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Abstract 
 
 

 Land use/cover (LULC) change, especially forest to urban transition, can alter the soil 

hydraulic properties, including soil hydraulic conductivity, even though the soil texture and series 

may remain the same. Soil hydraulic properties have a big influence on hydrologic processes. 

Watershed models are commonly used to project the potential alterations in the hydrologic regime 

of streams in response to ongoing or expected LULC changes. Soil related hydrologic parameters 

(such as hydraulic conductivity) required by these models are typically derived from soil 

databases. Unfortunately, when LULC changes, these soil parameters are often retained at their 

existing values. This is because of the lack of knowledge in quantifying changes in values of these 

parameters under different LULC conditions. Analyzing these soil parameters either in the field or 

in the laboratory is time consuming and costly. Further, scaling up from such small scales is not 

easy. Alternatively, pedotransfer functions, which are algorithms that describe soil-water 

relationships based on basic soil properties, can be used to analyze existing databases of measured 

soil hydraulic data. Soil hydraulic properties are seldom investigated directly under LULC 

changes; however some information on changes in bulk density is available. Changes in bulk 

density can be used as an input parameter for pedotransfer functions to derive changes in soil 

hydraulic conductivity to be used in watershed modeling. In practice, these functions often prove 

to be good predictors for updating soil hydraulic properties. This study aims to overcome this 

challenge using pedotransfer functions for updating soil hydraulic parameters under changing 

LULC by making use of soil maps in conjunction with historic aerial photos. The methodology 
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was tested in two watersheds in Northwest Georgia with the Soil and Water Assessment Tool 

(SWAT). Both watersheds have seen significant urbanization (formerly forest dominated) over the 

past two decades. Sensitivity analysis revealed that curve number and soil properties were the most 

sensitive parameters on flow generation. The model performance was evaluated by defining two 

periods which are describes as reference and testing periods. The results showed that changes in 

LULC and its alteration to soil properties affect model performances. Overall discharge 

simulations of the watersheds were similar, but improvement was observed in high flows when 

changed soil parameters were used. 
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CHAPTER I: INTRODUCTION 
 
 

1.1 BACKGROUND 
 
 

Land use/cover (LULC) change can be defined as the human modification of the earth’s 

terrestrial surface (Beilfuss et al., 2000; Nie et al., 2011; Dube et al., 2014). In recent decades, 

LULC in the United States has changed rapidly - agriculture and forested areas have been 

decreasing while urban, transportation and recreation areas have been steadily increasing (Alig et 

al., 2010; USDA-NRCS, 2007). Since the 17th century, the Southeastern United States especially 

has seen rapid changes in LULC (Delcourt and Harris, 1980; Sleeter et al., 2012; Zhao et al., 2013; 

Hansen et al., 2010). During the early periods, many forested areas have been lost to agricultural 

fields. Later, forest recovered because many agricultural fields were abondoned either due to loss 

of soil fertility or lack of free/cheap labor. The latest LULC change trend in the region is 

urbanization. Forests, agricultural fields and pastures are converted to urban areas. Since rivers, 

lakes and streams receive water from watersheds, transition in LULC to urban can lead to natural 

ecosystem deterioration and degradation of catchments (Fohrer et al., 2001; Mango et al., 2011). 

LULC is also tightly linked to various hydrological processes, such as evapotranspiration, 

interception, infiltration, and ultimately runoff generation which affects loss of nutrients from the 

soil. Forest conversion to agriculture or urban land use causes increased discharge, peak flow, and 

velocity of streams (Lockaby et al., 2011). 
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The influence of LULC change on catchment water balance is a highly studied topic. 

Understanding the role and impacts of LULC change in a watershed could play an important role 

in developing strategies and future development plans to reduce or mitigate flooding problems, 

erosion/sedimentation and nutrient loadings. However, changes in LULC can also have significant 

impacts on soil conditions and microbial communities which are likely to respond to these changes. 

The effects of LULC alteration on the physical and chemical properties of soils have been well 

studied (Zimmermann et al., 2006; Hu et al., 2009; Price et al., 2010; Chen et al., 2014). LULC 

change can create variations in surface roughness, soil aggregate structure,soil organic content and 

nutrients, and pH (Hörmann et al., 2005; Post and Mann, 1990; Murty et al., 2002; Chen et al., 

2014). Unfortunately, most studies modeling the effects of LULC on water resources often perform 

simulations without considering the changes in the soil properties. Soils play an essential role in 

the development and sustainability of ecosystems. Therefore, soil data comprise a key input for 

hydrologic models ( Mednick et al., 2008), and such models are extremely sensitive to soil related 

parameters (Romanowicz et al., 2005; Peschel et al., 2006; Geza and McCray, 2008). Additionally, 

many environmental modeling and land management applications require detailed soil spatial and 

attribute data (Zhu et al., 2001). Conventional soil surveys, such as the STATSGO and SSURGO 

databases in the U.S, are the primary sources of soil spatial data for modeling and other 

management applications, although they were not produced to provide the detailed soil information 

required by most environmental models (Band and Moore, 1995; Zhu, 1999). 

Surface properties of a soil can be altered by natural and anthropogenic processes (Effland 

and Pouyat, 1997; Tugel et al., 2008). Thus, soil hydraulic properties, especially soil hydraulic 

conductivity, may be altered as a result of  anthropogenic or natural disturbances (Heddadj and 

Gascuel-Odoux, 1999). Soil hydraulic conductivity is one of the most dynamic soil properties (Lin 
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et al., 2005), because physical, chemical and biotic factors that affect hydraulic conductivity can 

vary widely in both space and time (Starr, 1990). 

Important soil physical properties include texture, particle size, bulk density, porosity, 

water content, and unsaturated/saturated conductivity (Khaleel et al., 1981; Huisman et al., 2004; 

Li and Shao, 2006; Price et al., 2010). Soil physical properties which change with the variation in 

soil structure include bulk density, total porosity, and aggregate stability, consequently affecting 

soil hydraulic properties such as saturated hydraulic conductivity (Gill, 2012). Surface soil texture 

controls many important ecological, hydrological, and geomorphic processes (Scull et al., 2008). 

Movement of water and nutrients in soils is controlled by properties such as bulk density and 

hydraulic conductivity which affect processes such as infiltration and nutrient transport. Bulk 

density and hydraulic conductivity control the proportion of precipitation entering the soil, its 

retention in subsurface storage and the water transmission rates to stream networks. Therefore, 

both surface flow production and baseflow maintenance are influenced by soil properties (Hewlett, 

1961; Zimmerman et al., 2006; Tetzlaf et al., 2007). Many watershed models assume incorrectly 

that soil surface characteristics (0-20 cm) are time invariant (Hu et al., 2009). Therefore, there is 

a need for developing methods to update soil hydraulic parameters under changing LULC. 

Watershed models are widely used to understand the impacts of various anthropogenic 

activities and natural processes on water flow and associated transport of sediment, chemicals, 

nutrients, and microbial organisms within a watershed. Understanding such impacts are needed for 

water resource management purposes such as estimating water availability over time, providing a 

better understanding of LULC change impacts on water resources, and quantifying the temporal 

and spatial alterations in aquifer recharge throughout a watershed (Pedraza and Ockerman, 2012). 

Specifically, process-based models can handle many components of the hydrologic cycle using 
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multiple data such as climate, soil, topography, vegetation, and land management practices 

occurring in a watershed. Selection of an appropriate model depends on the project objectives and 

the characteristics of the watershed that is being studied. The Soil and Water Assessment Tool 

(SWAT) is one of the most widely used watershed models to study land management, LULC, and 

climate changes impacts on water quantity and quality. 

SWAT has been widely used to study LULC change impacts. A quick search on the SWAT 

literature database (https://www.card.iastate.edu/swat_articles) shows 133 journal articles on this 

topic (accessed September 25th, 2015). These studies mostly ignored changes in soil hydraulic 

parameteres under changes LULC. Romanowicz et al. (2005) studied the sensitivity of the semi-

distributed hydrological SWAT model to the pre-processing of soil and land use data for modeling 

rainfall-runoff processes in a catchment in Belgium. They evaluated and generated 32 different 

soil and land use parameterization scheme to analyze the sensitivity of the model outputs. Two 

distinct scales of soil maps were combined and generalized with a detailed land use map. Their 

results indicated that the SWAT model is extremely sensitive to the quality of the soil and land use 

data and the adopted pre-processing procedures of the geographically distributed data. 

The traditional way in modeling LULC changes with SWAT is through changing some 

vegetation related parameters and the SCS curve number (CN), which reflects both soil and LULC 

characteristics of the watershed (Tadesse et al., 2015; Githui et al., 2009; Babar and Ramesh, 2015; 

Brook et al., 2011; Homdee et al., 2011; Costa et al., 2003; Zhang et al., 2011; Sang et al., 2010; 

Wang et al., 2012; Fang et al., 2013; Nie et al., 2011; Hartcher and Post, 2008). However, the CN 

does not fully capture the changes in soil characteristics. Porosity, bulk density and 

saturated/unsaturated hydraulic conductivity influence hydrology as well (consider subsurface 

flow, recharge, etc.) while CN does not take into account these soil characteristics. 
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Soil data are among the most important inputs for hydrological models. While site-specific 

data are always preferred, the two U.S. Department of Agriculture (USDA) soil databases, the 

state-level State Soil Geographic (STATSGO) dataset and the county-level Soil Survey 

Geographic (SSURGO) dataset, are often the best options for watershed modelers in the United 

States where site-specific soil data are unavailable. These databases are publicly available for the 

United States and are intended to provide information that is sufficient for general watershed scale 

studies. The STATSGO database contains basic attributes for the continuous coverage of soils 

across the United States. Compared to STATSGO, SSURGO has a higher resolution and provides 

more detailed information on the soils. Additionally, many studies have demonstrated that the 

SSURGO dataset yields overall better performance on hydrologic simulation (predicting sediment, 

nutrient, agricultural chemical yields, runoff, and streamflow) than STATSGO dataset (Anderson 

et al., 2006; Sheshukov et al., 2011; Zhang et al., 2012; Bosch et al., 2004; Di Luzio et al., 2004; 

Singh et al., 2015). 

Depending on the soil types and characteristics and land use management approaches, soil 

hydraulic conductivity can be greater, lower, or could remain the same. Hence, it can be expected 

that soil hydraulic conductivity may vary in time. Estimation of the soil hydraulic properties across 

the landscape is also a requirement for hydrologic modeling purposes. Unfortunately, in most cases 

where hydrologic modeling is needed, there is little field data on soil hydraulic properties. 

Therefore, modelers often rely on publicly available soil databases such as SSURGO and 

STATSGO. Therefore, a methodology is needed to estimate the changes in soil hydraulic 

properties from available information. These properties can be estimated using relationships based 

upon more routinely and more frequently collected soil property measurements. 



6 
 

Pedotransfer functions (PTFs), which are regression equations expressing relationships 

between soil properties, are often used to estimate certain soil properties that are difficult and 

costly to measure from more easily available soil data. Although many PTFs have been proposed 

in the literature to calculate soil hydraulic properties (e.g. Cosby et al., 1984; Saxton et al., 1986; 

Jabro, 1992; Rawls and Brakensiek, 1985; Risse et al., 1995; Wösten et al., 1999), only a handful 

of studies applied PTFs to improve the watershed models predictions (Holvoot et al., 2004; 

Bouraoui et al., 2005; Bormann et al., 2007; Schuol et al., 2008; Rouhani et al., 2009). 

1.2 LITERATURE REVIEW 

Below is a review of the literature relevant to soil hydraulic properties and methods for 

determining surface soil hydraulic properties based on land use land cover changes. 

1.2.1 Watershed Modeling and Soil Data 

Soils play key role in ecosystem development and sustainability. They also affect several 

hydrologic processes in the ecosystem. Soil attributes such as texture, bulk density, and hydraulic 

properties have significant impacts on hydrologic processes, including infiltration, evaporation, 

and surface runoff. Therefore, watershed models require soil related parameters along with 

climatic data and other model parameters. The SSURGO and STATSGO data are the two datasets 

developed by the USDA-NRCS to provide general soil data for the entire US and are widely used 

in watershed modeling to obtain soil parameters. 

Even though numerous studies reported differences in simulated streamflow calculated 

based on STATSGO and SSURGO, no definitive conclusions have been drawn concerning the 

accuracy of simulated flows (Levick et al., 2004; Peschel et al., 2006; Kumar and Merwade, 2009). 

Other studies showed that soil data with varying resolution had a limited impact on streamflow 

predictions (Chaplot, 2005; Moriasi and Starks, 2010; Mukundan et al., 2010). Di Luzio et al. 
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(2005) examined the potential impacts of the input variables of the SWAT model, including the 

digital elevation model (DEM), land use, and soil data, on streamflow simulation. They found that 

DEM data and land use maps had a considerable influence on the results affecting the water yield 

prediction. Interestingly, soil maps had limited impact on the model results. Similarly, Mukundan 

(2008) concluded that SSURGO data improved model predictions with SWAT only slightly 

compared to STATSGO, and the difference between predicted and observed daily streamflow and 

sediment load in the North Fork Broad River watershed, Georgia (GA) were not statistically 

significant. Geza and McCray (2008) applied SWAT using both STATSGO and SSURGO to 

predict streamflow, nutrient and sediment loads in Turkey Creek watershed, Denver, Colorado. 

They used the same number of sub-basins; however, the number of hydrologic response units 

(HRUs) varied. The number of HRUs with STATSGO and SSURGO were 261 and 1301, 

respectively. Consequently, differences in soil type and size of HRUs affected the predicted 

streamflow. Predicted streamflow was higher when SSURGO was used. Additionally, SSURGO 

predicted less stream loading than STATSGO in terms of sediment and sediment-attached nutrient 

components. 

Like most other watershed scale hydrologic models, SWAT requires a number of 

parameters for a particular application. Determining the values for these parameters, in reality, 

based on field and laboratory test is the best option, yet due to cost and time limitations, several 

studies estimated the initial values from the available database and adjusted these values (also 

called model calibration) to make the model generated streamflow match the observed streamflow 

(e.g. Srinivasan and Arnold, 1994; Bingner, 1996; Peterson and Hamlett, 1998; Sophocleous et 

al., 1999; Weber et al., 2001; Gitau et al., 2002; Van Liew and Garbrecht, 2003; Chu and 

Shirmohammadi, 2004). Most SWAT modeling studies within the US lately rely on SSURGO for 
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soil parameters (Huismann et al., 2004; Anderson et al., 2006; Bormann et al., 2007; Peschel et 

al., 2006; Nisar and Lone, 2013); however, the accuracy or representativeness of those data have 

not been sufficiently discussed with respect to actual field data. To our knowledge, soil hydraulic 

properties in SSURGO are infrequently updated (USDA-NRCS, Personal communication, 2015). 

Further, in LULC change studies, same soil parameter values are often used even if the LULC 

changes. In that sense, this study can contribute to the general understanding of advantages and 

disadvantages of using soils with updated values in SWAT modeling. It is hypothesized that the 

use of updated soil properties under LULC change should result in improved streamflow prediction 

accuracy.  

1.2.2 Soil Physical and Hydraulic Properties 

Soils are characterized by specific physical and hydrological properties containing texture, 

structure, water retention and transmission (Lorenz and Lal, 2012). Soil properties such as texture, 

bulk density, and water retention play significant roles in soil behavior. Soil texture is one of the 

most important soil characteristics since it influences many other properties significant to land use 

and management (Brown, 1990) and it can control many important ecological, hydrological, and 

geomorphic processes (Scull et al., 2008). The quantification of soil physical and hydraulic 

properties begins with the determination of bulk density and soil texture (Avril and Barten, 2007). 

The soil bulk density is important as a measure of both porosity and soil strength. Bulk density, 

defined as the mass per unit volume and expressed as g/cm3 or Mg/m3, is the most common 

measure of soil compaction. Bulk density can easily be altered by soil disturbing activities such as 

agricultural and urban development. In turn, physical, chemical and biological properties of the 

soil can be modified by the changes in compaction of the soil (Hakansson et al., 1988). Because 
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pores within the soil can contain water, altering the bulk density of the soil can have adverse effects 

on the soil–water relationship. 

Soil hydraulic properties, i.e. the soil water retention characteristics and hydraulic 

conductivities, are physical properties that determine the ability of soil to transport and retain water 

(Hussen and Warrick, 1995). Soil water storage and transport largely depend on soil hydraulic 

properties. The entry of water into the soil, movement of water in the soil profile, flow of water to 

drains, and evaporation from the soil surface are examples to processes affected by soil hydraulic 

properties. They are fundamental in partitioning water inputs at ground surface as well as in 

determining the availability of soil water for extraction by plants. The quantification of soil 

hydraulic properties serves as the basis for the calculation of surface hydrological processes. These 

properties are influenced by several factors, including soil structure, texture, bulk density, and 

organic carbon content. Hydraulic properties can be estimated from morphological properties 

which include texture, initial moisture state, macroporosity and root density (Lin et al., 1999). 

Soil water retention is a hydraulic property that governs soil function and has a strong 

impact on soil management (Rawls et al., 2003). Soil water retention is dependent on soil physical 

properties such as texture, structure and bulk density (Babalola, 1978; Rawls et al., 1991; Minasny 

et al., 1999). Measured data are often used in theoretical models to estimate hydraulic properties 

(e.g., unsaturated hydraulic conductivity) and to develop Water Retention Curves (WRCs) that 

characterize the energy status of soil water (Simunek, 2008). Since soil organic matter (SOM) 

affects soil structure and related properties, Rawls et al. (2003) found that water retention is 

affected by differences in SOM content. Soil porosity also affects water retention. 

Soil saturated hydraulic conductivity is a critical hydraulic property (Rawls et al., 1998). 

Hydraulic conductivity controls water infiltration, surface runoff, leaching of pesticides, and 
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migration of pollutants, and is highly dependent on soil texture and structure (Bagarello and Sgroi, 

2004). The saturated hydraulic conductivity directly affects the amount of runoff and eroded 

surface soil that are transported to local waterways, thereby affecting both in-field soil and in-

stream water quality (Papanicolaou and Abaci, 2008; Elhakeem and Papanicolaou, 2009). Prieksat 

et al. (1994) showed that saturated hydraulic conductivity exhibited temporal variability due to 

land use, tillage, and dynamics of plant roots. McKeague et al. (1982) concluded that soil 

management and land use have major effects on soil structure, porosity, and density, which 

subsequently affect saturated hydraulic conductivity. SOM influenced saturated hydraulic 

conductivity through increased aggregation and microbial activity, while bulk density effects were 

related to porosity. A study by Rachman et al. (2004) analyzed soil hydraulic properties for a grass 

hedge system 10-years after establishment. They indicated that the most significant factors 

affecting saturated hydraulic conductivity (Ksat) were bulk density and macroporosity. They found 

that Ksat declined with depth of the grass hedge position with the lowest values found at the 20-40 

cm depth. 

The surface soil is the interface between the external environment and the soil. Hydraulic 

properties of surface soils influence the partition of rainfall, snowmelt and irrigation water into 

runoff and soil water storage, and thus knowledge of surface soil hydraulic properties is essential 

for efficient land and water management. This study concentrated only on the saturated hydraulic 

conductivity and bulk density of the surface soil hydraulic properties. 

1.2.3 Effects of LULC Change on Soil Physical and Hydraulic Properties 

Soil chemical, physical, and biological properties can be significantly affected by LULC 

changes (Shukla et al., 2003). Zimmermann et al. (2006) examined soil hydraulic properties of a 

variety of land uses (i.e., forest, forested pasture, and pasture) using a hood infiltrometer in Brazil 
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and concluded that water infiltrability and hydraulic conductivity at soil surface (20 cm depth) 

increased from pasture to forest land uses. Hydraulic conductivity and field capacity were found 

to be 50 to 75% less in cultivated lands than forest lands (Wahren et al., 2009). 

Nisar and Lone (2013) found that the change in LULC, in Sindh catchment of Kashmir 

Himalayan region, has effects on certain soil properties. The LULC change over a period of 15 

years was investigated through remote sensing which was used to detect LULC changes. Also, soil 

samples at 0-20 cm depth were collected from four different LULC types, including forests, 

pastures, cultivated land, and urbanized areas to be analyzed for various parameters, namely 

organic matter, water holding capacity, soil pH, electrical conductivity, and available nutrients. 

They concluded that change in LULC significantly influenced most soil properties of the 

catchment. The pH of cultivated soils was significantly higher than forest and pastural soils. 

Cultivated soils were found to have the lowest organic matter content while pasture soils were 

found to have the highest. Forests had significantly higher water holding capacity than pasture and 

cultivated land. 

Borman et al. (2007) evaluated the effects of LULC changes on catchment water balances 

with three different hydrological models within the Land Use Change on Hydrology Ensemble 

Modeling framework. They claimed that land use alterations may lead to changes in soil chemical 

and physical properties such as bulk density. Differences in bulk density can be used as an input 

for pedotransfer functions to derive changes in soil hydraulic model parameters. They concluded 

that different models presented a different sensitivity to the change in soil parameterization even 

though the extent of absolute changes in simulated evapotranspiration and discharge was similar. 

Human activities have been shown to alter soil physical properties of bulk density, 

saturated hydraulic conductivity, and moisture retention, through erosion, compaction, and pore 
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structure evolution. Price et al. (2010) compared these soil physical properties under different land 

use types (forest, pasture, and managed lawn) and across two parent materials (alluvium and 

saprolite) in Macon and Jackson counties in southwestern North Carolina. In the study area, 90 

points were sampled (30 in each land use) which had a long-term consistent LULC. Soil properties 

did not significantly differ between pasture and lawn. They found that forest soils had a tendency 

to have notably higher infiltration rates and water holding capacities, and lower bulk densities than 

lawn and pasture soils. However, several studies have demonstrated no significant differences 

between the water holding capacity at field capacity of disturbed and undisturbed soils (Jusoff, 

1989). 

Kelishadi et al. (2013) investigated how near-saturated soil hydraulic properties are 

affected by different LULC and management practices. They found that unsaturated/saturated 

hydraulic conductivity values were not significantly affected by soil textural classes; however, 

LULC significantly affected soil hydraulic parameters. Similarly, Zhou et al. (2008) studied the 

differences in surface soil hydraulic properties under varying LULC for a given soil series and 

their temporal dynamics by using tension infiltrometers. They investigated the soil textures, 

structures, and parent materials for four soil series under four common LULC (woodland, 

cropland, pasture, and urban). They stated that the differences in LULC and soil types altered 

surface soil hydraulic properties (including field-saturated and near-saturated hydraulic 

conductivities). However, temporal variation of surface soil hydraulic properties was found to be 

greater than their spatial variation caused by LULC. Consequently, soil hydraulic conductivity was 

greater in the forest compared to other LULC, which was associated with the higher organic matter 

content, lower bulk density and low disturbance by anthropogenic activities in forest soils. 
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Ossola et al. (2014) studied how vegetation management practices and structural 

complexity affected soil properties and processes in urban green spaces in the south-eastern 

Melbourne metropolitan area, Australia. They selected a network of 30 research plots on sandy 

soils from three different types of urban green spaces. Bulk density, aggregate structure, soil 

organic matter, infiltration rates and water holding capacity were measured as soil properties and 

processes. They concluded that the above-ground structure of urban green space affected soil and 

litter properties and processes. Saturated hydraulic conductivity was ten times lower in low 

complexity parks compared to high complexity parks. Nonetheless, bulk density and soil organic 

matter were similar. 

Huisman et al. (2004) studied the sensitivity of SWAT-G (modified SWAT model for 

Germany) simulations toward changes in soil properties due to LULC change in an artificial study 

catchment in Germany. They performed a model sensitivity analysis to investigate the impact of 

changes in bulk density, saturated hydraulic conductivity and available water content at the depth 

of the top soil layer on several simulated hydrological fluxes since there was little information on 

the soil-vegetation interactions. The study results indicated that the changes in soil properties due 

to LULC transition from cropland to pasture only had a minor impact on the simulated runoff and 

actual evapotranspiration. 

1.2.4 Problem Statement 

Hydraulic conductivity is one of the most important soil properties used to predict soil 

behavior, and suitability for a variety uses (West et al., 2008). Hydraulic conductivity displays 

spatial and temporal variability at both small and large watersheds. It is significantly influenced 

by various combinations of the external factors (e.g. land use, vegetation, and precipitation) and 

intrinsic soil properties (e.g., bulk density, texture) (Gupta et al., 2006; West et al., 2008; 
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Papanicolaou et al., 2008; Deb and Shukla, 2012). Spatial variability of hydraulic conductivity due 

to regional differences is controlled by intrinsic soil properties, while the added seasonal variability 

of hydraulic conductivity within a region is due to external factors (Elhakeem et al., 2014). Most 

of the hydraulic conductivity values presented in the SSURGO and STATSGO databases are based 

on intrinsic soil properties, and the direct use of these data without correction for the external 

factors should be resolved. While the spatial variability of hydraulic conductivity at a specific site 

can be captured only via detailed field measurements, temporal variability at a given site requires 

continuous measurements over extended periods of time (Papanicolaou et al., 2009). Direct 

measurements of hydraulic conductivity at a specific site by standard instruments such as the 

double ring infiltrometer provide representative values for hydraulic conductivity. However, in-

situ measurements of saturated hydraulic conductivity are often expensive, labor-intensive and 

typically have a sparse spatial resolution. Because of these limitations, most of the models use 

existing soil databases. 

Most studies analyze the effect of land use change on the watershed flow without 

considering that a change in LULC may also cause a change in other associated landscape 

characteristics such as soil properties. For hydrologic modeling, rapid but robust methods for 

hydraulic conductivity prediction are still needed, where in-situ measurements may not be 

practical. Indirect methods for hydraulic conductivity prediction, which involve, for example, 

pedotransfer functions, can potentially address the problem. This thesis mainly focuses on the 

comparison of SWAT model predictions of streamflow using the standard SSURGO soil dataset 

and an updated SSURGO soil database where soil hydraulic conductivity parameters are calculated 

by PTF algorithm approach in two watersheds, which have experienced significant LULC changes, 

in the state of GA, USA. 
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1.3 STUDY OBJECTIVES 

The overarching goal of this research is to come up with a blueprint to update certain soil 

hydraulic parameters using pedotransfer functions under changing LULC for improved hydrologic 

predictions. Because of the dynamic nature of watersheds, there is a need for a systematic approach 

in updating soil hydraulic properties under changing LULC, which are mostly derived from readily 

available soil databases in the US, in order to improve streamflow predictions by watershed 

models. In this study, a pedotransfer function based method is proposed for updating key soil 

hydraulic parameters. The proposed approach was tested with the SWAT model in two urban 

watersheds in Southeastern USA that underwent forest to urban transition. The improvement in 

model performance as a result of this new strategy was assessed. 

The specific objectives of this study are to 

i. Develop a methodology for modifying soil hydraulic parameters of bulk density and 

hydraulic conductivity under changing land use. The proposed functional relationships are 

based on pedotransfer functions (PTFs). 

ii. Test the proposed methodology in two urbanized watersheds within the metropolitan 

Atlanta area in GA, USA. SWAT model was calibrated and validated for the periods when 

both watersheds were heavily forested. The calibrated model was tested during the 

urbanized periods after properly updating the relevant model parameters. 

In chapter II, the PTFs used in updating soil hydraulic parameters are discussed first, 

followed by a brief summary of the SWAT model. After describing the study area, the steps 

followed in model calibration, validation and testing stages are presented. Results are presented in 

chapter III. 
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CHAPTER II: METHODOLOGY 
 
 

This chapter describes the use of PTFs to update soil hydraulic parameters when there is a 

change in LULC. Then, an application of this soil parameter updating is presented in two 

watersheds in the Piedmont Region of GA. Both watersheds were heavily forested in the 1980s, 

but have since urbanized. SWAT model was used to model the urbanization impacts on the 

streamflow in both watersheds and results were compared to USGS streamflow data. A detailed 

description of the study area along with the soil characteristics of the Piedmont physiographic 

region is followed by a brief summary of the SWAT model and the input data used to simulate 

streamflow in these two watersheds. The SWAT model was calibrated and validated for the period 

where watersheds were forested. The calibrated and validated model was then used to test the 

SWAT model’s ability to predict streamflow during the urbanized period, during which soil 

hydraulic parameters were updated to reflect the effect of forest to urban transition. Results and 

Discussion are presented in next chapter.  

2.1 PEDOTRANSFER FUNCTIONS (PTFs) 

Direct measurement of soil hydraulic properties is time-consuming and costly. Therefore, 

scientists have developed methodologies for indirect estimation of hydraulic conductivity and 

other soil hydraulic parameters. Pedotransfer functions (PTFs) are among such tools used for 

predicting soil hydraulic properties such as unsaturated and saturated hydraulic conductivity 

(Wösten et al., 2001). The PTFs, as initially introduced by Bouma and Lanen (1987), are described 

as tools that allow for a translation of data from what is presently unavailable into some useful 
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type of data. At present, most PTFs use a combination of readily available soil properties such as 

textural class, particle size distribution, bulk density, and organic matter as predictor variables 

(Tietje and Hennings, 1996). A large amount of qualitative data in soil surveys also makes PTFs 

desirable as a way to predict soil hydraulic properties. 

In the literature, a considerable number of PTFs differing in data requirements and 

modeling principles have been proposed (Cosby et al., 1984; Rawls and Brakensiek 1985; Saxton 

and Rawls 2006; Wösten et al., 2001). Most PTFs predict saturated hydraulic conductivity using 

percentages of sand, silt, clay, and bulk density (Wösten et al., 2001, Pachepsky and Rawls, 2004; 

and Shein and Arkhangel’skaya, 2006). PTFs can be obtained by various mathematical methods 

and algorithms. Although the temporal and spatial variability of hydraulic characteristics can have 

significant effects on model results, Wösten et al. (2001) stated that valid predictions rather than 

direct measurements are satisfactory for many applications. Lin et al. (1999) also found that PTFs 

using morphological features resulted in predictions comparable to continuous PTFs constructed 

from measured physical properties. Because PTFs predict properties from available basic soil data, 

they are advantageous due to their relative inexpensiveness and ease of derivation and use. 

However, for an application at a specific point, use of a PTF may be inadequate and direct 

measurement may be the only option (Wösten et al., 2001).  

Although various PTFs have been compared and evaluated in several studies (Tietje and 

Tapkenhinrichs, 1993; Wösten et al., 2001; Jarvis et al., 2002; Pachepsky and Rawls, 2004), the 

PTFs proposed by Rawls and Brakensiek (1985) are the most commonly used ones in the literature 

(Wagner et al., 2001; Cornelis et al., 2001; Cronican and Gribb, 2004; Bormann et al., 2007; 

Elhakeem et al., 2014). Therefore, it was selected for this study too to estimate saturated hydraulic 

conductivity. 
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2.1.1 Estimating Soil Hydraulic Conductivity from PTFs 

LULC change may alter the soil hydraulic properties, yet this has not been commonly 

studied in the past (Texeira, 2001). Most of the watershed modeling studies focused on the impacts 

of LULC changes on hydrological fluxes in catchments without considering the alteration in soil 

hydraulic properties due to LULC change (Baker and Miller, 2013). Moreover, direct field 

measurements of soil hydraulic parameters including the saturated hydraulic conductivity are 

technically difficult, making use of PTFs key for their estimation. Thus, an approach is needed to 

assess the changes in soil hydraulic properties from available information. PTFs can potentially 

address this problem. Using PTFs, one can derive soil hydraulic properties (e.g. saturated hydraulic 

conductivity) from readily available soil data such as soil texture, porosity, and bulk density (Jabro 

1992; Rawls et al. 1982; Rawls et al. 1998; Saxton and Rawls 2006; Saxton et al 1986). Bulk 

density can easily be altered by soil disturbing activities such as agricultural and urban 

development. The porosity of a soil indicates its ability to store and transmit water. Soil texture 

may be used as the first estimator of hydraulic conductivity because texture affects the pore space 

available for water movement. Also, soil texture is easy to measure and often available for an area 

of interest. 

Porosity is a critical input into the Rawls and Brakensiek (1985) PTF calculation (Table 

2.1). In this study, bulk density is used to calculate porosity. Porosity values required in the Rawls 

and Brakensiek PTF were derived from published bulk density values (Table 2.2 and 2.3). In the 

porosity formula, soil minerals were assumed to have a density of 2.65 g/cm3. Estimating the 

changes in soil hydraulic properties using bulk density has the advantage that bulk density is an 

easy to measure parameter and changes in bulk density due to LULC change have been reported 

in the literature (e.g. Pouyat et al., 2002; Bewket et al., 2003; Price et al., 2010; also see Table 2.2 
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and 2.3). Other required data such as clay and sand content were assumed to remain constant under 

LULC changes. Available water content (AWC), wet bulk density (ߩ௕
௪ሻ, clay % and sand % were 

derived from SSURGO database. AWC was also assumed to remain constant when LULC 

changes, and wet bulk density values were converted to dry bulk densities to calculate porosity 

(Table 2.1). The formula used in calculation of dry bulk density from wet bulk density was 

borrowed from the SWAT model (Neitsch et al., 2009), which requires field capacity (FC) and 

wilting point (WP). According to the literature review, bulk density increases approximately 30% 

when a forested soil is converted to urban soil. Soil hydraulic conductivity was eventually 

calculated based on soil texture, bulk density, and porosity using the PTF of Rawls and Brakensiek 

(1985) (Table 2.1). The approach followed in calculating new Ksat values of SSURGO dataset is 

explained below. 

Ksat values were first calculated using the PTF without considering any changes in bulk 

density and porosity to demonstrate the reference conditions. Ksat values were also calculated using 

PTF after allowing for changes in porosity and bulk densit4y due to transition of LULC from forest 

to urban. The percent decrease in Ksat values due to forest to urban transition were determined 

based on these two calculated Ksat values. The percent reductions were then applied to SSURGO 

derived Ksat values to estimate new Ksat values for urban soils. The new Ksat values were updated 

using ArcSWAT in the both Big and Suwanee Creek Watersheds. Changes in Ksat and bulk 

densities of the soils in our study watersheds are given in Appendix A and B.  

Forest Soil Bulk Densities 

A forest soil is a natural and only slightly disturbed or undisturbed material that developed 

under permanent forest cover. Forest soils are characterized by being more porous and having 

lower bulk density than cultivated soils. In addition to this, because forest soils have significantly 
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lower bulk density, they have higher hydraulic conductivities than urban or agricultural soils (Price 

et al., 2009). The bulk density of soils varies due to organic matter content, texture, and 

compaction. Because of the lower particle density of organic matter and its tendency to improve 

soil aggregation, soils high in organic matter, like forest soils, tend to have lower bulk densities 

than soils with lower organic matter contents. 

Approximate bulk densities for a variety of soils and soil materials such as organic soils, 

pine wood, and forest loamy A-horizons were given as 0.1-0.7, 0.7 and 0.7-1.2 g/cm3, respectively 

by the USDA Soil Indicator Program (O’Neill et al., 2005 adapted from Brady and Weil, 1996). 

Neil et al. (1997) found average values in the Brazilian Amazon Basin state of Rondonia, ranging 

from 0.59 to 1.37g/cm3. The bulk density of surface soils in forests was found in the literature to 

range from 0.1 to 1.37 g/cm3 (Table 2.2). 

Urban Soil Bulk Densities 

Urban soils are usually compacted moderately to severely from the use of heavy equipment 

on the soil during construction, vehicle parking, and maintenance equipment (Scharenbroch et al., 

2005). Soil compaction is the physical consolidation of the soil by an applied force that destroys 

soil structure, compresses soil volume, increases bulk density, reduces porosity, and limits water 

and air movement (Osman, 2013). Urban soil compaction also reduces water infiltration, thus 

increasing stormwater runoff. Urban soils are particularly characterized by high variability in bulk 

density and saturated hydraulic conductivity (Mullins, 1991). Increases in bulk density, however, 

may not be confined to the topsoil but penetrate to a considerable depth and decrease soil porosity 

in the subsoil (Lorenz and Kandeler, 2005; and Lehmann and Stahr, 2007). Generally, the bulk 

density of surface soil in urban ecosystems may be high due to physical soil modification 

(Scharenbroch et al., 2005). 
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Short et al. (1986) measured bulk densities of 1.25-1.85 g/cm3 (average=1.61 g/cm3) of the 

surface horizon and bulk densities of 1.4-2.3 g/cm3 (average=1.74 g/cm3) at 30 cm depth for open 

parkland in the Mall of Washington, DC. Similar finding were reported by Patterson et al. (1976) 

in Washington, DC; average values of urban bulk density were ranging from 1.81 to 2.18 g/cm3 

(average =2.02 g/cm3). Craul et al. (1985) found values of 1.52-1.96 g/cm3 (average=1.73 g/cm3) 

for subsoils in Central Park, New York City. These are large values in comparison to most 

grassland areas and forest, but comparable values may well be found in many urban parks (Bullock 

and Gregory, 1991). Hiller (2000) found that soils in abandoned shunting yards in the Ruhr area, 

Germany, had bulk densities ranging from 1.0 to 2.1 g/cm3 (average=1.67 g/cm3) depending upon 

the site and depth of soil where the measurements were taken. Gbadegesin and Olabode (2000) 

reported that bulk density of urban soils ranging from 1.05 to 2.18 g/cm3, with a mean of 1.62 

g/cm3 in Ibadan. 

Other studies showed that an increase in soil bulk density decreases hydraulic conductivity 

due to the reduction of larger pores (Franzluebbers, 2002; Zacharias and Wessolek, 2007). 

Additionally, soil bulk density and porosity are good indicators for soil compaction implying a 

destruction of soil structure impacting infiltration through soil (Logsdon and Karlen 2004). Bulk 

densities of surface soils in urban areas are presented below (Table 2.3). 

According to the literature review, the average values for bulk densities in the forest and 

urban land uses are approximately 1.070.09 g/cm3 and 1.390.28 g/cm3, respectively (Table 2.2 

and 2.3). To compile soil hydraulic conductivity values, several studies that focused on soil bulk 

densities under different LULC were reviewed. The final studies used in our analyzes was 

comprised of 10 studies representing urban land uses and 12 studies representing forest land uses 

around the Piedmont Physiographic Region, which is where the two study watersheds are located. 
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2.2 STUDY AREA 

The proposed approach was tested at two watersheds having a history of LULC change 

from forest to urban use. A five-county study area (i.e. Fulton, Forsyth, Cherokee, Gwinnett, and 

Hall) was surveyed in the Atlanta metropolitan area in the Piedmont physiographic region of 

Georgia, USA. The selected study watersheds were the Suwanee Creek watershed located in 

Gwinnett County and Hall County, and the Big Creek watershed located in Fulton, Forsyth, and 

Cherokee counties (Figure 2.1, Table 2.4). Both watersheds are within the Metropolitan Atlanta, 

GA. They were selected based on maximum LULC change (forest to urban transition) percentage 

(Table 2.5) and having long-term daily streamflow data with no data gaps. Having streamflow data 

covering the forested and urban periods was important to compare the simulated streamflow to 

observed data in both periods.  

The Southern Piedmont physiographic province begins in central Alabama and passes 

through northern Georgia and continues northeast to the northern tip of Virginia. The Piedmont 

Plateau province is a wide area extending from the foothills of the Appalachian Mountains to the 

Coastal Plain. Comprising approximately 30% of the land in Georgia, the Piedmont covers ± 

4,606.139 ha (Turner, 1987) and is an upland sloping region with gently rolling hills. Elevation 

ranges from near 366 meter in the north to less than 152 meter in the south. Mean annual rainfall 

is 112 to 142 cm while mean annual temperature ranges between 15.0 and 17.8 °C. Major forest 

types are loblolly-shortleaf pine and oak-pine. The Georgia Piedmont consists of foothills 

underlain by acid crystalline and metamorphic rock. Being Georgia’s most densely populated 

region, most cities are located in the Piedmont (Usery, 2015). The Piedmont region stretches some 

1200 km by 200 km wide (Mayne et al., 2003) from New Jersey in the north to Alabama in the 

south (Coleman, 2008). The topological, geological, and physiological features of the Piedmont 
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region in Georgia are similar to those features found in the other states; thus the results from studies 

in Georgia or other states can possibly be extrapolated to other areas. Several major LULC 

transformations have occurred in the Piedmont over the past 200 years, from forest to cropland, 

then back to pine and hardwood woodlands, and recently urbanization and suburbanization as the 

major driver for LULC change in the region. 

The City of Atlanta, GA is in the Southeastern Piedmont Province of the USA. The region 

is an expanding, urbanized and suburbanized complex in which the population has increased from 

1.8 million in 1980 to 4.2 million people in 2013 (Atlanta Regional Commission, 2013). The 

metropolitan Atlanta area has been experiencing a period of rapid growth and development. With 

increasing population, there has been a change in LULC. As a result of population growth, 

residential, commercial, and other urban land uses more than tripled during this period. 

Both of the study watersheds have experienced urban growth, and in the last decade, that 

has caused a rapid decrease of farmland and forest. This extensive development and other land use 

activities have caused severe alterations on Georgia’s streams (Schoonover et al., 2006). These 

changes in LULC have occurred mostly with the conversion of forest, cropland, and wet area to 

urban land use. The developed areas have been mostly residential. Table 2.5 depicts the major 

LULC changes from 1992 to 2011 in both watersheds. A large fraction of both watersheds was 

covered with forest in the early 1990s, which has since been gradually converted into urban areas 

due to population growth. The LULC change (forest to urban transition) in the Big Creek 

watershed and Suwanee Creek watershed was 36.9 % and 45.3 %, respectively. Streamflow has 

been continuously monitored in both watersheds by USGS since 1985. 
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Soils in the Piedmont 

The dominant soil types in the Southern Piedmont area are Ultisols. These soils are 

extensively found in humid-warm temperate or humid-tropical climates. Most have developed 

under forest vegetation and include either a kandic horizon or an argillic. Cecil soil is the most 

common local soil in the Piedmont Georgia (Soil Survey Division Staff, 1993) and in the 

southeastern United States (West et al., 1998). Other minor soils in the Georgia Piedmont are 

Entisols, Inceptisols, and Alfisols (West et al., 1998; Bandaratillake, 1985). The soils in this region 

are also Saprolitic, formed from the in-place weathering of the bedrock. The upper portion of the 

soil is typically classified as silty-fine sand or low plasticity silt with less frequent occurrences of 

clayey sand, sandy clay and plastic sandy silt (Finke et al. 2001). 

2.3 SOIL AND WATER ASSESSMENT TOOL (SWAT) 

SWAT is a process-based, watershed scale, continuous time, semi-distributed hydrological 

model that uses spatially distributed data on topography, LULC, soil, and weather for simulating 

streamflow and water quality (Arnold and Allen, 1996; Arnold et al., 1998). The SWAT model 

was developed in the early 1990s and represents over twenty five years of model improvement 

within the U.S. Department of Agriculture’s Agricultural Research Service (USDA-ARS). It was 

created to predict the impacts of land management practices on water, sediment, and agro-chemical 

yields in large and complex watersheds with varying soils, LULC, and management conditions 

over long periods of time (Vazquez-Amabile and Engel, 2005). The subsequent implementation 

of a geographical information system (GIS) interface for SWAT (ArcSWAT) allows extraction of 

parameter information from various digital spatial datasets to be used for watershed modeling 

efforts (Di Luzio et al., 2002). Additionally, the SWAT model application, supported by GIS 

technology, proved to be flexible and reliable tool for decision makers (Pisinaras et al., 2010). 
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SWAT has been widely used around the world (Tuppad et al., 2011; Singh et al., 2015; Erturk et 

al., 2015; Liu et al., 2015; Brauer et al., 2015; White et al., 2015). 

SWAT model operations take several steps. This involves the creation of the stream 

network, the watershed area, and the sub-catchments. In SWAT, the watershed is divided into sub-

watersheds. Then sub-watersheds are subdivided into series of hydrological response units (HRUs) 

based on the combination of unique soil, land use, and slope characteristics. An HRU is an area of 

homogenous hydrologic characteristics determined by the spatial overlay of datasets such as 

elevation, land use, and soil type. Flow generation, sediment yield, and nonpoint source loadings 

from each HRU in a sub-watershed are summed, and the resulting loads are routed through 

channels, ponds, or reservoirs to the watershed outlet. SWAT2012 provides several options when 

simulating the hydrological process, which can be chosen by the user depending on the available 

data. The SWAT model uses either the SCS curve number method (SCS, 1972) or the Green & 

Ampt infiltration method (1911) to calculate losses and the resulting surface runoff. The Green & 

Ampt infiltration method requires sub-daily data, but due to the unavailability of sub-daily rainfall 

data for the study area, the SCS curve number method was chosen for surface runoff calculations. 

SWAT also provides the option of using Penman-Monteith, Priestley-Taylor, or Hargreaves 

method for estimating potential evapotranspiration (PET) for the model run. In our study, Penman- 

Monteith method was used to estimate PET. The hydrological processes are simulated based on 

the water balance equation which can be represented as: 

ܵ ௧ܹ ൌ ܵ ଴ܹ ൅෍ሺ
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where, SWt is the final soil-water content (mm), SW0 is the initial soil water content on day i (mm), 

t is the time (days), Rday is the amount of precipitation on day i (mm), Qsurf is the amount of surface 
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runoff on day i (mm), Ea is the amount of evapotranspiration on day i (mm), Wseep is the amount 

of percolation and bypass flow exiting the soil profile bottom on day i, and Qgw is the amount of 

return flow on day i (mm) (Neitsch et al., 2009). Other than the soil water that is taken up by plants 

or evaporated, the rest of the soil water either percolates into the aquifer or moves laterally in the 

soil profile and finally contributes to the streamflow. Details and the theoretical background of the 

SWAT are described in Neitsch et al. (2009). 

2.4 INPUT DATA 

Basic input data required to set up a SWAT model with ArcSWAT are digital elevation 

model (DEM), weather, land use, and soil data. Required data were compiled using databases from 

various state and federal governmental agencies. It is known that the quality of the DEM has a 

strong influence on the final output of the hydrological model (Defourny et. al., 1999). Therefore, 

to delineate watershed areas, 10-meter resolution DEM was downloaded from USDA Geospatial 

Data Gateway website (https://gdg.sc.egov.usda.gov). Additionally, in ArcSWAT, the watershed 

was divided into multiple sub-basins based on topographic features of the watershed calculated 

using DEM data. DEM helps in understanding the flow behavior and flow pattern. For SWAT, the 

topographic attributes of the sub-basins, such as area, slope, and field slope length, were derived 

from the DEM. Weather data (daily precipitation, minimum and maximum temperature, solar 

radiation, relative humidity, and wind) were obtained for the period 1985-2013 from North 

American Land Data Assimilation System website (http://ldas.gsfc.nasa.gov/nldas) and Climate 

Forecast System Reanalysis website (http://rda.ucar.edu/pub/cfsr.html). LULC data is publicly 

available at a sufficient resolution to determine the LULC change between 1992 and 2011. The 

National Land Cover Database 1992 (NLCD 1992) is a consistent, generalized, 30 meter resolution 

LULC dataset for the contiguous US. Also, The National Land Cover Database 2011 (NLCD 
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2011) dataset is the most recent national land cover product for the United States 

(http://www.mrlc.gov/finddata.php). After obtaining NLCD 1992 and NLCD 2011 maps, LULC 

change maps were produced using ArcMap 10 to demonstrate the LULC transition in both 

watersheds. Over the 19 years, the LULC has significantly changed in both watersheds as can be 

seen in Figure 2.2 and 2.3. National Hydrography Dataset (NHD) was obtained from the USGS 

website (http://nhd.usgs.gov/data.html) and was used as a burn in shapefile to produce an improved 

stream network. Moreover, the soils of the watersheds have been mapped at a scale of 1:24,000 

and released as SSURGO certified database by the United States Department of Agriculture 

Natural Resources Conservation Service (USDA-NRCS) (https://gdg.sc.egov.usda.gov/). The 

county level SSURGO dataset was used in deriving soil parameters. 

Both study watersheds were delineated using required data by ArcSWAT 2012. To create 

HRUs, dominant land use, soil, and slope options were used. Big Creek watershed and Suwanee 

Creek watershed had 103 and 109 HRUs, respectively. In the Big Creek watershed, 40 HRUs were 

converted into urban land use from forest area and in the Suwanee Creek watershed, 55 HRUs 

were converted into urban land use from forest area. The Big Creek watershed contained 136 

different SSURGO soil types while Suwanee Creek watershed contained 75 different SSURGO 

soil types. Dominant SSURGO soil types for Big Creek watershed consisted of Cecil (sandy loam, 

eroded very gently sloping phase and clay loam, severely eroded sloping phase). Dominant 

SSURGO soil types for Suwanee Creek watershed included Madison (sandy clay loam, 15 to 45 

percent slopes and sandy clay loam, 10 to 15 percent slopes) and Appling (sandy loam, 6 to 10 

percent slopes). 
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2.4.1    Soil Survey Geographic Database (SSURGO) 

The USDA-NRCS designed the SSURGO database primarily for small scale applications 

(e.g. parcel, town-ship, or county scale) and it includes the most detailed level of available 

information. SSURGO maps are available at a range of scales between 1:12,000 and 1:63,360 and 

the smallest soil map unit represented in SSURGO database is about 0.02 km2 (Geza and McCray, 

2008). To generate the SSURGO maps, soil scientists used aerial photographs as base maps. 

Surveyors observed soils along delineation boundaries and used field traverses and transects to 

determine map unit composition (USDA, 1995). SSURGO was organized in ESRI shapefiles and 

text files for attribute data of soil properties, and it is publicly available. 

SSURGO is an improved version of the State Soil Geographic Database (STATSGO) 

which is a generalized soil map at a scale of 1:250,000. STATSGO and SSURGO share similar 

data structures and formats. Typical spatial resolution of the SSURGO database is 10 to 20 times 

higher than STATSGO. This makes the use of SSURGO soils preferable for smaller scale projects, 

such as modeling small watersheds, catchments, or even individual fields (Sheshukov et al., 2009). 

Modeling at the county level and below with higher resolution is essential for understanding 

ecological processes at smaller spatial scales. 

SSURGO is still under development and does not cover the entire United States (Luo et 

al., 2012). However, SSURGO has been widely used in hydrologic models such as the Agricultural 

Nonpoint Source (AnnAGNPS) model (Polyakov et al., 2007), the Hydrology Laboratory 

Research Modeling System (HLRMS) (Koren et al., 2004; Zhang et al., 2006), the Watershed 

Characterization System- Sediment Tool by the Tetra Tech. Inc. (WCS-SED) (Bolstad, 2006), the 

Topography-based hydrological model (TOPMODEL) (Williamson and Odom, 2007), the 

European Hydrological System (MIKE SHE) (Sahoo et al., 2006), and the Soil and Water 
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Assessment Tool (SWAT) (Geza et al., 2009; Santhi et al., 2006; Wu and Johnston, 2007). Most 

existing studies only focused on soil data extraction from SSURGO (Peschel et al., 2003, 2006; 

Sheshukov et al., 2009); however, the representativeness or accuracy of soil hydraulic parameters 

or others parameters have not been sufficiently examined before. 

From communications with Natural Resources Conservation Service (NRCS) soil 

scientists, it is clear that the original field work was done during the period of 1970s, and there is 

hardly any field work after that. The soil properties represent the conditions of mid to late 1970’s. 

The SSURGO database is populated with a combination of laboratory data and calculations. Lab 

data is used whenever possible, but in situations where NRCS did not have adequate data, which 

was most of the time the case, PTFs were used. The database is constantly updated when further 

lab or field data becomes available. However, most updates come from existing manuscript 

reports. Map units in the GA counties were updated between the years of 2013-2014 while Soil 

Data Join Recorrelation (SDJR) maps were created. Although these map units were updated, this 

does not necessarily mean that the soil properties (texture, soil hydraulic conductivity, bulk 

density) have been updated. 

2.5 MODEL CALIBRATION, VALIDATION AND TESTING 

To test whether updating the soil hydraulic parameters using PTFs can help better predict 

streamflow under changing LULC, the SWAT model was applied to the two watersheds described 

earlier. Traditionally, studies predicting the urbanization effects on streamflow with SWAT 

typically calibrate and validate the SWAT model for the pre-urbanization period and then apply 

the same model to predict the streamflow during the urbanized period (Singh et al., 2015; Jeong 

et al., 2014; Dixon and Earls, 2012; Kim et al.,2011; Zhou et al., 2013). They only change the 

LULC map input to ArcSWAT for this. Since certain model parameters are associated with LULC 
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(e.g. CN, maximum leaf area index, etc.) when LULC distribution in the watershed changes, the 

model reflects these changes on the predicted output. However, changes in parameters like 

saturated hydraulic conductivity, and porosity are generally ignored. In this study, the traditional 

approach was followed with the added improvement of further updating certain soil hydraulic 

parameters. A flow chart describing the modeling approach followed in this study is demonstrated 

in Figure 2.4 and is briefly described below.  

SWAT was first calibrated and validated for streamflow in each watershed using the 

streamflow data collected from 1/1/1988 to 12/31/2000 (reference period). The LULC and soil 

data for this period came from the 1992 NLCD map and the SSURGO. The first 8 years of this 

period served as the calibration period and the remaining 5 years served as validation period. 

During both calibration and validation runs, model started 3 years before the actual period to warm 

up the model (i.e. spin up period). The calibrated and validated model was then used to explore 

whether SWAT can successfully predict streamflow during 1/1/2005-12/31/2013 (testing period), 

during which the LULC in both watersheds were dominantly urban. A three year warm up period 

was again used. This time, the 2011 NLCD map served as the base LULC map. For soil, two 

separate sources were used. In the first approach the SSURGO soil dataset was used to derive soil 

data and the model was run in the traditional approach as described earlier. In the second approach, 

the soil properties Ksat and b were updated using the PTF approach in areas where LULC has 

changed from forest to urban. To be able to do this the dominant soil type option was used in 

creating HRUs in SWAT. However, to minimize the loss of detail sub-watershed delineation was 

performed at very high detail (Figure 2.5 and Figure 2.6). 
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2.5.1    SWAT Calibration and Uncertainty Programs (SWAT-CUP) 

The model calibration in this study has been carried out with SWAT-CUP, which is an 

interface developed for calibration of SWAT as well as for sensitivity and uncertainty analysis 

(Abbaspour et al., 2007). The program contains five different calibration procedures: Sequential 

Uncertainty Fitting version 2 (SUFI-2), Particle Swarm Optimization (PSO), Generalized 

Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), and Markov chain 

Monte Carlo (MCMC). It also includes functionalities for validation and sensitivity analysis as 

well as visualization of the area of study using Bing Map. With this feature, the subbasins, 

simulated rivers, and outlet, rainfall, and temperature stations can be visualized on the Bing map. 

In this study, the Sequential Uncertainty fitting (SUFI-2 algorithm) was utilized, which is the most 

widely used option in the literature and is briefly explained below. Past studies found SUFI-2 to 

be quite efficient for time-consuming and large-scale models (Abbaspour et al., 2004; Abbaspour 

et al., 2007; Yang et al., 2008). 

Description of SUFI-2 

In SUFI-2, uncertainty is defined as the discrepancy between measured and simulated 

variables. This algorithm maps all uncertainties (parameter, conceptual model, input, etc.) on the 

parameters (expressed as uniform distributions or ranges) and tries to capture most of the measured 

data within the 95% prediction uncertainty (95PPU) of the model in an iterative process. The 

95PPU is calculated at the 2.5% and 97.5% levels of the cumulative distribution of an output 

variable obtained through Latin hypercube sampling. Two measures were used to assess the 

goodness of calibration and uncertainty analysis, referred to as p-factor and r-factor. The p-factor 

represents the proportion of observed data covered by the 95% prediction uncertainty (95PPU), 

and it varies from 0 to 1, where 1 indicates 100% of the measured data are covered within model 
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prediction uncertainty. On the other hand, the ratio of the average thickness of the 95PPU band to 

the standard deviation of the corresponding measured variable is called r-factor. These two 

measures are used to determine the accuracy of the calibration and validation. A larger p-factor 

can be achieved at the expense of a larger r-factor. Hence, often a balance must be reached between 

the two. Theoretically, the values for p-factor range from 0 to 1, and r-factor ranges between 0 and 

infinity. The value of p-factor equal to one and that of r-factor close to zero indicate that the 

simulated results are exactly matching with the observed values (Abbaspour et al., 2007; 

Abbaspour, 2011). Often multiple iterations are required to have good result. In the final iteration, 

where acceptable values of r-factor and p-factor are reached, the parameter ranges are taken as the 

calibrated parameters. SUFI-2 allows usage of ten different objective functions such as coefficient 

of determination (R2), Percent Bias (PBIAS), Nash-Sutcliff Efficiency (NSE), and Modified Nash-

Sutcliffe Efficiency (MNSE). In this study, NSE and MNSE were used as objective functions for 

simulating streamflow. A full description of SWAT-CUP can be found in the SWAT-CUP manual 

(Abbaspour, 2015). 

2.5.2 Assessment of Model Performance 

Results of the calibration and validation phases were evaluated based on the visual 

comparison and statistical criteria. R2, PBIAS NSE, and MNSE, are the model performance metrics 

used in this study. 

Coefficient of Determination (R2) 

The coefficient of determination (R2) provides a measure of how well observed outcomes 

are linearly correlated to the model predictions. R2 can have values ranging from 0 to 1. A value 

of zero indicates a poor relationship and no correlation between observed and simulated data, 
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whereas a value of one would indicate a perfect correlation between the model and data, but not 

necessarily a good model performance. R2 is defined as  

ܴଶ 	ൌ
ൣ∑ ሺܳ௠,௜ െ തܳ௠ሻ൫ܳ௦,௜ െ തܳ௦൯

௡
௜ୀଵ ൧

ଶ
	

∑ ሺܳ௠,௜ െ തܳ௠ሻଶ௡
௜ୀଵ ∑ ሺܳ௦,௜ െ തܳ௦ሻଶ௡

௜ୀଵ
 

where, Q is the variable of interest (e.g., discharge), m and s stand for measured and simulated 

values, n is the number of data points, and തܳ௠, തܳ௦ are average measured and simulated flows, 

respectively. 

Percent Bias (PBIAS)  

Percentage bias (PBIAS) measures the average tendency of the simulated flow data to be 

larger or smaller than the observed data (Gupta et al., 1999), with the ideal range for flow data to 

be ±25%, with positive values indicating a model underestimation bias, and negative values 

indicating an overestimation bias. 

ܵܣܫܤܲ ൌ 100 ∗
∑ ሺܳ௠,௜ െ ܳ௦,௜ሻ
௡
௜ୀଵ

∑ ܳ௠,௜
௡
௜ୀଵ

 

Nash-Sutcliffe Coefficient (NSE) 

The Nash-Sutcliffe Model Efficiency Coefficient (NSE) determines the residual variance 

compared to the measured data variance (Nash and Sutcliffe, 1970). It indicates how well the 

observed versus predicted data fit the 1:1 line. Results for NSE range from -∞ to 1, where 1 is 

perfect model prediction. Results over 0 are generally viewed as acceptable; whereas values below 

0 show that the mean of observed values is a better forecaster than the predicted values, indicating 

an unacceptable performance (Moriasi et al., 2007). 

ܧܵܰ ൌ 1 െ
∑ ሺܳ௠,௜ െ ܳ௦,௜ሻଶ
௡
௜ୀଵ

∑ ሺܳ௠,௜ െ തܳ௠ሻଶ௡
௜ୀଵ
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Modified Nash-Sutcliffe Coefficient (MNSE) 

The logarithmic form of NSE is widely used to overcome the oversensitivity to extreme 

values, induced by the mean square error in the NSE and the index of agreement, and to increase 

the sensitivity for lower values. 

ܧܵܰܯ ൌ 1 െ
∑ |ܳ௠ െ ܳ௦|௜

௣
௜

∑ หܳ௠,௜ െ തܳ௠ห௜
௣

௜

 

where, p represents an arbitrary power (i.e., positive integer). In particular, for p=1, the 

overestimation of the flood peaks is reduced significantly resulting in a better overall evaluation. 

The modified forms are more sensitive to significant over or under prediction than the squared 

forms (Krause et al., 2005). 

2.5.3    Calibration, Validation, Parameterization, and Uncertainty Analysis 

The following steps are performed either by the user or by SWAT-CUP under the SUFI-2 

algorithm for sensitivity analysis, calibration and uncertainty analysis. 

1) Run ArcSWAT once with the default model parameters to generate all the input files as well 

as output files. The whole “txtinout” directory is needed by SWAT-CUP as input. 

2) Select an objective function out of ten different options in SUFI-2. In this study, NSE and 

MNSE were selected as objective functions. 

3) Define the minimum and maximum ranges for the model parameters by paying attention to 

their allowable, meaningful ranges. 

4) Sensitivity analysis is carried out by keeping all the parameters constant at their realistic values, 

while varying each parameter within their range assigned in step one. Performing sensitivity 

analyses is helpful to identify the most influential parameters governing model results (Van 

Griensven et al., 2002; Van Griensven et al., 2006). Furthermore, the results of the sensitivity 
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analyses allow determining the effects of varying the values of these parameters to get an 

insight on the uncertainty of the results. 

5) Initial uncertainty ranges for the parameters are selected for the first hypercube sampling. In 

general, these ranges are smaller than the initial ranges. The sensitivity analysis can provide a 

valuable guide in selecting appropriate ranges. 

6) The next step is to perform Latin Hypercube sampling which leads to the combinations of n 

parameters, where n represent the number of desired simulations. This number should be 

relatively large and typically should not exceed 500 simulations for SUFI-2 according to the 

SWAT-CUP manual. 

7) Running SWAT with each Latin Hypercube sample generates an output time series. Using the 

selected objective functions, likelihood measures are calculated for each. 

8) The two indices p-factor and r-factor were calculated for assessing the uncertainties (95PPU). 

9) If the parameter uncertainties are found large (small r-factor) after the first round, further 

rounds of sampling are required with updated ranges of parameters.  

The steps mentioned above were followed for the two study watersheds. In this study, 

thirteen parameters were selected for SWAT-CUP runs. After global sensitivity analysis, the most 

sensitive parameters (which changed when objective function changed) were identified and used 

for further analysis for each watershed. The p-value and t-stat generated by SWAT-CUP are the 

two measures used in deciding the most sensitive parameters. The p-value determines the 

significance of the sensitivity magnitudes and values close to zero are good. Moreover, t-stat also 

provides a measure of sensitivity. Larger t-stat values indicate higher sensitivity. For a successful 

calibration, SWAT-CUP was run 1500 times (3 iterations with 500 simulations in each) with the 

eight sensitive parameters, until satisfactory NSE and MNSE values were obtained. Changes in 
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parameter ranges were made after consulting with various studies that have used SWAT model 

(Santhi et al., 2001; Abbaspour et al., 2007; Vaghefi et al., 2014; Arnold et al., 2012). The final 

calibrated ranges of parameters were used during the validation stage as well.  

After calibration and validation, the next step was testing the model in the urbanized period 

using SSURGO and updated soil properties (Ksat and ߩ௕). To do this, a new ArcSWAT project 

was created for each watershed with the 2011 NLCD and the whole “txtinout” folders were 

provided as input to SWAT-CUP. Some parameter ranges from the calibration stage were used to 

perform model runs. Table 2.6 shows the parameters that were adjusted from the model default 

values during calibration. These parameters were obtained from a thorough sensitivity analysis for 

the entire watershed, using SWAT-CUP’s global sensitivity approach to determine how sensitive 

the parameters are and understand their sensitivity ranking. 
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Table 2.1: PTF functions used in calculating various soil parameters 

Hydraulic Soil 
Characteristic 

Equations Parameters Source 

Saturated 
hydraulic 

conductivity 
(Ksat) 

(mm/hr) 

 Ksat = ln[19.52348− 8.96847 –  0.028212C + 

0.00018107S
2
 – 0.0094125C

2
 − 8.395215

2
 + 

0.077718S– 0.00298S
2


2
 −20.019492C

2


2
 + 

0.0000173S
2
C + 0.02733C

2
 + 30.001434S

2
 

− 0.0000035C
2
S]*10 

: Porosity 
C: Clay % 
S: Sand % 

Rawls and Brakensiek,  
(1985) 

Field Capacity 
(FC) 

FC=WP+AWC 
WP: Wilting point 
AWC: Available water content 

 

Wilting Point 
(WP) 

  
 WP= 0.40*C*ߩ௕

ௗ  
C: Percent clay of the layer (%) 

௕ߩ
ௗ: Dry bulk density (g/cm

3
) 

Neitsch et al., 2009 

  
Dry bulk 
density 

࢈࣋)
 (ࢊ
  

  
௕ߩ
ௗ = (1-)*  dߩ

௕ߩ
ௗ = (ߩ௕

௪-AWC)/(0.4*C+1) 
  

௕ߩ
௪: Wet bulk density 

d: Particle density (2.65 g/cmߩ
3
) 

AWC: Available water content 
C: Clay % 

 

  
Wet bulk 
density 

࢈࣋)
࢝) 
  

௕ߩ
௪= WP+AWC+(1-)*2.65 

WP: Wilting point  
AWC: Available water content  
: Porosity 

 

Porosity 
(  =1-ߩ௕

ௗ/  dߩ
௕ߩ
ௗ: Dry bulk density (g/cm

3
) 

d: Particle density (2.65 g/cmߩ
3
)  

White, (2013) 
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Table 2.2: Bulk density (g/cm3) values observed in ecological studies of forest soils 

Source 
Study 
Area 

Forest Soil Bulk Density 
(g/cm3) 

Depth (cm) 

Pouyat et al., 2006 - 1.10 10 
Nagy R., 2009 - 1.17 30 
McGrath et al., 2001 - 1.05 20 
Moges et al., 2013 - 1.03 20 
Desjardins et al., 1994 - 1.33 20 
Price et al., 2010 - 0.80 15 
Dhakal et al., 2010 - 1.11 26 
Matano et al., 2015 - 0.87 20 
Neill et al., 1997 - 0.59 to 1.37 20 
Trumbore et al.,1995 - 1.02 10 
Garcia-Oliva et al., 2006 - 0.90 5 
Basaran et al., 2008 - 1.15 20 
Campbell et al., 2014 - 1.26 20 
Gebremariam and Kebede, 2010 - 1.29 15 
Yu et al., 2014 - 1.32 20 
Birdsey and Weaver, 1982 - 0.95 23 
Helfrich et al., 2006 - 0.91 7 
Gol and Deniz, 2008 - 1.01 22 
Bewket et al., 2003 - 0.90 15 
Franzluebbers et al., 2000 - 1.32 20 
O’Neill et al., 2005*  - 0.1-0.7, 0.7, 0.7-1.2 NA 
Lauber et al., 2008 - 1.20 7.5 
Fox et al., 1986  Piedmont  1.09 15 
Schenk et al. 2013 Piedmont 0.94 NA 
Turner , 2013 Piedmont 0.93 15 
Franzluebbers, A.J., 1999 Piedmont 0.95 8 
Pouyat et al., 2002 Piedmont 1.18 15 
Gent et al., 1984 Piedmont 1.12 8 
Gent et al., 1984 Piedmont 1.16 8 
Carter and Shaw, 2002 Piedmont 1.23 20 
Jackson et al., 2005 Piedmont 1.13 NA 
Burke et al., 1999 Piedmont 1.03 NA 
Maloney et al., 2008 Piedmont 1.09 10 
Meding et al., 2001 Piedmont 1.06 5 

(* see chapter II - forest bulk densities section for explanation) 
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Table 2.3: Bulk density (g/cm3) values observed in ecological studies of urban soils. 

      Land   Use   
Types 

Sources 
G  LD  MD  HD  T  I  I1  C  PP  G1  R 

Pouyat et al., 2002  ‐  1.22  1.18  1.22  1.17  1.0  1.41  1.26  ‐  ‐  ‐ 

Lorenz and  
Kandeler, 2005 

‐  1.23  1.2  ‐  ‐  ‐  ‐  ‐  2.23  ‐  ‐ 

Pouyat et al., 2007  ‐  ‐  ‐  ‐  1.3  1.3  1.2  1.3  1.2  ‐  1.2 

Millward et al., 
2011 

‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  1.4  1.1  ‐ 

Scharenbroch et 
al., 2005 

‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  1.39  ‐  1.7 

Short et al., 1986  1.61  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Patterson et al., 
1976 

2.02  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Craul et al., 1985  1.73  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Hiller, 2000  1.67  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Gbadegesin and 
 Olabode, 2000 

1.62  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

(G refers to general average bulk densities with no detailed information on level of urbanization, 
LD: Low Density, MD: Medium Density, HD: High Density, T: Transportation, I: Institutional, 
I1: Industrial, C: Commercial, PP: Public Park, G: Garden, and R: Residential) 

 

Table 2.4: Characteristics of gauged streams and drainage basins used in this study. 

Stream Flow 
Gauging 

Station Name 

USGS  
Station  
Number 

Drainage Area 
(km2) 

Period Of  
Record 

Big Creek near 
Alpharetta 

2335700 190.0 1985-2013 

Suwanee Creek 2334885 121.4 1985-2013 
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Table 2.5: LULC change from 1992 to 2011 at the study watersheds 
 

LULC 

Big Creek 
Watershed 

% of watershed 
area converted 
from forest to 
urban between 

1992-2011 

Suwanee Creek 
Watershed 

% of 
watershed area 
converted from 
forest to urban 
between 1992-

2011 

1992 
NLCD 

2011 
NLCD 

1992 
NLCD 

2011 
NLCD 

Forest (km2) 131.9 55.4 

36.9 

94.6 35.4 

45.3 
Urban (km2) 11.7 104.8 10.1 73.9 
Agriculture 

(km2) 
42.4 17.3 14.5 5.3 

 

Table 2.6: List of parameters and their definitions used in model calibration 

Parameter name Definition 

r__CN2.mgt SCS runoff curve number 
v__ALPHA_BF.gw Baseflow alpha factor (days) 
v_GW_DELAY Groundwater delay time (days) 
v__GWQMN.gw Threshold depth of water in shallow aquifer required for return flow to occur (mm)
v__ESCO.hru Soil evaporation compensation factor 
v__EPCO.hru Plant uptake compensation factor 
r__SOL_AWC.sol Available water capacity of soil layer (mm H2O/mm soil) 
v__SURLAG Surface runoff lag coefficient (days) 
v__GW_REVAP Groundwater ‘revap’ coefficient 
r_SOL_K.sol Saturated hydraulic conductivity (mm/hr) 

r__SOL_BD.sol Soil bulk density (g cm-3) 
v__CANMX.hru Maximum canopy storage (mm) 
v_REVAPMN.gw Threshold water depth in shallow aquifer (mm) 

The qualifier (v_) refers that the default parameter is replaced by a given value, while (r_) refers 
to a relative change in the parameter where the current value is multiplied by 1 plus a factor in the 
given range. 
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Figure 2.1: Location of study watersheds 
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Figure 2.2: Forest to Urban transition from 1992 to 2011 in the Big Creek Watershed 
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Figure 2.3: Forest to Urban transition from 1992 to 2011 in the Suwanee Creek Watershed 
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Figure 2.4: The methodology used in the study for model set up, calibration, validation and 

testing. 

TRANSFER CALIBRATED 
PARAMATERS

DEM 1992 LULC SSURGO CLIMATE 

REFERENCE PERIOD 
MODEL SETUP & RUN (1985-2000) 

CALIBRATION (Using SWAT-CUP) 
Flow →1988-1995 

VALIDATION (Using SWAT-CUP) 
Flow →1996-2000 

DEM 2011 
LULC 

CLIMATE 

TESTING PERIOD 
MODEL SETUP & RUN  

(2008-2013) 

SSURGO 
SOIL 

DEM 2011 
LULC 

CLIMATE 

TESTING PERIOD 
MODEL SETUP & RUN  

(2008-2013) 

UPDATED 
SOIL  

(Ksat, b) 
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Figure 2. 5: Sub-watersheds of Big Creek Watershed 
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Figure 2. 6: Sub-watersheds of Suwanee Creek Watershed 
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CHAPTER III: RESULTS & DISCUSSIONS 
 
 

In this chapter, results from the application of the methodology to the two study watersheds 

in metropolitan Atlanta area as outlined in Chapter 2 is presented. Results are presented for the 

reference period (1988-2000) and testing period (2008-2013). To assess the influences of the 

changes in soil hydraulic properties and LULC on streamflow prediction, daily streamflow of Big 

and Suwannee Creek watersheds were simulated through the SWAT model using SSURGO map 

and 1992 LULC data and then calibrated and validated using the SWAT-CUP program during the 

reference period using the methodology outlined in previous chapter. Next, 2011 LULC data was 

utilized in the model and the calibrated model was run for the testing period after updating relevant 

model parameters.  

The most sensitive model parameters were first identified before model calibration. To that 

end, a thorough literature review was first conducted to narrow down the list of parameters before 

performing the formal sensitivity analysis. Thirteen model parameters were selected from the 

literature to which streamflow is generally accepted to be sensitive (Abbaspour et al., 2007; Schuol 

et al., 2008; Muleta 2012; Singh et al., 2015). SWAT-CUP was then used to perform sensitivity 

analysis and finalize the list of parameters to be calibrated. It is a known fact that the list and order 

of sensitive parameters highly depend on the selected objective function (Price et al., 2012). For 

instance, the use of NSE and MNSE can yield different sensitive parameters and ranges and, once 

calibrated, different simulated streamflow characteristics. This section also discusses the 

implications of using different calibration targets (NSE and MNSE) in calibrated parameters, their 
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ranges, and simulated streamflow characteristics. The calibrated and validated models were tested 

for future periods with and without updating soil parameters. 

Model calibration, validation and testing were all done at daily time step. Many studies 

found that when watershed model calibrations are completed on a daily basis, there is a 

significantly improvement in the prediction of the high and low flows (Bosh et al., 2004; Sudheer 

et al., 2007; Chu et al., 2004). Also, in this study, two different objective functions, NSE which 

emphasizes on high flows in evaluating simulation fit, and MNSE with p=0.25 which emphasizes 

both high and low flows, were used for calibration and validation of the SWAT model for daily 

streamflow simulations in both watersheds. Streamflow simulations are generally considered 

satisfactory if NSE > 0.5 and PBIAS is within 25% at monthly time step (Moriasi et al., 2007). 

Since daily time scale was used in this study, NSE> 0.5, PBIAS< 25%, and R2 > 0.5 can be 

acceptable for our study (Meaurio et al., 2015, Santhi et al., 2001; Van Liew et al., 2003). 

Typically, model simulations are poorer for shorter time scales than for longer time steps (e.g., 

daily versus monthly or yearly) (Engel et al., 2007). 

3.1 REFERENCE PERIOD (1988-2000, 1992 NLCD) 

3.1.1 Calibration and Validation Result of Big Creek Watershed 

Objective Function: NSE 

SWAT model was first calibrated and validated at daily time step with 1992 NLCD and 

SSURGO map for the period 1985-1995. Calibration was carried out in two steps: parameter 

identification and parameter estimation. Parameter identification included defining and selecting 

the most sensitive parameters of the model, and parameter estimation included finding the optimal 

ranges of the parameters chosen that produces high model performance. A restricted set of 13 
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parameters (deciding processes explained earlier) was used for the sensitivity analysis. From the 

global sensitivity analysis, eight parameters out of 13 parameters were selected as the most 

sensitive, including CN2, SOL_BD, SOL_K, ESCO, SOL_AWC, GWQMN, EPCO, and CANMX 

(Table 3.1). Although p<0.05 is usually recommended, the most sensitive eight parameters were 

used in this study to increase the number of parameters to a reasonable number. Calibration was 

then carried out during the period 1988–1995 with the eight most sensitive parameters. The final 

parameter ranges are shown in Table 3.1. CN2 is typically the most important parameter in 

calibration of SWAT (Muleta, 2012; Zang et al., 2012; Singh et al., 2013) and contributes directly 

to surface runoff generation and indirectly affects baseflow. In order to better match the low flows, 

values of the CN2 and ESCO were decreased in Big Creek Watershed. Decreasing CN2 implies a 

decrease of surface runoff and increase in baseflow while decreasing ESCO causes higher soil 

evapotranspiration. Increasing SOL_K increases subsurface storm flow and also it effects travel 

time in the soil. Therefore, SOL_K increases streamflow. SOL_AWC and SOL_BD of the surface 

soil layer in Big Creek Watershed were increased during calibration and therefore, the increase in 

water holding increased the potential for more evapotranspiration by vegetation. In Big Creek 

Watershed, calibration of groundwater flow was controlled by GWQMN. GWQMN (deep 

percolation) was reduced in order to match low flows. Decreasing GWQMN increases baseflows. 

The EPCO factor in the SWAT model explains how available soil water could be used to meet 

plant water uptake either from upper layers or deeper profiles. Calibrated EPCO value was 0.89 in 

Big Creek watershed, indicating soil water from deeper soil profiles could be used, thus increasing 

ET. In the Big Creek Watershed, evapotranspiration was reduced by increasing CANMX, therefore 

the overall water yield increased.  
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Validation was then carried out during the period 1996–2000. For this, the same parameter 

adjustment factors shown in Table 3.1 were used during the validation period with no further 

adjustment in parameter ranges. The daily streamflow values obtained during the validation period 

by the SWAT model were compared with observed streamflow. The goodness of fit statistics for 

the daily flow simulations of Big Creek Watershed are presented for both calibration and validation 

periods in Table 3.3 for best performances. According to the criteria explained earlier, the model 

performances are reasonably good during both calibration and validation periods. It was noted that 

efficiency of the model, which indicates how well the plot of observed versus simulated values fits 

the 1:1 line, was good during both calibration and validation periods (NSEcalibration= 0.66 and 

NSEvalidation= 0.66). High values of R2 during calibration and validation periods (greater than 0.66) 

indicate a good agreement between the simulated and measured values of daily flows. This 

watershed was very well simulated with a rather large p-factor and small r-factor during both 

calibration and validation periods (Table 3.3). The observed daily streamflows were closely 

matched with simulated streamflows during calibration and validation periods as shown in time 

series as well (Figure 3.1). Figure 3.1 also illustrates scatter graphs between the simulated and 

observed daily streamflows. FDC can illustrate how well the model reproduced the frequency of 

measured daily flows through the calibration and validation periods. Figure 3.1 also compares flow 

duration curves (FDCs) of observed and simulated daily streamflows for the calibration and 

validation periods. In general, the FDCs of observed and simulated flows compare well, especially 

during the calibration period. 

Objective Function: MNSE 

Similar procedures were followed to calibrate and validate the model when objective 

function has changed from NSE to MNSE. The same 13 parameters listed in Table 3.2 were used 
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for sensitivity analysis. Eight parameters (CN2, ESCO, SOL_BD, GW_DELAY, SOL_K, 

SOL_AWC, GWQMN, and GW_REVAP) were identified as the most sensitive parameters based 

on MNSE as the objective function. Compared to the sensitive parameters based on NSE objective 

function, with the MNSE objective function, two parameters were different. GW_DELAY and 

GW_REVAP were not in the first eight sensitive parameters when NSE was used as objective 

function. EPCO and CANMX were more sensitive than those two when MNSE was used as 

objective function. Table 3.2 lists the results of the global sensitivity analysis with MNSE as the 

objective function. These eight parameters were then calibrated until satisfactory model results 

were obtained (Table 3.3). According to the sensitivity analysis, CN2, soil parameters, and 

groundwater parameters had significant effects on streamflow generation. In order to better match 

observed and simulated streamflows, the CN2 was increased, which implies an increase in surface 

runoff and decrease in baseflow. This is interesting because the use of NSE as objective function 

had an opposite effect. NSE gives significantly more weight to high flows. On the other hand, 

MNSE with p=0.25 gives weight to both high and low flows, may be more to latter, since CN2 

affects both high and low flows. Changes in CN2 can affect both. A close look at the FDCs (Figure 

3.2) reveals that SWAT underestimates low flows, especially during the validation period. It is 

very hard to pinpoint source of improvement in low flows because there is so much interaction 

between parameters. In Figure 3.2 low flows are better represented. Decreasing ESCO allowed 

lower soil layers to compensate for a water deficit in upper layers and induced higher soil 

evapotranspiration. In Big Creek watershed, calibration of groundwater flow was controlled by 

GW_DELAY, GWQMN, and GW_REVAP when MNSE was used as the objective function. 

GWQMN and GW_REVAP were decreased in order to better match low flows. Increasing the value 

of the GW_DELAY affects both timing and the quantity of water available for baseflow. SOL_AWC 
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increased in order to reduce surface runoff. Increasing the SOL_AWC also led more water available 

for streamflow in the baseflow period. Model performance statistics are shown in Table 3.3. The 

modified efficiency of daily streamflow predictions (MNSE) increased from 0.24 in the calibration 

period to 0.27 during validation. The R2 and PBIAS for calibration period were 0.51 and 3.8%, 

respectively. The R2 and PBIAS for streamflow in the validation period were 0.48 and 8.7%, 

respectively. The percentage of data being bracketed by 95PPU (p-factor) was high both in 

calibration and validation periods (0.81 and 0.78). The use of MNSE visually resulted in better 

correspondence between the observed and simulated flows for calibration and validation periods. 

The results showed that using MNSE as the objective function produced respectively good results, 

not only for the low flows but also during high flow conditions, compared to using NSE.  This is 

because MNSE is evenly sensitive to low flows and high flows. In summary, results indicate that 

SWAT is capable predicting streamflow very well at the Big Creek Watershed. 

3.1.2 Calibration and Validation Result of Suwanee Creek Watershed 

Objective Function: NSE 

Suwanee Creek Watershed was the other case study watershed. In this watershed, the most 

sensitive parameters for predicting flow were CN2, SOL_BD, SOL_K, SURLAG, ESCO, 

GW_REVAP, ALPHA_BF, and EPCO when NSE was used as the objective function (Table 3.4). 

These parameters were modified during the model calibration until satisfactory model results were 

obtained. There was no clear trend in CN2. Baseflow portion of streamflow was controlled by 

GW_REVAP and ALPHA_BF. GW_REVAP was decreased because the simulated baseflow was 

likely too low before calibration. The temporal distribution of the flow and the shape of the 

hydrograph improved through calibration of the SURLAG and ALPHA_BF parameters. The 

baseflow recession coefficient (ALFHA_BF) is a direct index of ground water flow response to 
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changes in recharge. ALPHA_BF increased in Suwanee Creek Watershed, thus surface water and 

ground water travel time was decreased. Increasing SOL_K resulted in increased subsurface 

stormflow. ESCO was adjusted between 0.3 and 0.85 in an attempt to reduce total flow. The EPCO 

factor in the SWAT model explains how available soil water could be used to meet plant water 

uptake, either from upper layers or deeper profiles. Ranges of EPCO was close to 0, meaning soil 

water from top layers was most likely used. The goodness of fit statistics for the daily flow 

simulations of Suwanee Creek Watershed is tabulated in Table 3.6. According to the model 

performance criteria explained before, the model performances is satisfactory during both 

calibration and validation periods. Although, the percentage of data being bracketed by 95PPU (p-

factor) was high in calibration, it was somehow low in validation (0.75 and 0.48, respectively). If 

the baseflow were better simulated, then a larger p-factor could have been achieved during the 

validation period. Model performance statistics for the streamflow predictions indicated a 

generally satisfactory fit between observed and predicted flows. Figure 3.3 illustrates the observed 

and simulated daily flows during the calibration and validation periods in time series and scatter 

plots. The FDCs for daily flows also in Figure 3.3 show that SWAT performed relatively well in 

simulating flows during the calibration period. The daily simulated high and low streamflow 

almost perfectly matched with observed streamflow in this period. However, 10%-60% range 

observed streamflow was not close to simulated streamflow as much as low and high flows. On 

the other hand, FDCs of validation period showed that even though there was a good correlation 

in high and medium flows, there was an underestimation in low flows. This is also evident on the 

scatter plot of validation period. 
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Objective Function: MNSE  

When MNSE was used as the objective function, parameters having the highest sensitivity 

to predicted flow were SOL_BD, ESCO, SOL_K, CN2, SOL_AWC, EPCO, CANMX, and 

GW_DELAY (Table 3.5). Compared to the sensitive parameters of NSE objective function, three 

parameters replaced with each other. SOL_AWC, CANMX, and GW_DELAY were not in the first 

eight sensitive parameters when NSE was used as objective function. Instead of these parameters 

SURLAG, GW_REVAP, and ALPHA_BF were more sensitive to streamflow when NSE used as 

objective function. Selected parameters and their minimum and maximum ranges are shown also 

in Table 3.5. Like the previous runs, parameter ranges also varied during the model calibration 

until satisfactory model results were obtained. Unlike the previous runs, CN2 was not the most 

sensitive parameter during the calibration period with MNSE. Calibration of groundwater flow was 

controlled by only GW_DELAY. GW_DELAY was increased to improve the timing of low flows. 

CN2, ESCO, SOL_AWC, and SOL_K were the most relevant parameters that influence surface 

flow in SWAT. In order to better match the simulated flows, CN2 was increased in Suwanee Creek 

Watershed. Because simulated peak flow was underestimated, SOL_AWC and ESCO were 

decreased. Reducing SOL_AWC resulted in increased surface flow, reduced evapotranspiration, 

and increased baseflow. By altering the CANMX parameter, evapotranspiration was reduced. 

Therefore, the overall water yield increased. Ranges of EPCO was near 1 when MNSE was used, 

meaning soil water from deeper soil profiles could be used to compensate for evaporative demands. 

This adjustment ensured a better simulation at the watershed outlet. The model performance 

statistics of the daily flow simulations are tabulated in Table 3.6. Overall, there was a reasonably 

good agreement between observed and simulated streamflow for calibration and validation 

periods. MNSE resulted in usually better correspondence between the observed and simulated 
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flows during the calibration period (Figure 3.4) while NSE produced lower predictions in high to 

medium flows. Unlike the calibration period, MNSE still underestimated low flow during the 

validation period (Figure 3.4). The results showed that using MNSE as the objective function 

produced relatively good results for high and medium flows during calibration; however, not for 

low flow. 

3.2 TESTING PERIOD (2008-2013, 2011 NLCD) 

 Previous sections showed that SWAT model did a relatively good job in simulating 

streamflow in Big and Suwanee Creek Watersheds. The next step is to evaluate the effects of the 

LULC changes and updated soil hydraulic properties, obtained using PTFs, on the streamflow 

simulation. To do this, a new SWAT project was created with the values of the SSURGO and 

updated soils. While the sub-watersheds and the stream network for both watersheds remained the 

same for both LULC datasets of 1992 and 2011, HRUs differed. Calibrated and validated 

parameters during the reference period were transferred to the testing period. From 1992 to 2011, 

a vast portion of the watersheds experienced reduction in forest land and increase in urban land 

(Figure 2.2 and 2.3). Finally, the simulated daily streamflows obtained using SSURGO and 2011 

NLCD were compared with the results of updated soil and 2011 NLCD. 

3.2.1 Result of Testing Period of Big Creek Watershed 

Objective Function: NSE 

 The same parameters and their ranges used in the reference period were transferred to the 

testing stage. Measures of model performance including R2, NSE, and PBIAS values are listed in 

Table 3.7. There is very little to no improvement in model performance when updated soil 

parameters are used compared to the case where SSURGO is used. The model evaluation indices 
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R2, NSE and PBIAS demonstrated that simulated and measured daily discharge agreed well for 

both SSURGO and updated soil simulations. The simulated and observed streamflow FDCs at the 

Big Creek Watershed outlet are shown in Figure 3.5 for SSURGO and PTFs approaches during 

2008-2013. Because FDCs illustrated visually similar results, percent error graphs were produced. 

Percent error graph compares the performance of each model for each percentile flows. In the 

percent error graph, the SSURGO and PTFs lines show the percent deviation (Ԑ) from observed 

flow for each percentile of flows ቂԐ ൌ ሺொ೘ିொೞሻ

ሺொ೘ሻ
ቃ, where Qm and Qs are measured and simulated 

streamflow. The black line is the ratio of SSURGO and PTFs lines minus 1 ቂܴܽ݋݅ݐ ൌ ሺԐೄೄೆೃಸೀሻ

ሺԐು೅ಷሻ
െ

1ቃ. If the black line is below x-axis that means SSURGO produced better compared to PTFs. If the 

black line is above x-axis, then PTFs had better model performance. From Figure 3.5, for high 

flows (Q > Q5%) and medium flows (Q46% < Q <Q68%) PTFs had better results. Appendix C also 

shows daily time series line graphs and scatter plots of the simulations and the observations for 

SSURGO and PTFs approach. Even though statistical model performances of simulations with 

updated soil and SSURGO were very similar, the use of the PTF to recalculate soil properties 

depicted flow simulations more precisely in high flows than SSURGO as hypothesized. When 

NSE was used as the objective function, the default SSURGO was not good at matching high flows. 

In most cases, the simulations with updated soil parameters resulted in better simulations of high 

flows than default SSURGO soil parameters. 

Objective Function: MNSE  

 The best model performance statistics of the daily flow simulations are tabulated in Table 

3.7. Overall comparison of daily flow simulation values (2008-2013) resulted in acceptable values. 

The time series and scatter plots of the observed and simulated flow during testing period are 
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shown on Appendix D. Figure 3.6 illustrates FDCs and percent error graphs. Even though 

SSURGO and updated soil data statistically resulted in the same MNSE values, updated soil 

parameters improved model performance in medium flows (Q26% < Q < Q40%)  and high flows (Q9% 

< Q < Q16%), according to the flow duration curves and percent error graph (Figure 3.6). FDCs 

showed almost perfect fit between the simulated and observed streamflow when SSURGO and 

updated soil parameters using PTFs were used. 

3.2.2 Result of Testing Period of Suwanee Creek Watershed 

Objective Function: NSE  

The goodness of fit statistics were computed at daily time step again, and are presented in 

Table 3.8. The statistical results for SSURGO and updated soil of streamflow were 0.49 and 0.45 

for R2 criteria and 0.48 and 0.43 for NSE criteria. The results were very close to the recommended 

minimum values of R2 and NSE in the literature. The time series plots and scatter plots of the 

observed and simulated flow during testing period are shown in Appendix F. Figure 3.7 illustrates 

FDCs and percent error graphs. When NSE was used as an objective function, the default SSURGO 

was good at matching low flows but not at high and medium flows. In contrast, updated soil 

simulations was close to observed data in high and medium flows. Even though FDC of updated 

soil shows the best fit on high flows, FDC derived from the updated soil indicated an 

underestimation of low flows, unlike SSURGO. The percent error graph of Suwanee Creek 

watershed showed that high and medium flows are generally better predicted than low flows using 

PTFs, and SSURGO simulated low flows better. NSE calibration performed best with high flows 

when updated soils were used.  
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Objective Function: MNSE  

The best model performance statistics of the daily flow simulations of Suwanee Creek 

Watershed are tabulated in Table 3.8. The model performance results of MNSE were not as good 

as NSE objective function; however, the simulation results were visually good at time series plots. 

The time series plots and scatter plots of the observed and simulated flow during testing period are 

shown in Appendix G. To gain more insight, FDCs of observed and simulated flows and percent 

error graphs were also produced (Figure 3.8). When MNSE was used as the objective function, 

both the default SSURGO and PTFs approach underestimated the low flows in compared to NSE 

objective function. Percent error graphs illustrated that PTFs approach simulated only high flows 

better (Q > Q2%). SSURGO simulated flows better in comparison to the PTFs when MNSE was 

used as the objective function in the Suwanee Creek Watershed. However, both SSURGO and 

PTFs underestimated the medium and low flows during the testing period. 
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Table 3.1: Ranking the sensitivity of flow parameters and their final range of possible values in 

the Big Creek Watershed using NSE as the objective function. 

Parameter Name* t-stat p-value Rank 
Range of 

Parameters 
r__CN2.mgt -21.932 0.000 1 -0.35 to 0 

r__SOL_BD.sol 9.787 0.000 2 0.25 to 0.7 
r__SOL_K.sol 4.847 0.000 3 0.35 to 1.2 
v__ESCO.hru -3.600 0.000 4 0.24 to 0.75 

r__SOL_AWC.sol 3.491 0.001 5 -0.1 to 0.35 
v__GWQMN.gw 1.702 0.089 6 60 to 150 

v__EPCO.hru 1.672 0.095 7 0.5 to 0.95 
v__CANMX.hru 1.065 0.287 8 6 to 12 

v__REVAPMN.gw -0.479 0.632 9 - 
v__ALPHA_BF.gw 0.475 0.635 10 - 
v__SURLAG.bsn -0.372 0.710 11 - 

v__GW_REVAP.gw -0.295 0.768 12 - 
v__GW_DELAY.gw 0.067 0.946 13 - 

 
(* Refer to Table 2.6 in Chapter II for parameter definitions) 

Table 3.2: Ranking the sensitivity of flow parameters and their final range of possible values in 

the Big Creek Watershed using the MNSE (p=0.25) as the objective function. 

Parameter Name* t-stat p-value Rank Range of 
Parameters 

r__CN2.mgt 10.967 0.000 1 0 to 0.3 
v__ESCO.hru -10.292 0.000 2 0 to 0.5 

r__SOL_BD.sol 9.991 0.000 3 0.05 to 0.3 
v__GW_DELAY.gw 7.839 0.000 4 45 to 120 

r__SOL_K.sol 7.204 0.000 5 -0.3 to 0.1 
r__SOL_AWC.sol 4.248 0.000 6 0.05 to 0.6 
v__GWQMN.gw -1.507 0.132 7 0 to 70 

v__GW_REVAP.gw -1.451 0.148 8 0.09 to 0.14 
v__REVAPMN.gw 1.286 0.199 9 - 

v__EPCO.hru 1.002 0.317 10 - 
v__ALPHA_BF.gw -0.808 0.419 11 - 
v__SURLAG.bsn 0.514 0.607 12 - 
v__CANMX.hru -0.451 0.652 13 - 

(*Refer to Table 2.6 in Chapter II for parameter definitions)  
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Table 3.3: Best Model Performance for Calibration and Validation Period at the Big Creek 

Watershed. 

Objective 
Function NSE MNSE (p=0.25) 

Performance 
Statistics p-factor r-factor R2 NSE PBIAS p-factor r-factor R2 MNSE PBIAS 

Calibration 
Period 

(1988-1995) 
0.64 0.31 0.66 0.66 -3.7% 0.81 0.47 0.51 0.24 3.8 % 

Validation 
Period  

(1988-1995) 
0.55 0.25 0.67 0.66 2.3 % 0.78 0.39 0.48 0.27 8.7% 

 

Table 3.4: Ranking the sensitivity of flow parameters and their final range of possible values in 

the Suwanee Creek Watershed using NSE as the objective function. 

Parameter Name* t-stat p-value Rank 
Range of 

Parameters 
r__CN2.mgt -30.588 0.000 1 -0.2 to 0.3 

r__SOL_BD.sol 7.059 0.000 2 0.25 to 0.55 
r__SOL_K.sol 3.788 0.000 3 0.45 to 1.1 

v__SURLAG.bsn 1.834 0.067 4 6 to 14 
v__ESCO.hru -1.672 0.095 5 0.3 to 0.85 

v__GW_REVAP.gw -0.834 0.405 6 0.11 to 0.18 
v__ALPHA_BF.gw -0.454 0.650 7 0.65 to 1 

v__EPCO.hru -0.448 0.655 8 0 to 0.5 
v__CANMX.hru 0.402 0.688 9  
v__GWQMN.gw 0.177 0.860 10  

r__SOL_AWC.sol 0.156 0.876 11  

v__REVAPMN.gw 0.054 0.957 12  
v__GW_DELAY.gw 0.044 0.965 13  

(*Refer to Table 2.6 in chapter II for parameter definitions) 
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Table 3.5: Ranking the sensitivity of flow parameters and their final range of possible values in 

the Suwanee Creek Watershed using the MNSE (p=0.25) as the objective function. 

Parameter Name* t-stat p-value Rank 
Range of 

Parameters 
r__SOL_BD.sol 9.607 0.000 1 0.35 to 0.5 

v__ESCO.hru -8.672 0.000 2 0.15 to 0.75 

r__SOL_K.sol 6.546 0.000 3 -0.35 to 0.4 

r__CN2.mgt -2.809 0.005 4 -0.15 to 0.27 
r__SOL_AWC.sol 1.756 0.080 5 -0.15 to 0.05 

v__EPCO.hru -1.722 0.086 6 0.65 to 0.98 

v__CANMX.hru 1.094 0.275 7 10 to 15 

v__GW_DELAY.gw 0.992 0.322 8 33 to 98 

v__GW_REVAP.gw -0.973 0.331 9 - 

v__REVAPMN.gw -0.650 0.516 10 - 
v__ALPHA_BF.gw 0.646 0.518 11 - 

v__SURLAG.bsn -0.254 0.800 12 - 

v__GWQMN.gw -0.040 0.968 13 - 

 
(*Refer to Table 2.6 in chapter II for parameter definitions) 

Table 3.6: Best Model Performance during Calibration and Validation Period at the Suwanee 

Creek Watershed. 

Objective 
Function NSE MNSE (p=0.25) 

Performance 
Statistics p-factor r-factor R2 NSE PBIAS p-factor r-factor R2 MNSE PBIAS

Calibration 
Period 

(1988-1995) 
0.75 0.54 0.50 0.50 -9.8% 0.78 0.47 0.32 0.24 3.5% 

Validation 
Period 

 (1988-1995) 
0.48 0.37 0.54 0.54 8.8% 0.57 0.37 0.41 0.22 6.9% 
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Table 3.7: Best Model Performance during Testing Period (2008-2013) using the NSE and MNSE 

(p=0.25) as objective functions at the Big Creek Watershed. 

Objective 
Function 

NSE MNSE (p=0.25) 

Performance 
Statistics 

p-factor r-factor R2 NSE PBIAS p-factor r-factor R2 MNSE PBIAS

SSURGO 0.51 0.23 0.74 0.73 4.1% 0.69 0.34 0.62 0.29 11.4% 

UPDATED 0.48 0.20 0.72 0.72 0.3% 0.62 0.30 0.64 0.29 15.1% 

 
 

Table 3.8: Best Model Performance during Testing Period (2008-2013) using the NSE and MNSE 

(p=0.25) as objective functions at the Suwanee Creek Watershed. 

Objective 
Function 

NSE MNSE (p=0.25) 

Performance 
Statistics 

p-factor r-factor R2 NSE PBIAS p-factor r-factor R2 MNSE PBIAS 

SSURGO 0.40 0.23 0.49 0.48 -10.6% 0.37 0.22 0.41 0.23 22.2% 

UPDATED 0.21 0.20 0.45 0.43 17.2% 0.35 0.21 0.37 0.21 29.4% 
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Figure 3.1: Observed and simulated daily streamflow during the calibration and validation periods 
for the best performance and scatter plots of simulated and observed streamflow in Big Creek 
Watershed with NSE as objective function. Flow duration curves (FDCs) for the calibration (1988-
1995) and validation (1996-2000) periods. 

0.01

0.1

1

10

100

0 20 40 60 80 100

F
lo

w
 (

m
3 /

s)

Probability of Exceedence (%)

Calibration

OBSERVED SIMULATED

0.01

0.1

1

10

100

0 20 40 60 80 100

F
lo

w
 (

m
3 /

s)

Probability of Exceedence (%)

Validation

OBSERVED SIMULATED

Calibration 

Validation 



81 
 

  

Figure 3.2: Observed and simulated daily streamflow during calibration and validation periods for 
the best performance scatter plots of simulated and observed streamflow in Big Creek Watershed 
with MNSE objective function (p=0.25). Flow duration curves (FDCs) for the calibration (1988-
1995) and validation (1996-2000) periods. 
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Figure 3.3: Observed and simulated daily streamflow during calibration and validation periods for 
the best performance scatter plots of simulated and observed streamflow in Suwanee Creek 
Watershed with NSE objective function. Flow duration curves (FDCs) for the calibration (1988-
1995) and validation (1996-2000) periods. 
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Figure 3.4: Observed and simulated daily streamflow during calibration and validation periods for 
the best performance scatter plots of simulated and observed streamflow in Suwanee Creek 
Watershed with MNSE objective function (p=0.25). Flow duration curves (FDCs) for the 
calibration (1988-1995) and validation (1996-2000) periods. 
 

0.01

0.1

1

10

100

0 20 40 60 80 100F
lo

w
 (

m
3 /

s)

Probability of Exceedence (%)

Calibration

OBSERVED SIMULATED

0.0001

0.001

0.01

0.1

1

10

100

0 20 40 60 80 100

F
lo

w
 (

m
3 /

s)

Probability of Exceedence (%)

Validation

OBSERVED SIMULATED

Calibration 

Validation 



84 
 

 

 

Figure 3.5: Flow duration curves (FDCs) (above) and percent error graph (below) in Big Creek 
Watershed with NSE objective function for the SSURGO and UPDATED soil. The black line in 
the error graph was calculated as ቂܴܽ݋݅ݐ ൌ ሺԐೄೄೆೃಸೀሻ

ሺԐು೅ಷሻ
െ 1ቃ, where ԐSSURGO and ԐPTF are percent errors 

of PTF and SSURGO based simulations. 
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Figure 3.6: Flow duration curves (FDCs) (above) and percent error graph (below) in Big Creek 
Watershed with MNSE objective function (p=0.25) for the SSURGO and UPDATED soil. The 
black line in the error graph was calculated as ቂܴܽ݋݅ݐ ൌ ሺԐೄೄೆೃಸೀሻ

ሺԐು೅ಷሻ
െ 1ቃ, where ԐSSURGO and ԐPTF are 

percent errors of PTF and SSURGO based simulations. 
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Figure 3.7: Flow duration curves (FDCs) (above) and percent error graph (below) in Suwanee 
Creek Watershed with NSE objective function for the SSURGO and UPDATED soil. The black 
line in the error graph was calculated as ቂܴܽ݋݅ݐ ൌ ሺԐೄೄೆೃಸೀሻ

ሺԐು೅ಷሻ
െ 1ቃ, where ԐSSURGO and ԐPTF are percent 

errors of PTF and SSURGO based simulations.  
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Figure 3.8: Flow duration curves (FDCs) (above) and percent error graph (below) in Suwanee 
Creek Watershed with MNSE objective function (p=0.25) for the SSURGO and UPDATED soil. 
The black line in the error graph was calculated as ቂܴܽ݋݅ݐ ൌ ሺԐೄೄೆೃಸೀሻ

ሺԐು೅ಷሻ
െ 1ቃ, where ԐSSURGO and ԐPTF 

are percent errors of PTF and SSURGO based simulations. 
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CHAPTER IV: SUMMARY & CONCLUSIONS 
 
 

The goal of this study was to come up with a blueprint to update certain soil hydraulic 

parameters using PTFs under changing LULC for improved hydrologic predictions. Because of 

the dynamic nature of watersheds, there is a need for a systematic approach in updating soil 

hydraulic properties under changing LULC, which are mostly derived from readily available soil 

databases in the US, in order to improve streamflow predictions by watershed models. Soil 

hydraulic properties are often taken from soil survey databases. A combination of soil properties 

such as texture, bulk density and porosity can be used to determine the Ksat of a soil using 

pedotransfer functions (PTFs). In this study, a PTF based method was proposed for updating key 

soil hydraulic parameters. The proposed approach was tested with the SWAT model in two urban 

watersheds that underwent forest to urban transition, within the metropolitan Atlanta area in 

Georgia, USA. SWAT model was calibrated and validated for the periods when both watersheds 

were heavily forested (reference period, 1988-2000). The calibrated models were then tested 

during the urbanized periods (testing period, 2008-2013) with and without updated Ksat and bulk 

density values.  

Reported changes in bulk density in the literature were used to assess soil properties, and 

the PTF developed by Rawls and Brakensiek (1985) was used to translate the reported changes in 

bulk density into changes in hydraulic model parameterization. The SWAT model reacted 

sensitively to the assumed changes in soil properties in two different watersheds and showed 

different results when changes in soil properties due to LULC was considered. 
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We used a suite of model objective functions to better understand how streamflow 

simulations are parameterized and interpreted under different calibration frameworks. We 

calibrated daily streamflow from two different watersheds in the Piedmont Region of Georgia, 

using two individual objective functions: Nash-Sutcliffe efficiency (NSE) and modified Nash-

Sutcliffe efficiency (MNSE). Ranges of calibrated parameters also varied according to the 

calibration target (NSE and MNSE). The objective function for calibration is a critical point in 

SWAT model, driving the flow simulations and, therefore, its impact on modeling performance. 

The statistical analyses indicated a good model calibration and validation for the discharge of both 

watersheds. These results showed reliable values for flow calibration and validation periods during 

the reference period (1988-2000 with 1992 NLCD). The calibrated and validated model were used 

for prediction of daily streamflow under changing LULC and soil hydraulic properties. The most 

frequently used objective function, NSE, was very sensitive to high flows as expected. Moreover, 

MNSE with p=0.25 was more sensitive to both high and low flows. Overall, it can be stated that 

NSE seems more robust in describing the model performance and simulating flows especially for 

high flows (Q0% < Q < Q10%). Flow duration curves (FDCs) revealed that using MNSE resulted in 

a better agreement between the observed and simulated flow. The simulated flows at the outlet of 

Big Creek watershed were strongly influenced by the use of updated soil properties compared to 

Suwanee Creek Watershed. Also, the model underestimated the low flows during testing period 

for both study watersheds. The modeling performance analysis suggested that derived soil 

properties can be calculated directly from the available basic soil data to simulate streamflow under 

changing LULC. On the other hand, when model simulations generated with the default model 

parameters are compared to observed flows PTFs always seem to generate better results. This is 

evident from the error graphs shown in appendix (Appendix E-H). This indicates that the 



91 
 

calibration of the SWAT model with the SSURGO parameters gives an edge to SSURGO 

simulations. If the model was initially calibrated with PTF based parameters it could be argued 

that updated soil parameters could have resulted in better model performance than SSURGO. 

The results support conclusions of other researches, who found that streamflow predictions 

are influenced by different objective functions (Price et al., 2012), and changes in soil properties 

due to LULC changes (Huisman et al., 2004; Borman et al., 2007). Our results concluded that 

discharge was affected by the updated soil hydraulic properties (Ksat and b). This study also 

indicated that SWAT model is very sensitive to the soil and land use/cover data. Consequently, 

the input data of soil should be updated prior to the hydrological modeling itself by using PTFs. 

Calibration of the model with updated soil can produce a better performance at the daily time step. 

We suggest that watershed model calibrations should be completed with updated soil properties in 

order to preserve the hydrological behavior of the watershed accurately. Hence, we identify a need 

for developing methods for simple and effective calibration procedures at a daily time step for 

watershed models. 

Limitations 

LULC changes may influence both soil properties and streamflow predictions. In our study, 

only forest to urban transition was considered to simulate flow predictions through the both 

watersheds; however, there was very small percent of agriculture to urban and forest to agriculture 

transitions. If we were able to calculate changes in soils in these areas, the simulation results may 

have been improved. In order to determine how changes in soil characteristics may impact 

streamflow modeling, changes in soil hydraulic properties under agriculture to urban or agriculture 

to forest should be studied as well. Also, during the HRUs definition processes, dominant land use, 

soil and slope definition option was used. Therefore, only dominant soil values were updated 
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through the watersheds. If we could use threshold based option, more soil types could be updated 

and it might improve the streamflow prediction as well. 

As mentioned earlier available water content (AWC) may have an influence on Ksat. 

Because of limited data, AWC values could not be updated. The alteration in AWC due to LULC 

changes could cause increase or decrease on Ksat. Therefore, it may be important to recalculate 

AWC values for improved simulations. 

Future Recommendations 

When field measured soil data is not available, PTFs are one of the best alternatives for 

watershed modeling. Even though many researches evidenced that calculating Ksat using PTFs is 

acceptable, there are still limitations. In our study, PTF of Rawls and Brakensiek (1985) was 

utilized, which only used clay, sand, and porosity, to update Ksat; however, other soil properties, 

which have influence on Ksat were ignored such as AWC. Therefore, using available water content 

data could provide some advantages to calculate Ksat more precisely. Also recommended other 

future work is that the same work could be done with different LULC maps and pedotransfer 

functions in different watersheds. This can help contribute to simulating streamflows and to update 

the hydraulic conductivity data stored in the soil databases. 
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Appendix A: Calculation of Ksat for Big Creek Watershed 

ArcSWAT SSURGO Calculated Values 

HRU number Soil Clay Sand 
Ksat 

(mm/hr) 
AWC 

Wet bulk 
density 

Dry bulk 
density 

Increased wet 
bulk density 

Increased dry 
bulk density 

Porosity 
Ksat 

(mm/hr) 
8 124369 0.125 0.673 100.8 0.13 1.55 1.35 1.98 1.76 0.34 1.89 
10 124337 0.3 0.335 32.4 0.14 1.35 1.08 1.71 1.40 0.47 7.39 
18 124337 0.3 0.335 32.4 0.14 1.35 1.08 1.71 1.40 0.47 7.39 
19 124337 0.3 0.335 32.4 0.14 1.35 1.08 1.71 1.40 0.47 7.39 
22 124337 0.3 0.335 32.4 0.14 1.35 1.08 1.71 1.40 0.47 7.39 
24 124312 0.3 0.335 32.4 0.14 1.35 1.08 1.71 1.40 0.47 7.39 
36 124323 0.125 0.679 100.8 0.13 1.55 1.35 1.98 1.76 0.34 1.82 
40 124368 0.125 0.673 100.8 0.13 1.55 1.35 1.98 1.76 0.34 1.89 
42 124328 0.26 0.197 100.8 0.14 1.35 1.10 1.71 1.42 0.46 27.46 
45 124325 0.125 0.679 100.8 0.13 1.55 1.35 1.98 1.76 0.34 1.82 
46 124325 0.125 0.679 100.8 0.13 1.55 1.35 1.98 1.76 0.34 1.82 
56 124337 0.3 0.335 32.4 0.14 1.35 1.08 1.71 1.40 0.47 7.39 
58 124381 0.23 0.246 32.4 0.2 1.43 1.13 1.80 1.46 0.45 7.29 
59 124371 0.125 0.673 100.8 0.13 1.55 1.35 1.98 1.76 0.34 1.89 
61 124319 0.125 0.673 100.8 0.13 1.55 1.35 1.98 1.76 0.34 1.89 
62 124312 0.3 0.335 32.4 0.14 1.35 1.08 1.71 1.40 0.47 7.39 
69 124320 0.125 0.673 100.8 0.13 1.55 1.35 1.98 1.76 0.34 1.89 
70 124310 0.3 0.335 32.4 0.14 1.35 1.08 1.71 1.40 0.47 7.39 
71 124312 0.3 0.335 32.4 0.14 1.35 1.08 1.71 1.40 0.47 7.39 
72 124326 0.125 0.679 100.8 0.13 1.55 1.35 1.98 1.76 0.34 1.82 
73 124325 0.125 0.679 100.8 0.13 1.55 1.35 1.98 1.76 0.34 1.82 
74 124311 0.3 0.335 32.4 0.14 1.35 1.08 1.71 1.40 0.47 7.39 
76 1654037 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
77 1654037 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
78 124320 0.125 0.673 100.8 0.13 1.55 1.35 1.98 1.76 0.34 1.89 
79 124325 0.125 0.679 100.8 0.13 1.55 1.35 1.98 1.76 0.34 1.82 
80 1654011 0.15 0.65 100.8 0.12 1.53 1.33 1.95 1.73 0.35 2.42 
84 1672421 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
85 1674092 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
86 1674092 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
88 1674092 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
89 1674092 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
91 1674092 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
93 1672424 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
98 1672424 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
99 1674092 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 

100 1674092 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
101 1674092 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
102 1672423 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
103 1674092 0.31 0.354 32.4 0.18 1.38 1.07 1.74 1.39 0.48 7.38 
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Appendix B: Calculation of Ksat for Suwanee Creek Watershed 

ArcSWAT SSURGO Calculated Values 

HRU 
number 

Soil Clay Sand 
Ksat 

(mm/hr) 
AWC 

Wet bulk 
density 

Dry bulk 
density 

increased 
dry bulk density 

increased 
wet bulk 
density 

porosity 
Ksat 

(mm/hr) 

5 639968 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
7 639969 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
8 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
9 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
11 639950 0.3 0.335 32.4 0.14 1.45 1.17 1.52 1.84 0.43 5.89 
12 639969 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
13 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
14 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
17 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
20 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
22 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
23 640009 0.11 0.657 100.8 0.12 1.43 1.25 1.63 1.82 0.38 3.04 
26 640009 0.11 0.657 100.8 0.12 1.43 1.25 1.63 1.82 0.38 3.04 
27 725706 0.085 0.646 100.8 0.11 1.48 1.32 1.72 1.89 0.35 2.43 
29 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
30 640009 0.11 0.657 100.8 0.12 1.43 1.25 1.63 1.82 0.38 3.04 
31 725706 0.085 0.646 100.8 0.11 1.48 1.32 1.72 1.89 0.35 2.43 
32 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
33 639969 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
34 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
35 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
38 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
43 639969 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
44 639987 0.125 0.679 100.8 0.14 1.43 1.23 1.60 1.82 0.40 3.00 
48 639987 0.125 0.679 100.8 0.14 1.43 1.23 1.60 1.82 0.40 3.00 
49 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
51 639950 0.3 0.335 32.4 0.14 1.45 1.17 1.52 1.84 0.43 5.89 
54 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
60 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
61 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
64 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
65 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
71 639987 0.125 0.679 100.8 0.14 1.43 1.23 1.60 1.82 0.40 3.00 
74 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
75 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
76 639929 0.125 0.679 100.8 0.13 1.53 1.33 1.73 1.95 0.35 1.97 
78 725706 0.085 0.646 100.8 0.11 1.48 1.32 1.72 1.89 0.35 2.43 
79 640004 0.125 0.679 100.8 0.1 1.4 1.24 1.61 1.79 0.39 2.89 
80 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
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81 725706 0.085 0.646 100.8 0.11 1.48 1.32 1.72 1.89 0.35 2.43 
83 639987 0.125 0.679 100.8 0.14 1.43 1.23 1.60 1.82 0.40 3.00 
84 639987 0.125 0.679 100.8 0.14 1.43 1.23 1.60 1.82 0.40 3.00 
88 639969 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
90 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
92 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
94 639969 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
95 639969 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
96 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
99 639968 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 

100 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
105 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
106 639970 0.3 0.555 32.4 0.14 1.35 1.08 1.40 1.71 0.47 3.59 
107 639941 0.125 0.679 100.8 0.13 1.4 1.21 1.57 1.78 0.41 3.23 
108 639940 0.125 0.679 100.8 0.13 1.4 1.21 1.57 1.78 0.41 3.23 
109 639976 0.275 0.551 32.4 0.12 1.4 1.15 1.50 1.78 0.43 2.79 
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Appendix C: Observed and simulated daily discharge with using SSURGO soil (above) and 

UPDATED soil (below) data for the best performance scatter plots of simulated and observed 

streamflow in Big Creek Watershed with NSE objective function.  
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Appendix D: Observed and simulated daily discharge with using SSURGO soil (above) and 

UPDATED soil (below) data for the best performance scatter plots of simulated and observed 

streamflow in Big Creek Watershed with MNSE objective function (p=0.25). 

 
 

 

 

 



99 
 

Appendix E: Flow duration curves (FDCs) (above) and percent error graph (below) in Big Creek 

Watershed for the SSURGO and UPDATED soil without calibration. FDCs and percent error 

graph illustrate the flows simulations without calibration for each output. 
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Appendix F: Observed and simulated daily discharge with using SSURGO soil (above) and 

UPDATED soil (below) data for the best performance scatter plots of simulated and observed 

streamflow in Suwanee Creek Watershed with NSE objective function. FDCs illustrates the flows 

without calibration for each output. 
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Appendix G: Observed and simulated daily discharge with using SSURGO soil (above) and 

UPDATED soil (below) data for the best performance scatter plots of simulated and observed 

streamflow in Suwanee Creek Watershed with MNSE objective function (p=0.25). FDCs 

illustrates the flows without calibration for each output. 
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Appendix H: Flow duration curves (FDCs) (above) and percent error graph (below) in Suwanee 

Creek Watershed for the SSURGO and UPDATED soil without calibration. FDCs and percent 

error graph illustrate the flows simulations without calibration for each output. 
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