

data incorporating qualitative factors for improved software defect prediction.

Paper presented at the 3rd International Workshop on Predictor Models in

Software Engineering (PROMISE’07), Minneapolis, MN.

doi:10.1109/promise.2007.11

Fisher, N. I., & Switzer, P. (2001). Graphical assessment of dependence: Is a picture

worth a 100 tests? The American Statistician, 55, 233-239.

doi:10.1198/000313001317098248

Ford, H. (2007) My life and work. Retrieved from Cosimobooks.com. (Originally

published 1922)

Gharajedaghi, J. (1999) Systems Thinking: Managing Chaos and Complexity - A

Platform for Designing Business Architecture. Boston: Butterworth Heinemann.

Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2011). The misuse of

NASA metrics data program data sets for automated software defect prediction.

Paper presented at the 15th annual Evaluation and Assessment in Software

Engineering (EASE 2011) conference. Retrieved from

http://www.researchgate.net/publication

/235271425_The_Misuse_of_the_NASA_Metrics_Data_Program_Data_Sets_for

_Automated_Software_Defect_Prediction doi:10.1049/ic.2011.0012

 147

Guidelines for Conducting Operational Test and Evaluation (OT&E) for Software

Intensive System Increments. (2003, June 13). Retrieved from

http://www.dote.osd.mil/pub/reports/ guidelines_ote_sisi_june03.pdf

Guidelines for Operational Test and Evaluation of Information and Business Systems.

(2010, September 14). Retrieved from

http://www.dote.osd.mil/pub/policies/2010/20100914Guidelines_forOTEofInfo_a

ndBusSystems.pdf

Hesse-Biber, S. N., & Leavy, P. (Eds.). (2010) Handbook of emergent methods. New

York, NY: Guilford Press.

Holzmann, G. (2014). Fault intolerance. IEEE Software, 31(6), 16-20.

doi:10.1109/MS.2014.136

Holzmann, V., & Spiegler, I. (2011). Developing risk breakdown structure for

information technology organizations. International Journal of Project

Management, 29, 537-546. doi: 10.1016/j.ijproman.2010.05.002

Hong, J. F., & Vai, S. (2008). Knowledge-sharing in cross-functional virtual teams.

Journal of General Management, 34(2), 21. Retrieved from

http://www.braybrooke.co.uk/JournalofGeneralManagement/tabid/56/Default.asp

x

Hubert, R. (2002). Convergent architecture: building model-driven J2EE systems with

UML. John Wiley & Sons.

Humphrey, W. S. (1989). Managing the software process. Reading, MA: Addison-

Wesley.

 148

Irizar, J., and Wynn, M. (2013, February 24 - March 1). Risk as a subjective construct:

Implications for project management practice. Paper presented at the eKNOW

2013: The Fifth International Conference on Information, Process, and

Knowledge Management, Nice, France.

Ito, J. (2014, October 2). Antidisciplinary. Retrieved from

http://joi.ito.com/weblog/2014/10/02/antidisciplinar.html

Ito, J. (Speaker). (2015, April). After Internet. Bedford, MA: MITRE Federally Funded

Research and Development Corporation.

James, O., & Lodge, M. (2003). The limitations of ‘policy transfer’ and ‘lesson drawing’

for public policy research. Political Studies Review, 1, 179-193.

doi:10.1111/1478-9299.t01-1-00003

Johansson, F. (2006) The Medici effect: What elephants & epidemics can teach us about

innovation. Boston, MA: Harvard Business School Press.

Juran, J. M. (1988) Juran on planning for quality. New York, NY: MacMillan.

Kalnins, A., Swaminathan, A., & Mitchell, W. (2006). Turnover events, vicarious

information, and the reduced likelihood of outlet-level exit among small multiunit

organizations. Organization Science, 17(1), 118-131. doi:10.1287/orsc.1050.0174

Kamp, P. H. (2014). Quality software costs money—Heartbleed was free.

Communications of the ACM, 57(8), 49-51. doi: 10.1145/2631095

Kanaracus, C. (2012, November 14). Air Force scraps massive ERP project after racking

up $1B in costs. Computerworld. Retrieved from http://www.computerworld.com

 149

Kelly, H. (2014). The ‘heartbleed’ security flaw that affects most of the Internet.

Retrieved from http://www.cnn.com/2014/04/08/tech/web/heartbleed-

openssl/index.html

Kerwin, C. (2003). Rulemaking: How government agencies write law and make policy

(3rd ed.). Washington, DC: Congressional Quarterly Press.

Khadki, R., Batlajery, B. V., Saeidi, A. M., Jansen, S., & Hage, J. (2014, May). How do

professionals perceive legacy systems and software modernization? Proceedings

of the 36th International Conference on Software Engineering (pp. 36-47). New

York, NY: Association for Computing Machinery. doi:10.1145/2568225.2568318

Klinke, A., & Renn, O. (2002). A new approach to risk evaluation and management:

Risk‐based, precaution‐based, and discourse‐based strategies. Risk Analysis, 22,

1071-1094. doi:10.1111/1539-6924.00274

Kometer, M. W., Burkhart, K., McKee, S. V., & Polk, D. W. (2011, March). Operational

testing: From basics to system-of-systems capabilities. International Test and

Evaluation Association Journal, 32, 39-51. Retrieved from:

http://www.itea.org/journal-abstracts/2012-02-29-15-44-28.html

Lafond, D., DuCharme, M. B., Rioux, F., Tremblay, S., Rathbun, B., & Jarmasz, J.

(2012, March 6 - 8). Training systems thinking and adaptability for complex

decision making in defence and security. Paper presented at the 2012 IEEE

International Multi-Disciplinary Conference on Cognitive Methods in Situation

Awareness and Decision Support (CogSIMA), New Orleans, Louisiana.

doi:10.1109/cogsima.2012.6188408

Lasswell, H. (1963). The future of political science. Transaction Publishers.

http://www.itea.org/journal-abstracts/2012-02-29-15-44-28.html

 150

Leavitt, H. (1965). Applied organizational change in industry: Structural, technological,

and humanistic approaches. In J. G. March (Ed.), Handbook of organizations (pp.

1144-1170) Chicago: Rand McNally

Lindblom, C. E. (1959). The science of muddling through. Public Administration

Review, 19(2), 79-88. doi:10.2307/973677

Lindblom, C. E. (1979). Still muddling, not yet through. Public Administration Review,

39, 517-525. doi:10.2307/976178

Macgill, S. M., & Siu, Y. L. (2005). A new paradigm for risk analysis. Futures, 37, 1105-

1131. doi: 10.1016/j.futures.2005.02.008

McCabe, T. J. (1976, December). A complexity measure. IEEE Transactions on Software

Engineering, pp. 308-320. doi:10.1109/TSE.1976.233837

McQueary, C. E. (2008). The key to weapons that work. Defense A T & L, 37, 2.

Retrieved from http://www.dau.mil/publications/DefenseATL/default.aspx

Misirli, A. T., & Bener, A. B. (2014). Bayesian networks for evidence-based decision-

making in software engineering. IEEE Transactions on Software Engineering, 40,

533-554. doi:10.1109/TSE.2014.2321179

Mockus, A. (2014, September 17). Defect prediction and software risk. Paper presented

at the 10th International Conference on Predictive Models in Software

Engineering (PROMISE '14), Turin, Italy. doi:10.1145/2639490.2639511

Moffat, J. (2003). Complexity theory and network centric warfare. Retrieved from DoD

Command and Control Research Program website: http://www.dodccrp-

test.org/ccrp-books

 151

Moreno, S., & Neville, J. (2013, December 7 - 10). Network hypothesis testing using

mixed Kronecker product graph models. Paper presented at the 2013 IEEE 13th

International Conference on Data Mining (ICDM), Dallas, Texas.

doi:10.1109/icdm.2013.165

Moore, G. E. (1975). Progress in digital integrated electronics. IEDM Technical Digest,

pp. 11-13. Retrieved from

http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=IE

DM%20technical%20digest

Moore, J. (2014, December). FITARA analysis: Will CIOs use their new powers for

good? Retrieved from http://www.nextgov.com/cio-briefing/2014/12/fitara-

analysis-will-cios-use-their-new-powers-good/101160/

Musso, J. A., & Weare, C. (2015). From participatory reform to social capital: micro‐

motives and the macro‐structure of civil society networks. Public Administration

Review, 75(1), 150-164. doi:10.1111/puar.12309

NASA. (1990). Manager’s handbook for software development (Revision 1, SEL-84-

101). Retrieved from http://everyspec.com /NASA/NASA-General/SEL-84-

101_REV-1_1990_30283/

NASA. (1997). Software safety NASA technical standard (NASA-STD 8719.13A).

Retrieved from

http://www.hq.nasa.gov/office/codeq/doctree/canceled/ns871913.htm

NASA. (2004). Software safety standard (NASA-STD 8719.13B). Retrieved from

http://www.system-safety.org/Documents/NASA-STD-8719.13B.pdf

 152

Ni, M., McCalley, J., Vittal, V., Greene, S., Ten, C. W., Ganugula, V. S., & Tayyib, T.

(2003). Software implementation of online risk-based security assessment. IEEE

Transactions on Power Systems, 18, 1165-1172.

doi:10.1109/TPWRS.2003.814909

Office of Government Commerce. (2007). The official introduction to the ITIL service

lifecycle. London, England: The Stationary Office.

Office of Management and Budget. (2015, February 2). Fiscal year 2016 analytical

perspectives of the U.S. Government. Retrieved from http://www.gpo.gov

Office of the Secretary of Defense. (2003, June 16). Subject: Guidelines for conducting

operational test and evaluation for software intensive system increments [Memo].

Retrieved from

http://www.dote.osd.mil/pub/reports/guidelines_ote_sisi_june03.pdf

Office of the Secretary of Defense. (2010, September 14). Subject: Guidelines for

operational test and evaluation of information and business systems [Memo].

Retrieved from

http://www.dote.osd.mil/pub/policies/2010/20100914Guidelines_forOTEofInfo_a

ndBusSystems.pdf

Olsen, J. P. (2001). Garbage cans, new institutionalism, and the study of politics.

American Political Science Review, 95(1), 191-198. Retrieved from

http://www.apsanet.org/apsr

O'Toole, L. J., & Meier, K. J. (2004). Desperately seeking Selznick: Cooptation and the

dark side of public management in networks. Public Administration Review,

64(6), 681-693. doi:10.1111/j.1540-6210.2004.00415.x

 153

O’Toole, L. J., & Montjoy, R. S. (1984). Interorganizational policy implementation: A

theoretical perspective. Public Administration Review, 44, 491-503.

doi:10.2307/3110411

Page-Jones, M. (1988). The practical guide to structured systems design (2nd ed.). New

Jersey: Yourdon Press.

Paulk, M. C., Weber, C. V., Curtis, B., & Chrissis, M. B. (1994). The Capability Maturity

Model: Guidelines for improving the software process. Reading MA: Addison

Wesley Longman.

Perrow, C. (1984). Normal accidents: Living with high-risk technologies. New York,

NY: Basic Books.

Powers, E., Stech, F., & Burns, K. (2010). A behavioral model of team sensemaking.

International C2 Journal, 4(1), 1-10. Retrieved from

http://www.dodccrp.org/html4/journal_main.html

Pressman, J. L., & Wildavsky, A. (1984) Implementation: How great expectations in

Washington are dashed in Oakland; Or, why it’s amazing that federal programs

work at all, this being a saga of the economic development administration as told

by two sympathetic observers who seek to build morals on a foundation of ruined

hopes (3rd ed., expanded). Berkeley: University of California Press.

Raadschelders, J. C., & Lee, K. H. (2011). Trends in the study of public administration:

Empirical and qualitative observations from Public Administration Review,

2000–2009,” Public Administration Review, 71, 19-33. doi:10.1111/j.1540-

6210.2010.02303.x

 154

Ramesh, B., & Jarke, M. (2001). Toward reference models for requirements traceability.

IEEE Transactions on Software Engineering, 27, 58-93. doi:10.1109/32.895989

Robin, A., Haynes, P., Paschino, E., Kroes, R., Oikawa, R., Getchell, S., . . . Dyas, H.

(2005). U.S. Patent No. 2005011489A1. Washington, DC: U.S. Patent and

Trademark Office.

Rose, R. (1993) Lesson-drawing in public policy: A guide to learning across time and

space. Chatham, NJ: Chatham House.

Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2001). Identifying software project risks:

An international Delphi study. Journal of Management Information Systems,

17(4), 5-36.

Scott, W., & Davis, G. (2007). Organizations and organizing: Rational, natural, and open

system perspectives. Prentice Hall.

Seacord, R. C., Plakosh, D., & Lewis, G. A. (2003). Modernizing legacy systems:

Software technologies, engineering processes, and business practices. Boston,

MA: Addison-Wesley.

Selznick, P. (1949). TVA and the grass roots: A study of politics and organization (Vol.

3). University of California Press.

Shafritz, J. M., & Hyde, A. C. (1997). Classics of public administration (4th ed.). Fort

Worth, TX: Harcourt Brace College.

Shalal-Esa, A. (2012, December 5). US senators question Pentagon on $1 bln canceled

program. Retrieved from http://www.reuters.com/article/2012/12/05/airforce-

logistics-idUSL1E8N5ITN20121205

http://www.jstor.org/stable/40398503
http://www.jstor.org/stable/40398503

 155

Shankland, S. (2012). Moore's law: The rule that really matters in tech. Retrieved from

http://www.cnet.com/news/moores-law-the-rule-that-really-matters-in-tech/

Shepperd, M., Bowes, D., & Hall, T. (2014). Researcher bias: The use of machine

learning in software defect prediction. IEEE Transactions on Software

Engineering, 40, 603-616. doi:10.1109/TSE.2014.2322358

Shibab, E., Mockus, A., Kamei, Y., Adams, B., & Hassan, A. E. (2011, September 5-9).

High-Impact Defects: A Study of Breakage and Surprise Defects. Proceedings of

the 19th ACM SIGSOFT symposium and the 13th European Conference on

Foundations of Software Engineering (ESEC/FSE ’11). New York, NY:

Association for Computing Machinery.

Short, J. F., Jr. (1984). The social fabric at risk: Toward the social transformation of risk

analysis. American Sociological Review, 49, 711-725. doi:10.2307/2095526

Simon, H. A. (1997). Administrative behavior: A study of decision-making processes in

administrative organizations (4th ed.). New York, NY: The Free Press.

Slocum, M. (2005, November). Business performance excellence and the roles of

innovation and Six Sigma. Paper presented at DCI’s Business Process

Management Conference, San Diego, CA.

Sneed, H. M. (1999, October 6-8). Risks involved in reengineering projects. Paper

presented at the Sixth Working Conference on Reverse Engineering, Atlanta,

Georgia. doi:10.1109/wcre.1999.806961

Solomon, P. (2013, January/February). Basing earned value on technical performance.

Retrieved from http://www.crosstalkonline.org/storage/issue-

archives/2013/201301/201301-Solomon.pdf

 156

Soper, T. (2015, April). Starbucks lost millions in sales because of a ‘system refresh’

computer problem. Retrieved from http://www.geekwire.com/2015/starbucks-

lost-millions-in-sales-because-of-a-system-refresh-computer-problem/

StackExchange. (2013). Cross validated, the two cultures: Statistics vs. machine learning.

Retrieved from http://stats.stackexchange.com/questions/6/the-two-cultures-

statistics-vs-machine-learning

Staller, K., Block, E., & Horner, P. S. (2008). History of methods in social science

research. In S. N. Hesse-Biber & P. Leavy (Eds.), Handbook of emergent methods

(pp. 155-172). New York, NY: The Guilford Press.

Straker, D. (1995). A toolbook for quality improvement and problem solving. Upper

Saddle River, NJ: Prentice Hall Manufacturing Practitioner.

Sweda, J. & Ratcliffe, D. (2010). Risk analysis level of test (RALOT) process. USAF

505th Command & Control Wing/605th Test and Evaluation Squadron. Hurlburt

Field, Fl.

Sweda, J. & Ratcliffe, D. (2014a). 605 TES risk assessment level of test (RALOT)

process guidelines. 505th Command & Control Wing/605th Test and Evaluation

Squadron. Hurlburt Field, Fl.

Sweda, J. & Ratcliffe, D. (2014b). CalculatedRALOT(MASTERJan14).xlsx [Excel

Spreadsheet] USAF 505th Command & Control Wing/605th Test and Evaluation

Squadron. Hurlburt Field, Fl.

Symantec Corporation. (2015, April). Internet security threat report, 20. Retrieved from

http://www.symantec.com

 157

Tasse, J. (2013, October 9). Using code change types in an analogy-based classifier for

short-term defect prediction. Paper presented at the 9th International Conference

on Predictive Models in Software Engineering (PROMISE’13) Conference,

Baltimore, MD. doi:10.1145/2499393.2499397

Treleaven, P., Galas, M., & Lalchand, V. (2013). Algorithmic trading review.

Communications of the ACM, 56(11), 76-85. doi:10.1145/2500117

USAF 505th Command and Control Wing. (2013). Fact sheet: 605th Test and Evaluation

Squadron. Retrieved from:

http://www.505ccw.acc.af.mil/shared/media/document/AFD-130730-027.pdf

U.S. General Accounting Office. (2003). Information technology: A framework for

assessing and improving enterprise architecture management (GAO-03-584G).

Washington, DC: Author.

U.S. General Accountability Office. (2004a). Department of Defense: Further actions

needed to establish and implement a framework for successful financial and

business management transformation (GAO-04-551T). Testimony before the

Subcommittee on Readiness and Management Support, Committee on Armed

Services, U.S. Senate.

U.S. General Accountability Office. (2004b). DoD business systems modernization:

Billions continue to be invested with inadequate management oversight and

accountability (GAO-04-615). Washington, DC: Author.

Vance, A. (2013, April 29). LinkedIn: A story about Silicon Valley's possibly unhealthy

need for speed. Bloomberg Business Week. Retrieved from

http://www.businessweek.com/

 158

Wagner, S. (2013a, October 9). Are comprehensive quality models necessary for

evaluating software quality? Paper presented at the 9th International Conference

on Predictive Models in Software Engineering (PROMISE'13), Baltimore, MD.

Wagner, S. (2013b). Software product quality control. Heidelberg, Germany: Springer.

doi:10.1007/978-3-642-38571-1

Wahono, R. S., Herman, N. S., & Ahmad, S. (2014). Neural network parameter

optimization based on genetic algorithm for software defect prediction. Advanced

Science Letters, 20, 1951-1955. doi:10.1109/METRIC.2002.1011343

Walkinshaw, N. (2013, October 9). Using evidential reasoning to make qualified

predictions of software quality. Paper presented at the 9th International

Conference on Predictive Models in Software Engineering (PROMISE'13)

Baltimore, MD. doi:10.1145/2499393.2499402

Weise, E. (2015, April 15). Gangs of hackers cause spike of 23% in cyber breaches:

Health care firms were a major target. USA Today. Retrieved from

http://www.usatoday.com

West, D. (2011, July 26). Water-scrum-fall is the reality of agile for most organizations

today. Cambridge, MA: Forrester.

Williams, M. F. (2009). Understanding public policy development as a technological

process. Journal of Business and Technical Communication, 23, 448-462.

doi:10.1177/1050651909338809

Williams, R. C., Pendelios, G. J., & Behrens, S. G. (1999). Software Risk Evaluation

(SRE) method description (Version 2.0) (Technical Report CMU/SEI-99-TR-029,

 159

ESC-TR-99-029). Pittsburgh, PA: Software Engineering Institute, Carnegie

Mellon University.

Yacoub, S. M., Ammar, H. H., & Robinson, T. (2000, October 8-11). A methodology for

architectural-level risk assessment using dynamic metrics. Paper presented at the

11th International Symposium on Software Reliability Engineering, San Jose,

California. doi:10.1109/issre.2000.885873

Yourdon, E. (1997). Death March: The Complete Software Developers Guide to

Surviving Mission Impossible Projects (Yourdon Computing Series). Upper

Saddle River, New Jersey: Prentice Hall.

Zachman, J. A. (1987). A framework for information systems architecture. IBM Systems

Journal 26, 276-292. doi:10.1147/sj.263.0276

	Abstract
	Acknowledgments
	Chapter 1: Introduction
	Chapter 2: Description of Problem and Research
	Chapter 3: Literature Review
	The US Air Force’s Risk-Assessed Level of Test Approach
	Risk Assessment in Software
	Relevant Public Administration Theory

	Chapter 4: Hypothesis
	Chapter 5: Research Method
	Grounded Theory
	Generative Social Science
	Lesson Drawing
	Affinity Diagramming
	Trends
	Research for RALOT

	Chapter 6: Question 1
	Chapter 7: Question 2
	Chapter 8: Question 3
	Chapter 9: Question 4
	Chapter 10: Summary and Conclusions
	Future Research

	References

