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Abstract

In this dissertation, we study the problems related to geometry of zeros and Bernstein

type inequalities concerning growth for polynomials. The dissertation consists of three chap-

ters followed by list of references used in the text.

In Chapter one, besides presenting a brief introduction of the subject of geometry of

zeros of polynomials, we mentioned briefly how the subject of location of zeros of polynomials

can be useful in the study of problems in a dynamical system. Let p(z) =
n∑

j=0

ajz
j be a

polynomial of degree n with real coefficients. The well known Eneström-Kakeya theorem

states that if 0 < a0 ≤ a1 ≤ a2 ≤ a3 . . . ≤ an, then all the zeros of p(z) lie in the closed unit

disk. Here, we generalize and extend this theorem. Also, we derive conditions on coefficients

of p(z) and estimate the number of zeros that the polynomial has in a prescribed region.

In Chapter two, we obtain several results which provide annuli containing all the zeros

of a complex polynomial. Our result are explicit and the radii obtained are in terms of the

coefficients of the polynomial. Also, we develop MATLAB code to construct examples of

polynomials for which our results give sharper bound than obtainable from some well known

results. The problems of this type were initiated by Gauss and Cauchy. In addition, we

considered polynomial of the type anz
n + amz

m + a2z
2 + a1z + a0, 3 ≤ m < n and obtained

a disk centered at the origin that has at least one zeros of the polynomial. Problems of this

type were initiated by Landau.

If p(z) =
n∑

j=0

ajz
j is a polynomial of degree n, then it was proved by Bernstein that

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|, and for R ≥ 1, max
|z|=R

|p(z)| ≤ Rn max
|z|=1

|p(z)|. If p(z) ̸= 0 in |z| ≤ 1,

then max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)| and max
|z|=R≥1

|p(z)| ≤ Rn + 1

2
max
|z|=1

|p(z)|. The first result was

conjectured by Erdös and proved by P. D. Lax and the second result is due to Ankeny and

Rivlin. If 0 < r < 1, then Rivlin proved that max
|z|=r

|p(z)| ≥
(1 + r

2

)n
max
|z|=1

|p(z)|. Chapter
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three deals with results in this direction where we prove a refinement of this result of Rivlin.

Our result is best possible and gives a sharper result for all polynomials of this class except

for polynomials with min
|z|=1

|p(z)| = 0. This chapter also contains some other results in this

direction.
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Chapter 1

Distribution of Zeros for Polynomials with Monotonicity Condition on

Coefficients

1.1 Introduction

Let p(z) = a0 + a1z + a2z
2 + a3z

3 + · · · + anz
n be a polynomial of degree n. By the

Fundamental Theorem of Algebra (historically, the first important result concerning the

roots of an algebraic equation), p(z) has exactly n zeros in the complex plane, counting

multiplicity. But this theorem does not say anything regarding the location of zeros of

the polynomial, that is, the region which contains some or all of the zeros of a polynomial.

Problems involving location of the zeros of a polynomial, besides being of theoretical interest,

find applications in many areas of applied mathematics such as coding theory, cryptography,

combinatorics, number theory, mathematical biology and engineering [5, 22, 70, 93, 99, 104].

In particular, problems dealing with location of zeros of the polynomial play an important

role, for example, in solving digital audio signal processing problems [129], control engineering

problems [20], and eigenvalue problems in mathematical physics [115].

Since Abel and Ruffini proved that there is no general algebraic solution to polynomial

equations of degree five or higher, the problem of finding a region containing all the zeros

of a polynomial became much more interesting, and over a period a large number of re-

sults have been provided in this direction. It may be remarked that there are methods, for

example Ehrlich-Aberth’s type (see [1, 44, 98]) for the simultaneous determination of the

zeros of algebraic polynomials, and there are studies to accelerate convergence and increase

computational efficiency of these methods (for example, see [92, 101]). These methods which

are of course very useful, because they give approximations to the zeros of a polynomial can
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possibly become more efficient when combined with the results dealing with the region con-

taining all the zeros of a polynomial, because an accurate estimate of the annulus containing

all the zeros of a polynomial can considerably reduce the amount of work needed to find

exact zeros, and so there is always a need for better estimates for the region containing all

the zeros of a polynomial. Several monographs have been written on this subject and related

subject of approximation theory (for example, see [87, 93, 94, 110]).

To see how the study of the location of zeros of a polynomial can be useful in control

theory, let us consider a transfer function H(s) in a dynamical system. If we have an input

function, say, X(s), and an output function Y (s), we define H(s) = Y (s)
X(s)

. In discrete time

systems, the function can also be written as H(z) = Y (z)
X(z)

and is often referred to as the pulse

transfer function. The zeros zi of the system satisfy Y (zi) = 0, and poles zj of the system

satisfy X(zj) = 0. Poles and zeros of a transfer function are the frequencies for which the

value of the transfer function becomes infinity or zero, respectively. The values of the poles

and the zeros determine whether the system is stable, and how well the system performs.

Control systems, in the simplest sense, can be designed by assigning simple values to the

poles and zeros of the system. Physically reliable control systems must have a number of

poles greater than or equal to the number of zeros. Systems that satisfy this relationship

are called proper. So, the problem of finding the roots of either Y (zi) = 0 or X(zj) = 0, and

the location of these roots are very important from a stability point of view. As a matter of

fact, the closer the zeros are to the imaginary axis, the greater the stabilizing effect. This,

for example, somewhat illustrates how the problem of finding the location of zeros can be of

great importance.

The problems concerning the location of the zeros of a polynomial can mainly be divided

in two categories, namely:

• Given an integer k, 1 ≤ k ≤ n, find a region R = R(a0, a1, a2, . . . , an) containing at

least or exactly k zeros of p(z). In particular, one would like to find the smallest circle

|z| = r which will enclose the k zeros of the polynomial. Such results are very useful for
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solving practical problems in numerical analysis; for example, in finding the roots of an

algebraic equation by using Newton-Raphson Method, and finding eigenvalues. Note

that such results can be of great help in problems dealing with eigenvalues because one

is often not interested in computing all eigenvalues precisely.

• Given a region R, to find the number k = k(a0, a1, a2, . . . , an) such that k number of

zeros lie in the region R. In particular, to find the number k of zeros whose moduli do

not exceed some prescribed value, say r.

This subject has been studied extensively. Due to the limited space, it would not be

possible to include all the results in this subject, and therefore many important results in this

area, which we would have liked to include, had to be excluded (for a more detailed study

of the subject, we refer, in particular, to the monograph and books written by Dieudonné

[42], Marden [87], Milovanović, Mitrinović, and Rassias [93], Rahman and Schmeisser [110],

and recent articles due to Gardner and Govil [50], and Govil and Nwaeze [62]).

This chapter contains three sections. Section 1.1 lays a historical background coupled

with a motivational interest to the subject matter. Section 1.2 discusses the first category

of problem, stated above, with restriction on the coefficients of the given polynomial under

consideration, while Section 1.3 deals with results of the second category as discussed above.

1.2 Eneström-Kakeya Theorem and its Extensions

We start by stating a classical result due to Eneström [45] and Kakeya [76] concerning

the bounds for the moduli of zeros of polynomials having positive coefficients. It is often

stated as:

Theorem 1.2.1 (Eneström-Kakeya). Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n

with real coefficients satisfying 0 < a0 ≤ a1 ≤ a2 ≤ a3 . . . ≤ an. Then all the zeros of p(z) lie

in |z| ≤ 1.

For the sake of completeness, we present here the proof of the above theorem
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Proof. Define f by the equation

p(z)(1− z) = a0 + (a1 − a0)z + (a2 − a1)z
2 + (a3 − a2)z

3 + · · ·+ (an − an−1)z
n − anz

n+1

= f(z)− anz
n+1.

Then for |z| = 1, we have

|f(z)| ≤ |a0|+ |a1 − a0|+ |a2 − a1|+ · · ·+ |an − an−1|

= a0 + (a1 − a0) + (a2 − a1) + · · ·+ (an − an−1)

= an.

Notice that the function znf(1/z) =
n∑

j=0

(aj − aj−1)z
n−j, a−1 = 0 has the same bound on

|z| = 1 as the function f. Namely, |znf(1/z)| ≤ an for |z| = 1. Since znf(1/z) is analytic

in |z| ≤ 1, we have |znf(1/z)| ≤ an for |z| ≤ 1 by the maximum modulus principle. Hence,

|f(1/z)| ≤ an/|z|n for |z| ≤ 1. Replacing z by 1/z, we see that |f(z)| ≤ an|z|n for |z| ≥ 1,

and making use of this, we get

|(1− z)p(z)| = |f(z)− anz
n+1|

≥ an|z|n+1 − |f(z)|

≥ an|z|n+1 − an|z|n

= an|z|n(|z| − 1).

So if |z| > 1 then (1− z)p(z) ̸= 0. Therefore, all the zeros of p lie in |z| ≤ 1.

An equivalent, but perhaps more useful, statement of the above theorem due, in fact,

to Eneström [45], is the following:
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Theorem 1.2.2. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n with real coefficients

satisfying aj > 0 for all j ∈ {0, 1, 2, · · · , n}. Then all the zeros of p(z) lie in the annulus

α ≤ |z| ≤ β, where α = min
0≤j≤n

{aj/aj+1}, and β = max
0≤j≤n

{aj/aj+1}.

Following this line of argument, Anderson, Saff and Varga [6] showed that

Theorem 1.2.3. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n ≥ 1 with real coefficients

satisfying βa1 − a0 > 0 and aj > 0 for all j ∈ {0, 1, 2, · · · , n}. Then all the zeros of p(z) lie

in the disk |z| ≤ β, where β is as defined above in Theorem 1.2.2.

In the literature there exist several extensions and generalizations of Theorem 1.2.1

(see [7], [75] and [81]). Joyal, Labelle and Rahman [75] extended Theorem 1.2.1 to the

polynomials whose coefficients are monotonic but not necessarily nonnegative. In fact, they

proved the following result:

Theorem 1.2.4. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n with real coefficients

satisfying a0 ≤ a1 ≤ a2 ≤ a3 . . . ≤ an. Then all the zeros of p(z) lie in the disk |z| ≤
1

|an|
(an − a0 + |a0|).

Of course, when a0 > 0 then Theorem 1.2.4 reduces to Theorem 1.2.1. It is important

to note here that Theorem 1.2.4, just like the original Eneström-Kakeya theorem, is only

applicable to polynomials with real coefficients. In 1968, Govil and Rahman [65] extended

the Eneström-Kakeya theorem to polynomials with complex coefficients:

Theorem 1.2.5. Let p(z) =
n∑

j=0

ajz
j be a complex polynomial with coefficients satisfying

| arg aj − β| ≤ α ≤ π

2
for j ∈ {0, 1, 2, . . . , n} and for some real α and β, and |a0| ≤ |a1| ≤

|a2| ≤ |a3| . . . ≤ |an|. Then all the zeros of p(z) lie in |z| ≤ cosα + sinα + 2 sinα
|an|

n−1∑
j=0

|aj|.

With α = β = 0, Theorem 1.2.5 reduces to Theorem 1.2.1. In the same paper, Govil

and Rahman gave a result for polynomials with complex coefficients but impose a nonneg-

ativity and monotonicity condition on the real or imaginary parts of the coefficients of the

polynomial. Specifically, they [65] proved
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Theorem 1.2.6. Let p(z) =
n∑

j=0

ajz
j be a complex polynomial with coefficients where Reaj =

αj and Imaj = βj for j ∈ {0, 1, 2, . . . , n} satisfying 0 ≤ α0 ≤ α1 ≤ α2 ≤ α3 . . . ≤ αn, αn ̸=

0. Then all the zeros of p(z) lie in |z| ≤ 1 + 2
|αn|

n∑
j=0

|βj|.

In 1996, Aziz and Zarger [13] further extended Theorem 1.2.1 by relaxing the hypothesis

in several ways and among other things proved the following result:

Theorem 1.2.7. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n such that for some k ≥ 1,

0 < a0 ≤ a1 ≤ a2 ≤ a3 . . . ≤ an−1 ≤ kan. Then all the zeros of p(z) lie in the disk

|z + k − 1| ≤ k.

In 2012, they further generalized Theorem 1.2.7 which is an interesting extension of

Theorem 1.2.1. In particular, they [15] proved the following results:

Theorem 1.2.8. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n. If for some positive

numbers k and ρ with k ≥ 1, 0 < ρ ≤ 1, 0 ≤ ρ a0 ≤ a1 ≤ a2 ≤ a3 . . . ≤ an−1 ≤ kan. Then all

the zeros of p(z) lie in the disk

|z + k − 1| ≤ k +
2a0
an

(1− ρ).

Theorem 1.2.9. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n. If for some positive number

ρ, 0 < ρ ≤ 1, and for some nonnegative integer λ, 0 ≤ λ ≤ n, ρ a0 ≤ a1 ≤ a2 ≤ a3 . . . ≤

aλ−1 ≤ aλ ≥ aλ+1 ≥ · · · ≥ an−1 ≥ an, then all the zeros of p(z) lie in the disk

∣∣∣z + an−1

an
− 1
∣∣∣ ≤ 1

|an|

[
2aλ − an−1 + (2− ρ)|a0| − ρa0

]
.

.

Looking at Theorem 1.2.8, one might want to know what happens if ρa0 is NOT non-

negative. In this section, we prove some extensions and generalization of Theorems 1.2.8

and 1.2.9 which in turns gives an answer to our enquiry.
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1.2.1 Statement of New Results

Theorem 1.2.10. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n. If for some real numbers

α and β, a0 − β ≤ a1 ≤ a2 ≤ . . . ≤ an−1 ≤ an + α, then all the zeros of p(z) lie in the disk

∣∣∣z + α

an

∣∣∣ ≤ 1

|an|

[
an + α− a0 + β + |β|+ |a0|

]
.

If α = (k − 1)an with k ≥ 1 and β = (1− ρ)a0 with 0 < ρ ≤ 1, we get the following.

Corollary 1.2.11. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n. If for some positive

numbers k ≥ 1 and ρ, with 0 < ρ ≤ 1, ρ a0 ≤ a1 ≤ a2 ≤ . . . ≤ an−1 ≤ kan, then all the zeros

of p(z) lie in the disk

|z + k − 1| ≤ 1

|an|

[
(kan − ρa0) + |a0|(2− ρ)

]
.

If a0 > 0, then Corollary 1.2.11 reduces to Theorem 1.2.8.

Theorem 1.2.12. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n. If for some real number

s and for some nonnegative integer λ, 0 ≤ λ ≤ n, a0 − s ≤ a1 ≤ a2 ≤ a3 . . . ≤ aλ−1 ≤ aλ ≥

aλ+1 ≥ · · · ≥ an−1 ≥ an, then all the zeros of p(z) lie in the disk

∣∣∣z + an−1

an
− 1
∣∣∣ ≤ 1

|an|

[
2aλ − an−1 + s− a0 + |s|+ |a0|

]
.

.

If we take s = (1− ρ)a0, with 0 < ρ ≤ 1, then Theorem 1.2.12 becomes Theorem 1.2.9.

Instead of proving Theorem 1.2.12, we shall prove a more general case. In fact, we prove the

following result:

Theorem 1.2.13. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n. If for some real number

t, s and for some nonnegative integer λ, 0 ≤ λ ≤ n, a0 − s ≤ a1 ≤ a2 ≤ a3 . . . ≤ aλ−1 ≤

7



aλ ≥ aλ+1 ≥ · · · ≥ an−1 ≥ an + t, then all the zeros of p(z) lie in the disk

∣∣∣z + an−1

an
−
(
1 +

t

an

)∣∣∣ ≤ 1

|an|

[
2aλ − an−1 + s− a0 + |s|+ |a0|+ |t|

]
.

.

We now present some examples to illustrate the importance of Theorems 1.2.10 and

1.2.13 over Theorems 1.2.1, 1.2.4, 1.2.7 and 1.2.8.

1.2.2 Demonstrating Examples

Example 1.2.14. Let us consider the polynomial

p(z) = 3z5 + 4z4 + 3z3 + 2z2 + z − 1.

The coefficients here are a5 = 3, a4 = 4, a3 = 3, a2 = 2, a1 = 1 and a0 = −1. We cannot

apply Theorems 1.2.1, 1.2.4, 1.2.7 and 1.2.8. But we can apply Theorem 1.2.10 to determine

where all the zeros of the polynomial lie. Using MATLAB, we obtain the following zeros :

−0.9154 + 0.4962i, − 0.9154 − 0.4962i, 0.0530 + 0.8845i, 0.0530 − 0.8845i, 0.3916. These

zeros actually lie in the disk |z + 2/3| ≤ 1.1403. But if we take α = 2 and β = 0, Theorem

1.2.10 gives that all the zeros of the polynomial lie in the closed disk |z + 2/3| ≤ 7/3.

Example 1.2.15. Next, consider

q(z) = −z6 + 2z5 + 2z4 + 3z3 + z2 − 2.

The coefficients of q(z) are a6 = −1, a5 = 2, a4 = 2, a3 = 3, a2 = 1, a1 = 0 and a0 = −2.

Using MATLAB, we obtain the following zeros: 3.0197, − 0.7682 + 0.5814i, − 0.7682 −

0.5814i, − 0.0803 + 1.0233i, − 0.0803 − 1.0233i, 0.6773. Taking λ = 3, t = 1 and s = 0,

Theorem 1.2.13 gives that the zeros lie in |z − 2| ≤ 9.

8



1.2.3 Proofs of the Theorems

Proof of Theorem 1.2.10. Consider the polynomial

g(z) = (1− z)p(z)

= −anzn+1 + (an − an−1)z
n + (an−1 − an−2)z

n−1 + · · ·+ (a1 − a0)z + a0

= −anzn+1 − αzn + (an + α− an−1)z
n + (an−1 − an−2)z

n−1 + · · ·+ (a1 − a0 + β)z − βz + a0

= −zn(anz + α) + (an + α− an−1)z
n + (an−1 − an−2)z

n−1 + · · ·+ (a1 − a0 + β)z − βz + a0

= −zn(anz + α) + ϕ(z)

where

ϕ(z) = (an + α− an−1)z
n + (an−1 − an−2)z

n−1 + · · ·+ (a1 − a0 + β)z − βz + a0.

Now for |z| = 1, we have

|ϕ(z)| ≤ |an + α− an−1|+ |an−1 − an−2|+ · · ·+ |a1 − a0 + β|+ |β|+ |a0|

= an + α− an−1 + an−1 − an−2 + · · ·+ a1 − a0 + β + |β|+ |a0|

= an + α− a0 + β + |β|+ |a0|.

Since this is true for all complex number with a unit modulus, then it must also be true for

1/z. With this in mind, we have

|znϕ(1/z)| ≤ an + α− a0 + β + |β|+ |a0| for all z with |z| = 1. (1.1)

9



Also, the function Φ(z) = znϕ(1/z) is analytic in |z| ≤ 1, hence, the Inequality (1.1) holds

also inside the unit circle. That is,

|ϕ(1/z)| ≤ an + α− a0 + β + |β|+ |a0|
|z|n

for all z with |z| ≤ 1.

Replacing z by 1/z, we get

|ϕ(z)| ≤
[
an + α− a0 + β + |β|+ |a0|

]
|z|n for all z with |z| ≥ 1.

Now for |z| ≥ 1, we obtain

|g(z)| = | − zn(anz + α) + ϕ(z)|

≥ |zn||anz + α| − |ϕ(z)|

≥ |zn||anz + α| −
[
an + α− a0 + β + |β|+ |a0|

]
|z|n

= |zn|
(
|anz + α| −

[
an + α− a0 + β + |β|+ |a0|

])
> 0,

which is true if and only if

|anz + α| >
[
an + α− a0 + β + |β|+ |a0|

]
;

that is,

|z + α

an
| > 1

|an|

[
an + α− a0 + β + |β|+ |a0|

]
.

Thus, all the zeros of g(z) whose modulus is greater than or equal to 1 lie in

|z + α

an
| ≤ 1

|an|

[
an + α− a0 + β + |β|+ |a0|

]
. (1.2)

10



But those zeros of p(z) whose modulus is less than 1 satisfy (1.2). Also, all the zeros of

p(z) are zeros of g(z). That completes the proof of Theorem 1.2.10.

Proof of Theorem 1.2.13. Consider the polynomial

g(z) = (1− z)p(z)

= −anzn+1 + (an − an−1)z
n + (an−1 − an−2)z

n−1 + · · ·+ (a1 − a0)z + a0

= −anzn+1 + (an − an−1)z
n + (an−1 − an−2)z

n−1 + · · ·+ (aλ+1 − aλ)z
λ+1

+ (aλ − aλ−1)z
λ + · · ·+ (a1 − a0)z + a0

= −zn[anz − an + an−1 − t]− tzn + (an−1 − an−2)z
n−1 + · · ·+ (aλ+1 − aλ)z

λ+1

+ (aλ − aλ−1)z
λ + · · ·+ (a1 − a0 + s)z − sz + a0

= −zn[anz − an + an−1 − t] + ψ(z)

where

ψ(z) = −tzn+(an−1−an−2)z
n−1+· · ·+(aλ+1−aλ)zλ+1+(aλ−aλ−1)z

λ+· · ·+(a1−a0+s)z−sz+a0.

For |z| = 1, we get

|ψ(z)| ≤ |t|+ |an−1 − an−2|+ · · ·+ |aλ+1 − aλ|+ |aλ − aλ−1|+ · · ·+ |a1 − a0 + s|+ |s|+ |a0|

= |t|+ an−2 − an−1 + · · ·+ aλ − aλ+1 + aλ − aλ−1 + · · ·+ a1 − a0 + s+ |s|+ |a0|

= |t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|.

It is clear that

|znψ(1/z)| ≤ |t| − an−1 + 2aλ − a0 + s+ |s|+ |a0| (1.3)
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on the unit circle. Since the function Ψ(z) = znψ(1/z) is analytic in |z| ≤ 1, the Inequality

(1.3) holds also inside the unit circle. That is,

|ψ(1/z)| ≤ |t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|
|z|n

for |z| ≤ 1. Replacing z by 1/z we get

|ψ(z)| ≤
[
|t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|

]
|z|n

for |z| ≥ 1.

Now for |z| ≥ 1, we have

|g(z)| ≥ |zn||anz − an + an−1 − t| − |ψ(z)|

≥ |zn||anz − an + an−1 − t| −
[
|t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|

]
|z|n

= |zn|
(
|anz − an + an−1 − t| −

[
|t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|

])
> 0,

which holds if and only if

|anz − an + an−1 − t| >
[
|t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|

]
;

that is,

∣∣∣z + an−1

an
−
(
1 +

t

an

)∣∣∣ > 1

|an|

[
|t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|

]
.

Hence, the zeros of p(z) are in the closed disk

∣∣∣z + an−1

an
−
(
1 +

t

an

)∣∣∣ ≤ 1

|an|

[
|t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|

]
.
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That completes the proof.

1.3 Number of Zeros in a specified Domain

By putting a restriction on the coefficients of a polynomial similar to that of the En-

eström-Kakeya theorem, Mohammad [95] proved the following on the number of zeros that

can be found in a specified disk.

Theorem 1.3.1. Let p(z) =
n∑

j=0

ajz
j be a polynomial with real coefficients satisfying 0 <

a0 ≤ a1 ≤ a2 ≤ a3 . . . ≤ an. Then the number of zeros of p(z) in |z| ≤ 1

2
does not exceed

1 +
1

log 2
log
(an
a0

)

In her dissertation work, Dewan [34] weakens the hypotheses of Theorem 1.3.1 and

proved the following two results for polynomials with complex coefficients .

Theorem 1.3.2. Let p(z) =
n∑

j=0

ajz
j be a polynomial such that | arg aj − β| ≤ α ≤ π

2
for

j ∈ {0, 1, 2, . . . , n} and for some real α and β, and 0 < |a0| ≤ |a1| ≤ |a2| ≤ |a3| . . . ≤ |an|.

Then the number of zeros of p(z) in |z| ≤ 1/2 does not exceed

1

log 2
log

|an|(cosα + sinα+ 1) + 2 sinα
∑n−1

j=0 |aj|
|a0|

.

For α = 0, Theorem 1.3.2 reduces to Theorem 1.3.1.

Theorem 1.3.3. Let p(z) =
n∑

j=0

ajz
j where Re(aj) = αj and Im(aj) = βj for all j and

0 < α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn. Then the number of zeros of p(z) in |z| ≤ 1/2 does not exceed

1 +
1

log 2
log

αn +
∑n

j=0 |βj|
|a0|

.
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Pukhta [105] generalized Theorems 1.3.2 and 1.3.3 by finding the number of zeros in

|z| ≤ δ for 0 < δ < 1 . The next theorem, due to Pukhta [105], deals with a monotonicity

condition on the moduli of the coefficients.

Theorem 1.3.4. Let p(z) =
n∑

j=0

ajz
j be a polynomial such that | arg aj − β| ≤ α ≤ π

2
for

j ∈ {0, 1, 2, . . . , n} and for some real α and β, and 0 < |a0| ≤ |a1| ≤ |a2| ≤ |a3| . . . ≤ |an|.

Then the number of zeros of p(z) in |z| ≤ δ, 0 < δ < 1, does not exceed

1

log 1/δ
log

|an|(cosα + sinα + 1) + 2 sinα
∑n−1

j=0 |aj|
|a0|

.

Pukhta [105] also gave a result which involved a monotonicity condition on the real

part of the coefficients. Though the proof presented by Pukhta is correct, there was a

slight typographical error in the statement of the result as it appeared in print. The correct

statement of the theorem is as follows.

Theorem 1.3.5. Let p(z) =
n∑

j=0

ajz
j where Re(aj) = αj and Im(aj) = βj for all j and

0 < α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn. Then the number of zeros of p(z) in |z| ≤ δ, 0 < δ < 1, does

not exceed

1

log 1/δ
log 2

[
αn +

∑n
j=0 |βj|

|a0|

]
.

In this section we generalize Theorem 1.3.5 and prove the following. It may be remarked

that for values of δ very close to one, the above theorems and Theorem 1.3.6 given below do

not give a satisfactory bound.

1.3.1 Statement and Proof of New Results

Theorem 1.3.6. Let p(z) =
n∑

j=0

ajz
j, a0 ̸= 0, be a polynomial of degree n with complex

coefficients. If Re(aj) = αj and Im(aj) = βj for all j. If for some real numbers t, and for

some λ ∈ {0, 1, 2, · · ·n}, t + αn ≤ αn−1 ≤ . . . ≤ αλ ≥ αλ−1 ≥ αλ−2 ≥ . . . ≥ α1 ≥ α0, then
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the number of zeros of p(z) in |z| ≤ δ, 0 < δ < 1, does not exceed

1

log 1/δ
log

M1

|a0|
,

where

M1 = |α0| − α0 + |αn| − αn + |t| − t+ 2αλ + 2
n∑

j=0

|βj|.

For t = 0 we get the following.

Corollary 1.3.7. Let p(z) =
n∑

j=0

ajz
j, a0 ̸= 0, be a polynomial of degree n with complex

coefficients. If Re(aj) = αj and Im(aj) = βj for all j. If for some λ ∈ {0, 1, 2, · · ·n},

αn ≤ αn−1 ≤ . . . ≤ αλ ≥ αλ−1 ≥ αλ−2 ≥ . . . ≥ α1 ≥ α0,

then the number of zeros of p(z) in |z| ≤ δ, 0 < δ < 1, does not exceed

1

log 1/δ
log

M1

|a0|
,

where

M1 = |α0| − α0 + |αn| − αn + 2αλ + 2
n∑

j=0

|βj|.

If λ = 0, then Corollary 1.3.7 reduces to

Corollary 1.3.8. Let p(z) =
n∑

j=0

ajz
j, a0 ̸= 0, be a polynomial of degree n with complex

coefficients. If Re(aj) = αj and Im(aj) = βj for all j. Suppose αn ≤ αn−1 ≤ . . . ≤ α0, then

the number of zeros of p(z) in |z| ≤ δ, 0 < δ < 1, does not exceed

1

log 1/δ
log

M1

|a0|
,
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where

M1 = |α0|+ α0 + |αn| − αn + 2
n∑

j=0

|βj|.

If, also, λ = n, then Corollary 1.3.7 reduces to

Corollary 1.3.9. Let p(z) =
n∑

j=0

ajz
j, a0 ̸= 0, be a polynomial of degree n with complex

coefficients. If Re(aj) = αj and Im(aj) = βj for all j. Suppose αn ≥ αn−1 ≥ αn−2 ≥ . . . ≥

α1 ≥ α0, then the number of zeros of p(z) in |z| ≤ δ, 0 < δ < 1, does not exceed

1

log 1/δ
log

M1

|a0|
,

where

M1 = |α0| − α0 + |αn|+ αn + 2
n∑

j=0

|βj|.

Suppose we assume α0 > 0 then Corollary 1.3.9 becomes Theorem 1.3.5. Instead of

proving Theorem 1.3.6, we prove the following more general result.

Theorem 1.3.10. Let p(z) =
n∑

j=0

ajz
j, a0 ̸= 0, be a polynomial of degree n with complex

coefficients. If Re(aj) = αj and Im(aj) = βj for all j and if for some real numbers t, s, and

for some λ ∈ {0, 1, 2, · · ·n}, t+αn ≤ αn−1 ≤ . . . ≤ αλ ≥ αλ−1 ≥ αλ−2 ≥ . . . ≥ α1 ≥ α0− s,

then the number of zeros of p in |z| ≤ δ, 0 < δ < 1, does not exceed

1

log 1/δ
log

M2

|a0|
,

where

M2 = |α0| − α0 + |αn| − αn + |t| − t+ |s|+ s+ 2αλ + 2
n∑

j=0

|βj|.

Clearly M2 is nonnegative.

For the proof of our result we shall make use of the following lemma (see [120, p. 171]).
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Lemma 1.3.11. Let F (z) be analytic in |z| ≤ R. Let |F (z)| ≤ M in the disk |z| ≤ R and

suppose F (0) ̸= 0. Then, for 0 < δ < 1, the number of zeros of F (z) in the disk |z| ≤ δR is

less than

1

log 1/δ
log

M

|F (0)|
.

Proof of Theorem 1.3.10 . Consider the polynomial

g(z) = (1− z)p(z)

= −anzn+1 +
n∑

j=1

(aj − aj−1)z
j + a0.

For |z| = 1,

|g(z)| ≤ |an|+
n∑

j=1

|aj − aj−1|+ |a0|

≤ |αn|+ |βn|+
n∑

j=1

|αj − αj−1|+
n∑

j=1

|βj − βj−1|+ |α0|+ |β0|

≤ |αn|+ |α0|+
n∑

j=1

|αj − αj−1|+ 2
n∑

j=0

|βj|

= |αn|+ |α0|+
n−2∑
j=2

|αj − αj−1|+ |αn−1 − αn−2|+ |αn − αn−1|+ |α1 − α0|+ 2
n∑

j=0

|βj|

≤ |α0| − α0 + |αn| − αn + αn−2 + α1 + |t| − t+ |s|+ s+
λ∑

j=2

|αj − αj−1|+
n−2∑

j=λ+1

|αj − αj−1|

+ 2
n∑

j=0

|βj|

= |α0| − α0 + |αn| − αn + |t| − t+ |s|+ s+ 2αλ + 2
n∑

j=0

|βj|

=M2.

Now g(z) is analytic in |z| ≤ 1, and |g(z)| ≤ M2 for |z| = 1. So by Lemma 1.3.11 and the

maximum modulus principle, the number of zeros of g (and hence of p) in |z| ≤ δ is less than
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or equal to

1

log 1/δ
log

M2

|a0|
.

Hence, the theorem follows.
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Chapter 2

Distribution of Zeros for Polynomials with no Monotonicity Condition on

Coefficients

The earliest result concerning the location of the zeros of a polynomial is probably due

to Gauss who incidental to his proofs of the Fundamental Theorem of Algebra showed in

1816 that a polynomial p(z) = a0 + a1z + a2z
2 + a3z

3 + · · · + anz
n, with all aj real, has no

zeros outside the circle |z| = R, where R = max
1≤j≤n

(n21/2|aj|)1/j.

However, in the case of arbitrary real or complex aj, Gauss [54] in 1849 showed that R

may be taken as the positive root of the equation: zn − 21/2(|a1|zn−1 + · · ·+ |an|) = 0.

As a further indication of Gauss’ interest in the location of the zeros of a polynomial, we

have his letter (see collected works of Gauss) to Schumacher dated April 2, 1833, in which

he tells of having written enough on this topic to fill several volumes, but the only results he

published are those in Gauss [54]. Even, his important result, Theorem 2.0.12 stated below

on the mechanical interpretation of the zeros of the derivative of a polynomial comes to us

only by a brief entry he made presumably in about 1836 in a notebook otherwise devoted to

astronomy.

Theorem 2.0.12. The zeros of the function F (z) =
k∑

j=1

mj

z − zj
, where all mj are real, are

the points of the equilibrium in the field of force due the system of k masses mj at the fixed

points zj repelling a unit movable mass at z according to the inverse distance law.

Around 1829, Cauchy [24] (also, see the book of Marden [87, Theorem 27.1, p. 122] )

derived more exact bounds for the moduli of the zeros of a polynomial than those given by

Gauss, by proving the following
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Theorem 2.0.13. Let p(z) = zn +
n−1∑
j=0

ajz
j, be a complex polynomial. Then all the zeros of

p(z) lie in the disc

{z : |z| ≤ η} ⊂ {z : |z| < 1 + A}, (2.1)

where A = max
0≤j≤n−1

|aj|, and η is the unique positive root of the real coefficient equation

zn − |an−1|zn−1 − |an−2|zn−2 − · · · − |a1|z − |a0| = 0 (2.2)

The result is best possible and the bound is attained when p(z) is the polynomial on the left

hand side of (2.2).

The proof follows easily from the inequality

|p(z)| ≥ |z|n − (|an−1||z|n−1 + |an−2||z|n−2 + · · ·+ |a1||z|+ |a0|) = 0, (2.3)

which can be derived easily on applying Triangle Inequality to p(z) = zn +
n−1∑
j=0

ajz
j.

2.1 Annuli containing all the Zeros of a Polynomial

If one applies the above Theorem 2.0.13 of Cauchy to the polynomial P (z) = znp(1/z)

and combine it with Theorem 2.0.13, one easily gets

Theorem 2.1.1 (Cauchy). All the zeros of the polynomial p(z) = a0 + a1z + · + anz
n,

an ̸= 0, lie in the annulus r1 ≤ |z| ≤ r2, where r1 is the unique positive root of the equation

|an|zn + |an−1|zn−1 + ·+ |a1|z − |a0| = 0, (2.4)

and r2 is the unique positive root of the equation

|a0|+ |a1|z + ·+ |an−1|zn−1 − |an|zn = 0. (2.5)
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Although the above result of Cauchy gives an annulus containing all the zeros of a

polynomial, it is implicit, in the sense, that in order to find the annulus containing all the

zeros of a polynomial, one needs to compute the zeros of two other polynomials.

In a bid to get an explicit bound, Datt and Govil [28] (see also Dewan [35]) proved

Theorem 2.1.2. Let p(z) = zn + an−1z
n−1 + ...+ a1z + a0, be a polynomial of degree n and

A = max
0≤j≤n−1

|aj|, as defined in Theorem 2.0.13. Then p(z) has all its zeros in the ring shaped

region

|a0|
2 (1 + A)n−1 (An+ 1)

≤ |z| ≤ 1 + λ0A, (2.6)

where λ0 is the unique positive root of the equation x = 1−1/ (1 + Ax)n in the interval (0, 1).

The upper bound 1 + λ0A in the above given region (2.6) is best possible and is attained for

the polynomial p(z) = zn − A (zn−1 + ...+ z + 1) .

In case one does not wish to solve the equation x = 1− 1/ (1 + Ax)n, then in order to

apply the above result of Datt and Govil [28], one can apply the following result also due to

Datt and Govil [28], which in every case clearly gives an improvement over Theorem 2.0.13

of Cauchy [24].

Theorem 2.1.3. Let p(z) = zn + an−1z
n−1 + ...+ a1z + a0, be a polynomial of degree n and

A = max
0≤j≤n−1

|aj|.

Then p(z) has all its zeros in the ring shaped region

|a0|
2 (1 + A)n−1 (An+ 1)

≤ |z| ≤ 1 +

(
1− 1

(1 + A)n

)
A. (2.7)

Since, always

(
1− 1

(1 + A)n

)
< 1, the above Theorem 2.1.3 in every situation sharpens

Theorem 2.0.13 due to Cauchy.
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Although, since the beginning, binomial coefficients defined by C(n, k) = n!
k!(n−k)!

,

0! = 1 have appeared in the derivation or as a part of closed expressions of bounds, the

Fibonacci’s numbers defined by F0 = 0, F1 = 1, and Fj = Fj−1 + Fj−2 for j ≥ 2 have

not appeared either in implicit bounds or explicit bounds for the moduli of the zeros. Diaz-

Barrero [39] proved the following result, which gives circular domains containing all the zeros

of a polynomial where binomial coefficients and Fibonacci’s numbers appear. He also gives

an example of a polynomial for which the above theorem gives a better bound than the

bound obtainable from Theorem 2.0.13 of Cauchy [24].

In the sequel, we will interchange between C(n, j) and Cn
j as it deems convenient. We

now state the result due to Diaz-Barrero [39].

Theorem 2.1.4. Let p(z) =
n∑

j=0

ajz
j (aj ̸= 0, 0 ≤ j ≤ n) be a complex monic polynomial.

Then all its zeros lie in the disk C1 = {z ∈ C : |z| ≤ r1} or C2 = {z ∈ C : |z| ≤ r2}, where

r1 = max
1≤k≤n

{
k

√
2n−1Cn+1

2

k2Cn
k

|an−k|

}
,

r2 = max
1≤k≤n

{
k

√
F3n

Cn
k 2

kFk

|an−k|

}
.

The proof of the above theorem depends on the identities

n∑
k=1

k2Cn
k = 2n−2n(n+ 1) (2.8)

and
n∑

k=1

Cn
k 2

kFk = F3n, (2.9)

where Fj are the Fibonacci’s numbers, and Cn
k the binomial coefficients.

The following result, which provides an annulus region containing all the zeros of a

polynomial is also due to Diaz-Barrero [40].
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Theorem 2.1.5. Let p(z) =
n∑

j=0

ajz
j (aj ̸= 0, 0 ≤ j ≤ n) be a nonconstant complex

polynomial. Then all its zeros lie in the annulus C = {z ∈ C : r1 ≤ |z| ≤ r2}, where

r1 =
3

2
min
1≤j≤n

{2nFjC
n
j

F4n

∣∣∣a0
aj

∣∣∣}1/j

,

r2 =
2

3
max
1≤j≤n

{ F4n

2nFjCn
j

∣∣∣an−j

an

∣∣∣}1/j

.

Here Fj being the Fibonacci’s numbers, and Cn
j the binomial coefficients.

The following result of Kim [79], whose proof depends on the use of the identity

n∑
k=0

Cn
k = 2n − 1 (2.10)

also provides an annulus containing all the zeros of a polynomial.

Theorem 2.1.6. Let p(z) =
n∑

k=0

akz
k (ak ̸= 0, 0 ≤ k ≤ n) be a nonconstant polynomial with

complex coefficients. Then all the zeros of p(z) lie in the annulus A = {z : r1 ≤ |z| ≤ r2},

where

r1 = min
1≤k≤n

{
Cn

k

2n − 1

∣∣∣∣a0ak
∣∣∣∣}1/k

, r2 = max
1≤k≤n

{
2n − 1

Cn
k

∣∣∣∣an−k

an

∣∣∣∣}1/k

. (2.11)

Here again, as usual, Cn
k denote the binomial coefficients.

Theorem 2.0.13 of Cauchy has also been refined by Sun and Hsieh [118], who proved

Theorem 2.1.7. All the zeros of the polynomial p(z) = zn +
n−1∑
j=0

ajz
j lie in the disks

{z : |z| < η} ⊂ {z : |z| < 1 + δ3} ⊆ {z : |z| < 1 + A} ,

where δ3 is the unique positive root of the equation,

Q3(x) ≡ x3 + (2− |an−1|)x2 + (1− |an−1| − |an−2|)x− A = 0, (2.12)
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and

A = max
0≤j≤n−1

|aj|.

Using the method similar to that of Sun and Hsieh [118], Jain [73] refined the above

result of Sun and Hsieh [118], and proved

Theorem 2.1.8. All the zeros of the polynomial p(z) = zn +
n−1∑
j=0

ajz
j lie in the disks

{z : |z| < η} ⊂ {z : |z| < 1 + δ4} ⊆ {z : |z| < 1 + δ3} ⊆ {z : |z| < 1 + A} ,

where δ4 is the unique positive root of the equation,

Q4(x) ≡ x4 + (3− |an−1|)x3 + (3− 2|an−1| − |an−2|) x2

+ (1− |an−1| − |an−2| − |an−3|)x− A = 0, (2.13)

and A = max
0≤j≤n−1

|aj|, is same as in Theorem 2.1.7.

In 2009, Affane-Aji, Agarwal, and Govil [2] proved the following result which not only

includes the above results of Cauchy [24], Sun and Hsieh [118], and Jain [73] as special

cases but also provides a tool for obtaining sharper bounds for the location of the zeros of a

polynomial.

Theorem 2.1.9. All the zeros of the polynomial p(z) = zn +
n−1∑
j=0

ajz
j lie in the disks

{z : |z| < 1 + δk} ⊆ {z : |z| < 1 + δk−1} · · ·

⊆ {z : |z| < 1 + δ1} ⊆ {z : |z| < 1 + A} ,

where δk is the unique positive root of the kth degree equation
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Qk(x) ≡ xk +
k∑

ν=2

[
Ck−1

k−ν −
ν−1∑
j=1

Ck−j−1
k−ν |an−j|

]
xk+1−ν − A = 0. (2.14)

Here

A = max
0≤j≤n−1

|aj|, aj = 0 if j < 0,

and for k, a positive integer, Cm
k are the binomial coefficients.

As is easy to verify, for k = 1 the above theorem reduces to Theorem 2.0.13 due to

Cauchy [24], for k = 3 to the result of Sun and Hsieh [118], and for k = 4 it reduces to the

result due to Jain [73]. Further, by choosing k sufficiently large we can make δk in the bound

to our desired accuracy.

Note that by combining the above Theorem 2.1.9 with Theorem 2.1.3 of Datt and Govil

[28] one can easily obtain the following result, which is a refinement of the above Theorem

2.1.9.

Theorem 2.1.10. All the zeros of the polynomial p(z) = zn +
n−1∑
j=0

ajz
j lie in the annulus

|a0|
2(1 + A)n−1(nA+ 1)

≤ |z| ≤ {z : |z| < 1 + δk} ⊆ {z : |z| < 1 + δk−1} · · ·

⊆ {z : |z| < 1 + δ1} ⊆ {z : |z| < 1 + A} ,

where δk is as defined in Theorem 2.1.9, and A = max
0≤j≤n−1

|aj|.

Similarly, one can obtain a refinement of Theorem 2.1.9 by combining Theorem 2.1.9

with Theorem 2.1.5 of Diaz-Barrero [40].

Later in 2010, Affane-Aji, Biaz, and Govil [3] proved the following refinement of Theorem

2.1.9, and constructed examples to show that for some polynomials their theorem, stated

below, gives much better bounds than obtainable from Theorem 2.1.10. More precisely, their

result is
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Theorem 2.1.11. All the zeros of the polynomial p(z) = zn +
n−1∑
j=0

ajz
j lie in the annulus

R1 ≤ |z| ≤ {z : |z| < 1 + δk} ⊆ {z : |z| < 1 + δk−1} · · ·

⊆ {z : |z| < 1 + δ1} ⊆ {z : |z| < 1 + A} ,

where δk is as defined in Theorem 2.1.9, and

R1 =
−R2|a1|(M − |a0|) +

√
4R2M3|a0|+ {R2|a1|(M − |a0|)}2

2M2
. (2.15)

Here M = Rn+1+(A−1)Rn−AR
(R−1)

with R = 1 + δk and A = max
0≤j≤n−1

|aj|.

Note that R = 1 + δk > 1, so for every positive integer k, we have M > 0 and R > 0.

It is obvious that, in general, Theorem 2.1.11 sharpens Theorem 2.1.9.

In the same paper Affane-Aji, Biaz, and Govil [3] prove some more refinements of

Theorem 2.1.9, which in some cases gives bounds that are sharper than obtainable from

Theorems 2.1.3, 2.1.5, and 2.1.10. This they have shown by constructing some examples of

polynomials.

The following two results by Diaz-Barrero and Egozcue [41], also provide annuli con-

taining all the zeros of a polynomial.

Theorem 2.1.12. Let p(z) =
n∑

k=0

akz
k (ak ̸= 0, 1 ≤ k ≤ n) be a non-constant complex poly-

nomial. Then for j ≥ 2, all the zeros of p(z) lie in the annulus C = {z : r1 ≤ |z| ≤ r2} ,

where

r1 = min
1≤k≤n

{
C(n, k)AkB

k
j (bBj−1)

n−k

Ajn

∣∣∣∣a0ak
∣∣∣∣
}1/k

(2.16)

and

r2 = max
1≤k≤n

{
Ajn

C(n, k)AkBk
j (bBj−1)n−k

Ajn

∣∣∣∣an−k

an

∣∣∣∣
}1/k

. (2.17)
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Here, Bn =
n−1∑
k=0

rksn−1−k and An = crn + dsn, where c, d are real constants and r,s are the

roots of the equation x2 − ax − b = 0 in which a,b are strictly positive real numbers. For

j ≥ 2,
n∑

k=0

C(n, k)(bBj−1)
n−kBk

jAk = Ajn. Furthermore, C(n, k) is the binomial coefficient.

Theorem 2.1.13. Let p(z) =
n∑

k=0

akz
k (ak ̸= 0, 1 ≤ k ≤ n) be a non-constant poly-

nomial with complex coefficients. Then, all its zeros lie in the ring shaped region C =

{z : r1 ≤ |z| ≤ r2} , where

r1 = min
1≤k≤n

{
2kPkC(n, k)

P2n

∣∣∣∣a0ak
∣∣∣∣}1/k

(2.18)

and

r2 = max
1≤k≤n

{
P2n

2kPkC(n, k)

∣∣∣∣an−k

an

∣∣∣∣}1/k

. (2.19)

Here Pk is the kth Pell number, namely, P0 = 0, P1 = 1 and for k ≥ 2, Pk = 2Pk−1 + Pk−2.

Furthermore, C(n, k) = n!
k!(n−k)!

are the binomial coefficients.

Recently, Dalal and Govil [26] unified the above results by proving the following which

as special case includes several of the above results, namely : Theorems 2.1.4, 2.1.5, 2.1.6,

2.1.12, and 2.1.13.

Theorem 2.1.14. Let Ak > 0 for 1 ≤ k ≤ n, and be such that
n∑

k=1

Ak = 1. If p(z) =

n∑
k=0

akz
k (ak ̸= 0, 1 ≤ k ≤ n) is a non-constant polynomial with complex coefficients, then all

the zeros of p(z) lie in the annulus C = {z : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{
Ak

∣∣∣∣a0ak
∣∣∣∣}1/k

(2.20)

and

r2 = max
1≤k≤n

{
1

Ak

∣∣∣∣an−k

an

∣∣∣∣}1/k

. (2.21)
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The above theorem, by appropriate choice of the numbers Ak > 0 for 1 ≤ k ≤ n,

includes as special case Theorems 2.1.4, 2.1.5, 2.1.6, 2.1.12 and 2.1.13, and this has been

shown in the Table 1 in the paper of Dalal and Govil [26, p. 9612].

2.1.1 Statement of some New Results

In this section, by using Theorem 2.1.14 we obtain the following results stated below

that provide annuli containing all the zeros of a polynomial. Also, we show, by means of

examples, that for some polynomials our results sharpen some of the known results in this

direction.

Our first result connects the nth−Bell number, Bn, which counts the partitions of a

set with n elements and the Stirling number (of the second kind) with parameters n and

k, denoted by S(n, k), that enumerates the number of partitions of a set with n elements

consisting k disjoint, nonempty sets. Here, Bn is defined recursively as: B0 = 1, Bn+1 =
n∑

k=0

C(n, k)Bk, for n ≥ 0 and S(n, k) =
1

k!

k∑
j=0

(−1)jC(k, j)(k − j)n.

Theorem 2.1.15. Let p(z) =
n∑

k=0

akz
k be a non-constant complex polynomial of degree n,

with ak ̸= 0, 1 ≤ k ≤ n. Then all the zeros of p(z) lie in the annulus C = {z : r1 ≤ |z| ≤ r2},

where

r1 = min
1≤k≤n

{
S(n, k)

Bn

∣∣∣∣a0ak
∣∣∣∣}1/k

(2.22)

and

r2 = max
1≤k≤n

{
Bn

S(n, k)

∣∣∣∣an−k

an

∣∣∣∣}1/k

. (2.23)

Theorem 2.1.16. Let p(z) =
n∑

k=0

akz
k be a non-constant complex polynomial of degree n,

with ak ̸= 0, 1 ≤ k ≤ n. Then all the zeros of p(z) lie in the annulus C = {z : r1 ≤ |z| ≤ r2},

where

r1 = min
1≤k≤n

{
C(2n− k, k)Cn−k

Sn − Cn

∣∣∣∣a0ak
∣∣∣∣}1/k

(2.24)
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and

r2 = max
1≤k≤n

{
Sn − Cn

C(2n− k, k)Cn−k

∣∣∣∣an−k

an

∣∣∣∣}1/k

, (2.25)

where Cn =
C(2n, n)

n+ 1
is the nth−Catalan number and Sn the nth−Schröder number given

recursively by S0 = 1, Sn = Sn−1 +
n−1∑
j=0

Sj Sn−1−j, for n ≥ 1.

Theorem 2.1.17. Let p(z) =
n∑

k=0

akz
k be a non-constant complex polynomial of degree n,

with ak ̸= 0, 1 ≤ k ≤ n. Then all the zeros of p(z) lie in the annulus C = {z : r1 ≤ |z| ≤ r2},

where

r1 = min
1≤k≤n

{
C(n, k)Mk

Cn+1 − 1

∣∣∣∣a0ak
∣∣∣∣}1/k

(2.26)

and

r2 = max
1≤k≤n

{
Cn+1 − 1

C(n, k)Mk

∣∣∣∣an−k

an

∣∣∣∣}1/k

, (2.27)

where Cn is the same as in Theorem 2.1.16 and Mk is the kth−Motzkin number defined

recursively as

M0 =M1 =M−1 = 1; Mk+1 =
2k + 3

k + 3
Mk +

3k

k + 3
Mk−1, k ≥ 1.

Theorem 2.1.18. Let p(z) =
n∑

k=0

akz
k be a non-constant complex polynomial of degree n,

with ak ̸= 0, 1 ≤ k ≤ n. Then all the zeros of p(z) lie in the annulus C = {z : r1 ≤ |z| ≤ r2},

where

r1 = min
1≤k≤n

{
C(n, k)2

C(2n, n)− 1

∣∣∣∣a0ak
∣∣∣∣}1/k

(2.28)

and

r2 = max
1≤k≤n

{
C(2n, n)− 1

C(n, k)2

∣∣∣∣an−k

an

∣∣∣∣}1/k

. (2.29)

Theorem 2.1.19. Let p(z) =
n∑

k=0

akz
k be a non-constant complex polynomial of degree n,

with ak ̸= 0, 1 ≤ k ≤ n. Then all the zeros of p(z) lie in the annulus C = {z : r1 ≤ |z| ≤ r2},
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where

r1 = min
1≤k≤n

{
Fk

Fn+2 − 1

∣∣∣∣a0ak
∣∣∣∣}1/k

(2.30)

and

r2 = max
1≤k≤n

{
Fn+2 − 1

Fk

∣∣∣∣an−k

an

∣∣∣∣}1/k

, (2.31)

where Fn denotes the nth−Fibonacci number.

Theorem 2.1.20. Let p(z) =
n∑

k=0

akz
k be a non-constant complex polynomial of degree n,

with ak ̸= 0, 1 ≤ k ≤ n. Then all the zeros of p(z) lie in the annulus C = {z : r1 ≤ |z| ≤ r2},

where

r1 = min
1≤k≤n

{
k C(n, k)

n2n−1

∣∣∣∣a0ak
∣∣∣∣}1/k

(2.32)

and

r2 = max
1≤k≤n

{
n2n−1

k C(n, k)

∣∣∣∣an−k

an

∣∣∣∣}1/k

, (2.33)

For the proofs of our results, we will need the following lemmas. For the proof of the

first lemma, see [69].

Lemma 2.1.21. In combinatorics,it is known that for any n ∈ N, Bn and S(n, k) are

connected as follows:
n∑

k=1

S(n, k) = Bn.

Lemma 2.1.22. If Mn is the nth− Motzkin number and Cn the nth−Catalan number, then

for n ≥ 0,

C0 = 1;
n∑

k=0

C(n, k)Mk = Cn+1.

For the proof of Lemma 2.1.22 see [16, p. 99] and [33].

Lemma 2.1.23. If Sn is the nth−Schröder number, then for n ≥ 0,

n∑
k=0

C(2n− k, k)Cn−k = Sn.
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See [32, p. 2782] for the proof Lemma 2.1.23.

Lemma 2.1.24. For n ≥ 0,
n∑

k=0

C(n− k, k) = Fn+1,

where Fn is the nth−Fibonacci number.

Proof of Lemma 2.1.24 : For n = 0 and n = 1, we have that F1 = 1 and F2 = 1 + 0 = 1,

respectively. Now , for n ≥ 2, assume that

n−1∑
k=0

C(n− 1− k, k) = Fn, and
n−2∑
k=0

C(n− 2− k, k) = Fn−1.

So by the Pascal recursion,

C(n− k, k) = C(n− k − 1, k − 1) + C(n− k − 1, k),

we have therefore (by the induction hypothesis, Fibonacci recursion, and C(n, k) = 0, when

either k > n or k < 0.)

n∑
k=0

C(n− k, k) =
n∑

k=0

C(n− k − 1, k − 1) +
n∑

k=0

C(n− k − 1, k)

=
n−1∑
k=1

C(n− k − 1, k − 1) +
n−1∑
k=0

C(n− k − 1, k)

=
n−2∑
k=0

C(n− k − 2, k) +
n−1∑
k=0

C(n− k − 1, k)

= Fn−1 + Fn

= Fn+1.

Lemma 2.1.25. Let n, k ∈ N, with n ≥ k. Then k C(n, k) = n C(n− 1, k − 1).
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Proof of Lemma 2.1.25 :

k C(n, k) = k
n!

(n− k)!k!

= k
n(n− 1)!

k(n− k)!(k − 1)!

= n
(n− 1)!

(n− k)!(k − 1)!

= n C(n− 1, k − 1).

Lemma 2.1.26. For n ≥ 0,
n∑

k=1

k C(n, k) = n2n−1.

Proof of Lemma 2.1.26 : From Lemma 2.1.25 we obtain that

n∑
k=1

k C(n, k) =
n∑

k=1

n C(n− 1, k − 1)

= n
n∑

k=1

C(n− 1, k − 1)

= n
n−1∑
k=0

C(n− 1, k)

= n2n−1.

Lemma 2.1.27. Let n,m and r be nonnegative integers. Then

r∑
k=0

C(m, k) C(n, r − k) = C(n+m, r).

32



Proof of Lemma 2.1.27 : In general, the product of two polynomials with degrees m and n,

respectively, is given by

(
m∑
i=0

aix
i

)(
n∑

j=0

bjx
j

)
=

m+n∑
r=0

(
r∑

k=0

akbr−k

)
xr;

where we use the convention that ai = 0 for all integers i > m and bj = 0 for all integers

j > n. Note by the binomial theorem,

(1 + x)m+n =
m+n∑
r=0

C(m+ n, r)xr.

Using the binomial theorem also for the exponents m and n, and then the above formula

for the product of polynomials, we obtain

m+n∑
r=0

C(m+ n, r)xr = (1 + x)m+n

= (1 + x)m(1 + x)n

=

(
m∑
i=0

C(m, i)xi

)(
n∑

j=0

C(n, j)xj

)

=
m+n∑
r=0

(
r∑

k=0

C(m, k)C(n, r − k)

)
xr,

where the above convention for the coefficients of the polynomials agrees with the definition

of the binomial coefficients, because both give zero for all i > m and j > n, respectively.

By comparing coefficients of xr, the identity follows for all integers with 0 ≤ r ≤ m+n.

For larger integer r, both sides of the identity are zeros due to the definition of the binomial

coefficients.
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Lemma 2.1.28. Let n ≥ 0. Then

n∑
k=0

C(n, k)2 = C(2n, n).

The proof of Lemma 2.1.28 follows easily by setting m = r = n in Lemma 2.1.27.

Lemma 2.1.29. Let n ≥ 1. Then

n∑
k=1

Fk = Fn+2 − 1.

The proof of the above lemma follows by mathematical induction.

2.1.2 Proofs of Theorems

Proof of Theorem 2.1.15. From Lemma 2.1.21, we have that

n∑
k=1

S(n, k)

Bn

= 1.

If we take Ak =
S(n, k)

Bn

, then Ak > 0 and
n∑

k=1

Ak = 1, and hence by applying Theorem 2.1.14

for this set of values of Ak we get our desired result.

Proof of Theorem 2.1.16. From Lemma 2.1.23, we have that

n∑
k=1

C(2n− k, k)Cn−k

Sn − Cn

= 1.

If we take Ak =
C(2n−k,k)Cn−k

Sn−Cn
, then Ak > 0 and

n∑
k=1

Ak = 1, and hence by applying Theorem

2.1.14 for this set of values of Ak we get the required annulus and thus the proof of Theorem

2.1.16 is complete.
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Proof of Theorem 2.1.17. From Lemma 2.1.22, we have that

n∑
k=1

C(n, k)Mk

Cn+1 − 1
= 1.

If we take Ak = C(n,k)Mk

Cn+1−1
, then Ak > 0 and

n∑
k=1

Ak = 1, and hence by applying Theorem

2.1.14 for this set of values of Ak we get the desired annulus, and thus the proof of Theorem

2.1.17 is complete.

Proof of Theorem 2.1.18. From Lemma 2.1.28, we have that

n∑
k=1

C(n, k)2

C(2n, n)− 1
= 1.

If we take Ak = C(n,k)2

C(2n,n)−1
, then Ak > 0 and

n∑
k=1

Ak = 1, and hence by applying Theorem

2.1.14 for this set of values of Ak we get the desired annulus given in Theorem 2.1.18.

Proof of Theorem 2.1.19. From Lemma 2.1.29, we have that

n∑
k=1

Fk

Fn+2 − 1
= 1.

If we take Ak =
Fk

Fn+2−1
, then Ak > 0 and

n∑
k=1

Ak = 1, and hence by applying Theorem 2.1.14

for this set of values of Ak we get the desired annulus given be the radii in Theorem 2.1.19.

We now give examples of polynomials for which our results can compare favorably with

the already known theorems as stated above.

Example 2.1.30. Consider the polynomial p(z) = z3 + 0.1z2 + 0.1z + 0.7.
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Table 2.1: Computational Analysis I

Theorems r1 r2 Area of the annulus
2.1.5 0.6402 1.2312 3.4730
2.1.6 0.4641 1.6984 8.382
2.1.15 0.519249 1.51829 6.39502
2.1.17 0.59943 1.31521 4.305399
2.1.19 0.7047 1.1187 2.37155
2.1.20 0.55934 1.4095 5.25812

As one can observe from Table 2.1, our Theorem 2.1.19 is giving a significantly better

bound than obtainable from the known Theorems 2.1.5 and 2.1.6. In fact, the area of the

annulus containing all the zeros of the polynomial p(z) obtained by Theorem 2.1.19 is about

2.37155, which is about 68.29% of the area of the annulus obtained by Theorem 2.1.5 and

about 28.29% of the area of the annulus obtained by Theorem 2.1.6.

Example 2.1.31. Consider the polynomial p(z) = z5+0.06z4+0.29z3+0.29z2+0.29z+0.001.

Table 2.2: Computational Analysis II

Theorems r1 r2 Area of the annulus
2.1.5 0.00012233 1.6912 8.986
2.1.6 0.00055617 1.158 4.2125
2.1.15 0.51925 1.51829 6.3950
2.1.17 0.000132 1.5720 7.76345
2.1.18 0.000343 1.3063 5.36063
2.1.20 0.0010776 1.07703 3.6442

It is clear from Table 2.2 that our Theorem 2.1.20 gives a better lower and upper bound

for the polynomial p(z), hence, a smaller area of the annulus containing all the zeros of the

polynomial p(z). Comparing the area obtained by Theorem 2.1.20, one observe that this

area is about 40.55% of the area obtained by Theorem 2.1.5 and 86.51% of the area of the

annulus obtained by Theorem 2.1.6.
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2.2 Landau type results concerning Location of Zeros

2.2.1 Location of Zeros of Trinomials and Quadrinomials

Quite a few results giving bound for all the zeros of a polynomial p(z) =
n∑

j=0

ajz
j were

expressed (see [87, 110]) as functions of all the coeffiicients. It seems natural to ask to find a

circle of the smallest radius that contains atleast one zero of the polynomial. Landau first,

raised this question in connection with his study of the Picard’s Theorem. In [84] and [85],

Landau proved that every trinomial

anz
n + a1z + a0, a1an ̸= 0, n ≥ 2,

has at least one zero in

|z| ≤ 2
∣∣∣a0
a1

∣∣∣ (2.34)

and every quadrinomial

anz
n + amz

m + a1z + a0, a1aman ̸= 0, 0 ≤ m < n,

has at least one zero in

|z| ≤ 17

3

∣∣∣a0
a1

∣∣∣. (2.35)

For every n ≥ 2, as a refinement of (2.34) the trinomial

anz
n + a1z + a0, a1an ̸= 0,

is well known [46] to have a zero in both the regions
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∣∣∣z + a0
a1

∣∣∣ ≤ ∣∣∣a0
a1

∣∣∣ and
∣∣∣z + a0

a1

∣∣∣ ≥ ∣∣∣a0
a1

∣∣∣. (2.36)

Joyal, Labelle and Rahman [75] gave an alternative proof of this fact by using Gauss-

Lucas theorem. In literature, there exist several results about zeros distribution of trinomial

equations, for example see [4] and [47]. In 2013, Aziz and Rather [12] proved certain results

for quadrinomials and gave a simpler proof of (2.36), independent of Gauss-Lucas theorem.

Here are their results

Theorem 2.2.1. At least one zero of the quadrinomial

anz
n + amz

m + a1z + a0, a1aman ̸= 0, 2 ≤ m < n,

lie in

|z| ≤ 2n

n− 1

∣∣∣a0
a1

∣∣∣ ≤ 3
∣∣∣a0
a1

∣∣∣. (2.37)

Applying this result to the polynomial znp(1/z) where p(z) = a0+apz
p+an−1z

n−1+zn,

they obtained the following:

Corollary 2.2.2. At least one zero of the quadrinomial

a0 + apz
p + an−1z

n−1 + zn, a0apan−1 ̸= 0, 1 ≤ p ≤ n− 2,

lie in

|z| ≥ n− 1

2n
|an−1|. (2.38)

Theorem 2.2.3. For every n ≥ 3, the quadrinomial

anz
n + a2z

2 + a1z + a0, a2an ̸= 0,
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has at least one zero in both

|z| ≤

[
n

n− 2

∣∣∣a0
a2

∣∣∣]1/2 (2.39)

and ∣∣∣z + a1
2a2

∣∣∣ ≥ ∣∣∣ a1
2a2

∣∣∣. (2.40)

We now present some new results in this direction.

2.2.2 Statement of some New Results

Theorem 2.2.4. At least one zero of the polynomial

a0 + a1z + a2z
2 + amz

m + anz
n, anama2a1 ̸= 0, 3 ≤ m < n,

lie in the circle

|z| ≤
√

nm

(n− 2)(m− 2)

∣∣∣a0
a2

∣∣∣.
Theorem 2.2.5. At least one zero of the polynomial

a0 + a1z + a2z
2 + amz

m + anz
n, anama2a1 ̸= 0, 3 ≤ m < n,

lie in the circle

|z| ≤ 2nm

(n− 1)(m− 1)

∣∣∣a0
a1

∣∣∣.
2.2.3 Proofs of the Theorems

Proof of Theorem 2.2.4. If a0 = 0, then nothing to prove. Suppose now that a0 ̸= 0,

then write

S(z) = a0 + a1z + a2z
2 + amz

m + anz
n.
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Suppose all the zeros of S(z) lie in

|z| >
√

nm

(n− 2)(m− 2)

∣∣∣a0
a2

∣∣∣.
Then all the zeros of

T (z) = znS(1/z) = a0z
n + a1z

n−1 + a2z
n−2 + amz

n−m + an

lie in

|z| ≤

√
(n− 2)(m− 2)

nm

∣∣∣a2
a0

∣∣∣.
By Gauss - Lucas theorem, all the zeros of the derived polynomial

T ′(z) = a0nz
n−1 + a1(n− 1)zn−2 + a2(n− 2)zn−3 + am(n−m)zn−m−1

lie in

|z| ≤

√
(n− 2)(m− 2)

nm

∣∣∣a2
a0

∣∣∣.
This shows that all the zeros of the polynomial

zn−1T ′(1/z) = am(n−m)zm + a2(n− 2)z2 + a1(n− 1)z + a0n

lie in the region

|z| >
√

nm

(n− 2)(m− 2)

∣∣∣a0
a2

∣∣∣.
But this is a contradiction because by Theorem 2.2.3, zn−1T ′(1/z) has at least one zero

in

|z| ≤
√

nm

(n− 2)(m− 2)

∣∣∣a0
a2

∣∣∣.
Thus, the polynomial S(z) has at least one zero in the prescribed circle.
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Proof of Theorem 2.2.5. If a0 = 0, then nothing to prove. Suppose now that a0 ̸= 0, and

S(z) = a0 + a1z + a2z
2 + amz

m + anz
n, has all its zeros lying in

|z| > 2nm

(n− 1)(m− 1)

∣∣∣a0
a1

∣∣∣.
Then all the zeros of

T (z) = znS(1/z) = a0z
n + a1z

n−1 + a2z
n−2 + amz

n−m + an

lie in

|z| ≤ (n− 1)(m− 1)

2nm

∣∣∣a1
a0

∣∣∣.
By Gauss - Lucas theorem, all the zeros of the derived polynomial

T ′(z) = a0nz
n−1 + a1(n− 1)zn−2 + a2(n− 2)zn−3 + am(n−m)zn−m−1

lie in

|z| ≤ (n− 1)(m− 1)

2nm

∣∣∣a1
a0

∣∣∣.
This shows that all the zeos of the polynomial

zn−1T ′(1/z) = am(n−m)zm + a2(n− 2)z2 + a1(n− 1)z + a0n

lie in the region

|z| > 2nm

(n− 1)(m− 1)

∣∣∣a0
a1

∣∣∣.
But this is a contradiction because by Theorem 2.2.1, zn−1T ′(1/z) has at least one zero in

|z| ≤ 2nm

(n− 1)(m− 1)

∣∣∣a0
a1

∣∣∣.
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Thus, the polynomial S(z) has at least one zero in the prescribed circle.

We present here an example to illustrate the use of our result.

Example 2.2.6. Consider the polynomial

p(z) = z5 − z3 + 2z2 − z + 1.

Here m = 3, and n = 5. Using Matlab, we obtain the zeros of p(z), namely: z1 = −1.6663,

z2 = 0.7908+0.6846i, z3 = 0.7908−0.6846i, z4 = 0.0424+0.7394i, and z5 = 0.0424−0.7394i

which lie in 0.7407 ≤ |z| ≤ 1.6663 and at least one zero lie in |z| ≤ 0.7407. Now by Theorem

2.2.4, we see that at least one zero of the polynomial p(z) lie in the disk |z| ≤
√
5/2. Also

by Theorem 2.2.5, the disks |z| ≤ 3.75 contains at least one zero of the polynomial.
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Chapter 3

Growth of Polynomials

3.1 Introduction

Several years after chemist Mendeleev invented the periodic table of elements he made

a study of the specific gravity of a solution as a function of the percentage of the dissolved

substance, and for this he needed an answer to the following question.

Question: If p(x) is a quadratic polynomial with real coefficients and |p(x)| ≤ 1 on

−1 ≤ x ≤ 1, then how large can |p′(x)| be on −1 ≤ x ≤ 1 ?

To see how an answer to the above question of Mendeleev helped him in the solution of

the problem in Chemistry he was interested in, we refer to the paper of Boas [21].

Note that, even though Mendeleev was a chemist, he was able to show that for a

quadratic polynomial p(x) with real coefficients and |p(x)| ≤ 1 on −1 ≤ x ≤ 1, then

|p′(x)| ≤ 4 for −1 ≤ x ≤ 1. This estimate is best possible in the sense that there is a

quadratic polynomial p(x) = 1− 2x2 for which |p(x)| ≤ 1 on [−1, 1] but |p′(±1)| = 4. In the

general case when p(x) is a polynomial of degree n with real coefficients the problem was

solved by A. A. Markov [89], who proved the following result which is known as Markov’s

Theorem (see also Pinkus and de Boor [102]).

Theorem 3.1.1. Let p(x) =
n∑

j=0

ajx
j be an algebraic polynomial of degree n such that

|p(x)| ≤ 1 for x ∈ [−1, 1]. Then

|p′(x)| ≤ n2, x ∈ [−1, 1] (3.1)
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The inequality is sharp. Equality holds only if p(x) = αTn(x), where α is a complex number

such that |α| = 1, and

Tn(x) = cos(n cos−1 x) = 2n−1

n∏
j=1

[
x− cos((j − 1

2
)π/n)

]

is the nth degree Tchebycheff polynomial of the first kind. It can be easily verified that

|Tn(x)| ≤ 1 for x ∈ [−1, 1] and |T ′
n(1)| = n2.

It would be natural to go on and ask for an upper bound for |p(k)(x)| where 1 ≤ k ≤ n.

Iterating Markov’s Theorem yields |p(k)(x)| ≤ n2kL if |p(x)| ≤ L. However, this inequality is

not sharp; the best possible inequality was found by Markov’s brother, V. A. Markov [90],

who proved the following

Theorem 3.1.2. Let p(x) =
n∑

j=0

ajx
j be an algebraic polynomial of degree n with real coef-

ficients such that |p(x)| ≤ 1 for x ∈ [−1, 1]. Then

|p(k)(x)| ≤ (n2 − 12)(n2 − 22) · · · (n2 − (k − 1)2)

1 · 3 · · · (2k − 1)
, x ∈ [−1, 1]. (3.2)

The inequality is sharp, and the equality holds again only for p(x) = Tn(x), where Tn(x) =

cos(n cos−1 x) is the Chebyschev polynomial of degree n.

Several years later, around 1926, Serge Bernstein needed the analogue of the above

result Theorem 3.1.1 of A. A. Markov for polynomials in the complex domain and proved

the following, which in the literature is known as Bernstein’s Inequality.

Theorem 3.1.3. Let p(z) =
n∑

j=0

ajz
j be a complex polynomial of degree at most n. Then

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (3.3)

The inequality is best possible and equality holds only for polynomials of the form p(z) =

αzn, α ̸= 0 being a complex number.
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The above theorem is, in fact, a special case of a more general result due to M. Riesz

[112] for trigonometric polynomials.

For the sake of brevity, throughout in this chapter, we shall be using the following

notations.

Definition 3.1.4. Let p(z) =
n∑

j=0

ajz
j be a complex polynomial of degree at most n. We will

denote

M(p, r) := max
|z|=r

|p(z)| , r > 0,

||p|| := max
|z|=1

|p(z)| ,

and

D(0, K) := {z : |z| < K}, K > 0.

In 1945, S. Bernstein initiated and observed the following result, which in fact is a simple

consequence of the maximum modulus principle (see [97] or [103, p. 137]). This inequality

is also known as the Bernstein’s inequality.

Theorem 3.1.5. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n. Then for R ≥ 1,

M(p,R) ≤ Rn||p||. (3.4)

Equality holds for p(z) = αzn, α being a complex number.

If one applies the above inequality to the polynomial P (z) = znp(1/z) and use maximum

modulus principle, one easily gets

Theorem 3.1.6. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n. Then for

0 < r ≤ 1,

M(p, r) ≥ rn||p||. (3.5)

Equality holds for p(z) = αzn, α being a complex number.
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The above result is due to Varga [122] who attributes it to E. H. Zarantonello.

By use of the transformation P (z) = znp(1/z) and the maximum modulus principle it is

not difficult to see that Theorem 3.1.5 and Theorem 3.1.6 can be obtained from each other.

The fact that Theorem 3.1.3 can be obtained from Theorem 3.1.5 was proved by Bernstein

himself. However, it was not known if Theorem 3.1.5 can also be obtained from Theorem

3.1.3, and this has been shown by Govil, Qazi and Rahman [67]. Thus all the above three

Theorems 3.1.3, 3.1.5 and 3.1.6 are equivalent in the sense that anyone can be obtained from

any of the others.

For the sharpening of Theorem 3.1.3, 3.1.5, and 3.1.6 we refer the reader to the paper

of Frappier, Rahman and Ruscheweyh [48] (also, see Sharma and Singh [117]).

For polynomial of degree n not vanishing in the interior of the unit circle, Ankeny and

Rivlin [8] proved the following result.

Theorem 3.1.7 (Ankeny and Rivlin [8] ). Let p(z) =
n∑

j=0

ajz
j ̸= 0 in D(0, 1). Then for

R ≥ 1,

M(p,R) ≤
(Rn + 1

2

)
||p||. (3.6)

Here equality holds for p(z) =
α + βzn

2
, where |α| = |β| = 1.

The analogue of Inequality (3.5) for polynomials not vanishing in the interior of a unit

circle was proved later in 1960 by Rivlin [113], who in fact proved

Theorem 3.1.8 (Rivlin [113]). Let p(z) =
n∑

j=0

ajz
j ̸= 0 in D(0, 1). Then for 0 < r ≤ 1,

M(p, r) ≥
(r + 1

2

)n
||p||, (3.7)

and equality holding for p(z) =
(α+ βz

2

)n
, where |α| = |β| = 1.

The above results, Theorems 3.1.5 and 3.1.6 which are known as Bernstein inequalities

concerning growth of polynomials, and Theorems 3.1.7 and 3.1.8 have been the starting
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point of a considerable literature in Approximation Theory. Several books and research

monographs have been written on this subject of inequalities (see for example Govil and

Mohapatra [61], Milovanović, Mitrinović and Rassias [93], Pinkus and de Boor [102], Rahman

and Schmeisser [110], and recent article of Govil and Nwaeze [63]).

In this chapter we study some of the developments that have, over a period, taken place

around these inequalities and then present some new results in that direction. In particular,

we present some generalizations, improvements and extensions of Theorems 3.1.7 and 3.1.8.

3.2 Some Improvements of Result due to Ankeny and Rivlin

We begin by presenting the brief outlines of the proof of Theorem 3.1.7 as given by

Ankeny and Rivlin in [8], which makes use of Erdös-Lax theorem. As is well known, the

Erdös-Lax theorem which is stated below as Lemma 3.2.1, was conjectured by Erdös and

proved by Lax [86].

Lemma 3.2.1 (Lax [86]). Let p(z) =
n∑

j=0

ajz
j ̸= 0 in D(0, 1). Then

M(p′, 1) ≤ n

2
||p||. (3.8)

Proof of Theorem 3.1.7. Let us assume that p(z) does not have the form
α + βzn

2
. In

view of Lemma 3.2.1

|p′(eiθ)| ≤ n

2
||p||, 0 ≤ θ < 2π, (3.9)

from which we may deduce that

|p′(reiθ)| < n

2
rn−1||p||, 0 ≤ θ < 2π, r > 1, (3.10)

by applying Theorem 3.1.5 to the polynomial p′(z)/(n/2) and observing that we have

the strict inequality in (3.10) because p(z) does not have the form
α + βzn

2
. But for each θ,
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0 ≤ θ < 2π, we have

p(Reiθ)− p(eiθ) =

∫ R

1

eiθp′(reiθ)dr.

Hence

∣∣p(Reiθ)− p(eiθ)
∣∣ ≤ ∫ R

1

|p′(reiθ)|dr < n

2
||p||

∫ R

1

rn−1dr =
||p||
2

(Rn − 1),

and ∣∣p(Reiθ)| < ||p||
2

(Rn − 1) +
∣∣p(eiθ)| ≤ ||p||

2
(1 +Rn).

Finally, if p(z) =
α + βzn

2
, |α| = |β| = 1, then clearly

M(p,R) =
1 +Rn

2
, R > 1,

and the proof of Theorem 3.1.7 is thus complete.

It may be remarked that later a simpler proof of Theorem 3.1.7 which does not make

use of Erdös-Lax theorem was given by Dewan [36].

Remark 3.2.2. The converse of Theorem 3.1.7 is false as the simple example

p(z) = (z + 1
2
)(z + 3) shows. However, the following result in the converse direction, which

is also due to Ankeny and Rivlin [8], is valid.

Theorem 3.2.3. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n such that

p(1) = 1 and

M(p,R) ≤
(Rn + 1

2

)
||p||

for 0 < R − 1 < δ, where δ is any positive number. Then p(z) does not have all its zeros

within the unit circle.
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In 1989, Govil [57] observed that since the equality in (3.6) holds only for polynomials

p(z) = α + βzn, |α| = |β|, which satisfy

∣∣coefficient of zn
∣∣ = 1

2
||p||, (3.11)

it should be possible to improve upon the bound in (3.6) for polynomials not satisfying

(3.11), and therefore in this connection he proved the following refinement of (3.6).

Theorem 3.2.4. Let p(z) =
n∑

j=0

ajz
j ̸= 0 in D(0, 1). Then for R ≥ 1,

M(p,R) ≤
(Rn + 1

2

)
||p|| (3.12)

−n(||p||
2 − 4|an|2)
2||p||

{
(R− 1)||p||
||p||+ 2|an|

− ln

[
1 +

(R− 1)||p||
||p||+ 2|an|

]}

Equality holding for p(z) = α+ βzn, where |α| = |β|.

Since x − ln(1 + x) > 0 for x > 0, the above theorem always gives a bound sharper than

obtainable from Theorem 3.1.7 of Ankeny and Rivlin unless the polynomial satisfies Equation

(3.11).

In 1998, Dewan and Bhat [38] sharpened the above Theorem 3.2.4 as follows

Theorem 3.2.5. Let p(z) =
n∑

j=0

ajz
j ̸= 0 in D(0, 1). Then for R ≥ 1,

M(p,R) ≤
(Rn + 1

2

)
||p|| −

(Rn − 1

2

)
m (3.13)

−n
2

[
(||p|| −m)2 − 4|an|2

(||p|| −m)

] {
(R− 1)(||p|| −m)

(||p|| −m) + 2|an|
− ln

[
1 +

(R− 1)(||p|| −m)

(||p|| −m) + 2|an|

]}
,

where m = min
|z|=1

|p(z)|. Here again, equality holds for p(z) = α + βzn, where |α| = |β|.

In 2001, Govil and Nyuydinkong [64] generalized Theorem 3.2.5, where they considered

polynomials not vanishing in D(0, K), K ≥ 1. More specifically, they proved
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Theorem 3.2.6. Let p(z) =
n∑

j=0

ajz
j ̸= 0 in D(0, K), K ≥ 1. Then for R ≥ 1,

M(p,R) ≤
(Rn +K

1 +K

)
||p|| −

(Rn − 1

1 +K

)
m− n

1 +K

[
(||p|| −m)2 − (1 +K)2|an|2

(||p|| −m)

]
(3.14)

×

{
(R− 1)(||p|| −m)

(||p|| −m) + (1 +K)|an|
− ln

[
1 +

(R− 1)(||p|| −m)

(||p|| −m) + (1 +K)|an|

]}
,

where m = min
|z|=K

|p(z)|.

Later, Gardner, Govil and Weems [51] generalized Theorem 3.2.6 by considering poly-

nomials of the form a0 +
n∑

j=t

ajz
j, 1 ≤ t ≤ n, and for this, they proved the following

Theorem 3.2.7. Let p(z) = a0 +
n∑

j=t

ajz
j, 1 ≤ t ≤ n, be a polynomial of degree n and

p(z) ̸= 0 in D(0, K), K ≥ 1. Then for R ≥ 1,

M(p,R) ≤
(Rn +Kt

1 +Kt

)
||p|| −

(Rn − 1

1 +Kt

)
m− n

1 +Kt

[
(||p|| −m)2 − (1 +Kt)2|an|2

(||p|| −m)

]
(3.15)

×

{
(R− 1)(||p|| −m)

(||p|| −m) + (1 +Kt)|an|
− ln

[
1 +

(R− 1)(||p|| −m)

(||p|| −m) + (1 +Kt)|an|

]}
,

where m = min
|z|=K

|p(z)|.

Clearly, for t = 1, Theorem 3.2.7 gives Theorem 3.2.6, which for K = 1 reduces to Theorem

3.2.5.

In 2005, Gardner, Govil and Musukula [52] proved the following generalization and

sharpening of Theorem 3.2.4.

Theorem 3.2.8. Let p(z) = a0 +
n∑

j=t

ajz
j, 1 ≤ t ≤ n, be a polynomial of degree n and

p(z) ̸= 0 in D(0, K), K ≥ 1. Then for R ≥ 1,

50



M(p,R) ≤
(Rn + s0

1 + s0

)
||p|| −

(Rn − 1

1 + s0

)
m− n

1 + s0

[
(||p|| −m)2 − (1 + s0)

2|an|2

(||p|| −m)

]
(3.16)

×

{
(R− 1)(||p|| −m)

(||p|| −m) + (1 + s0)|an|
− ln

[
1 +

(R− 1)(||p|| −m)

(||p|| −m) + (1 + s0)|an|

]}
,

where m = min
|z|=K

|p(z)|, and

s0 = Kt+1

t
n
· |at|
|a0|−m

Kt−1 + 1

t
n
· |at|
|a0|−m

Kt+1 + 1
.

Dividing both sides of (3.16) by Rn, and letting R → ∞, one gets

Corollary 3.2.9. Let p(z) = a0 +
n∑

j=t

ajz
j, 1 ≤ t ≤ n, be a polynomial of degree n and

p(z) ̸= 0 in D(0, K), K ≥ 1. Then

|an| ≤
1

1 + s0

(
||p|| −m

)
, (3.17)

where m = min
|z|=K

|p(z)|.

In case one does not have knowledge of m = min
|z|=K

|p(z)|, one could use the following

result due to Gardner, Govil and Musukula [52] which does not depend on m.

Theorem 3.2.10. Let p(z) = a0 +
n∑

j=t

ajz
j, 1 ≤ t ≤ n, be a polynomial of degree n and

p(z) ̸= 0 in D(0, K), K ≥ 1. Then for R ≥ 1,

M(p,R) ≤
(Rn + s1

1 + s1

)
||p|| − n

1 + s1

[
||p||2 − (1 + s1)

2|an|2

||p||

]
(3.18)

×

{
(R− 1)||p||

||p||+ (1 + s1)|an|
− ln

[
1 +

(R− 1)||p||
||p||+ (1 + s1)|an|

]}
,
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where

s1 = Kt+1

t
n
· |at|
|a0|K

t−1 + 1

t
n
· |at|
|a0|K

t+1 + 1
.

If in the above theorem, one divides both sides of (3.18) by Rn and let R → ∞, one

obtains the following

Corollary 3.2.11. Let p(z) = a0 +
n∑

j=t

ajz
j, 1 ≤ t ≤ n, be a polynomial of degree n and

p(z) ̸= 0 in D(0, K), K ≥ 1. Then

|an| ≤
1

1 + s1
||p||. (3.19)

Both Corollaries 3.2.9 and 3.2.11 generalize and sharpen the well known inequality, ob-

tainable by an application of Visser’s Inequality [123], that if p(z) =
n∑

j=0

ajz
j is a polynomial

of degree n and p(z) ̸= 0 in D(0, 1) then |an| ≤
1

2
||p||.

We present some of the examples Gardner, Govil and Musukula [52] gave to illustrate

the quality of Theorems 3.2.7, 3.2.8 and 3.2.10.

Example 3.2.12. Let p(z) = 1000 + z2 + z3 + z4. Clearly, here t = 2 and n = 4, and one

can take K = 5.4, since numerically p ̸= 0 for |z| < 5.4483. For this polynomial, the bound

for M(p, 2) by Theorem 3.2.7 comes out to be 1447.503, and by Theorem 3.2.8, it comes out

to be 1101.84, which is a significant improvement over the bound obtained from Theorem

3.2.7. Numerically, for this polynomial M(p, 2) ≈ 1028, which is quite close to the bound

1101.84, that is obtainable by Theorem 3.2.10. The bound forM(p, 2) obtained by Theorem

3.2.10 is 1105.05, which is also quite close to the actual bound ≈ 1028. However, in this case

Theorem 3.2.8 gives the best bound.

Example 3.2.13. Let p(z) = 1000 + z2 − z3 − z4. Here also, t = 2 and n = 4. Again,

numerically p(z) ̸= 0 for |z| < 5.43003, and thus take K = 5.4. If R = 3, then for this

polynomial the bound for M(p, 3) obtained by Theorem 3.2.7 comes out to be 3479.408,

while by Theorem 3.2.10 it comes out to be 1545.3, and by Theorem 3.2.8 it comes out
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to be 1534.5, a considerable improvement. Thus again the bounds obtained from Theorem

3.2.8 and Theorem 3.2.10 are considerably smaller than the bound obtained from Theorem

3.2.7, and the bound 1534.5 obtained by Theorem 3.2.8 is much closer to the actual bound

M(p, 3) ≈ 1100.6, than the bound 3479.408, obtained from Theorem 3.2.7.

While trying to obtain inequality analogous to (3.6) for polynomials not vanishing in

D(0, K), K ≤ 1, Dewan and Ahuja [37] were able to prove this only for polynomials having

all the zeros on the circle S(0, K) := {z : |z| = K}, 0 < K ≤ 1.

Theorem 3.2.14. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n having all its zeros on

S(0, K), K ≤ 1. Then for R ≥ 1 and for every positive integer s,

{M(p,R)}s ≤

[
Kn−1(1 +K) + (Rns − 1)

Kn−1 +Kn

]
{M(p, 1)}s. (3.20)

For s = 1, the Theorem 3.2.14 yields

Corollary 3.2.15. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n having all its zeros on

S(0, K), K ≤ 1. Then for R ≥ 1,

M(p,R) ≤

[
Kn−1(1 +K) + (Rn − 1)

Kn−1 +Kn

]
M(p, 1). (3.21)

In same spirit, we prove the following results

3.2.1 Statement and Proof of some New Results

In this subsection, we present some new results that sharpen the aforementioned results.

Theorem 3.2.16. Let p(z) = zm

[
an−mz

n−m +
n−m∑
j=µ

an−m−jz
n−m−j

]
, 1 ≤ µ ≤ n − m, 0 ≤

m ≤ n−1, be a polynomial of degree n, having m−fold zeros at origin and remaining n−m

zeros on S(0, K), K ≤ 1. Then for every integer s

[M(p,R)]s ≤ L(µ;K,m, n, s)[M(p, 1)]s, R ≥ 1 (3.22)
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where

L(µ;K,m, n, s) =
n(Kn−m−2µ+1 +Kn−m−µ+1) + (Rns − 1)[n+mKn−m−2µ+1 +mKn−m−µ+1 −m]

n(Kn−m−2µ+1 +Kn−m−µ+1)

For m = 0, we have

Corollary 3.2.17. Let p(z) = anz
n +

n∑
j=µ

an−jz
n−j, 1 ≤ µ ≤ n, be a polynomial of degree n,

having all zeros on |z| = K, K ≤ 1. Then for every integer s

[M(p,R)]s ≤ L(µ;K,n, s)[M(p, 1)]s, R ≥ 1 (3.23)

where

L(µ;K,n, s) =
Kn−µ(K1−µ +K) + (Rns − 1)

Kn−2µ+1 +Kn−µ+1

If we set µ = 1 into Corollary 3.2.17, we get the following result of Dewan and Ahuja

[37].

Corollary 3.2.18. Let p(z) =
n∑

j=0

ajz
j, be a polynomial of degree n, having all zeros on

|z| = K, K ≤ 1. Then for every integer s,

[M(p,R)]s ≤ L(1;K,n, s)[M(p, 1)]s, R ≥ 1 (3.24)

where

L(1;K,n, s) =
Kn−1(1 +K) + (Rns − 1)

Kn−1 +Kn
.

For the proof Theorem 3.2.16 we need the following lemmas. The first lemma is due to

Kumar and Lal [82].

Lemma 3.2.19. Let p(z) = zm

[
an−mz

n−m +
n−m∑
j=µ

an−m−jz
n−m−j

]
, 1 ≤ µ ≤ n−m, 0 ≤ m ≤

n − 1, be a polynomial of degree n, having m − fold zeros at origin and remaining n − m
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zeros on |z| = K, K ≤ 1.

max
|z|=1

|p′(z)| ≤ n+m(Kn−m−2µ+1 +Kn−m−µ+1 − 1)

Kn−m−2µ+1 +Kn−m−µ+1
max
|z|=1

|p(z)| (3.25)

The next lemma is the Bernstein inequality given in Theorem 3.1.5.

Lemma 3.2.20. Let p(z) be a polynomial of degree n. Then for R ≥ 1,

M(p,R) ≤ RnM(p, 1). (3.26)

Proof of Theorem 3.2.16. By Lemma 3.2.19, we have

max
|z|=1

|p′(z)| ≤ n+m(Kn−m−2µ+1 +Kn−m−µ+1 − 1)

Kn−m−2µ+1 +Kn−m−µ+1
max
|z|=1

|p(z)|

Applying Lemma 3.2.20 to the polynomial p′(z) which is of degree n− 1, it follows that

for all R ≥ 1 and θ ∈ [0, 2π),

|p′(Reiθ)| ≤ max
|z|=R

|p′(z)|

≤ Rn−1max
|z|=1

|p′(z)|

≤ Rn−1

[
n+m(Kn−m−2µ+1 +Kn−m−µ+1 − 1)

Kn−m−2µ+1 +Kn−m−µ+1

]
max
|z|=1

|p(z)|.

So for each θ ∈ [0, 2π) and R ≥ 1, we obtain

[
p(Reiθ)

]s − [p(eiθ)]s = ∫ R

1

d
[
p(teiθ)

]s
dt

dt

=

∫ R

1

s
[
p(teiθ)

]s−1
p′(teiθ)eiθdt.
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This implies that

∣∣p(Reiθ)∣∣s ≤ ∣∣p(eiθ)∣∣s + s

∫ R

1

∣∣p(teiθ)∣∣s−1∣∣p′(teiθ)∣∣dt.
Thus,

[
M(p,R)

]s ≤ [M(p, 1)
]s

+ s

∫ R

1

[
tnM(p, 1)

]s−1∣∣p′(teiθ)∣∣dt
≤
[
M(p, 1)

]s
+ s

∫ R

1

tns−n
[
M(p, 1)

]s−1
tn−1.

n+m(Kn−m−2µ+1 +Kn−m−µ+1 − 1)

Kn−m−2µ+1 +Kn−m−µ+1
M(p.1)dt

=
[
M(p, 1)

]s
+ s

[
n+m(Kn−m−2µ+1 +Kn−m−µ+1 − 1)

Kn−m−2µ+1 +Kn−m−µ+1

][
M(p, 1)

]s ∫ R

1

tns−1dt

=
[
M(p, 1)

]s
+
[
M(p, 1)

]s[n+m(Kn−m−2µ+1 +Kn−m−µ+1 − 1)

Kn−m−2µ+1 +Kn−m−µ+1

]
s.
Rns − 1

ns

=
[
M(p, 1)

]s[
1 +

[
n+m(Kn−m−2µ+1 +Kn−m−µ+1 − 1)

](
Rns − 1

)
n
(
Kn−m−2µ+1 +Kn−m−µ+1

) ]

This yields

[
M(p,R)

]s ≤ [M(p, 1)
]s[n(Kn−m−2µ+1 +Kn−m−µ+1

)
+
[
n+m(Kn−m−2µ+1 +Kn−m−µ+1 − 1)

](
Rns − 1

)
n
(
Kn−m−2µ+1 +Kn−m−µ+1

) ]
.

This completes the proof.

3.3 Some Improvements of a Result due to Rivlin

So far we have been dealing with improvements and generalizations of Inequality (3.6),

we now turn our attention to Inequality (3.7), given in Theorem 3.1.8. In this regard, Govil

[56] generalized this Theorem 3.1.8 by proving
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Theorem 3.3.1. Let p(z) =
n∑

j=0

ajz
j ̸= 0 in D(0, 1). Then for 0 < r ≤ ρ ≤ 1,

M(p, r) ≥
(1 + r

1 + ρ

)n
M(p, ρ). (3.27)

The result is best possible and equality holds for the polynomial p(z) =
(1 + z

1 + ρ

)n
.

If polynomial p(z) has all its zeros on |z| = 1, the polynomial q(z) = znp(1
z
) also has its

zeros on |z| = 1. Further, if 1 ≤ ρ ≤ r, then 1
r
≤ 1

ρ
≤ 1, and when (3.27) is applied to q(z),

it yields

M
(
q,

1

r

)
≥

(
1 + 1

r

1 + 1
ρ

)n

M
(
q,

1

ρ

)
,

which is equivalent to (3.27).

The above explanation thus leads to the following corollary.

Corollary 3.3.2. Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n having all its zeros on the

unit circle. Then for 0 < r ≤ ρ ≤ 1, and for 1 ≤ ρ ≤ r,

M(p, r) ≥
(1 + r

1 + ρ

)n
M(p, ρ). (3.28)

The result is best possible and equality holds for the polynomial p(z) = (1 + z)n.

If in Theorem 3.3.1 one also assumes that p′(0) = 0, the bound in (3.27) can be consid-

erably improved. Govil [56] in the same paper obtained the following in this direction.

Theorem 3.3.3. Let p(z) =
n∑

j=0

ajz
j ̸= 0 in D(0, 1). Let p′(0) = 0. Then for 0 < r ≤ ρ ≤ 1,

M(p, r) ≥
(1 + r

1 + ρ

)n
1

1− (1− ρ)(ρ− r)n

4

(1 + r

1 + ρ

)n−1

M(p, ρ). (3.29)
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Theorem 3.3.1 is best possible, however, if 0 < r < ρ < 1, then for any polynomial

p(z) having no zeros in D(0, 1), and p′(0) = 0, the bound obtained by Theorem 3.3.3 can be

considerably sharper than the bound obtained by Theorem 3.3.1. Govil [56] illustrated this

by means of the following examples.

Example 3.3.4. Let p(z) = 1 + z3, ρ = 0.5, r = 0.1. Theorem 3.3.1 gives M(p, r) ≥

(0.3943704)M(p, ρ), while by Theorem 3.3.3, M(p, r) ≥ (0.4289743)M(p, ρ).

Example 3.3.5. Let p(z) = 1 + z7, ρ = 0.168, r = 0.022. Theorem 3.3.1 gives M(p, r) ≥

(0.3926959)M(p, ρ), while by Theorem 3.3.3, M(p, r) ≥ (0.4341115)M(p, ρ).

In this section we present some further extension and sharpening of Rivlin’s result. In

this regard, we have the following

3.3.1 More New Results

As generalization and sharpening of Rivlin’s result, we state the following

Theorem 3.3.6. Let p(z) = a0 +
n∑

j=µ

ajz
j, 1 ≤ µ < n. If p(z) ̸= 0 for |z| < 1, then for

0 < r < 1, we have

M(p, r) ≥ (1 + r)n/µ

(1 + rµ)n/µ + µ2n/µ − µ(1 + r)n/µ

[
M(p, 1) + nmin

|z|=1
|p(z)| ln

( 2

1 + r

)]
. (3.30)

As a consequence of the above theorem, if p(z) ̸= 0 for |z| < K, K > 0, then the

polynomial P (z) = p(Kz) ̸= 0 for |z| < 1. Further, if 0 < r < K, then 0 < r/K < 1, and

applying Theorem 3.3.6 to P (z), we get

M(P, r/K) ≥ (1 + r/K)n/µ

(1 + (r/K)µ)n/µ + µ2n/µ − µ(1 + r/K)n/µ

[
M(P, 1)+nmin

|z|=1
|P (z)| ln

( 2

1 + r/K

)]
,

which yields

M(p, r) ≥ γ1/µ(r +K)n/µ

γ(rµ +Kµ)n/µ + µ2n/µ − µγ1/µ(r +K)n/µ

[
M(p,K) + nm ln

( 2K

r +K

)]
, (3.31)
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where γ = K−n, and m = min
|z|=K

|p(z)|.

Theorem 3.3.7. Let p(z) =
n∑

j=0

ajz
j. If p(z) ̸= 0 for |z| < K, K ≥ 1, then for 0 < r < R ≤

1, we have

M(p, r) ≥ (1 + r)n

(1 + r)n + (R +K)n − (r +K)n

[
M(p,R) + nm ln

(R +K

r +K

)]
, (3.32)

where m = min
|z|=K

|p(z)|.

If R = 1, Theorem 3.3.7 reduces to

Corollary 3.3.8. Let p(z) =
n∑

j=0

ajz
j. If p(z) ̸= 0 for |z| < K, K ≥ 1, then for 0 < r < 1,

we have

M(p, r) ≥ (1 + r)n

(1 + r)n + (1 +K)n − (r +K)n

[
M(p, 1) + nmin

|z|=K
|p(z)| ln

(1 +K

r +K

)]
. (3.33)

Setting K = 1 in Corollary 3.3.8 gives

Corollary 3.3.9. Let p(z) =
n∑

j=0

ajz
j. If p(z) ̸= 0 for |z| < 1, then for 0 < r < 1, we have

M(p, r) ≥
(1 + r

2

)n[
M(p, 1) + nmin

|z|=1
|p(z)| ln

( 2

1 + r

)]
. (3.34)

Unless min
|z|=1

|p(z)| = 0, Corollary 3.3.9 always gives a bound sharper than the bound

obtainable from Theorem 3.1.8 of the result due to Rivlin [113] which states that if p(z) =
n∑

j=0

ajz
j ̸= 0 in D(0, 1), then for 0 < r ≤ 1, M(p, r) ≥

(r + 1

2

)n
||p||.

For the proof of Theorems 3.3.6 and 3.3.7, we need the following lemmas. The first

lemma is due to Govil [58].
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Lemma 3.3.10. Let p(z) be a polynomial of degree n having no zeros in |z| < K, K ≥ 1,

then

max
|z|=1

|p′(z)| ≤ n

1 +K

[
max
|z|=1

|p(z)| − min
|z|=K

|p(z)|
]
. (3.35)

Lemma 3.3.11 (Qazi [108]). Let p(z) = a0 +
n∑

j=µ

ajz
j, 1 ≤ µ < n. If p(z) ̸= 0 for |z| < 1,

then for 0 < r < R ≤ 1, we have,

M(p, r) ≥
( 1 + rµ

1 +Rµ

)n/µ
M(p,R); (3.36)

more precisely,

M(p, r) ≥ exp

(
− n

∫ R

r

tµ + (µ/n)|aµ/a0|tµ−1

tµ+1 + (µ/n)|aµ/a0|(tµ + t) + 1
dt

)
M(p,R). (3.37)

Recently, Jain [71] (see also Govil and Qazi [66]) proved the following generalization of

Lemma 3.3.11.

Lemma 3.3.12. Let p(z) = a0 +
n∑

j=µ

ajz
j, 1 ≤ µ < n. If p(z) ̸= 0 for |z| < K, K > 0 then

for 0 < r < R ≤ K, we have,

M(p, r) ≥
( rµ +Kµ

Rµ +Kµ

)n/µ
M(p,R); (3.38)

more precisely,

M(p, r) ≥ exp

(
− n

∫ R

r

tµ + (µ/n)|aµ/a0|Kµ+1tµ−1

tµ+1 +Kµ+1 + (µ/n)|aµ/a0|(Kµ+1tµ +K2µt)
dt

)
M(p,R). (3.39)

It is important to note that if 0 ̸= p(z) = a0 + a1z + · · ·+ an−µz
n−µ + anz

n, 1 ≤ µ < n

for |z| ≥ K, K > 0, then 0 ̸= q(z) = znp(1/z) = an + an−µz
n−µ + an−µ−1z

µ+1 + · · · + a0z
n

in |z| < K, K > 0. Furthermore, if we assume that K ≤ r < R then we have that
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1/R < 1/r ≤ 1/K. Applying Inequality (3.38) of Lemma 3.3.12, to polynomial q(z) we

obtain

M(q, 1/R) ≥

(
R−µ +K−µ

r−µ +K−µ

)n/µ

M(q, 1/r);

this implies that

M(p,R) ≥

(
Rµ +Kµ

rµ +Kµ

)n/µ

M(p, r).

Putting µ = 1 in Lemma 3.3.12, one obtains the following

Lemma 3.3.13. Let p(z) =
n∑

j=0

ajz
j. If p(z) ̸= 0 for |z| < K, K > 0 then for 0 < r < R ≤

K,

M(p, r) ≥

(
r2 + 2λr +K2

R2 + 2λR +K2

)n/2

M(p,R), (3.40)

where λ :=
K2

n

∣∣∣a1
a0

∣∣∣.
Applying the above lemma to the polynomial q(z) = znp(1/z) with K ≤ r < R, where

p(z) = a0 + a1z+ · · ·+ an−1z
n−1 + anz

n has all its zeros in |z| < K, K > 0, we get that q(z)

has no zeros in |z| < K, K > 0, and

M(q, 1/R) ≥

(
R−2 + 2λR−1 +K−2

r−2 + 2λr−1 +K−2

)n/2

M(q, 1/r);

this implies

M(p,R) ≥

(
R2 + 2λRK2 +K2

r2 + 2λrK2 +K2

)n/2

M(p, r).

Proof of Theorem 3.3.6. Let 0 < r < 1. Let θ ∈ [0, 2π) we have:

∣∣p(eiθ)− p(reiθ)
∣∣ = ∣∣∣∣∣

∫ 1

r

eiθp′(teiθ)dt

∣∣∣∣∣.
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This implies ∣∣p(eiθ)∣∣ ≤ ∣∣p(reiθ)∣∣+ ∣∣∣∣∣
∫ 1

r

eiθp′(teiθ)dt

∣∣∣∣∣. (3.41)

If p(z) ̸= 0 in |z| < 1, then p(tz) ̸= 0 in |z| < 1/t. Further, if 0 < t ≤ 1, then 1/t ≥ 1

and hence by Lemma 3.3.10 we get

t|p′(tz)| ≤ nt

1 + t

[
M(p, t)−min

|z|=1
|p(z)|

]
which is equivalent to

|p′(tz)| ≤ n

1 + t

[
M(p, t)−min

|z|=1
|p(z)|

]
. (3.42)

Combining (3.41) and (3.42) yield

∣∣p(eiθ)∣∣ ≤ ∣∣p(reiθ)∣∣+ ∫ 1

r

n

1 + t
M(p, t)dt− nmin

|z|=1
|p(z)|

∫ 1

r

1

1 + t
dt.

This implies

M(p, 1) ≤M(p, r) +

∫ 1

r

n

1 + t
M(p, t)dt− nmin

|z|=1
|p(z)|

∫ 1

r

1

1 + t
dt.

Now by Lemma 3.3.11, we obtain

M(p, 1) ≤M(p, r) +

∫ 1

r

n

1 + t

( 1 + tµ

1 + rµ

)n/µ
M(p, r)dt− nmin

|z|=1
|p(z)|

∫ 1

r

1

1 + t
dt

⇒ M(p, 1) ≤M(p, r) +

∫ 1

r

n

1 + t

( 1 + t

1 + rµ

)n/µ
M(p, r)dt− nmin

|z|=1
|p(z)|

∫ 1

r

1

1 + t
dt
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⇒ M(p, 1) ≤M(p, r) +
nM(p, r)

(1 + rµ)n/µ

∫ 1

r

(1 + t)n/µ

1 + t
dt− nmin

|z|=1
|p(z)|

∫ 1

r

1

1 + t
dt

⇒ M(p, 1) ≤M(p, r) +
nM(p, r)

(1 + rµ)n/µ

[
2n/µ − (1 + r)n/µ

]µ
n
− nmin

|z|=1
|p(z)|

∫ 1

r

1

1 + t
dt

⇒ M(p, 1) ≤M(p, r) +
µM(p, r)

(1 + rµ)n/µ

[
2n/µ − (1 + r)n/µ

]
− nmin

|z|=1
|p(z)| ln

( 2

1 + r

)

⇒ M(p, r)

[
1 +

µ2n/µ

(1 + rµ)n/µ
− µ(1 + r)n/µ

(1 + rµ)n/µ

]
≥M(p, 1) + nmin

|z|=1
|p(z)| ln

( 2

1 + r

)

⇒ M(p, r)

[
(1 + rµ)n/µ + µ2n/µ − µ(1 + r)n/µ

(1 + rµ)n/µ

]
≥M(p, 1) + nmin

|z|=1
|p(z)| ln

( 2

1 + r

)

⇒ M(p, r) ≥ (1 + rµ)n/µ

(1 + rµ)n/µ + µ2n/µ − µ(1 + r)n/µ

[
M(p, 1) + nmin

|z|=1
|p(z)| ln

( 2

1 + r

)]
.

That proves the theorem.

Proof of Theorem 3.3.7. As in the proof of Theorem 3.3.6, we obtain similarly that

∣∣p(Reiθ)∣∣ ≤ ∣∣p(reiθ)∣∣+ ∣∣∣∣∣
∫ R

r

eiθp′(teiθ)dt

∣∣∣∣∣. (3.43)
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Now if p(z) ̸= 0 in |z| < K, K ≥ 1, then p(tz) ̸= 0 in |z| < K/t. Further, if 0 < t ≤ 1, then

1/t ≥ 1 and K/t ≥ 1.

By Lemma 3.3.10, we get

|p′(tz)| ≤ n

K + t

[
M(p, t)− min

|z|=K
|p(z)|

]
. (3.44)

Using (3.43) and (3.44) give

∣∣p(Reiθ)∣∣ ≤ ∣∣p(reiθ)∣∣+ ∫ R

r

n

K + t
M(p, t)dt− n min

|z|=K
|p(z)|

∫ R

r

1

K + t
dt

⇒ M(p,R) ≤M(p, r) +

∫ R

r

n

K + t
M(p, t)dt− n min

|z|=K
|p(z)|

∫ R

r

1

K + t
dt.

By Lemma 3.3.11, we obtain

M(p,R) ≤M(p, r) +

∫ R

r

n

K + t

( 1 + t

1 + r

)n
M(p, r)dt− n min

|z|=K
|p(z)|

∫ R

r

1

K + t
dt

⇒ M(p,R) ≤M(p, r) +
nM(p, r)

(1 + r)n

∫ R

r

(1 + t)n

K + t
dt− n min

|z|=K
|p(z)|

∫ R

r

1

K + t
dt

⇒ M(p,R) ≤M(p, r) +
nM(p, r)

(1 + r)n

∫ R

r

(K + t)n

K + t
dt− n min

|z|=K
|p(z)|

∫ R

r

1

K + t
dt

⇒ M(p,R) ≤M(p, r) +
nM(p, r)

(1 + r)n

[
(K +R)n − (K + r)n

] 1
n
− n min

|z|=K
|p(z)| ln

(K +R

K + r

)
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⇒ M(p, r)

[
(1 + r)n + (K +R)n − (K + r)n

(1 + r)n

]
≥M(p,R) + n min

|z|=K
|p(z)| ln

(K +R

K + r

)

⇒ M(p, r) ≥ (1 + r)n

(1 + r)n + (K +R)n − (K + r)n

[
M(p,R) + n min

|z|=K
|p(z)| ln

(K +R

K + r

)]
,

as required.
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null abweichen, Math. Annalen, 77, 213-258 (1916).

[91] Markovitch, D. : On the composite polynomials, Bull. Soc. Math. Phys. Serbie, 3(3-4),
11-14 (1951).
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