
Simulation of the Impact of NOOPS on CPU Temperature

by

Sameul Haque

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 12, 2015

Keywords: Simulation, Thermal Management, Power Management, Instruction Scheduling,
Process Scheduling

Copyright 2015 by Sameul Haque

Approved by

Sanjeev Baskiyar, Associate Professor of Computer Science and Software Engineering
Vishwani Agrawal, James J. Danaher Professor of Electrical and Computer Engineering

Xiao Qin, Professor of Computer Science and Software Engineering

Abstract

A C++ based simulation language is used to simulate instruction scheduling in which a set of

processes is balanced by the ratio of memory operators. The simulation of the reduction of thermal

profiles involves insertion of NOOPS in a simulated process buffer to store critical process paths

using a novel path detection algorithm. The ratio of memory operators of a possible execution path

associated with a series of simulated assembly instructions in a processor is simulated at run time

using NOOPS to balance memory ratios over a simulated instruction sequence. A memory operator

is any instruction which involves transfer of data between processor registers and main memory.

The simulation uses a counter for calculating the number of memory operations in a process.

Critical sections are stored in a buffer to improve efficiency and NOOPS are assigned to a process

set in such a way that the processor never exceeds a predetermined ratio of memory operators over

a simulated sequence for the purposes of power validation. The reduction of memory operators is

formally verified in software using a high level language. It is verified that the ratio of memory

operators is lower for a simulated process set and that NOOPS can be used to reduce CPU thermal

profiles.

ii

Acknowledgments

New graduate students are often under the impression that graduate coursework is similar to

the work at the undergraduate level, that is, an MS Thesis is essentially extended class project.

This is the primary error that I encountered when I started and I would like to thank my father

Dr. Anwarul Haque, my thesis adviser Dr. Sanjeev Baskiyar and my professor Dr. Xiao Qin for

putting me on the right track.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . v

List of Tables . viii

1 Introduction . 1

1.1 Literature Review . 3

1.1.1 Experimental Validation of Instruction Power Models 3

1.1.2 Source Code Profiling . 7

1.1.3 A Review of Process Management . 9

2 Problem Statement . 11

3 Simulation . 15

3.1 Software Models Of Hardware . 15

3.2 Assembly Data From Apache.exe . 17

3.3 Simulation Output . 22

3.4 Simulation of Hardware Based Path Detection in Java 24

3.5 Temperature Projections . 24

3.6 Temperature Reduction Results From NOOP Insertions 32

3.7 Lattice Boltzman Method . 32

3.8 Shor’s Factorization . 35

3.9 sjeng chess simulation . 36

3.10 Analysis of Results . 47

3.11 Conclusion . 48

Bibliography . 50

iv

List of Figures

1.1 Instruction Energy Models . 4

3.1 Unmodified Processor . 16

3.2 Pseudocode For Path Detection Algorithm . 18

3.3 Beginning of Apache.exe Raw Instruction Path . 18

3.4 Apache.exe Simulation of Hardware Path Reconstruction 20

3.5 Apache.exe Function Graph . 21

3.6 Expanded Apache.exe Function Cycle . 21

3.7 Output of Nested Path Detection Algorithm . 25

3.8 Projected Temperature Reduction: NOOP Ratio vs Temperature - Temperature = 0.29*En-

ergy(Watts) + 45.1 . 30

3.9 Projected Temperature Reduction: NOOP Ratio vs Temperature - Temperature = 0.29*En-

ergy(Watts) + 45.1 . 31

3.10 Projected Power Difference of Buffer Execution: NOOP Ratio vs Power 31

3.11 SPEC CPU lbm Measured Temporal Average Temperature for Isolated Core (C) for

varying Number of NOOPS Laptop AC - Linux . 33

3.12 SPEC CPU lbm Measured Temporal Average Temperature for Isolated Core (C) for

varying Number of NOOPS Laptop Battery - Linux 33

v

3.13 SPEC CPU lbm Time(s) vs Measured Spatial Average Temperature over All Cores (C)

for varying Number of NOOPS Laptop AC - Linux 34

3.14 SPEC CPU lbm Time(s) vs Measured Spatial Average Temperature over All Cores (C)

for varying Number of NOOPS Desktop - Linux . 34

3.15 SPEC CPU Measured Temporal Peak Temperature (C) for varying Number of NOOPS

Laptop AC - Linux . 35

3.16 SPEC CPU Measured Average Temperature (C) for varying Number of NOOPS Lap-

top AC - Linux . 36

3.17 lbm Number of NOOPS and Measured Average Temperature across All Cores Laptop

AC . 37

3.18 lbm Number of NOOPS and Measured Average Temperature across All Cores Desktop 38

3.19 SPEC CPU libquantum Time(s) vs Measured Spatial Average Temperature over All

Cores (C) for varying Number of NOOPS Laptop AC - Linux 38

3.20 SPEC CPU libquantum Time(s) vs. Measured Spatial Average Temperature over All

Cores (C) for varying Number of NOOPS Desktop - Linux 39

3.21 SPEC CPU libquantum - Measured Temporal Peak Temperature Across All Cores (C)

for varying Number of NOOP : Laptop AC - Linux 39

3.22 SPEC CPU libquantum Measured Average Temperature (C) for varying Number of

NOOPS Laptop AC - Linux . 40

3.23 libquantum Number of NOOPS and Measured Average Temperature Across All Cores

Laptop AC . 41

vi

3.24 libquantum Number of NOOPS and Measured Average Temperature Across All Cores

Desktop . 42

3.25 SPEC CPU sjeng Measured Peak Temperature on Isolated Cores (C) for varying Num-

ber of NOOPS (0 to 10E3) Laptop AC - Linux . 42

3.26 SPEC CPU sjeng Measured Peak Temperature over All Cores (C) for varying Number

of NOOPS Laptop AC (0 to 10E3) - Linux . 43

3.27 Number of NOOPS vs Temperature for SPEC CPU srand in Windows for NOOP

Ranges Between 0 and 10E3 . 43

3.28 sjeng Measured Number of NOOPS And Average Temperature Across All Cores

(Linux Desktop) . 44

3.29 srand Time(s) vs Measured Average Core Temperature for varying Number of NOOPs 45

3.30 SPEC srand and sjeng Average Peak Temperature (C) over Four Processor Cores (Win-

dows) (The peak temperature at a NOOP range is recorded on each processor core.

These values are averaged.) . 46

vii

List of Tables

3.1 Projected Instruction Ratios For Varying in Maximal Memory Instruction Count On
A Simulated Process Scheduler - Path Set 1 . 27

3.2 Projected Instruction Ratios For Varying in Maximal Memory Instruction Count On
A Simulated Process Scheduler - Path Set 2 . 28

3.3 Projected Instruction Ratios For Varying in Maximal Memory Instruction Count On
A Simulated Process Scheduler - Path Set 3 . 28

3.4 Projected Power Data For Buffer at Varying NOOP Ratios - Path Set 1 29

3.5 Projected Power Data For Buffer at Varying NOOP Ratios - Path Set 2 29

3.6 Projected Power Data For Buffer at Varying NOOP Ratios - Path Set 3 29

3.7 Projected Power Temperature and Temperature Data for Varying NOOP Ratios 30

3.8 Cooldown Data Lattice Boltzman Method at 10e9 NOOPS 40

3.9 Runtime Penalties For Lattice Boltzman Method, sjeng chess, and Shor’s Factorization 41

viii

Chapter 1

Introduction

This research concerns high level simulations of energy aware process scheduling. A clas-

sical example where this would be useful is a client-server application on a mobile device which

experiences dynamic memory load such as a web server or a database. The goal is to balance a

process set by the rate of memory references such that processes with high memory reference rates

do not interfere with other processes.

The goal is to do this at run time without any information provided about the processes pro-

vided by the operating system other than priority. In this model, processes on a device experiencing

a high rate of memory references are slowed down. In this implementation, this is achieved using

NOOPS. The safest characterization of the scope of this research would be simulating CPU-based

load balancing of process memory references in real time. The reason we attempt to do this at the

processor level as opposed to the operating system level is because operating systems provide no

built in methods for determining rate of memory references of a process.

A high level description of the process scheduler is as follows. Processes are assigned time

slices in a round robin scheduler, and whenever the ratio of memory references in a process buffer

is exceeded, the processor schedules NOOP instructions until the rate of memory operators is low

enough. The scope of this research is narrow. The scheduler is simulated using a high level lan-

guage, but a full hardware implementation is not provided here. This research is oriented towards

high level simulations of low level processes, that is, this work is intended to explore the feasibility

of synthesizing low level hardware using C++.

The memory analyzer provides cycle accurate estimates of power usage, but the SystemC

scheduler simulation is not intended to be used with an actual processor, but rather used to verify

1

that the process model can be used to simulate actual hardware though hardware design is not the

goal.

The details of the simulation are as follows: The scheduling technique involves the detection

of a critical section. A high level language is used to detect the critical section by detecting the

outermost loop in a series of nested loops in a sequence of assembly instructions stored in the

cache. The instructions stored in the buffer represent the current set of paths being executed by the

processor. A reference to US Patent 7873820 is made for the architecture of a process buffer.

The next phase of this project involved verifying that the memory ratio is lower using this

method and projecting thermal profiles for a 100 MHZ processor. Finally, NOOPS are actually

inserted into CPU processes to determine temperature profiles. Simulation classes are used to

generate the output of a set of scheduled processes. The outline of this is as follows: A FIFO

scheduler is modified to execute processes in a circular fashion. During context switch, the critical

path(s) associated with a process set is sent from the cache to the buffer if it is smaller than the size

of the buffer. NOOPS are then scheduled to balance the ratio of memory references in the buffer.

If there is no path smaller than the buffer associated with the process, the buffer may still be used

for adding NOOPS.

This work involves converting a FIFO based model to a round-robin model and simulating

algorithms and communication protocols between a process buffer and a scheduler. SystemC data

structures are used to specify the process and NOOP instruction scheduling algorithms. This in-

terface specifies the communication protocols for which processes are active and which processes

are idle. The current model being used only two processes and assumes there is one core. Some

constants are set such as the size of the buffer. The model works as follows: when a process is

active it writes assembly instructions to the buffer stored in the scheduler. To balance the ratio of

process memory references NOOPS are inserted into processes before they reach the buffer. In this

model, it is assumed that each process has the same priority and that the time slice assigned by the

scheduler is constant.

2

1.1 Literature Review

1.1.1 Experimental Validation of Instruction Power Models

The method Tiwari, Malik, Wolfe use to derive the base energy cost per instruction is dis-

cussed.[1] This method is as follows: A processor is typically divided into several pipeline stages.

When every instruction in the pipeline is the same instruction, it is possible to use an ammeter

reading to determine the base energy cost for that instruction. The central hypothesis presented

here is that memory operations are the primary drivers of energy consumption and some experi-

mental validation is done along this line. On the x86 architecture, the mov operation is indicated as

a memory operation, but this is expanded in our definition to include any instruction that involves

main memory to register transfer of data. Mov instructions are the instructions where this is formal

definition of the instruction, but other instructions may implement this implicitly.

Large loops are created of the same instruction. When these loops are of sufficient size the

contribution of the branch operand in the sequence will be negligible. In a pipelined CPU, several

instructions are executed simultaneously. There is nevertheless a base cost per instruction which is

derived from the energy cost of an instruction at each pipeline stage. This is derived by measuring

the current during these loops and multiplying by the clock period, the voltage, and the number of

cycles per instruction. It is not necessary to know how many cycles an instruction takes at each

stage to derive the base cost per instruction but only the total number of cycles per instruction. The

authors details the reason for this in their paper.

Using this methodology the authors derived a base energy cost per instruction for a 486DX2

processor. A main memory to register memory instruction is where this cost was high for this

chipset, but it was not the highest. A main memory to register data transfer is implicitly defined in

certain instructions and we may include these instructions in our definition of a memory operation.

In all cases, the variation in the base energy cost was found to be within five percent. Most

variability is due to variation in operands associated with an instruction. This refers to instruc-

tions with the same type signature as well as same the lexical name. For instance, the energy of a

3

Figure 1.1: Instruction Energy Models

mov instruction with the same type signature may vary up to 3.5 percent depending on the specific

operands used. The authors determine base costs associated with specific operand values by mak-

ing measurements, but measurements of variability are not useful in program power estimation

because operand values are determined at run-time.

In addition to the base costs associated with an operand values, there are other effects. For

instance, when the same instruction is repeatedly executed, the base cost is measured differently

than when we execute different instructions repeated because there is an overhead associated with

changing circuit states. It is possible to compensate for this by including the overhead associated

with change in circuit state in our calculation. When reading from the cache repeatedly, a greater

variation in address values lead to 3 percent increase power usage. When writing data to the cache,

variation in address values increased power usage by five percent. The overhead is small for the

processor in question, but novel architectures may result in different values for circuit overhead.

Pipeline stalls can significantly affect the cycle per instruction count and reduce efficiency, but

this effect is mediated by the use of NOOPS to prevent stalls. Reduction in pipeline stalls using

NOOPS is a technique that is currently used in modern processors.

In addition to pipeline stalls, cache misses will result in cycle penalties. This penalty can

be reduced by using a buffer to store the critical sections of process and keeping the instructions

4

associated with various function calls in the cache. A reduction in memory instructions will reduce

cache miss rates through the reduction of memory operands. It is possible to simulate the reduction

in cache misses through address space reductions in our work.

The authors verify that any instruction which uses memory operands will have high power cost

whereas instructions which affect only register values will have a low power cost. It is possible to

determine the power cost of a program by calculating the power of each instruction in the control

path using the above techniques and including the values of the jump statements. It is assumed that

there are no stalls or cache misses.

This technique is specifically to reduce stalls and cache misses but the author indicates these

effects can be determined when doing program analysis for power estimation. The author includes

a discussion on power consumption of the memory system. In addition to the cost on the processor

of cache miss, the memory system incurs a cost of 1/2 to 1/4 of the cost of the miss on the processor

depending on operand values.

The authors describe the energy usage of each component during the execution of a program

specifically the CPU and the L1 cache. Most embedded processors are programmed directly in

assembly and optimization is done by intuition. The human element of optimizing compilers can

be removed via automatic optimization.

An optimizing compiler is the typical way we go about optimization of memory. Typically,

optimizing compilers target high performance processors and not embedded systems. Manual

optimization is typically done through the optimization of algorithms or optimization of data. Al-

gorithmic optimization rewriting on the basis of intuition. Optimization of data is typically done

through changing data formats to target an architecture.

Low level optimization is discussed and can be done in software or in hardware. A profiler

is typically used for cycle accurate simulations. Procedures from the executable on a compiler are

sent to a simulator. A software based simulator typically gives an overhead of 10 percent. Manual

instruction level optimization typically results in a 30 percent decrease in energy in the sub-band

synthesis algorithm. [2]

5

One technique mentioned in previous for reducing cache misses in previous literature is re-

ordering instructions such that the cache miss rate will be lower without any reduction in the ratios

of power intensive instructions. The algorithm finds a minimal cost instruction sequence on the

basis of cache miss rates using a directed acyclic graph. This is a compiler level optimization and

can be implemented without any hardware modifications. The instruction graph used is similar to

the instruction graph we use to detect the critical sections of a process, but it is implemented by

the compiler whereas our technique is implemented using circuit logic by the analysis of branch

operands. Compiler based approaches to instruction reordering are effective in reducing cache

misses, but existing programs would need to be recompiled to use such techniques though instruc-

tion reordering does not seem to be as beneficial as memory operator reduction. [3]

The instruction power model is verified through simulation. The physical model of the proces-

sor is primarily based on previous work, but nevertheless an attempt is made to verify it. Previous

work indicates that instruction count based approaches are within five percent of actual energy

consumption.

More than just the cycle per instruction count to determine the energy usage for a particular

instruction. These energy models are based on physical models of interconnects and pins. After

reading of previous literature, it was determined that the highest power usage per instruction is

typically associated with an L2 cache miss because the time and energy penalties are accrued from

both the L2 cache and main memory accesses. This is primarily the reason that reductions in the

number of memory operands will reduce energy consumption because cache hit rates will be lower.

This physical model is the theoretical basis for our work on energy optimization via the reduction

of memory operators because reductions in the rate of memory operators would necessarily result

in the reduction of memory operands over any time interval. The physical model simply verifies

that these operands are intensive thermally. Some experimental verification is done that these

instructions are thermally intensive.

The specific scheduling optimizations mentioned may not take into account cache hit rates.

That is, a scheduled processes sequence could potentially have a higher energy expenditure if the

6

cache hit rates are lower. This effect would be mediated by a buffer and it would also be mediated

specific regions of the cache were allocated to each process. This is area where it is possible to

investigate further. Even if cache hit rates are not considered, instruction count based approaches

still appear to be within five percent of energy consumption even if the model is not valid in special

cases.

An analysis is included of what pattern of memory accesses are most likely to increase proces-

sor temperatures. Operators which involve reads or writes to memory have higher current values

and often have higher cycle counts which multiplies the energy cost of the instruction. Caches

misses, misaligned accesses, and stalls can all increase the cycle counts of a memory access.

The energy of the memory system also contributes to the cost of the program. Consequently

a program with a high number of memory accesses will be the most intensive in terms of program

cost. Tiwari Malik and Wolfe indicate that compilers can be used for this purpose as well as

elements inside of the processor through better use of registers. Compilers which make optimal

use of registers show 30-40 percent reduction in energy. Though more than cycle count of a

program is necessary to determine the energy cost of a program, optimization can be done through

cycle counts which are usually greater for operations with memory operands.

Tiwari, Malik and Wolfe indicate circuit state changes may add overhead to a program that

might contribute to program energy cost. [1] Therefore, instructions which repeatedly change

circuit states may incur a penalty. From this experimental work, the most energy intensive code

appears to be memory reads or writes over a very large address space.

1.1.2 Source Code Profiling

The next review topic concerns source code profiling. [2] For portable appliances, there is typ-

ically a commodity components with a microprocessor based architecture. For these components,

FPGA hardware may be used for debugging.

There are some prototype tools used to estimate energy consumption of processor cores,

caches and main memory in a SOC design. The final system energy is obtained by summing

7

the energy consumed by the execution of each instruction. Estimation of energy costs was within

five percent of the measured range.

Code optimization is the process of translating high level specifications in to machine code

suitable for optimization. An optimizing compiler targets high performance dedicated processors

typically not embedded processors. The author indicates that the reduction of memory operands

can be used optimize energy profiles. This is the theoretical basis for our research.

Since support for optimizing compilers is limited, the author focuses on manual rewriting of

code. Specifically the profiler focuses on rewriting and optimizing code. This allows designers to

focus on an abstract view of the problem, find good solutions, then move down in abstraction.

The top layer mostly focuses on algorithms. The original specification is profiled to determine

where the most time and power are spent and the author determines alternative algorithms.

At a lower level of abstraction, the focus is on changing the representation of manipulated

algorithms. The main objective is to match characteristics of target architectures with processed

data. Signal processing algorithms are often hard to specify.

The total amount of energy to be consumed was plotted on cycle by cycle plots. The compiler

was mostly rewritten manually. The improvement in terms of energy consumption of a manual

optimization resulted in a 20 percentage reduction in the net amount of power used for the program.

Furthermore, instruction level optimization resulted in a 30 percent decrease in energy use.

As it concerns extending the life of device during operation these findings are significant.

The hardware level design tools used can often be used to evaluate quite many revisions of

source code. The CPU can be changed to ARM based processor. Burst SDRAM will also increase

power usage. These simulations were run with modifications made to the compiler during the

course of development. The speedup registered by the optimized compiler was not necessarily

representative of real world situations.

Simunic, Beneni, and Micheli propose several techniques for reducing energy consumption

such as reducing sequential loads with a single load expression. [2] They also propose storing find-

ing common sub-expresssions and storing them in register values. Both these methods are compiler

8

level optimizations and can be implemented in software and constitute methods for reducing the

number memory references in a program.

1.1.3 A Review of Process Management

Consider existing systems for balancing multiple applications. A multilevel feedback queue

is used with higher priorities assigned to short processes and I/O bound processes. There are only

a subset of processes which can be balanced using the techniques mentioned here. Specifically,

I/O processes, extremely short processes or system level processes are excluded. Typically, video

or audio processes are assigned higher priorities so as not interfere with their performance. The

process management technique will be used to balance user level processes that have no priority or

the same priority. This will be done extracting information from an extended loop buffer regarding

cyclical paths and the percentage of memory operations occurring in the loop over the duration of

the loop.

When it is determined that a path will be cyclical, it is possible to disable portions of the

cache.[5] This is not simulated, but the path detection and NOOP insertions are is simulated. It

is possible to use a buffer to insert NOOPS in between memory references to reduce thermal

profiles whether or not a path is cyclical. It is possible calculate the number of memory operations

occurring for a duration of the path using a counter. This process model is simulated in Java and

then translated into a C++ based simulation language.

The basis for the hardware simulation is a instruction queue. A CPU loop buffer pre-fetches an

instruction sequence and if the target of a conditional branch is contained within the process buffer

then the instruction is fetched from the buffer. Loop buffers are currently used in ARM Cortex

chips which are used in many advanced electronic devices. This loop buffer is to determine the

ratios of memory operations occurring in an execution path. It is possible to disable the instruction

cache when a path is cyclical and insert NOOPS for validation purposes regardless of whether a

path is cyclical.

9

Future research could involve the use of better simulation software to get more accurate energy

profiles. For internal use, a model has been developed where assembly instruction sequences are

simulated in processors, but the energy profile of each instruction was not determined for a given

chipset.

10

Chapter 2

Problem Statement

The problem described in this research concerns real time scheduling as it applies to thermal

aware computing. It is necessary to establish hard constraints on energy and thermal profiles

as this is the a critical factor in determining whether a processor will be commercially viable.

Typically, the methods for determining when a processor will use energy involves measuring total

operations per second or measuring run time temperature. These methods usually after processors

have already exceeded some tolerance. This work involves trying to determine the behavior of the

processor at runtime using instruction ratios.

A good understanding of process structure is developed and how it might be used to determine

the rate memory operators of execution paths in real time. The primary area of research analyzed

was branch and jump statements as these are typically what are used in execution paths. It was

determined how to detect memory references rates of an execution paths in code given a sequence

of assembly instructions.

In an assembly path, conditional branches or jump statements execute with respect to a test

condition. Given an assembly path, one can determine the number of memory operations in the

path and its total number of instructions. A more complex case developed involved nested paths

and included function calls.

System C is a set of C++ classes that allows us to use C++ as a hardware description language.

There is some syntactical overhead compared to Verilog and VHDL. System C programs are larger.

However, this greatly outweighed by the relative ease with which existing software algorithms can

be implemented in hardware. It can also be used to simulate concurrent processes.

11

When tasks are scheduled to minimize power consumption or thermal radiation, it is typically

done by assessing the profiles of processes experimentally. This work is concerned with deter-

mining the ratio of memory operations occurring in hardware and assigning NOOPS at runtime in

hardware. The critical insight is to assign priorities according to thermal profiles determined from

run time instuction level analysis.

In real world performance scenarios, memory related performance issues are the primary

drivers of power and thermal radiation due to L2 cache misses. The goal is to reduce power

consumption by ensuring that the system always stays within the thermal profile assigned to it.

The proposal is to create a novel thermal scheduler such that one can perform run time analysis on

the power profiles of running processes by determining the structure of execution paths. Then, it is

possible to simulate the assignment of NOOPS to running processes such that a thermal intensive

process will run slower.

The applications of this research are in the area of mobile computing and in the data centers

that utilize low power hardware such as ARM chips. The benefits are also in increasing the cost

competiveness of data centers provided that the algorithms are implemented by the Operating

System. There is an across the board reduction in power consumption due to a reduction in cooling

costs.

There are also increases in system lifespan. The initial cost for purchasing datacenter hard-

ware is surpassed by the energy requirements needed to efficiently run the datacenter within 2 to 4

years depending on the datacenter size. The hardware needs to maintain a certain temperature to

insure integrity, thus cooling systems are used which also increases the energy cost. The algorithms

we discuss here primarily have benefits in the area of mobile computing.

This project focuses on energy management using a combination of software and hardware

based techniques, namely load balancing algorithms for memory operations which are the primary

drivers of energy consumption according to previous work. [4] Memory operations require far

more energy and produce more heat than arithmetic instructions. This becomes more apparent if a

cache miss occurs and data must be retrieved from main or virtual memory. By keeping the ratio of

12

memory operations below a predetermined value, it is possible to use less energy and dissipate heat

more efficiently from those components. Thus, energy usage is reduced, less heat is generated, and

the environmental impact of datacenters is reduced.

Priorities are assigned in hardware such that a predefined ratio of memory operations is never

violated. First, the maximum ratio of memory operations that may occur on a particular hardware

is determined. A counter is used to determine the memory ratio of each process executed in a

round robin scheduler.

The processor is first analyzed in software and then then modeled into a hardware design. The

solution is evaluated using assembly level analysis tools. Assembly sequences of compiled pro-

grams are analyzed using a freely available tool known as IDA-pro and and an internally developed

process analyzer we discuss here.

This technique differs from standard memory management techniques because one is not con-

cerned with the amount of memory allocated but the ratio of memory operations that are occurring

in the processor over a specified instruction sequence. If one can assign processes such that a

constant number of memory related instructions always occurs, then one can be fairly sure that

our system stays within its thermal profile except for certain highly specialized applications that

perform a large number of floating point operations on a small set of memory addresses. This

condition is rare.

The solution is verified by showing that for usage profiles associated with a typical program

that the ratio for the maximum number of memory instructions over a specified is not violated. This

is an area of further research. Typically, scheduling and the assignment of priorities is something

that occurs at software layer therefore one would have to include some additional hardware that

transmit memory ratio information to the control registers on the processor. For the purposes of

this project we are using the ARM documentation. The software model will specifically refer to

the ARM priority structure.

This work is mostly concerned with client side memory balancing not server side memory

balancing. However, algorithms can be applied to ARM based servers. This research does not

13

necessarily involve any specific mobile platform. Nevertheless, when one models the memory ratio

of our hardware device we will specifically refer to the x86 architecture. The ARM architecture is

used on units which run the iOS operating system, but there are also inexpensive Linux PCs which

also use ARM such as the recently released Raspberry Pi. This research has specific applications in

the balancing of memory operations when multiple applications running in these types of devices.

Operating systems typically ship with advanced scheduling algorithms and memory manage-

ment. This research attempts build on these technologies. Specifically, the goal is to balance

memory ratios on operating systems which run multiple applications such that thermal constraints

are met. This is done by ensuring that a constant ratio of memory operations is not violated for a

specified time interval.

14

Chapter 3

Simulation

3.1 Software Models Of Hardware

The algorithms are implemented in software using a standard C++ compiler. Microsoft Visual

Studio and Eclipse are both used. The algorithm to detect a path is coded in Java. The scheduler

simulation is coded in using an extension of C++. All sources of algorithms we utilized for sim-

ulations are noted. The majority of the code base is completely original. The complete hardware

implementation is not documented here.

The language used to design the hardware is a derivative of the C++ language, System C. It

was chosen specifically because of how easy it is to take existing software based algorithms and

implement them in hardware. The specific role here is to determine in real time when the processor

will use a large number of memory operations. This is not done using statistical methodologies as

is done with typical branch prediction algorithms but by anticipating the memory operation rates of

execution paths, and then inserting NOOPS into processes based on these structures using a buffer.

.

The instruction sequences that were analyzed were not randomly generated with the process

analyzer were not randomly generated. To get accurate data, what was instead used were assembly

sequences of compiled programs. This was done in the case of an x86 program. To do this for

ARM, it would be necessary to use the ARM development kit in combination with source code

analysis tools, or it would be necessary to develop our own source code analysis tools. The process

scheduler can in fact be used with processes that have different priorities. Only a cursory look

is taken at such a design, and instead processes are emphasized that have the same priority or no

priority.

15

The unmodified C++ based processor simulation software has the following output for a generic
RISC processor:

IFU : mem=0xf550000

IFU : pc= 19 at CSIM 173 ns

-

ID: R5=R5(=5)

: at CSIM 175 ns

-

-

ALU : op= 3 A= 5 B= 0

ALU : R= 5-> R5 at CSIM

177 ns

-

-

ID: R5=05(5) fr ALU at CSIM 178 ns

-

IFU : mem=00

IFU : pc= 1a at CSIM 180 ns

-

ID: REGISTERS DUMP at CSIM 182 ns

REG :==

R 0(00000000) R 1(00000001) R 2(fff000e2) R 3(ffffffff)

R 4(00000004) R 5(00000005) R 6(0000000a) R 7(fcf0fdef)

R 8(00000008) R 9(00000009) R10(00000010) R11(0000ff31)

R12(0000ff12) R13(00000013) R14(00000014) R15(00000015)

R16(00000016) R17(00fe0117) R18(00fe0118) R19(00fe0119)

R20(00fe0220) R21(00fe0321) R22(00fe0322) R23(00ff0423)

R24(00ff0524) R25(00ff0625) R26(00ff0726) R27(00ff0727)

R28(00f70728) R29(00000029) R30(00000030) R31(00000031)

Figure 3.1: Unmodified Processor

16

When dealing with a hardware logic structure as opposed to a software logic structure, often

additional constraints exist regarding the logic functions that may be used. For instance, if it is

needed to calculate the mean of a set of values in real time, it is simple to do using hardware

logic, but calculating the mode is generally much more difficult. The goal is to assign NOOPS in

a scheduler to user level processes of the same priority or no priority in real time by determining

their memory ratios. On the software side, it is possible to determine memory ratios by assuming

that it is a constant fraction of the CPU utilization of a particular process. Once it is calculated

that a cyclical path will be small enough for the instruction buffer, the instruction cache may be

disabled data is transferred to the buffer. [5]

The next goal was to develop software models that will accurately simulate the process models

that have been developed. The model has been developed well enough to detect nested structures,

context switches have been modeled, and constants have been associated with the buffer sizes

in software. These were immediate priorities. Real assembly sequences associated with actual

processes as opposed to simulated processes were used in our path analyzer. A hardware simulation

was using a C++ based hardware description language. The language we used to specify hardware

architecture is a set of C++ classes known as SystemC. Future research may involve determining

power usage associated with the logic structures using better simulation software. The final task

was to verify conditions for which our process model maintains thermal and energy constraints

and the conditions for constraints are violated.

3.2 Assembly Data From Apache.exe

Initially, this work was mostly concerned with learning how to use the IDA disassembler and

transferring executable data from an executable file to the simulator. The raw data from an Apache

WebServer process is provided here. This is the data we read into our analyzer.

Raw assembly from a sample path in apache.exe reads as follows:

A sequence of x86 instructions is read into the Java based analyzer. The file that was read

was the Apache WebServer. This is an example of a background process with dynamic memory

17

int nestedloops = 0;

int loops = 0;

int zold = 0;

for (i = 0; instructions[i] != null; i++) {

if (instructions[i]=jump,branch) {

for (int z = 0; z <= i; z++) {

if (target[i]==address[z])) {

loops++;

if (z < zold) {

nestedloops++;

Print ("Nest: Outer:" + address[z] + " Inner: " + address[zold]);

}

zold = z;

Print("Loop Start: " + address[z]);

break;

}

}

}

}

Figure 3.2: Pseudocode For Path Detection Algorithm

push ebp

mov ebp, esp

sub esp, 30h

push ebx

push esi

lea eax, [ebp+argv]

push edi

lea ecx, [ebp+argc]

xor esi, esi

push eax

push ecx

mov [ebp+var_18], esi

mov [ebp+var_24], 404170h ;

mov [ebp+var_20], 404168h ;

Figure 3.3: Beginning of Apache.exe Raw Instruction Path

18

rates where the memory balancer would be applicable. The next steps is to convert the string base

instructions into data structures and determine a base memory rate based on all instructions in the

sequence.

The assembly sequences from files and converted them into data structures. The analytical

software used to read apache.exe actually displays cycles and code trees in a comprehensive way.

These cycles are reconstructed in a software analyzer insofar as they allow us to determine the

memory rate of an execution path in hardware. The first step is to reconstruct code cycles deter-

mined from the assembly analysis tools.

After using the disassembler and tracing the execution path of the processor, it was possible

to determine precisely the sequence of instructions going to the processor for a sample execution

path. The goal of the analyzer is not to determine the memory rate from the instructions of a com-

piled program but to determine the memory ratios from instruction sequence inside the processor.

Though this work was successful in reading an assembly sequence from compiled programs, in or-

der for the program to determine the execution paths associated with path cycles, these paths must

be manually reconstructed inside the processor. The next step is to calculate the memory ratios for

a sample path using our analyzer. Function calls and methods to handle differing execution paths

are discussed

Below is a graph of instruction paths inside the processor. When the processor executes a

cyclical path, a path similar to the one below is stored in a buffer: [5]

Once the assembly sequence was reconstructed, the sequence was read into the analyzer to

determine memory reference rates.

When actual assembly sequences were analyzed, it was determined that the model used to

describe assembly sequences was largely accurate. However, some modifications were made to

our predictive model to handle real world data. An approximate value was determined for the

memory usage associated with functions being called. However, this was done manually. In order

to determine exact memory ratios, code cycles were reconstructed with function calls included as

was done for cycles without function calls included. This was a manual process.

19

Reconstructed Assembly Sequence:

loc_401116:

movsx eax, byte ptr [ebp+var_1]

add eax, 0FFFFFFC1h

cmp eax, 37h

ja loc_4013FD

xor edx, edx

mov dl, ds:byte_401818[eax]

jmp ds:off_4017D4[edx*4]

loc_40115A:

mov ecx, ds:ap_server_pre_read_config

mov edx, [ecx]

push edx

call ds:_apr_array_push@4 ; apr_array_push(x)

mov ecx, [ebp+var_14]

mov esi, eax

mov eax, [ebp+var_8]

push eax

push ecx

call ds:_apr_pstrdup@8 ; apr_pstrdup(x,x)

mov [esi], eax

jmp loc_4013FD

loc_4013FD:

mov ecx, [ebp+var_1C]

lea edx, [ebp+var_8]

lea eax, [ebp+var_1]

push edx

push eax

push offset

push ecx

call ds:_apr_getopt@16 ; apr_getopt(x,x,x,x)

test eax, eax

jz loc_401116

Figure 3.4: Apache.exe Simulation of Hardware Path Reconstruction

20

Figure 3.5: Apache.exe Function Graph

Figure 3.6: Expanded Apache.exe Function Cycle

21

Keep in mind that process buffer sizes were selected in the analyzer such that it was possible

to determine the memory ratios of 10e9 instructions in real time. In order to do this, instructions

are stored into the buffer until there is a sufficiently small path. One is able to determine memory

rates in real time as follows: when path(s) are cyclical and small enough and to store in the buffer,

one may assign NOOPS to a set of processes to the balance memory ratios.

3.3 Simulation Output

When real assembly sequences were analyzed, it was determined that the model used to de-

scribe assembly sequences was largely accurate. However, some modifications were made to the

predictive model to handle real world data. It was possible to get an approximate value for the

memory usage associated with functions being called. However, this was done manually. In order

to determine the exact memory ratios, code cycles were reconstructed with function calls included

as was done for cycles without function calls included. This was a manual process.

Keep in mind that a buffer size is selected in the analyzer such that it is possible to determine

the memory ratios of 10e9 instructions in real time. In order to do this, instructions are read into the

buffer until a sufficiently small path was reached. It is possible to assign memory rates in real time

as follows: when path(s) are small enough and cyclical, NOOPS may be assigned to the process to

the processes inside a buffer balance memory ratios.

Below is a manually reconstructed assembly path for apache.exe on x86 with function calls

included:

loc_401116:

movsx eax, byte ptr [ebp+var_1] add eax, 0FFFFFFC1

cmp eax, 37h

ja loc_4013FD

xor edx, edx

mov dl, ds:byte_401818[eax]

22

jmp ds:off_4017D4[edx*4]

...

...

...

loc_6EED1B1F: mov edx, [ebx+8]

mov ecx, [ebx+10h] inc edx

mov eax, edx mov [ebx+8], edx dec eax

imul eax, [ebx+4] add eax, ecx

pop ebx pop ebp retn 4

_apr_array_push@4 endp

mov ecx, [ebp+var_14] mov esi, eax

mov eax, [ebp+var_8] push eax

push ecx

call ds:_apr_pstrdup@8 ; apr_pstrdup(x,x)

public _apr_pstrdup@8 _apr_pstrdup@8 proc near

push ebp mov ebp, esp push esi

mov esi, [ebp+arg_4] xor eax, eax

test esi, esi

jz short loc_6EED0718

loc_6EEC90EF:

23

cmp dword ptr [esi+10h], 2Dh

jz loc_6EEC8FF3

loc_6EEC8FF3:

mov ecx, [ebp+arg_8] mov al, [esi+10h] pop edi

pop esi

mov [ecx], al mov eax, 1117Eh pop ebp

retn 10h

test eax, eax

jz loc_401116

The next step was reading in the assembly sequences into the memory analyzer from a re-

constructed path for simulation of hardware based determinations of memory rates. For practical

implementation, the detection of paths were restricted to memory locations inside the currently

executing process.

3.4 Simulation of Hardware Based Path Detection in Java

3.5 Temperature Projections

The next step involved formal verification of NOOP insertions for the purpose of power sim-

ulation. Verification can be a very time consuming process and this work was largely in the initial

phases. A FIFO scheduler was modified to work instead as a round robin scheduler, inserting

NOOPS into processes on the basis of the process model from the Java based algorithm.

The design specification specified was that the memory ratio would be lower using this tech-

nique. This was verified. In our simulation, the memory ratio of an unscheduled sequence was

0.289 whereas it was 0.189 for the scheduled sequence for a two process set with a maximal mem-

ory ratio of 0.2.

24

97 memory

257 instructions

movsx eax, byte ptr [ebp+var_1]

add eax, 0FFFFFFC1h

cmp eax, 37h

ja loc_4013FD

xor edx, edx

mov dl, ds:byte_401818[eax]

jmp ds:off_4017D4[edx*4]

add eax, eax

mov [ebp+arg_0], eax

mov ecx, ds:ap_server_pre_read_config

mov edx, [ecx]

push edx

call ds:_apr_array_push@4 ; apr_array_push(x)

call _apr_palloc@8 ; apr_palloc(x,x)

retn 8

retn 4

...

...

...

jz loc_401116

Loop Start: loc_6EED1ABE

Loop Start: loc_6EEC77B8

Loop Start: loc_6EEC77DA

Loop Start: loc_6EEC77FE

Loop Start: loc_6EEC79B8

Loop Start: loc_6EEC79C6

Nest: Outer:loc_401116 Inner: loc_6EEC79C6

Loop Start: loc_401116

Total Loops: 7

Nested Loops: 1

Figure 3.7: Output of Nested Path Detection Algorithm

25

What was not verified was that the actual energy profile of the processor would be lower, only

that the memory ratio would be lower.

The last phase of this project involves verification of power constraints for several path sets.

A RISC processor design implemented using SystemC was simulated, but there were difficulties in

determining the energy profiles. It is feasible to validate the processor model and some exploratory

work was done along this line.

This typically involves simulating the NOOP insertions using real assembly sequences, but

it is not required. For these purposes, real assembly sequences were not used for the verification

of NOOP insertions. There has already been validation work done for the detection of critical

sections of code by using a real sequence on the path detection algorithm though we did not do any

verification work on the implementation this section as this is beyond our current scope.

The verification work involved converting the FIFO based model to a round robin model

and specifying methods for communication between the processor and a process buffer. Some

constants have been set such as the maximum number of processes to be 150. The model works

as follows when a processes is active it writes assembly instructions to the buffer and from these

instructions we determine the ratio of memory references as a proportion of the total number of

memory instructions which are allowed over the interval.

Without NOOP insertions, the memory ratio is 0.28 which is significantly higher than the

0.189 ratio for a scheduled instruction sequence with a maximal memory ratio of 0.2. Given that

memory related instructions are the primary drivers of energy consumption, our hardware algo-

rithm will automatically optimize a process set to keep the memory ratio below the specified value.

Previous work indicates that the reduction of memory operands can be used to optimize power con-

sumption. [1] Our work falls into line of automatic optimization on this basis. NOOP Ratios are

determined from a C++ based simulation. From the C++ based simulation, projections are made

of the number of baseline instructions, number of memory instructions, and NOOP instructions in

a critical path by multiplying the ratios from the simulation by the size of the buffer.

26

Maximal Ratio Ratio of Memory Total Number of Memory Number of Length
of Memory References from Instructions Instructions in NOOPS Penalty
References Simulation Scheduler Percent

Unscheduled 0.242 141 34 0 0
0.15 0.150 206 31 65 146
0.20 0.178 202 36 42 126
0.25 0.187 171 32 25 117
0.30 0.207 187 32 25 109

Table 3.1: Projected Instruction Ratios For Varying in Maximal Memory Instruction Count On A
Simulated Process Scheduler - Path Set 1

From this power for the path is calculated, adding up the power cost of each instruction from

a formula derived from the instruction energy values mentioned by Tiwari:

PathPower = (3.69∗MemoryIns+2.5∗BaselineIns+2.26∗NOOPIns)∗10e−8J (3.1)

The energy for a 486DX2 processor at 100MHZ is then projected from the formula:

Energy = PathPower/(NumberO f Instructions/ClockRate) (3.2)

A temperature projection is made for a newer processor model by assuming that the reduction

in wattage will be in the same range in newer processor models. [6]:

Temperature = 0.29∗Energy+45.1 (3.3)

The work for process power validation was mostly exploratory. The goal is to determine the

power dissipation in watts of a series of scheduled instructions. A successful effort was made in

acquiring the cycle count for a set of x86 instructions, but could not determine the power dissipation

from this cycle count. To determine the power dissipation of a scheduled instruction set, one needs

to determine more than just the cycle counts of an instruction set, one needs to determine the

27

Maximal Ratio Ratio of Memory Total Number of Memory Number of Length
of Memory References from Instructions Instructions in NOOPS Penalty
References Simulation Scheduler Percent

Unscheduled 0.42 128 54 0 0
0.15 0.15 317 48 197 264
0.20 0.20 239 48 119 199
0.25 0.25 196 49 74 160
0.30 0.3 160 48 40 133

Table 3.2: Projected Instruction Ratios For Varying in Maximal Memory Instruction Count On A
Simulated Process Scheduler - Path Set 2

Maximal Ratio Ratio of Memory Total Number Number of Length
of Memory References from Instructions Instructions in NOOPS Penalty
References Simulation Scheduler Percent

Unscheduled 0.261 141 34 0 0
0.15 0.151 172 26 66 162
0.20 0.175 171 30 53 144
0.25 0.207 140 29 25 121
0.30 0.235 136 32 12 109

Table 3.3: Projected Instruction Ratios For Varying in Maximal Memory Instruction Count On A
Simulated Process Scheduler - Path Set 3

28

NOOP Ratio Baseline Ins. Memory Ins. NOOP Ins. Cost 10-8J Energy (W)
0 1344 726 0 6038.9 29.1

0.31 1620 450 930 7747.5 25.8
0.207 1845 534 621 7986 26.6
0.146 2001 561 438 8062 26.9

Table 3.4: Projected Power Data For Buffer at Varying NOOP Ratios - Path Set 1

NOOP Ratio Baseline Ins. Memory Ins. NOOP Ins. Cost 10-8J Energy (W)
0 658 476 0 3406 29.9

0.62 685 450 1864 7588 25.3
0.49 906 600 1493 7855 26.2
0.377 1117 1132 750 8120 27.0
0.25 1350 750 900 8391 28.0

Table 3.5: Projected Power Data For Buffer at Varying NOOP Ratios - Path Set 2

power dissipation for the instruction on the basis of processor models mentioned in previous work.

[1] This is an extensive area of research. In previous work, the model was developed using an

ammeter. It was unclear whether power dissipation from the scheduled instruction sequence can be

determined from this software library without extensive additional work derived from the original

paper.

The outline of this is as follows: from a processor model, the average power dissipation

of each instruction is determined. Then, the total power dissipation is determined by summing

the power dissipation of each instruction. The scheduled NOOP ratios and associated power and

temperature values are as follows:

NOOP Ratio Baseline Ins. Memory Ins. NOOP Ins. Cost 10-8J Energy (W)
0 1366 482 0 5196 28.1

0.388 1395 453 1151 7762 25.8
0.309 1545 525 929 7901 26.3
0.178 1843 621 535 8110 27.0
0.085 2030 705 264 8275 27.5

Table 3.6: Projected Power Data For Buffer at Varying NOOP Ratios - Path Set 3

29

NOOP Ratio Projected Energy at 100MHZ (Watts) Projected Temperature at 100MHZ (C)
0 29.1 53.56

0.31 26.0 52.65
0.207 26.6 52.82
0.146 26.9 52.89

Table 3.7: Projected Power Temperature and Temperature Data for Varying NOOP Ratios

Figure 3.8: Projected Temperature Reduction: NOOP Ratio vs Temperature - Temperature =
0.29*Energy(Watts) + 45.1

30

Figure 3.9: Projected Temperature Reduction: NOOP Ratio vs Temperature - Temperature =
0.29*Energy(Watts) + 45.1

Figure 3.10: Projected Power Difference of Buffer Execution: NOOP Ratio vs Power

31

3.6 Temperature Reduction Results From NOOP Insertions

Fig 3.8 and 3.9 provide projected temperature reductions from two different simulations. 3.10

provides projected power data. The projected reductions are compared to reductions from three

different simulations. The simulation data below provides time vs average core temperature graphs

and peak and average core temperature bar charts for the Lattice Boltzman Method and Shor’s

Factorization Algorithm. Simulation data from the sjeng chess simulation program and the srand

simulation is also provided in low NOOP ranges. The NOOP ratio was not measured to be high for

the sjeng simulation. Peak and Average temperature data tables are provided for Lattice Boltzman

Method, Shor’s Factorization Algorithm and sjeng chess simulation. The peak temperature in each

of the following simulations corresponds closely to the projected temperature values as this is close

to the limiting temperature. For the sjeng chess simulation program, comparisons are provided for

peak temperature data in a Windows Desktop environment. It is established using the central limit

theorem used in statistics that the average processor temperature over a simulation is a normally

distributed measurement.

3.7 Lattice Boltzman Method

The Lattice Boltzman Method:

The Lattice Boltzman Method is used to simulate incompressible fluid flows by solving the

Boltzman equation which is a linear partial differential equation used in statistical mechanics to

describe many particle systems.

df/dt=(df/dt)force + (df/dt)coll + (df/dt)diff

NOOPS are into a portion of the code used to simulate streaming collisions in this particle sys-

tem. Figure 3.11 and 3.12 indicates isolated core temperature reductions for the Lattice Boltzman

Method on Laptop AC and Laptop Battery.

Fig 3.13 - Fig 3.14 indicate the differences in the average temperature for all cores for varying

number of NOOPS for the Lattice Boltzman Method on Laptop AC and on the Linux Desktop. Fig

32

Figure 3.11: SPEC CPU lbm Measured Temporal Average Temperature for Isolated Core (C) for
varying Number of NOOPS Laptop AC - Linux

Figure 3.12: SPEC CPU lbm Measured Temporal Average Temperature for Isolated Core (C) for
varying Number of NOOPS Laptop Battery - Linux

33

Figure 3.13: SPEC CPU lbm Time(s) vs Measured Spatial Average Temperature over All Cores
(C) for varying Number of NOOPS Laptop AC - Linux

Figure 3.14: SPEC CPU lbm Time(s) vs Measured Spatial Average Temperature over All Cores
(C) for varying Number of NOOPS Desktop - Linux

34

Figure 3.15: SPEC CPU Measured Temporal Peak Temperature (C) for varying Number of
NOOPS Laptop AC - Linux

3.15 indicates differences in Peak Temperature over all cores for varying number of NOOPS for

the Lattice Boltzman Method. This corresponds closely to the steady state temperature indicated

in projections. Fig 3.16 indicates spatial and temporal average temperature differences in CPU

temperature for the Lattice Boltzman Method on the Laptop with AC. Fig 3.17 and 3.18 provide

spatial and temporal average temperature data and peak temperature data for the Lattice Boltzman

Method in the Laptop AC and Desktop environments.

3.8 Shor’s Factorization

Shor’s factorization is a quantum algorithm for factoring integers. Quantum bits allow integers

to be represented using fewer bits resulting in a lower time complexity. We insert NOOPS into a

section of code which performs a matrix multiplication on a quantum register.

Fig 3.19 - Fig 3.20 indicate the differences in the average temperature for all cores for varying

number of NOOPS for the Shor’s factorization algorithm for Linux Laptop on AC and the Linux

Desktop. Fig 3.21 indicates differences in Peak Temperature over all cores for varying number

35

Figure 3.16: SPEC CPU Measured Average Temperature (C) for varying Number of NOOPS
Laptop AC - Linux

of NOOPS for the Shor’s factorization algorithm. This temperature reading corresponds closely

to the steady state temperature indicated in projections. In the Shor’s factorization simulation,

it was determined that different sections of code were running which accounts for some of the

difference in projected values. Fig 3.22 indicates average spatial and temporal average temperature

differences in CPU temperature for the Lattice Boltzman Method.

Fig 3.23 and 3.24 provide spatial and temporal average temperature data and peak temperature

data for the Lattice Boltzman Method.

3.9 sjeng chess simulation

sjeng is a chess simulation program. The program searches a tree to determine the best possi-

ble move for a player. We insert NOOPS into to a section of code used to search the tree of possible

moves.

Fig 3.25 and 3.26 provides Isolated Core Temperature Data for low NOOP ranges for the sjeng

simulation. Results indicate no differences in low NOOP ranges for the simulations in question. In

36

Figure 3.17: lbm Number of NOOPS and Measured Average Temperature across All Cores Laptop
AC

37

Figure 3.18: lbm Number of NOOPS and Measured Average Temperature across All Cores Desk-
top

Figure 3.19: SPEC CPU libquantum Time(s) vs Measured Spatial Average Temperature over All
Cores (C) for varying Number of NOOPS Laptop AC - Linux

38

Figure 3.20: SPEC CPU libquantum Time(s) vs. Measured Spatial Average Temperature over All
Cores (C) for varying Number of NOOPS Desktop - Linux

Figure 3.21: SPEC CPU libquantum - Measured Temporal Peak Temperature Across All Cores
(C) for varying Number of NOOP : Laptop AC - Linux

39

Figure 3.22: SPEC CPU libquantum Measured Average Temperature (C) for varying Number of
NOOPS Laptop AC - Linux

1mincooldowntest10e9 20mincooldowntest10e9
43.84523C 41.40476C

Table 3.8: Cooldown Data Lattice Boltzman Method at 10e9 NOOPS

Fig 3.27 and 3.29, there is a observable difference in the srand simulation due to the small path size.

Depending on the size of the path, low NOOP ranges may have an effect. If the path size is large,

then a statistical test can be done to determine whether measurements of differences in temperature

at low NOOP ranges are statistically significant. This was not done for these measurements, but

it can be clearly observed that the probability that the measurement of a temperature difference in

the sjeng measurement is statistically significant is less than 0.10 based on observed variance of

the distribution. If the temperature is in fact statistically measured to be significant, it is because

of the specific instruction values result in differences temperature readings and possibly also due

to L2 cache misses and some of the the effects mentioned by Tiwari.

Fig 3.28 provides spatial and temporal average temperature data and peak temperature data

for the sjeng simulation for on the Linux Desktop. Fig. 3.30 indicates the differences in the

average peak temperature for all cores for varying number of NOOPS for the sjeng simulation for

the Windows Desktop Environment.

40

Figure 3.23: libquantum Number of NOOPS and Measured Average Temperature Across All Cores
Laptop AC

lbm10e6 lbm10e9 sjeng10e6 sjeng10e9 libquantum10e6 libquantum10e9
0.000788 8.27586e-7 ”NO CHANGE” 0.9375 0.00306 0.00137

Table 3.9: Runtime Penalties For Lattice Boltzman Method, sjeng chess, and Shor’s Factorization

41

Figure 3.24: libquantum Number of NOOPS and Measured Average Temperature Across All Cores
Desktop

Figure 3.25: SPEC CPU sjeng Measured Peak Temperature on Isolated Cores (C) for varying
Number of NOOPS (0 to 10E3) Laptop AC - Linux

42

Figure 3.26: SPEC CPU sjeng Measured Peak Temperature over All Cores (C) for varying Number
of NOOPS Laptop AC (0 to 10E3) - Linux

Figure 3.27: Number of NOOPS vs Temperature for SPEC CPU srand in Windows for NOOP
Ranges Between 0 and 10E3

43

Figure 3.28: sjeng Measured Number of NOOPS And Average Temperature Across All Cores
(Linux Desktop)

44

Figure 3.29: srand Time(s) vs Measured Average Core Temperature for varying Number of NOOPs

The primary hypothesis is that memory instructions are the primary drivers of energy con-

sumption which is indicated by previous work [1], and this hypothesis is used to create a novel

process model. In order to verify this model, it is necessary to verify the power usage from mem-

ory instructions from a model of the processor.

Prior to doing this, some preliminary work is done by simply counting each instruction in a

process model. It is not sufficient to only count the instructions because attributes associated with

each instruction are also used to determine the power dissipation. The estimated power reduction

for a 100 MHZ processor is described above. When NOOPS were inserted, temperature reduc-

tions were also in the range predicted by the NOOP ratios unless different sections of code were

running. The Windows based average peak chart does not use the same calculation methodology

as the other measurements of peak temperature because sensor readings were not taken using a

programmatic sensor reading. This is the reason a different calculation methodology was used.

The measurements of peak temperature are otherwise consistent with predictions.

It was mentioned earlier that the full hardware logic associated with an implementation was

not specified. The SystemC sample code contains an example of a RISC CPU design that we

45

Figure 3.30: SPEC srand and sjeng Average Peak Temperature (C) over Four Processor Cores
(Windows) (The peak temperature at a NOOP range is recorded on each processor core. These
values are averaged.)

46

would have to modify if one were to actually do a hardware design. Instead of modifying the RISC

CPU design to work with our simulation code, a FIFO scheduler was modified to work as a round

robin based process scheduler. Assembly sequences are read in this simulation and NOOPS are

assigned to processes on the basis of the algorithms coded in Java.

3.10 Analysis of Results

There is always a temperature reduction when NO NOOPS are used and when 10e9 NOOPS

are used. The difference temperature between 10e6 and 10e9 is generally much smaller or statisti-

cally nonexistent due to the fact the NOOP ratio may not necessarily not change very much in this

range. This has to do with how the NOOP ratio changes in the critical loop/path of the program as

NOOP loop iterations are increased in software. The NOOP ratio is believed to be in the range 0.6

when the runtime penalty is high in the simulations we did. In our previous simulation work, we

attempt to make projections of the temperature reduction on this ratio and our results are consis-

tent except in the case of the libquantum simulation in which case the slowdown is so severe that

different sections of code are running during the simulation.

There is a natural variation in the average temperature over a simulation. However, since

variables being averaged are not assumed to be independent random variables, we can not assume

that mean will be normally distributed without additional assumptions. (We do know that the

mean of simulation set averages is normally distributed.) If we assume that each measurement

(average core temp at time t) follows the same distribution (which we do not know) with some

linear transformation applied to it over the course of the simulation, for instance, +.2 C, then we

can then assume that each variable is an independent random variable, and that the mean of the

simulation set will be normally distributed regardless of the underlying distribution. It is thus

established using the central limit theorem that the average processor temperature measurements

are normally distributed.

In the Linux (monolithic kernel) environment, the kernel runs on all cores. In Windows, vari-

ous portions of the NT kernel are assigned various cores at various times according to a scheduling

47

policy. In both cases, the portions of the kernel run on any core that has any processes running on

it.

The processor assigns time slices to processor cores according to a scheduling policy. Whether

a particular process runs on a particular core is determined by this policy. There is no trivial way to

determine how the OS assigns time slices at runtime, but in Linux and Windows the programmer

may assign an affinity for a particular processor. This is done in Linux simulations.

The ambient temperature was 73F Desktop Windows simulations, 75F on Desktop Linux

simulations and 73F on Laptop Linux simulations. The cool down test performed in a Linux

environment.

The desktop machine had the following specifications: Memory 8.00 GB Ram, 240 GB disk,

Model: Dell Optiplex 7020, Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 4 Core(s), 8

Logical Processor(s), L2 cache: 1024kb, L3 cache: 8192kb.

The laptop machine had the following specifications 4.00 GB RAM, 156 GB Disk, Latitude

E3250, Intel Core i5 2520 2.50 GHZ, 4 logical processors. L2 Cache: 256kb, L3 Cache: 3072kb.

3.11 Conclusion

A process buffer is simulated with NOOP insertions to hold a sequence of instructions in a

process set before they are executed. Previous work to describes the physical architecture of the

buffer and its relation to the processor. In this extension, the buffer holds a larger series of nested

loops which encompasses the critical sections of a set of processes. The SystemC simulation

language is used to verify that this can be implemented in hardware, though the design is not fully

implemented. Better specifying the implementation is an area of further research.

A disassembler is used to determine a possible execution path. For this work, the IDA pro

to disassembler is used to disassemble Apache executable. Critical path(s) are reconstructed in

hardware and NOOPS inserted for validation purposes. Future research may disassemble programs

on the ARM architecture as opposed to x86. A counter is used to count the total number of

instructions in a critical sections and also the number of memory references. Instructions are

48

written to the buffer if the ratio of these two numbers is less than a predetermined ratio. If it is

greater, we write a NOOPS to the buffer until it is below this number, and then write the remaining

instructions. Temperature reduction projections are made on the basis of the above simulations

and compared to actual results. The work for this project is simulation work and we can do further

research along this line. The approach described is to take critical sections of processes and insert

NOOPS resulting in a lower power dissipation. Future research may attempt to determine the

minimum slowdown that is required before no additional temperature reductions are observed.

49

Bibliography

[1] V. Tiwari, S. Malik, A. Wolfe, M. Lee, Instruction Level Power Analysis, Journal of VLSI
Signal Processing Systems, no.1, pp.2232383, 1996

[2] T. Simunic, L. Benini, G. De Micheli and M. Hans, Source Code Optimization and Profiling
of Energy Consumption in EmbeddeSystems, Proceedings of the 13th International Sympo-
sium on System Synthesis, pp 193-198, September 2000.

[3] H. Tomyiama, H., T. Ishihara, A. Inoue, H. Yasuura, Instruction scheduling for power re-
duction in processor-based system design, DATE, 1998.M. Young, The Technical Writers
Handbook. Mill Valley, CA: University Science, 1989.

[4] N. Beckmann and D. Sanchez. Jigsaw: Scalable Software-Defined Caches. In Proc. PACT-22,
2013

[5] M Knoth US Patent 7,873,820 - Processor utilizing a loop buffer to reduce power consump-
tion, 2011

[6] Intel Corporation, ”2nd Generation Intel Core Processor Family Desktop and Intel Pentium
Processor Family Desktop, and LGA 1155 Socket Thermal Mechanical Specifications and
Design Guidelines”

50

