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Abstract

Intermolecular interactions are computed at successively lower levels of theory to estab-
lish the relative accuracy of each level. A set of 21 small molecules was first computed using
the CCSDT(Q) level of theory to establish the post-CCSD(T) uncertainty of approximately
3%. Methane and CO, bound to a series of polycyclic aromatic hydrocarbons (PAHs) are
then computed using a variety of tools to approximate the CCSD(T)/CBS interaction en-
ergy, the MP2/CBS+ACCSD(T)-F12avg/aDZ method demonstrated a mean error of just
2% from benchmark results. The accuracy of a set of dispersion including DFT methods is
explored for methane and CO5 bound to curved coronene systems. While these DF'T meth-
ods exhibited mean errors of 5-15% at the van der Waals minima their error at shorter ranges
rose dramatically. In order to mitigate these short-range errors, the damping parameters of
the DFT-D3 method were refitted to a large database of 8,299 intermolecular interactions. It
was found that through refitting the average error of the DFT-D3 methods was reduced by
10-50%, the greatest reduction in error came from the largest DF'T-D3 outliers. The result-
ing refitted DF'T-D3 method is more accurate and the error is less variable with respect to
the choice of underlying DFT functional and damping form. In addition, symmetry-adapted
perturbation theory (SAPT) will be extended to multiconfigurational self-consistent field
(MCSCF) wavefunctions. To this end, optimization techniques for MCSCF wavefunctions

are detailed and density-fitting is introduced into these equations to reduce their overall cost.
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Chapter 1

Introduction

Through quantum mechanics we are able to explore many aspects of chemistry and seek
answers that are not currently possible to obtain through macroscale experiments. Here we
will focus on the accurate elucidation of intermolecular interactions. These intermolecular
interactions dictate many aspects of chemistry such as drug binding,?2* freezing and melt-
ing point temperatures of molecular materials,>% reaction pathways,”® and astrophysical
phenomena. 0!

Of particular interest to our group are noncovalent interactions (NCI) between small
molecules and carbon nanostructures; these interactions have been the subject of many ex-

12221 Qpecifically, this research will focus on methane

perimental and theoretical studies.
and carbon dioxide physisorption onto carbon nanotubes due to the proposed applications
of nanotubes for methane storage,?>2* C-H bond activation in organic synthesis,?*2? CO,

19,26-30 and molecular sieves to separate CO;y from flue gases.® 3 As we ex-

sequestration,
plore these systems we will observe how the fundamental understanding of these systems

contributes to the vast body of NCI knowledge.

1.1 Computation of Noncovalent Interactions

There are two approaches to the computation of the interaction energy (IE) between
two molecules: the supermolecular and perturbative methodologies. The supermolecular
approach to the computation of noncovalent interaction energies is simply the energy of the

dimer minus the energy of each monomer,



Emethod method method Emethod ( 1.1 )

interaction — ~dimer ~ ““monomer A ~— ‘~“monomer B

This approach is often utilized as it is valid for any methodology that returns molecular
energies. As it is quite difficult to obtain absolute energies for a given monomer or complex
the supermolecular approach is often criticized as working due to large cancellation of errors.
While this comment is likely valid for approaches that are not systematically improvable,
care needs to be taken for methods that are. For these systematically improvable methods,
a more accurate way of describing this outcome is that higher order effects contribute less to
the overall interaction energy. As most methodologies scale as some power of the system size,
the supermolecular approach requires much more computational effort for the computation
of the dimer than for each of the monomers.

A second approach to the computation of noncovalent interaction energies is through
a perturbation theory. While there are many perturbation theories, the most popular form
is Symmetry-Adapted Perturbation Theory (SAPT).3* SAPT breaks the interaction energy

down into four fundamental forces which comprise all intermolecular interactions.

e Exchange:
Directly arising from the Pauli exclusion principle, exchange is the primary repulsive
force in intermolecular interactions. The exchange energy decays as e”*". This is
often computed with the S? approximation where only interchanges of particle pairs
are considered — compared to the S approach, where all possible interchanges are

considered.

e Electrostatics:
Long range electrostatics can be computed through the permanent multipole moments
of each monomer; however, this approximation breaks down at short-range. At these

shorter ranges the leading effects of electrostatic interactions are computed by simply



accounting for all possible charge-charge interactions between the monomers. In SAPT,
electrostatics are computed as the sum of the following terms: the electron repulsion
between the two monomers, the attraction of electrons on monomer A to the nuclei of
monomer B, the attraction of electrons on monomer B to the nuclei of monomer A,

and finally the nuclei-nuclei repulsion from monomers A and B.

e Induction:
The electronic relaxation of one monomer in response to the electric field of another.
This can be computed to a high precision by continuously relaxing each monomer in the
response to the other. However, induction is typically only computed as the relaxation
of each monomer in response to the electric field generated by the reference electronic

state of the other monomer.

e Dispersion:
Instantaneous multipole-multipole interaction arising from the fluctuations of the elec-
tronic density on each monomer. Dispersion is one of the most computationally de-
manding forces to compute as it is a purely dynamical electron correlation effect.
This also means dispersion is the only force that is not at least partially captured by
mean-field theories. Fortunately, at long-range the dispersion interaction acquires the

following straightforward form,

By = ——8 — =8 210 (1.2)

At shorter distances the dispersion energy is damped due to overlap effects between

monomers.

Throughout this introduction the methane and water dimers will be used as quintessen-
tial examples for NCI. The global minimum water and methane geometries were taken from

the S22 database® and interaction energy curves were created by moving the monomers



along the axis connecting their center of masses. Example wavefunction (CCSD(T)¢) and
SAPT (SAPT2+3%) methods are shown for these dimers in Figure 1.1. As can be seen,
the total SAPT and CCSD(T) interaction energies only deviate by a few percent from each
other throughout the entire potential energy curve. However, the SAPT data is significantly

more illuminating in terms of the interaction itself.

Figure 1.1: CCSD(T)/(aTZ,aQZ) and SAPT2+3/aTZ data for the water and methane
dimers.
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In the methane dimer we can see that dispersion is the dominant attractive force; how-
ever, electrostatics plays a large role around the minimum and induction comes into play on
the repulsive wall. For the water dimer we see that electrostatics in the form of a hydrogen
bond is the primary attractive force. At the same time, induction and dispersion forces play
large roles at the minimum and shorter distances. From typical descriptions of hydrogen
bonds the strength of the dispersion term is somewhat surprising, demonstrating the use-
fulness of computations that elucidate the breakdown of the interaction energy. Through
SAPT we are able to describe the interaction in more physical detail while simultaneously

capturing the total interaction energy accurately.

[lowyreoy] 3i



1.2 Wavefunction Theory for Noncovalent Interactions

The most accurate computation of the interaction energy between two atoms or molecules
comes from full Configuration Interaction (FCI) theory.*®*! However, the factorial scaling
of this method limits accurate calculations to approximately 8 electrons. A more computa-
tionally tractable approach that has been described as the ”gold-standard” of computational
chemistry is the coupled cluster approach with singles and doubles with the inclusion of per-
turbative triples [CCSD(T)].3¢ The ”gold standard” title for the CCSD(T) approach comes
from the high accuracy (roughly 3% or better for noncovalent interactions);**** however,
the cost (N7 scaling, applicable up to approximately 25 heavy atoms) is quite limiting with
respect to system size. The accuracy of the CCSD(T) method will be explored in Chapter
2.

To increase the applicability of wavefunction theory more approximate methods that
scale like N* to N® must be utilized. Most popular among these is second-order Mgller-Plesset
perturbation theory (MP2). While MP2’s description of hydrogen bonded complexes,*> such
as the water dimer, is quite accurate, dispersion-bound systems are over bound by 20—
40%.4648 To correct the over-binding of dispersion scaling parallel- and antiparallel-spin
contributions have been proposed such as the SCS-MP2%:%0 and SCS(MI)-MP2.5! However,
both methods of scaling the different spin cases of MP2 lead to somewhat sporadic errors
and while they improve mean accuracy across a variety of tests cases, significant outliers still
remain.>?

As there is not currently a wavefunction method that gives the accuracy of CCSD(T)
at a lower cost,”® we will end our discussion on wavefunction based methods. Suffice to say
that this is a very active area of research and there are many promising approaches on the
horizon. However, this dissertation will primarily focus on the accuracy of DFT methods
as these methods can be utilized for systems many times the size of even the lowest cost
wavefunction method. A thorough review on the behavior of current wavefunction methods

can be found in Ref. 53.



1.3 Density Functional Theory for Noncovalent Interactions

Density Functional Theory (DFT) is often turned to when wavefunction based methods
prove to be too costly for systems of interest. The many flavors of DF'T functionals are often
classified in tiers popularized by Perdew’s Jacob’s Ladder.?* The bottom rung begins with the
local density approximation (LDA) theory and consecutively adds more wavefunction-based
quantities or higher derivatives of the density into the functional. The rungs considered here
are the Generalized Gradient Approximation (GGA), which utilizes pure Kohn-Sham (KS)
orbitals and their gradient, hybrid-GGA functionals which include a portion of exact (SCF)
exchange, and finally double-hybrid functionals, that include a portion of the MP2 correlation
energy as computed with KS orbitals. Of these three different types only the double-hybrid
functionals include long-range correlation; therefore, any GGA or hybrid-GGA is lacking in
dispersion.

Instead of climbing Jacob’s Ladder and adding more physics to improve results, there are
a class of so-called interaction-optimized functionals, which attempt to optimize the various
empirical coefficients for a given DFT method to CCSD(T) or experimental quantities.?>>7
This approach is highly successful as long as the molecules in question are similar to those
in the training set. However, it has been shown that these results are over-fitted and the
accuracy of the method is not guaranteed for a diverse set of quantities.®® In addition, these
functionals are still inherently local and the asymptotic behavior between two non-polar
molecules will decrease exponentially instead of the correct 1/r% asymptotic behavior.

The behavior of the GGA (BLYP%99) hybrid-GGA (B3LYP%:62) double-hybrid
(B2PLYP%3), and interaction-optimized (M05-2X%) functionals is given in Figure 1.2. For
the methane dimer it can be seen that the GGA, hybrid-GGA, and double-hybrid functionals
are always too repulsive and only the double-hybrid functional is ever attractive at long-
range. The double-hybrid functional, unlike the GGA and hybrid-GGA does include a
partial description of dispersion through the fractional inclusion of MP2 correlation. While

this does decrease the repulsiveness of the functional it is clearly not sufficient to capture



Figure 1.2: CCSD(T)/(aTZ,aQZ) in addition to the BLYP, B3LYP, B2PLYP, and M05-2X

functionals in the QZVP basis for the water and methane

dimers.
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the interaction energy accurately alone. The interaction-optimized functional does represent

the interaction energy at the minimum quite well; however as mentioned it does not have

the correct long-range behavior and goes to zero at long-range like e instead of 1/75.

In addition, we can see that the M05-2X functional is actually positive at long-range like

its non-dispersion including counterparts. On the other hand the water dimer is primarily

dominated by electrostatics and the performance of each functional is quite good.

Dispersion can be added to the base functional in a pairwise manner such as the disper-

sion corrections of Grimme et al.,%%% the atom-in-a-molecule dispersion expansion result-

ing from the Hirshfeld partitioning of electron density,’® the exchange-hole dipole moment

(XDM) approach by Becke and Johnson,®” the dDsC modification by Steinmann and Cormin-

boeuf,®® or through the use of explicitly nonlocal van der Waals correlation functionals.

These approaches are computed similarly and each can be formulated like the following

Edisp = - Z Z fdamp(r>

A>Bn=6,38,...

AB
&
B

n
TA

69,70

(1.3)
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The differences between the methods are illuminated in the computation of the coefficients
(CAB)| the form of the damping term (fiump(r)), and whether A and B are atoms or re-
gions of electronic density. These methods accurately capture asymptotic behavior to within
approximately 10% or better;%® however, their accuracy at short to medium range depends

heavily on the empirically defined damping form.

Figure 1.3: CCSD(T)/(aTZ,aQZ) in addition to the BLYP-D3, B3LYP-D3, B2PLYP-D3,
and M05-2X-D3 functionals in the QZVP basis for the water and methane dimers.
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The DFT functionals shown in Figure 1.2 are augmented with Grimme’s -D3 dispersion
expression and shown in Figure 1.3. For the methane dimer it can be seen that the interaction
energy is overall quite improved for non-interaction-optimized functionals. The M05-2X
functional’s minimum is now too deep; however, the correct asymptotic behavior is recovered.
The primary issue with the DFT-D3 method is that while the results can be quite good, for
example, the B3LYP-D3 method shown here, the results can be somewhat sporadic. The
B2PLYP-D3 functional theoretically should have the best performance as it represents the
most advanced functional shown; however, here it is the worst performer. For the water dimer
the SAPT results of Figure 1.1 show the attractive components of the interaction energy are

comprised of 20% dispersion at the minimum. Therefore, it should not be surprising that the
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inclusion of a dispersion term improves the accuracy of these methods for the water dimer
as well.

Like the methane and water dimer, large scale benchmarking for a variety of dispersion
including functionals shows somewhat mixed results. While overall accuracy for these dis-
persion including functionals is quite impressive, with average errors at the van der Waals
minimum geometries down to about 0.2 kcal/mol in some cases;”" however, these methods
can have large outliers and do not always exhibit systematic accuracy across a range of dis-
tances.”" ™ This makes DFT-D methods an active area of research and the accuracy and

understanding of these methods will be explored in Chapters 4 and 5.

1.4 The one-electron basis

As the wavefunction cannot be computed exactly, we will approximate the exact wave-
function in a given basis set. In many ways we can view basis sets as fitting functions. For
variational methods, the more flexibility the method has, the lower the overall energy will
be. To examine the effect of this on intermolecular computations let us examine two possible
methods of computing the interaction energy. The first is where we compute the energy of

the dimer and monomers in their respective basis sets

Ey.=FE{8 —E4 - E8 (1.4)

where subscripts denote the molecular geometries and superscripts denote the basis set. The
dimer in the above energy expression will have more flexibility than each of the monomers.
Therefore, the energy of the dimer compared to the monomers will be relatively too low,

this results in an interaction energy that is too deep when compared to the complete basis

set (CBS) limit.



The Boys and Bernardi counterpoise (CP) approach™ ™ aims to remove this error by

computing all energies in the same basis set
By = E45 — B3P — B4 (1.5)

Now each monomer has more flexibility than the dimer leading to interaction energies that
are too positive compared to the CBS limit. As such, the CP correction does not fix the
fundamental flexibility issue.

Figure 1.4: CP (solid) and nonCP (dashed) corrected MP2 values in a series of Dunning
basis for the water and methane dimers.

Methane Dimer Water Dimer

IE [kcal/mol]

As can be seen in Figure 1.4, the CP correction is greatly beneficial for the methane

dimer where the nonCP aDZ results are too deep by a factor of two. For the water dimer
we see the same trend of nonCP being too negative and CP being too positive; however,
the nonCP results are slightly more converged on a per basis trend than the CP results.
This demonstrates that the CP correction can either help or hurt depending on the type of

system in consideration. In terms of countering the worst absolute or relative errors it is

10
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advantageous to CP correct all results, thus unless otherwise indicated all results shown will
be CP corrected.

In this work we will make extensive use of the Dunning correlation-consistent bases
cc-pVXZ=X7Z and aug-cc-pVXZ=aXZ (X = D, T, Q,...)™™ These correlation-consistent
bases were developed specifically so that the correlation energy converges at roughly a con-
stant X3 rate; therefore, this constant rate can be used to approximate the CBS limit,”®

Eg(oer?) _ E}c/orry?)
X3 Y3

Egg'f”r' ~

(1.6)

where X and Y refer to the cardinal numbers of each basis. The notation method/(basisl, basis2)
denotes that the correlation energy has been obtained from the values in bases (basisl) and
(basis2) using the standard X 3 extrapolation. As SCF energy converges at an exponen-
tial rate, the SCF energy is simply taken from the larger of the two basis sets and not
extrapolated.

In addition to the Dunning series, the Turbomole def2 series of basis sets were em-
ployed.”™ These are SVP, TZVP, and QZVP which roughly correlate in size to cc-pVDZ,
cc-pVTZ, and cc-pVQZ, respectively. These bases are generally employed for DFT meth-
ods as the auxiliary density-fitting basis for Coulomb integrals is of a fixed size for all def2
basis sets. This leads to a reduced computation time when employing the density fitting
approximation in comparison to their Dunning counterparts, especially for the large QZVP

basis.

1.5 Databases

The geometries and energies found in this work have been organized into four separate

databases and are taken from Appendices B, C, and D.
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1.5.1 Nanotube Fragments

Nanotubes can come in a range of chiralities; however, we choose the zigzag (k,0) and
armchair (k, k) nanotubes for simplicity.'> Where k roughly represents the number of fused
benzene rings around the circumference of the nanotube.

As full carbon nanotubes cannot be computed with conventional wavefunction theory,

80 and

very large nanotube fragments will first be generated using the TUBEGEN program
more manageable fragments that emulate the parent nanotube will then be sliced from
these super fragments. These slices are then capped with hydrogen atoms to make PAH-like
structures. C,, fragments will be hexagonal pieces of the carbon nanotube where n represents
the number of successive peri-fused benzene ring layers, i.e., benzene (Cy), coronene (Cy),
circumcoronene (Cy), etc. The C; fragment is also referred to as ”curved coronene” and
the language 7 (5,0) curved coronene” would represent a coronene sized fragment cut out of
a (5,0) nanotube. The nanotube can also be sliced perpendicular to its primary axis into

full toroidal fragments denoted T,,. The width is determined so that the corresponding C,,

fragment is a subset of the full toroidal T,, fragment as shown in Figure 1.5.

Figure 1.5: A representation of both C,, (red) and T,, (teal) model fragments cut from a
(12,0) carbon nanotube.
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1.5.2 Methane-PAH

Geometries of methane bound to PAH’s the size of benzene through pyrene come from
Appendix B. The individual geometries will be denoted nC where n represents the number

of methane hydrogens pointing towards the PAH surface.

Figure 1.6: The three coordinations of the methane bound to PAH’s the size of benzene
through pyrene. Adapted from Appendix B.
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For each of the eighteen minima shown in Fig. 1.7, fifteen additional geometries were
created by altering the distance between the methane center of mass and the plane of the
PAH. The range of distances was chosen as z = 0.8 to 2.4 to emulate a complete 1-dimensional
potential energy curve. The reduced distance z is defined as z = Ri;q, R is the distance
between two monomers, and R., is the minimum separation on a 1-dimensional energy curve.
This results in 270 separate geometries with a benchmark level of theory of MP2/(aQZ, a57)

+ ACCSD(T)/aDZ or higher.
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1.5.3 Methane—Curved Coronene

The methane—curved coronene dataset comes from Appendix C and comprises of methane
bound to curved coronene. Five representative nanotubes, (5,5), (7,0), (9,0), (12,0), and
(5000,0) where (5000,0) represents flat graphene, were first chosen. The minima for the
(12,0) curved coronene complex are shown in Figure 1.7. This produces a total of 30 min-
imum geometries, the interior geometries for the (5000,0) nanotube were removed due to
symmetry, resulting in a total 27 minimum geometries.

Figure 1.7: 1C, 2C, and 3C interior and exterior minima locations for the methane—(12,0)
curved coronene complex. Adapted from Appendix C.

In Appendix C additional geometries were created by choosing z = 0.9, 1.0, 1.2, 1.4 for
a total of 108 geometries. Since this publication™ it was discovered that an additional point
at z = 0.8 was crucial for the description of interactions shorter than the minima. This point
was subsequently computed bringing the total to 135 methane-curved coronene geometries.
Therefore, all statistics given in this dissertation will differ slightly compared to the values
found in Ref. 73. The benchmark level of theory is MP2/(aTZ, aQZ) + ACCSD(T)/1aDZ
(cf. Section 3.1.3).

1.5.4 CO,-PAH

For the CO5 bound to benzene, naphthalene, and pyrene the dataset comes from Ap-

pendix D. The global minimum for each PAH is where the CO5 molecule is parallel to the
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Figure 1.8: Minimum geometries for the CO;—PAH complexes. Adapted from Appendix D.
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PAH surface, these geometries will be denoted parallel or ||. Unlike the methane-PAH sys-
tems there are no other local minima to add angular diversity to the dataset. Instead, a
geometry where the CO, molecule is perpendicular to the PAH will be denoted as perpendic-
ular or L. We will also consider an additional high-symmetry C,, geometry where the CO,
molecule is located over the center of the PAH: these orientations will be labeled as Centered
or abbreviated as C. All nine structures can be found in Figure 1.8. The three || and three
1 Csy, structures had their z distances expanded to: 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, and
2.5 resulting in a total of 54 geometries. The benchmark level of theory is MP2/(aTZ, aQZ)
+ ACCSD(T)-F12avg/aDZ (cf. Section 3.3).

1.5.5 CO,—Curved Coronene

The COqs—curved coronene dataset contains CO, with coronene curved to mimic (5,5),

(6,6), (7,7), (8,0), (10,0), and (12,0) carbon nanotubes along with flat graphene and comes
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Figure 1.9: Minimum geometries for the COy—curved coronene complexes. The global mini-
mum for || CO, on zigzag nanotubes is shown with transparency. The opaque C; minimum
was utilized for computational efficiency. Adapted from Appendix D.

Perpendicular Centered Parallel Parallel
Parallel (Zigzag) (Armchair)

from Appendix D. Again, the minima were always in a || position where the center of the
carbon dioxide molecule was centered over a carbon-carbon bond. To explore the angular
space a Cy, centered (C) || orientation was created along with a L orientation directly in
the center of the coronene molecule. These minima were then expanded for a z = 0.8, 0.9,
1.0, 1.2, and 1.4, resulting in a total of 195 geometries. The benchmark level of theory is
MP2/(aTZ, aQZ) + ACCSD(T)-F12avg/laDZ.

1.6 Statistics

In quantum chemistry the two most used statistics are unsigned error (UE),
UE = |E — Ey] (1.7)

and unsigned relative error (URE)

E— Eref

ref

URE = (’

) - 100%, (1.8)

These quantities are usually computed on sets of points that comprise databases and then

the mean (MURE), median (MeURE), or max (maxURE) are taken. However, UE-based
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quantities work well only if the database has reference values that are similar in magnitude
and URE-based quantities only work well if there are no reference values close to zero. In

addition, the root mean square (RMS) of each quantity can be taken

where x can represent an individual UE or URE.

It should be noted that the definition of R can vary; however, it is most commonly
defined as the center of mass distance between two monomers. The language short-range
will refer to distances shorter than the minima and long-range will refer to distances corre-
sponding to the minima and longer for this work.

In Fig 1.10 the UE and URE is presented for four different cases of potential energy
curves. Errors in the top panel are built specifically to be even in UE and URE respectively,
while errors on the bottom panel represent more realistic cases. As can be seen, the UE has
difficulty describing short and long distances where the energy is either very small or very
large, respectively. The URE describes the entire PES well except for where the repulsive
wall crosses zero, unless the method and reference cross zero at the exact same point the
URE quantity will suffer singularity issues.

The issues with URE can be circumvented by simply neglecting small values close to
zero on the repulsive wall; however, the PES can cross zero multiple times at short and
long-ranges and it is not always clear which points should be removed. As in the case of
Appendix D a weighted unsigned relative error (wURE) was utilized that effectively caps

the denominator at short-range,

|Eref| z Z Zmin
) :100%,  Eueight = (1.10)

max{|Eref|> Emask} 2 < Zmin

E — Eref

Eweight

wURE = <’
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Figure 1.10: A comparison of UE and URE for four different potential energy curves.
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wURE works well when the database has PESs of similar equilibrium distance and magni-
tude, the error with respect to distance is well understood, and the PES does not cross zero
at long-range. For this work a Ep,q of 2.0 kcal/mol, as in Appendix D, was chosen for all
systems.

For more heterogeneous datasets, the overall form of wMURE was later expanded to

capped unsigned relative error (CURE),

E— Eref

weight

Ere —e
CURE = <‘ ) . 100%, Eweight = Imax {'Eref|; %} (]_]_1)
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For this work a £ value of 0.2 is employed. The denominator capping has now been completely
generalized, the dependence on Fef_oq allows for variable capping based on well depth and
the dependence on z allows capping at both short and long-ranges. This allows all curves
in large and diverse datasets to be treated equally. For datasets where Eie_oq and z are

unknown, the CURE weighting function can be defaulted back to a wURE-like quantity.

1.7 Notation

There exist many ways to label and describe quantum chemistry theories. In this section
the quantities and indices used will be defined and outlined. Generalized multidimensional
arrays will be referred to as "tensors” and two dimensional arrays will be referred to as

”matrices”.

1.7.1 Einstein summation notation

The generalized Einstein summation notation will be employed where repeated indices
on the right hand side (RHS) that do not appear on left hand side (LHS) are assumed to be

summed over. A matrix-matrix multiplication example:

Conventional : Cj; = Z A By (1.12)
k
Einstein summation : C;; = A By, (1.13)
an outer product example
Cikj = AixB;j (1.14)
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1.7.2 Indices

The following notation will be adhered to throughout this dissertation. Occasionally

indices will be redefined, but it should be clear in the context what the alternate meaning

18.

General atomic orbitals [T 7 Wos
Inactive (doubly occupied) molecular orbitals i,j, k, 1
Active (partially occupied) molecular orbitals t,u, v, w, X, y
Unoccupied (virtual) molecular orbitals a, b, c, d

General index molecular orbitals

Auxiliary basis

1.7.3 Operators

p7 q.? r? S? m7 n? o

P7 Q? R? S

Operators used in the second quantization formalism.

Creation operator
Annihilation operator
Single excitation operator

Two-electron excitation operator

1.7.4 Tensors

T
Ayp

ap
o _ i
Epy = ala, = al aga + (5043

A

Epgrs = quErs - 5prEqs

Common matrices and tensors utilized in this work.

Core Hamiltonian matrix
Molecular orbital coefficient matrix
Overlap matrix

SCF one-particle density matrix

20
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CI active one-particle density matrix (0| B4 |0) = s

[
e CI active two-particle density matrix (0letuvw|0) = Truvw
e CI active transition density matrix ~yi = (0| Epi) or T, = (0]Egw]i)
e Atomic-orbital two-electron integral Gune = [ p(r1)v(r1) o A(r2)o(rg)drid’ry
e Molecular-orbital two-electron integral Ipgrs = CppCaGureCraCse
e Density-fitted tensor (pg|A)
1.8 Outline

The accuracy of the CCSD(T) method along with the basis set convergence of sev-
eral post-CCSD(T) methods will be illuminated in Chapter 2. After the accuracy of the
CCSD(T)/CBS method itself is established, we will turn our attention to the accurate com-
putation of this quantity through explicitly correlated and composite based methods in
Chapter 3. More approximate DFT methods will then be compared to benchmark CCSD(T)
computations in Chapter 4. Chapter 5 will then detail the problems of the DFT-D3 method
that arose in Chapter 4 along with possible solutions. Chapters 2 through 5 reorganize and
summarize the pertinent points of the five papers that are submitted in partial fulfillment

of this dissertation:

(Appendix A) Smith, D.G.A.; Jankowski, P.; Slawik, M.; Witek, H.A.; Patkowski, K.
Basis Set Convergence of the Post-CCSD(T) Contribution to Noncovalent Interaction

Energies J. Chem. Theory Comput. 2014, 10, 3140.

(Appendix B) Smith, D.G.A.; Patkowski, K. Interactions between Methane and Poly-
cyclic Aromatic Hydrocarbons: A High Accuracy Benchmark Study J. Chem. Theory
Comput., 2013, 9, 370.

(Appendix C) Smith, D.G.A.; Patkowski, K. Toward an Accurate Description of Methane

Physisorption on Carbon Nanotubes J. Phys. Chem. C 2014, 118, 544.
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(Appendix D) Smith, D.G.A.; Patkowski, K. Benchmarking the COy Adsorption Energy
on Carbon Nanotubes J. Phys. Chem. C 2015, 119, 4934.

(Appendix E) Smith, D.G.A.; Burns, L.A.; Patkowski, K.; Sherrill C. D. Limits of accu-
racy of the -D3 dispersion correction to Density Functional Theory at all length scales

— in preperation.

Through the course of deriving Multi-Reference Symmetry-Adapted Perturbation The-
ory (MRSAPT) it was realized that a more flexible MCSCF program than is currently
available was required to adequately describe all parts of MRSAPT. To this end, a new MC-
SCF program was implemented in the PSI48! quantum chemistry package and Chapter 6
will detail the specifics of this program. The current work on MRSAPT is then summarized

in Chapter 7.
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Chapter 2

Accuracy of the CCSD(T) method for noncovalent interactions

In this section we will summarize the most important findings of Ref. 42 found in

Appendix A.

The accuracy of the CCSD(T') method is difficult to determine as the cost of computing
less approximate methods is intractable for all but the smallest systems. However, the
inexorable increase of computational power and improved algorithm design slowly allows
post-CCSD(T) methods to be computed for complexes of increasing size.

Let us first turn our attention to a description of Coupled-Cluster (CC) theory. As
there exists a litany of reviews that cover CC derivation, implementation, and meaning in
great detail®? ® let us instead give a brief overview of the method. CC theory uses the

exponentiated T excitation operator
T=T\+To+Ts+.. (2.1)

where the subscript denotes the number of electrons each operator will excite. The idea
is that we can reproduce the exact wavefunction ¥ as combinations of excitations of our
reference wavefunction @y, ¥ = eTCIDQ. As the cost of computing the CC expansion is equal
to N?"*2 where N is the number of basis functions and n is the largest excitation, it is
often convenient to limit the overall number of excitations. This leads to a hierarchy of CC
methods, e.g., T'= Ty + Ty — CCSD. Where ”S”, "D”, T”, ”Q”, ... represents singles (’fl),
doubles (T3), triples (T3), quadruples (7}), etc. When the number of excitations n equals
the number of electrons in the system, then the CC method is equivalent to FCI, e.g., for a

four electron system CCSDTQ = FCL
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The CC method produces a set of non-linear equations that must be solved iteratively.
If CCn is computed iteratively, CC(n + 1) can be computed perturbatively. This leads to
the popular CCSD(T) method where CCSD is computed iteratively to convergence and (T)

is then computed perturbatively.

2.1 Previous work on post-CCSD(T) accuracy

Computations of post-CCSD(T) interaction energies have typically been limited to four
electron systems such as He-He,® He H,,%0 and HyH,.3” While these computations are
quite illuminating and show that the overall post-CCSD(T) contribution (FCI - CCSD(T))
is no more than 4% of the total interaction energy, such systems typically exhibit different
convergence properties than more conventional, biologically relevant molecules.

Recently, Hobza and collaborators completed several studies that explored the CCSDT %8
CCSDT(Q),%% and CCSDTQ:%? energies on the A24 database.?®4%9 The A24 database
contains small complexes for which very computationally demanding computations can
be run routinely. However, the basis set utilized for post-CCSD(T) computations was 6-
31G**(0.25, 0.15). These results should be taken with caution as this basis can yield cor-

42 Fortunately, it was

rections with either the incorrect sign or the incorrect magnitude.
previously shown that CCSDT(Q) is converged with respect to the CC level to 0.5 cm™!
or better.#®9% Tn addition, CCSDT results are typically worse than CCSD(T) making

CCSDT(Q) required to improve the interaction energy.

2.2 Basis set convergence of the CCSDT and CCSDT(Q) corrections

A dataset of 21 small complexes was created for which CCSDT(Q) could be computed
in the aTZ basis to ensure both the correct sign and relative magnitude of the correction
was obtained. The largest complex in this database was the methane dimer for which the
CCSDT(Q)/aTZ computation required over five CPU years to complete. This database was

then divided into 4-valence-electron, nonpolar-nonpolar, polar-nonpolar, and polar-polar
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complexes. The language 4-valence-electron systems is utilized to encompass systems where
freezing the core electrons also results in 4-electron systems such as the lithium hydride
dimer.

Figure 2.1: Performance of different basis sets in the recovery of the dr;(q) benchmark
(computed as a sum of the ép and (q) benchmarks obtained in separate extrapolations)
displayed as MURE, the black lines denote MeURE. Adapted from Appendix A.
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The ér = CCSDT - CCSD(T) and 6qy = CCSDT(Q) - CCSDT interaction energy
contributions were computed for all 21 complexes in basis sets ranging up to a6Z for the
smallest complexes. The relative error for dri(q) = o1 + d(q) compared to the best o1y (q)
estimate is shown in Figure 2.1. As can be seen, the small 6-31G*(0.25) and 6-31G**(0.25,
0.15) basis sets employed by Hobza and collaborators?® can have MURE’s over 100%. This
means that, on the average, the computation of this correction in these small basis sets
is more harmful than helpful, stressing the need for adequate basis sets utilized in these

corrections.
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Figure 2.1 also demonstrates that basis set conclusions cannot be made on 4-valence-
electron systems alone and that the behavior of larger complexes is not consistent with these
very small systems. For the aDZ basis the worst basis errors come from the polar-polar
complexes; however, for these complexes the o1y (q) term has the smallest relative effect,
amounting to less than 0.3% of the total interaction energy. Neglecting the polar-polar
systems, the aDZ 01 (q) error is at worst 37% on the average, and 21% for aTZ. While the
a'TZ basis is recommended to compute these corrections, this is not always possible and the
aDZ basis will give a reasonable description of the corrections. The dt and d(q) contributions
can be computed in different basis sets; however, as seen in Fig 2.1, utilizing separate basis
sets is not always beneficial and typically does not justify the additional computational

expense.

2.3 Relative magnitude of the post-CCSD(T) contribution

To examine how large these contributions are compared to the CCSD(T) interaction
energy, the best estimates for the dr, d(q), dr4(q), and dq interaction energies are shown
in Figure 2.2. Again, the 4-valence-electron systems are outliers with the largest o1y (q)
contributions of between 3 and 4%. In general, the contribution of the ér(q) correction is
less than 2% with the only outlier besides the 4-valence-electron systems being the Ho—CO
complex. This small relative magnitude of the d.(q) contribution does rely on a cancellation
between dr and d(q). The largest cancellation occurs with the two configurations of the Ny
dimer utilized which are the two lines furthest from zero for the dr, d(q), and dq corrections.
This is likely due to the fact that this is the only complex where each monomer has a triple
bond, which leads to a total of eight electrons in 7 orbitals (four on each monomer); dq is
the first CC method that includes four excitations from the ground state in the iterative
equations. However, for all other complexes the dq is less than 0.1% of the CCSD(T) energy,
further confirming that effects post-CCSDT(Q) are negligible for all but the most precise

computations.
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Figure 2.2: The dt, d(q), 014(q), and Jq interaction energy contributions as percentages of
the CCSD(T)/CBS interaction energy. The four-valence-electron, nonpolar-nonpolar, polar-
nonpolar, and polar-polar dimers are represented by green, blue, orange, and red symbols,
respectively. The dots represent the unsigned averages of the individual values, with the
black dot showing the unsigned average for all complexes. Adapted from Appendix A.
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2.4 Conclusions

It is shown that the post-CCSD(T) contributions should not be computed in small
6-31G*(0.25) or 6-31G**(0.25, 0.15) basis sets and doing so will often be harmful to the
overall accuracy of the computation. The post-CCSD(T) contributions should be computed
in at least the aDZ basis set and when possible, the aTZ basis. While the aDZ basis set
can still lead to incorrect signs for several systems, it improves the overall estimation of the
interaction energy on the average. The post-CCSD(T) contributions only comprise 2-3% of
the total interaction energy for typical complexes.

These post-CCSD(T) contributions are currently programmed quite naively, often being
automatically implemented. While such implementations can produce results, their compu-
tational efficiency is quite low. As these contributions become a more important part of
research, better algorithmic improvements rather than more computational power are likely

to lead to the ability to compute post-CCSD(T) corrections for larger systems.

27




Chapter 3

Obtaining the CCSD(T)/CBS limit for noncovalent interaction energies

In this section we will summarize the most important CCSD(T) benchmark findings of

Ref. 42 and 97, found in Appendices B and D, respectively.

As we have now established the accuracy of the CCSD(T)/CBS approach, we will now
turn our attention to the accurate computation of this limit. We have previously stated that
CCSD(T) calculations are limited to approximately 25 heavy atoms; however, this is a rather
convenient idiom and the real restriction is the size of the basis set. Routine CCSD(T) cal-
culations, that is those without the utilization of prestige level supercomputers, are currently
limited to approximately 500-800 basis functions depending on molecular symmetry. With
this limitation in mind, our CCSD(T) calculations on 25 heavy atoms are now limited to the
aDZ basis set. However, a simple computation of CCSD(T)/aDZ would be fairly inaccurate
compared to CCSD(T)/CBS. To this end, a number of approximations and schemes have

been created to obtain this limit with small basis sets. These are outlined below.

3.1 Pragmatic computations of the CCSD(T)/CBS limit

3.1.1 Explicitly correlated CCSD(T)-F12 methods

Explicitly correlated CCSD(T) methods aim to improve the slow convergence of con-
ventional CCSD(T) methods by targeting the source of the slow basis set convergence, the
electron-electron cusp.”® 1% Conventional one-electron basis sets reproduce this cusp slowly
resulting in their comparably slow convergence. Explicitly including terms between pairs
of electrons greatly enhances the convergence rate; however, inclusion of these terms ex-

actly would dramatically increase the cost of the overall computation. A series of Ansdtze
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(or approximations), combined with density-fitting, has enabled the cost of these explicitly
correlated approaches to be reduced to roughly the cost of conventional CCSD(T) itself.
While there are many Ansdtze we will focus on the CCSD(T)-F12a and CCSD(T)-F12b
approaches. 101,102

Inclusion of explicitly correlated terms has been derived for the (T) term; however, it
is much more computationally demanding than conventional (T) even with the inclusion of
density-fitting.!® Instead, CCSD(T)-F12 denotes, somewhat confusingly, that the CCSD
equations have included explicitly correlated terms and the (T) term is then computed with-
out an explicit inclusion of explicitly correlated terms. The lack of the explicitly correlated

(T) term can be partially solved by scaling this term by the ratio between the MP2-F12

(explicitly correlated MP2) and MP2 correlation energies like

, EMP2-F12
AE™T") = AE(M . Zeor (3.1)

MP2
Ecorr

where AE(T) = pCCSD(T)=F12 _ pCCSD—F12 5 q pMP2-F12 i the MP2-F12 correlation energy.
If the scaling factor is determined separately for each part of CP computation, the resulting
interaction energy is not guaranteed to be size consistent, as such the scaling factor for the
dimer is used for all parts of the CP computation.!04 195

Based on previous experience with the CCSD(T)-F12 method, the CCSD(T)-F12a and
CCSD(T**)-F12b combinations of scaling and Ansdtze provide the best accuracy compared

to the CCSD(T)/CBS limit.?7> 106,107

3.1.2 Composite based CCSD(T)/CBS approximations

The idea of delta corrections similar to dr(q) of the previous section can be applied

once more to CCSD(T)

Bons )~ Bgss + MBS, (3:2)
ABpg = Bog Y - B (3.3)

29



It should be noted that for a single basis set this is exact, i.e., CCSD(T)/aDZ = MP2/aDZ
+ ACCSD(T)/aDZ. The underlying assumption behind this approximation is that the MP2
energy comprises a very large portion of the overall CCSD(T)/CBS correlation energy (typ-
ically 50-70%) for an individual monomer and the ACCSD(T) term converges much faster
than CCSD(T) itself.

Inspection of the CCSD correlation energy equations shows that the second term is

identical to MP2 correlation energy

CCSD __ aa 1 yabrab 1 rabrparb
Ecorr - F; 1—11 + 4_1[2] 7-'2] + 512] T‘z T; (34)
e Y s ) (35)

where I denotes the spin-orbital MO two-electron tensor, F' the Fock matrix, € the orbital
energies, and T either the T} or T, amplitudes. In MP2 the T, amplitude is fixed at the ap-
proximation shown, while in CCSD the T5 amplitude is iterated to convergence. However, in
CCSD the first guess to the T, amplitude is typically taken as the approximate T amplitude
shown in the MP2 equation.

MP2 can routinely be computed in a much larger basis than CCSD(T) as MP2 scales like
N® compared to the N7 scaling of CCSD(T). This method can also be used in conjunction with
explicitly correlated CCSD(T) methods, as we will see in the next section this combination

works particularly well.

3.1.3 The local-aug-cc-pV XZ basis

For the largest CCSD(T) computations considered here, either CO5 or methane bound
to curved coronene, the aDZ basis can be cost limiting and suffer convergence problems
due to linear dependencies. Fortunately, these systems have a very specific motif where the
small molecule is almost always over the center of the curved coronene meaning that there

are many atoms relatively far away from the small molecule which will contribute less to the
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overall interaction energy. To this end, the full set of diffuse functions is pruned so that the
small molecule always uses the full augmented basis while only carbon atoms close to the
small molecule on the curved coronene use diffuse basis functions and all other carbons and
hydrogens utilize the non-augmented counterpart. For the particular case of the local-aXZ
(laXZ) basis sets, the closest six carbon atoms have diffuse functions (symmetric carbons
are also augmented occasionally resulting in more augmented carbon atoms). This pruning
results in a truncation of the basis set size by approximately 30%, removes the worst linear
dependencies of the basis set, and the overall computational cost is reduced by a factor of
5-10 depending on molecular symmetry.

It should be noted that in Appendix B the diffuse functions on the PAH were present
on any carbon atom within 2.1 A from the projection of the methane carbon atom on the
PAH plane. This definition was subsequently refined in later publications and the closest six

atoms should always be utilized as the definition of laXZ.

3.2 Example: Methane—-PAH

The global minimum of the methane-benzene complex33 1087110

was explored in great
detail by computing a series of MP2, MP2-F12, CCSD(T), and CCSD(T)-F12 interaction
energies in the largest bases currently possible, these results are shown in Table 3.1. While
this table is very information dense, it gives an overview of the general behavior of MP2,
CCSD(T), composite, and explicitly correlated methods. Beginning with MP2 we can give a
MP2/CBS value of 1.79440.001 kcal/mol by observation of the large MP2/(aQZ, a5Z) and
MP2-F12/(aQZ, abZ) extrapolations. Examining the conventional and explicitly correlated
MP2 methods in the aDZ basis set, we can see that the basis set incompleteness error for
MP2/aDZ is 0.316 kcal/mol while for MP2-F12/aDZ the error is just 0.049 kcal/mol, thus
demonstrating the accelerated convergence for explicitly correlated methods. However, for

(aTZ, aQZ) and (aQZ,abZ) extrapolations the MP2 energy is virtually converged for both

conventional and explicitly correlated computations. As the MP2-F12 computations can
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take considerably longer for large basis sets, conventional MP2 calculations followed by CBS

extrapolations are utilized for all subsequent MP2 values.

Table 3.1: Different estimates of the benzene-methane interaction energy at the global-
minimum 1C configuration. Columns denote the aXZ basis that the computation utilized.
The rows marked “ext.” display the CBS-extrapolated results where the values in the “X”
column were obtained using the (X — 1, X)) extrapolation. Values are in kcal/mol. Adapted
from Appendix B.

Method D T Q 5
MP2 -1.478 -1.691 -1.754 -1.774
ext. -1.777 -1.795 -1.793
MP2-F12 -1.745 -1.785 -1.792 -1.794
ext. -1.802 -1.795 -1.795
CCSD(T) -1.156  -1.357 -1.407
CCSD(T) /(X — 1, X) -1.438 -1.440
MP2/(Q,5)+ACCSD(T)/aXZ -1.468 -1.455 -1.445
MP2/(Q,5)+ACCSD(T)/(X — 1, X) -1.449 -1.437
CCSD(T)-F12a -1.393 -1.431 -1.434
CCSD(T)-F12a/(X — 1, X) -1.449 -1.435
MP2-F12/(aQZ,a5Z)+ACCSD(T)-F12a/aXZ -1.436 -1.436 -1.434
MP2-F12/(aQZ,a5Z)+ACCSD(T)-F12a/(X — 1, X) -1.436 -1.433
CCSD(T**)-F12b -1.351 -1.415 -1.426
CCSD(T**)-F12b/(X — 1, X) -1.448 -1.434
MP2-F12/(aQZ,ab5Z)+ACCSD(T**)-F12b/a X7 -1.450 -1.439 -1.435
MP2-F12/(aQZ,abZ)+ACCSD(T**)-F12b/(X — 1, X) -1.435 -1.432

We can place the CCSD(T)/CBS interaction energy at 1.43340.002 kcal/mol by exam-
ining our largest CCSD(T) extrapolations and composite methods. Taking the conventional
CCSD(T) results, we can see that a plain CCSD(T)/aDZ computation of the interaction
energy is off by 19% compared to CCSD(T)/CBS. However, taking MP2/(aQZ, abZ) +
ACCSD(T)/aDZ, this difference is just 2%. With explicitly correlated CCSD(T)-F12a/aDZ
and CCSD(T**)-F12b/aDZ the energy differs by just 3% and 6%, respectively. Again, this
demonstrates the enhanced convergence behavior for explicitly correlated approaches, but

also demonstrates that these methods by themselves are not more accurate than composite
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based approaches. Combining explicitly correlated methods with the composite approach
yields errors of 0.2% and 1.2% for MP2-F12/(aQZ, abZ) + ACCSD(T)-F12a/aDZ and MP2-
F12/(aQZ, abZ) + ACCSD(T**)-F12b/aDZ, respectively. Thus, the best estimate combines

the composite and explicitly correlated approaches.

Figure 3.1:  Differences between the benchmark MP2/(aQZ,a5Z)+ACCSD(T**)-
F12b/(aDZ,aTZ) interaction energy and other CCSD(T)/CBS estimates for the 3C
methane-naphthalene complex. Adapted from Appendix B.
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To expand this analysis to both shorter and longer ranges than the minima, the 3C
methane—naphthalene complex curve was computed utilizing the largest basis possible. The
energy differences compared to MP2/(aQZ,a5Z)+ACCSD(T**)-F12b/(aDZ,aTZ) are shown
in Figure 3.1. As can be seen, the trends in CCSD(T)/CBS estimates at the minimum are

identical to those of the 1C methane—benzene complex. However, at distances longer than
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the minima the MP2/(aQZ,a5Z)+ACCSD(T**)-F12b/aDZ results are worse than the con-
ventional MP2/(aQZ,a5Z)+ACCSD(T)/aDZ. This error likely occurs from the density fit-
ting approximations that the CCSD(T)-F12 methods utilize. Conversely, at short-range the
MP2/(aQZ,a5Z)+ACCSD(T**)-F12b/aDZ results are significantly better than their con-
ventional counterpart. As the two monomers are pressed closer together, the accurate cap-
ture of the electron-electron cusp is of utmost importance as demonstrated by the explicitly
correlated ACCSD(T) approach.

Overall these errors are very small, the 3C methane-naphthalene interaction energy at
the minimum is -2.119 kcal/mol leading to an error of just 2% for the most approximate
method, MP2/(aQZ,a5Z)+ACCSD(T)/aDZ. The slight decrease in absolute accuracy at
long-range of the MP2/(aQZ,a5Z)+ACCSD(T**)-F12b/aDZ method is concerning as the
energies in the region are smaller, thus the relative error is much larger. In comparison to
short-range where the energies are overall much larger the relative error is much smaller mak-
ing the MP2/(aQZ,a5Z)+ACCSD(T)/aDZ method the best overall choice for this dataset.

To explore the effect of choosing the laDZ basis over aDZ, a series of computations
in partially augmented basis sets were run. Basis sets known as ”calendar” denote basis
sets created by Truhlar and coworkers!'! which uniformly remove diffuse functions from all
atoms. Here we will use the calendar basis set jun-DZ where ”d” diffuse functions have been
removed from all atoms in addition to all diffuse functions on hydrogen atoms. We will also
utilize the heavy-aDZ=jul-DZ sets where all of the diffuse functions on hydrogens have been
removed and the heavy’-aDZ basis set where only the diffuse functions on PAH hydrogens
have been removed. It should be noted that for the aDZ, heavy’-aDZ, and local-aDZ basis
sets the methane molecule always retains all diffuse functions.

The MP2 and ACCSD(T) results have been compiled in Table 3.2. First examining
the heavy’-aDZ compared to the heavy-aDZ basis, it is apparent that diffuse functions on
the methane molecule help considerably for all configurations except for 2C methane—pyrene

compared to the full aDZ result. Comparing jun-DZ and local-aDZ it is clear that the local
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Table 3.2: The MP2 and ACCSD(T) contributions to methane—pyrene and methane—
coronene interaction energies (in kcal/mol) computed using different partially augmented
basis sets. A blank space signifies that the CCSD expansion failed to converge due to linear
dependencies in the basis set. The size of the laDZ basis set is slightly different for different
coordinations. Thus, a range of values is listed. Adapted from Appendix B.

methane—pyrene methane—coronene
Basis Size  1C 2C 3C Size  1C 2C 3C
MP2
DZ 308 -1.157 -1.484 -1.630 430 -1.493 -1.746 -1.897
local-aDZ  369-387 -2.166 -2.741 -3.046 491-509 -2.603 -3.069 -3.362
jun-DZ 376 -1.613 -2.073 -2.331 530 -2.057 -2.428 -2.693
heavy-aDZ 461 -2.128 -2.836 -3.028 655 -2.595 -3.051 -3.381
heavy’-aDZ 477 -2.221 -2.688 -3.218 671 -2.687 -3.186 -3.559
aDZ 517 -2.227 -2.853 -3.229 719 -2.691 -3.192 -3.565
ACCSD(T)

DZ 308 0.581 0.718 0.815 430  0.767 0.868 0.953
local-aDZ  369-387 0.656 0.835 0.957 491-509 0.881 1.005 1.115
jun-DZ 376 0.614 0.771  0.886 530  0.818 0.948 1.037
heavy-aDZ 461 0.675 0.851 0.974 655

heavy’-aDZ 477 0.660 0.838 0.963 671

aDZ 517 0.658 0.836  0.962 719

augmentation scheme is superior in terms of the number of basis functions cut and the
relative accuracy of each contribution. While the reduction in basis from aDZ to laDZ for
the MP2 correlation energy results in a penalty of approximately 4% compared to the full
aDZ result, the ACCSD(T) correction differs by less than one percent. We conclude that
the reduction of the ACCSD(T) correction to the laDZ basis in comparison to the aDZ basis

does not seriously impact the overall interaction energy while providing numerous benefits.

3.3 Example: CO,—PAH

For the CO,—PAH systems an expansive series of computations was carried out for
the minimum geometries similar to the previous section. Where possible, the ACCSD(T)

correction was computed in basis sets as large as aTZ. When aTZ computations are possible,
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the uncertainty of this benchmark is estimated as

o = |MP2(aQZ,abZ) — MP2/(aTZ,aQZ)|

+|ACCSD(T)-F12avg/aXZ — ACCSD(T)-F12avg/(a(X—1)Z,aXZ)|. (3.6)

where ACCSD(T)-F12avg will represent the average between ACCSD(T)-F12a and ACCSD(T**)-
F12b terms. It was previously noted that full aDZ computations are not possible for coronene
due to linear dependencies; however, curving the coronene molecule removes these linear de-

pendencies allowing full aDZ computations to be run.

Figure 3.2: Differences between various CCSD(T)/CBS interaction energy estimates for the
CO2-PAH minima, with the ACCSD(T) term computed in the aDZ (solid lines) and laDZ
(dashed lines) bases. If the benchmark cannot be calculated in at least the aTZ basis,
the MP2/(aQZ,a5Z)+ACCSD(T)-F12avg/aDZ method was taken as the zero line and no
uncertainty was assigned. Uncertainties (the range in blue) were computed as in Eq. 3.6
where X = @ for the (5, COy-benzene complexes and X = T for all other complexes. The
numbers along the horizontal axis give benchmark interaction energies in kcal /mol. Adapted
from Appendix D.
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The resulting benchmarks are shown in Figure 3.2. Comparing the ACCSD(T) cor-
rection computed in the aDZ and laDZ basis sets again demonstrates that the laDZ basis

set is a very worthwhile approximation over aDZ. The worst case scenario is the interior C
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|| CO2—(8,0) curved coronene complex which deviates from the full aDZ basis by just 0.04
kcal/mol. This increase in absolute difference compared to other results that differ by just
0.01 kcal /mol on average is offset by the deepening of the minima. In absolute terms it makes
sense that this is the worst performer as more carbon atoms are close to the CO, molecule.
In other words, the worst case scenario for the laDZ basis differs by just 0.6% compared
to the full aDZ result. Where error bars are available, the MP2/(aQZ,abZ)+ACCSD(T)-
F12/aDZ results typically fall within them; however, the MP2/(aQZ,a5Z)+ACCSD(T)/aDZ
values are systematically too deep for the || configurations. It is not possible to determine
if MP2/(aQZ,a5Z)+ACCSD(T)-F12a/aDZ or MP2/(aQZ,abZ)+ACCSD(T**)-F12b/aDZ is
more accurate. Therefore, the benchmark value for the test set will simply be the average

between the two, denoted MP2/(aQZ,a5Z)+ACCSD(T)-F12avg/aDZ.

Figure 3.3: Comparison of the conventional and explicitly correlated composite
MP2/CBS+ACCSD(T) schemes for the || COy—naphthalene (benchmark: MP2/(aQZ,a5Z)
+ ACCSD(T)-Fl12avg/aTZ) and | COg—pyrene (benchmark: MP2/(aQZ,abZ) +
ACCSD(T)-F12avg/laTZ) complexes. Solid lines represent the ACCSD(T) correction in
the aDZ basis set while the dashed lines represent ACCSD(T) in the laDZ basis set. The
blue region is the uncertainty range of the benchmark. Adapted from Appendix D.
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The accuracy as a function of intermonomer distance is again explored in Figure 3.3.

First examining the CCSD(T)-F12 computations in the aDZ basis, we can observe that the
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accuracy is overall quite good; however, the reduction to the laDZ basis set significantly
impacts the overall accuracy. Comparison of the composite approach paired with either the
aDZ or laDZ basis shows little deviation demonstrating that the laDZ basis, when paired with
the composite approach, is sufficient at all distances. Again, at short-range the conventional
ACCSD(T) approach begins to deviate strongly while the accuracy of the explicitly corre-
lated ACCSD(T) remains quite good. Unlike in the methane-PAH study, the long-range

accuracy of the ACCSD(T) method does not deviate strongly.

3.4 Conclusions

In this chapter we have demonstrated different methodologies to obtain accurate CCSD(T)/CBS
results. When we limit ourselves to CCSD(T)/aDZ due to computational limitations, it
is crucial to use the explicitly correlated methods, composite approach, or both simulta-
neously. We have demonstrated the breakdown of conventional small-basis CCSD(T) at
short-range and a single system where CCSD(T)-F12 results are worse than CCSD(T) at
long-range. However, it should be noted that in both cases the errors are relatively minimal,
roughly equal to the effects of the post-CCSD(T) corrections. As a general guideline the
MP2/CBS+ACCSD(T)-F12avg/aDZ result represents the best method. When the basis set
and post-CCSD(T) errors are combined, we arrive at a conservative accuracy of approxi-

mately 5%.
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Chapter 4

Assessment of DF'T approaches

While the composite CCSD(T) approach is remarkably accurate, routine computations
are limited to systems with approximately 25 heavy atoms. To continue to larger sys-
tems, lower rank approximations are required such as DFT. However, the number of DFT
approaches is virtually limitless, especially when different combinations of basis set, disper-
sion expression, and base functional are considered. For example let us consider a situa-
tion where we utilize three different basis sets (aDZ, aTZ, aQZ), with and without the CP
correction, combined with the five Grimme’s -D dispersion corrections (-D2,%* -D3,%° -D3-
E®) -D3(BJ),"2-D3(BJ)-E®), and eight functionals B2PLYP, B3LYP, BLYP, LC-wPBE,!!3
PBEO,!14 115 PBE 116 B97 54 and BP86.% 7 This results in 240 distinct possible combina-
tions of DF'T methods. All of these combinations contain some of the proper physics involved
and thus will give at least reasonable results; at the same time blindly benchmarking all 240
combinations will eventually yield a functional form that produces near CCSD(T)/CBS
quality results.

Unlike wavefunction based methods, converging to the basis-limit is not guaranteed to
improve a given functional. In order to limit the possible DFT combinations the analysis
presented here will rely on CP corrected computations in the largest basis available to main-
tain results near the basis-limit. Consistently computing DFT methods at the basis-limit
removes the largest variability with respect to the interaction energy and reduces the number

of possible DFT-D combinations considered from 240 to 40.
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4.1 Methane—PAH and methane—curved coronene systems

The methane-PAH and methane—curved coronene datasets have been reanalyzed from
Appendix B and C to provide a consistent description across all datasets. It should be noted
again that the methane-curved coronene dataset has been extended to z = 0.8, thus the
statistics shown in the figures below will not match those of Appendix C. The best DFT-D
combinations are shown in Figure 4.1.

Figure 4.1: Performance of each density functional in the QZVP basis combined with the
best atom-pairwise dispersion term. The large gray bars represent the overall wWMURE, the
smaller red and blue bars represent short-range and long-range wMURE, respectively. LC
and DH correspond to long-range corrected (range separated) and double-hybrid functionals,
respectively. The target accuracy level of 5% has been shaded in yellow.
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(a) Methane-PAH dataset. (b) Methane—curved coronene dataset.

First examining the methane—-PAH dataset, we can see that the DF'T-D methods work
well overall with wMURE values between 5 and 9%. Considering the accuracy of the bench-
mark is approximately 5%, this is quite impressive. For the methane-curved coronene
dataset, we can see that the errors roughly double for the majority of the functionals con-
sidered here, in particular the error at short-range increases significantly. From this figure
we observe that benchmarking statistics for small PAH’s does not always match the curved

coronene systems. For example, take the BP86-D3(BJ) method which is the best GGA-D
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for the methane-PAH complexes with errors of 5% for both short and long-range. However,
for the methane—curved coronene systems we see these errors grow rapidly to 18 and 7%,
respectively. This inconsistency is common for DFT-D methods and exemplifies the rea-
son why careful benchmarking is required before blindly using DFT-D as a substitute for
CCSD(T).

These large accuracy swings are somewhat mitigated by using hybrid and double hybrid
functionals. For example, take the BSLYP-D3(BJ) method whose performance only decreases
by 3% between the methane-PAH and methane-curved coronene datasets. The double hybrid
B2PLYP-D3(BJ) error actually improves by 1% on the average between the methane-PAH

and methane—curved coronene datasets.

4.2 Carbon dioxide-PAH and carbon dioxide—curved coronene systems
The following was adapted from Appendix D.

Following a similar path to the last section, the wMURE of various DFT-D variants is
shown in Figure 4.2 for the CO,—PAH dataset. As can be seen, the performance at long-
range remains quite good with errors between 4 and 10%. However, the short-range error
degrades significantly with errors of up to 46%, this is quite surprising as the worst error for
the methane-PAH dataset at short-range was 13%. It should be noted again that the nature
of the wMURE statistic prevents singularities from causing such errors and similar increases
of error at short-range can all be seen in MUE as well. Also, this short-range region is either
still in the van der Waals well or no more than 5 kcal/mol on the repulsive wall, thus this
short-range region is still quite important to an accurate description of the overall energy
surface. The double hybrid and non-local functionals again contain the short-range error
somewhat with performance of 11-12%.

Due to the poor performance of DFT-D methods on the CO,—PAH dataset, the list

of possible dispersion including variants was greatly extended for the COy—curved coronene
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Figure 4.2: Performance of each density functional in the QZVP basis combined with the
best atom-pairwise dispersion term for the CO,—PAH dataset. The large gray bars represent
the overall wMURE, the smaller red and blue bars represent short-range and long-range
wMURE, respectively. LC and DH correspond to long-range corrected (range separated) and
double-hybrid functionals, respectively. The target accuracy level of 5% has been shaded in
yellow.
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system. In addition to the DFT-D method, interaction optimized functionals (M05-2X, M06-
2X, dIDF-D,,"® and wB97X-D%%), the dDsC method, and the non-local VV10 method were
also included. These methods were chosen as they are current popular choices for dispersion
including functionals. The resulting wMURE for the COs—curved coronene dataset can be
found in Figure 4.3.

As can be seen, the poor performance at short-range for DFT-D methods extends to
the COy—curved coronene dataset similar to the COs—PAH dataset. The addition of the
dDsC, interaction-optimized and NL functionals does not appear to significantly improve
upon the short-range errors and can make the error much worse as seen by the BLYP-
dDsC/TZVP and wB97X-D/aT7Z functionals. However, it should be mentioned that long-

range performance is overall quite excellent with errors often around 10%. As before the LC,

42



Figure 4.3: Performance of each density functional in the largest basis set computed combined
with the best atom-pairwise dispersion term (if applicable). The large gray bars represent the
overall WMURE, the smaller red and blue bars represent short-range and long-range wMURE,
respectively. LC, NL, and DH correspond to long-range corrected (range separated), non-
local, and double-hybrid functionals, respectively. The target accuracy level of 5% has been
shaded in yellow. Adapted from Appendix D.
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NL, and DH functionals do make reasonable improvements over normal GGA and hybrid-
GGA functionals at short-range. The dDsC and interaction optimized functionals do not

appear to be an improvement over normal GGA or hybrid-GGA functionals.

4.3 Conclusions

DFT is the primary methodology turned to when conventional wavefunction approaches

prove too expensive. Therefore, each functional rung will be discussed in detail with respect

to its cost.

e Double-Hybrid Functionals

The sole double-hybrid functional tried, B2PLYP, should be combined with the -

D3(BJ) dispersion term. This functional had a performance of approximately 10%
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for all datasets utilized making it the best overall functional. However, if we return
to the methane-methane interaction curve of Figure 1.3, we see that this performance
is not always systematic. In addition, as with all methods that utilize some portion
of MP2, this method scales like N°. As such, this method will face steep competition
against non-empirical MP2 based methods such as SCS(MI)-MP2 and MP2C.5% 119

Range-separated Functionals

The LC-wPBE-D3 functional also had consistent performance of around 10%. While
this method formally scales like N*, the computation of the range-separated exchange
integrals means that this functional will be more costly to compute compared to con-

ventional hybrid-GGA’s such as B3LYP.

Hybrid-GGA and GGA Functionals

These method are of utmost interest for applications to large molecules as they scale
like N3 (GGA) and N (hybrid-GGA). While the performance of GGA and hybrid-
GGA functionals is overall quite excellent for the methane-PAH and methane—curved
coronene datasets, the performance on the CO;—PAH and COs,—curved coronene datasets

varies greatly. Therefore, these methods should be used with caution.

On the whole, the DFT-D methods perform quite reasonably at the van der Waals

minimum and longer distances. However, the accuracy at short-range is consistently worse

and can vary dramatically depending on the type of complex under consideration. Higher

rung functionals do offset this error and appear to be more accurate overall; however, their

cost begins to reach approximate wavefunction methods that may be more accurate for a

wider range of interaction archetypes.
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Chapter 5

Improved damping parameters for the DFT-D3 approach

As seen in the previous chapter, the issue with DF'T-D3 methods is not in the asymptotic
region, but at short to medium ranges. This chapter will focus on the damping forms utilized

in the -D3 approach in addition to possible solutions.

5.1 Medium-range correlation in Density Functional Theory

A variety of DFT functionals have been plotted for the methane dimer without any
dispersion correction, shown in Figure 5.1. As can be seen, several of the functionals do
have a slight van der Waals well for this complex; this is often referred to as medium-range
correlation.'?®  For the M05-2X and M06-2X functionals we can see that while they do
not explicitly include long-range correlation, their interaction energies near the minimum
position are quite good. This is achieved by fitting various empirical coefficients within the
DFT functional and causing the careful balance between exchange and correlation in the
DFT functionals to lean toward the attractive correlation contribution. As can be seen,
this either leaves medium-range correlation deficient (M05-2X) or provides strangely shaped
interaction curves (M06-2X).

The fundamental problem with DFT theory for NCI is often said to be the lack of
dispersion. To put this in context, SAPT interaction energies without the dispersion terms
have been also plotted in Figure 5.1. While it can be argued that SAPT is not the only
decomposition of interaction energies available, this gives us a reasonable expectation of what
a "dispersionless” DFT functional should look like. The BSLYP, BLYP, and BP86 functionals
are missing correlation components above and beyond what SAPT dispersion provides while

all other functionals provide some ”dispersion”. The word ”dispersion” is in quotes as the
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Figure 5.1: Various DF'T functionals computed for the methane dimer in the QZVP basis set

along with benchmark (CCSD(T)/(aTZ,aQZ)) energies and SAPT - Ep;s, (SAPT2+43/aTZ

: 20 (21) (22) (20) (30) (30) (30) (30)
without the EDisp? EDisp’ EDisp’ EExch—Disp? EDisp’ EExch—Disp7 EInd—Disp’ or EExch—Ind—Disp

terms).
— BLYP -—- PBEO
0.4+ -—- B3LYP — BP86
10 Wy R N N e B2PLYP M05-2X
— B97 MO06-2X
0.2+ -—- B970 — Benchmark
] — — PBE = SAPT - Epigp
R B N N
E 0+t e S i bl b i
= ——=
g — N F
— -0
== 0.2 F
e - -0.05
] - -0.10
—0.47 - _0.15
1.2 1.4
-0.6 T I \ \ \ \
1.0 1.2 1.4 1.6 1.8 2.0 2.2

nature of correlation in DFT theory is not rigorous and all missing attractive components
in the NCI context have been widely deemed "dispersion”. Notably, the definition of DFT
"dispersion” is different for every functional leading to the requirement that the damping

parameters in the DF'T-D3 methods also need to be different for every functional.

5.2 Refitting damping parameters to the CO,—curved coronene dataset

The following was adapted from Appendix D.

The original -D3 damping parameters were fitted to just 130 datapoints.®® Importantly,
this dataset contained no points on potential energy curves shorter than the minima. As
the amount of damping at short-range is particularly sensitive to the damping parameters,

the poor short-range results demonstrated in the previous chapter are quite understandable.
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To attempt to correct this situation, the damping parameters are refitted explicitly to the
COg—curved coronene test set.
Three damping forms were considered, including the so-called ”zero damping” or Chai-

Head-Gordon (CHG) damping form?% 6

DI 1 1)
T2 o S o L 6(ran/ (e FGT)) |
which has two parameters sg and s, (the s,s values are held constant at 1). The «,

parameters are set to 14 and 16 for ag and ag, respectively, and not adjusted.

The Becke-Johnson (BJ) damping!?"122 with three parameters sg, oy, and ay is

1 OAB
B =5 Sn— n (5.2)

The Tang and Toennies (TT)!*® damping with two parameters sg and dpr has the form

TT 1 (O raB * drr
Edisp = D) Z Z Sn o Jrrn—1 T RAB (5.3)
A#Bn=6,8 AB 0

fron(z) = 1—€e° Z =

m!

- (5.4)

m=0

While the TT damping form is not historically used for DFT-D3 damping, it has been
used to great success in many analytical energy surfaces.!® In addition, the CHG damping
is often criticized due to the fact that the damping expression goes to zero at short-range,
which is quite unphysical compared to BJ damping which converges to a non-zero value. The
TT damping is therefore not computed as frr, which would also go to zero at short-range,
but instead as frr,—1 so that it converges to a non-zero value at short-range. The R{j‘B value

for the CHG and TT damping comes from the original -D3 work,% while for BJ damping

AB
CS

the R4'P value is computed as Ry = CE -
6
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It should be briefly noted that the dominant long-range contribution comes from Cg and
thus if the sq parameter has any value except for unity, the long-range behavior would be quite
skewed. Thus, the sg parameters is not fit, but held at a unity for all functionals except for
B2PLYP. For B2PLYP sg is kept at 0.64 to avoid double counting as this functional contains
a fraction of long-range correlation.® The fitting of sg is generally less worrisome as the Cyg
contribution happens to go to zero roughly in the region where medium-range correlation
also fades. This appears to be a beneficial happenstance and no physical meaning is ascribed
to this phenomenon.

The DFT-D3 damping parameters were then fitted to the 195 datapoints in the COqy—
curved coronene dataset, the results obtained with refitted damping parameters will be
tagged ”-refit”. The performance of the refitted and original damping parameters is shown
in Figure 5.2. As the statistics are shown on the fitting set itself, the accuracy must improve.
What is quite surprising is the magnitude of the improvement for several functionals. In the
case of PBE and PBEO the functionals before refitting are among the worst performers due
to their short-range errors of 39-60%; however, after refitting this is reduced to 5-7% for both
CHG and BJ damping. The improvement is so great that PBE-D3(BJ)cg¢ is now the best
GGA functional for this dataset.

However, it should be noted that this level of improvement is not seen for every func-
tional. In particular, the improved damping parameters for LC-wPBE have a very small effect
meaning the original damping parameters are nearly optimal for this dataset. The lack of
improvement is quite interesting as, before refitting, LC-wPBE was one of the best overall
functionals, but after refitting it is among the worst. Nevertheless, refitting the damping
parameters improves all short-range results except for the HFPBE-D3(BJ) method. Before
refitting, the B97-D3 and PBE-D3 functionals were tied for worst short-range performance
with a wMURE of 60%; however, after refitting, the worst performer for CHG damping was
BI7-D3,eq¢ at 22% and for BJ damping LC-wPBE-D3(BJ),es: at 12%. Overall, the radical
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Figure 5.2: The performance of various DFT functionals before and after refitting for the
COs—curved coronene dataset. Adapted from Appendix D.
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performance increase by fitting two (CHG damping) or three parameters (BJ damping) for
195 datapoints is clear.

The performance of PBE-D3,.4; was plotted for each point in Figure 5.3 to demonstrate
the consistency of the refitting. As can be seen, the performance is fairly consistent across
all datapoints with the worst error being 15% wMURE, only 3 times the average. This is in
stark comparison to the PBE-D3 method which has outliers in excess of 100% wMURE.

To examine the transferability of these damping parameters, the parameters were tried
on the $22x5™ and S66x8'?* datasets, the performance is shown in Table 5.1. The S22x5 and
S66x8 datasets are a diverse set of biologically relevant molecules that are widely used in NCI
research to examine the accuracy of various approximate methods. For CHG damping, the
refitting to the COs—curved coronene data neither universally makes the performance better
or worse. On the other hand, refitting for the BJ damping typically makes the results much
worse, with the only exception of the B2PLYP-D3(BJ) method in which the performance

actually improves very slightly. For T'T damping there are no original damping parameters to
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Figure 5.3: The performance of PBE-D3 before and after refitting in the QZVP basis. The
195 points in the COs—curved coronene dataset have been sorted to mimic a potential energy
curve. Adapted from Appendix D.
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compare to; however, the results can be described as average. Interestingly, the exception for
TT damping is again the B2PLYP functional whose performance is roughly on par with the
CHG and BJ damping forms. A possible explanation for this is that the B2PLYP functional
contains more physics than any other functional in Table 5.1 and hence may be more stable

with respect to transferability.

5.3 Comprehensive refitting of the DFT-D3 parameters

This section was adapted from Appendix E.

The improved DFT-D3 damping parameters for the CO,—curved coronene dataset are
quite useful for this particular type of complexes and will certainly be utilized in the future.
The unique benefit here is the relative stability in statistics for the S22x5 and S66x8 dataset
for the CHG damping. This strongly suggests that the general damping coefficients may

improved by fitting to a larger dataset than the original damping parameters were fitted to.
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Table 5.1: Mean unsigned relative errors (in percent) for different density functionals aug-
mented by the original and refitted atom-pairwise dispersion corrections, averaged over the
combined S22x5 and S66x8 datasets. The QZVP basis set and CP correction were used for
all DFT calculations. Adapted from Appendix D.

Functional -D3  -D3.ese -D3(BJ) -D3(BJ)resic  -D3(TT)esi

BLYP 10.7 9.1 6.8 29.0 13.4
B3LYP 10.5 10.3 4.9 28.1 14.9
B2PLYP 7.9 2.9 6.8 6.7 7.0
BP8&6 13.6 12.0 124 68.3 13.3
B97D 9.1 11.2 13.4 40.4 18.7
B9I70 9.9 13.7 6.4 31.3 21.5
PBE 15.9 14.1 10.8 33.9 20.1
PBEO 13.4 13.3 9.6 42.3 17.4
HFPBE 18.0 17.2 15.1 28.6 21.6
LC-wPBE 6.3 8.1 7.7 21.2 10.8
LC-wPBEO 7.9 9.7 5.7 23.3 12.7

If this is the case, the DFT-D3 method can be improved to produce more accurate results
greatly increasing its applicability and reliability.

To explore this possibility, a large variety of benchmark datasets for NCI was collected
into a single large database. For this large database, NCI datapoints must be of the "silver
standard” (or better) quality of Ref. 52 (=5% accuracy) and databases that contain potential
curves must contain one positive point on the repulsive wall at short-range and extend past
the minima to long-range. Surprisingly, these criteria were somewhat difficult to obtain and
many of the current benchmark sets in the literature required either extension to shorter
ranges or an improvement of the benchmark values. It should be noted that for this section,
the methane-PAH and methane—curved coronene datasets have been combined and labeled
methane-PAH, similarly, the COs—PAH and COs—curved coronene sets were combined and
labeled CO,—PAH. The databases used are shown in Table 5.2.

For the COg—curved coronene refitting (Section 5.2), the training and validation sets

were the same, this was acceptable because we were only concerned with the accuracy of that
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Table 5.2: Datasets utilized in the training and validation sets. Adapted from Appendix E.

Database Points Curves Largest® Reference Description

Training 1526 114

CO2 - PAH 249 45 27 97 CO2 with PAHs the size of benzene through coronene
and curved coronene

HBC62 118 6 6 105,125 dissociation curves of doubly hydrogen-bonded bi-
molecular complexes

NBC10ext? 195 10 12 71,105 dissociation curves of dispersion-bound bimolecular
complexes

S22x72:3 154 22 19 127 dissociation curves for a balanced mix of hydrogen
bonded and dispersion bonded complexes

SSI500 500 1 20 128 a subset of 500 molecules from SSI

X31x10% 310 31 18 129 dissociation curves of organic halides, halohydrides,
and halogens

Validation 6773 148

ACHC 54 6 19 130 rise, twist, slide, shift, roll, and tilt of adenine:cytosine
nucleobase step

BBI 100 1 10 128 peptide backbone-backbone complexes

CoHy4 - PAH 75 15 26 131 ethene with curved coronene

CH, - PAH? 405 45 25 48,73 methane with PAHs the size of benzene through
coronene and curved coronene

CO2 - NPHAC 96 16 27 132 CO2 with nitrogen-doped polyheterocyclic aromatic
compounds (N-PHAC)

S66x10? 660 66 16 124 dissociation curves for a balanced mix of biomolecule
NCI bonding motifs

SSI 52873 1 21 128 peptide sidechain-sidechain complexes

Water2510 2510 ! 2 133-135 water PES

IDatabase does not contain curves.

2Database was extended to shorter ranges.

3Database was recomputed at a higher level of theory.

4The X40x 10 database with iodine containing complexes removed.

58SI contains 3380 bimolecular complexes. The stated figure is less 500 from the SSI500 fitting subset and 7 for which GGA
functionals do not reliably converge.

6Largest refers to the largest number of heavy atoms in the dataset.

particular system. However, for a general refit of damping parameters, statistics computed on
the fitting database itself does not convey how transferable the refitted damping parameters
are. Therefore, the master database was split into training and validation sets which contain
1,526 and 6,773 datapoints, respectively. In comparison, the original -D3 parameters were
fit to 130 datapoints, of those 72 were intermolecular interactions and 66 of those were from
the S22 and S22+ (S22x7, 2=1.0, 1.2, 1.4) datasets. The remaining 58 training datapoints
consisted of thermochemical data and are not considered here.

In order to ensure the diversity of intermolecular interactions, ternary diagrams, which
show the ratio between the electrostatic, induction, and dispersion SAPT components, were
computed and shown in Figure 5.4.13¢ The term ”minima cross sections” refers to databases
where the interaction energy curves were expanded radially from minimum configurations,

these comprise all datasets except for SSI, BBI, and Water2510. As can be seen, the ”minima
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Figure 5.4: Top Panel: Ternary diagram comparison between the original -D3 fitting set
and the current fitting set. Bottom Panel: Ternary diagram breakdown of the three major
categories of points included in the validation set. Adapted from Appendix E.

cross sections” databases only cover a small portion of the ternary diagram. This stresses
the importance of fully exploring the angular space, especially for biologically relevant in-
teractions.

An examination of the current CHG and BJ damping forms show that CHG has two
parameters while BJ has three. To give equal flexibility to both damping forms, the
parameter is added to the CHG expression

c;\P 1

1
disp 2 Z Z s s 14 6(rap/ (s, RIP) + RyBB)—on’ (5:5)

and will be denoted "-D33”.

For overall statistics, each dataset is weighted equally to avoid implicit weighting due
to the number of points in each dataset, the exception is that the SSI (or SSI500) dataset
always counts as % of the overall statistic. This is done due to the fact that the SSI dataset
contains a much more diverse and important set than any other single database. The DFT-
D3 damping parameters were then fitted to the training set using a RMS CURE quantity

(Eq. 1.9): the resulting refitted parameters will be denoted with a ”M” for modified.
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Figure 5.5: Top Panel: All functionals utilizing the original damping parameters. Bottom
Panel: All functionals utilizing the new damping parameters, the light grey outlines represent
the MCURE of the original damping parameters. The right hand panels give the spread of
MCURE values for all functionals. All statistics are shown for the validation set. Adapted
from Appendix E.

The original and refitted DFT-D3 statistics for a range of functionals are shown in
Figure 5.5. First, examining the original parameters, it is apparent that short-range accuracy
problems are not localized to the CO,~PAH dataset, but are instead fairly systematic. As
can be seen, the overall MCURE for the validation set improves after refitting for every
single functional except for LC-wPBE-D3M? whose MCURE statistic does not change. The
largest improvements again come from the popular PBE-D3 method whose overall MCURE
went from 19% to 10%, the majority of this improvement comes from the SSI dataset and
at short-range. This radical improvement is not seen for all functionals, for example the
B3LYP-D3 refitted only improved the overall MCURE by 1%; importantly, the majority of

this improvements comes from short-range which goes from 23% to 13% MCURE.
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As shown, refitting can greatly enhance the performance of DFT-D3 methods; however,
the performance degradation at short-range cannot fully be ameliorated by refitting alone.
These refitted parameters likely represent the most accurate general damping parameters
possible for DFT-D3 and effectively places a limit on the performance of the current damping
forms. As shown in Appendix E, more complex damping forms are not likely to improve
the overall performance on the DFT-D3 method and other approaches need to be explored.
Nevertheless, the new damping parameters do improve the overall accuracy of the DET-D3
method and partially reduce the large variation in DFT-D performance. Overall, the top
performing B3LYP-D3M(BJ) method is recommended for all NCI computations if CCSD(T)-

based benchmarks are not available.
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Chapter 6

Density-Fitted Multi-Configurational Self Consistent Field

Multi-Configurational Self Consistent Field (MCSCF) is a methodology that combines
aspects of SCF and CI. In this chapter we will present optimization techniques for MCSCF
wavefunctions and the application of density fitted two-electron integrals to reduce the overall
cost of this method. Both the SCF and CI methods will be briefly summarized and the pieces

pertinent to MCSCF optimization will be highlighted.

6.1 Self Consistent Field

Here we will focus on a variant of SCF known as restricted Hartree-Fock (RHF) where
the o and 3 orbitals are equal denoting a closed-shell molecule with all paired electrons.
The usage of RHF over generalized SCF is done both for simplicity and the fact that the
SCF-like indices in MCSCF are effectively RHF indices. To begin, let us start with the AO

Fock matrix, which is represented as*!137

Fw/ = Iy + 2guu)\aD>\U - gu)\VUD)\J (61)

and the one-particle RHF density matrix D is computed from the orbitals C (assumed

real).

Dy, = Ci;Cin (6.2)
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It should be noted that if D is converted to the MO basis, we have a diagonal matrix of ones
up to the number of occupied indices and zero thereafter
D,, = (6.3)
0 0
This is specifically noted as a generalized density matrix would have two across the diagonal

to represent two electrons

Tpg = (6.4)
0 0
This factor of two is instead absorbed into the RHF equations to simplify the expressions
and to be consistent with RHF equations typically found in reference texts.
The total RHF energy can be expressed as a sum of the electronic and Born-Oppenheimer

(BO) nuclear energies

ERHF = ggtFronic + E’r?uoclear (65)
B onic = (Fuy + Hpu) Dy (6.6)
ZiZ;
Efuoclear = Z T"j (67)
i>j Y

where Z; is the nuclear charge of atom 1.
Examining these equations, it is clear that the most computationally demanding por-
tions are the convolution of the density matrix with the two-electron integral tensor. There-

fore, it is often convenient to define the following quantities

J[D/\a],ul/ = g;U//\O'D)\o' (68)

K[D)\a'];w = g,u)\ua'D)\o' (69)
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The resulting J and K matrices are often called the Coulomb and Exchange matrices, re-
spectively. Often quantum chemistry programs have very efficient routines to compute these

equations, thus utilizing these routines is of the utmost importance.

6.1.1 Density-fitted Coulomb and Exchange algorithms

With density fitting!®® 14! the two-electron integrals are represented by the following

o = (| P)[JT ] pa(QA0) (6.10)

where the Coulomb metric [J]pg and the three center overlap integral (Q|Ao) are define

as

re = [ Pl QU (6.11)
(QMo) = / Q(rl)%)\(rg)a(m)d?’rldi‘rg (6.12)

To simplify the density fitting notation, the inverse Coulomb metric is typically folded

into the three center overlap tensor

(P]Ao) = [T%]po(Q[ o) (6.13)

Gure ~ (| P)(P|\0) (6.14)
The Coulomb matrix can then be computed in O(N?N,,,) operations:

xXp = (P[Ac) D), (6.15)

‘][D)\U]lw = (NV|P)XP (616)
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The Exchange matrix can be computed in O(N?’Nauz) operations:

Cpua = (P\VU)D,\U (617)

K[Dxoluw = (AIP)Cpux (6.18)

however, considering the form of the density matrix, we can reduce this to O(pN2Ny,,)

Dio = CpyCih (6.19)
Gy = (101P)Ci (6.20)
Gy = (PIUNCy (6.21)
K[Dsoluw = ChnCly (6.22)

where p is a generalized MO index that can span any space. This technique is especially
beneficial when p is an inactive or active index as these are typically small relative to the
full N space. It should be noted that Eqs. 6.19-6.22 pertain to the generalized case where
Cpe # Cpy, if both C' matrices are identical, only one ¢ intermediate needs to be built. The
Cpo # Cpa case often arises in MCSCEF theory when either rotated, transition, or generalized
density matrices are used.

Computation of the Coulomb and Exchange matrices through conventional means costs
N4, here we see that Coulomb builds are rank reduced, but Exchange builds are of the same
rank. The real benefit of density-fitted integrals for K builds comes from data locality and
data storage. As N, is typically twice the size of N, we can imagine a case with 3000 AO
basis functions. Conventional 4-index two-electron integrals would use 81 TB if the 8-fold
symmetry of the tensor is exploited, on the other hand, the 3-index density-fitted tensor

would only take up 216 GB if the 2-fold symmetry is exploited, a reduction of 375 fold.
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6.1.2 Roothaan Equations

137

The SCF equations are often solved through the Roothan equations, " shown in matrix

formalism

FC = SCe (6.23)

This is a pseudo-eigenvalue equation. At every iteration we need to solve for the coefficients
C that diagonalize the Fock matrix. An ideal world would produce AO orbitals that are
orthogonal, unfortunately, as demonstrated by non-diagonal overlap matrices, this is not
the case. To overcome this problem, a orthonormalized Fock matrix is diagonalized instead,

shown in matrix formalism

A =812 (6.24)
F' = A"FA (6.25)
F'C =Cle (6.26)
C=AC (6.27)

At every iteration we construct our Fock matrix from the previous orbitals (C,_1) and
compute new orbitals (C,,) until convergence is reached.

For the rest of this section, the ”physicist’s water molecule” (O-H = 1.1A, - HOH =
104°) will be utilized in the cc-pVDZ basis set for illustrating convergence patterns. A pure
iterative diagonalization approach is shown in Fig. 6.1. As can be seen, the convergence for

this simple molecule is quite slow and the next sections will detail convergence acceleration.

6.1.3 Direct Inversion of the Iterative Subspace convergence acceleration

Direct Inversion of the Iterative Subspace (DIIS) is often used for convergence acceler-

ation'*? of SCF wavefunctions. For iterative diagonalization, we discard all previous guess
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Figure 6.1: A RHF computation of ”physicist’s water molecule” starting with a core Hamil-
tonian guess in the cc-pVDZ basis set. dE is the energy difference between iterations and

dRMS is the root mean square of the orbital gradient.
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vectors (orbitals) and generate completely new guess vectors at each iteration. DIIS keeps

previous guess vectors and builds the best guess as a linear combination of all previous guess

vectors.

For the explanation of DIIS, we will break with all conventional terminology to stress

that this is a linear algebra technique that is widely applicable to many problems besides

SCF, as we will see in the next several sections. Let us assume that we have generated

several state vectors (s) with a series of complementary error vectors (r) through some

iterative method.

For DIIS to be applicable, we assume that both the next residual and the next state

vector can be built as a linear combination of previous guess vectors with coefficients c.

n

Si+1 = E iS5

%
n

Ti41 = E CiT;

i

iCizl

(6.28)

(6.29)

(6.30)

Therefore, we want to select the coefficients in a manner that minimizes the norm of the

residual
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n
Tig1 - Tir1 = E CiCj(Ti : Tj)
ij

This can be solved through the following matrix equations

Bll BIQ
B21 BZQ
Bnl Bn2
i -1 -1

Bln

1

Co

Cn

where B is a matrix of inner products between error vectors

Bij = (ri-rj)

(6.31)

(6.32)

(6.33)

and A is value of the Lagrange multiplier. It should be noted that often our error vectors

are in effect tensors, e.g., F]

between tensors.

w, and the norm is computed as the generalized inner product

For SCF, the state vector is always the Fock matrix and the error vector is typically the

orthonormalized orbital gradient expressed in a AO matrix formalism,

r,, = (AT(FDS — SDF)A),,

The procedure for applying DIIS to SCF at every iteration is therefore:

1. Compute the Fock (s,) matrix using C,, orbitals

2. Construct the AO gradient (r,,)

3. Obtain the DIIS Fock guess (sprs)
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4. Obtain C, 4, orbitals by diagonalizing the DIIS Fock guess (spys)

This procedure is iterated until the desired convergence thresholds are reached.

Figure 6.2: A RHF computation of ”physicist’s water molecule” starting with a core Hamil-
tonian guess in the cc-pVDZ basis set utilizing DIIS convergence.
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The DIIS convergence procedure is then applied to the ”physicist’s water molecule” in
Fig. 6.2. It should be noted that while DIIS can be utilized on every iteration, the results
are equal to pure diagonalization until two error vectors have been constructed. Therefore,
the first iteration which benefits from DIIS acceleration is iteration three. As can be seen,
roughly the same energy convergence is obtained in 9 iterations compared to 24 iterations
without DIIS. The cost of DIIS itself is negligible; however, the cost of building the gradient

is on the order of N3, which is still much less than the Coulomb and Exchange matrix builds.

6.1.4 Second-order orbital optimization

Diagonalization builds completely new orbitals at every iteration; an alternative is to
construct new orbitals by rotating the orbitals of the previous iteration. This is often called
second-order optimization and, if done exactly, the convergence will be quadratic with re-
spect to the MO gradient,'* e.g., grad) " S (grady, )*. As a consequence of the quadratic
convergence, the second-order procedure can only be started once all elements of the gradient
in the MO basis are less than one, else the error will increase.

The overall goal is to find an orbital rotation matrix, &, that satisfies the following set

of linear equations:
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E®@k = —EW (6.35)

where E®) is our orbital Hessian and E(V) is the orbital gradient. The x matrix is a

antisymmetric matrix of non-redundant rotations that describes the unitary transformation

U

U=¢" (6.36)

Rotations within a given space (inactive or virtual for SCF) are redundant: the only non-
redundant orbital rotations for SCF are the inactive-virtual ones.

The orbital gradient can be written as

Ef) = 2(Fpq — Fyp) (6.38)

where F is our generalized Fock matrix!43

Fin =2("Fyn + 'Fy) (6.39)
Fon = Ianvaw + Q'Lmu Q'Lm = Fvwwygnw:py (64())
Fan =0 (641)

and the Active (AF) and Inactive (! F) Fock matrices are defined as

IFPQ — dpg + 2gpqrsD7"s - gprqurs (642)
1
AF g = Yeu(Gpgtu — §9pmq) (6.43)
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In the case of RHF, the Inactive Fock matrix is identical to the AO Fock matrix given in
Eq. 6.1, this equation can be rewritten considering the special form of the RHF density

matrix with MO indices
"Fpg = Hpq + 20pgii — Gpigi (6.44)

The orbital Hessian can be built explicitly; however, this matrix is quite large and it is
typically sufficient to know the product of the Hessian with a given vector. To do so, we will
introduce the rotated Hamiltonian

H" = by Vg + GpgrsL pars (6.45)

pq

and the one-index transformed integrals

hipq = (Kpohog + Figohpo) (6.46)

glf;qrs = (Hpogoqrs + KgoYpors + RroZGpqos + /isogpqro> (647)

Applying this Hamiltonian to our SCF wavefunction results in a rotated Fock matrix
(F") where all one- and two-electron integrals have been replaced by their respective one-
index transformed counterparts. This rotated Fock matrix is the Hessian vector product

(E(2)l<;) and can be substituted for the LHS of Eq. 6.35:
2(Fpy — Fgp) = —2(Fpg — Fyp) (6.48)

Considering the special structure of the generalized Fock matrix for RHF calculations
(only inactive-virtual rotations are non-redundant and F,; is zero), we can write our set of

linear equations for the last time as

—A'F?

a

=4'F, (6.49)
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which must be solved iteratively. As shown below, this is the most computationally efficient
form of these equations. For demonstration purposes, the I tensor need not be contracted
with K to yield iterative form shown in Eq. 6.49. Instead, the full 4-index orbital Hessian

can be constructed and Eq. 6.35 can then be solved exactly. However, when solved exactly,

3

the cost of inverting the full orbital Hessian is 0®v3, unless o is very small, we have effectively

changed the cost of SCF from N* to N°, or roughly the cost of CCSD. Solving either Eq. 6.35
or Eq. 6.49 will be denoted second-order SCF (SOSCF).

Figure 6.3: A RHF computation of " physicist’s water molecule” starting with a core Hamilto-
nian guess in the cc-pVDZ basis set utilizing DIIS and SOSCF convergence. For the SOSCF
step, the Eq. 6.35 has been solved exactly by inverting the full orbital Hessian. The right
most abbreviations indicate the type of step taken in each iteration.
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Returning to our ”physicist’s water molecule”, the convergence pattern for SOSCF is
demonstrated in Fig. 6.3. We can observe that three regular DIIS steps were required before
all elements of the gradient were less than one. The RHF wavefunction is then converged to
within machine precision in terms of energy and density within 4 SOSCF iterations. SOSCF
is quite beneficial in terms of the number of iterations, but is not currently competitive in
terms of cost.

Let us return our attention to Eq. 6.49 and to the implementation of an efficient rotated

Inactive Fock (!F*) build

IF:m = h:m + QQTTmn - gfniin (6-50)
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Inserting our equations for one-index transformed integrals, we obtain

IFHmn =(Kmphpn + Knplamp) +
Q(Kmogonii + Rno9moii + RioGmnoi + "fiogmm'o>_

('K@mogoiin + Hiogmoin + "i'iogmion + K;nogmiio) (651)

Simplifying and collecting these terms yields

IF’:nn - (IFmpan + IFpn"@np) + "iip(4gmnip - gmpin - gnpim) (652)
which can be computed using conventional AO-based J and K routines:

19)@ :C’i)\’iipcpa (653)
"Frn =" Frpbing +  Fpnkimp)

+ Crp (4 [Vr0) i — K[V — K[9r0)o) Crw (6.54)

The cost of solving Eq. 6.49 is now N* when the left hand side is computed from Eq. 6.54
and each iteration of Eq. 6.49 (often called a microiteration) is equivalent to the cost of a
normal RHF iteration. The term macroiteration refers to a step in which the overall SCF
energy is computed, this step collects all Fock builds, microiterations, and orbital rotations.

Our " physicist’s water molecule” was again optimized using iterative SOSCF in Fig. 6.4.
We observe that while the convergence is significantly faster than for the DIIS acceleration
alone, the overall convergence is much slower than when Eq. 6.49 was solved exactly. This
is due to the fact that the number of microiterations used is insufficient to solve Eq. 6.49
exactly. More microiterations can be utilized, but a balance between macro- and microit-
erations must be computationally efficient. However, it should be noted that even though
each microiteration of SOSCF is equivalent to the cost of a normal RHF step, the overall

computational effort expended for SOSCF is generally greater than the DIIS methods for a
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Figure 6.4: A RHF computation of " physicist’s water molecule” starting with a core Hamilto-
nian guess in the cc-pVDZ basis set utilizing DIIS and SOSCF convergence. For the SOSCF
step, Eq. 6.49 has been solved iteratively through a conjugate gradient method limited to
four microiterations. The rightmost abbreviations indicate the type of step taken on each
iteration.
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given convergence criterion. SOSCF should therefore only be utilized for difficult to converge

SCF cases.

6.2 Configuration Interaction

The CI wavefunction is built from a linear combination of excitations, ¥ = > ¢; Py,

T
where I represents all possible excitations from the ground state and c is the coupling coef-
ficient. Unlike CC theory which relies on the exponential operator e’ to choose excitations,

CI excitations are restricted simply by the number of excitations out of the reference state.

CI theory can be solved by the following matrix equation
Hc = Ec (6.55)

where H is our Hamiltonian H = (®;|H|®,) and ¢ is our vector of coupling coefficients
c = |C) = > ¢/|I). This is similar to SCF, where instead of expanding our basis in terms of
atomic orbi’éals, we are now expanding our basis in terms of Slater determinants. While CI
can be solved exactly by diagonalizing the Hamiltonian, this is almost always too compu-
tationally demanding. Instead, trial vectors c are generated and optimized through various
means not detailed here. See Ref.143 for further reading. Hamiltonian trial vector products

can be computed as o = Hc.
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Importantly, the complexity of CI can be hidden inside generalized density matrices:

= (0|E,,|0) = Z cresy) (6.56)

Lpgrs = (0]€pgrs|0) ZCICJquTS (6.57)

where |0) is the reference CI vector. These density matrices lead to a simple expression of

the CI energy

1
ECI = quhpq + §qursgpqrs (658)

Full CI (FCI) will be the focus of the current work where all possible excitations are
included in the determinant basis. The number of FCI determinants scales like the following

binomial function where N is the number of orbitals and n is the number of electrons:
Nyer = (6.59)

where n, and ng are the number of alpha and beta electrons, respectively. CI computations
can routinely be run on approximately ten million determinants. The number of orbitals and
electrons in a FCI computation is typically denoted (n, N), where n is the number of electrons
and N is the number of orbitals. For example, a (14e,140) FCI computation would result in
11E® determinants and be fairly routine. However, a (16¢e,160) (166E® determinants) would
be quite expensive and (18¢,180) (2,364E® determinants) would be difficult to impossible.
This puts a hard cap on the size of the FCI computations. It should be noted that FCI
computations where n ~N are most closely associated with MCSCF-like computations and
general FCI calculations are usually of type n<N. Density-fitting is not able to reduce the
computation time of CI: density-fitted CI simply means that the g,,.s tensor is formed using

density-fitted quantities.
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6.3 Multiconfigurational Self Consistent Field

To extend CI out to large multireference molecules, the orbitals are partitioned between
inactive orbitals (SCF-like) and active orbitals (Cl-like). To be explicit in how MCSCF
combines both SCF and CI, let us examine a hybrid one-particle density matrix

2 0
v = (6.60)
0 Yeu
where the diagonal factor of two represents our SCF-like density elements and the ~ repre-
sents our (non-diagonal) CI density in the active space.

As SCF can only describe a single state, and the orbitals from an SCF computation are
therefore optimized to this state, they are likely inadequate to describe a fully multireference
system. Therefore, we need to optimize both the ¢ (CI vector) and & (orbital rotation vector)

simultaneously leading to the MCSCF parameters

A= (6.61)

For k there are four types of non-redundant rotations, inactive-active, inactive-vitrual,
active-active, and active-virtual. When the CI expansion is equal to active-space FCI in
a MCSCF wavefunction (known specifically as complete active space SCF (CASSCF)), the
active-active rotations are redundant and can safely be neglected.

The best A vector at every iteration can be computed by solving the following set of

linear equations

E®@X = -EW (6.62)

where E(M and E® are the gradient vector and Hessian matrix, respectively.
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6.3.1 MCSCF Gradient

The gradient vector, E®), can be rewritten in block form

EWY = (6.63)

The CI gradient can be defined as

By = 2ilf10) - 207 E* =2 50, Fu+ D T — 26,7 (B —1E) - (6.64)
tu

tuvw

"E =Y (hi+'Fy) (6.65)

It should be noted that (i|H|0) can be obtained from a canonical CI sigma vector
computation: o = Hc.

The orbital gradient is identical to that of the SCF equations
E() = 2(Fpq — Fyp) (6.66)

In MCSCEF theory, this is occasionally denoted the Lagrangian.

The generalized Fock matrix can again be written as

Fyp = Q(Isz‘ + AFpi) (6-67)
Ftp - ’Ypuhtu + tha th = Ftuvwgpuvw (668)
Fap =0 (669)

Recalling the definition of Active (4F) and Inactive (!F') Fock matrices

'Fpg = Hpq + 29pg Dri — Gphat Dt (6.70)
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1
" F g = You(Gpatn: = 5 Iptug) (6.71)

these matrices can be computed using normal J and K builds

Dyo = CinCio (6.72)
"Fog = Hpg + Cpyu(2J Dol — K[Dolun)Con (6.73)
Mo = CxtuCluo (6.74)
AFpg = Cop(I Do) — %K Vo)) Cav (6.75)

For MCSCF scalings, we make the assumption that a reasonably sized CI space is picked
and the orbital part will dominate the overall cost considerations. In addition, we make the
assumption that a®?<N (a is the size of the active space) which is reasonable for typical
MCSCF calculations. It should be noted that if a>>N, the cost of the orbital part will be
quite negligible due to the upper bounds of the size of a in the previous section.

The ) matrix is the first quantity for which typical J or K builds are not suitable and
the explicit form of the density-fitting needs to be shown. It should be noted that while the
@ matrix can be computed with J builds,'** this technique is typically not recommended
due to the prefactor of this methodology growing as the square of the active space size. The
computation of this term through conventional means would cost O(a*N) which is effectively
negligible; however, the formation of the gy, tensor would have a leading cost of O(aN*).
Nevertheless, building () through explicit use of density-fitted tensors is quite simple at the
cost of O(a*NN,uz):

XtuQ = Ftuvw(Q‘U’w> (676)

Qp = (pulQ)Xtuq (6.77)
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While this scaling is N°, the reliance on the active indices being very small means that this
contraction is usually of negligible time. The transformation of the (Q|vw) tensor scales like
O(aNzNaux) demonstrating that the real benefit here is the reduction in overall scaling of

the two-electron integral transformation.

6.3.2 MCSCF Hessian

The MCSCF Hessian has the overall form

E® —K® _ E(l)c(O)T _ C(O)E(I)T (6.78)
with rank 1
- cEM Co
E® — ;C(O) — (6.79)
2R (1) 0

and rank 2 contributions

CCK(?') COK(Q)
K® = " (6.80)

ocK(Z)

0ot (2)
Pq.J quv’”s

Rather than explicitly building the Hessian, we will instead focus on Hessian trial vector

products

‘o chZ(?) COK£27')S c ccK ) ¢ + coK(2)
= N ’ = (6.81)
°a OCK]()?]),j ooKéj})’rs K ocK(2) c + ooK(2) K
For each element we obtain:
[“K® ¢]; = 2(i|H — EO|c) (6.82)
[©“K® k], = 2(i|H*|0) (6.83)
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[“K® ¢l = (0|[E,,. Hllc) + (c|[E,,, H]|0) (6.84)

K K]y, = (0][E,,, H/0) + (PEY, K])p (6.85)

pg’

A

where E = qu — E,,. Careful examination of the first two terms shows that they can
be built from standard CI o vector computations where for the second term the rotated
integrals need to be substituted for the regular integrals. The last two terms can be built
similar to the rotated Fock builds (F*) of Eq. 6.54. The [*K® k],, block can be written

simply as
[K® Klpq = Fpi 4 Fykigr — Frobipe (6.86)

The [*K® c],, term can also be built through rotated Fock builds; however, the tran-

sition density matrices must be used

5, = (0] Eylc) (6.87)
F;qrs = <O’épq7’5|c> (688)

If |c) is equivalent to the current reference state, |0), we obtain the normal CI density
matrices. Therefore, (0|[E;1,]:I]|c) is simply the generalized Fock matrix with transition
density matrices.

We have previously shown how to build the rotated Inactive Fock matrix through J
and K matrices in Eq. 6.54. The rotated Active Fock matrix can be rewritten using similar

techniques:

K 1 1
Aan = Z(AFmp/{np + AFan;mp) + Z ’Yvw/{wp(ngnvp - §gmpvn - _gnpvm) (689)

2
P vwp
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and rewritten through J and K matrices

79)\0 = 'L})\vaw’iprpo (690)
Aann = Z(AFmp“np + AFzm’imp)"‘
p
1 1
Cmﬂ<2‘][19>\0]ﬂl/ - §K[19>\U],ul/ - §K[19>\CT]VILL)CTLV (691)

The last required term of the rotated Fock matrix is the rotated () matrix

om = Lvway(KmoJowsy + KwoGmory + KzoGmuwoy + KyoGmuso) (6.92)
Examining the above equation shows a scaling of O(a*N?), again as the size of the active
index is typically quite small, this is fairly negligible. However, as with the computation
of the @),,, matrix, the leading cost is not with the term itself, but the transformation of
the gouwsy tensor, O(aN*). Through the use of density-fitting, the cost of this term is only
O(aN?N,y.); however, the transformation of the required (mo|Q) tensor is O(N®*N,,, ). While
the scaling of the density-fitted and conventional MO transformations appear to be roughly
equal on paper (due to Ny, =~ 2N), the real benefit is again the vast reduction in the size of

quantities involved.

6.3.3 Approximate orbital Hessian

As the computation of the exact orbital Hessian in the previous subsection is relatively
costly an approximate Hessian can be employed. In addition, the approximate orbital Hes-
sian is typically chosen to be diagonal and no iterations are required to solve the Hessian
vector equations. In this particular case we will use the approximate Hessian of Gordon and

collaborators'*® which is defined as follows

Higio =4 Foq + " Foq) — 4("Fy + 4 F ) (6.93)
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Hta,ta :2’)/ttIFaa - 27tuIFtu - 2Ftuvwgtuvw + 27ttAFaa (694)
Hit it :4(1Ftt + AFtt) - 4(1Fn' + AFii) + Q’YttIFn'

- 2’}/tuI}?tu - 2Ftuvwgtuvw + 27ttAFii (695>

Once the generalized Fock matrix is built for use in the MCSCF orbital gradient, the above

approximate Hessian is of negligible cost.

6.4 MCSCF optimization examples

In this section we will demonstrate several different ways to optimize the MCSCF wave-
function. In general, MCSCF optimization is broken down into one-step and two-step ap-
proaches. One-step refers to solving Eq. 6.62 fully at each macroiteration. Two-step updates
the CI and orbital vectors independently of each other by assuming the orbital-CI coupling
blocks of the MCSCF Hessian are zero; for each macroiteration, the CI vector is first opti-
mized followed by an orbital update. The two-step method is widely implemented as it is
computationally simple compared to one-step and the orbital and CI methods are discon-
nected. This allows many orbital and CI approximations to be mixed together with little
theoretical or programmatic effort.

Figure 6.5: A (6e, 60) CASSCF computation of the triplet methylene molecule in the cc-
pVDZ basis. The CI vector is optimized fully at every iteration and the orbitals are updated
through the approximate Hessian of Eq. 6.93.

Energy dE dRMS
DF-MCSCF Iter 1: -38.92805625506162 -7.064e-03 2.624e-03
DF-MCSCF Iter 2: -38.94892541392244 -2.086e-02 5.120e-03
DF-MCSCF Iter 3: -38.95815470936352 -9.229e-03 2.620e-03
DF-MCSCF Iter 4: -38.95983274315701 -1.678e-03 1.198e-03
DF-MCSCF Iter 14: -38.96050382683669 -3.068e-07 3.290e-05

DF-MCSCF Iter 15: -38.96050397567139 -1.488e-07 2.283e-05
DF-MCSCF Iter 16: -38.96050404789300 -7.222e-08 1.584e-05

The triplet methylene (CH,) (C-H = 1.1A, / HCH = 133°) molecule in the cc-pVDZ

basis with a (6e, 60) active space (i.e., only the 1s orbital of the carbon atom is inactive)
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will be used in example calculations. To begin, let us solve Eq. 6.62 in a two-step fashion
where the CI vector is optimized at every iteration followed by an orbital update using
the approximate orbital Hessian: this is demonstrated in Fig. 6.5. We observe that the
convergence is quite slow, especially in comparison to SCF.

To accelerate the convergence, DIIS can be used once again with error and state vectors

T = Kn (6.96)

Sp = Ky, + Sp_1 (6.97)

The resulting s, is therefore a & for the orbitals of the original reference state

Cpp1 = Coent (6.98)

It should be noted that when DIIS is applied in this way, the MCSCF wavefunction should
be relatively converged to ensure that the assumption that x is a reasonable approximation
to the error vector, is valid. Therefore, the DIIS procedure is typically not started until
several approximate MCSCF steps have been taken. The DIIS procedure is shown for triplet
methylene in Fig. 6.6. Roughly the same convergence criteria can be accomplished in 9 steps

as opposed to 16 steps without DIIS.

Figure 6.6: A (6e, 60) CASSCF computation of the triplet methylene molecule in the cc-
pVDZ basis. The CI vector is optimized fully at every iteration and the orbitals are updated
through the approximate Hessian of Eq. 6.93 with DIIS extrapolation starting on iteration
four.

Energy dE dRMS
DF-MCSCF Iter -38.92805625506162  -7.064e-03 .624e-03
DF-MCSCF Iter -38.94892541392244  -2.086e-02 .120e-03
DF-MCSCF Iter -38.95815470936358  -9.229e-03 .620e-03
DF-MCSCF Iter -38.95983274315691  -1.678e-03 .198e-03

DF-MCSCF Iter
DF-MCSCF Iter
DF-MCSCF Iter
DF-MCSCF Iter
DF-MCSCF Iter

-38.96025602909073  -4.232e-04
-38.96047551306498 -2.194e-04
-38.96050334465582  -2.783e-05
-38.96050406482120 -7.201e-07
-38.96050411065154  -4.583e-08

.596e-04 DIIS
.533e-04 DIIS
.093e-04 DIIS
.357e-05 DIIS
.927e-05 DIIS

© 00 ~NO O WN =
=R, oD
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The orbital-orbital part of the Hessian can be solved iteratively at every macroiteration
and the results are shown in Fig. 6.7. As can be seen, this provides roughly the same
convergence as using an approximate diagonal Hessian with DIIS acceleration. This can be
understood as orbital-CI coupling blocks, while small, are not completely negligible and the
small perturbation they provide is critical to obtain quadratic convergence. In some difficult
cases solving the orbital-orbital block iteratively does accelerate convergence; however, in
most examples a simple two-step method with orbital updates through an approximate

Hessian performs equally well.

Figure 6.7: A (6e, 60) CASSCF computation of the triplet methylene molecule in the cc-
pVDZ basis. The CI vector is optimized fully at every iteration and the orbitals are updated
through the approximate Hessian of Eq. 6.93 with DIIS extrapolation starting on iteration
four. SOMCSCF represents solving the orbital-orbital update of Eq. 6.62, without the
orbital-CI coupling block, iteratively.

Energy dE dRMS
DF-MCSCF Iter -38.92805625506168  -7.064e-03 .624e-03
DF-MCSCF Iter -38.94892541392238  -2.086e-02 .120e-03
DF-MCSCF Iter -38.95815470936356  -9.229e-03 .620e-03
DF-MCSCF Iter -38.95983274315695 -1.678e-03 .198e-03

DF-MCSCF Iter -38.96025602909057  -4.232e-04

1

2

3

4

5: .596e-04 DIIS

DF-MCSCF Iter 6: -38.96048414379979 -2.281e-04

7.

8

9

0

.482e-04 SOMCSCF
.149e-04 SOMCSCF
.095e-05 SOMCSCF
.474e-05 SOMCSCF
.615e-06 SOMCSCF

DF-MCSCF Iter -38.96050154195560 -1.739e-05
DF-MCSCF Iter -38.960560372971953 -2.187e-06
DF-MCSCF Iter -38.96050405645276  -3.267e-07
DF-MCSCF Iter 10: -38.96050410677239 -5.031e-08

O, d P, WL, NN

The PSI4 implementation of the one-step MCSCF procedure has not yet been completed
and a one-step example will be given using the MOLPRO package.'% It should be noted
that MOLPRO does not have DF-MCSCF and thus conventional MCSCF was computed.
Previous density-fitted MCSCF examples were shown, resulting in a small difference in the
energy given by each programming package. However, the energies agree to within the
convergence criterion when conventional MCSCF is requested of the Psi4 package. A one-step
methylene convergence example is shown in Fig. 6.8 demonstrating the rapid convergence
of full one-step methods. It should be noted that the MOLPRO package uses approximate

updates in the microiterations, and any comparison of the number of iterations here is likely
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not valid. Instead, the point of Fig. 6.8 is simply to demonstrate that when the orbital-
CI coupling blocks are included in the MCSCF Hessian, full quadratic convergence can be
obtained.

Figure 6.8: A (6e, 60) CASSCF computation of the triplet methylene molecule in the cc-
pVDZ starting. Eq. 6.62 is solved at every macroiteration as implemented in the MOLPRO
package and described by Knowles and coworkers.! The MOLPRO output has been refor-
matted to mimic the rest of this section, within printing limitations.

Energy dE dRMS
MCSCF Iter 1: -38.92871989 -3.156e-02 2.769e-02
MCSCF Iter 2: -38.96018877 -3.146e-02 1.000e-08 SOMCSCF
MCSCF Iter 3: -38.96051679 -3.280e-04 0.000e-00 SOMCSCF
MCSCF Iter 4: -38.96051679 0.000e-00  0.000e-00 SOMCSCF

6.5 Conclusions

The MCSCF Hessian and gradient formulas have been presented along with descriptions
of how various approximations to the Hessian effect MCSCF convergence. A new MCSCF
routine that is capable of computing both conventional and density-fitted MCSCF energies
has been implemented in the PSI4 package. This new MCSCF routine makes heavy use of
the highly optimized J and K builders inside PSI4 to reduce both the computational time
and overall complexity.

Timings for the conventional and density-fitted approximate Hessian steps are shown in
Figure 6.9. For conventional algorithms, the transformation scales like O(aN*) and the gra-
dient like O(N*) and for density-fitted algorithms the transformation scales like O(aN?N,,)
and the gradient like O((i + a)N?N,,,). As can be seen, the density-fitted version is overall
4.6 times faster than the conventional version at 756 basis functions. In addition, the re-
duced scaling of the density-fitted J and Kbuilders can be seen after 400 basis functions as
(i + a)<N in this regime. It should be noted that the density-fitted transformation is not

yet optimal and further work is underway to reduce this cost. A paper detailing the cost
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Figure 6.9: A comparison of the integral transformation and gradient build times for density-
fitted (dashed lines) and conventional (solid lines) routines in the PSI4 package. An example
benzene molecule was utilized with a (6e, 120) active space resulting in 18 inactive orbitals.
It should be noted that as the basis set is increased, the only change is in the number of
virtual orbitals. Each computation was run on four AMD Opteron cores.

1 @ Gradient
1500 @ ERI transformation
| @ Total macroiteration

\ \ T
800 1000 1200

Number of Basis Functions

400

and benefits of one and two step MCSCF along with either density-fitted or conventional

two-electron integrals is currently planned and will be forthcoming.
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Chapter 7

Multi-Reference Symmetry-Adapted Perturbation Theory

Many of the molecules under consideration fall under the single-reference category and
can be computed using conventional single-reference methods as detailed in Chapters 1-5.
However, there are many molecules of interest that do not fall into this category and re-
quire multireference approaches. For example, in atmospheric chemistry the singlet oxygen
molecule, OH radical, and NO radical all have a fair amount of multireference character
making conventional computations unsuitable.!4" 1% In addition, our group is interested in
COgy sequestration for which metal-organic frameworks (MOFs) have been suggested due
to their excellent COy adsorption capabilities.'?!152 The metal centers of the MOFs make
them inherently multireference in nature. Therefore, in this Chapter we will describe pre-
liminary work into extending the SAPT methodology to systems described by CASSCF
reference wavefunctions. It is not yet verified if these equations are valid for general MCSCF

wavelunctions.

7.1 MRSAPT notation

We will first start with the 4-index intermolecular operator © which is fundamental to

all terms in SAPT theory

ﬁgi = Gpgrs T (VA)rsSpg/Na + (VB)pgSrs/NB + Vo SpgSrs/NaNp (7.1)

where S are the standard overlap integrals, (vx),, is the one-electron potential integral of
monomer X, Vj the constant nuclear repulsion term, and Nx is the number of electrons

in monomer X. In addition, we will use the % and I'*® density matrices where X again
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represents the monomer and s represents the spin. When s is not present, this will denote
the spin summed density matrix.

Previously, when multiple indices of the same type were used, subsequent letters of the
alphabet denoted separate indices, i.e., S;;. For SAPT theory, we will utilize subsequent
letters to denote monomers and the ’ symbol to denote multiple indices of the same type,
i.e., S;i. Therefore, indices i, t, and a will denote indices of monomer A and j, u, and b will

denote indices on monomer B.

7.2 Electrostatics and Exchange

We will begin with first order electrostatics and exchange as they can be computed
entirely from the ground state and will be among the simplest terms considered here. The

first order electrostatic term can be written as follows
10 i A ~t B ~i A_B -
Eélst) = <V> = 41}2 + 2/Yt’tvt’]j + 2/Yu’uvgg’ + ’Yt’t,}/u’uv;’%/ (72)

The benefits of writing the formula in this way are multiple. First, we gain insight by breaking
down the Eélls(z) energy and partitioning this energy into the inactive—inactive, active A—
inactive B, inactive A—active B, and active—active electrostatics. In addition, this is currently
the most general SAPT formula available and can describe interactions between SCF-SCF,
SCF-CASSCF, and CASSCF-CASSCF wavefunctions where, if any ¢ or u index is zero, the
term simply vanishes. Finally, if we again assume that the active space is relatively small
compared to the size of the inactive space, this partitioning allows us to use current SAPT
routines to compute the 133 term very efficiently and any terms containing two or more active

indices will deal with relatively small tensors and be amenable to naive implementations.
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The EeXCh correction in the single exchange approximation can be formulated in a similar

manner and is shown below:

(P) =

Efah = (VP) = (V)(P) (7.3)

~253;Si5 — Ve SjeSjt — VB Siw Siw — Ve VB S S — Vi Ve Star Sera (7.4)

(VP) = —4.0051S;; — 804%,855S5; + 407,815 Siyr + 201 S + 4017, 85,5y

— 201,80 Siy — 200 — 407,83 + 207, Siyr — 295,051,
— 498 57 S + 27500817 S + 20550 S S — 473,@;7;;, SiiSij
+ %W/U /u/ SZ n + 27uulv S’L uSzu ’yuu/U S’L uSZ] ’)/uu/@Z]uSi/ij/

+ 298 5, S Sij + vuu,v I S — Q%qu/f%/ i — 5,08, — Q%U,U S

+ ,yuu’vuu’SU uu’u’ u///U o i’ SZU’” + Fuu oy u”’b;}{u/ il iyl
B ~ iU Ao Ba~ij Ao, Ba

— Fuu’u"u”’vu"u’ w!! 4,7tt’ Y ij St/ Stu + 2'}/”/ ’Yuu/'Uzu/Stl Stj
Ao, Ba~tj Aa Ba ~it Ao, Ba~tj

+ 27tt’ Vun 'LuSt/ Stu Yer Yuu! Viu ’St/ + 27 v Yuu! Ut’ Slustu

Aa_ Ba~ Aa, Ba~ Aa_ Ba~
— Vi ")/uu//Ut/ SiuSt] Vi quu”Ut’ SijStu’ + Yer Vuu’vt’ ’

Ao, Ba Aa_ Ba~ Aa,_ Ba~ij
+ Yerr Y Utu’St' + 27tt’ Yo Utj Szu’ St/ — Yetr Yuw Ve SijSt/u
Aa_ Ba

Ba~jj Aa_ Ba~t'j
— Y 7uu/UtuSzu’St’ ""Ytt Vo Vging St — 2% Vuu uj St

Aa . B Ao, Ba~t't Baoa+Ba ~
+ Vi ”Yuuo’évuu Stj = Vit Vuw Our — 297 Tt f Dt Strar Spur

uu'u'u
Baa+Ba ~iu Baa+Ba ~iu
+ Vtt’ Fuu tattag!t Ugry D!’ Stu”’ + ’ytt/ Fuu rttu Uty iUIIISt' "

Baa+Ba ~t'u AB _B
tt/ Fuu u//,uB///U " /Stu/// - 4,Ytt/6,yuuﬁ’vz‘] St’ Stu’

AB_ BB ~ Aﬁ B ~it
+ 27tt/ fyuu’v St' St] + 2rytt’ rYuu’UzuSt/ St“' — 2y ’Yuu’UZ ’St'

AB B AB _Bf ~ AB BB~
+ Q'Vtt/ﬁ 'Vmﬁvt/ SiuStw — ’ytt’ﬁ 71“5”;’] Siudty — 7tt'6 71“5“3 SijStur

AB_Bf ~ AB__BpS ~ AB_B
+ % /yuu/vt’u’ Sw + Verr Vo Utu’ St' + 2’7tt’ ’Yuuféjvtj Sw/ St/
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be utilized. Therefore, much of g0

techniques with little loss in performance.

AB BB~ AB B
- fytt’ﬁﬁyuub’)vzzjj SijSt/ Vtt’ﬂfyuuﬁ’vtuslul St/ + fYtt’ quu’/U“ Stu

BB ~t'j AB_Bp~t'j BB ~t't
- 27tt’ Vuu’vuj S + Yirr Vo' Vua! St] PYtt’ Yo Vun!

B ~ B ~
_ 2#)/ F aﬁjﬁlévlu,st/ ”Stu”’ —+ fyttBF aIB+IB,€UtZ,u/ iuuStum

wu'u' uu/u'
Ba,3+,36~zu BaB+BB ~t'u
tt’ Fuu ulu' V! iU"'St'U” ’ytt Fuu ultu Ut Pt

- 47{?/175: SyjSij + 273'772/ StjiStjr — 27%?'@;?*915’]'
+ 27{;‘/@;];/ SijStj - ’Yt?//&:/jj/ Sz'jStj + ’ytt’vt’tSZ]
+ %t'UtJSt’ + 27tt’v1;] SijSu; Vtt’vtj /Sijr S
2%t'vz&' St] + %t'vt' /Stjr — 73’ f)i'jt
- 27;5"6%81' 4'7tt'Ut' 15555 + 27tt'v 1SigSij
- 271;?’ ’yuBu’,DzZ;j’ St/j Stj + ,72?’ Vfu’@;}tu’ Sij Stj + 71;1’ Vuw! Utu’SU St'
- ,ygfl’ VEU'@%/ Stj - %ﬁ’ ’yfu’f}g’lu’ 2fytt’7uu’f}:’jj SW Siu/

+ ’ytt”yuu’vt’ 1S5 Siu + 'Ytt"Yuu’Ut/ SijSiw — 27£’7uu’vt’ 15455ij

~tu Aaa+La
Fytt’ruuu u”’/Ut’u’ ! i T 2 I FYuu’,Ut’ St/// St" ’
Aaa+pa_ Ba~tj Aaa+5a
Ftt’t”t”/ ’Yuu/Ut/ /St/// St” tt’t”t’” ’yuu,’Ut, St/” St" ’
Aao+Ba Ba tt” Aaa+ﬁa Baa+po ~tuy
o 1—‘tt’t”t’” ’St”’ tt’t”t”’ Fuuu 1 Uty /St’” ”St” m

Aaf+B6, B AoaB+BB_ BB ~t
_ 2Ftt’o7§/’6’)t”//8/g’}/uuﬁ’vt’ St/// St”u/ —|— Ftt’o;/gt”/?ﬂfyuuﬂlvtlj St/“ St//

+ FAaﬁ+ﬁﬁ Bp ~tj St/”'St’/u’ . Aaﬁ‘i’ﬁﬁ Bg ~ t;///St,”

tt/tl/tl// fyuul Ut/ tt/t//t/// fyuu
Aaf+ Baf+
—TI t/tl/B/t//I/BBFuuﬁ ffvt/ /St”’u” St”u”’ 2F t’t”t”/vt’ St/// St”
A ~17 A
+ Ftt’t”tl”vt’]j’ St’”j St”j' — tt/t”t’” Ut’t” St”/ — t’t”t“”}/uu’ Ut' /St/// St//

We observe that while the number of diagrams in this term is quite large, the vast

majority contain one or more active indices again indicating that naive implementations can

exc.

requires all unpaired electrons to have the same spin, in other words, only the high-spin
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., can be implemented with automatic code generation

It should be noted that this particular form



state of the dimer can be recovered. We have recently derived the E" correction in the

exch
single exchange approximation for arbitrary dimer spin-states between restricted open-shell
HF (ROHF) based wavefunctions and work is underway to extend this to CASSCF based

wavefunctions.

7.3 Induction and Dispersion

Second-order induction and dispersion, unlike electrostatics and exchange, cannot be
computed from the ground-state wavefunction. Instead, we will use the response-function
method of computing the second-order dispersion and induction energy which is given by

the generalized Casimir-Polder formula!53

——d dradrsdr,d 7.6
dzsp 27T/ //// r17r2’2w (1'3,1'4|’LCU)T13 Tou I'1araarsar4aw ( )

where o (11, ro|w) are the frequency dependent density susceptibilities (FDDS) of monomer

2)

X, at a given frequency w. This approach has been quite successful in computing the E! disp

energy between monomers described by SCF, DFT, RPA, and CC wavefunctions.!?* 157

The FDDSs are density-density response functions:
a’ (ry, r2lw) = ((p(r1); p(ra)))e (7.7)
Where §(r) is our electron-density operator:
P = bppaLpg (7.8)

and ¢, is our set of orthonormal orbitals. We can now expand the FDDS in terms of an

orbital basis:

o (11, 1ofw) = TH(w) 0y (r1) B (r1) dr (x2) s (r2) (7.9)
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Thus, Eg(hz.zp in the orbital basis is

1 O e re o
Ec(;zp = _%gklmngk’l’m’n’/ Hfl]f (Z(.U)Hnn/ (zw)dw (710)
0

where k and [ are general indices on monomer A and m and n are general indices on monomer
B. Only combinations of k£ and [ (m and n) that need to be considered are the non-redundant
pairs.

Returning our focus to the computation of FDDS’s, we will employ the general pertur-

bation notation A and B instead of the F operators:

~

((4; B))w = <<qu5Em>>w (7.11)

To begin, we first need to solve the MCSCF linear equations!®® %9

(EP — wsPhg?h = vl (7.12)

where EP is the electronic Hessian, S/ is the metric matrix, 3% collects the CI and orbital

rotation vectors

B? (7.13)
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and Vg] is our perturbation which, in the case of B = qu,

—
d
v o= (7.14)
At
ar
drs = OpsVrq — OrqVps (7.15)
% = (0| Elpl) (7.16)

where for d,.; the rs pair is again limited to non-redundant rotations. It should be noted that
the presence of the complex conjugate (*) and conjugate transpose (1) are required to ensure
the time-dependent equations are symmetric.!® In direct response to this, the electronic
Hessian of Chapter 6 is only a part of the electronic Hessian presented here, full equations
can be found in Ref. 158. To remove the difficultly of working with complex values, the
MCSCEF linear equations can be reformulated as a pair of linear equations that contain no
160

complex components.

The term ((A; B)),, can then be computed as
((A; B)), = —if; 7' V] (7.17)
The final MCSCF FDDSs can then be computed as

: £ T
5 (w) = (B Bwr)w = —if0 ky/ 1]

Epry

(7.18)

The w range is normally integrated over by transforming the range w € [0,00] to t €

[_17 1] by

w=03—— (7.19)



followed by an n-point Gauss-Legendre quadrature.

As can be seen, the formulas themselves are quite straightforward and the majority of
quantities involved can be computed as described in Chapter 6. However, the number of
linear equations to be solved is equal to the number of non-redundant orbital rotations which
can be quite large.

The E = energy in this formalism can be computed as follows:**

1 /
Bt = =5 (ws)f (@p)F I (0) (7.20)
where (wp)F is the unperturbed electrostatic potential of monomer B. The total Efj}i correc-

E(Q) B—A E(Q) A*)B

tion can be computed as E; ind

7.4 Conclusions

A general formula for the EYY and Y

oxch s energies between two CASSCFE wavefunctions

has been presented. In addition, the expressions for Ed and Ei(fg) have been formulated,

isp
but not fully derived. Work on the derivation and implementation of these formulas is

currently in progress.
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ABSTRACT: We investigated the basis set convergence of 15019 6-31G*(0.25) ® aug-cc-pVDZ ‘ (f%
high-order coupled-cluster interaction energy contributions for @ 6-31G™(0.25,0.15) @ aug-cc-pVTZ

21 small weakly bound complexes. By performing CCSDT(Q) 100 }
calculations in at least the aug-cc-pVTZ basis set, and CCSDT

calculations in at least aug-cc-pVQZ (aug-cc-pVTZ for one 504 }

system), we found the convergence to be quite slow. In
particular, the 6-31G*(0.25) and 6-31G**(0.25,0.15) bases % -
advocated by Hobza et al. (] Chem. Theory Comput. 2013, 9, 01 cCcSsDT CCSDT(Q) CCSDT(Q) +S17ﬁd§.monal
2151; ibid. 2013, 9, 3420) are unsuitable for the post- -cesD(T) -CCSDT -cCsD(T) mafl Dimers
CCSD(T) effects, with average errors for the CCSDT(Q)-

CCSD(T) interaction energy contribution of about 80% for 6-31G**(0.25,0.15) and 110% for 6-31G*(0.25). Upgrading the
basis set to aug-cc-pVDZ reduces the average error to about 35% and extremely demanding CCSDT(Q)/aug-cc-pVIZ
calculations are necessary for further improvement in accuracy. An error cancellation between basis set incompleteness effects at
the CCSDT-CCSD(T) and CCSDT(Q)-CCSDT levels occurs for most (but not all) complexes, making it unproductive to carry
out CCSDT calculations in a larger basis set than the more demanding CCSDT(Q) calculations. We also found that the frozen
natural orbital approximation at the CCSDT and CCSDT(Q) levels works well only if the thresholds for discarding least
occupied natural orbitals are very tight (significantly tighter than the thresholds recommended for molecular correlation energies
in the original work of Rolik and Kéllay, J. Chem. Phys. 2011, 134, 124111), making the performance gains quite limited. The
interaction energy contributions through CCSDT(Q) are both a necessity and a bottleneck in the construction of top-accuracy
interaction potentials and further improvements in the efficiency of high-order coupled-cluster calculations will be of great help.

.~§«3>“°’

Mean Error [%]

I. INTRODUCTION approaches'>"?), the CCSD(T)/CBS interaction energies can
The “gold-standard” coupled-cluster approach® with single, be obtained so precisely that higher-order coupled-cluster
double, and noniterative triple excitations [CCSD(T)]? has excitations can become the leading contribution to the residual
)
proven immensely successful in generating highly accurate errors of interaction energies (along with the corrections for
noncovalent interaction energies. In particular, the databases of core—core and core—valence correlation, relativistic effects, and
CCSD(T)-level interaction energies are an extremely valuable post-Born—Oppenheimer terms). Therefore, higher-order
tool for the benchmarking and tuning of more approximate coupled-cluster interaction energy contributions, obtained

methods.*™® Due to the increase of the available computational using ccspT, ' CCSDT(Q);IS'M and/or CCSDTQ,"”'® have
power and the advances in overcoming basis set incompleteness
effects at the CCSD(T) level (such as complete-basis-set (CBS) Received: April 22, 2014
extrapolations,”'* bond functions,'" and explicitly correlated F12 Published: June 9, 2014

W ACS Publications  © 2014 American Chemical Society 3140 dx.doi.org/10.1021/ct500347q | J. Chem. Theory Comput. 2014, 10, 3140—-3150
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Table 1. Interaction Energy Contributions (in cm™") for the He—He, He—H,, and H,—H, Complexes in Their Respective van der

Waals Minimum Geometries

basis set CCSD(T) o 8 SriQ 8q.
He—He
6-31G*(0.25) 6.7387 —-0.0027 0.0000 —0.0027 0.0000
6-31G**(0.25,0.15) —1.5310 —0.1273 —0.0073 —0.1346 —0.0036
aDZ —2.9223 —0.1891 —0.0042 —0.1933 —0.0021
aTZ —5.7698 —0.2124 —0.0066 —0.2190 —0.0031
aQZ —6.4344 —0.2124 —0.0074 —0.2198 —0.0034
aSZ —6.8306 —0.2108 —0.0077 —0.2185 —0.0032
a6Z —7.1316 -0.2117 —0.0080 —-0.2197 —0.0034
He—H,
6-31G*(0.25) 10.9419 —-0.0120 0.0010 —0.0110 0.0007
6-31G*%(0.25,0.15) —6.2201 —0.2826 —0.0020 —0.2846 0.0008
aDZ —6.8620 —0.4035 —0.0096 —0.4130 —0.0027
aTZ —9.1984 —0.4040 —0.0140 —0.4180 —0.0034
aQZ —9.9053 —0.3947 —0.0159 —0.4106 —0.0036
aSZ —10.2463 —0.3870 —0.0165 —0.403S —0.0037
a6Z —10.4263 —0.3830
H,~H,
6-31G*(0.25) 28.2768 —0.0747 —0.0238 —0.0985 —0.0144
6-31G**(0.25,0.15) —22.8972 —0.9264 —0.0736 —1.0000 —0.0342
aDZ —24.3163 —1.1896 —0.0901 —-1.2797 —0.0333
aTZ —35.0745 —1.2392 —0.1006 —1.3398 —0.0306
aQZ —37.3259 —1.1885 —0.1059 —1.2944 —0.0307
aSZ —37.8178 —1.1550 —-0.1072 —1.2622
a6Z —38.0588 —1.1364

attracted significant attention in the last year, culminated by the
extensive and illuminating studies of Hobza and collabora-
tors.'” ! These authors have constructed the A24 database of 24
small complexes for which the benchmark interaction energies
contain, in addition to an estimate of the CCSD(T)/CBS
interaction energy, the corrections due to core—core and core—
valence correlation, relativistic effects, and post-CCSD(T) terms.
The latter correction was calculated®® at the CCSDT(Q) level
using a 6-31G**(0.25,0.15) basis set. Furthermore, by perform-
ing calculations up to CCSDTQP (for the smallest dimers, even
full CI), Hobza et al. have shown®' that the CCSDT(Q)
interaction energies are already converged to about 0.5 cm™" or
better. This conclusion is in line with earlier observations of a
remarkable agreement between the interaction energies
predicted by CCSDT(Q) and CCSDTQ.*?>™** On the other
hand, the inclusion of full, iterative (CCSDT) triples alone does
not provide a consistent improvement over CCSD(T); the
inclusion of quadruple excitations at least at the noniterative (Q)
level is crucial."

The work of Hobza and collaborators used a small 6-
31G*%#(0.25,0.15) basis for the post-CCSD(T) corrections to
make the calculations feasible (only ref 19 presented results in
the slightly larger aDZ = aug-cc-pVDZ basis as well). Due to the
steep computational scaling of the methods involved (N® for
CCSDT and N? for CCSDT(Q)), it is not possible to obtain fully
converged CBS estimates of the post-CCSD(T) contributions
except for small four-electron systems (the latter are, however,
not quite representative of larger systems as will be shown
below). However, there is some compelling evidence that the
basis set convergence of the post-CCSD(T) terms is no faster
than for the CCSD(T) interaction energy, so that basis sets such
as 6-31G**(0.25,0.15) or aDZ are likely inadequate. In
particular, for the argon dimer, the 6; = CCSDT—CCSD(T)
and 6q) = CCSDT(Q)—CCSDT contributions to the near-

3141

minimum interaction energy, computed in the aDZ basis set,
amount to only —4% (that is, the sign is wrong) and 32%,
respectively, of the values computed in the largest basis sets
feasible, aug-cc-pV(S + d)Z and aug-cc-pV(Q + d)Z,
respectively.

In view of the slow basis set convergence of 51 and §(q for the
argon dimer, and of a similar pattern observed for other weakly
interacting dimers investigated in our groups,”*° we suspect that
the largest remaining error in the interaction energies of the A24
database might be due to the, possibly severe, basis set
incompleteness effects in 61 and §(q). On a more fundamental
level, we would like to gauge the utility of adding a small-basis
CCSDT(Q) correction to the interaction energy and to establish
the basis set requirements for an accurate description of this
correction. Additionally, as for some systems o1 and 6(q) cancel
each other to a large extent, we want to study the basis set
convergence of the overall CCSDT(Q)-CCSD(T) contribution
and compare it with the properties of 1 and §(q) separately. As
our working hypothesis is that small-basis 61 and 6(q) corrections
may be qualitatively inaccurate, we restrict our considerations to
small systems for which the CCSDT(Q) calculations in at least
the aTZ basis are feasible. For some smaller complexes, we will be
able to run CCSDT and CCSDT(Q) in bases as large as a5Z and
aQZ, respectively, and for the four-electron systems (where
CCSDTQ_is equivalent to FCI) still larger basis sets can be
utilized even at the CCSDTQ level.

The example dimers considered in this work include nearly all
complexes for which post-CCSD(T) interaction energy
corrections have been previously computed using any basis set
larger than aDZ as well as a number of dimers (e.g,, NH;—NH,
and CH,—CH,) for which such calculations have not been done
before. Specifically, we consider the four-electron systems He—
He,” He—H,,*® and H,—H,,* rare §as dimers Ne—Ne*° and
Ar—Ar,*** the complexes H,—CO,>?! H,—HC],* He—C3,26
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Table 2. Interaction Energy Contributions (in cm™") for the He—LiH and LiH-LiH Complexes®

basis set CCSD(T) St 80 bri(q) bq
He—LiH
6-31G*(0.25) ~12718 —0.522 —0.030 —0.552 —0.007
6-31G**(0.25,0.15) —31.749 —-1.157 —-0.102 —1.258 —0.041
aDZ —98.359 —-1.063 —0.054 -1.117 —0.025
aTZ —139.102 —-1.120 —0.066 —-1.185 —0.028
aQzZ —147.367 —1.108 —-0.071 -1.176 —-0.029
aSZ —148.140 —1.080 —-0.072 —-1.152
LiH-LiH
6-31G*(0.25) —13872.24 —28.86 —1.08 —29.94 —0.16
6-31G*%(0.25,0.15) —14473.47 —31.54 ~0.16 ~31.70 0.39
aDZ —15851.0S —29.48 —-1.17 —30.65 —-0.21
aTZ —16689.70 —35.06 —2.51 —37.56 —0.56
aQZz —16818.09 -33.20 —-2.83 —36.03 —-0.50
aSZ —16854.59 —-31.94

“The lithium 1s core electrons have not been correlated.

Ar—HF,**™* Ne—HF, and H,—HF under investigation in our
groups, and the N,—N,,** H,0—H,0,*” He—LiH, LiH-LiH,
Ar—CH,, HF—HF, NH;—-NH;, and CH,—CH, dimers.
Compared to the post-CCSD(T) interaction energies beyond
the aDZ basis available in the literature, to our knowledge, we
only exclude the systems with less than four electrons for which
FCI calculations are quite straightforward®®*® and the alkaline
earth metal dimers which are four-electron systems within the
frozen-core approximation (this approximation, however, works
poorly in this case, and the accuracy of the CCSD(T) interaction
energies is particularly low; see ref 40 and references therein).

Il. COMPUTATIONAL DETAILS

The majority of the calculations are performed at the global-
minimum geometries, which are taken from the literature to
facilitate comparison with previous studies. For the H,O—H,0
and N,—N, complexes, where the global minimum has relatively
low symmetry, we have performed additional calculations at a
more symmetric configuration. The geometries of all studied
complexes are described in Table SI in the Supporting
Information (which also lists the corresponding Cartesian
coordinates). We have employed the 6-31G*(0.25)*"* and 6-
31G**(0.25,0.15) basis sets popularized by Hobza as well as the
singly augmented Dunning sequence aXZ, X = D,T,Q,5,6."*
Note that for the second-row atoms (Cl and Ar) the regular aXZ
sets were used, not the aug-cc-pV(X + d)Z sets™ as the latter,
while slightly larger, have not shown any consistent improvement
for interaction energies. Moreover, the aXZ, X = D, T,Q, bases for
lithium are the original sets from ref 46 (as listed on the Basis Set
Exchange Web site*’), not the revised sets of ref 48. All
interaction energies include the counterpoise (CP) correction
for basis set superposition error. Contrary to refs 19—21, which
correlated all electrons, our dr and J(q) corrections will be
obtained within the frozen-core approximation. This approach
corresponds to treating the corrections to CCSD(T)/CBS for
higher-order excitations and for core—core and core—valence
correlation as additive, as implicitly assumed in nearly all studies
to date. We have, however, tested this assumption on the “worst-
case-scenario” examples involving the LiH molecule (the frozen-
core approximation generally works 0poorly for interactions
involving alkali or alkaline earth metals*®) as well as on the much
less critical example of Ne—Ne.

All CCSDT(Q) and CCSDTQ calculations have been carried
out using the MRCC program,*~>! either stand-alone or
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interfaced to MOLPRO2012.1.>> The largest CCSDT calcu-
lations have used the CFOUR code.*® For a few systems, we have
carried out additional CCSDT and CCSDT(Q) calculations with
the virtual orbital space truncated according to occupations of
MP2 natural orbitals;** see section IILB for details.

lll. NUMERICAL RESULTS AND DISCUSSION

The basis set convergence of the or, 0(q), and dq=
CCSDTQ-CCSDT(Q) contributions to the near-minimum
interaction energies of four-electron dimers He—He, He—H,,
and H,—H, is presented in Table 1. The corresponding values of
the CCSD(T) interaction energies are shown to illustrate the
significance of the post-CCSD(T) contribution.

The first observation from Table 1 affirms that for the four-
electron systems quadruple excitations are only of minor
importance. At the largest basis sets listed, the §(q) term does
not exceed 10% of o1, and the correction for full CCSDTQ
(equivalent to full CI in this case) is still smaller by a factor of at
least 2. While the basis set convergence of §(qy might not be of
critical importance for these systems, it is quite slow, with the
aDZ value amounting to 54—84% of the aSZ result. Fortunately,
the dominating O contribution exhibits faster basis set
convergence, with the aDZ basis reproducing 89—105% of the
a6Z value. The 6-31G**(0.25,0.15) basis accidentally gives a
very good value of §(q) for He—He, but it is quite inaccurate for
the remaining two dimers as well as for the dominating 1
correction, for which the errors are about four times that of aDZ.
As could be expected, the still smaller 6-31G*(0.25) basis
(equivalent to just 6-31G for hydrogen and helium) is completely
unsuitable for dispersion-dominated interactions.

The 61, 6(q), and &g results for the He—LiH and LiH-LiH
dimers are presented in Table 2. As the 1s lithium electrons were
not correlated (we will examine the all-electron 81 and S
contributions for these systems in section IIL.C), these are also
four-electron systems and even CCSDTQ=FCI can be
computed in reasonably large basis sets. Similar to the other
four-electron systems (Table 1), the &1 effect strongly dominates
over 6(q) and 6. However, the overall post-CCSD(T) effects are
very minor (below 1%) for He—LiH and LiH—LiH and the
convergence of the y contribution is generally quite good even
though it becomes monotonic only from the aTZ level on. Even
the 6-31G*#(0.25,0.15) set, while inadequate for the minor &g
contribution, recovers 98—107% of the a5Z result for ; the 6-
31G*(0.25) basis is not much worse for the LIH-LiH complex.
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Table 3. Interaction Energy Contributions (in cm™") for the Ne—Ne, Ar—Ar, and He—C; Complexes in Their Respective Global

Minima“
basis set CCSD(T) o 8 SriQ 8q.
Ne—Ne
6-31G*(0.25) —16.8056 —-0.1078 0.1276 0.0199 —0.0129
aDZ —3.0539 —0.0407 0.0326 —0.0080 —0.0074
aTZ —16.6713 —0.2694 —0.0269 —0.2963
aQZ —22.9583 —0.3728 —0.0704 —0.4432
aSZ —25.7525 —0.4072
Ar—Ar
6-31G*(0.25) —12.940 0.005 0.774 0.780 —0.148
aDZ —24.467 —0.054 —-0.547 —0.601 0.104
aTZ —66.090 0.824 —1.206 —0.382
aQZ —81.579 1.052 —-1.612 —0.560
aSZ —90.097 1.200
He-C;
6-31G*(0.25) 19.023 0.075 —0.139 —0.064 0.007
6-31G*#(0.25,0.15) ~12.309 0.084 —0.295 —0211 0.029
aDZ —15.499 0.189 —-0.579 —0.390 0.021
aTZ —22.628 0.370 —0.649 -0.279
aQZ ~24.485 0432

“The Ar—Ar and He—C, results (except for the 6-31G*(0.25) and 6-31G**(0.25,0.15) ones) are taken from Refs 24 and 26, respectively, and most
of the Ne—Ne results have been obtained in Ref 30. The 6-31G*(0.25) and 6-31G*%*(0.25,0.15) bases are identical when no hydrogen or helium

atoms are present.

Table 4. Interaction Energy Contributions (in cm™") for the Ne—HF, Ar—HF, and Ar—CH, Complexes in Their Respective Global

Minima
basis set CCSD(T) o1 S O1:+(Q) dq
Ne—HF
6-31G*(0.25) —49.798 —0.054 0.191 0.137 —0.025
6-31G**(0.25,0.15) —88.120 —0.123 0.102 —0.021 —0.038
aDZ —55.228 —-0.252 —0.303 —0.555 0.028
aTZ —72.406 —-0.928 —0.610 —1.538
aQzZ —79.262 —0.938 —0.736 —-1.674
aSZ —86.125 —-0.911
Ar—HF
6-31G*(0.25) —21.707 0.488 0.067 0.555 —0.100
6-31G**(0.25,0.15) —82.679 —0.083 0.030 —0.052 —0.030
aDZ —94.051 —1.288 —0.849 —-2.137 —-0.013
aTZ —185.643 —0.889 -1.977 —2.866
aQZ —207.969 —0.477 —-2.331 —2.808
aSZ —212.617 —0.238
Ar—CH,
6-31G*(0.25) —22.898 ~0.136 0241 0.105 —0.111
6-31G**(0.25,0.15) —50.559 —0.469 0.454 —0.015 —-0.121
aDZ —82.669 —0.506 —1.020 —1.526
aTZ —119.564 0.522 —1.924 —1.402
aQZ —132.986 0.880

As seen in Table 2, the frozen-core He—LiH and LiH—LiH
systems are not particularly demanding when it comes to the
basis set selection for the post-CCSD(T) corrections. It is,
unfortunately, not the case for most of the larger dimers, as
illustrated in Tables 3 (Ne—Ne, Ar—Ar, He—C;), 4 (Ne—HF,
Ar—HF, Ar—CH,), S (H,—HF, H,—HCl, H,—CO), 6 (H,0—
H,0, N,-N,), and 7 (HF—HF, NH,—NH,, CH,—CH,). In the
most extreme cases of the H,O—H,O and HF—HF complexes,
the aDZ basis either fails to capture the correct sign of the dr,(q)
= Ot + O(q) sum or underestimates Or, (q) several times, and the
6-31G*(0.25) and 6-31G**(0.25,0.15) bases are still worse.
Tables 3—7 also show that the (q) correction tends to converge
from above to a negative CBS result, while the 61 term can have
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either sign and mostly approaches its CBS limit from below
although the convergence often becomes monotonic only from
the aTZ level on.

To facilitate the analysis of the overall performance of different
basis sets for o1 and J(q), we will partition the complexes into
four groups as follows.

o Four-valence-electron dimers: He—He, He—H,, H,—H,,
He—LiH, and LiH-LiH

o Nonpolar—nonpolar dimers: Ne—Ne, Ar—Ar, He—C;, H,—
CO, Ar—CH,, N,—N, (2 orientations), and CH,—CH,

o Polar—nonpolar dimers: H,—HF, H,—HCI, Ne—HF, Ar—
HF
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Table 5. Interaction Energy Contributions (in cm™") for the H,—HF, H,—HCI, and H,—CO Complexes in Their Respective near-

Global Minimum Geometries®

basis set CCSD(T) Sr S SriQ bq
H,—HF
6-31G*(0.25) 233.239 —-0.218 0.242 0.024 —0.128
6-31G**(0.25,0.15) —93.337 —2.545 0.326 —-2.219 —0.105
aDZ —296.317 —-3.612 0.156 —3.456 —-0.130
aTZ —370.023 —-3.937 —0.458 —4.395
aQZ —387.151 —-3.450 —0.646 —4.096
aSZ —391.676 —3.181
H,—HCl
6-31G¥(0.25) 118.346 —0.700 —0.026 —0.726 —0.036
6-31G**(0.25,0.15) —57.089 —2.460 0.182 —2.278 —0.096
aDZ —122.888 —-2.722 —-1.123 —3.845 —-0.010
aTZ —183.349 —2.426 —-1.774 —4.200
aQzZ —199.442 —-1.927 —-1.991 -3.919
aSZ —202.779 —1.683
H,—CO
6-31G¥(0.25) ~15.706 —0.842 —0.095 —0.937 —0.109
6-31G*%(0.25,0.15) —89.638 -1.536 —-0.532 —2.068 0.021
aDZ —73.160 —1.850 —0.856 —2.706 —0.045
aTZ —86.503 —1.469 —1.131 —2.600
aQZ —89.257 —-1.303 —-1.208 —2.508
aSZ —-90.210 —1.207

“Most of the H,—CO results were obtained in the course of the work on refs 31 and 25.

Table 6. Interaction Energy Contributions (in cm™) for the Water and Nitrogen Dimers®

basis set CCSD(T) St S Sri(@ 8q
H,0—-H,0 (global minimum)
6-31G*(0.25) —1386.50 5.65 -071 493 —0.08
6-31G**(0.25,0.15) —1475.05 5.52 —1.50 4.02 0.11
aDZ —1530.34 2.36 —-3.24 —0.88
aTZ —1665.60 1.51 —4.95 —3.44
aQZ —1726.71 2.02
H,0—H,0 (C,,)
6-31G*(0.25) —902.55 3.89 1.04 493 —0.18
6-31G**(0.25,0.15) ~1021.62 375 027 403 —0.07
aDZ —1026.27 1.14 -0.73 0.41 —0.08
aTZ —1107.16 0.30 -2.26 -1.96
aQZ —1141.02 0.55 —2.447 —1.89"
N,—N, (global minimum)
6-31G*(0.25) —85.401 2.479 —4.448 —1.969 1462
aDZ —79.561 2.855 —4.852 —-1.997
aTZ -97.162 3.622 —5.456 —1.835
aQzZ —102.468 3.857
N,—N, (D)

6-31G*(0.25) —50.828 1.877 -3.050 —-1.173 1.372
aDZ —49.207 2.294 —-3.540 —1.246 1.122
aTZ —69.069 3.267 —4.391 —1.124
aQz —72.826 3.531

“Each complex is presented in two geometries: the global-minimum one (less symmetric) and a highly symmetric structure that is only a radial
minimum. The 6-31G*(0.25) and 6-31G**#(0.25,0.15) bases are identical when no hydrogen or helium atoms are present. Result obtained in the

FNO approximation (section IILB).

e Polar—polar dimers: H,O—H,O (2 orientations), HF—HF,
and NH;—NH;,

The first important factor that differentiates between
complexes belonging to different groups is the relative
importance of the 61 and Jq) interaction energy contributions
compared to the leading CCSD(T) term. There exists ample
literature concerning the methodology (basis sets, counterpoise
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correction or lack thereof, CBS extrapolations, and different
explicitly correlated CCSD(T)-F12 variants) of obtaining
precise and reliable CCSD(T)/CBS interaction energy
: 55—59 o .

estimates, and it is not our aim to generate ultra-accurate
values of the CCSD(T)/CBS term. Therefore, we will select the
most accurate CCSD(T)/CBS benchmark values from the

literature if available for a given geometry: if not, we will obtain

dx.doi.org/10.1021/ct500347q | J. Chem. Theory Comput. 2014, 10, 3140—3150



Journal of Chemical Theory and Computation

Table 7. Interaction Energy Contributions (in cm™) for the HF, NH;, and CH, Dimers in Their Respective near-Minimum

Configurations
basis set CCSD(T) St 8 SriQ dq
HF-HF
6-31G*(0.25) ~1316.83 6.17 -0.98 5.18 0.15
GSIG**(QZ&OJS) —1247.58 9.23 -3.21 6.02 0.32
aDZ —1391.01 4.52 -2.15 2.37
aTZ —1504.08 091 —348 —-2.57
aQZ —1576.91 0.52
NH,—-NH,
6-31G*(0.25) —791.26 113 —1.01 0.12 0.00
6-31G*%(0.25,0.15) —927.82 —024 —125 —149 0.00
aDZ —928.12 —-0.47 —-3.72 —4.19
aTZ —1050.72 1.56 —5.80 —4.24
aQzZ —1082.74 2.60
CH,—CH,
6-31G*(0.25) —23.384 —0.124 —0.992 —1.116 —0.043
@31G**(023015) —102.161 —1.008 —-1.170 —2.178 0.124
aDZ —143.081 —1.403 —1.888 —-3.292
aTZ —174.241 —-0.212 —2.893 -3.105
aQZ —181.931
-5 -4 -3 -2 -1 0 1 2 3 4 5 6

Contribution [%]

Figure 1. 6, §(q), 01.(q) and 8 interaction energy contributions as percentages of the CCSD(T)/CBS interaction energy. The four-valence-electron,
nonpolar—nonpolar, polar—nonpolar, and polar—polar dimers are represented by green, blue, orange, and red symbols, respectively. The circles
represent the unsigned averages of the individual values, with the black circle showing the unsigned average for all complexes.

CCSD(T)/CBS estimates by the standard X~ extrapolation’ of
the results computed in the aQZ and aSZ bases (aSZ and a6Z for
a few systems). The complete set of benchmark CCSD(T)/CBS
interaction energies is listed in Table SI in the Supporting
Information.

The values of the 6 and (q) corrections, as well as of their
r4(q) sum and of the post-CCSDT(Q) term g, as percentages
of the CCSD(T)/CBS interaction energy are presented in Figure
1. In this figure (its design is inspired by refs 58 and 60), the four-
valence-electron, nonpolar—nonpolar, polar—nonpolar, and
polar—polar dimers (see the partitioning above) are represented
by green, blue, orange, and red symbols, respectively. Note that,
as the CCSD(T)/CBS interaction energy is negative, a positive
percentage means a negative interaction energy contribution. For
individual systems, the actual percentages (positive or negative)
are shown: however, all averages pertain to unsigned percentages
(in other words, we show the mean unsigned relative deviations
of, for example, CCSD(T) + &y relative to CCSD(T)). In Figure
1, the values of 61 and ) are chosen as (supposedly) the most
accurate estimates of these corrections available from Tables
1-7, that is, the results of the X~ extrapolation using the two
largest-X aXZ values (note that the largest X available is typically
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higher for 6 than for E(Q)). In the particular case of the a(D,T)Z
extrapolation, it was observed for the CCSD(T)—MP2
interaction energy contribution®" that the inadequacy of the
aDZ basis often makes the extrapolated result inferior to the
calculated aTZ value. In order to check whether the similar
observation holds for 1 and §(q), we compared the performance
of the a(D,T)Z and aTZ estimates of these corrections to the
benchmark values obtained by the a(T,Q)Z extrapolation or
higher: this comparison was done on 18 systems (all but CH,—
CH,, HF—HF, and Ar—HF, excluded for the reasons described
below) for 61 and 13 systems for ). For &z, the overall accuracy
of the a(D,T)Z and aTZ results was about the same (a mean
unsigned relative error (MURE) of 25.3% versus 28.3%),
however, the a(D,T)Z approach performed much better on the
nonpolar—nonpolar dimers (a MURE of 10.6% versus 30.0% for
bare aTZ) so we chose the 61/a(D,T)Z result as benchmark for
the methane dimer (the only complex for which CCSDT/aQZ
could not be calculated). In the case of &), the extrapolated
a(D,T)Z estimates performed significantly better (a MURE of
10.8% versus 24.5% for aTZ) so we adopted the §(q)/a(D,T)Z
values as benchmarks when larger-basis results are not available.
All benchmark estimates of the post-CCSD(T) corrections are
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listed in Table SII in the Supporting Information. On the average,
the 61 and Jq) effects amount to, respectively, 2.04% and 0.13%
for four-valence-electron dimers, 1.91% and 2.61% for non-
polar—nonpolar dimers, 0.61% and 0.84% for polar—nonpolar
dimers, 0.13% and 0.35% for polar—polar dimers, and 1.36% and
1.25% overall. The magnitude of the post-CCSD(T) effects can
be contrasted with the 61y = CCSD(T)—CCSD interaction
energy contribution which amounts, on the average, to 17.4% of
the CCSD(T) benchmark (the MP2, CCSD, and O(r) interaction
energy terms are given in Table SII for completeness). As evident
from Figure 1, for the nonpolar—nonpolar dimers the 51 and ()
contributions cancel out partially but systematically while for the
polar—nonpolar and polar—polar dimers no such cancellation is
present. As mentioned above, the O contribution strongly
dominates for the four-valence-electron complexes. The bench-
mark values for the nonperturbative quadruples correction &,
were computed in the largest bases available in Tables 1—7
without any extrapolation. As shown in Figure 1, the o
correction is generally very small. The only exceptions are the
two geometries of the nitrogen dimer: interactions between
triply bonded molecules such as N, or CO are known to require
particularly high orders of Moller—Plesset perturbation theory
(MPn) or high-order coupled-cluster excitations.®> One should
note that the same two N,—N, structures are responsible for the
largest percentage contributions to 51 (the two leftmost lines in
Figure 1) and §q (the two rightmost lines); however, these two
terms cancel out to a large extent.

When the 6y term can be computed in a larger basis than §(q)
(which is the case for all complexes but four, cf. Tables 1—7),
there are two sensible ways of estimating the benchmark value of
the overall Or,(q) contribution: as a sum of the dr and J(q)
benchmarks (obtained in separate extrapolations) or via a single
extrapolation of the 6, ) term computed in the two largest basis
sets for which the (q) value is available. While the first approach
is formally closer to CBS (it includes the &1 contribution in larger
basis sets), the second approach is preferable if any cancellation
between the basis set incompleteness errors at the d; and
levels occurs. For the 12 complexes for which the CCSDT/aSZ
and CCSDT(Q)/aQZ calculations are possible, the single-
extrapolation &t (q)/ a(T,Q)Z estimate differs from the separate-
extrapolations 61/a(Q,5)Z + §(q)/a(T,Q)Z one by an average of
5.2%. As the results in Tables 1—7 show that the &1, (q) sum
exhibits faster basis set convergence than its dr and J(q
components for most but not all dimers (in other words, error
cancellation is likely but not at all systematic), it is not clear which
one of these estimates is more accurate but the difference is
minor. For smaller bases, an additional factor is the poor
performance of the &1, q)/a(D,T)Z extrapolation—comparison
with the a(T,Q)Z (or higher) benchmark data for 13 complexes
shows a MURE of 19.9% for r,(q)/a(D,T)Z and 13.5% for
Or4(q)/aTZ. Therefore, computing the 5 part from the a(T,Q)Z
extrapolation should be highly preferred over either a(D,T)Z or
aTZ: not only the basis set is larger but the extrapolation is clearly
beneficial. Consequently, we decided to compute our dr,(q)
benchmark values, presented in Figure 1, using the separate-
extrapolations approach whenever possible (for the methane
dimer, we chose the 6r,(q)/ a(D,T)Z value as benchmark).

While, as expected, the overall Oty interaction energy
correction is quite minor (0.16% to 3.72% of the CCSD(T)/CBS
value, or a maximum of 2.68% if four-valence-electron dimers are
neglected), it nevertheless becomes important in top-accuracy
calculations. Therefore, one should ask how well the 61, 6(q), and
Or4(q) corrections are recovered (relative to the benchmark
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values of these terms from Figure 1) when computed in a smaller
basis set. To answer this question, we computed the MURE
values of the & correction obtained in the 6-31G*(0.25), 6-
31G*%*(0.25,0.15), aDZ, aTZ, and aQZ basis sets, and of the o
and br,(q) terms computed in the 6-31G*(0.25), 6-31G**-
(0.25,0.15), aDZ, and aTZ basis sets, relative to the benchmark
values from Figure 1. The results are presented in Figures 2, 3,
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Figure 2. Performance of different basis sets in the recovery of the o1
benchmark (extrapolated from the two largest-basis results in Tables
1-7) displayed as mean unsigned relative errors (MURE). The black
lines represent the median unsigned relative errors (MeURE). The
CH,—CH,, HF—HF, and Ar—HF complexes are excluded from the
MURE and MeURE calculation due to the accidental smallness of the
benchmark value (see text for details).
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Figure 3. Performance of different basis sets in the recovery of the (q)
benchmark (extrapolated from the two largest-basis results in Tables
1-7) displayed as mean unsigned relative errors (MURE). The black
lines represent the median unsigned relative errors (MeURE).

and 4 for 6y, 6(q), and dr,(q), respectively. Note that a MURE of
over 100%, obtained for some classes of systems at the 6-
31G*(0.25) and 6-31G*%*(0.25,0.15) basis sets, means that it is
better to neglect a contribution completely (a 100% error) than
to compute it using such a small basis set. It should also be noted
that even our largest-basis estimates are in general not converged,
as indicated by the overall MURE values of 13.7, 19.2, and 15.8%
obtained for d1/aQZ, 5(Q>/ aTZ, and 5T+(Q)/ aTZ, respectively.
There are three systems for which the benchmark 8 value is
particularly close to zero so that the relative errors are greatly
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B 6-31G*(0.25)
@ 6-31G**(0.25,0.15)
@ apz
B 57/aTZ + §g)aDZ
aTz
61/aQZ + §qy/aTZ

Figure 4. Performance of different basis sets in the recovery of the 61, (q)
benchmark (computed as a sum of the 7 and ) benchmarks obtained
in separate extrapolations) displayed as mean unsigned relative errors
(MURE). The black lines represent the median unsigned relative errors
(MeURE).

exaggerated (no similar issues arise for §q) and 6r,(q)). These
systems are CH,—CH,, HF—HF, and Ar—HF, with the two
largest-basis computed results, §;/a(X—1)Z and 51/aXZ, and
the extrapolated &;/(a(X — 1)Z,aXZ) value amounting to
(—1.403,—0.212,0.289) cm™", respectively, for CH,—CH, (note
that the correction is particularly poorly converged in this case
because the aQZ value is not available), (0.91,0.52,0.24) cm™* for
HF—HF, and (—0.477,—0.238, 0.013) cm™" for Ar—HF. Thus,
the unsigned relative errors of even the largest-basis computed
results (with respect to the extrapolated value) exceed 100% for
these three systems. Therefore, to make the statistics in Figure 2
meaningful, the CH,—CH,, HF—HF, and Ar—HF complexes
had to be excluded. Even after this exclusion, the 6-31G*(0.25)
and 6-31G**(0.25,0.15) bases lead to 5 errors of over 50% in all
cases except the four-valence-electron dimers in the latter set.
With the same exception of the four-valence-electron systems,
the aDZ basis set is also inadequate for the o1 term, with the
largest errors (excluding the CH,—CH,, HF—HF, and Ar—HF
complexes) of 144.3, 113.9, and 104.0% obtained for Ar—CH,,
NH;—NHj, and Ar—Ar, respectively. The percentage errors are
particularly large for the polar—polar dimers: fortunately, these
are also the systems where the post-CCSD(T) corrections are
least important in relative terms, cf. Figure 1.

For the §(q) contribution (Figure 3), the 6-31G*(0.25) and 6-
31G**(0.25,0.15) basis sets give average errors close to 100%
while the errors in the aDZ set are around 50%. Notably, the
errors of Jq) are quite similar across all classes of systems despite
the vastly different relative importance of this correction (cf.
Figure 1), making it particularly critical to converge this term for
the nonpolar—nonpolar and polar—nonpolar dimers. The largest
errors at the §(q)/aDZ level amount to 132.0, 119.9, and 71.6%
for Ne—Ne, H,—HF, and H,0—H,0 (C,,), respectively.

For most of the systems, if the Jq) calculation is feasible up to
the aXZ basis, the 1 contribution can be obtained also in the
a(X + 1)Z set. However, the statistical errors in Figure 4 indicate
that the improvement of dy is not really beneficial unless one
improves 5(Q) at the same time. In fact, the 8;/aTZ + 5(Q) /aDZ
estimates perform only a little bit better than 61, (q)/aDZ (a
MURE of 34.2% versus 38.6%), and 61/aQZ + 6q)/aTZ
compared to r,(q)/aTZ exhibits the same trend (a MURE of
11.4% versus 15.7% excluding the CH,—CH,, complex). Thus, a
separate Jp calculation using a basis set beyond the d(q
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capabilities is usually not worthwhile. The largest errors at the
O14(q)/aDZ level amount to 162.3, 122.2, and 98.5% for HF—
HF, H,0-H,0 (C,,), and Ne—Ne, respectively, and clearly
show that extreme caution is needed if one wishes to include
post-CCSD(T) interaction energy contributions using basis sets
of this size.

A. Anisotropy of the Post-CCSD(T) Contributions.
Except for the high-symmetry configurations of the H,0—H,0
and N,—N, complexes, the discussion so far concerned only
geometries near the van der Waals minima. While the
importance, and slow basis set convergence, of post-CCSD(T)
effects at near-minimum geometries has been clearly illustrated,
one could hope that these effects exhibit low anisotropy and
effectively provide a nearly spherical contribution that has
minimal effects on, say, spectral lines. Unfortunately, our
benchmark calculations for several different angular config-
urations of LiIH-LiH (Table SIII in the Supporting Informa-
tion), H,—CO (Table 8), and Ar—HF (Table 9) (the geometries

Table 8. Anisotropy of Various Interaction Energy
Components (in cm™") for the H,—CO Complex and Two
Basis Sets”

(0°,0°0°)  (0°90°0°)  (0°180°0°)  (45°45°45°)

aDZ

St —0.119 —0.291 —-1.736 -0.226

S —0.174 —0.309 —0.794 —0.181

Sri(q) —0.293 —0.600 —-2.531 —0.406

CCSD(T) —48.358 —16.553 —74.655 —20.352
aTZ

St —0.185 —0.214 —1.368 —0.154

5 —0.219 —0.373 —1.055 —0.268

Sri(q) —0.403 —0.587 —2.423 —0.421

CCSD(T) —53.221 —18.475 —86.638 —23.799

“The intermolecular distance R is set to R = 8.0 bohr, whereas the
intramolecular ones, ryy and rcq, are equal to 1.4487 bohr and 2.1399
bohr, respectively. The three angles are defined in the same way as in
ref 68: the Cartesian coordinates for all four configurations are given in
the Supporting Information.

for all configurations are given in the Supporting Information)
indicate that the post-CCSD(T) contributions can have very
strong anisotropy. For different orientations presented in Tables
8, 9 and SIII, the largest-basis (nonextrapolated) &r,(q)

Table 9. Interaction Energy Components (in cm™") for the
Ar—HF Complex As Functions of the Angle @ between the
Lines Going from the HF Center of Mass to the Ar and H

Atoms”

0 0° 90° 180°

aDZ

or -1.279 —0.267 —0.253

@ —0.815 0.087 0.167

O14(Q) —2.094 —0.180 —0.086

CCSD(T) —98.690 —10.148 —43.114
aTZ

or -0.877 —-0.233 0.172

) -1.920 —0.409 —0.296

Or+(Q) -2.797 —0.642 —0.124

CCSD(T) —186.560 —53.046 —75.358

“The intermolecular distance R is set to R = 6.5 bohr and the
intramolecular one ry is equal to 1.7629 bohr.
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contributions constitute 0.2—0.9%, 0.8—3.2%, and 0.2—1.5% of
the frozen-core CCSD(T) interaction energy for LiH—LiH, H,—
CO, and Ar—HF, respectively. Moreover, the basis set
convergence varies significantly with geometry: for three of the
H,—CO configurations in Table 8, the aDZ basis set recovers
96—104% of the aTZ value for o1, (q); however, for the remaining
configuration, this percentage is 73%. The agreement between
the two bases for three orientations is actually a consequence of
error cancellation between the 8y and &) terms (for which the
aDZ results constitute 64—147% and 68—83%, respectively, of
the aTZ ones). Such a cancellation cannot be taken for granted
and it does not occur for the fourth geometry. An even more
striking example of error cancellation is the @ = 0° orientation of
the Ar—HF complex. In this case, when the basis set is changed
from aDZ to aTZ, the value of o decreases by 31%, the value of
O(q) increases by 136%, whereas the total dr,(q) term increases by
34%. For 6 = 90°, such cancellation is not present and the value of
O14(q) for aTZ is over three times larger than for aDZ. For the test
complexes and geometries presented in Tables 8, 9, and SIIJ,
there does not appear to be a pattern of change in the anisotropy
when the quality of the basis set is increased. Both absolute values
of 8r,(q) and its relative values with respect to the CCSD(T)
interaction energy can increase or decrease for different angular
orientations of the interacting subsystems.

The results in Tables 8 and 9, and in Table SIII in the
Supporting Information, show that the inclusion of a properly
converged post-CCSD(T) interaction energy contribution is
even more critical for the anisotropy of the potential energy
surface than for the near-minimum interaction energy. The post-
CCSD(T) contributions can be especially important for the
relative depths of global and local minima or for the heights of
energy barriers. For instance, for H,—CO the difference of the
Sri(q values between the (0°, 0° 0°) and (0°, 180° 0°)
orientations is equal to 2.0 cm™' while the difference of the
CCSD(T) interaction energies for these geometries amounts to
33.4 cm™". Thus, the inclusion of the &r,(q) interaction energy
term changes the relative energy by 6%. Not surprisingly, the
inclusion of interaction energy terms up to CCSDT(Q) proved
essential for the recovery and assignment of the experimental
high-resolution infrared spectrum of ortho-H,—CO.>>*!

B. MP2 Frozen Natural Orbital Approximation. In view
of the highly unfavorable scaling of high-order coupled-cluster
methods with the number of virtual orbitals it is desirable to
introduce approximations that reduce this number without a
significant adverse effect on the interaction energies. Several
approaches to restrict the virtual space have been proposed:*>%*
in this work, we utilize the MP2 frozen natural orbital (FNO)
approach® as implemented in CCSDT and CCSDT(Q) by
Rolik and Kallay.>* In the MP2 FNO method, the natural orbitals
are obtained as eigenvectors of the first-order Moller—Plesset
density matrix. The corresponding eigenvalues, that is, the
natural orbital occupation numbers, are then sorted and the
orbitals with sufficiently low occupations can be removed from
the virtual space with little error. In the implementation of ref 54,
a cumulative threshold gy is employed.% Specifically, natural
orbitals are added to the virtual space, in the order of decreasing
occupation numbers, until the cumulative occupation of all
included orbitals (occupied and virtual) exceeds epyo times the
number of electrons. The remaining natural orbitals are removed
from further consideration (care is taken to avoid splitting
degenerate sets of orbitals). Rolik and Kallay** investigated the
accuracy of the o1 and J(q) contributions to molecular energies
and heats of formation as a function of €py and recommended a
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threshold of 0.975 for an optimal combination of accuracy and
efficiency. Unfortunately, as we will show below, setting epyo =
0.975 is not accurate enough for the small o1 and J(q
contributions to noncovalent interaction energies.

The convergence of the dr and J(q interaction energy
contributions for the C,, geometry of the water dimer as a
function of the &pyo threshold is shown in Table 10. This

Table 10. Interaction Energy Contributions (in cm™") for the
H,0-H,0 (C,,) Complex Calculated at Different FNO
Thresholds &pyo”

EENO Nbf CCSD(T) or LIt O14(Q)
aDZ
0.99 50 —979.489 2.524 —0.966 1.558
0.999 64 —1021.655 1.465 —1.542 —-0.077
0.9999 74 —1021.808 1.181 —0.611 0.570
0.999 99 78 —1026.659 1.136 —0.738 0.398
1 82 —1026.272 1.137 —-0.730 0.407
aTZ
0.99 79 —963.346 1.953 —2.006 —0.053
0.999 126 —1078.499 0.999 —2.190 —-1.191
0.9999 156 —1101.515 0.479 —2.124 —1.645
0.999 99 171 —1107.233 0.334 —2.249 -1.918
1 184 —1107.160 0.302 —2.264 —1.962
aQZ
0.99 99 —962.430 1.926 —2.390 —0.464
0.999 197 —1143.072 1.431 —2.458 —1.027
0.9999 271 —1136.522 0.696 —2.441 —1.745
1 344 —1141.024 0.552

“The FNOs with the largest occupation numbers are retained until
their cumulative occupation exceeds &pyo times the number of
electrons; the remaining FNOs are discarded. A threshold of one
represents the full calculation without any FNO truncation of basis
functions. The quantity “Nbf” represents the number of basis functions
after the FNO truncation.

convergence turns out to be quite slow: a threshold of 0.99 leads
to an overestimation of the 61 term up to six times. The J(q)
contribution is less sensitive to the FNO approximation:
nevertheless, the error for ey = 0.99 amounts to 32% in the
aDZ basis and 11% in aT”Z. The results of Table 10 suggest that
the minimum acceptable é&pyo threshold for noncovalent
interactions is 0.9999 for &) (errors up to 16%) and 0.99999
for 81 (errors up to 11%). Unfortunately, such tight thresholds
correspond to a fairly small reduction of the virtual space so that
the speedup afforded by the FNO approximation is quite limited.
In fact, the C,, water dimer (Table 10) is the only system for
which we obtained, with significant computational effort, an
FNO result (the §()/aQZ value) for which the corresponding
nonapproximate value was out of reach. The Jq)/aQZ
contribution for epyo = 0.9999 can be expected to be accurate
(the accuracy of the FNO §(q) terms for a given threshold
increases with the basis set size, cf. Table 10) and the quadruples
contribution converges particularly slow for the water dimer (cf.
Table 6), so the availability of the aQZ result thanks to the FNO
approximation is quite helpful. However, this situation should be
viewed as an exception rather than a rule as the FNO approach
using reliable thresholds provides only modest performance
gains (a similar epyo = 0.9999 calculation would be unfeasible for
the less symmetric, global-minimum geometry of the water
dimer).
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C. Effects of the Frozen Core Approximation. In our
calculations so far, only valence electrons were correlated. In
contrast, the small-bases studies of Hobza et al."* ™! correlated
all electrons. Therefore, it is worth checking if the conclusions
reached on the basis of the frozen-core calculations still hold
when all-electron interaction energies are considered. As the
importance of the core—core and core—valence correlation varies
widely among the atoms present in our test systems, we decided
to investigate the all-electron interaction energies for three
dimers that represent the best- and worst-case scenarios: Ne—Ne
(where the frozen-core approximation is expected to be very
accurate), He—LiH, and LiH—LiH (for which the effects of the s
lithium correlation can be significant). The all-electron results, in
the same format as in Tables 1—7, are presented in Tables SIII
(LiH-LiH) and SIV (He—LiH and Ne—Ne) in the Supporting
Information. In addition to the 6-31G*(0.25), 6-31G**-
(0.25,0.15), and aXZ results, we have listed the interaction
energy contributions obtained in the polarized core and valence
aug-cc-pCVXZ=aCVXZ sequence.67

The results in Tables SIII and SIV in the Supporting
Information indicate that, as expected, the interaction energy
correction due to core—core and core—valence correlation
amounts to a small fraction of the post-CCSD(T) correction for
Ne—Ne, but completely dominates the latter for He—LiH and
LiH—LiH. However, virtually all of this correction is recovered at
the CCSD(T) level. In the largest aCVXZ basis sets considered,
the core—core and core—valence correlation contribution
constitutes 0—14% of oy and 3—25% of §(q). While the all-
electron &y and §(q) corrections should formally be computed
using the aCVXZ bases, the corresponding aXZ results turn out
to provide very reasonable approximations. Overall, the results in
Tables SIIT and SIV indicate that the standard practice of treating
the (CCSD(T)-level) core correlation and (frozen-core) post-
CCSD(T) interaction energy corrections as additive®*3%37 js
well justified and that the basis set convergence patterns of the o1
and Jq) interaction energy components are very similar with and
without the frozen core approximation.

IV. SUMMARY

We have studied the basis set convergence of the post-CCSD(T)
coupled-cluster interaction energy contributions for 21 weakly
bound dimers including the smallest members of the A24 set.”
By performing CCSDT(Q) calculations in at least the aTZ basis
set, and CCSDT calculations in at least aQZ (except for one
system), we were able to assess the accuracy of small-basis results.
We found that, unfortunately, the 6-31G*(0.25) and 6-
31G**#(0.25,0.15) bases suggested for post-CCSD(T) correc-
tions by Hobza et al.'” ' provide a very poor description of the
CCSDT- and CCSDT(Q)-level effects, with mean unsigned
relative errors for the dr,(g) sum on the order of 80% for 6-
31G**(0.25,0.15) and 110% for 6-31G*(0.25) (thus, it is often
better to neglect the post-CCSD(T) terms completely than to
estimate them using these small basis sets). Upgrading the basis
set to aDZ reduces the average error to about 35%.

The overall importance of the post-CCSD(T) interaction
energy contributions varies dramatically with the size and
polarity of the monomers. In agreement with the findings of refs
19 and 21, and of earlier studies for individual complexes,n’24 we
observe that the full quadruples contribution &g, is negligible for
all dimers except for N,—N,. However, the CCSDT and
CCSDT(Q) corrections are generally of similar magnitude: the
neglect of §q is a viable approximation only for the four-electron
dimers. The total dr,(q) effect amounts to about 1-2% of the
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CCSD(T) interaction energy (less for the polar—polar dimers)
and can contribute even more to the interaction energy
anisotropy, making it critical to go up to CCSDT(Q) in the
calculations of potential energy surfaces for high-resolution
spectroscopic applications. On the average, the sum dr,(q)
converges a little faster (in relative terms) than the 6; and &g,
terms separately; however, the error cancellation between d1 and
O(q) is by no means systematic.

Overall, the basis set convergence of the dr and J(q
interaction energy contributions is somewhat disappointing.
Even at the aTZ basis set level, the obtained corrections seem to
be quite far from converging (we estimate the mean accuracy of
the Or,(q)/aTZ estimate to be about 15%). Obtaining the
benchmark dr,(q)/CBS value to within a few percent is only
feasible for four-electron dimers (for which the convergence of
the coupled-cluster expansion is particularly fast so that d(q) is
much smaller than &;). Thus, as observed in some recent
potential energy surface studies,**™%¢ the Or4(q) terms, even
computed in the aTZ basis or larger, remain one of the largest
sources of residual uncertainty in the final potential as long as
highly accurate CCSD(T)/CBS limits are obtained using state-
of-the-art approaches. Thus, further research into the techniques
that make high-order CC calculations more efficient is highly
desired. One of such techniques, the MP2 frozen natural orbital
approximation, was tested in this work with limited success.
While this approximation provided the only way to obtain the
O(q)/aQZ result for the C,, water dimer, the required FNO
thresholds were too tight to afford a significant decrease in the
size of the virtual space. As the inclusion of interaction energy
contributions through CCSDT(Q) has been integral to the
development of top-accuracy interaction potentials in recent
years, we are in a place where the 6 and §(q) calculations are both
a necessity and a bottleneck. Thus, further improvements in the
accuracy of potential energy surfaces hinge on the design of new
accurate approximations, new basis sets specifically optimized for
the post-CCSD(T) corrections, or both.
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ABSTRACT: Minimum energy structures and interaction
energies are obtained for a series of polycyclic aromatic
hydrocarbons (PAHs) interacting with a methane molecule.
The PAHs include benzene, naphthalene, anthracene,
phenanthrene, tetracene, pyrene, and coronene. Interaction
energies are calculated using the highest level of theory and
basis set available, that is, complete-basis-set extrapolated MP2
plus a conventional or explicitly correlated CCSD(T)
correction in moderately sized basis sets. The results show
that the singly coordinated minimum configuration observed
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earlier for benzene—methane is no longer the global minimum one for naphthalene and larger PAHs. Instead, triply coordinated
geometries are lower in energy. The global minimum structures for methane interacting with extended systems like graphene
sheets and carbon nanotubes are likely to be triply coordinated as well. A variety of novel dispersion-including DFT approaches
are compared against the wave-function-based benchmark potential energy curves. The top performer, the B3LYP functional
combined with the -D3 dispersion correction, is then employed to calculate interaction energies for methane interacting with
hexabenzocoronene and circumcoronene in order to estimate the methane adsorption energy on graphite. The delicate balance
between dispersion and exchange in PAH—methane interactions is elucidated using symmetry-adapted perturbation theory with
a DFT description of monomers. The present study provides an important benchmark for the design and tuning of more
approximate methods for an accurate description of hydrocarbon physisorption on carbon nanostructures.

1. INTRODUCTION

Weak intermolecular interactions, especially those dominated
by dispersion, are a challenge for ab initio quantum chemistry
because of a simultaneous need for a nearly complete one-
electron basis set and a high-level treatment of electron
correlation." Fulfilling the first of these needs is substantially
aided by complete-basis-set (CBS) extrapolations,” bond
functions,* and, most recently, the explicitly correlated R12
and F12 approaches.>® As far as the second need is concerned,
the “gold standard” of electronic structure theory, the single-
reference coupled-cluster method with single, double, and
noniterative triple excitations [CCSD(T)], provides weak
interaction energies accurate to a few percent (with a notable
exception of systems where significant static correlation is
present7) as long as the basis set is sufficiently large. However,
the computational cost of a CCSD(T) calculation scales like N’
with the system size and becomes prohibitively expensive even
for moderately large dimers. Therefore, significant effort is
being invested in devising methods that produce accurate weak
interaction energies and exhibit a more favorable scaling. While
density functional theory (DFT) using standard functionals fails
remarkably for dispersion-dominated interaction energies,®’
many novel DFT approaches are quite successful at accounting
for dispersion.'®™>' At the same time, the typical over-
estimation of dispersion by second-order Moller—Plesset
perturbation theory (MP2) is addressed by various spin-

i i © 2012 American Chemical Society
~g7 ACS Publications

370

component-scaled and related wave-function-based ap-
proaches.”> >® Hybrid wave-function-DFT methods® >° also
deliver comparable accuracy. The DFT- and MP2-based
approaches scale like N* or N° and can be applied to
interactions of much larger systems than CCSD(T). On the
other hand, the accuracy of these methods varies, and extensive
benchmarking is necessary to determine which of them are
appropriate for studying weak interactions at a desired level of
accuracy.

The set of high-quality benchmark interaction energies
available today is quite impressive. While most older bench-
mark sets focused on interaction energies near the respective
1733 it was realized, most notably by
Sherrill and collaborators, that the accuracy at the minima is not
necessarily retained throughout the entire range of intermo-
lecular distances. Therefore, newer benchmark sets include
intermolecular distances both smaller and larger than the
minimum separations.** 7 At the same time, the accuracy of
some of the older benchmarks, most notably the S22 set,>® was
considerably improved.*® *" Extensive studies of the perform-
ance of various approximate DFT- and MP2-based approaches
have been carried out,** and while some methods are clearly
better than others, there is no single winner that accurately

van der Waals minima,
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reproduces high-accuracy benchmark interaction energies
across the entire spectrum of systems. Therefore, any
application of approximate DFT or wave function theories to
a class of systems of practical interest should be accompanied
by a verification that the chosen approach satisfactorily recovers
benchmark interaction energies for similar systems. Such a
verification is the heart of the present work, and the goal behind
it is a better understanding of hydrocarbon physisorption on
graphene sheets™ and carbon nanotubes.*

The adsorption of molecules on carbon nanostructures has
been the subject of numerous experimental and theoretical
studies.*> The ability of graphene and nanotubes to effectively
bind hydrogen makes these structures a viable medium for
hydrogen storage,* a critical issue on the road toward clean
hydrogen-based energy. The adsorption of methane, and of
other small hydrocarbons, on carbon nanostructures is another
highly active area of research due to its importance for natural
gas storage, transport, fuel-cell combustion, and detection.*”*®
It should be noted that physisorption, the process of binding
molecules (adsorbates) to surfaces via van der Waals forces,* is
inherently harder to model computationally®® than chem-
isorption (where the adsorbate—surface bonds are covalent). In
particular, an accurate treatment of dispersion energy is
absolutely crucial. Nevertheless, the majority of existing
computational studies of physisorption use either empirical,
Lennard-Jones interaction potentials, or standard density
functionals like LDA, B3LYP,™** or PBE.>*> While such
approaches can yield useful qualitative results,>*™® their
accuracy is inherently limited. Indeed, studies for model
systems indicate that the performance of standard density
functionals for carbon-nanostructure adsorption is inferior>” to
that of novel functionals like M03-2X."* The use of state-of-the-
art accurate N* and/or N° methods, paired with their careful
benchmarking against near-CBS CCSD(T) interaction ener-
gies, is required to develop more accurate physisorption
potentials. For the hydrocarbon physisorption on carbon
nanostructures, the natural choice of model systems for
benchmarking is polycyclic aromatic hydrocarbons (PAHs)
interacting with methane. The PAHs investigated in this work
include benzene, naphthalene, anthracene, tetracene, phenan-
threne, pyrene, and coronene.

The benzene—methane complex has been extensively studied
using accurate ab initio methods (in particular, as a member of
the $22**%%* and NBC10>* test sets). However, CCSD(T)-
level interaction energies for complexes of methane with larger
PAHs are virtually limited to a single study by Tsuzuki et al.>®
In this reference, lowest-energy structures of the benzene—
methane, naphthalene—methane, and pyrene—methane com-
plexes were determined using MP2 calculations in bases up to
cc-pVQZ (nonaugmented correlation-consistent quadruple-
&) plus a CCSD(T) correction in a very small 6-31G*
basis. Tsuzuki et al.** found that the singly coordinated (1C)
structure (with only one of the methane hydrogen atoms closer
to the PAH plane than the methane carbon atom) of the
benzene—methane global minimum ceases to be the lowest-
energy structure for larger PAHs in favor of the doubly
coordinated (2C) and triply coordinated (3C) configurations
(for which two and three methane hydrogens, respectively, are
closer to the PAH plane than the methane carbon). On the
basis of the observations of ref 58, it is likely that the benzene—
methane complex is an exception rather than the rule, and one
needs to go to larger PAHs to even qualitatively recover the
adsorption characteristics of extended carbon nanostructures.
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At the same time, the results of ref 58 are clearly not converged
with respect to the basis set, and their accuracy warrants further
investigation.

In this work, accurate ab initio interaction energies are
obtained for the lowest-energy structures of PAH—methane
dimers (one lowest-energy structure for each coordination: 1C,
2C, and 3C). We will follow the standard technique emfloyed
to generate benchmark interaction energy databases™ and
compute interaction energies as sums of the CBS-extrapolated
MP2 contribution and a CCSD(T) correction. The interaction
energies obtained in this way for one-dimensional cuts through
the potential energy surfaces (passing through the lowest-
energy 1C, 2C, and 3C configurations) are then used to gauge
the accuracy of a number of modern dispersion-including DFT
approaches. Additionally, the relative importance of different
interaction energy contributions (electrostatics, induction,
dispersion, and exchange) is studied using symmetry-adapted
perturbation theorz‘ with a DFT description of monomers
[SAPT(DFT)].*”*® The observed trends in the binding
energies for different coordinations allow for improved
predictions of the adsorption energetics of methane on
extended carbon nanostructures. Our approach is somewhat
similar in spirit to the hydrogen adsorption study of ref 60 and
the water adsorption study of ref 61, where accurate benchmark
interaction energies for medium-sized models were used to
extrapolate to the case of an infinite graphene sheet. However,
our study involves a larger variety of wave-function- and DFT-
based approaches all the way through CCSD(T) while
refs 60 and 61 employed more approximate DFT/CC and
SAPT(DFT) methods, respectively. It should be noted that an
extension of our wave function calculations to still larger PAHs,
apart from being computationally unfeasible at present, would
encounter a serious problem as the increasingly polyradical
character of large PAHs®* inevitably breaks down the single-
reference CCSD(T) treatment at some point. Fortunately, such
a breakdown does not yet occur for systems studied here, as
indicated by reasonably low values of the T1 and D1 coupled-
cluster diagnostics.®*

The structure of the rest of this paper is as follows. In Section
2, the approach used to obtain benchmark interaction energies
is specified together with the approximate ab initio methods
employed and the relevant computational details. The
numerical results are presented and discussed in Section 3.
Finally, Section 4 presents conclusions.

2. METHODOLOGY AND COMPUTATIONAL DETAILS

The Morwrro code® was used to obtain all the MP2 and
CCSD(T) interaction energies. The MP2 computations utilized
density fitting (DF)® and employed standard orbital and
auxiliary bases aug-cc-pVXZ**®® and aug-cc-pVXZ/
MP2FIT,”® respectively. The DE-HF interaction energy and
the correlation part of the DF-MP2 interaction energy exhibit
mean unsigned errors (MUE; averaged over all benzene—
methane and naphthalene—methane complexes at the aug-cc-
pVTZ level) of 0.005 and 0.001 kcal/mol, respectively, with
respect to the non-density-fitted results. For the points where
the comparison is possible at the aug-cc-pVQZ level, the DF-
HF error further decreases to 0.001 kcal/mol, and the DF-MP2
error is reduced below convergence thresholds. It is worth
noting that the sign and magnitude of the errors remain
practically constant across the entire potential curve. As the
computational cost of DF-MP2 is a small fraction of that of
conventional MP2, only DE-MP2 calculations are feasible in
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Figure 1. The optimized 1C, 2C, and 3C structures for all dimers considered in the present work. The colors on the pyrene and coronene structures
mark carbon atoms that are assigned differently augmented basis sets within the core-DZ and local-DZ approaches—see section 3.1 for details.

quadruple- and quintuple-zeta bases. The “DF-" qualifier will be
dropped from now on. The CCSD(T) calculations were
performed in the conventional, non-density-fitted way and
utilized the aug-cc-pVXZ bases. For basis sets involving
midbond functions, the additional functions were located
halfway between the carbon atom of the methane molecule and
the plane of the PAH. These functions were chosen as the
hydrogenic set from the same aug-cc-pVXZ orbital basis as the
atom-centered functions. Unless otherwise stated, all calcu-
lations employed the counterpoise (CP) correction for basis set

69,

L 70
superposition error. The 1s carbon electrons were not

correlated.
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2.1. Geometry Optimizations. To obtain the lowest-
energy configurations for each coordination, a three-dimen-
sional scan of the potential energy surface (PES) for a given
orientation of methane was first completed at the MP2/aug-cc-
pVDZ level, and the most favorable location of methane was
narrowed down to 0.01 A. Full counterpoise-corrected six-
dimensional geometry optimizations (that is, only the intra-
molecular degrees of freedom were frozen) were then run at
the MP2/aug-cc-pVTZ level to find the final geometries. The
lowest-energy configurations for all three coordinations
represent some local minima on the full six-dimensional PES
except for 1C phenanthrene—methane and 1C tetracene—
methane. The most relevant one-dimensional cuts through the
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PES, along the direction z perpendicular to the PAH plane, are
then examined. The values of z given throughout the rest of the
text are the distances between the methane carbon and the
PAH plane. The lowest-energy geometries for each dimer and
each coordination are displayed in Figure 1.

2.2. Benchmark Energies from Wave Function
Methods. Following the standard practice in the field, the
benchmark interaction energy is calculated as

[ benchmark EMP*(aug-cc-pV(X — 1)Z, aug-cc-pVXZ)

int int

+ AE-CCSD(T)(aug-cc-pV(X/ -1)Z,

int

aug-cc-pVX'Z) (1)

where EX, = Exg — Ex — Ej is the supermolecular interaction
energy at a given level of theory, AESESP(T) = ECCSD(T) _ pMP2
is the CCSD(T) contribution missing at the MP2 level, and the
notation (basisl,basis2) means that the bases “basisl” and
“basis2” have been employed in the standard X~ extrapolation
for the correlation part of the interaction energy.” The SCF part
of the interaction energy was taken from the calculation using
the larger of the two bases and not extrapolated. We will
employ the short-hand notation MP2/(X — 1,X) and
ACCSD(T)/(X — 1,X) for EMP?* (aug-cc-pV(X — 1)Z,aug-cc-
pVXZ) and AESSP®M (aug-ce-pV(X — 1)Z,aug-cc-pVXZ),
respectively. Moreover, ACCSD(T)/aXZ will denote a
correction that is computed in the aug-cc-pVXZ=aXZ basis
set and not extrapolated.

To investigate the basis set convergence of the ACCSD(T)
contribution, explicitly correlated CCSD(T)-F12 calculations
were performed for benzene—methane and naphthalene—
methane using the Morpro®* code. The CCSD(T)-F12a and
CCSD(T)-F12b approximations’"”*> employ the default
explicitly correlated Ansiitze, geminal parameters, and auxiliary
bases. Because the triples contributions to CCSD(T)-F12a and
CCSD(T)-F12b do not include explicit correlation (an
explicitly correlated (T) correction has been derived only
recently’”® and exhibits a steeper computational scaling), we
tested the popular estimate of the missing F12 contributions to

AE™ = ECSP(M) _ ECOSD i scaling:
pMP2-F12
AEM-F12 o Ap(T) Zeor
MP2
ECOIT (2)

where the subscript “corr” denotes the correlation energy at a
given level of theory. To ensure size consistency, the scaling
factor determined for the dimer was also used in the
counterpoise-corrected calculations for monomers.>® The
CCSD(T)-F12 approach in its various approximate variants
provides greatly improved weak interaction energies in double-
and triple—é’ basis sets compared to conventional CCSD-
(T)**7%7% (however, the improvement is somewhat diminished
in larger basis sets’®””). For the popular $22 database® that
includes the benzene—methane complex, the MUE of the
scaled-triples CCSD(T)-F12b/aDZ method amounts to 0.10
kcal/mol, about a 4-fold improvement over conventional
CCSD(T).>"®

2.3. DFT Calculations. Out of the many novel variants of
DFT proposed to overcome the failure to recover dispersion,
the two main groups are the DFT+D approaches (where a
more or less empirical dispersion correction is added on top of
a standard density-functional calculation) and the functionals
specifically optimized for benchmark weak interaction energies.
In this work, we tested a few representative members of each
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group. For DFT+D, we employed the widely popular
B3LYP*"** and PBE®® functionals as well as Grimme’s
reparameterization'> of Becke’s B97 functional.” These three
functionals were augmented by Grimme’s empirical dispersion
terms in the -D2'* and -D3'? variants. The -D2 and -D3
corrections were calculated using Grimme’s DFT+D program
V2.1 Rev 6.

The DFT+D interaction energies were calculated using
Motrro 2010.1%* locally modified to include Grimme’s
reparameterization of B97. The requested energy convergence
threshold was 1077 hartree, and the corresponding autogen-
erated MoLpro grids were used. The calculations employed
density fitting with the standard cc-pVXZ/JKFIT auxiliary basis
sets.*” It should be noted that the version of B3LYP used was
equivalent to the B3LYP card in Gaussian®' so that the
correlation functional contained a VWN3 contribution, not
VWNS.® As the CP correction is by no means guaranteed to
improve DFT results even for dispersion-bound systems, all
DFT variants were tested both with and without it.

The second group, the interaction-optimized functionals,
included M05-2X,"® M06-2X,' and @B97X-D."® All interaction
energies for these functionals were calculated by Gaussian 09
using the UltraFine grid that corresponds to a pruned set of 99
radial shells and 590 angular points per atom. While the size of
the grid is fairly large, the M05-2X and M06-2X meta-GGA
functionals still exhibit small “wiggles” in the interaction
potential, especially at medium distances. This effect, which has
been noted before for functionals of this kind,®* could be
avoided at still larger grid sizes; however, this would not change
any of our conclusions regarding the selection of the best
functional(s).

2.4. SAPT(DFT) Analysis. The density-fitted SAPT(DFT)
approach®” (also termed DFT-SAPT>®) was used to examine
the importance of different contributions to the interaction
energy. The monomer DFT calculations employed the PBEO
functional®*** and were performed using the DaLTON code.®
The developers’ version of the SAPT2008 code®® was used for
the subsequent computation of SAPT(DFT) corrections. The
Fermi—Amaldi—Tozer—Handy asymptotic correction®” was
employed in all SAPT(DFT) computations, with the monomer
ionization potentials taken from the NIST Webbook.*® The
coupled Kohn—Sham (CKS) values of the exchange-induction
and exchange-dispersion corrections were computed exactly
rather than estimated by scaling the uncoupled results. These
exchange corrections were included in the SAPT(DFT)
estimates of induction and dispersion energy, respectively, as
in previous work.'® This is especially important for the
induction correction which is known to exhibit significant
quenching by its exchange-induction counterpart.*”*°

2.5. Statistical Analysis of Approximate Approaches.
At the time when benchmark databases of weak interaction
energies contained only near-minimum geometries, the natural
measures of the accuracy of a given approximate approach were
the mean unsigned error (MUE) and mean unsigned relative
error (MURE).”" For benchmarks that encompass different
regions of the PES, neither quantity is, however, particularly
relevant. As the energies for different intermolecular separations
are widely different, the MUE is strongly influenced by the
relative abundance of points from different regions (repulsive,
near-minimum, and asymptotic) in the test set. Therefore, the
MUE values presented here will refer to the minimum
intermolecular separations only and will not include any data
for other separations (we will use the name “minima MUE”).
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Figure 2. CP-corrected MP2/FC interaction energies (in kcal/mol) for the 1C benzene—methane (left panels) and 3C naphthalene—methane (right
panels) complexes as functions of the methane carbon—PAH plane distance z (in Angstroms). The upper panels display total interaction energies,
while the lower panels show interaction energy differences with respect to the highest-level MP2/(Q,5) results.

Table 1. The MP2 and ACCSD(T) Contributions to the Benzene—Methane Interaction Energy at the Global-Minimum 1C
Configuration with the Methane Carbon—PAH Plane Distance of 3.76 A”

method
MP2
ext.
MP2-F12
ext.

ACCSD(T)

ext.
ACCSD(T)-F12a
ext.
ACCSD(T)-F12b
ext.

CCSD(T)/(X-1,X)

MP2/(Q,5)+ACCSD(T)/aXZ
MP2/(Q,5)+ACCSD(T)/(X-1,X)

CCSD(T)-F12a/(X—-1,X)

MP2-F12/(Q,5)+ACCSD(T)-F12a/aXZ

without midbond

with midbond

—1.478

—1.745

0.326

0.358

0.343

—1.468

—1.436

MP2-F12/(Q,5)+ACCSD(T)-F12a/(X—1,X)

CCSD(T)-F12b/(X—1,X)

MP2-F12/(Q,5)+ACCSD(T)-F12b/aXZ

—1.450

MP2-F12/(Q,S)+ACCSD(T)-F12b/(X-1,X)

T

-1.691
-1.777
—1.785
—1.802

0.339
0.345
0.358
0.358
0.354
0.359

—1.438
—1.455
—1.449
—1.449
—1.436
—1.436
—1.448
—1.439
—1.435

Q
-1.754
-1.795
—-1.792
-1.795

0.349
0.356
0.359
0.360
0.358
0.361

—1.440
—1.445
—1.437
—1.435
—1.434
—1.433
—1.434
—1.435
—1.432

S D
—-1.774 —1.551
—1.793
—-1.794 —1.760
—1.795

0.322
0.352
0.330
—1.472
—1.441
—1.463

T

—-1.724
—-1.794
—1.789
—1.803

0.340
0.348
0.356
0.358
0.350
0.358

—1.448
—1.454
—1.446
—1.447
—1.437
—1.436
—1.447
—1.444
—1.436

Q
-1.765
-1.795
-1.793
-1.795

0.352
0.360
0.360
0.362
0.357
0.362

—1.435
—1.442
—1.433
—1.434
—1.434
—1.432
—1.434
—1.437
—1.431

S
—1.780
—-1.794
—-1.794
—1.795

“Conventional and explicitly correlated results in aXZ bases with and without midbond functions (see text for the details of bond functions) are
shown as functions of X. The rows marked “ext.” display the CBS-extrapolated results where the values in the “X” column were obtained using the
(X—1,X) extrapolation. The bottom part of the table contains different estimates of the total CCSD(T)/CBS interaction energy. The (T) triples

correction was not scaled in CCSD(T)-F12a but scaled in CCSD(T)-F12b. The energy unit is 1 kcal/mol.
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The MURE is, in turn, often dominated by a single data point
close to where the interaction energy crosses zero. To avoid
this artifactual domination, several modified quantities have
been proposed including an energy-dependent weighted
average of the relative errors®® and the median unsigned
relative error.”> We will present the latter quantity, averaged
over all data points at all intermolecular separations, and denote
it as MeURE to stress the difference with respect to the
conventional MURE. Additionally, in order to assess the
accuracy of the minimum geometries (across a given one-
dimensional cut) predicted by different methods, we will use
the “minima z difference”, the mean absolute deviation of the
lowest-energy intermolecular distance z predicted by a given
approach from the benchmark value.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Benchmark Interaction Energies. In this section, we
describe how the benchmark wave-function-based PAH—
methane interaction energies were obtained using large-basis
MP2 and CCSD(T) calculations. The quality of different
approximations to the CCSD(T) CBS limit will first be
assessed based on the results for the two smallest dimers,
benzene—methane and naphthalene—methane. The observa-
tions made for these two systems will allow us to select the
algorithms to compute benchmark CCSD(T)/CBS interaction
energies for larger systems and to estimate their accuracy.

The MP2 interaction energies as functions of the methane
carbon—PAH plane distance z are displayed in Figure 2 for 1C
benzene—methane (left panels) and 3C naphthalene—methane
(right panels). The upper panels in Figure 2 show absolute
interaction energies, while the lower panels display differences
between various calculated and extrapolated results. The results
presented in Figure 2 show that the MP2 interaction energies
exhibit smooth convergence with the basis set cardinal number
X. This convergence is consistent with the X™> dependence of
the correlation energy. As a result, CBS extrapolation improves
the results substantially. The smallest-basis extrapolated values,
MP2/(D,T), are consistently more accurate than the largest-
basis nonextrapolated ones, MP2/aSZ, and the MP2/(T,Q)
results are virtually identical to MP2/(Q,S). Thus, basis sets as
small as aTZ can be used in the MP2 component as long as the
CBS extrapolation is performed.

It is obviously not possible to achieve the same level of basis
set saturation in the CCSD(T) approach. Therefore, to
understand the effect of basis set size, we first focused on the
1C global minimum of the benzene—methane dimer and
obtained an extended set of CCSD(T) interaction energies
including results in basis sets up to aQZ, results in bases
containing midbond functions, and approximate CCSD(T)-
F12 energies. The MP2 and ACCSD(T) interaction energy
contributions obtained in this way have been gathered in Table
1. The same table contains estimates of the total interaction
energy obtained by a straightforward CBS extrapolation of the
CCSD(T) results or an augmentation of the MP2/CBS value
with the ACCSD(T) correction that is either computed or
CBS-extrapolated. The main purpose of Table 1 is to assess the
accuracy to which the CBS limit can be determined when the
system size limits the CCSD(T) basis set choice to aTZ (as is
the case for naphthalene—methane) or aDZ (for all PAHs
larger than naphthalene). We tested the CCSD(T)-F12
approach with and without the scaling of triples, eq 2, and
found that the scaling is beneficial for CCSD(T)-F12b but
harmful for CCSD(T)-F12a (the latter observation indicates
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that the CCSD(T)-F12a approach, formally more approximate
than CCSD(T)-F12b,”* strongly benefits from a cancellation of
errors between the CCSD part and the triples part’”).
Therefore, only the unscaled-triples CCSD(T)-F12a results
and scaled-triples CCSD(T)-F12b results are listed in Table 1.
The interaction energies from all four CCSD(T)-F12 variants
can be found in Table SI in the Supporting Information.

The nonextrapolated MP2 and MP2-F12 results in Table 1
all converge smoothly to the CBS limit and demonstrate that
the addition of F12 helps more than the addition of midbond
functions. Nevertheless, the MP2-F12 results with bond
functions are the best out of the four variants. The best non-
F12 interaction energy, the aSZ+midbond result, is surpassed in
accuracy by MP2-F12 at the aTZ level without midbond
functions. Since the interaction energies increase smoothly with
the basis set size for all sequences, extrapolation greatly
improves the results. All (T,Q) and (Q,5) extrapolated values
agree to within 0.002 kcal/mol, and we can establish the value
—1.794 + 0.001 kcal/mol as the benchmark MP2 interaction
energy. Although the F12 approach greatly improves the
computed MP2 values, Table 1 shows that the non-F12 results
become just as accurate upon extrapolation. As all of the MP2
benchmarks for larger systems will be obtained from
extrapolations at the (T,Q) or (Q)S) levels, no explicitly
correlated treatment of the MP2 contribution will be necessary.

The ACCSD(T) corrections shown in Table 1 demonstrate
a moderately fast convergence with the basis set size.
Extrapolation does assist in the convergence of ACCSD(T);
however, the results extrapolated from different sequences vary
somewhat. The CCSD(T)-F12 approaches, especially CCSD-
(T)-F12a, exhibit a faster convergence than conventional
CCSD(T). The convergence of ACCSD(T)-F12 is smooth
for all variants, and extrapolation works very well, with all
extrapolated values within 0.004 kcal/mol of each other. The
results in Table 1 indicate a benchmark ACCSD(T) value of
0.361 + 0.001 kcal/mol (encompassing all (T,Q)-extrapolated
results except for the least accurate one, the conventional
CCSD(T) value without midbond functions), which corre-
sponds to the total CCSD(T) interaction energy of —1.433 +
0.002 kcal/mol.

It is not possible to perform CCSD(T)/aQZ calculations for
systems larger than benzene—methane. If the CCSD(T)/aTZ
calculations are feasible (as is the case for the naphthalene—
methane complex), there exist four sensible ways of estimating
the benchmark CCSD(T)/CBS limit from either conventional
or explicitly correlated calculations: CCSD(T)/(D,T), MP2/
(Q,5)+ACCSD(T)/(D,T), MP2/(Q,5)+ACCSD(T)/aTZ,
and MP2/(Q,5)+ACCSD(T)/aDZ. As shown in Table 1, for
benzene—methane, these four variants lead to absolute errors of
0.005—0.035 kcal/mol compared to the benchmark inter-
action energy established using (T,Q) extrapolations of the
ACCSD(T) term. The addition of midbond functions does not
lead to an overall error reduction, and such functions will not
be used for subsequent dimers. On the other hand, the
explicitly correlated approach clearly improves the basis set
convergence, and the F12a- and F12b-based results become
virtually identical upon extrapolation. As the accuracy of the
(unscaled-triples) F12a approach is probably quite accidental,
we will focus on the F12b variant. Out of the four CCSD(T)-
F12b-based estimates, the most accurate MP2-F12/
(Q,5)+ACCSD(T)-F12b/(D,T) approach, with an error of
just —0.002 kcal/mol, is also preferred on theoretical grounds
as it involves the largest basis sets at each level of theory. As
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Table 2. The MP2 and ACCSD(T) Contributions to the Naphthalene—Methane Interaction Energy at the Minimum

Configurations for Each of the Three Coordinations®

1C configuration

2C configuration 3C configuration

method D T Q S
MP2 —1.820  —2.022  —2.080  —2.098
ext. —2.102  -2118  -2.117
ACCSD(T) 0.462 0.476
ext. 0.483
CCSD(T)/(X-1,X) —1.624
MP2/(Q,5)+ACCSD(T)/aXZ  —1.655  —1.640
MP2/(Q,5)+ACCSD(T)/(X— —1.634
MP2/(Q,5)+ACCSD(T)- -1.622  -1.621
Fl2a/aXZ
MP2/(Q,5)+ACCSD(T)- —1.621
Fl12a/(X-1,X)
MP2/(Q,5)+ACCSD(T)- —1.650 —1.631
F12b/aXZ
MP2/(Q,5)+ACCSD(T)- -1.623

F12b/(X—1,X)

D

—2.372

0.624

—2.120

—2.075

—2.109

T Q s D T Q s
—2619  —2696 —2721  —2433  —2685 —2765  —2791
2730 —2747  —2746 2801 -2817 -2816
0.642 0.657 0.677
0.650 0.683
—2.088 —2.126
~2.102 2159 —2.140
—2.095 —2132
-2.078 —2113  -2.114
-2.079 =2.115
~2.090 2147  -2.127
~2.082 2119

“The methane carbon—PAH plane distances are equal to 3.73, 3.49, and 3.41 A for the 1C, 2C, and 3C geometries, respectively. Conventional MP2
and ACCSD(T) results in the aXZ bases are shown as functions of X. The rows marked “ext.” display the CBS-extrapolated results where the values
in the “X” column were obtained using the (X—1,X) extrapolation. The different estimates of the total CCSD(T)/CBS interaction energy are also
given for each configuration including the values that utilize the CCSD(T)-F12a (unscaled triples) and CCSD(T)-F12b (scaled triples) calculations.

The energy unit is 1 kcal/mol.
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Figure 3. Differences between the benchmark MP2/(Q,5)+ACCSD(T)-F12b/(D,T) interaction energy and other CCSD(T)/CBS estimates for the
3C naphthalene—methane complex. The triples term in CCSD(T)-F12b was scaled according to eq 2.

discussed above, the conventional MP2/(Q,S) interaction
energy is also virtually converged, and the MP2/
(QS)+ACCSD(T)-F12b/(D,T) approach should be just as
accurate but less computationally demanding. We will use the
latter theory level to establish the benchmark benzene—
methane potential energy curves, as the CCSD(T)/aQZ
calculations for more than a few points would be too time-
consuming. Overall, the restriction of coupled-cluster calcu-
lations to the aTZ basis introduces an error of up to 0.003 kcal/
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mol (CCSD(T)-F12) or 0.016 kcal/mol (conventional CCSD-
(T)) in the CCSD(T)/CBS estimate. A further restriction to
aDZ increases this error to about 0.02 kcal/mol for CCSD(T)-
F12 or 0.04 kcal/mol for conventional CCSD(T). Even this last
error, amounting to less than 3% of the interaction energy, is
remarkably low, and the results in Table 1 provide strong
evidence that our benchmark interaction energies for all

systems are highly accurate.
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Table 3. The MP2 and ACCSD(T) Contributions to Pyrene—Methane and Coronene—Methane Interaction Energies (in kcal/
mol) Computed Using Different Partially Augmented Basis Sets Defined in the Text”

pyrene—methane

coronene—methane

basis size 1C 2C 3C size 1C 2C 3C
MP2
cc-pVDZ 308 —1.157 —1.484 —-1.630 430 —1.493 —1.746 —1.897
local-DZ 369—-387 —2.166 —2.741 —3.046 491-509 —2.603 —3.069 —3.362
jun-cc-pVDZ 376 —-1.613 —-2.073 —2.331 530 —2.057 —2.428 —2.693
core-DZ 427 —-2.171 —2.774 —-3.141 611 —2.673 —-3.133 —3.521
heavy-DZ 461 —2.128 —2.836 —3.028 655 —2.595 —3.051 —3.381
heavy’-DZ 477 —-2.221 —2.688 —-3.218 671 —2.687 —3.186 —3.559
aug-cc-pVDZ 517 —2.227 —2.853 —-3.229 719 —-2.691 -3.192 —3.565
CBS —-2.519 —-3.198 —3.639 —-2.997 —3.543 —3.964
ACCSD(T)

cc-pVDZ 308 0.581 0.718 0.815 430 0.767 0.868 0.953
local-DZ 369—387 0.656 0.835 0.957 491-509 0.881 1.005 1.115
jun-cc-pVDZ 376 0.614 0.771 0.886 530 0.818 0.948 1.037
core-DZ 427 0.659 0.838 0.963 611 0.894 1.003 1.130
heavy-DZ 461 0.675 0.851 0.974 655

heavy’-DZ 477 0.660 0.838 0.963 671

aug-cc-pVDZ 517 0.658 0.836 0.962 719

“A blank space signifies that the CCSD expansion failed to converge due to linear dependencies in the basis set. The MP2/CBS values listed for
comparison were obtained from the (Q,5) extrapolation for pyrene—methane and the (T,Q) one for coronene—methane. The size of the local-DZ
basis set is slightly different for different coordinations. Thus, a range of values is listed.

The MP2 and ACCSD(T) contributions to benchmark
naphthalene—methane interaction energies for the deepest
minima corresponding to each of the three coordinations (the
3C minimum is the global one) are shown in Table 2 along
with the different estimates of the CCSD(T)/CBS limit. As
expected, the MP2 interaction energy grows monotonically
with basis set size, and all (T,Q) and (Q,S) extrapolations agree
to within 0.001 kcal/mol of each other. The conventional
ACCSD(T) term also exhibits smooth convergence, but the
aDZ and aTZ bases are insufficient to narrow this term down to
better than 0.01—0.02 kcal/mol. Consequently, the highest-
level conventional estimates of the CBS limit, the MP2/
(QS5)+ACCSD(T)/(D,T) values, are overestimated by 0.011—
0.013 kcal/mol compared to the MP2/(Q,5)+ACCSD(T)-
F12b/(D,T) result (note how the discrepancies between
methods are consistent across all structures). The latter
approach, chosen as a benchmark for the benzene—methane
potential energy curves based on Table 1, will also be employed
to generate benchmark curves for naphthalene—methane. A fair
estimate of the accuracy of the benchmark is the differ-
ence between the MP2/(Q,5)+ACCSD(T)-F12a/(D,T) and
MP2/(Q,5)+ACCSD(T)-F12b/(D,T) values, which amounts
to 0.002—0.004 kcal/mol for the three coordinations. The
observed accuracy of the conventional MP2/(Q,5)+ACCSD-
(T)/(D,T) estimates is similar to that found for the benzene—
methane dimer. The same is also true for the aDZ-based
estimates MP2/(Q,5)+ACCSD(T)/aDZ (errors of 0.03—0.04
kcal/mol) and MP2/(Q,5)+ACCSD(T)-F12b/aDZ (errors
slightly below 0.03 kcal/mol). Thus, the satisfactory accuracy
of even the simplest MP2/(Q,5)+ACCSD(T)/aDZ estimate is
likely transferable to dimers involving larger PAHs. Moreover,
unlike the MP2/(Q,5)+ACCSD(T)/(D,T) case where the
improvement brought about by the F12b approach is
enormous, the advantage of MP2/(Q,5)+ACCSD(T)-F12b/
aDZ over MP2/(Q,5)+ACCSD(T)/aDZ is quite modest and
does not justify the additional computational effort. Therefore,
all benchmarks for anthracene—methane and larger complexes
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will employ the conventional MP2/(Q,5)+ACCSD(T)/aDZ
level.

Figure 3 demonstrates the differences between the bench-
mark MP2/(Q,5)+ACCSD(T)-F12b/(D,T) value and various
other CCSD(T)/CBS estimates for the 3C naphthalene—
methane complex over the relevant range of z distances. At a
minimum separation of 3.41 A, all six extrapolation schemes
agree to within 0.04 kcal/mol. Out of the four non-F12
schemes, the CCSD(T)/(D,T) extrapolation performs best at
the minimum and at shorter distances. This is quite surprising
as, without extrapolation, the CCSD(T)/aTZ curve differs from
the benchmark by 0.1—0.3 kcal/mol in this z range, much more
than any of the MP2/(Q,5)+ACCSD(T) variants. Therefore,
the performance of CCSD(T)/(D,T) likely benefits from a
fortunate cancellation of errors. The conventional MP2/
(QS)+ACCSD(T) estimates start deviating from the bench-
mark in the repulsive region, which indicates that the short-
range dynamical correlation (interelectronic cusp’) effects,
which are poorly reproduced by conventional Gaussian
basis sets, become increasingly important. For large z, the
CCSD(T)/(D,T) approach is nearly as accurate as MP2/
(Q3)+ACCSD(T)/(D,T) and MP2/(Q,5)+ACCSD(T)/aTZ
and clearly more accurate than MP2/(Q,5)+ACCSD(T)/aDZ.
If only the aDZ basis set is available for the ACCSD(T)
correction, the MP2/(Q,5)+ACCSD(T)-F12b/aDZ approach
is superior to MP2/(Q,5)+ACCSD(T)/aDZ in the repulsive
region but inferior at large z, where the latter, simpler
alternative becomes increasingly accurate.

The CCSD(T)/aDZ interaction energies can only be
obtained for systems up to the size of pyrene—methane.
While recent algorithmic improvements and scalable parallel
implementations have significantly extended the range of
systems for which CCSD(T) calculations are possible,”> *®
the presence of diffuse basis functions on multiple centers
inevitably leads to near linear dependencies in the basis set. It is
these dependencies and the associated CCSD convergence
problems, not the CPU time and/or resource limitations,
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that prevented us from calculating the coronene—methane
CCSD(T) interaction energies in the full aDZ basis set. To
overcome the linear dependency issues, at least some of the
offending basis functions have to be removed. A selective
removal of diffuse functions has been proposed before®**?” as
a way to decrease the number of basis functions without
affecting the results significantly—see ref 98 for a systematic
study. One of the most popular approaches is the removal of all
diffuse functions on hydrogen and helium atoms while keeping
all diffuse functions on heavier atoms. The aXZ basis sets
trimmed in this way have been called aug’-cc-pVXZ,”® heavy-
aug-cc-pVXZ (heavy-XZ),” and jul-cc-}gVXZ, the first member
of the “calendar” basis set family.'” For the purpose of
coronene—methane CCSD(T) calculations, we introduce three
additional augmentation schemes that successively eliminate
basis functions that will likely have little impact on the
interaction energy, that is, the diffuse functions located furthest
from the region between the interacting molecules. First, as the
diffuse functions on methane hydrogens likely play a much
more important role than the diffuse functions on coronene
hydrogens, we form the heavy’-aug-cc-pVDZ (heavy’-DZ) basis
where only diffuse functions from the PAH hydrogens are
removed from the full aDZ set. Further basis functions that
likely play a small role in the overall interaction energy are the
highest-angular-momentum (d) diffuse functions on the
outermost carbons: their removal from heavy’-DZ leads to a
set that will be denoted as core-aug-cc-pVDZ (core-DZ).
Finally, an approach where only the methane atoms and the
innermost PAH carbon atoms (those within 2.1 A of the
methane carbon’s projection onto the PAH plane) retain
diffuse functions is labeled as local-aug-cc-pVDZ (local-DZ).
Note that all diffuse functions on methane are present in
heavy’-DZ, core-DZ, and local-DZ. Pictorial representations of
the different augmentation schemes in the pyrene—methane
and coronene—methane complexes are displayed in Figure 1.
The red colored carbon atoms have the highest angular
momentum diffuse functions removed in the core-DZ basis set
(the red colored set is the same for all coordinations and has
been marked on the 3C structures only). The cyan colored
carbon atoms are those that have diffuse functions in the local-
DZ basis.

A comparison of the MP2 interaction energies and
ACCSD(T) corrections computed using different augmenta-
tion schemes of the cc-pVDZ basis is shown in Table 3. This
table contains results for pyrene—methane (for which we can
compute CCSD(T) in all basis sets including full aDZ) and
coronene—methane (for which we were not able to converge
the CCSD iterations for the most diffuse bases). The results
computed using the jun-cc-pVDZ set,"® obtained from the jul-
cc-pVDZ=heavy-DZ one via a removal of all diffuse d functions
on carbon atoms, are listed in Table 3 as well.

The pyrene—methane results in Table 3 demonstrate that
diffuse functions are quite important for both the MP2
interaction energy and the ACCSD(T) correction and should,
whenever possible, be included at the aDZ level in order to
obtain accurate results. The key question is which diffuse
functions play the least important role in the ACCSD(T)/aDZ
correction. First, in order to examine the importance of diffuse
functions on hydrogens, the heavy’-DZ and heavy-DZ basis sets
are compared to the full aDZ. The resulting MUE on the three
pyrene—methane complexes are 0.002 and 0.014 kcal/mol,
respectively. We note that while the removal of diffuse
functions from the methane hydrogens has a fairly small
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impact on the ACCSD(T) correction, these functions do not
appear to aggravate the linear dependency issues and can be
safely included in any augmentation scheme. On the other
hand, the diffuse functions on the PAH hydrogens have a very
small contribution to the ACCSD(T) correction. Therefore,
these basis functions are removed in the subsequent
augmentation schemes.

The further reduction of diffuse basis functions leading to the
core-DZ and local-DZ sets has little impact on the MP2
interaction energy and the ACCSD(T) term. For the latter, the
pyrene—methane MUE (with respect to the full aDZ set)
amount to 0.001 and 0.003 kcal/mol for core-DZ and local-DZ,
respectively. It is of interest that both basis sets capture the aDZ
interaction energies better than the heavy-DZ basis despite
being smaller and causing fewer CCSD convergence problems.
In fact, we were able to compute the coronene—methane
CCSD(T) interaction energies in both core-DZ and local-DZ
but not in heavy-DZ. The results in Table 3 demonstrate that,
for the two dimers presented, the differences between the
ACCSD(T) terms in two basis sets are roughly an order of
magnitude smaller than the differences in the MP2 interaction
energy. Moreover, the relative accuracies provided by different
augmentation schemes are fairly constant across different
coordinations.

The pyrene—methane results in Table 3 suggest that the
coronene—methane ACCSD(T) corrections computed in the
core-DZ and local-DZ bases should be within 0.01 kcal/mol
from the full aDZ result. Interestingly, the differences between
core-DZ and local-DZ for coronene—methane are larger than
for pyrene—methane and (slightly) exceed 0.01 kcal/mol for
two of the three coordinations. On the basis of the observed
CCSD convergence patterns (we could not converge the core-
DZ result as tightly as the other ones) and on the behavior of
the results as a function of z (not shown), we believe that the
primary reason for the larger differences is residual convergence
problems affecting the core-DZ result. Nevertheless, the
observed level of agreement between core-DZ and local-DZ
provides, together with the pyrene—methane results, a strong
justification for using the local-DZ basis for our benchmark
coronene—methane CCSD(T) calculations and suggests that
the additional errors incurred in this way do not exceed 0.01
kcal/mol. Therefore, the benchmark coronene—methane
interaction energies will be obtained at the MP2/
(T,Q+ACCSD(T)/local-DZ level. Finally, it is worth noting
that the importance of particular diffuse functions depends on
the proximity of their centers to the interaction region much
more strongly than on the type of the atom. Indeed, the lack of
diffuse functions on distant PAH carbon atoms in the local-DZ
basis set turns out to be a less severe approximation than the
lack of diffuse functions on methane hydrogens in the jun-cc-
pVDZ and jul-cc-pVDZ=heavy-DZ bases. Thus, the “calendar”
basis sets are not a particularly good choice of partial
augmentation for our systems as the CCSD(T) approach
does not converge in jul-cc-pVDZ and leads to fairly inaccurate
results in jun-cc-pVDZ.

The accuracy of the benchmark results obtained in this
section depends both on the accuracy to which the CCSD(T)/
CBS limit was determined and on the magnitude of the effects
neglected in the rigid-monomer, frozen-core CCSD(T)
approach. As expected, the correction for the core—core and
core—valence correlation is very small—it amounts to 0.004
kcal/mol for the 1C benzene—methane minimum geometry at
the CCSD(T)/aug-cc-pCVTZ level of theory. The monomer
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Figure 4. MP2/(Q,5)+ACCSD(T)-F12b/(D,T) benchmark interaction potentials for the three coordinations of the naphthalene—methane

complex.
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Figure S. MP2/(Q,5)+ACCSD(T)/aDZ benchmark interaction potentials for the three coordinations of the pyrene—methane complex.

flexibility effects can be estimated by comparing the van der
Waals well depth obtained with the monomers frozen at their
monomer-optimized geometries (as is the case throughout this
work) to the well depth computed by minimization of the CP-

corrected interaction energy between fully flexible monomers.

In the latter case, the specific quantity that needs to be
minimized is
Epit = [E¥(AB) — E¥(a) - E¥(B)]
+ [E°(8) - Eg(A)] + [E°(B) - Eg(B)]  (3)
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Figure 6. Comparison of the interaction energies calculated by different approaches for the 1C, 2C, and 3C minimum structures (obtained as
described in the text) of all PAH—methane dimers considered here. The DFT results are computed at the B3LYP-D3/aDZ level. The MP2 ones are
taken from the (Q,S) extrapolation [(T,Q) for coronene], and the “Benchmark” values are calculated at the MP2+ACCSD(T) level as described in

the text.

where the superscripts denote the basis set (dimer-centered or
monomer-centered), the symbols in parentheses denote the
subsystems, and the subscript O signifies the nonrelaxed
optimized geometry of the monomer. For the 1C benzene—
methane complex, the flexible well depth obtained by
minimizing eq 3 (with the benzene monomer constrained to
the D¢, symmetry and the dimer to C;, symmetry) at the MP2
level of theory is larger by only 0.005 kcal/mol (aDZ) and
0.001 kcal/mol (aTZ) than the conventional rigid well depth.
Moreover, the changes in the bond lengths do not exceed 0.004
A. To justify the symmetry restriction, we performed a
completely unrestricted MP2/aTZ dimer optimization, which
lowered the interaction energy further by 0.001 kcal/mol. We
conclude that the monomer flexibility effects on the benchmark
energies obtained herein do not exceed 0.005 kcal/mol at the
minimum.

It is harder to estimate the benchmark uncertainty due to the
neglect of coupled-cluster excitations beyond CCSD(T). Such
an estimate (although in a very small 6-31G*(0.25) basis set)
was obtained for several structures of the benzene dimer by
Pitoidk et al.'”" via an approximate account of the quadruple
excitations at the CCSD(TQ;) level.'® The interaction energy
contributions beyond CCSD(T) ranged between 0.021 and
0.043 kcal/mol.'®! As the van der Waals well depth for the
benzene dimer is about twice as large as for benzene—
methane,***>* the beyond-CCSD(T) effects on the latter
quantity are not likely to exceed 0.03 kcal/mol. To verify this,
we computed the full CCSDT/6-31G* interaction energy at
the 1C benzene—methane minimum using the CFOUR
program.'® The triples effects beyond CCSD(T) decrease
the interaction energy by 0.014 kcal/mol. It should be stressed
that the 6-31G* basis set, the largest one feasible at this level, is
far from adequate—the CCSD(T) interaction energy in this
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basis is just —0.02 kcal/mol. Nevertheless, the beyond-
CCSD(T) effects provide one of the largest contributions to
the overall uncertainty of our CCSD(T)/CBS benchmark but
should not exceed a few hundredths of a kilocalorie per mole.

Figures 4 and S display one-dimensional cuts through the
interaction potentials for all three coordinations of the
naphthalene—methane and pyrene—methane complexes, re-
spectively. These figures show that the benzene—methane
dimer with its 1C global minimum®**® is nothing but a special
case as the 1C coordination is actually the least binding one for
all other PAHs. Moreover, Figures 4 and 5, the analogous
graphs for other dimers given in the Supporting Information
(Figures S1—S4), and Figure 6, which collects the lowest
interaction energies for all systems and all coordinations,
illustrate the different character of binding in linear and
nonlinear acenes. While the global minima are triply
coordinated in all cases, for linear PAHs, the 2C coordination
exhibits a local minimum that is only slightly shallower than the
3C one, cf. Figure 6. The nonlinear PAHs clearly favor the 3C
configuration—the 2C lowest-energy structures are signifi-
cantly less binding.

3.2. DFT Calculations. In this section, we examine how
well different DFT functionals capture the benchmark
interaction energies. At first, we will restrict ourselves to the
complexes with the most accurate MP2/(Q,5)+ACCSD(T)-
F12b/(D,T) benchmark potentials: benzene—methane and
naphthalene—methane. On the basis of the performance of
different DFT approaches on six one-dimensional potential cuts
(the interaction energy as a function of z for 1C, 2C, and 3C
orientations of benzene—methane and naphthalene—methane)
evaluated using the quantities described in section 2.5, we will
determine the best DFT functionals to use for PAH—methane
complexes. Subsequently, the best functionals will be compared

dx.doi.org/10.1021/ct3008809 | J. Chem. Theory Comput. 2013, 9, 370—-389



Journal of Chemical Theory and Computation

|
o

Interaction energy [kcal/mol]

3.0 3.3 3.6

Methane carbon - PAH distance [A]

B3LYP-D3
— B97-D3

B3LYP-D2
o B97-D2

— PBE-D3 o PBE-D2
— Benchmark
3.9 4.2 45 4.8

Figure 7. CP-corrected DFT+D/aTZ interaction potentials for the 3C naphthalene—methane complex as compared to the MP2/
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Figure 8. M05-2X, M06-2X, and @B97X-D interaction potentials computed in the aTZ basis set (with and without the CP correction) for the 3C
naphthalene—methane complex as compared to the MP2/(Q,5)+ACCSD(T)-F12b/(D,T) benchmark.

against the wave function-based benchmarks for the entire set
of complexes to verify whether the good performance on
smaller dimers is carried on to larger systems. In the last part,
we will employ the best selected DFT variant to larger dimers
where no reliable CCSD(T)-level benchmarks can be
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obtained—the hexabenzocoronene—methane and circumcor-
onene—methane systems. It should be noted that our DFT
results for benzene—methane and naphthalene—methane were
calculated using Gaussian®' without density fitting, while the

results for the remaining complexes were obtained with density
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Table 4. Minimum Interaction Energies E;, and Optimal Methane Carbon—PAH Plane Distances z,;, Obtained Using Different
Density Functionals and aDZ and aTZ Basis Sets for the 1C, 2C, and 3C Structures of Naphthalene—Methane®

1C configuration

2C configuration 3C configuration

method basis Fim Eie Fotn E Foin Eie
benchmark 3.73 -1.623 349 —2.082 341 —-2.119
CP-corrected
B3LYP-D2 aDZ 3.60 -1.732 3.34 —-2.219 327 —2.229
aTZ 3.59 —1.796 3.34 —2.240 3.28 —2.241
B3LYP-D3 aDZ 3.73 —-1.672 3.48 —2.102 341 —2.118
aTZ 3.72 —-1.722 3.48 —2.133 342 —2.150
B97-D2 aDZ 3.68 -1.710 3.44 —2.103 3.37 —-2.127
aTZ 3.66 —-1.754 3.46 —-2.091 3.40 —2.103
B97-D3 aDZ 3.72 —1.685 344 —2.106 3.37 —2.101
aTZ 3.70 -1.726 3.46 —2.094 3.39 —-2.077
PBE-D2 aDZ 3.63 —1.811 3.39 —2.274 332 —2.296
aTZ 3.62 —1.852 3.40 —2.251 3.34 —2.251
PBE-D3 aDZ 3.81 -1.776 3.60 —-2.231 3.52 —2.286
aTZ 3.81 —1.808 3.61 —2.230 3.54 —2.278
MO0S-2X aDZ 3.80 -1.129 3.58 —1.700 3.44 —1.782
aTZ 3.80 -1.072 3.54 —-1.560 347 —-1.596
M06-2X aDZ 3.65 —-1.359 340 —2.205 3.31 —2.392
aTZ 3.67 -1.273 3.38 —2.009 3.27 —2.149
wB97X-D aDZ 3.69 —1.888 3.45 —-2.574 3.37 —2.671
aTZ 3.70 —1.872 3.44 —2.476 3.37 —2.527
CP-uncorrected
B3LYP-D2 aDZ 3.55 —2.301 3.29 —2.931 322 —-2.976
aTZ 3.58 —1.910 3.34 —2.348 327 —-2.361
B3LYP-D3 aDZ 3.68 —2.172 343 —-2.729 3.37 —-2.791
aTZ 371 —1.826 3.48 —2.229 342 —2.261
B97-D2 aDZ 3.60 —-2.278 3.37 —2.775 3.32 —2.824
aTZ 3.65 —1.861 3.4S —2.188 3.38 —-2.216
B97-D3 aDZ 3.66 —2.229 3.39 —2.768 3.33 —2.794
aTZ 3.69 —1.829 3458 -2.191 3.38 —2.189
PBE-D2 aDZ 3.57 —2.395 333 —-2.970 3.26 -3.017
aTZ 3.61 —1.958 3.39 —2.348 333 —2.366
PBE-D3 aDZ 3.74 —-2.271 3.52 —2.803 3.46 —2911
aTZ 3.79 —1.898 3.60 —2.309 3.53 —2.375
MO05-2X aDZ 3.70 —1.755 3.44 —2.438 3.37 —2.582
aTZ 3.79 —-1.216 3.54 —1.694 3.4S5 —1.754
M06-2X aDZ 3.58 —2.031 3.35 —2.988 3.26 —-3.211
aTZ 3.65 —1.445 3.37 —-2.177 3.26 —2.335
wB97X-D aDZ 3.65 —2.419 341 —-3.201 333 —-3.336
aTZ 3.69 —2.001 344 —2.596 3.36 —2.666

“The energy unit is 1 kcal/mol, and the distance unit is 1 A.

fitting using the Morpro® code. A direct comparison of
interaction energies between the two codes is difficult due to
the different numerical grids employed. For benzene—methane
and naphthalene—methane, a comparison of all DFT+D
interaction energies between MoLPro and Gaussian resulted
in a MUE of 0.003 kcal/mol and a MeURE of 0.7%, well within
acceptable precision.

Figures 7 and 8 show DFT+D and interaction-optimized
density functional results, respectively, for the 3C naphtha-
lene—methane complex. In addition, Table 4 collects the
locations and depths of the naphthalene—methane minima for
all three coordinations, with and without the CP correction,
computed using all the DFT approaches tested. While the CP
correction does not guarantee increased accuracy, especially in
the DFT case, for all DFT+D methods this correction
improved the agreement with the benchmark interaction
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potential, cf. Table 4. Therefore, only CP-corrected values are
shown in Figure 7. It should be noted that the -D3 term can
employ either the original damping function'” that goes to zero
at short interatomic distances or the Becke—Johnson dampin
whose short-range limit is a finite nonzero value.'®*'%
Additionally, an inclusion of a three-body dispersion term has
been suggested for large systems.'” The resulting four variants
of the -D3 correction are compared in Figure SS in the
Supporting Information for the benzene—methane and
naphthalene—methane dimers. Neither the Becke—Johnson
damping nor the three-body correction improve the results for
the most accurate B3LYP-D3 and B97-D3 functionals.
Therefore, the original -D3 variant is employed in Table 4,
Figure 7, and throughout the rest of this work.

The results in Figures 7 and 8 and Table 4 show that the
DFT+D methods generally capture the benchmark interaction
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Figure 10. The values of the minima z differences, minima MUE, and MeURE, averaged over all six coordinations of the benzene—methane and
naphthalene—methane complexes, for different interaction-optimized functionals (with and without the CP correction).

energy curve better than the interaction-optimized functionals.
To quantify the performance of different DFT variants, the
minima MUE, MeURE, and the mean minima z differences
were computed for the six one-dimensional cuts for the
benzene—methane and naphthalene—methane dimers. The
pertinent results are shown in Figures 9 and 10 for DFT+D
and interaction-optimized functionals, respectively. These
figures show that the B3LYP-D3/aDZ approach offers the
best performance in terms of all three statistical quantities, and
the B3LYP-D3/aTZ, B97-D3/aDZ, and B97-D3/aTZ methods
are not much worse. No interaction-optimized functional
comes close to the accuracy of the best DET+D variants for the
PAH—methane dimers.

To assess the accuracy of different DFT+D methods for the
anisotropy of the interaction energy, a one-dimensional angular
cut through the benzene—methane potential energy surface was
obtained by rotating the methane molecule around the carbon
atom in such a way that the cut passes through all three
coordinations of the system. To compare the anisotropy, the
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1C structure was taken as the reference point, and energy
differences with respect to this reference were compared against
the benchmark. The three best DFT+D functionals in terms of
MURE are B3LYP-D3/aDZ (0.5%), B97-D2/aTZ (0.5%), and
B97-D3/aTZ (0.7%). The complete set of benchmark and
DFT+D results for this angular cut is displayed in Figures S6—
S7 in the Supporting Information.

Figure 11 demonstrates that the high accuracy of several
DFT+D methods is retained for pyrene—methane (and, in fact,
for all dimers up to this size). In order to identify the best DFT
variant overall, Table 5 shows the three statistical quantities
discussed above broken down into different coordinations for
the three top performers. Note that, unlike in Figures 9 and 10,
the averaging in Table S has been carried out over all the
systems for which benchmark CCSD(T)-level potential energy
curves are available, that is, benzene—methane through
pyrene—methane. Table S demonstrates that B3LYP-D3/aDZ
exhibits the best performance in nearly every category. On the
basis of all the statistics presented above, we select the B3LYP-
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Figure 11. DFT+D/aTZ interaction potentials for the 3C pyrene—methane complex as compared to the MP2/(Q,5)+ACCSD(T)/aDZ benchmark.

Table 5. The Three Best DFT+D Functionals in Terms of
MeURE Broken down into Different Coordinations of the
Complexes®

B3LYP-D3 B97-D3 PBE-D2
aDZ aTZ aDZ aTZ aDZ aTZ
minima z difference
all 0.01 0.01 0.03 0.02 0.09 0.09
1C 0.01 0.01 0.02 0.03 0.09 0.10
2C 0.02 0.01 0.04 0.03 0.10 0.09
3C 0.01 0.01 0.03 0.01 0.09 0.07
minima MUE
all 0.039 0.072 0.041 0.060 0.151 0.140
1C 0.058 0.107 0.062 0.103 0.158 0.201
2C 0.041 0.070 0.035 0.031 0.157 0.133
3C 0.018 0.038 0.024 0.047 0.137 0.087
MeURE

all 2.52% 3.14% 7.01% 6.76% 3.86% 4.13%
1C 3.11% 3.93% 7.06% 6.98% 4.45% 6.20%
2C 2.73% 2.98% 7.20% 6.31% 4.01% 3.86%
3C 1.84% 2.35% 5.74% 7.21% 3.47% 3.04%

“The purpose of this breakdown is to illustrate that the lowest-energy
structure of the complex is recovered better than the overall statistics
suggest. The statistical averaging has been performed over all dimers
from benzene—methane through pyrene—methane. The units are 1 A
for the minima z difference and 1 kcal/mol for the minima MUE.

D3/aDZ approach as the method of choice for larger systems,
as coronene—methane is the last dimer for which CCSD(T) in
any acceptable basis is feasible. It is also of interest that the
DFT+D approach slightly overbinds the 1C and 2C structures,
which lead to somewhat larger errors compared to the 3C
configuration.

The 1C, 2C, and 3C minimum energies for the CCSD(T)/
CBS benchmark, MP2/CBS, and the B3LYP-D3/aDZ func-
tional for all dimers studied in this work are collected in Figure
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6. The qualitative differences between the minima pattern for
linear acenes and nonlinear PAHs are easily discernible at all
levels of theory. Figure 6 demonstrates how the B3LYP-D3/
aDZ approach performs remarkably well for all systems through
pyrene—methane (in the worst case, the 1C pyrene—methane
complex, the error is 0.110 kcal/mol or 6.2%) but overbinds the
three coronene—methane minima by 0.126—0.292 kcal/mol or
4.2—13.9%. The accuracy of the B3LYP-D3/aDZ approach for
coronene—methane is still quite good—for comparison, the
MP2/CBS method overbinds the PAH—methane complexes by
30% and more. However, the increase in errors with respect to
smaller complexes can be only partially explained by the
increased uncertainty of the benchmark itself (due to the use of
a reduced local-DZ basis for ACCSD(T) and the larger overall
interaction energy) which is not expected to exceed 0.1 kcal/
mol even for this system. It should be noted that B3LYP-D3/
aDZ tends to overestimate the minimum energies more for the
1C and 2C configurations than for the 3C coordination. The
second and third best performer overall, the B97-D3 and PBE-
D2 functionals, are actually slightly more accurate than B3LYP-
D3 for coronene—methane, cf. Table SVII in the Supporting
Information. However, both functionals slightly underestimate
the minimum intermolecular distances, while B3LYP-D3 is spot
on in that respect.

To estimate the adsorption energy of methane on graphene
and graphite, larger complexes are needed as there still is a large
gap in interaction energy between pyrene—methane and
coronene—methane. For systems larger than coronene—
methane, the CCSD(T) calculations cannot be performed in
a large enough basis set, and MP2 is deemed to overestimate
the interaction energy considerably. Therefore, we resorted to
the top DFT performer from our tests on smaller complexes,
the B3LYP-D3 approach, to study the two largest complexes,
hexabenzocoronene—methane and circumcoronene—methane
(Figure 1). To find the minima for these systems, starting
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intermolecular geometries were taken from the coronene—
methane dimer, and then the B3LYP-D3/aDZ interaction
energies were minimized in a three-dimensional search that
disregarded methane rotation. The global-minimum interaction
energies for the hexabenzocoronene—methane and circum-
coronene—methane complexes are —3.214 and —3.362 kcal/
mol, respectively. The latter result should be reasonably close
to the graphene—methane interaction energy as the interactions
with distant carbon atoms are not likely to change the
interaction energy appreciably. Indeed, the addition of one and
two additional rings of benzene rings around circumcoronene
changes the -D3 empirical dispersion term by —0.087 and
—0.118 kcal/mol, respectively, compared to circumcoronene—
methane. At this range of distances, dispersion should
constitute nearly 100% of interaction energy. Thus, our
calculations predict that the minimum graphene—methane
interaction energy is about —3.48 kcal/mol.

A direct comparison of the theoretical result to the
experimental well deg)th of methane adsorbed on the (0001)
surface of graphite'®® requires taking into account the
interactions with the subsurface graphene sheets. To estimate
the effect of the subsequent layers in graphite, a simple additive
model is assumed where the contribution of each additional
layer is estimated using the circumcoronene—methane model
and the B3LYP-D3/aDZ approach. The distance between
graphene layers in graphite is taken as 3.34 A, and each layer is
shifted by 1.43 A with respect to the previous one to form an
alternate ABAB... structure.'”” Starting with the methane—
circumcoronene 3C global minimum geometry, in the models
for subsequent layers the circumcoronene molecule is shifted in
a way corresponding to the relative position of layers in
graphite. The resulting B3LYP-D3 calculations give the
adsorption energy contributions from the second, third, fourth,
and fifth graphene layers equal to 0.200, 0.023, 0.006, and less
than 0.001 kcal/mol, respectively. Thus, taking into account the
first four layers, our final estimate of the methane adsorption
energy on the (0001) graphite surface amounts to 3.71 kcal/
mol. This value is somewhat larger than the experimental result
of 2.99 + 0.24 kcal/mol*® and the DET/CC result of 3.23
kcal/mol."%® We will discuss this discrepancy in more detail in
section 3.4.

3.3. SAPT(DFT) Calculations. To provide a better insight
into the nature of the PAH—methane bonding and the effects
determining the energetic ordering of different coordinations,
we performed SAPT(DFT) calculations for several dimers
along the same one-dimensional cuts through the potential
energy surface as for the benchmark and DFT calculations. The
total SAPT(DFT) interaction energies for the 2C and 3C
configurations of naphthalene—methane are compared to the
benchmark curves in Figure 12. An analogous figure for
pyrene—methane is given in the Supporting Information.
Figure 12 shows that the absolute accuracy of SAPT(DFT) is
not very impressive—the depth of the global minimum is
underestimated by 0.27 kcal/mol at the aTZ level. However, a
substantial part of this discrepancy can be attributed to the basis
set incompleteness effects as indicated by the SAPT(DFT)/
aTZ minima being about 0.2 kcal/mol deeper than the
SAPT(DFT)/aDZ ones. While SAPT(DFT) is not as accurate
overall as the best DFT+D approaches for this system, Figure
12 demonstrates that it recovers the energy difference between
the 2C and 3C configurations very well. Therefore, we can
expect the SAPT(DFT) energy decomposition to provide
reliable insight into the physical origin of interaction energy
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Figure 12. Total SAPT(DFT) interaction energies for the 2C and 3C
naphthalene—methane configurations plotted against the benchmark
data as functions of the intermolecular coordinate z.

differences between differently coordinated PAH—methane
structures.

Table 6 shows the SAPT(DFT)/aDZ electrostatics,
induction, dispersion, and first-order exchange contributions
for the 2C and 3C minima of the naphthalene—methane and
pyrene—methane dimers. It is clearly seen that both complexes,
while primarily bound by dispersion, also contain a significant
amount of attractive electrostatic interaction. While the latter
interaction is nearly negligible in the asymptotic region (with
the leading contribution coming from the quadrupole—
octupole interaction), the charge overlap effects make it
substantial in the region of the van der Waals minima. For
the naphthalene—methane complex, the electrostatics and first-
order exchange effects actually slightly favor the 2C
configuration, but the 3C one exhibits more dispersion. As a
result of a cancellation of these differences, the 2C and 3C
minima are nearly isoenergetic just like we found for all other
theory levels, cf. Figure 6. When the PAH is not a linear acene,
such as in the pyrene—methane case, Figure 6 shows that the
3C minimum is significantly deeper than the 2C one. As the
SAPT(DFT) contributions presented in Table 6 indicate, the
3C configuration exhibits stronger dispersion (and also
somewhat stronger electrostatics) that more than makes up
for the somewhat larger exchange repulsion compared to the
2C geometry. It is also worth noting that the differences
between the SAPT(DFT) contributions for naphthalene—
methane and pyrene—methane are much larger for the 3C
geometry than for the 2C one. This behavior can be explained
by the fact that an “extension” of naphthalene to pyrene for the
2C configuration involves adding atoms that are relatively far
from the methane molecule and contribute little to the
interaction energy, especially to the short-range first-order
exchange part (cf. Figure 1). Conversely, a similar “extension”
leading to 3C pyrene—methane involves creating a new
aromatic ring directly below one of the methane hydrogens.
This increases both the exchange repulsion and the attraction
due to electrostatics and dispersion. The latter effect prevails
and the 3C structure exhibits a significantly stronger bonding in
the pyrene—methane complex than in the naphthalene—
methane one.

3.4. Comparison to Other Work. The intermolecular
separations z.;, and interaction energies E;, at the global
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Table 6. Minimum Intermolecular Distances z,;,, Interaction Energy Contributions, and Total Interaction Energies E;
Predicted by SAPT(DFT)/aDZ for the 2C and 3C Coordinations of Naphthalene—Methane and Pyrene—Methane As

Compared to Benchmark®

SAPT(DFT) benchmark
system Zomin electrostatics induction dispersion exchange E;. Zomin E;.
naphthalene—methane 2C 3.63 —0.834 —0.064 —2914 2.160 —1.653 3.49 —2.082
naphthalene—methane 3C 3.55 —0.795 —0.060 -3.052 2.239 —1.668 341 —-2.119
pyrene—methane 2C 3.61 —0.802 —0.051 —3.262 2.248 —1.867 347 —-2.362
pyrene—methane 3C 3.47 —0.950 —0.049 —3.694 2.590 —2.103 3.33 —2.678

“The energy unit is 1 kcal/mol, and the distance unit is 1 A

Table 7. Global Minimum Methane Carbon—PAH Plane Separations z,;, (in A) and Interaction Energies E;,,

(in kcal/mol) for

All Complexes Investigated in the Present Work Compared to Previous Theoretical and Experimental Studies”

system theory level

benzene—methane 1C  MP2-F12/(Q,5)+ACCSD(T)-F12b/
(TQ

naphthalene—methane 3C  MP2/(QS)+ACCSD(T)-F12b/(D,T)
antracene-methane 3C  MP2/(QS)+ACCSD(T)/aDZ
tetracene-methane 3C  MP2/(QS)+ACCSD(T)/aDZ
phenanthrene-methane 3C  MP2/(Q,5)+ACCSD(T)/aDZ
pyrene—methane 3C MP2/(Q,5)+ACCSD(T)/aDZ
coronene—methane 3C  MP2/(T,Q+ACCSD(T)/local-DZ
hexabenzocoronene—methane ~ 3C ~ B3LYP-D3/aDZ
circumcoronene—methane 3C  B3LYP-D3/aDZ
graphene-methane 3C  est. BALYP-D3/aDZ
graphite-methane 3C est. BALYP-D3/aDZ

this work other works

Zmin Eine Zmin Eine

3.76 —1433  3.72 [33] —1.50 [33],° —1.448 [39, 41}
—1.438 [75]8

3.41 -2.119 3.6 [58] —1.92 [58]"

3.40 —2.258

3.40 —2.359

3.38 -2.378

3.33 —2.678 3.4 [58], 3.36 [110] —2.50 [58]," —2.91 [110]’°

3.32 —2.849 331 [108],3.37 [110]  —2.799 [108]/ —3.32 [110]’

3.32 —3214

3.32 —3.362

3.32° 3.48° 331 [108], 328 [109]  3.23 [108],% 3.92 [109]*

3.32° 3714 3.03-3.45 [106] 299 + 0.24 [106]™

“Different estimates of the adsorption energy of methane on graphene and (0001) graphite are also given. The reference numbers for literature
values are given in square brackets. “Taken from the circumcoronene—methane calculation. “The circumcoronene—methane result plus the -D3
correction for interaction with distant carbon atoms. “The graphene—methane result plus a B3LYP-D3/aDZ estimate of the contribution from
subsurface graphene layers. “Original S22 database: MP2/cc-pVTZ optimized geometry, MP2/(cc-pVQZ,cc-pVSZ)+ACCSD(T)/(reduced cc-
pVTZ) energy. TRevised $22 database: MP2/(Q,5)+ACCSD(T)/(aTZ+midbond) energy at the geometry from ref 33. CCSD(T)/(heavy-
TZheavy-QZ). "MP2(cc-pVDZ,cc-pVTZ)+ACCSD(T)/6-31G* energy at the MP2/6-31G*(0.25) optimized geometry. ‘BLYP-D3/aTZ. 'DFT/
CC using the PBE functional and the aQZ basis. “Periodic DFT/CC using the PBE functional and a plane-wave basis. 'MP2/aTZ. "Experiment.

minima for all dimers considered in this work, including the
estimates of the adsorption energy of methane on graphene and
graphite, are collected in Table 7 and compared to the most
accurate literature results. It should be noted that, in a few
cases, different minimum structures were found in the previous
studies. Specifically, Tsuzuki et al. found,>® through an MP2/6-
31G*(0.25) geometry optimization, a naphthalene—methane
minimum structure that is an intermediate between the 2C and
3C ones (closer to the 2C configuration). The ordering of the
minima found by Thierfelder et al.'® for graphene—methane
(using MP2 for a finite cluster and periodic DFT for an infinite
sheet) varies with the method and density functional employed.
Finally, Qiu et al.''® considered nine different structures of
coronene—methane, but neither of them corresponds to the
global minimum located in this work. The lowest-energy
structure of ref 110, a 3C configuration but with the methane
carbon placed over the center of the inner coronene ring,
exhibits an interaction energy (minimized with respect to the z
distance) of —2.686 kcal/mol at the MP2(T,Q)+ACCSD(T)/
local-DZ level, 0.162 kcal/mol above the global minimum.
The first system in Table 7, the benzene—methane complex,
has been the subject of numerous high-level ab initio
studies.***?% #0751l The present work is the only one
where the CCSD(T) interaction energy was computed in a
fully augmented quadruple-( basis set (although Marchetti and
Werner”” used heavy-QZ) so that our result is theoretically the
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most accurate. However, the most accurate previous results
were already well converged, so the improvement is very
modest. On the contrary, the only CCSD(T) interaction
energies available for larger PAH—methane dimers, the results
of Tsuzuki et al.*® for naphthalene—methane and pyrene—
methane, are underestimated by about 0.2 kcal/mol. Obviously,
the small 6-31G* basis used to compute ACCSD(T) in ref 58
is far from complete.

The BLYP-D3 pyrene—methane and coronene—methane
interaction energies from ref 110 are overestimated by 0.23 and
0.47 kcal/mol, respectively, relative to our benchmarks. Clearly,
the performance of BLYP-D3 is not competitive with that of
the best DFT+D variants tested in this work, most notably
B3LYP-D3 (cf. the minima MUE values in Table 5). On the
other hand, the excellent agreement (to 0.05 kcal/mol) of our
coronene—methane result with the DFT/CC one of Rubes$ et
al.'®® provides a strong validation of the assumption that the
differences between CCSD(T) and DFT, computed for small
dimers, are transferable to larger PAH—methane complexes
(note the agreement between the minimum geometries too).
This underlying assumption of the DFT/CC approach is also
employed by us to justify the selection of an optimal DFT+D
variant for large systems via a comparison to benchmark small-
system CCSD(T) interaction energies.

As far as the methane adsorption energy on infinite carbon
structures is concerned, the review work of Vidali et al.'®
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recommended, based on a number of experimental studies, the
value of 2.99 + 0.24 kcal/mol as the zero-coverage adsorption
well depth of methane on the (0001) surface of graphite and
3.24 + 0.21 A as the distance between the methane carbon and
the surface. While all computational studies give adsorption
distances within the broad experimental range, the same is not
true for the adsorption energy. The periodic DFT/CC result of
Rube$ et al.'® is at the upper end of the experimental range
while our estimate, although certainly more accurate than the
MP2 one of ref 109, is 0.48 kcal/mol above the higher
experimental limit. The reason for this discrepancy is that the
B3LYP-D3/aDZ approach employed by us somewhat over-
estimates the global-minimum interaction energies (cf. Figure
6). The extent of this overestimation has been observed to
increase between pyrene—methane and coronene—methane
(from 0.033 to 0.126 kcal/mol), and it is likely that this trend
continues to circumcoronene—methane. In that case, the B97-
D3/aDZ approach, which overestimates the coronene—
methane global-minimum interaction energy by only 0.053
kcal/mol, might accidentally be a better choice for extended
systems even though it is inferior to B3LYP-D3 for the
description of the entire potential energy curve (as indicated by
the larger MeURE values in Figure 9 and Table S). The B97-
D3/aDZ circumcoronene—methane interaction energy
amounts to —3.217 kecal/mol for the z distance of 3.32 A. If
this result is augmented with the corrections for the more
distant carbon atoms in the first graphene sheet and the
subsurface graphene layers, the resulting B97-D3/aDZ estimate
of the methane adsorption energy on graphite amounts to 3.58
kcal/mol, less than for B3LYP-D3/aDZ but still outside the
experimental range. Finally, let us note that if the graphene—
methane result of Rubes et al.'”® is augmented by our estimate
of the contributions from subsurface graphene layers (neglected
in ref 108), the resulting adsorption energy of 3.46 kcal/mol is
also above the upper experimental limit. Thus, it is possible that
the experimental value is somewhat underestimated and the
deviation of our B3LYP-D3/aDZ result from the true
adsorption energy is no more than 0.2 kcal/mol.

4. SUMMARY

High-accuracy benchmark interaction energies were obtained
for weakly interacting complexes of aromatic hydrocarbons
(benzene, naphthalene, anthracene, phenanthrene, tetracene,
pyrene, and coronene) with methane. The energies were
computed by the supermolecular MP2 approach extrapolated
to the complete basis set limit plus a CCSD(T) correction
calculated in a moderate basis set (up to aQZ for benzene—
methane, aTZ for naphthalene—methane, aDZ for anthracene—
methane through pyrene—methane, and local-DZ for coro-
nene—methane). The calculations for benzene—methane
and naphthalene—methane utilized the explicitly correlated
CCSD(T)-F12a/b approach while all other systems were
treated using conventional CCSD(T). An extensive basis set
convergence analysis indicates that our benchmark interaction
energies are accurate to a few hundredths of a kilocalorie per
mole.

Our CCSD(T) results indicate that the very well studied
benzene—methane complex is not at all representative of the
interactions between methane and larger PAHs. The benzene—
methane global minimum is singly coordinated (1C); that is,
only one methane hydrogen points toward the benzene plane.
For all other complexes (that have not been studied at the
CCSD(T) level before except for the very small-basis work of
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Tsuzuki et al.*®), the 1C structure is significantly less bound
than the 2C and 3C ones. The global minimum for
naphthalene—methane and all larger complexes is triply
coordinated; however, the linear and nonlinear PAHs lead to
a qualitatively different behavior. In the nonlinear case, the 3C
structure is highly favored over all others as, except for the
phenanthrene complex, all three hydrogens can be placed on
top of different aromatic rings. Such a placement is not possible
for linear acenes: as a result, the 2C and 3C minima are nearly
isoenergetic in this case. The binding patterns between
methane and PAHs can be understood in terms of a
competition between dispersion, exchange repulsion, and
electrostatics as illustrated by the SAPT(DFT) decomposition
of the interaction energy performed for selected dimers.

The CCSD(T)-level benchmarks developed here were used
to investigate the accuracy of several novel DFT approaches for
the PAH—methane interaction energies. The comparisons
included one-dimensional cuts through the PAH—methane
potential energy surfaces passing through the deepest minima
in each of the three coordinations. Thus, the optimal DFT
variant needs to provide a uniformly high accuracy for all
intermolecular distances, not just around the van der Waals
minima. The tested approaches included DFT+D (with the
B3LYP, PBE, and Grimme’s reparameterization of B97'% as the
density functionals and Grimme’s -D2'* and -D3'® empirical
corrections for dispersion) and functionals specifically opti-
mized for weak intermolecular interactions (M05-2X, M06-2X,
and @B97X-D). While the latter group of functionals somewhat
underperformed for the complexes studied here, the DFT+D
approach, employing the aDZ and aTZ basis sets and including
the counterpoise correction, reproduced the benchmark results
very well. The accuracy of the CP-corrected B3LYP-D3/aDZ
method was particularly remarkable and consistent across
different dimers (benzene—methane through pyrene—meth-
ane), coordinations, and distances, with an overall mean
unsigned error at the minima equal to 0.039 kcal/mol and a
median unsigned relative error for all points amounting to
2.52%. The B3LYP-D3 functional performed similarly well in
the aTZ basis set, and the B97-D3 approach came a close
second. The accuracy of the B3LYP-D3/aDZ method some-
what deteriorated for the coronene—methane complex, but the
global minimum was still reproduced to within 0.13 kcal/mol.

The excellent reproduction of benchmark results with the
B3LYP-D3 approach suggests that it should be the method of
choice for studying interactions of methane with larger PAHs as
well as with extended structures such as graphene sheets and
carbon nanotubes. We performed the first step in this direction
and computed B3LYP-D3/aDZ interaction energies for the
three coordinations of hexabenzocoronene—methane and
circumcoronene—methane. Compared to the coronene—
methane dimer, the presence of an additional outer ring of
benzene rings increases the binding by about 0.5 kcal/mol. As
the main binding force is provided by dispersion, an extension
of the PAH beyond circumcoronene results in a small change in
the interaction energy and can be modeled by the empirical
dispersion term alone. The inclusion of the effect of this
extension and of the contribution from the subsequent layers
leads to estimated methane adsorption energies on graphite
equal to 3.71 (B3LYP-D3) and 3.58 (B97-D3) kcal/mol, close
to the experimental value but above its upper limit. A similar
estimate of the adsorption energy of methane on the inner and
outer surfaces of a carbon nanotube needs to take into account,
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in addition to all other effects, the nanotube curvature. Further
work in this direction is in progress in our group.
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ABSTRACT: We present a high-level ab initio investigation of the effects of model size
and curvature on the exterior and interior binding energy of methane on single-walled
carbon nanotubes. The interaction energies of methane with curved coronene were
computed using complete basis set MP2 with a CCSD(T) correction. A variety of novel
dispersion-including density functional approaches were then compared to the benchmark
data. The top-performing functionals were used to calculate binding energies between
methane and larger nanotube fragments all the way through infinite nanotubes. The
methane binding energy of a narrow (9,0) carbon nanotube, compared to a flat graphene
surface, is decreased by 32% on the exterior but increased by 185% on the interior.

I. INTRODUCTION

Noncovalent interactions between carbon nanostructures and
small molecules have been the subject of numerous
experimental and theoretical studies.' "' The physisorption of
methane on carbon nanotubes has been of particular interest
due to the proposed applications of nanotubes for methane
storage,'”" as molecular sieves to separate CO, from flue
gases,"* "¢ and as catalysts for important processes such as C—
H bond activation in organic synthesis.'”'® However, the
majority of existing theoretical studies for nanotube complexes
have used either empirical, Lennard-Jones-type potentials or
standard density functionals such as LDA. While such studies
can lead to important qualitative findings, their quantitative
accuracy leaves significant room for improvement.

As the adsorbate—surface binding is dominated by
dispersion, standard density functionals like B3LYP'*° or
PBE*' are unable to provide accurate interaction energies. In
the past decade, numerous density functional theory (DFT)
methods that incorporate dispersion have been introduced and
benchmarked on a wide variety of systems.”*~>° While some of
the novel methods exhibit average errors at the van der Waals
minima as low as 0.2 kcal/mol (0.8 kj/mol),29 a systematic
behavior of errors across different intermolecular distances
cannot be guaranteed. Moreover, the accuracy of a given DFT
approach may vary dramatically between different systems.

More accurate interaction energies can be obtained using
wave function methods for models involving small fragments of
a graphene sheet such as polycyclic aromatic hydrocarbons
(PAHs) or curved PAHs as fragments of nanotubes. The
current gold standard in electronic structure theory, the
coupled-cluster approach with singles, doubles, and perturba-
tive triples (CCSD(T)), provides interaction energies accurate
to about 1-2%>' at the complete basis set (CBS) limit.

i i © 2013 American Chemical Society
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However, CCSD(T) calculations in bases large enough for
direct CBS extrapolation are only feasible for PAHs up to
naphthalene (11 carbon atoms). We have previously shown®
that the composite MP2/CBS+ACCSD(T) method provides
an excellent approximation to CCSD(T)/CBS for PAH—
methane complexes even when the ACCSD(T) = Eccsp(r) —
Eyp, correction is limited to the aug-cc-pVDZ basis set. At this
basis set level, PAHs up to coronene (24 carbon atoms) are
feasible. Second-order Moller—Plesset perturbation theory
(MP2) calculations are feasible for model dimers involving at
least circumcoronene (54 carbon atoms); however, MP2
typically overbinds dispersion-bound systems by 20—409%.%>>°
Several approaches to correct this overbinding by proper
scaling of the parallel- and antiparallel-spin contributions have
been proposed;>*™>® however, none of them consistently
deliver accuracy comparable to CCSD(T). Among the
approaches that exhibit the (MP2-like) N° scaling with the
system size, the most accurate interaction energies are likely
provided by those where the dispersion energy is computed
using frequency-dependent polarizabilities from time-depend-
ent DFT, such as DET-SAPT*>"*® and MP2C.* Indeed, these
methods have been successfully employed to compute accurate
PAH-water,*"* PAH-CO,* and PAH-rare gas** inter-
action energies. However, our recent study of the PAH-
methane complexes®” indicates that the DET—SAPT approach,
while likely quite accurate at the CBS limit, exhibits relatively
slow basis set convergence. Thus, we prefer not to rely on any
level of theory below CCSD(T) as a trustworthy source of
benchmark PAH—methane interaction energies.
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A variety of different dispersion-corrected DFT functionals
were tested in ref 32. It was shown that the DFT plus atom-
pairwise dispersion correction (DFT+D) methods* replicated
the CCSD(T) benchmarks significantly better than the
interaction-optimized functionals such as MO05-2X,* MO06-
2X,** and @B97X-D.** The most accurate DFT+D method for
the PAH—methane complexes was the B3LYP functional
combined with Grimme’s -D3 dispersion correction®” in the
aug-cc-pVDZ basis set, with a median unsigned relative error of
3.3% and a mean unsigned error (MUE) at the minima of 0.04
kcal/mol compared to the CCSD(T)-level benchmark.

In this work, we extend the investigation of ref 32 to
complexes of methane with nanotube fragments of different
curvature. As there is no guarantee that the impressive accuracy
of B3LYP-D3/aDZ interaction energies is retained for curved
hydrocarbons, we extend the benchmark CCSD(T)-level
calculations to complexes containing a curved coronene
molecule. The top performing DFT variants are used to
investigate the dependence of interaction energy on the
nanotube diameter, adsorption site (interior/exterior), inter-
molecular distance, and the coordination of the methane
molecule. Perhaps most importantly, we determine the
minimum  sizes of the curved PAH models that provide
converged values of the nanotube binding energies. While for
the PAH—water interaction even the smallest, benzene—water
model was found to be reasonably accurate;*>*"*” for nonpolar
adsorbates much larger fragments are required,””*”*® and it is
likely that still larger curved PAHs may be needed to describe
interior adsorption where a large number of surface atoms are
in close proximity to the adsorbate molecule. Finally, we test
the validity of finite PAH models by performing plane-wave
DFT calculations for complexes of methane with infinite
nanotubes.

The structure of the rest of this paper is as follows. In section
IT we describe the ab initio methodology employed to compute
interaction energies and give the pertinent computational
details. We present and analyze our numerical results in section
III. Finally, section IV contains conclusions.

Il. METHODS

We consider two classes of model complexes in which the
nanotube is represented by coronene-shaped (C,) and toroidal
(T,) fragments, as illustrated in Figure 1. Specifically, the C,
fragment is obtained by a successive addition of n layers of peri-
fused benzene rings around a central benzene ring (so that C,
denotes curved coronene, C, is curved circumcoronene, and so
on). The T, model denotes a full toroidal fragment, that is, a
nanotube of finite length. The number of benzene rings along
the nanotube axis is the same for the C, and T, models.

To construct the model geometries, larger nanotube pieces
were first generated using the TUBEGEN program.”’ The
desired fragment was then cut from the TUBEGEN output so
that its curvature corresponds to a particular zigzag (k,0) or
armchair (k,k) nanotube." When the width of the C, fragment
is larger than the circumference of the nanotube, the fragment
is wrapped around and may actually contain a T,, fragment, m <
n, as a subset (see Figures S2—S3 in the Supporting
Information for examples). The cleaved carbon—carbon
bonds in all fragments were capped with hydrogen atoms.

The MOLPRO code® was used to obtain all MP2,
CCSD(T), and DFT interaction ener§ies. We employed the
Dunning bases aug-cc-pVXZ=aXZ>"** as well as the
Turbomole def2 series of basis sets.>® As observed in ref 32,
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Figure 1. Upper panel: example fragments cut out from a (12,0)
nanotube. (a) The T, fragment in teal with the C; fragment in red. (b)
The T, fragment in teal with the C, fragment in red. Analogous
models cut out from an armchair nanotube can be found in Figure S1
of the Supporting Information. Lower panel: the three possible
coordinations of methane in their respective idealized graphene
minima.

calculations of the ACCSD(T) correction in the full aDZ basis
for the methane—coronene complex are not possible due to
near linear dependencies in the basis set. Truncation of the
aDZ basis to jun-cc-pVDZ>* did remove the linear depend-
encies; however, the accuracy of the resulting ACCSD(T)
correction was not satisfactory. A much better result was
obtained using a different truncation scheme where only the
methane atoms and the six coronene carbon atoms closest to
the methane carbon (seven closest carbon atoms if the sixth
and seventh one are symmetry equivalent) had diffuse functions
in the basis set. The resulting set will be denoted as local-aDZ
(1aDZ).** The notation MP2/(basisl,basis2) means that the
bases “basis1” and “basis2” have been employed in the standard
X3 extrapolation of the correlation part of the MP2 interaction
energy.>

The DFT functionals employed were B3LYP,'”*° PBE,*" and
Grimme’s reparameterization”> of Becke’s B97 functional.*®
These functionals were augmented by Grimme’s atom-pairwise
dispersion terms in the -D2** and -D3” variants. The -D2
correction and the four variants of the -D3 correction (with
either Chai—Head-Gordon® or Becke—Johnson (BJ) damp-
ing’ and with or without the three-body term E®)) were
calculated using Grimme’s DFT+D program V3 Rev. 0. All
calculations employed the counterpoise correction for basis set
superposition error.>*** The MP2 and DFT calculations
employed density fitting.">®' The distance z from the methane
carbon to the nanotube surface is defined relative to the closest
point on the cylinder on which all nanotube carbons are
located.

The plane-wave periodic DFT calculations for complexes of
methane with finite and infinite nanotubes were performed
with the VASP code.®>"®* The box size for VASP calculations
was the nanotube diameter +10 A for dimensions perpendicular
to the nanotube axis. For the axis parallel to the nanotube, the
unit cell length was the fragment length plus 10 A for finite
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Figure 2. Max UE (black lines) and MURE (bars) statistics of the best-performing DFT+D methods compared to the benchmark CCSD(T)-level
results for the 108 C, model geometries. The methods are sorted by the MURE in the SVP basis set.

models and the length of a T; segment (14.8 A for armchair
and 12.8 A for zigzag) for the infinite nanotube calculations.
The plane-wave energy cutoff was 400 eV.

lll. RESULTS AND DISCUSSION

A. Curved Coronene. The five models chosen for the
CCSD(T)-level benchmarks were the C; (coronene-sized)
fragments of the (5,5), (7,0), (9,0), (12,0), and (5000,0)
nanotubes. The last fragment was used to represent graphene:
it deviates from a flat plane by just 0.003 A at the C, size and
0.012 A at the C, size. We have followed the nomenclature of
singly, doubly, and triply coordinated (1C, 2C, and 3C)
configurations,®® where nC involves n methane hydrogens
closer to the nanotube surface than the methane carbon. To
obtain the exterior and interior minima for each coordination,
the methane molecule was initially placed in an idealized
minimum for a flat graphene sheet, as shown in Figure 1. The
complex geometries were then optimized (with the monomer
geometries frozen) using the B3LYP-D3/aDZ method which
previously showed excellent agreement with wave function-
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based approaches for the methane—PAH complexes.*> For
curved nanotube fragments all geometry optimizations, except
those of the zigzag 3C structures, resulted in the methane
carbon directly over the center of the coronene molecule. The
methane in the exterior zigzag 3C models remained near its
location in the idealized graphene structure, as shown in Figure
S4 of the Supporting Information. The minimum geometries
for the flat (5000,0) fragment were similar to the idealized
graphene minima, Figure 1.

The 27 minima obtained in this way (interior and exterior
sites for curved coronene and one minimum for flat coronene
at each coordination) were then investigated at the MP2/
(aTZ,aQZ)+ACCSD(T)/laDZ level at the minimum z
distance and at 0.9, 1.2, and 1.4 times the minimum z distance,
giving a total of 108 CCSD(T) results against which different
DFT methods can be benchmarked. The DFT methods tested
were the best performers from our work on methane—PAH
complexes:*> B97, PBE, and B3LYP with the def2 SVP, TZVP,
QZVP and Dunning DZ, aDZ, TZ, aTZ basis sets combined
with all possible variants of Grimme’s dispersion correction:
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-D2,*> -D3,” -D3(BJ),"” -D3-E®), and -D3(BJ)-E®, giving a
total of 105 different combinations of functionals, basis sets,
and dispersion corrections.

The accuracy of different DFT variants with respect to the
CCSD(T)-level benchmarks is displayed in Figure 2 using two
statistical measures: the mean unsigned relative error (MURE)
and the maximum unsigned error (Max UE). The MURE, Max
UE, and MUE values for all 105 variants are given in Figures
S5—S7 in the Supporting Information. Figure 2 shows that the
DFT+D performance is strongly dependent on the selection of
a functional but only weakly dependent on the basis set. As far
as the dispersion term is concerned, -D3 is significantly more
accurate than -D2 for the B97 and B3LYP functionals: only for
PBE the performance of -D2 and -D3 is similar. Among
different -D3 variants, the inclusion or omission of the three-
body term has little effect. However, the choice of the damping
term is quite significant, with the B] damping performing better
than the original “zero-damping” for B3LYP and PBE and
worse for B97. The wide range of accuracy displayed in Figure
2 emphasizes that while the best DFT+D variants can lead to
excellent agreement with high level ab initio benchmarks, the

547

selection of the functional and the dispersion correction are of
utmost importance.

The best functional overall is B97—D3—E(3)/ aTZ with a
MURE of 5.7% and Max UE of 0.36 kcal/mol. Considering the
exterior and interior sites separately (and excluding the
(5000,0) data), the best functionals for interior and exterior
structures are B97-D3-E®)/aTZ (MURE 4.3%) and B3LYP-
D3(BJ)/SVP (MURE 3.4%), respectively. The previously
recommended B3LYP-D3/aDZ functional®” has a MURE of
4.0% and 12.1% for the exterior and interior geometries,
respectively.

The benchmark CCSD(T) results and methane-curved
coronene potential energy curves from the two best DFT
functionals are shown in Figure 3, demonstrating the good
performance of the top DFT+D variants across the entire van
der Waals well. As predicted by a simple consideration of the
number of nanotube atoms in the vicinity of methane, and as
well established by both theory and experiment for different
adsorbate molecules,>™® when the nanotube becomes smaller,
the exterior binding energies decrease while the interior binding
energies increase. The 3C binding energy for the flat (5000,0)
fragment is reduced by as much as 28% outside the smallest
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nanotube investigated at the CCSD(T) level, (7,0). The
analogous interior 3C binding energy is increased by 28% and
47% for the (9,0) and (12,0) nanotubes, respectively. It is
worth noting that the minimum z distances for all interior
coordinations of the (7,0) nanotube are larger than its radius
(2.76 A) indicating that the methane molecule is unlikely to fit
inside this particular nanotube.

B. Nanotube Fragments. To examine the effect of model
size on the binding energy, the best nonhybrid DFT+D scheme
utilizing the smallest basis set (SVP) was picked for the interior
and exterior geometries. Calculations at this level are feasible
for models up to C, and T,, and, as shown in Figure 2, the SVP
basis set delivers accuracy comparable to that of larger bases.
The best variant for the interior case is B97-D3-E®)/SVP
(MURE 5.4%) and for the exterior case is B97-D3/SVP
(MURE 6.7%). The z distance for the 3C idealized graphene
minima (Figure 1) was optimized for both the interior and
exterior sites for all nanotubes between S and 14 A in diameter
and all fragments C,—C, as well as all T,—T, fragments less
than 200 atoms in size (corresponding to nanotube diameters
less than 12.5 and 10.5 A for T, and T,, respectively). The
resulting interaction energies for different fragments are
displayed in Figure 4. As clearly seen in this figure, the exterior
binding energies converge rapidly with the fragment size.
Taking the C, fragment as a benchmark, the C,, C,, and C;
models capture 87%, 97%, and 99% of the exterior binding
energy while requiring roughly 2%, 10%, and 30% of calculation
time, respectively. With the C, fragment capturing the majority
of the exterior binding energy, it is preferable to use the more
expensive, hybrid BALYP-D3(BJ)/SVP functional which can be
expected to perform extremely well in this context, as its
MURE on the 48 exterior C, structures is just 3.4%.

The interior binding energy is much more variable with
respect to the fragment size, at least for nanotubes with a
diameter smaller than 20 A (for larger nanotubes the
convergence with respect to fragment size is nearly identical
to that for the exterior site). This is understandable as the
methane—nanotube binding is primarily a dispersion effect,
and, due to the curvature of the nanotube, interior sites have
more carbon atoms in close proximity to methane than exterior
sites. For the (9,0) nanotube, which exhibits the strongest
interior binding, the C, fragment captures only 37% of the
interaction energy compared to the most complete T,
calculation. The best possible energy results from using the
T, model for nanotubes smaller than 10.6 A in diameter and
the C, model for larger nanotubes where a T, calculation is not
feasible.

Our best binding energy estimates for all three coordinations
and both interior and exterior sites are shown in Figure S. In
this figure, the minima for all coordinations were optimized
using the best theory level and fragment size feasible. For the
exterior sites, the B3LYP-D3(BJ)/SVP approach was used for
the C, fragment. In particular, for the 2C exterior configuration,
there are two separate minima, with the methane carbon above
the central ring being the lowest-energy structure for nanotubes
less than 20 A in diameter and the methane carbon above a
carbon—carbon bond corresponding to lower energy for
nanotubes greater than 20 A in diameter. For the 3C exterior
configuration neither the idealized graphene structure nor the
geometry with the methane carbon over the midpoint of the
central benzene ring is the global minimum. Instead, a structure
halfway between these two appears to be the minimum for
small nanotubes, slowly shifting toward the idealized graphene
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Figure S. Our best interaction energy estimates for a methane
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D3(BJ)/SVP using the C, model, and the interior results are B97-D3-
E®/SVP with the T, and C, fragments. Zigzag and armchair
nanotubes are represented by squares and circles, respectively.

minimum as the nanotube increases in size. The shifting
minima locations are illustrated in the Supporting Information,
Figures S8—S11. For the interior sites, only the z distance was
optimized as our B97-D3-E®)/SVP tests for the C,, T;, and T,
fragments showed no improvement over the idealized graphene
minima.

The results in Figure S illustrate that for large nanotubes the
interior and exterior adsorption energies follow the same
pattern as for flat graphene and its finite fragments;>> that is,
the 3C structure is the most favorable followed by the 2C one.
However, for smaller nanotubes, for which the inside
adsorption is particularly favorable, the energy differences
between the 1C, 2C, and 3C structures nearly vanish. This
behavior is understandable as a methane molecule inside a
narrow nanotube is differently coordinated with respect to
different hexagonal faces at a similar distance from it. Another
interesting observation from Figure $ is that there is virtually no
difference in the adsorption characteristics of zigzag and
armchair nanotubes: the nanotube diameter appears to be the
dominating factor that determines the binding energies.

C. Infinite Nanotubes. To ensure that the finite models
provide a reasonable description of the physisorption onto
extended nanotubes, plane-wave periodic DFT calculations for
the complexes of methane with the T, and T fragments as well
as with infinite nanotubes were performed with the VASP
code.®* %" Comparing the T, and T; fragments to the infinite
nanotube calculations, we obtain an average difference of 1.3%
and 0.5%, respectively, for all interior and exterior coordina-
tions of zigzag and armchair nanotubes between 6 and 14 A in
diameter. Representative results are shown in Table 1 which
also contains the Gaussian-basis T, results (computed with
MOLPRO) which agree reasonably well with the VASP values
confirming that both approaches are sufficiently converged with
respect to the basis set.

Table 1 demonstrates that, at least for the PBE-D3
functional, the fragments studied here accurately represent
the adsorption on infinite nanotubes. We acknowledge that the
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Table 1. Interior and Exterior Methane Binding Energies (in kcal/mol) in the 3C Configuration for Several Nanotubes,
Computed Using PBE-D3(BJ)/SVP (with MOLPRO) and Plane-Wave PBE-D3(BJ) (with VASP)

MOLPRO VASP

nanotube diameter (A) site T, T, T, infinite
(10, 0) 7.8 exterior —2.176 —2.245 —2.285 —2297
interior —9.454 —9.352 —9.511 —9.540

(6, 6) 8.2 exterior —-2.201 —-2.270 —2.296 —-2.313
interior —8.730 —8.693 —8.751 —8.810

(7,7) 926 exterior 2282 —2351 ~2.368 ~2.389
interior —6.459 —6.387 —6.440 —6.474

(13, 0) 102 exterior -2320 —2.393 —2411 —2.425
interior —5.782 —5.755 —5.827 —5.862

pairwise-additive dispersion approach employed in this work
cannot model the long-range polarizability in infinite metallic
nanotubes that could change the dispersion energy consid-
erably.®”’° However, a recent experimental study comparing
the adsorption energies of noble gases and n-heptane on
metallic and nonmetallic single-walled carbon nanotubes’"”*
suggests that the long-range polarizability effects on the binding
energy are negligible for nonpolar adsorbates.

IV. CONCLUSIONS

We have demonstrated that several DFT+D variants reproduce
CCSD(T)-level interaction energies between methane and
curved coronene to a few percent. Extensive calculations using
the best DFT+D variants have illuminated the effects of
nanotube curvature and fragment size on the methane binding
energy. The results indicate that, for the exterior binding, the
C, (54 carbon atoms) nanotube fragment captures virtually all
of the interaction energy; for the interior sites, fragments as
large as C, (150 carbon atoms) or T, (up to 168 carbon atoms)
are required. In addition, we have demonstrated through the
use of plane-wave DFT that the finite nanotube models
considered here work just as well as the infinite ones. For a
(9,0) nanotube, the increased curvature reduces the exterior
binding energy by 32% and increases the interior binding
energy by up to 185%, to —9.76 kcal/mol.

Our conclusions regarding the strong enhancement of the
interior adsorption energy, and the less pronounced but
significant reduction of the exterior adsorption energy, with
increasing nanotube curvature are neither new nor surprising.
The same tendencies have already been observed by both
experiment®” and lower-level ab initio calculations.*® However,
this work as well as ref 32 illustrates that the accuracy of DFT-
or MP2-based adsorption potentials can be quite poor unless a
careful selection of the DFT approach and of the dispersion
expression is performed through comparisons with high-level
methods such as CCSD(T) for relevant benchmark systems.
Thus, it is gratifying that our work, one of the first to study
small molecule nanotube adsorption at such a high level of
theory (the effect of curvature on the 7—7 stacking interactions
of coronene and corannulene has been thoroughly inves-
tigated”® including comparisons to benchmark energies of
QCISD(T)/aug-cc-pVTZ quality’*), confirms the trends
observed using more approximate approaches. At the same
time, while we have been able to select DFT+D variants that
accurately reproduce benchmark data for all curvatures and
intermolecular separations considered, the fairly strong depend-
ence of the DFT+D performance on the particular variant of
the dispersion correction (-D2, -D3, -D3(BJ), -D3-E(3), or
—D3(BJ)—E(3)) suggests some caution. Clearly, the binding
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energies are strongly dependent on the “intermediate-range”
interaction, where the dispersion energy cannot be described by
either pure semilocal DFT (as in short-range) or the undamped
asymptotic expansion (as in long-range). In this range, the
single damping function employed in -D2 or -D3 might have a
hard time accounting for both the physical charge-overlap
effects on dispersion energy’> and the switching off of
dispersion at distances where the density functional itself is
able to account for it. Therefore, the dispersion corrections
proposed by Steinmann et al,”®"”® accounting for the two
phenomena using two separate damping functions, might be
the preferred choice in future studies on similar systems in case
standard DFT+D fails to provide consistent accuracy across
different intermolecular separations. In any case, a comparison
against high-level wave function-based benchmarks is essential
to validate the accuracy of the selected DFT approach.
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ABSTRACT: We present benchmark interaction energy
calculations of carbon dioxide physisorbed onto flat and
curved polycyclic aromatic hydrocarbons as models of carbon
nanotubes. The accuracy of the complete-basis-set second-
order Moller—Plesset perturbation theory combined with a
CCSD(T) coupled-cluster correction in a moderate basis set is
first assessed for a series of CO,—(benzene, naphthalene, and
pyrene) complexes to establish the basis set requirements. The
same composite approach is then used to compute accurate
interaction energies for 195 CO,—curved coronene geometries
representing different intermolecular distances, orientations,
and nanotube diameters. The CO,—curved coronene bench-
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mark data set is then used to assess the performance of a wide variety of dispersion-including DFT functionals. Among them,
only the nonlocal VV10 and double-hybrid B2PLYP-D3(BJ) functionals exhibit relative errors below 10%. Interestingly, all DFT
variants deviate strongly from the benchmark at short-range because of overdamping. We show that these short-range
deficiencies can be corrected by refitting the damping parameters of Grimme’s -D3 dispersion approach on the newly constructed
data set and that the refitted parameters are also suitable for the complexes of CO, with larger polycyclic aromatic hydrocarbons
but not for the smaller CO,—benzene and CO,—naphthalene systems.

Bl INTRODUCTION

Carbon dioxide adsorption onto carbon nanostructures has
been the subject of a tremendous amount of experimental and
theoretical research. This research is grimarily focused on CO,
sequestration from the atmosphere' ~° and from flue gases.”® In
addition, small-molecule adsorption onto carbon nanostruc-
tures has generated intense interest in the development of
molecular sensors,”*® in the noncovalent functionalization of
carbon nanostructures,'"' and as a way to mediate reactions."?

Computing the interaction potential between small adsor-
bates and extended carbon nanostructures can be viewed as
taking the limit of the interaction energy with a finite
nanostructure fragment as its size approaches infinity. In
practice, as shown in our recent methane—carbon nanotube
adsorption study,'* this can require a carbon nanostructure
fragment of several hundred atoms. At present, the only
method that has demonstrated consistent accuracy for
noncovalent interactions (NCI) is the current “gold standard”
in electronic structure theory, the coupled-cluster approach
with singles, doubles, and perturbative triples (CCSD(T))."?
Although this method can describe NCI to within 1-2%'%"" at
the complete basis set (CBS) limit, it is by no means trivial to
compute accurately because of the steep N’ scaling of the
method. Even with the inclusion of novel explicitly correlated
CCSD(T) variants, direct extrapolations to the CCSD(T)/CBS
limit are restricted to polycyclic aromatic hydrocarbons (PAHs)
the size of pyrene (16 carbon atoms). For composite MP2/
CBS+ACCSD(T) methods, because the bases as small as DZ =
cc-pVDZ are not sufficient for the ACCSD(T) = ECCSP(T) _

i i © 2015 American Chemical Society
~g7 ACS Publications
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EM™ term, the limit is the complex involving coronene (24

carbon atoms). Such a methane—curved coronene model cut
out of a (9,0) nanotube captures 85% of the interaction energy
for the exterior minimum structure and just 31% of the
interaction energy for the interior minimum structure
compared to an infinite nanotube.'* Larger nanotube fragments
could also be treated with approximate low-scaling coupled-
cluster methods, making use of the local character of the
electron—electron interactions.'® > Such methods have
recently been applied to nanotube physisorption and weakly
interacting systems with considerable success.”"”** Because we
strive to have the uncertainty of the benchmark as low as
possible in order to have the resolution necessary to compare
different approximate methods, we will not pursue these
approaches here.

Because CCSD(T) cannot be used to directly obtain the
interaction energy between CO, and a carbon nanotube, more
approximate methods must be used. Since dispersion is the
primary attractive force for these systems, standard density
functional theory (DFT) methods are inaccurate. In the past
decade, a large number of dispersion-including DFT variants
have been proposed, including the atom-pairwise dispersion
corrections of Grimme et al,”>** the atom-in-a-molecule
dispersion expansion resulting from the Hirshfeld partitioning
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of electron density,”® the exchange-hole dipole moment
(XDM) approach by Becke and Johnson® and its dDsC
modification by Steinmann and Corminboeuf,”” functionals
specifically optimized for noncovalent interaction energies”® >
or their dispersionless part,®" explicitly nonlocal van der Waals
correlation functionals,*>** and double hybrid DFT func-
tionals,***> which include a portion of the MP2 correlation
energy. The overall accuracy for these novel functionals is quite
impressive, with average errors at the van der Waals minimum
geometries down to about 0.2 kcal/mol (0.8 kJ/mol) in some
cases;>® however, these methods can have large outliers and do
not always exhibit systematic accuracy across a range of
distances.'****” A DFT accuracy that strongly varies with
distance presents a significant problem when calculating
interaction energy derivatives (adhesion forces).*® Our previous
study of methane—carbon nanotube complexes demonstrated
that the DFT+D methods performed quite well overall with
mean unsigned relative errors (MURE) across the entire
potential energy surface (PES) between S and 28%. Although
the general DFT+D accuracy for methane—carbon nanotube
complexes is quite remarkable, careful benchmarking still must
be undertaken to reproduce CCSD(T)-quality results for NClIs.

The CO,—benzene complex has been extensively studied for
a number of orientations and distances;>* * recently, the
performance of novel dispersion-including functionals for this
system has been elucidated by Head-Gordon and co-workers.*
On the other hand, previous theoretical studies for complexes
of CO, with larger PAHs have primarily focused on the
minimum geometry using a variety of DFT methods such as
LDA,* B97-D2,*> B971-DCP,*® and MO05-2X.*” Wave-
function-based studies of such systems are so far limited to
the CO,—ovalene complex at the MP2/6-31G level of theory.*®
As such, a systematic benchmarking of successively larger
CO,—PAH complexes with high-level wave-function methods
is needed to identify the most appropriate DFT variants.

In this article, we extend the procedure from our previous
works'** to the interaction between CO, and carbon
nanotubes. The basis set convergence of the composite MP2/
CBS+ACCSD(T) method will be investigated using a series of
smaller PAHs ranging from benzene to coronene and both
conventional and explicitly correlated methods. The best-
feasible composite approach will then be employed for a set of
CO,—coronene structures at various curvatures, distances, and
orientations. The benchmark set will be compared against a
variety of dispersion including DFT approaches. The best DFT
variant will then be used to compute the effects of orientation,
fragment size, curvature, and interior/exterior location on the
CO, adsorption energy on larger nanotube fragments.

The structure of the rest of this paper is as follows. In section
11, we describe the ab initio methodology employed to compute
interaction energies and give the pertinent computational
details. We present and analyze our numerical results in section
III. Finally, section IV contains conclusions.

B METHODS

The MOLPRO code® was used to obtain all MP2, SCS-MP2,”'
CCSD(T), and CCSD(T)-F12°>> interaction energies. The
CCSD(T)-F12a and CCSD(T)-F12b computations employ the
default MOLPRO explicitly correlated Ansitze, geminal
correlation factors, and fitting basis sets.””>> When the (T)
contribution in CCSD(T)-F12 is scaled, it will be denoted
(T**), specifically:
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E MP2-F12
(T) Ecorr
AE EMPZ
corr

1)
where AE(T) = FCCSD(D-FI2 _ pCCSD-FI2 4 g EMPI-FL2 jo o
MP2—F12 correlation energy from the 3C(FIX) Ansatz; the
scaling factor determined for the dimer was also used in the
counterpoise-corrected computations for monomers to ensure
size consistency.“’55

The Dunning bases aug-cc-pVXZ = aXZ>**” as well as the
Turbomole def2 series of basis sets>® were employed. A partial
augmentation scheme, where only the six carbon atoms on the
PAH/nanotube fragment that are closest to the CO, carbon
(occasionally seven or eight carbon atoms if required by
symmetry considerations) as well as all atoms of the CO,
monomer have diffuse functions, will be denoted as local-cc-
pVXZ (1aXZ). Such a selective removal of basis functions at the
X = D level removes linear dependencies that prevent some
CCSD(T) calculations from converging, reduces the cost of the
CCSD(T) computation S- to 10-fold depending on symmetry,
and retains the accuracy of the full aDZ basis set.*” It should be
noted that the presence of diffuse functions on atoms closest to
the interacting partner is absolutely crucial for saturating the
dispersion energy. Therefore, in calculations of this kind, ® the
laXZ scheme of augmentation outperforms the “calendar” basis
sets®” for which diffuse functions are removed from all atoms in
the same manner. The notation method/(basis1,basis2) denotes
that the correlation energy has been obtained from the values in
bases (basis1) and (basis2) using the standard X* extrap-
olation® for a given method. The SCF interaction energy is
taken from the larger of (basisl,basis2) and not extrapolated.

The DFT functionals employed were the generalized
gradient approximations (GGAs) BLYP,*"%* BPg6,*"
PBE,** and B97** (Grimme’s reparameterization of Becke’s
original B97 functional, denoted B970 herein); the hybrid-
GGAs B3LYP,°>°® PBE0,°"*® and B970;%° the interaction-
optimized functionals dIDF*' (with the -D,, dispersion
expression from ref 70), ®B97X-D,* M05-2X,*® and M06-
2X;* the nonlocal functional VV10;>* the range-separated
functionals LC-wPBE and LC-wPBEO;”" and the double-hybrid
B2PLYP** approach. The DFT functionals were selected on the
basis of previous performance for methane—nanotube com-
plexes'* and from the top performers in a recent NCI
benchmarking study of DFT functionals,*® ensuring that if
available both the hybrid and nonhybrid forms were computed.
All DFT results were computed with MOLPRO except for the
®B97X-D, LC-wPBE, and LC-wPBEO functionals (computed
with the PSI4 code)”” and the VV10 functional (treated using
QCHEM).” The MOLPRO program was locally modified to
support the B97 and dIDF-D,, functionals. The range-
separation parameters @ in the LC-wPBE and LC-wPBEO
calculations were kept at their originally recommended values
of 0.4”" and 0.3 bohr™, respectively.

The density functionals were augmented by two kinds of
dispersion corrections. The first was Grimme’s atom-pairwise
dispersion expression in the -D2** and -D3** variants. The -D2
correction and the four variants of the -D3 correction (with
either Chai—Head-Gordon® or Becke—Johnson (BJ) damp-
ing’* and with or without the three-body term E®)) were
computed using Grimme’s DFT-D3 program V3, revision 2.
The second kind, the density-dependent dispersion correction
(dDsC) of Steinmann and Corminboeuf>””* was computed
using a modified version of the GAMESS software package.”®

DOI: 10.1021/jp512926n
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The MP2 and DFT computations utilized density fitting.
All calculations employed the counterpoise correction for basis
set superposition error’”* unless explicitly stated otherwise.
Statistical quantities used in this paper are mean unsigned
relative errors (MURE), mean unsigned errors (MUE), and
maximum unsigned errors (max UE).

Similar to ref 14, we consider two separate classes of carbon
nanotube fragments. The first is constructed by adding
additional layers of perifused benzene rings around a central
benzene. This is denoted C,, where n is the number of
additional layers around the center so that benzene corresponds
to Cy, coronene is C,, circumcoronene is C,, etc. The second
scheme is created by slicing a carbon nanotube perpendicular to
its principal axis to create full toroidal models. These models
are denoted T,, where n relates to the number of benzene rings
across its length. Specifically, the number of benzene rings
along the nanotube axis is the same for the C, and T, models.
Both models are shown in Figure 1.

C,T,

Figure 1. lllustration of the definition of the (circum)-coronene (C,,
red) and toroidal (T,, teal) nanotube fragments cut from a (12,0)
nanotube.

Model zigzag (k,0) or armchair (kk) nanotube'' fragments
were constructed by first generating large nanotube geometries
with the TubeGen program;®' the desired fragments were then
cut out of larger nanotubes. When large C, fragments are
carved out of nanotubes with a small diameter, the C, fragment
wraps around, resulting in a short toroidal fragment, as
demonstrated in ref 14. Cleaved carbon—carbon bonds were
capped with hydrogen atoms at a C—H bond length of 1.0845
A. The benzene, naphthalene, pyrene, and CO, geometries
were optimized at the MP2/aTZ level of theory. The value z
will always represent the distance between the carbon of the
CO, molecule and the surface of the PAH or carbon nanotube
fragment, as defined by the cylinder on which all carbons from
a nanotube lie.

B RESULTS AND DISCUSSION

Benchmark Construction and Accuracy. To determine
the best method to estimate the CCSD(T)/CBS results for the
CO,—PAH models, we first selected a series of planar PAHs:
benzene, naphthalene, and pyrene. For each of these
complexes, CCSD(T) can be computed in at least the aTZ
basis set for symmetric C,, geometries. In each case, the global
minimum is a structure where the CO, molecule is parallel to
the PAH surface and the carbon of the CO, molecule is directly
over a carbon—carbon bond (Figure 2). This orientation will be
called parallel and denoted as ||. To explore the interaction
energy dependence on the orientation of the CO, molecule, the
configuration where CO, is perpendicular to the PAH plane
will also be considered; it will be denoted as perpendicular, or
1. This orientation is not a local minimum but rather a saddle
point on the full six-dimensional PES. Therefore, only the three
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Benzene  Naphthalene Pyrene

:<ﬁ

Figure 2. Minimum geometries for the CO,—PAH complexes as
found in the text.

dimensions that define the position of the CO, molecule over
the PAH plane are optimized for the L geometries. We
consider additional high-symmetry C,, geometries where the
CO, molecule is located over the center of the PAH; these
orientations will be labeled as centered or abbreviated as C. The
minimum CO, position for each complex was optimized at the
MP2/aTZ level, and then the distance z was reoptimized using
the composite MP2/(aQZ,a5Z)+ACCSD(T)/aDZ approach
because MP2 yields configurations that are too close to the
PAH plane. The resulting minima are displayed in Figure 2.

The eight complexes for which CCSD(T)/aTZ could be
computed (all structures from Figure 2, except for the L CO,—
pyrene system) will be denoted as the “minimum PAH
benchmark”. A comprehensive set of MP2, MP2-F12, CCSD-
(T), and CCSD(T)-F12 results were obtained for this
minimum PAH benchmark test set. Comparing the
(aQZ,aS5Z) extrapolated MP2 and MP2-F12 interaction
energies for the eight dimers shows a maximum difference of
only 0.005 kcal/mol. Because the MP2-F12 energies become
very costly to compute in large basis sets for the pyrene and
coronene complexes, all MP2 values shown here were obtained
from conventional calculations. Following previous works for
weak interaction energies, the explicitly correlated ACCSD(T)
results will be taken from the CCSD(T)-F12a and CCSD-
(T*%)-F12b calculations.>>® The other two possibilities,
CCSD(T**)-F12a and CCSD(T)-F12b, are significantly less
accurate, as illustrated in Table S1 of the Supporting
Information.

It was previously shown that extrapolating ACCSD(T) from
the aDZ and aTZ bases does not always improve the value of
this correction compared to the nonextrapolated aTZ result
because of nonmonotonic convergence patterns.83 Interest-
ingly, for the L CO,—benzene complex, the ACCSD(T**)-
F12b correction also has a nonmonotonic convergence pattern
with the results for the (aDZ, aTZ, aQZ) basis sets amounting
to (0.408, 0.395, 0.403) kcal/mol, respectively. Accordingly, no
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Figure 3. Differences between various CCSD(T)/CBS interaction energy estimates, with the ACCSD(T) term computed in the aDZ (solid lines)
and 1aDZ (dashed lines) bases. If the benchmark cannot be calculated in at least the aTZ basis, then the average between MP2/
(aQZ,aSZ)+ACCSD(T)-F12a/aDZ and MP2/(aQZ,aSZ)+ACCSD(T**)-F12b/aDZ was taken as the zero line, and no uncertainty was assigned.
Otherwise, the benchmark was computed as described in the text, and the light-blue shaded regions represent the uncertainty of the benchmark
value. The numbers along the horizontal axis give benchmark interaction energies in kilocalories per mole.
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Figure 4. Comparison of the conventional and explicitly correlated composite MP2/CBS+ACCSD(T) schemes for the | CO,—naphthalene
(benchmark: MP2/(aQZ,aSZ) + ACCSD(T)-Fl12avg/aTZ) and || CO,—pyrene (benchmark: MP2/(aQZ,aSZ) + ACCSD(T)-F12avg/laTZ)
complexes. Solid lines represent the ACCSD(T) correction in the aDZ basis set, whereas the dashed lines represent ACCSD(T) in the laDZ basis

set. The blue region is the uncertainty range of the benchmark.

conventional or explicitly correlated ACCSD(T) correction
will be extrapolated. The benchmark interaction energy is then
either MP2/(aQZ,aSZ)+ACCSD(T)-F12a/aXZ or MP2/
(aQZ,a5Z)+ACCSD(T**)-F12b/aXZ, where X = Q for the
two C,, CO,—benzene complexes and X = T for all other
systems. Because these two methods never differ by more than
0.018 kcal/mol at the minimum for X = T, the simple average
of the two values is taken as the benchmark and denoted MP2/
(aQZ,a5Z)+ACCSD(T)-F12avg/aXZ. The uncertainty of this
benchmark is estimated as

o = IMP2(aQZ, aSZ) — MP2/(aTZ, aQZ)|
+ IACCSD(T)-F12avg/aXZ

— ACCSD(T)-F12avg/(a(X — 1)Z, aXZ)| )

For larger systems when CCSD(T)/aTZ is not feasible, the
ACCSD(T) correction can be computed using any combina-
tion of ACCSD(T), ACCSD(T)-F12a, or ACCSD(T**)-
F12b with either the laDZ or aDZ basis, retaining a MURE
under 1.6% on the minimum PAH benchmark test set. To
elucidate the trends exhibited by the small-basis ACCSD(T)
corrections, the absolute deviations between various variants
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and the benchmark are shown in Figure 3. When the
ACCSD(T) correction is computed using conventional
CCSD(T), the performance is quite good for the L CO,
configurations; however, conventional CCSD(T) appears to
overbind the || CO, configurations in every case shown. Figure
3 also demonstrates that the MP2/(aQZ,a5Z)+ACCSD(T)-
Fl12a/aDZ approach tends to underbind, whereas MP2/
(2aQZ,aSZ)+ACCSD(T**)-F12b/aDZ usually overbinds
slightly. Furthermore, for all complexes except the || CO,—
coronene (8,0) interior system (a CO,—coronene complex
curved to the shape of an (8,0) nanotube, vide supra), the
difference between the laDZ and aDZ basis sets in the
ACCSD(T) and ACCSD(T)-F12 corrections does not exceed
0.018 kcal/mol. For the || CO,—coronene (8,0) interior
complex, which is the worst case for the laDZ basis set because
there are more coronene carbon atoms close to CO,, the
ACCSD(T) difference between the laDZ and aDZ basis sets is
at most 0.034 kcal/mol and, in relative terms, is offset by the
deeper minima for the interior complexes. By averaging the
ACCSD(T)-F12a and ACCSD(T*%*)-F12b values, the MURE
with respect to the minimum PAH benchmark is reduced to
0.7% for both the aDZ and laDZ bases.
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To understand the performance of different composite
methods as a function of the intermolecular z distance, the ||
CO,—naphthalene and || CO,—pyrene complexes were
investigated at 0.8, 0.9, 1.0, 1.2, and 1.4 times the minimum
distance (z,,), as shown in Figure 4. Both the benchmark value
and its uncertainty are calculated in the same fashion as for the
minima. Because of the cost of computing CCSD(T)/aTZ for
the || CO,—pyrene complex, the benchmark ACCSD(T)
correction was reduced to CCSD(T)-F12avg/laTZ. At the ||
CO,—pyrene minimum, the difference between ACCSD(T)-
F12avg/laTZ and ACCSD(T)—FIZavg/aTZ amounts to 0.007
kcal/mol or 0.2%. The benchmark uncertainty was computed
using the 1aDZ and 1aTZ bases in a way analogous to eq 2.

Figure 4 shows that the CCSD(T)-F12a and CCSD(T**)-
F12b results without the supplement of an MP2/CBS term are
excellent at the minima; however, at both shorter and longer
range the accuracy is somewhat diminished. In addition, the
truncation of the aDZ basis set to laDZ has a much larger
impact on the entire CCSD(T)-F12 interaction energy than on
the ACCSD(T)-F12 term. The conventional ACCSD(T)
correction in Figure 4 has a larger deviation at short range,
emphasizing the need for larger basis sets in this regime. When
the ACCSD(T) energy is computed using either conventional
or explicitly correlated methods, the pruned laDZ values are
nearly identical (within a few hundredths of kcal/mol) to the
aDZ values for both naphthalene-CO, and pyrene-CO,. The
MP2/(aQZ,a5Z)+ACCSD(T)-F12a and MP2/
(aQZ,a5Z)+ACCSD(T**)-F12b methods differ by at most
0.05 kcal/mol or 1.1% for the || CO,—pyrene complex at
0.8z, and neither variant is consistently better than the other.
Consequently, the benchmark will always be the average of
these two values. Using the composite MP2/(aQZ, aSZ) +
ACCSD(T)-F12avg/laDZ level of theory, one can expect a
MURE of 1% (a MUE of 0.03 kcal/mol) at the minimum and
distances longer than the minimum, and a MURE of 2% (a
MUE of 0.06 kcal/mol) at distances shorter than the minimum
compared to our best CCSD(T)/CBS estimate.

Benchmark Data Set for CO,—Curved Coronene. The
benchmark set of C; (coronene) sized nanotube fragments was
created by choosing the (5,5), (6,6), (7,7), (8,0), (10,0), and
(12,0) nanotubes in addition to flat graphene. The (5,5) and
(8,0) nanotubes are the smallest for which a CO, molecule can
fit inside a carbon nanotube (have an attractive interaction
energy) as determined using an MP2/aDZ calculation with a
large T, fragment (Figure 1). For each of the CO,—C,
fragment complexes, the L and || configurations (on both
exterior and interior, except for flat graphene) were optimized
using MP2/aTZ. The L structure always optimized over the
central benzene ring, and the || configuration always ended up
over a carbon—carbon bond. It should be noted that the lowest-
energy || configuration for a zigzag nanotube has C, symmetry.
In such a case, the geometry was twisted to an adjacent, more
symmetric minimum, see Figure 5. An additional “centered ||”
C,, position was also calculated where CO, is shifted so that it
is directly over the central benzene ring (Figure S). As before,
the MP2/aTZ method predicts the CO, molecule to be too
close to the PAH plane; however, optimizing the z distance
with a coupled-cluster method is not feasible. On the other
hand, the B3LYP-D3/aDZ functional was found to recapture
the z,;, distance of the nine complexes in Figure 2 to within
0.02 A with respect to the MP2/(aQZ,a5Z)+ACCSD(T)/aDZ
results. For comparison, the MP2/aTZ level of theory recovers
the z,,;, distance to within 0.12 A. Therefore, the z distances of
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Figure 5. Model configurations for the C, fragment—CO, complexes.
Note that unlike both the L and C || configurations, the lowest-energy
|| configuration is different for armchair and zigzag nanotubes. The
semitransparent CO, molecule on the || zigzag nanotube represents
the global minimum, whereas the fully opaque CO, is the lowest-
energy C,, structure included in our benchmark set.

all CO,—C; structures were optimized with B3LYP-D3/aDZ.
The minimum distance z,,,;, was then multiplied by 0.8, 0.9, 1.0,
12, and 1.4 for a total of 195 geometries. A comparison
between MP2/(aTZ,aQZ) and MP2/(aQZ,a5Z) for S random
geometries each at 0.8z, Z;, and 1.4z, results in a MUE of
0.01 kcal/mol (max UE 0.03 kcal/mol) and a MURE of 0.8%.
Because the MP2/aSZ computations become very expensive for
this large system, it is beneficial to reduce the size of the basis
sets used in the extrapolation with little loss in accuracy. As a
result, the 195 benchmark geometries were investigated using
the MP2(aTZ,aQZ)+ACCSD(T)-F12avg/laDZ and MP2-
(aTZ,aQZ)+ACCSD(T)/1aDZ levels of theory.

As can be seen in Table 1, the range of interaction energies
provided by the benchmark is quite broad, resulting in a

Table 1. Mean, Minimum, and Maximum Values of the
CO,—C, Fragment Benchmark Interaction Energies at
Different x°z,,;, Separations (kcal/mol)

x mean max min
0.8 4.59 12.17 0.46
0.9 —2.4S —0.58 -5.33
1.0 —-3.43 —1.60 —6.02
12 —-2.14 —0.82 —4.18
1.4 —1.09 -0.29 —-2.35

comprehensive data set to test various DFT methods; however,
there is some difficulty finding a single metric that describes
how well a given method does overall. The mean unsigned
error (MUE) does well when all values are of similar
magnitude; however, a 0.1 kcal/mol deviation at long range
(—0.3 kcal/mol, 30% error) is much more grievous than at
short range (12.2 kcal/mol, 0.8% error). On the other hand, the
unsigned relative error (URE) is meaningful across the entire
energy surface except near to where the potential crosses zero
at short range. In the latter case, smaller reference values cause
such points to be weighted disproportionately high. To reduce
this issue, an upper weight limit was introduced, leading to a
weighted mean unsigned relative error (WMURE).

ref

wMURE = mean -100%,

weight

z2>z

|Eref l ‘min
E cight =
weight
max{lErefl’ Emask} Z < Zpyy (3)
The algorithm of eq 3 masks the points closest to zero on the

repulsive wall so that very large weights do not occur there. As
shown in Table 1, the potential crosses zero between 0.8z,
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Table 2. Statistics of the Wavefunction-Based Interaction Energies Compared to the MP2/(aTZ,aQZ)+ACCSD(T)-F12avg/

laDZ Benchmark Sorted by Overall wWMURE®

Z < Zpin Z > Zpin overall
MURE wMURE wMURE = MURE MURE wMURE
MP2/(aTZ,aQZ)+ACCSD(T**)-F12b/laDZ 172 125 111 1.35 117
MP2/(aTZ,2QZ)+ACCSD(T)-F12a/laDZ 172 125 111 1.35 117
MP2/(aTZ,2QZ)+ACCSD(T)/laDZ 5.77 441 0.85 2.82 2.28
SCS-MP2/(aTZ,2QZ) 427 335 237 3.13 2.76
SCS-MP2/(aDZ,aTZ) 9.98 7.33 2.61 5.56 4.50
CCSD(T**)-F12b/laDZ 8.60 572 4.10 5.90 475
SCS-MP2/aQZ 11.46 8.55 3.27 6.55 5.38
CCSD(T)-F12a/laDZ 12.03 822 632 8.61 7.08
SCS-MP2/aTZ 26.89 19.77 4.76 13.61 10.77
SCS-MP2/aDZ 69.81 51.69 9.76 33.78 26.54
CCSD(T)/laDZ 8831 63.78 1441 4397 34.16
MP2/aDZ 70.92 48.54 27.17 44.67 35.72
MP2/(aTZ,2QZ) 148.05 105.36 36.38 81.05 63.97
“All MURE and wMURE values have been computed on the 195 CO,—C, (coronene) configurations and are given in percent.
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Figure 6. Performance of each density functional in the largest basis set computed (CP-corrected) combined with the best atom-pairwise dispersion
term (if applicable). The large gray bars represent the overall WMURE, the smaller red and blue bars represent preminimum and postminimum
WMURE, respectively. LC, NL, and DH correspond to long range corrected (range-separated), nonlocal, and double-hybrid functionals, respectively.

The target accuracy level of 5% has been shaded in yellow.

and 0.9z,.,;,. Because the uncertainty in the benchmark for these
points is approximately 0.1 kcal/mol and our target accuracy is
approximately 5%, a mask value of E__ g = 2.0 kcal/mol appears
optimal. Taking the worst offender out of our data set (the
interior (8,0) L configuration at 0.8z, with a CCSD(T)/CBS
value of 0.46 kcal/mol), an absolute error of 0.1 kcal/mol leads
to a URE of 22% or a weighted URE of 5%, bringing the latter
value in line with our stated expectations. It should be noted
that the weighting of eq 3 typically does not change the
ordering of the best methods compared to MURE, but leads to
more meaningful error values.

The optimal DFT variant should have consistent accuracy
across the entire potential energy surface. To examine if this is
the case, the overall MURE and wMURE is divided into two
regimes; the “preminimum” part includes the points at 0.8z,
and 0.9z, whereas the “postminimum” set includes the points
at z,, 1.2z, and l.4z,,. Table 2 lists the MURE and
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WMURE values of different benchmark variants. As can be seen
from this table, wWMURE does not radically change the ordering
of the methods compared to MURE. For z > z;, where we
can expect MP2/(aTZ,aQZ)+ACCSD(T)/laDZ to perform
equally well as the benchmark, it is good to see an agreement of
better than 1%. For the z < z.;, points, we see a deviation of
the conventional and explicitly correlated ACCSD(T)
corrections. Additionally, the CCSD(T)-F12 results without
an MP2/CBS term deviate by more than 8% for the
preminimum points, indicating that the inclusion of the
MP2/(aTZ,aQZ) term is highly beneficial. Somewhat surpris-
ingly, the SCS-MP2/(aTZ,aQZ) and SCS-MP2/(aDZ,aTZ)
calculations perform well, with overall wMURE'’s of 2.8 and
4.5%, respectively. Simply taking the SCS-MP2/aDZ energy is
quite inaccurate, with an overall WMURE of 26.5%, indicating
that an extrapolation to the CBS limit is absolutely crucial for
this method. Table 2 also demonstrates the overbinding of
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MP2 at the CBS limit. In addition, the MP2/aDZ result
demonstrates that the cancellation of errors between the MP2
overbinding and basis set incompleteness effects is not
satisfactory, leading to an overall WMURE of 35.7%.

Performance of Different DFT Variants. From the
perspective of DFT calculations for larger nanotube models,
the best-case scenario would be a GGA functional (N* scaling)
that could reproduce CCSD(T)-quality benchmarks in either
the SVP or aDZ basis set. Although this is a fairly tall order, it
has happened before in our methane-nanotube study: we
demonstrated that the B97-D3(BJ)/SVP functional reproduced
the CCSD(T)-quality benchmarks with excellent accuracy.'*
To assess which DFT methods can reproduce the CCSD(T)-
level benchmark interaction energies for the 195 CO,—C,
fragment complexes, a wide spectrum of functionals was tested.

The performance of all DFT functionals in the largest basis
sets computed, with the CP correction, is shown in Figure 6.
The dDsC results could not be computed in the QZVP basis
set as density fitting is not available for this correction.
Comparing all four functional and dDsC combinations between
the TZVP and QZVP results for the six CO, — benzene and
CO, — naphthalene minima shows a maximum deviation of 2%,
indicating that this reduction in basis set does not significantly
alter the results. It should be noted that each DFT+D method
in Figure 6 is augmented by its best atom-pairwise dispersion
variant as determined by wMURE.

The best DFT method is B2PLYP-D3(BJ)/QZVP with an
overall WMURE of 5.7% (preminimum 9.9%, postminimum
2.9%); however, when the size of the basis set is reduced to
aDZ, the wMURE becomes 10.2% (preminimum 22.1%,
postminimum 2.3%). Although the postminimum accuracy
remains very good, the preminimum accuracy diminishes
strongly in the smaller basis set. This is somewhat expected
as basis set incompleteness errors are much more pronounced
in the MP2 correlation energy than in the Kohn—Sham energy;
therefore, it is not a surprise that the double-hybrid functional
demonstrates a different convergence pattern than standard
GGA or hybrid-GGA methods. This deficiency at short range
makes the B2PLYP-D3(BJ) functional unsuitable for comput-
ing an entire energy surface in the aDZ basis set; however, the
QZVP accuracy is quite good. Although B2PLYP/QZVP is
feasible for molecules up to the C, size (54 carbon atoms), the
N scaling of this method makes a large number of geometries
impractical to compute.

The second best DET method, VV10/5%,, has an overall
wMURE of 9.5%. Although this functional has excellent
accuracy at long range (postminimum 3.5% wMURE), the
accuracy at short range is significantly diminished (premini-
mum 18.6% wMURE). Reduction of the aTZ basis set to aDZ
only increases the overall wMURE of the functional to 9.8%
(preminimum 19.3%, postminimum 3.4%), indicating a more
typical DFT convergence pattern. However, similar to B2PLYP,
this short range deviation from the benchmark makes the VV10
functional unsuitable for computing an entire potential energy
curve. The comparison in Figure 6 demonstrates the
importance of both the ACCSD(T)-F12 term and the use of
wMURE over MURE at short range. The conventional MP2/
CBS+ACCSD(T) interaction energy is too negative at short
range which exacerbates the error of the too positive DFT
functionals. At the same time, the use of WMURE over MURE
prevents large contributions from small values on the repulsive
wall. For example, the top performer, B2PLYP-D3(BJ)/QZVP,
has a preminimum wMURE of 9.9% when compared to the
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MP2/(aTZ,aQZ)+ACCSD(T)-F12avg/laDZ benchmark;
however, when compared to the MP2/(aTZ,aQZ)+ACCSD-
(T)/laDZ values, the preminimum wMURE is 14.5% (a
preminimum MURE of 27.8%).

So far we have considered only CP-corrected functionals in
the largest basis sets. The primary reason behind this is that
CP-corrected DFT energies are much less dependent on the
basis set than non-CP-corrected energies.>® For example, taking
PBE-D3/ 81%\]1) as the reference, PBE-D3/5ep has a wMURE of
5.7% (MUE 0.21 kcal/mol) compared to PBE-D3/3es* which
has a wMURE of 47.4% (MUE of 1.6 kcal/mol). Because the
choice of the basis set, and of the CP correction or lack thereof,
has a greater effect on the DFT interaction energy at short
range than at long range, it is inevitable that some combination
of a smaller basis set and the lack of the CP correction will lead
to an improved accuracy; however, this effect should not be
relied upon as it is accidental in nature. The best non-CP-
corrected DFT+D variant in any basis, when compared to the
195 CO,—C,; fragment benchmark results, is M05-2X-D3-
E®/Ne CP with a wMURE of 6.7%; however, the reduction of
this basis to aDZ yields a wMURE of 25.4%. Conversely, BP86-
D3(BJ)/S, has a wMURE of 10.6%, whereas BP86-D3-
(B))/$, has a wMURE of 10.7%, demonstrating that a
reduction in basis set size when the DFT functional is
computed in the CP-corrected way has a negligible effect on the
interaction energy. The performance of each functional paired
with each basis set, CP or non-CP corrected, and with each
dispersion expression, can be found in the Supporting
Information.

Examining all of the functionals in Figure 6, we observe that
the postminimum wMURE is generally much lower than the
preminimum wMURE. This is true for all functionals except for
BP86-D3(BJ), B3LYP-dDsC, and MO06-2X-D3. For every
functional except M06-2X-D3, the interaction energy is always
too positive for the preminimum points. The reasons for this
behavior may lie both in the DFT part and in the dispersion
part. In the first case, it has been observed before that the
exchange energy from common GGA functionals is too
repulsive for overlapping density tails compared to exact
exchange®*~*® which is related to the incorrect asymptotics of
the exchange-correlation potential.*” A remedy to this problem
exists in a form of range-separated hybrid functionals®~*° and
range separation has been observed to mimic dispersion at
short range® by virtue of a decrease in exchange energy. In the
latter case, as the results in Figure 6 show, the dispersion terms
in the currently available variants (-D2, -D3, -dDsC, -D,,
VV10) are quite accurate asymptotically, but their damping at
short range might be the problem: in fact, the sign of the
DFT+D errors suggests that the dispersion term is consistently
overdamped. The damping of an atom-pairwise dispersion
correction needs to account for two effects: the physical charge-
overlap effects on dispersion energy and the switch-off of
dispersion at short range to eliminate double counting between
the DFT part and the dispersion part. Although the charge-
overlap effects are rigorously taken into account by symmetry-
adapted perturbation theory (SAPT),”'™ the damping
functions designed to fit SAPT dispersion, whereas highly
useful in combination with dispersion-free methods such as
HF° or XPol*® are not suitable for DFT+D unless an
additional, functional-dependent switching function is used to
remove double counting. Instead, most standard DFT+D
variants use a single damping-switching function that is selected
and validated empirically. Interestingly, the dDsC dispersion
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expression, although designed specifically to cover a wider
range of intermolecular separations through the use of separate
damping and switching functions,””*® does not exhibit better
performance at short range except for the accidental high
accuracy of CP-uncorrected B3LYP-dDsC/TZVP with an
overall WMURE of 6.3%. The overdamping of dispersion will
be addressed in more detail later; right now, we will focus on
the overestimation of exchange energy.

Role of Exact Exchange and Range Separation. Taking
the PBE functional family as an example, the balance between
DFT and HF exchange can be varied both globally (from PBE
via PBEO to HFPBE, that is, pure HF exchange and PBE
correlation) and locally (using the range-separated functionals
LC-wPBE”' and LC-wPBEO). Although range separation
lowers the short range interaction energies, it is not a substitute
for dispersion: all of the PBE-based approaches require the +D
term even for qualitative accuracy. As seen in Figure 6, LC-
@PBE-D3 does lead to better accuracy at short range than PBE-
D3 and PBE0-D3 (-D2 happens to be the most accurate
dispersion counterpart to PBE), however, the improvement is
not completely satisfactory, and the short range interaction
energies are still too high. This situation is illustrated in Table 3

Table 3. Mean Errors (Calculated with Signs, in Kilocalories
Per Mole) of the Functionals from the PBE Family Relative
to the Benchmark CO,—C, Interaction Energies Obtained
for the Subsets of the Benchmark Data Corresponding to
0.8z, 0.9z, and 2z,

method 0.82in 0.9z, Zmin
PBE 7.40 5.55 3.88
PBEO 6.83 5.26 3.81
HFPBE 4.68 4.19 3.53
LC-wPBE 6.47 5.20 393
LC-wPBEO 6.38 5.17 393
PBE-D3 2.52 1.20 0.32
PBEO0-D3 1.77 0.88 0.35
HFPBE-D3 —0.76 —0.30 0.28
LC-wPBE-D3 0.57 0.23 0.21
LC-wPBE0-D3 0.77 0.44 0.37
PBE-D3(BJ) 1.89 1.08 041
PBEO—D3(B_]) 1.53 0.85 0.30
HFPBE—D3(B_]) 0.12 0.18 0.11
LC-wPBE-D3 (B_]) 0.54 0.23 —0.03
LC-wPBE0-D3(BJ) 0.61 0.42 020

“The QZVP basis set was used, and the CP correction was applied.
The -D3 and -D3(BJ) parameters for the HFPBE and LC-wPBEO
functionals were optimized on the combined S22+ and S66+ databases
as described in the text.

which, unlike the rest of the text, lists mean errors (ME)
(computed with signs) with respect to benchmark for points at
0.8z 0.9z, and z.;, separately. It should be noted that
although the -D3 and -D3(BJ) parameters are available for the
LC-wPBE functional, to our knowledge, such parameters have
not been optimized for either HFPBE or LC-wPBEO. The
values of the -D3 and -D3(B]J) parameters for these functionals
utilized in Table 3 (which are given in the Supporting
Information) have been optimized by us on the union of the
$22+ and S66+ databases (that is, the subsets of the $22 x 5*7
and $66 x 8°7 databases, respectively, corresponding to the
intermolecular separations larger or equal to the van der Waals
minimum distances) using the QZVP basis set (the further
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details of the optimization procedure are the same as in the
next section. Although the fitting set differs from the actual set
used for the optimization of -D3 and -D3(BJ) by Grimme,**”*
we verified that Grimme’s parameters for both PBE, PBEO, and
LC-@wPBE would be nearly optimal for the union of the S22+
and S66+ sets (the MURE values for PBE-D3, PBE0-D3, and
LC-wPBE-D3 in the QZVP basis are 12.0, 10.2, and 5.8%,
respectively, compared to the optimal, refitted values of 9.0, 8.1,
and 5.3%, respectively). Therefore, the -D3 and -D3(BJ)
expressions optimized in this way should be just as sufficient, or
just as insufficient, at short range as the ones involving
parameters optimized according to Grimme’s original algo-
rithm. The results in Table 3 show that an increased fraction of
the HF exchange, included either globally or with range
separation, does decrease the interaction energy at short range,
bringing it closer to the CCSD(T)-level benchmark. However,
the overestimation of the short range interaction energies
remains substantial: manipulating the HF exchange is no
substitute for including atom-pairwise dispersion. The inclusion
of the -D3 or -D3(BJ) dispersion term reduces the short range
errors significantly, although the interaction energies remain
too high (with an exception of HFPBE-D3 which is, in turn,
quite inaccurate at long range as shown in the next section).
Range separation clearly improves the performance of PBE and
PBEO at short range, bringing the mean error at 0.8z, down
from 1.5—2.5 to 0.5—0.8 kcal/mol. Thus, the overestimation of
short range interaction energies is relieved, but not completely
removed, by range separation; the preminimum wMURE of the
LC-wPBE-D3/QZVP approach is still 13.6% as shown in
Figure 6. Apparently, the short range DFT+D insufficiencies
cannot be fully overcome by modifying the DFT part alone.

We conclude that no method tested is both computationally
tractable and accurate enough for computing a large number of
points on a CO,—nanotube fragment potential energy surface.

Refitting DFT+D. As previously noted, the DFT+D values
are universally too large at short range. Although, as discussed
above, this effect might be partially due to an overestimation of
the DFT exchange energy, at least part of the problem comes
from the overdamping of dispersion. Because Grimme’s -D
dispersion correction is an a posteriori term, refitting the
damping parameters is a computationally inexpensive task and a
relatively simple exercise compared to, say, refitting the range
separation parameter @ or some other parameters in the
density functional. It should be noted that the sole nonlocal
functional tested, VV10, has a superior accuracy at long range
compared to any GGA+D or hybrid GGA+D combination
employed. Because the default damping parameter was utilized
for VV10, refitting this parameter would most likely shore up
the short range deficiencies. However, as this parameter must
be changed before the VV10 computation, the cost of refitting
would be many times that of Grimme’s atom-pairwise
dispersion term and refitting VV10 was not pursued. Three
separate fitting forms were utilized, including the so-called
“zero damping” or Chai—Head-Gordon (CHG) damping
form,>**® which has two parameters sg and s, (the 5.4 values
are held constant at 1), represented as

CAB 1
rZB 1+ 6(rM/(5r,nR§B))_an
4)

The a, parameters are set to 14 and 16 for ag and ag,
respectively, and are not adjusted.

=32 X

A#B n=6,8
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Figure 7. Performance of different DFT-D3, DFT-D3(B]), and DFT-D3(TT) variants, with original and refitted damping parameters, on the 195
CO,—C, geometries. In each case, the DFT part is computed in the QZVP basis set and includes the CP correction. The yellow range represents the
target mean accuracy of 5%. Grimme’s damping parameters are not available for the B970, HFPBE, and LC-wPBEO functionals; in these cases, the
nonrefitted values shown here were obtained by us using the combination of the S22+ and S66+ databases (see text for details).

The Becke—Johnson (BJ) damping,”*”® with three param-
eters sg, &, and @, is represented as

‘iJSP_ _Zznn

A#B n=6,8

AB

g T (alR + az)n (s)

The Tang and Toennies (TT)%° damping, with two
parameters sg and drr, has the form

-d
chsp___ Z Z o TTn 1(VA;SU?T]

A#B n=68 | AB (6)
n xm
fr @ =1-e* Y X
, ]

! m=o ™! (7)

Note that the TT damping function is evaluated as fr,_,(x)
so that lim,  _ o frr,-1(rap)/rip is not zero at short range but

rather a constant value reflecting a more physical picture
(similar to the BJ damping).

The R§® value for the CHG damping comes from the original
-D3 work,® whereas for the BJ damping, the R4® value is
computed as Ri® = (C4%/ CAB)I/ %, For the TT damping, both
forms of R)® were tried; the R§® used in CHG damping yields
more accurate results and was universally employed for all TT
damping expressions. The ss parameter is always set to unity
except for the B2PLYP double hybrid functional, for which the
recommended value of 0.64°* was employed. Note that the
adjustment of the s scaling factor for the C3®/r}y terms is
absolutely crucial for the performance of the -D3 correction,
both original and refitted; the price one has to pay is a
functional-dependent value of the second leading asymptotic
constant Cg. Similarly, although an inclusion of adjustable
C4¥/r}% terms could further improve the refit, we elected not to
do so because the molecular C,, constants determined by fitting
to short range data would bear no connection to the correct
long range behavior of dispersion. In one case (the PBE
functional), the best fit (2 wMURE of 4.4% on the 195 CO,—
C, structures) of the CHG damping expression resulted in an
unphysical, negative value of the factor sg; we discarded this fit
in favor of the second best one (a wMURE of 5.6%), for which
sg is reasonable. Interestingly, for the B] damping, eq S, most of
our best fits employ negative values of the a, parameter.

Although such values were disallowed in the original parameter
fit,”* they do not lead to any unphysical behavior as long as the
expression (R4 + a,) remains far from zero for all values of
R4® that can be attained in real molecular systems (the range of
the RAP values between different types of atoms is quite
limited). In our calculations, (a,RA2 + @,) is never close to zero,
so we accepted the optimized expressions with negative a,.
The fitting procedure utilizes the 195 CO,—C, benchmark
geometries. All functionals were fitted using the largest basis set
computed, QZVP. The nonlinear parameters were selected to
minimize the weighted root-mean-square error, represented as

(E B Eref)2
2
Eweight (8)

Error = |mean

where the weight is identical to the weighting function of
wMURE (eq 3). The linear parameter, s;, was fitted via
weighted linear least-squares at each nonlinear iteration with
the same weight as above. The refitted parameters for each
functional and damping expression can be found in Table S2 of
the Supporting Information.

Performance of the Refitted DFT+D Approaches. As
can be seen from Figure 7, refitting the damping parameters
greatly enhances the accuracy of DFT+D methods, particularly
for the preminimum set of points. For each functional, there is
at least one fitting form that provides an overall wWMURE of
under 11%. It is of interest that different fitting forms work
better for different functional families. For example, the
-D3(TT),.4 terms work best for the BLYP family of functionals
(BLYP, B3LYP, and B2PLYP), whereas for PBE and PBEQ, all
fitting forms work nearly equally well.

The two best refitted GGA+D functionals are PBE-
D3(B)),.;/QZVP with a WMURE of 4.8% and BLYP-
D3(TT),es/ QZVP with a wMURE of 5.2%. Up to this point,
all data provided has been shown at the largest basis sets
possible; however, for fragments larger than coronene only
basis sets up to aDZ can be used, and for fragments C; or larger
only the SVP basis set can be used because of linear
dependencies. As shown in Table 4 in case of the BLYP-
D3(TT) and PBE-D3(BJ) functionals with parameters refitted
using the QZVP basis, all basis sets aDZ and larger, when CP-
corrected, give values within 0.7% wMURE of each other,
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Table 4. wMURE of the Two Best Refitted DFT+D GGA
Functionals BLYP-D3(TT),.s and PBE-D3(BJ), .4
Compared to the 195 CO,—C; Benchmark Interaction
Energies”

CP BLYP-D3(TT), CP PBE-D3(B]) et

basis Z<Zpyn Z2Zmn overal z<z, o z2>z,  overal
SVPp 8.8 10.0 9.5 11.0 8.2 9.3
aDZ 6.1 5.8 59 53 4.9 S.1
TZVP 6.2 5.3 5.7 6.4 4.9 5.5
aTZ 5.0 53 52 5.1 4.6 4.8
QZVP 4.9 S4 52 5.1 4.6 4.8

1n0-CP BLYP-D3(TT), n0-CP PBE-D3(BJ),.:

basis Z<Zpyn Z2Zpn overal z<z, o z2>z,  overal
NY%4 109.6 46.9 72.0 95.2 31.7 57.1
aDZ 38.5 26.6 314 46.1 34.0 389
TZVP 122 11.7 119 12.0 10.7 112
aTZ 15.6 129 14.0 15.0 13.7 142
QZVP 6.9 6.9 6.9 5.9 59 59

“The basis sets are ordered by the number of basis functions per
carbon atom.

whereas a downgrade to the SVP basis set roughly doubles the
wMURE. For the non-CP corrected results, any basis set
smaller than QZVP quickly diverges from the best result,
making the CP correction essential. Although it is possible to fit
to results in any basis set, CP- or non-CP corrected, the optimal
parameters obtained without the CP correction would not be
transferable to any other basis set because of the poor stability
of the non-CP results.

To explore how well the new coronene-refitted DFT+D
models perform for PAHs both smaller and larger than
coronene, two new benchmark sets were developed. First, the
C,, minima for benzene (L and C ||), naphthalene (C L and
1), and pyrene (C L and ||) were shifted to 0.8, 0.9, 1.0, 1.2,
and 14 times the minimum distance for a total of 10
geometries per PAH; the benchmark interaction energies for
these geometries were then computed at the MP2/(aQZ,
aSZ)+ACCSD(T)-F12avg/aDZ level of theory. The 1.4z, L
CO,—benzene benchmark value is very small (—0.004 kcal/

mol) and was removed from the data set to avoid over-
weighting of this point. Second, although CCSD(T) in any
reasonable basis set is not feasible for a C, fragment, two lower
scaling methods, SCS-MP2/(aDZ,aTZ) and B2PLYP-D3-
(TT),es/QZVP, exhibit an excellent accuracy for the CO,—
C, benchmark set with a wMURE of 4.5 and 2.2%, respectively.
Following the language of ref 100, we will name the SCS-MP2/
(aDZ,aTZ) and B2PLYP-D3(TT),.;/QZVP levels of theory
our “silver standards”. The (12,0) C, fragment was chosen for
the C, benchmark because linear dependencies preclude the
computation of MP2/aTZ for flat graphene-like C, fragments.
For the CO,—C, (12,0) complex, the minimum positions for
the L, C ||, and || orientations were found for both interior and
exterior geometries at the PBE-D3(B]),e4,/aDZ level of theory.
Starting from these minimum geometries, the z distance was
again multiplied by 0.8, 0.9, 1.0, 1.2, and 1.4 for a total of 15
interior and 15 exterior geometries. These structures were then
computed at both the SCS-MP2/(aDZ,aTZ) and B2PLYP-
D3(TT),q/QZVP levels of theory. For the CO,—C, (12,0)
complex, it is unclear which of the two approaches should be a
better benchmark; in this case, we will display the wMURE
values with respect to both SCS-MP2/(aDZ,aTZ) and
B2PLYP-D3(TT),.;/ QZVP and refer to them as a range of
accuracy of a given DFT+D approach.

The wMURE values at different fragment sizes for the best
CO,—benzene GGA+D (PBE-D2/aDZ), the best CO,—C,
GGA+D (BP86-D3(BJ)/aDZ), the two best CO,—C, refitted
GGA+D functionals (BLYP-D3(TT),./aDZ and PBE-D3-
(B)),e/aDZ), the two best CO,—C; refitted hybrid GGA+D
functionals (B970-D3(BJ),e/aDZ and B3LYP-D3(TT),.s/
aDZ), and the two silver standards (B2PLYP-D3(TT),.q/
QZVP and SCS-MP2/(aDZ,aTZ)) are shown in Figure 8. It is
encouraging to see that the two silver standards deviate from
each other by only 3.4% on the average for the CO,—(12,0) C,
benchmark. In addition, the wMURE of both silver standards is
below 5.5% for PAHs the size of pyrene and C,. Thus, a similar
performance for CO,—C, should be expected.

Ideally, the performance of the best DFT+D functional
would be transferable between models of different sizes;
however, Figure 8 demonstrates that this is rarely the case.

@ Pyrene
® (12,0) C,

@ Benzene
@ Naphthalene

" 33.7% @ (12,0) C,

25| \

WMURE [%]

0
3 S6. SN .
%0, Y, 8 0, %Sy Ty,
a0 St /re,. . /)
> D> 30 >

Figure 8. Top performing DFT functionals combined with the best (original or refitted) +D terms for five separate CO,—PAH complexes.
Benchmark values and geometries are as described in the text. Because no higher-level benchmark is available for the circumcoronene (C,)
complexes, a range of WMURE values based on the comparison to the two silver standards, BAPLYP-D3(TT),.z/QZVP and SCS-MP2/(aDZ,aTZ),
is indicated by the shading.
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Choosing a DFT+D functional on the basis of the performance
on the small CO,—benzene complex (PBE-D2/aDZ) yields
good results for this complex (WMURE 9.4%), whereas for the
larger (12,0) C, system, the wMURE increases to 23.8—26.3%.
Conversely, when the DFT+D functional is chosen on the basis
of the CO,—C; benchmark (BP86-D3(BJ)/aDZ), the perform-
ance for interior and exterior (12,0) C, complexes is quite good
(a wMURE of 8.1-9.6%); however, the wMURE for the CO,—
benzene dimer is 33.7%. Interestingly, the size dependence is
not limited to DFT+D functionals and can be seen in our silver
standards as well, again highlighting the need for CCSD(T)-
level benchmarks.

Examining the B2PLYP, B3LYP, BLYP, BP86, B97, PBEO,
and PBE functionals with the -D3 and -D3(BJ) dispersion
expressions, we see that refitting for the CO,—C; complex
improves the CO,—benzene performance in every single case.
For example, the PBE-D3(BJ)/aDZ functional has a wMURE
of 15.9%, whereas PBE-D3(BJ),.s/2aDZ has a wMURE of 8.4%
for CO,—benzene. It should be noted that not all functionals
see such a large improvement: in the worst case, PBE0-D3/
aDZ has a wMURE of 13.7%, whereas PBE0-D3,.5,/aDZ has a
wMURE of 132%. Thus, refitting using the largest PAH
possible universally improves the results for smaller PAHs.

One could ask whether the refitted damping parameters
obtained by us are transferable to any other weakly interacting
systems, for example, to the popular databases of noncovalent
interaction energies such as $22 X 5" and S66 X 8.”” These
databases cover a wide range of hydrogen-bonded, dispersion-
bonded, and mixed interactions and encompass both the long
range and the region around the van der Waals minimum. The
shortest intermolecular distances in S22 X S and S66 X 8 are
0.9 times the minimum separation and still correspond to
negative interaction energies. Thus, these databases do not
sample the mildly repulsive region of the interaction as broadly
as our CO,—C, benchmark set. However, the accuracy of
several standard DFT+D approaches has been found to
deteriorate already at the shortest separations from S22 X 5’
in accordance with the findings of this work. Therefore, the
combination of the S22 X 5 and S66 X 8 sets provides a
stringent test of whether -D3_4 is applicable to general weakly
interacting systems as readily as the original -D3. To this end,
we computed the MURE values for the refitted DFT+D
approaches (using the QZVP basis set and including the CP
correction) on the union of the $22 X 5 and S66 X 8 databases,
comparing them to the corresponding unrefitted DFT+D. The
resulting MURE values are collected in Table S. Interestingly,
for the original -D3 approach (eq 4), the accuracy of the
original and refitted dispersion expressions is very similar;
depending on a functional, refitting leads to either a minor
improvement or a minor worsening. This result is very
promising; apparently, by fitting our damping parameters to a
very specific class of systems, we have not sacrificed the
robustness of the -D3 correction. The same cannot be said
about the BJ damping form (except for the B2PLYP
functional); refitting its damping parameters for the CO,—C;,
data significantly decreases the accuracy for the S22 X 5 and
S66 X 8 databases, indicating that the -D3(B]J),.q expression,
unlike -D3, 4, is not transferable to other systems. The accuracy
of the DFT-D3(TT),.s approaches on the S22 X 5 and S66 X
8 sets is also unsatisfactory (although better than that of DFT-
D3(BJ),eqe), advising against the use of the TT damping
parameters fitted to the CO,—C, data for other classes of
interacting systems.

Table 5. Mean Unsigned Relative Errors (in Percent) for
Different Density Functionals Augmented by the Original
(Refs 24 and 74) and Refitted (Using Our 195 CO,—C,
Benchmark Geometries) Atom-Pairwise Dispersion
Corrections, Averaged over the Combined $22 X 5% and
$66 x 8°7 Datasets”

functional D3 D3.5 D3B])  D3B))eie  D3(TT)ps
BLYP 107 9.1 68 29.0 134
B3LYP 10.5 10.3 49 28.1 149
B2PLYP 7.9 59 6.8 6.7 7.0
BP86 13.6 12.0 124 68.3 133
B97 9.1 112 134 40.4 187
B970 9.9 137 64 313 215
PBE 15.9 14.1 10.8 339 20.1
PBEO 134 133 96 423 17.4
HFPBE 18.0 172 15.1 286 216
LC-wPBE 6.3 8.1 77 212 10.8
LC-wPBEO 7.9 9.7 57 233 12.7

“The QZVP basis set and CP correction were used for all DFT
calculations.

Nanotube Fragments. On the basis of the results in Figure
8, the PBE-D3(B]J),.i approach, providing a fairly consistent
accuracy for nanotube models of different sizes, is the best
candidate to explore the interaction energy behavior for larger
nanotube fragments. Using the density-fitted MOLPRO code,
fragments as large as C; (up to approximately 100 carbon
atoms) can be computed in the aDZ basis set. If the basis set is
reduced to SVP, then larger C, and T, fragments can be
computed (up to approximately 180 carbon atoms). As shown
in Table 4, the downgrade from PBE-D3(BJ),.;/aDZ to PBE-
D3(BJ),es/SVP increases the wMURE of this method from 5.1
to 9.3% for the CO,—C,; complexes. Because the purpose here
is mainly to explore the dependence of the interaction energy
on the size of the nanotube fragment, rather than an accurate
value of the interaction energy itself, this is an acceptable
approximation.

The global-minimum CO, positions for the nanotube
fragments were optimized at the BLYP-D3(TT),.5/aDZ level
(PBE-D3(BJ),s/2DZ geometries would be similar) for all
zigzag and armchair nanotubes with diameters between 4 and
15 A at both the C; and C, level. Because the computations are
density fitted, these geometry optimizations are no longer
constrained by symmetry; however, the reoptimized minimum
CO,—C, geometries were similar to those of Figure S. In
addition, the interior geometries were constrained so that the z
distance could not exceed the radius of the nanotube. Because
geometry optimizations for fragments larger than C, are not
practical, the C, geometry was used for all larger nanotube
models.

Figure 9 shows the results of the PBE-D3(BJ),.;/SVP
calculations for the largest fragments possible. The number of
carbon atoms in the toroidal fragments grows as the nanotube
diameter increases; thus, it is not always possible to compute
the T, and T, models. However, the C,, sizes are constant, so it
is always possible to compute a C, fragment in the SVP basis
set.

For exterior positions, the C, C,, and C; fragments capture,
on the average, 88.9, 96.7, and 99.0%, respectively, of the
interaction energy compared to the most complete C, fragment
for 18 nanotubes in Figure 9. For the deepest interior
minimum, the (5,5) nanotube, the coronene-like C;, C,, and
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Figure 9. || CO,—nanotube fragment interaction energy at the minimum computed at the PBE-D3(B]),./SVP level as a function of fragment size
and nanotube diameter. The dashed line is from a CO,—flat (graphene-like) C, PBE-D3(BJ),.s/SVP computation. The exterior and interior
minimum geometries for each nanotube were optimized using BLYP-D3(TT),./2aDZ for the C; and C, fragments as described in the text.

C; fragments capture 41.1, 65.1, and 86.5%, respectively, of the
interaction energy compared to the largest fragment (C,),
whereas the toroidal T, and T, fragments capture 94.1 and
99.2%, respectively, of the C, result. The relatively poor
performance of the C, and C, fragments for interior sites is due
to the greater number of carbon atoms in close proximity to the
CO, molecule in a complete nanotube. In addition, this simple
geometric picture explains why the interior site interaction
energy is so much larger than that for exterior sites. This
behavior has been seen before for the methane—nanotube
system;'* however, the salient point is that very large (150
carbon atoms) fragments are required to fully saturate the
interior interaction energy, whereas for exterior sites, smaller C,
fragments (54 carbon atoms) are sufficient.

On the basis of the results in Figure 9, for exterior sites we
recommend the PBE-D3(BJ),.;./2aDZ level of theory computed
at the CO,—C, fragment size. Adding the error from the
smaller C, fragment size and the error of the refitted functional,
we arrive at an accuracy of approximately 8%. For interior sites,
we recommend the PBE-D3(BJ),./SVP level of theory
computed at the CO,—T, fragment size for nanotubes smaller
than 9 A in diameter; for larger nanotubes, we recommend the
CO,—C; model. For interior sites, we expect an accuracy of
approximately 10%. Our best interaction energy estimates for a
CO, molecule bound to a carbon nanotube can be found in
Figure S2 in the Supporting Information.

It should be noted that our estimates involve a pairwise
additive treatment of dispersion that might not be adequate for
the asymptotic constants between extended nanostruc-
tures.'”’ 7'% While it is not entirely clear how system size
affects the damping functions (which, as shown here, have their
own issues) and the interaction energies at finite distances, and
although no performance decrease of pairwise-additive DFT+D
is observed for models as large as circumcoronene (as
compared to wave function-based results; for example, SCS-
MP2), further studies that explicitly include dispersion
nonadditivity are required to unambiguously determine
adsorption energies on extended nanostructures.

4945

B CONCLUSIONS

As the first step toward constructing a more accurate
interaction potential between CO, and carbon nanotubes, we
benchmarked a wide range of CO,—PAH complexes with the
PAH size ranging from benzene (6 carbon atoms) to
circumcoronene (54 carbon atoms). Our composite MP2/
CBS+ACCSD(T)-Fl12avg/laDZ benchmark interaction ener-
gies are accurate to 3% or better, as demonstrated for the
benzene, naphthalene, and pyrene complexes at different
orientations and distances. This composite method was then
applied for 195 configurations of the largest fragment feasible at
this level, the CO,—curved coronene complex, and a variety of
novel dispersion including DFT functionals were benchmarked.
The results indicate that although the accuracy of these
methods at the minimum and longer distances is quite good,
the results at ranges shorter than the minimum distance deviate
strongly from the benchmark. To overcome this short range
deficiency, the damping parameters of Grimme’s -D3 dispersion
term were refitted to reproduce the CO,—C; benchmark. This
refitting resulted in several highly accurate DFT+D functionals
such as B2PLYP-D3(TT),.s and PBE-D3(BJ),.s, with errors
(WMURE) on the CO,—C; benchmark set as low as 2.2%.

The B2PLYP-D3(TT),;,/QZVP and SCS-MP2/(aDZ,aTZ)
levels of theory were found to be acceptable silver standards for
the large CO,—C, complexes because their errors on both the
CO,—pyrene and CO,—C; benchmarks were below 5.5%. In
addition, these two methods agree to 3.4% on the average for
the CO,—C, interaction energies. The DFT+D interaction
energy dependence on the PAH size, from the smallest CO,—
benzene complex to the CO,—C, dimer, was explored. On the
basis of the accuracy trends as functions of the fragment size,
PBE-D3(BJ),.s was chosen as the best functional. To further
explore the size dependence of the interaction energy, the PBE-
D3(BJ);et/SVP level of theory was used to investigate
complexes involving fragments up to T, and C,. For exterior
sites, C,-sized fragments are sufficient to fully converge the
interaction energy, whereas for interior sites, large T, or C;
fragments are required. Using the best combination of a
DFT+D approach, basis set, and fragment size, we can recover
the interaction energy between a CO, molecule and a carbon
nanotube to within 10%.
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The primary effect that hinders the performance of standard
functionals for the CO,—PAH complexes is the overdamping of
dispersion. Interestingly, this overdamping is seen for Grimme’s
atom-pairwise dispersion, the -dDsC correction, the -D,
correction to dIDF, and the nonlocal VV10 functional,
indicating that the damping issue may apply to all current
dispersion forms that require empirical damping parameters.
While the -D3 damping parameters that were fitted specifically
for the CO,—PAH systems perform similarly to Grimme’s
original parameters on the S22 X S and S66 X 8 benchmark
sets, the performance of the CO,—PAH-refitted BJ damping
parameters is significantly worse than that of Grimme’s original
values. Therefore, the refitted parameters should not be treated
as new, improved general-purpose values. Instead, they
demonstrate that standard damping forms may not be sufficient
to overcome the short range DFT+D deficiencies over different
classes of complexes. A new approach is needed to develop a
transferable dispersion expression, and work in this direction is
in progress in our group.
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Since the original fitting of Grimme’s atom-pairwaise -D3 damping parameters, the
number and quality of benchmark intermolecular interaction energies has increased
significantly. Current benchmark sets such as S22x5, NBC10, and CH4-PAH are
extended to shorter ranges in order to fully capture the van der Waals well. Conven-
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I. INTRODUCTION

Dispersion-including density functional theory (DFT) methods have become integral to
the evaluation of intermolecular interaction energies and potential energy surfaces. Numer-
ous studies have shown that often these methods obtain impressive accuracies at the van
der Waals minima, with average errors down to about 0.2 kcal/mol (0.8 kJ/mol) in some
cases.! However, it is important to note that the accuracy near the minima is not always

representative of the accuracy across the entire potential energy surface.!™

Databases of accurate noncovalent interactions have been an invaluable source of data
for assessing the performance of both established approaches and new approximations. The
early databases®” focused on the van der Waals minimum structures. However, it was real-
ized shortly thereafter® that a good performance of a DFT-based approach at the minimum
does not necessarily translate to a similar performance at other intermolecular separations,
for example, semilocal functionals, even when parametrized for noncovalent interactions,”!'®
cannot reproduce the correct long-range behavior of interaction energy. Therefore, nearly all

newer databases®!12

are composed of radial curves passing through the van der Waals min-
imum. Only few benchmark studies'® have included non-minimum angular configurations of
interacting monomers, but there is a multitude of complete PES data for small complexes
to assess the accuracy of DFT-based approaches at non-minimum orientations.

While density functionals that include nonlocal dispersion, either in an atom-pairwise

14-16 117,18
)

form or through a nonlocal correlation functiona perform generally quite well at
long range (the leading asymptotic constants Cy are usually accurate to better than 10%), at
distances slightly shorter than the van der Waals minimum the accuracy of DFT deteriorates
quickly. Large errors of DFT-D2!¥ at center-of-mass minimum separations (R.,) have been
observed already in Ref. 2, however, these issues went relatively unnoticed by the general
community. Recently, two of us* performed extensive benchmark calculations of complexes
involving carbon dioxide and coronene-sized models of graphene and carbon nanotubes at
distances down to 0.8 - Req, observing a dramatic drop in DFT accuracy at short range.
Ref. 4 attributed the short-range issues to two sources: the overestimation of exchange due
to incorrect asymptotic behavior of the exchange-correlation potential and the inadequacy

of damping functions commonly used in atom-pairwise dispersion expressions. As evidenced

by the long-range corrected functional LC-wPBE?° performing only somewhat better than



standard functionals, the second issue is likely more important. It should be noted that the
errors of DFT-based approaches become quite severe already at distances around 0.8 — 0.9 -
R.,, where the interaction energies are either still negative or only slightly positive (up to,
say, 10 kecal/mol). Such mildly repulsive configurations are probed in molecular dynamics
simulations at standard conditions of temperature and pressure and the errors of DFT at
this range are likely to adversely influence the resulting quantities such as spectra and virial
coefficients. Moreover, a vastly different accuracy at different R leads to highly inaccurate
gradients of the intermolecular potential (forces).?!

The availability of multiple benchmark NCI databases including radial curves, along with
the increase in computer power, has made it possible to evaluate and optimize DFT-based
approaches on a much larger scale, up to exploring complete DF'T parameter spaces of a given
size.?2?3 Moreover, the very recent development of the SSI benchmark database by two of
us and collaborators?* extends the available benchmark set far beyond the global-minimum
angular orientations with favorable electrostatics. Therefore, we are now in a much better
position to revisit the parameter selection in the original DFT-D3' and DFT-D3(BJ)%
approaches. That still requires an extension of several existing benchmark databases to
shorter distances, and we performed such an extension in the present work.

For intermolecular interactions the ultimate DFT method would reproduce CCSD(T)
quality results at both short-range and long-range distance for a very diverse set of inter-
actions. Therefore, all benchmark databases utilized must be computed at the CCSD(T)
silver standard of Ref. 43 (=5% accuracy) or better, dissociation curves must contain at
least one positive point on the repulsive wall (HBC6 excepted on this point since it would
exhibit double-minimum potentials) and extend past the van der Waals minima, and the
databases taken together must represent a diverse set as demonstrated by SAPT theory.
Upon selection of databases to be used in the testing and validation sets, it was discovered
that many of the established databases themselves do not meet these requirements.

Often benchmark sets that include dissociation curves are created by first finding the
global or local minima of a dimer. Then more points are created by changing the distance
between the molecules by a fraction of the reduced distance z = Ri;q. These types of
databases will be denoted “minima cross section” and comprise all databases employed in

this study except for SSI, BBI, and Water2510. Selection of the correct set of z distance

is of utmost importance to capture accurately the shape of the potential energy curve. For



TABLE 1. Datasets utilized in the training and validation sets.

Database Points Curves Largest! Reference Description

Training 1526 114

CO2 - PAH 249 45 27 4 CO2 with PAHs the size of benzene through coronene and curved coronene

HBC6P 118 6 6 26 and 27 dissociation curves of doubly hydrogen-bonded bimolecular complexes

NBC10ext? 195 10 12 27 and 28 dissociation curves of dispersion-bound bimolecular complexes

S22x7P:¢ 154 22 19 29 dissociation curves for a balanced mix of hydrogen bonded and dispersion
bonded complexes

SSI500 500 a 20 24 a subset of 500 molecules from SSI

X31x10d 310 31 18 30 dissociation curves of organic halides, halohydrides, and halogens

Validation 6773 148

ACHC 54 6 19 31 rise, twist, slide, shift, roll, and tilt of adenine:cytosine nucleobase step

BBI 100 a 10 24 peptide backbone-backbone complexes

CsHy - PAH 75 15 26 32 ethene with curved coronene

CH4 - PAHP 405 45 25 3 and 33 methane with PAHs the size of benzene through coronene and curved coronene

CO3 - NPHAC 96 16 27 34 CO2 with nitogen-doped polyheterocyclic aromatic compounds (N-PHAC)

S66x10P 660 66 16 35 dissociation curves for a balanced mix of biomolecule NCI bonding motifs

SSI €2873 a 21 24 peptide sidechain-sidechain complexes

Water2510 2510 a 2 36-38 water PES

Thermochemistry 52

CONF*© 52 a 20 39-42 The ACONF, CYCONF, PCONF, and SCONF-A datasets.

2 Database does not contain curves.

b Database was extended to shorter ranges.
¢ Database was recomputed at a higher level of theory.

4 The X40x10 database with iodine containing complexes removed.
¢ SSI contains 3380 bimolecular complexes. The stated figure is less 500 from the SSI500 fitting subset

and 7 for which GGA functionals do not reliably converge.
f Largest refers to the largest number of heavy atoms in the dataset.

example, the S22 x5 database’s z distance was originally selected as 0.9, 1.0, 1.2, 1.5, and 2.0.

The long range is well covered by this selection of z; however, short range is inadequate: for

2=0.9, only one curve has a positive point on the repulsive wall. Extending this benchmark

to z=0.8, there are 11 curves with positive points on the repulsive wall. Finally, at z=0.7 all

curves contain points that are positive on the repulsive wall. This problem is not isolated

to the S22x5 database, in total the S22x5 (S22x7), S66x8 (S66x10), NBC10 (NBC10ext),

and CH4-PAH datasets sets were extended to shorter ranges for this Letter, new names are

denoted in parenthesis.

To examine the diversity requirement, SAPT#* was computed for all datasets and the

results were plotted using “ternary” diagrams that represent the nature of an intermolecular

interaction by relative contributions from the three attractive SAPT components: electro-
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statics, induction, and dispersion.?® Examining Figure 1 the “minima cross section” ternary
plot demonstrates that this type of dataset only explores the dispersion and electrostatically
bound region. While this bound region can be argued to be the most important it can
be seen clearly that the SSI and Water2510 sets explore a more diverse set of interaction
archetypes. The lack of points that contain purely induction (top right corner of a ternary
diagram) is considered quite satisfactory as only pathological systems such as H"- LiH can
be found in this region.

The original -D3 training set contained 130 separate datapoints broken into 72 inter-
molecular interactions (for which SAPT can be computed) and 58 thermochemistry based
datapoints. bare comprised of the S22 and S22+ sets (S22x7 at z=1.0, 1.2, 1.5) and are plot-
ted in Figure 1 in comparison to the current training set. The S22+ dataset has no points
shorter than the minima (a region where damping will play a much greater role), and the
original benchmark values did not meet the CCSD(T) silver standard. The quality, diver-
sity, and range of the new training set for intermolecular interactions has been significantly
improved compared to the of original training dataset. As thermochemistry data is not the
focus of the current work, the CONF dataset, which represents 52 of the 58 datapoints in
the original training dataset, will only be used as a metric to ensure that this type of data
is not radically skewed by the refitting.

The fitting forms utilized are as follows:

The Becke-Johnson (BJ) damping®”#® with three parameters sg, oy, and ay is:

oy
dlsp =75 Z Z R643 + Oég)n (1)

A;«éB n=6,8 TAB +
The “zero damping” or Chai-Head-Gordon (CHG) damping form?%:50,
C;\P 1
By’ = 2
o 1;9 ;8 g 14 6(rag/(smnR5P) + RGP B)—

which has three parameters ss, s.¢, and 3 (the s,s values are held constant at 1). The
a,, parameters are set to 14 and 16 for ag and ag, respectively, and not adjusted. The
parameter is introduced to CHG damping in this paper to give the same number of fitting
parameters as BJ damping.

The training and validation databases cover a large range of interaction energies making a

weight like mean unsigned error heavily favor the complexes with large interaction energies.
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FIG. 1. Top Panel: Ternary diagram comparison between the original -D3 fitting set and the
current fitting set. Bottom Panel: Ternary diagram breakdown of the three major categories of

points included in the validation set.

A statistical quantity like the mean unsigned relative error would be a better metric to
measure the overall accuracy; however, this methodology quickly runs into singularities at
short range when the PES crosses the zero line or at long range where the interaction energy
is very small. To circumvent this issue a capped relative error (CRE) is introduced where
the weight is capped at a certain value. Unfortunately, as in Ref. 4 a singular value is not
appropriate for the entire database. Instead, this cap needs to have a functional form to
take into account the large range of interaction energies.

E — Eref S‘Er

CRE = ( ) -100%, Egeight = max{|Eret], Z;?f)_eﬁ} (3)

weight
¢ is a flexible dimensionless parameter that determines the severity of the capping. In this
paper a value of 0.2 was selected, as it represents a good balance between the number of
points capped and singularity avoidance. At this weight only 10% of the values had their
weights altered, with an average difference between the benchmark and capped value of 0.25
kcal/mol. For the SSI and BBI datasets, complete curves are not available and a simple
cap of 0.5 kecal/mol was used; this value was chosen because it damps a similar percentage
of overall points (7%). Variations of the CRE also include capped unsigned relative error
(CURE) and mean capped unsigned relative error (MCURE).

For overall statistical quantities, each database is weighted equally, except for the SSI
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FIG. 2. Top Panel: All functionals utilizing the original damping parameters. Bottom Panel: All
functionals utilizing the new damping parameters the light grey outlines represent the MCURE of
the original damping parameters. The right hand panels gives the spread of MCURE values for all

functionals.

database which will always contribute % to the overall statistic. This was done so that the
different number of points in each dataset does not implicitly weight the datasets and the
relative importance of the SSI dataset is always represented. All damping parameters were
fit to the training set and all statistical quantities are on the validation set. Additional
statistics can be found in the SI.

In Figure 2 the MCURE is shown for all functionals with original damping parameters.
The diversity in the statistics between functionals and damping forms is quite striking,
especially for the SSI and short-range quantities. For this large dataset it is apparent that
long-range DFT+D is overall quite excellent, often with 10% MCURE and at worst case 18%
MCURE for the B97-D3(BJ) functional. However, accuracy radically deteriorates at short
range for all functionals with a best case scenario of 12% for LC-wPBE-D3 and worst case

of 29% for B97-D3. Interestingly, it was reported that short-range inaccuracies in DFT+D
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FIG. 3. Performance per validation dataset for the BLYP-D3 and BLYP-D3M methods.

were due to KS exchange being too repulsive.

After refitting it can be seen that the overall MCURE for every functional either improved
or, for one case, LC-wPBE-D3M?, did not change. The long-range accuracies are now
much more consistent with errors between 4 and 11%. As the Cg coefficients used in the
dispersion term are only accurate to about 10%, the overall performance at long range is
quite satisfactory. The accuracies for the SSI dataset is also increased significantly. Before
refitting errors ranged from 5 to 26% and now only range from 4 to 14%. The reduction
in short-range MCURE is not always guaranteed; for the LC-wPBE and BP86 functional,
the error becomes worse by several percent. However, for the B2PLYP, B3LYP, and BLYP
series, short range errors significantly improve from 14 to 28% before refitting down to 8
to 14% after refitting. The most notable single functional improvement comes from the
refitting of the popular PBE-D3 method, for which the overall MCURE went from 19% to
10% and the MCURE for the SSI validation set went from 26% to 9%.

Quantities shown in Figure 2 represent a overview of the statistics. To obtain a better

understanding of the improvement per dataset the MCURE for each dataset is shown in
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FIG. 4. Capped relative error (signed) for the BLYP functional for both CHG and BJ damping
before and after the fitting for points at the minimum separation and shorter in addition to the SSI
dataset. Red represents overbound DFT-D3 energies while blue represents underbound DFT-D3

energies. Errors within +£20% are not shown for clarity.

Figure 3. The BLYP-D3 functional was chosen as it represents a reasonable middle ground
in terms of overall improvement. Figure 3 demonstrates that the accuracy per dataset can
vary dramatically, especially at short range. After the refitting, we can observe that the

accuracy per dataset is much more even and the largest outliers have been brought more in

line with the remaining dataset.

To examine the fundamental limits of current damping forms Figure 4 shows CRE per
datapoint. For zero damping, dispersion dominated systems are typically underbound while
electrostatically bound systems are overbound. Interestingly, the zero refitting appears to
fix the electrostatically bound systems while the errors remain relatively unchanged for
dispersion bound systems. The overlapping too low and too systems for the refitted results
suggest that even if more complex damping forms were utilized that take into account the
types of interaction little improvement would be seen. This would appear to indicate that

increasingly complex damping forms are not an avenue of research worth pursuing.

As this refitting is clearly one that favors intermolecular interactions, the CONF datasets
was used to ensure that refitting does not significantly impact thermochemistry. Across all

functionals and damping forms, the refitted parameters only worsen the CONF dataset by



2% on the average. For the worst case scenario: B97-D3(BJ) compared to B97-D3M(BJ)
the CONF MCURE worsens by 8% (26 to 34%, respectively). This demonstrates that, at
least for the CONF dataset, damping forms and values have a much smaller impact on
intramonomer dispersion.

As was previously noted, all DFT values were computed with the CP correction in the
QZVP basis set. As such, the underlying DFT should always be computed as close to the
basis limit as possible. Compared to the CP corrected QZVP computation the MCURE
only deviates by 1-2% when the basis is reduced to CP aDZ. However, when the basis is
reduced to non-CP QZVP, the MCURE deviates by 2-4% and 45-60% for non-CP aDZ.
Therefore, the basis for CP computations must be of at least aDZ quality and for non-CP of
QZVP quality. Otherwise, basis set superpositions errors will become a much greater source
of error than the quality of the dispersion contribution itself.

In summary, we have demonstrated that current “minima cross section” benchmarks do
not fully explore the van der Waals well at short range and do not have enough diversity
to adequately describe all interactions in either protein-protein interaction or even a water
dimer potential energy surface. Current benchmark sets have been extended to satisfy
the former requirement and novel benchmark sets such as SSI were utilized to satisfy the
later. The original DFT-D3 damping parameters were not fit to short-range points and
subsequently do poorly in this region compared to long-range points. Refitting can reduce
DFT-D3 errors by up to half and in general greatly reduces the large variability between
functional selection. We recommend avoiding the BP86 and B97 functionals and advocate

the use of B3BLYP-D3M(BJ) as the best overall functional.
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COMPUTATIONAL METHODS

All computations were performed using the MOLPRO?! 2012 and PS14°? suite of ab initio
quantum chemistry programs. The B2PLYP,*® B3LYP,>*% BLYP,?%*7 BP86,%6-°® PBE(,%-%°
LC-wPBE,? PBE,% and B97' functionals were utilized. The def2-QZVP% and aug-cc-
pVDZ%36% (hereafter shortened to QZVP and aDZ, respectively) basis sets were utilized.
Unless otherwise stated all computation are counterpoise corrected®% and utilized the

QZVP basis set. Density fitting was utilized for all DFT computations.®”6®
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