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Abstract 

 

 

In recent years, rapid developments in technology facilitated the collection of vast 

amount of data from different industrial processes. Data-driven soft sensors have been 

widely used in both academic research and industrial applications for predicting hard-to-

measure variables or replacing physical sensors to reduce cost. It has been shown that the 

performance of these data-driven soft sensors could be greatly improved by selecting on-

ly the vital variables that strongly affect the primary variables, rather than using all the 

available process variables. Consequently, variable selection has been one of the most 

important practical concerns in data-driven approaches. By identifying the irrelevant and 

redundant variables, variable selection can improve the prediction performance, reduce 

the model complexity and computational load, provide better insight into the nature of the 

process, and lower the cost of measurements. Given the importance of variable selection, 

a systematic evaluation of variable selection performance becomes essential. However, 

the existing performance indicators all have limitations.  

In this work, a comprehensive evaluation of different variable selection methods 

for PLS-based soft sensor development is presented, and a new metric is proposed to as-

sess the performance of different variable selection methods. The new performance indi-

cator incorporates information entropy to measure how consistently variable selection 

performs over multiple Monte Carlos runs. When the ground truth of the data is not 

available, only consistency index can be accessed to evaluate the variable selection per-
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formance, along with the prediction capability. The following seven variable selection 

methods are compared: stepwise regression (SR), partial least squares (PLS) with regres-

sion coefficients (PLS-BETA), PLS with variable importance in projection (PLS-VIP), 

uninformative variable elimination with PLS (UVE-PLS), genetic algorithm with PLS 

(GA-PLS), competitive adaptive reweighted sampling with PLS (CARS-PLS), and least 

absolute shrinkage and selection operator (Lasso). The algorithms of these variable selec-

tion methods and their characteristics will be presented.  

In addition, the strength and limitations when applied for soft sensor development 

are demonstrated by static case studies (a simulated case and an industrial polyester pro-

duction) and dynamic case studies (a digester simulator and an industrial Kamyr digest-

er). A simple simulation case is used to investigate the properties of the selected variable 

selection methods. The dataset is generated to mimic the typical characteristics of indus-

trial data, by considering four factors: proportion of relevant predictors, magnitude of 

correlation between predictors, magnitude of signal to noise ratio, and structure of regres-

sion coefficients. In addition, the algorithms are applied to an industrial case study, the 

production of polyester resin, to test their performance. In both simulated and industrial 

polyester case studies, Monte Carlos (MC) simulation is adopted to generate different 

combinations of training, tuning, and testing datasets. Independent tuning datasets are 

used to optimize each method and to analyze the sensitivities of each method to its tuning 

parameters. Then independent test datasets are used to compare the prediction perfor-

mances of PLS models built from different subsets of regressors retained by these varia-

ble selection methods. Based on the results, PLS-VIP is the most consistent method, 

based on both selection and prediction performances. Along with data preprocessing and 
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correlation removal, around 30% of improvement is obtained on the polyester case study. 

Moreover, the effect of process dynamics on variable selection is examined with applica-

tions of a digester simulator and industrial Kamyr digester case studies. Due to the dy-

namic nature of the process, the selection performances are not as consistent. Therefore, a 

new variable selection technique is needed. The performances of different variable selec-

tion methods are compared and their advantages and disadvantages are discussed with the 

aim to provide useful insights to practitioners in the field. 
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Chapter 1. Introduction 

Due to advancement of technology, tremendous amount of process measurements 

are collected and stored every day. These data have been used to build data-driven soft 

sensors [1]–[4]. Soft sensors are mathematical models that relate primary variables with 

the secondary variables. By correlating the secondary variables with the primary varia-

bles, one application of soft sensor is to provide information on those hard-to-measure, 

but important variables, such as product quality [3]. Another application of soft sensor is 

to provide prediction on infrequently measured process variables so that prompt control 

actions can be taken [4]. It has been shown by many studies that the performance of these 

data-driven schemes can be tremendously improved by selecting only the vital variables 

that strongly affect the primary variables, rather than all the available process variables 

[5], [6], even though it has not been studied what factors would determine the level of 

improvement in soft sensor performance with variable selection. By identifying the rele-

vant variables, variable selection can improve the prediction performance of soft sensor, 

reduce the model complexity and computational load, obtain better insight into the nature 

of the process, and lower the cost of measurements [5], [6]. Variable selection has been 

one of the most important practical concerns in data-driven approaches. 

In the past few decades, many different variable selection approaches have been 

reported for various applications with different soft sensor modeling methods. In general, 

variable selection techniques can be categorized into three groups: filter, wrapper, and 

embedded approaches [5], [7]–[11]. Filter approaches can simply be viewed as variable 



2 

 

ranking, and it is independent from the learning machines. Compared to the simplicity of 

filter methods, wrapper and embedded methods are more complex and closely related to 

each other. Wrapper methods wrap around an appropriate learning machine, which is 

employed as the evaluation criterion, such as prediction or classification error. Wrapper 

methods are proven to outperform filter methods [5], [7]–[11]. The embedded methods 

are similar to wrapper methods, except that the variable selection is performed simulta-

neously with the training process. Since the main focus of this work is to improve the 

performances of partial least squares (PLS) based models, only wrapper approaches are 

investigated. The following seven variable selection methods are explored and compared 

in this work: PLS based on variable importance in projection (PLS-VIP) [12], [13], PLS 

with regression coefficients (PLS-BETA) [12], genetic algorithm combined with PLS 

(GA-PLS) [14]–[16], uninformative variable elimination combined with PLS (UVE-PLS) 

[17]–[19], stepwise regression (SR) [20], [21], competitive adaptive reweighted sampling 

method with PLS (CARS-PLS) [22], and least absolute shrinkage and selection operator 

(Lasso) (removing irrelevant variables amidst Lasso iterations (RIVAL), the improved 

version of Lasso, will be used in the simulation case study) [23]–[26]. Even though PLS-

VIP and PLS-BETA are more of ranking techniques, both methods are tuned to optimize 

the prediction performance. Therefore, they can be considered as wrapper methods. 

Stepwise regression has been applied to the selection of predictors for both classi-

fication and multivariate calibrations [21], especially in near-infrared (NIR) spectra. Gau-

chi and Chagnon proposed a stepwise variable selection method based on maximum 𝑄2, 

prediction ability criterion, and applied to manufacturing processes in oil, chemical and 

food industries [27]. 
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Broadhurst et al. applied genetic algorithm to pyrolysis mass spectrometric data 

and showed that GA is able to determine the optimal subset of variables to provide better 

or equal prediction performance [15]. Arcos et al. successfully applied GA to a wave-

length selection for PLS calibration of mixtures of indomethacin and acemethacin, in 

spite of the fact that the two compounds have almost identical spectra [28]. A modified 

genetic algorithm-based wavelength selection method has been proposed by Hiromasa 

Kaneko and Kimito Funatsu to select process variables and dynamics simultaneously 

[29]. This method is called genetic algorithm-based process variables and dynamics se-

lection method, GAVDS. The result of GAVDS, based on its application to a dynamic 

process of distillation column in Mitsubishi Chemical Corporation, shows its robustness 

to the presence of nonlinearity and multicollinearity in process data. GA has also been 

well recognized in molecular modeling. Jones et al. have shown three applications of GA 

in chemical structure handling and molecular recognition [30]. 

A modified uninformative variable elimination method based on the principle of 

Monte Carlo (MC) was applied in quantitative analysis of NIR spectra by Cai et al. [19]. 

UVE-MC is proven to be capable of selecting important wavelength and making the pre-

diction more robust and accurate in quantitative analysis. Some researchers also suggest-

ed to combine UVE with wavelet transform to further simplify the model and to reduce 

computation time [19], [31]. In the work of Koshoubu et al., the authors have extended 

UVE to eliminate uninformative samples (USE) that do not contribute much in the cali-

bration model [32], [33]. They proposed an algorithm in which the uninformative wave-

lengths/variables are eliminated first by UVE-PLS, and then the uninformative samples, 

which are determined by their standard deviation of prediction error calculated from 
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leave-one-out cross validation, are eliminated from the calibration.  Another new method 

which combined UVE with successive projection algorithm (SPA) has been proposed in 

[34]. UVE is implemented to remove uninformative variables before application of SPA 

to improve the efficiency of variable selection by SPA. 

Least absolute shrinkage and selection operator (Lasso) has been applied in many 

areas, such as for genomic selection [35], nonlinear system identification [36], Chemo-

metrics data analysis [6], and sparse modeling [37], etc. 

Competitive adaptive reweighted sampling (CARS) method has been proposed by 

Li et al. [22]. CARS is model independent, i.e., CARS can be combined with any regres-

sion or classification models. In [38], [39], CARS has been applied in combination with 

partial least squares linear discriminant analysis (PLSLDA) to effectively identify two 

classes of samples in colorectal cancer data. 

Variable importance in the projection (VIP) and regression coefficients (BETA) 

have been broadly adopted as a criterion in partial least squares modeling paradigm for 

variable selection. Both PLS-VIP and PLS-BETA are model based variable selection 

methods. Mehmood et al. presented an algorithm that balances the parsimony and predic-

tive ability of model using variables selection based on PLS-VIP [40]. It is shown that the 

proposed method increases the understandability and consistency of the model and re-

duces the classification error. Lindgren et al. also implemented PLS-VIP on a benchmark 

data for variable selection, Selwood dataset [41]. In their study, PLS-VIP is combined 

with permutation test to extensively investigate the technique. A bootstrap-PLS-VIP has 

been implemented as a wavelength interval selection method in spectral imaging applica-

tions by Gosselin et al. [13]. Their result demonstrates its ability to identify relevant spec-
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tral intervals and its simplicity and relatively low computational cost. PLS-VIP and PLS-

BETA have also been employed in food science. Andersen and Bro applied PLS-VIP and 

PLS-BETA to NIR spectra of beer sample and obtained useful insight of the process, by 

identifying the important variables [6]. A variable selection algorithm based on the stand-

ardized regression coefficients are proposed in [42]. The developed models are optimized 

by the leave-one-out 𝑄2 values and validated by an external testing set. It is worth noting 

that there are many more variable selection methods in the literature.  

In this work, we use static case studies (one simulated and one industrial polyester 

case study) and dynamic case studies (one digester simulator and one industrial Kamyr 

digester) to evaluate the properties of the variable selection methods. A new metric is 

proposed to assess the performance of different variable selection methods when the 

ground truth of the data is unknown. The algorithms of these variable selection methods 

and their characteristics will be presented. In addition, the strength and limitations when 

applied for soft sensor development are studied. The simple simulation case is used to 

investigate the properties of the selected variable selection methods. The dataset is gener-

ated to mimic the typical characteristics of process data by considering four factors: pro-

portion of relevant predictors (PR), magnitude of correlation between predictors (CBP), 

magnitude of signal to noise ratio (SNR), and structure of regression coefficients (CBP) 

[12]. In addition, the algorithms are applied to an industrial polyester soft sensor case 

study. In both cases, independent test sets are used to provide fair comparison and analy-

sis of different algorithms. The soft sensor prediction performance of models developed 

by these variable selection methods are compared using PLS. Furthermore, a digester 

simulator [43] and an industrial Kamyr [3] digester case will be utilized to further inspect 
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the effect of process dynamics on variable selection. The overall performances are com-

pared to demonstrate the advantages and disadvantages of the different methods in order 

to provide useful insights to practitioners in the field.  

This work is structured as follows. In Chapter 2, a brief review of the multivariate 

statistical techniques is presented, which is required for further discussion on variables 

selection methods. Chapter 3 provides detail descriptions of algorithms of different varia-

ble selection methods covered in this work: Stepwise Regression (SR), Genetic Algo-

rithm with Partial Least Squares (GA-PLS), Uninformative Variables Elimination by Par-

tial Least Squares (UVE-PLS), Least absolute shrinkage and selection operator (Lasso), 

Competitive Adaptive Reweighted Sampling with Partial Least Squares (CARS-PLS), 

Partial Least Squares with Variable Importance in Projection (PLS-VIP), and Partial 

Least Squares with regression coefficients (PLS-BETA). Chapter 4 introduces the per-

formance indicators used in this work to evaluate the different variable selection meth-

ods. In Chapter 5, application of all seven variable selection methods on simulated case 

study and industrial polyester case study are investigated. Detailed descriptions of simu-

lation data generation and industrial polyester data are provided. The industrial case study 

is focused on the process data of polyester resin production plant. A brief specification of 

the plant is included, followed by discussion of characteristics of batch process. The re-

sults and comparison of variable selections on both simulated and industrial case studies 

are discussed. Applications on digester case studies are presented in Chapter 6. Brief de-

scriptions of the case studies are included. Variable selection is with dynamic models for 

this process. Chapter 7 concludes this work with major discussion and contributions. Fur-

thermore, suggestions on future works are provided. 
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Chapter 2. Soft Sensor Development 

Soft sensors, mathematical models that correlates primary variables with second-

ary variables, have been developed and implemented decades ago, where predictive mod-

els have been built based on large amount of data being measured stored in process in-

dustries [1], [44]. Soft sensors can be classified into two categories: model-driven and 

data-driven. The model-driven soft sensors are based on the first principle models that 

describe the physical and chemical characteristics of the process. Data-driven soft sensors 

are based on the data measured and collected within the plants [1], [2], [44], [45]. Data-

driven soft sensors can also be viewed as mathematical models that correlate the second-

ary measurements to the primary measurements. The most popular soft sensor techniques 

include principal component analysis (PCA) [46] and partial least squares (PLS) [47], 

artificial neural networks (ANN) [48], neuro-fuzzy (NF) systems [49] and support vector 

machines (SVM) [50]. In our work, only the linear models are considered. 

2.1 Multiple linear regression (MLR) 

The goal of multiple linear regressions (MLR) is to establish a linear relationship 

between the secondary variables and primary variables in the form of Equation (2.1), 

where 𝑥𝑗 is the secondary variable, 𝑦 is the primary variable collected over time, 𝛽𝑗 is the 

sensitivity or coefficients of secondary variable 𝑗, and 𝜖 is the residuals. 

 𝑦 = ∑ 𝛽𝑗𝑥𝑗 + 𝜖

𝑝

𝑗=1

 (2.1) 
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 The above linear relationship can also be written in matrix form as: 

 𝒀 = 𝑿𝑩 + 𝑬 (2.2) 

2.2 Principal component analysis (PCA) 

Principal component analysis (PCA) is linear technique that transforms the origi-

nal data matrix, 𝑿, into a smaller set of uncorrelated variables, 𝑻, that would capture most 

of the information in the original space. This linear transformation can be expressed as in 

Equation (2.3), where 𝑻  is the score matrix, 𝑷  is the loading matrix, and 𝑾∗  is the 

weighted loading matrix scaled by weighting matrix 𝐖. 𝑬 is the general term of model 

residual. The decomposition is done in such a way that the covariance between the origi-

nal variables is maximized. 

 

𝑿 = 𝑻𝑷′ + 𝑬 

𝑻 = 𝑿𝑾∗ 

𝑾∗ = 𝑾(𝑷′𝑾)−1 

(2.3) 

2.3 Principal component regression (PCR) 

Principal component regression (PCR) is a combination of PCA and MLR. MLR 

can be written in the form of score matrix, which has better properties than the original 

data matrix. This gives the expression for PCR as shown in Equation (2.4). 

 𝒀 = 𝑻𝑩 + 𝑬 (2.4) 

However, the disadvantage of PCR is that the components may not be good at explaining 

the primary variables. 

2.4 Partial least squares regression (PLS) 

Partial least squares (PLS) regression has established itself as a valuable alterna-

tive for analyzing secondary variables that are highly correlated, with high measurement 
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noise, and of high dimensionality. PLS model is built based on the properties of NIPALS 

algorithms by letting the score matrix represent the data matrix [51]. In PLS, the decom-

position of matrix 𝑿 and 𝒀 are done in such a way that the covariance is maximized. The 

algorithm of PLS were developed by Wold et al. [52]. The decomposition of data matrix 

𝑿 is done by Equation (2.3). And the decomposition of 𝒀 can also be done in a similar 

way by Equation (2.5), where 𝑼 and 𝑸 is the score and loading matrices of 𝒀, respective-

ly, and 𝑭 is the residual. 

 𝒀 = 𝑼𝑸′ + 𝑭 (2.5) 

The objective of PLS is to describe the maximum amount of variation in 𝒀 and 

get a useful relation between 𝑿 and 𝒀 simultaneously. This can be done by introducing a 

linear model between the score matrices of 𝑿 and 𝒀.  

 𝑼 = 𝑻𝑩 (2.6) 

Consequently, matrix 𝒀 can be estimated as in Equation (2.7), in which 𝑭 is to be 

minimized. The detail algorithm of PLS can be found in [51]–[53]. 

 �̂� = 𝑻𝑩𝑸′ + 𝑭 (2.7) 

 PLS is not only to establish the maximum variance of the secondary variables, but 

also to maximize the variability of the primary variables, explained by the correlation be-

tween 𝑿 and 𝒀. When the original variables are highly correlated, redundant, noisy, and 

of high dimensionality, the orthogonal scores can be obtained through decompositions of 

𝑿 and 𝒀, which would contain sufficient information on 𝑿 and predictive information. In 

other words, it removes the correlation, noise, etc., between the original variables by pro-

jection and dimension reduction. PLS models are more stable than the models built upon 

the original variables, since the regression is done on the scores instead of the original 
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variables. In this work, nonlinear iterative partial least squares (NIPALS) is used to im-

plement PLS. 
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Chapter 3. Variable Selection Theory and Algorithm 

Due to prompt development of various technologies, thousands of process meas-

urements are collected and stored by process computers every day. Researchers have 

been utilizing these data to build soft sensors, which are also known as data-driven soft 

sensors [1]–[4]. By correlating the secondary variables with the primary variables, sen-

sors can provide information on those hard-to-measure or immeasurable, but important 

variables, such as product quality [3]. Furthermore, soft sensors can provide prediction on 

infrequently measured process variables so that prompt control actions can be taken to 

prevent process failure [4]. It has been proved by many studies that the performance of 

these data-driven schemes can be tremendously improved by selecting only the vital vari-

ables that strongly affect the primary variables, rather than all the available process varia-

bles [5], [6], even though it has not been studied what factors would determine the level 

of improvement in soft sensor performance with variable selection. Consequently, varia-

ble selection has been one of the most important practical concerns in data-driven ap-

proaches. By identifying the relevant variables, variable selection can improve the predic-

tion performance of soft sensor, reduce the model complexity and computational load, 

provide better insight into the nature of the process, and lower the cost of measurements 

[5], [6].  

In the past few decades, many different variable selection approaches have been 

reported for various applications with different soft sensor modeling methods. In general, 

variable selection techniques can be categorized into three groups: filter, wrapper, and 
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embedded approaches [5], [7]–[11]. Filter approaches are independent from the learning 

machines, in which variables are only ranked based only chosen criterion. Selection is 

solely done according to the ranking of the variables. Compared to the simplicity of filter 

methods, wrapper and embedded methods are more complex and more closely related to 

each other. Wrapper methods, differ from filter methods, wrap around an appropriate 

learning machine, which is employed as the evaluation criterion, such as prediction or 

classification error. Wrapper methods are proven to outperform filter methods [5], [7]–

[11] given the optimal goal to improve the performance of soft sensors. The embedded 

methods are similar to wrapper methods, except that the variable selection is performed 

simultaneously with the training process. In other words, the central learning algorithm is 

updated together with variable selection, which leads to more complex computation. 

Since the main focus of this work is to improve the performances of partial least squares 

(PLS) based models, only wrapper approaches are investigated. The following seven var-

iable selection methods are explored and compared in this work: PLS based on variable 

importance in projection (PLS-VIP) [12], [13], PLS with regression coefficients (PLS-

BETA) [12], genetic algorithm combined with PLS (GA-PLS) [14]–[16], uninformative 

variable elimination combined with PLS (UVE-PLS) [17]–[19], stepwise regression (SR) 

[20], [21], competitive adaptive reweighted sampling method with PLS (CARS-PLS) 

[22], and least absolute shrinkage and selection operator (Lasso) (removing irrelevant 

variables amidst Lasso iterations (RIVAL), the improved version of Lasso, will be used 

in the simulation case study) [23]–[26]. Even though PLS-VIP and PLS-BETA are more 

of ranking techniques, both methods are tuned to optimize the prediction performance of 

the soft sensors. Therefore, they can be considered as wrapper methods. In this chapter, 
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we will review the seven variable selection methods with their strengths and limitations 

summarized in Table 3.1. 

3.1 Partial least squares with variable important in projection (PLS-VIP) 

Variable importance in the projection (VIP) score estimates the importance of 

each variable in the projection used in a PLS model. It was first introduced in [54]. The 

VIP score for the 𝑗𝑡ℎ variable, in PLS model with 𝐴 principal components, can be calcu-

lated using Equation (3.1). 

 𝑉𝐼𝑃𝑗 = √𝑝 ∑ (𝑆𝑆(𝑞𝑎𝑡𝑎) (
𝑤𝑗𝑎

‖𝑤𝑎‖
)

2

) / ∑ 𝑆𝑆(𝑞𝑎𝑡𝑎)

𝐴

𝑎=1

𝐴

𝑎=1

 (3.1) 

where 𝑆𝑆(𝑞𝑎𝑡𝑎) = 𝑞𝑎
2𝑡𝑎

′ 𝑡𝑎. 𝑡𝑎  is the 𝑎𝑡ℎ  column vector of score matrix 𝑻. 𝑞𝑎  is the 𝑎𝑡ℎ 

element of regression coefficient vector 𝑞 (column vector of matrix 𝑩𝑸′) of 𝑻. 𝑤𝑎 is the 

𝑎𝑡ℎ column vector of weighting matrix 𝑾, which gives the weighted variability of  𝑗𝑡ℎ  

variable in the retained dimensions. 𝑝 is the number of variables in regression matrix 𝑿. 

VIP score calculates the contribution of each variable according to variance explained by 

each PLS component [13]. The expression 𝑤𝑗𝑎/‖𝑤𝑎‖ represents the importance of 𝑗𝑡ℎ 

variable in the 𝑎𝑡ℎ PLS component. The 𝑆𝑆(𝑞𝑎𝑡𝑎) is the variance of 𝑦 explained by the 

𝑎𝑡ℎ PLS component. And the summation of 𝑆𝑆(𝑞𝑎𝑡𝑎), the denominator term, is the total 

variance explained by the PLS model with 𝐴 components. 

A variable selection method based on VIP scores estimated by PLS regression 

model is known as PLS-VIP. The ‘greater than one rule’ is conventionally used as crite-

rion for variable selection. According to this rule, only variables with VIP values greater 

than one are considered significant. Overall PLS-VIP procedure can be described as fol-

lows: 



14 

 

1. Build PLS model using all the variables. Apply cross validation to deter-

mine the optimal number of PC’s.  

2. Calculate VIP score for each variable using Equation (3.1).  

3. Select variables with VIP scores greater than the cutoff value. 

4. Rebuild PLS model with only the retained variables. 

5. Evaluate the model performance using various performance indexes. 

3.2 Partial least squares with regression coefficients (PLS-BETA) 

Partial least squares with regression coefficients is a variable selection method 

that is very similar to PLS-VIP. It is also known as PLS-BETA. PLS-BETA directly uti-

lizes the regression coefficients estimated by PLS regression instead of VIP scores. The 

significant variables are selected according to the magnitude of the absolute values of the 

regression coefficients. 

3.3 Uninformative variable elimination with PLS (UVE-PLS) 

A method for eliminating uninformative variables by comparing with artificial 

variables was proposed by V. Center et al. [17]. Models are built using both experimental 

and artificial variables. The significance of each variable is assessed by comparing its re-

liability index, a function of the regression coefficients, with reliability indices of artifi-

cial random variables.  

In our work, uninformative variable elimination by Partial Least Squares (UVE-

PLS) will be studied. The procedure is summarized as follows: 

1. For a given set of experimental variables with 𝑛  number of samples, 

𝑿 ∈ ℝ𝑛×𝑝, generate an artificial random variable matrix, 𝑹, with very  
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Table 3.1: Strengths and limitations of each variable selection method 

Models Strengths Limitations 

PLS-VIP 

 Selection consistency, insen-

sitive to training data selec-

tion 

 High prediction perfor-

mance, results reflect process 

knowledge 

 Simple implementation, 

cheap computation 

 Only one parameter to tune; 

general guideline available 

 Affected by correlation 

 Somewhat sensitive to tuning 

parameter 

PLS-BETA 

 Insensitive to training data 

selection 

 Simple implementation, 

cheap computation, and only 

one parameter to tune 

 Sensitive to tuning parameter 

 Directly affected by the 

magnitude of contribution 

Lasso/RIVAL 
 Explicitly penalize the size 

of the model, proved set con-

sistency for RIVAL 

 Highly sensitive to tuning pa-

rameter 

 Expensive computation 

 Require large dataset to reach 

convergence 

UVE-PLS 

 Straightforward algorithm 

 Insensitive to tuning parame-

ter 

 Performance strongly affect-

ed by magnitude of correla-

tion 

SR 
 Easy interpretation between 

the results and tuning param-

eters 

 May be trapped in local op-

tima 

 Degrade noticeably with in-

creased collinearity 

CARS-PLS 

 Can easily control the per-

centage of variables to be re-

tained; could be used as a 

pre-selection for high dimen-

sion data 

 Sensitive to training data se-

lection 

GA-PLS 

 Could escape from local op-

tima due to randomized 

search 

 Handles problems with mul-

tiple objectives 

 Global optima not guaran-

teed 

 Requires a lot of user inputs 

to optimize the tuning pa-

rameters 

 Computation expensive due 

to evaluation of fitness func-

tion, which depends on the 

population size 
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small magnitude and same dimension as the experimental variables. This 

results in a matrix with dimension of 𝑛 by 2𝑝, 𝑿𝑹 = [𝑿 𝑹]. 

2. Build PLS model for 𝑿𝑹  based on leave-one-out procedure. This will 

yield a regression coefficient matrix, 𝑩 ∈ ℝ𝑛×2𝑝.  

3. Calculate the reliability index of each variable 𝑗 using Equation (3.2), 

 𝑐𝑗 =
𝑚(𝑏𝑗)

𝑠(𝑏𝑗)
 (3.2) 

 𝑚(𝑏𝑗) =
∑ 𝑏𝑖𝑗

𝑛
𝑖=1

𝑛
 (3.3) 

 𝑠(𝑏𝑗) = (
∑ (𝑏𝑖𝑗 − 𝑚(𝑏𝑗))

2𝑛
𝑖=1

𝑛 − 1
)

1/2

 (3.4) 

Where 𝑐𝑗  is the reliability index of variable 𝑗 , 𝑚(𝑏𝑗) and 𝑠(𝑏𝑗)  are the 

mean and standard deviation of regression coefficient of variable 𝑗  ob-

tained from leave-one-out procedure, 𝑏𝑖𝑗. 

4. Determine the maximum absolute reliability index of the artificial varia-

bles, |max(cartif)| . The cutoff threshold is defined as 𝑐𝑢𝑡𝑢𝑣𝑒 = 𝑘 ×

|max(cartif)|, where 𝑘 controls the role of reliability of artificial variables. 

The experimental variables with absolute reliability index less than that 

are eliminated, i.e., |𝑐𝑗| < 𝑐𝑢𝑡𝑢𝑣𝑒. 

5. A new PLS model is built using only the remaining variables. 

3.4 Genetic algorithm with PLS (GA-PLS) 

Genetic algorithm has been used widely in solving complex problems of optimi-

zation and search problems [55]. More recently, GA has been used to find the optimum 
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subset of regressor variables for a given modeling method based on the results of cost 

function evaluations for all candidate genetic chromosomes [15].  

The original algorithm can be found in [56]–[58]. Generally speaking, there are 

five steps in GA: coding of variables, initiation of population, evaluation of the respons-

es, reproductions, and mutations [14]. The last three steps are implemented iteratively 

until a termination criterion is reached. In our work, GA combined with PLS regression 

model is studied. These following terms must be defined: 

1. Initiation of population. Percentage of variables included in the initial 

population (10%-50%).  

2. Population size. This value is dependent on the total number of variables. 

There is a tradeoff between the initial coverage of the original space and 

computation load.  

3. Maximum number of generations (50-500). This could be used as one of 

the termination criteria. 

4. Percentage of the population retained after each generation (50%-80%). 

This number defines the top percentage of populations to be kept in each 

generation. Only the remained populations will go through reproduction. 

5. Breeding crossover rule (single or double crossover). It is analogous to re-

production. It is a genetic operator used to vary programming of chromo-

somes from one generation to the next. 

6. Mutation rate (0.001-0.01). Chance of alternation of genes after crossover. 

An initial population is generated by randomly choosing a certain percentage of 

the total variables. This is repeated multiple times depending on the population size. A 
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PLS model is built for each population/chromosome. Populations are then sorted in de-

scending order by its cross validation metrics. In this work, we use root mean square er-

ror (RMSE) as cross validation metrics. Only the top percentages of the populations are 

remained unchanged, and the rest will undergo crossover/reproduction. A new generation 

of chromosomes is then produced. This is done iteratively until a termination criterion is 

reached.  This termination criterion can be based on the maximum number of generations 

or the lack of prediction improvement.  

3.5 Competitive adaptive reweighted sampling with PLS (CARS-PLS) 

Hongdong Li et al. have proposed a novel strategy based on the ‘survival of the 

fittest’ principle, called competitive adaptive reweighted sampling (CARS) [22], [38]. 

This method utilizes the absolute values of the regression coefficients to evaluate the im-

portance of variables. In an iterative manner, 𝐾  subsets of variables are selected by 

CARS from 𝐾 Monte Carlo (MC) sampling runs. At the end, cross validation is em-

ployed to evaluate each subset. The general procedure can be described as follows: 

1. In each MC sampling run, a PLS model is built using 80-90% of the ran-

domly selected samples. The regression coefficients are normalized using 

Equation (3.5), where 𝑝 is the total number of variables. 

 𝑛𝑏𝑗 =
|𝑏𝑗|

∑ |𝑏𝑗|𝑝
𝑗=1

 (3.5) 

2. In CARS, an exponentially decreasing function (EDF) is introduced as in 

Equation (3.6). EDF is utilized to eliminate variables with relatively small 

absolute regression coefficients by force. The ratio of variables to be re-
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tained in the 𝑖𝑡ℎ sampling run, 𝑟𝑖, is calculated by EDF shown in Equation 

(3.6) to (3.8),  

 𝑟𝑖 = 𝑑𝑒−ℎ𝑖 (3.6) 

 
𝑑 = (

𝑝

2
)

1
𝐾−1

 
(3.7) 

 
ℎ =

ln(𝑝 − 1)

𝐾 − 1
 

(3.8) 

where constants 𝑑 and ℎ are determined so that 𝑟1 = 1 and 𝑟𝐾 = 2/𝑝. 

3. Following EDF-based reduction, adaptive reweighted sampling (ARS) is 

implemented in each subset of variables to further eliminate variables in a 

competitive way. In other words, variables with larger regression coeffi-

cients will be selected with higher frequency. 

The EDF process in Step 2 is roughly divided into two stages. In the first stage, 

the variables are eliminated rapidly, so it is called fast selection. In the second stage, the 

variables are eliminated in a much slower fashion, thus it is called refined selection. An 

example of EDF is shown in Figure 3.1. Hence, EDF becomes a very efficient algorithm 

for removing the variables with little information. 

ARS in Step 3 mimics the ‘survival of the fittest’ principle. The idea of ARS is il-

lustrated in Figure 3.2. Three scenarios are considered: equal weight, little weight differ-

ence, and large weight difference. As a result, the variables with larger weights are se-

lected with higher frequency. 

3.6 Least absolute shrinkage and selection operator (Lasso) 

The objective of least absolute shrinkage and selection operator (Lasso) is to min-

imize the residual sum of squares subject to the sum of the absolute values of the coeffi-
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cients being less than a constant, 𝑡 [12], [23], [25], which directly controls the number of 

variables being selected. Lasso is similar to Ridge regression [12], the regression coeffi-

cients are shrunk by placing a penalty on their size. It can be mathematically expressed in 

the following two ways. 

 𝐽(𝛽) = arg min
𝛽

‖𝑦𝑛 − 𝑿𝑛𝛽‖2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑|𝛽𝑗| ≤ 𝑡

𝑝

𝑗=1

 

(3.9) 

 

𝐽(𝛽) = arg min
𝛽

‖𝑦𝑛 − 𝑿𝑛𝛽‖2 + 𝜆(𝑛) ∑|𝛽𝑗|

𝑝

𝑗=1

 

(3.10) 

where 𝛽 is the coefficients of the predictors. Equation (3.10) is the Lagrangian relaxation 

of Equation (3.9). This can be solved by the standard quadratic programming with linear  

 

Figure 3.1: Graphical illustration of the exponentially decreasing function 

Stage 1 

Fast Selection 

Stage 2 

Refined Selection 
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inequality constraints. The use of least angle regression (LARS) algorithm can reduce the 

computation burden. 

 

 Weights of Variables  Sampled Variable  

 1 2 3 4 5   

Case 1: 0.20 0.20 0.20 0.20 0.20  2 1 3 4 5 

Case 2: 0.30 0.30 0.20 0.10 0.10  1 1 2 3 2 

Case 3: 0.40 0.05 0.40 0.10 0.05  1 3 3 3 1 

 

Figure 3.2: Illustration of adaptive reweighted sampling technique using five variables in 

three cases as an example. The variables with larger weights will be selected with higher 

frequency. 

An improved version Lasso, removing irrelevant variables amidst Lasso iterations 

(RIVAL), was proposed by Kump et al. [24]–[26]. In RIVAL, Lasso is modified by in-

corporating a priori information that all the regression coefficients are greater than zero 

into this minimization problem, resulting in the positive Lasso with a penalty term. 

 𝐽(𝛽) = arg min
𝛽≥0

‖𝑦𝑛 − 𝑿𝑛𝛽‖2 + 𝜆(𝑛) ∑ 𝜔𝑗𝛽𝑗

𝑝

𝑗=1

 (3.11) 

where 𝜆(𝑛) is the positive regularization parameter that depends on the number of data 

points 𝑛, and 𝜔 is a non-negative weighting vector. 

 In positive Lasso, the set consistency, i.e., all the variables are identified correctly, 

and parameter consistency, i.e., the magnitudes of all the regression coefficients are iden-

tified correctly, can only be met when the number of data points approaches infinity. The 

new algorithm, RIVAL, ensures the set consistency for a large but fixed/finite number of 

data. The idea of RIVAL is to shrink the coefficients toward zero as 𝜆(𝑛) increases. 

Therefore, the selection of 𝜆(𝑛) is critical to the performance of positive Lasso. In this 

work, RIVAL is only applied to the simulation case study due to its positivity constraints. 
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3.7 Stepwise regression (SR) 

Stepwise regression has been widely used for variable selection in linear regres-

sion [20]. Stepwise regression is a combination of forward selection and backward elimi-

nation methods [27]. Both are well known methods for variable selection in multiple re-

gressions. The forward selection and backward elimination methods are done by intro-

duction or elimination of the variables one-by-one according to the specific thresholds. In 

stepwise regression, a sequence of regression models is constructed iteratively by adding 

or removing variables. The variables are selected according to their statistical signifi-

cance, determined by partial F-test or t-test, in a regression [21].  

The standard stepwise regression procedure is summarized as follows: 

1. Define thresholds of probability of incorrectly rejecting the true null hy-

pothesis, which is also known as Type I error. The threshold for adding a 

variable to a model is 0.05, 𝛼𝑖𝑛 = 0.05, and the threshold for removing a 

variable from the model is 0.1, 𝛼𝑜𝑢𝑡 = 0.1. 

2. Assume the total number of variables is 𝑝, and 𝛺1 = {𝑥1, 𝑥2, … , 𝑥𝑘} 

is a subset of variables included in linear regression model. The unselected 

variables are examined by calculating their partial F-statistic using Equa-

tions (3.12) and (3.13), where 𝑆𝑆𝑅 is the sum of squared residuals due to 

regression, and 𝑀𝑆𝐸 is the mean square error. The variable with maxi-

mum F-statistic among all the unselected ones is added to the model, pro-

vided that 𝐹𝑗 > 𝐹𝑖𝑛.  

 𝐹𝑗 =
𝑆𝑆𝑅(𝑥𝑗|𝑥1, 𝑥2, … , 𝑥𝑘)

𝑀𝑆𝐸(𝑥𝑗 , 𝑥1, 𝑥2, … , 𝑥𝑘)
 (3.12) 
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 𝑆𝑆𝑅(𝑥𝑗|𝑥1, … , 𝑥𝑘) = 𝑆𝑆𝑅(𝑥𝑗 , 𝑥1, … , 𝑥𝑘) − 𝑆𝑆𝑅(𝑥1, … , 𝑥𝑘) (3.13) 

3. Once a new subset of variables is determined, the same procedure is car-

ried out to check if any of these variables inside the model should be re-

moved. The variable with the smallest F-statistic is removed, provided that 

𝐹𝑗 < 𝐹𝑜𝑢𝑡. Otherwise, the variable is retained in the model. 

4. Repeat Step 2 and Step 3 until no other variables can be added into or re-

moved from the model. 
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Chapter 4. Performance Indicators of Variable Selection Methods 

In order to evaluate the performance of different variable selection methods, sev-

eral performance indices have been proposed in the literature. The most common ones are 

the average mean absolute percentage error (MAPE), coefficient of determination (𝑅2), 

and geometric mean of selection sensitivity and specificity (𝐺). Among them, only 𝐺 di-

rectly measures the accuracy of variable selection results while MAPE and 𝑅2 indirectly 

measure the effects of variable selection through the prediction performance of a soft 

sensor, such as PLS. 

4.1 Mean absolute percentage error (MAPE) 

To evaluate model prediction performance, MAPE is commonly used, which is 

defined as follows. 

 𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
| %

𝑁

𝑖=1

 (4.1) 

where 𝑦𝑖 is the true measurement and �̂�𝑖 is the prediction. 

4.2 Coefficient of determination (𝑹𝟐) 

𝑅2 measures how well the data fits the model, as calculated in Equation (5.9 

 𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
 (4.2) 

where 𝑆𝑆𝑅 = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑁

𝑖=1  is the sum of squared residual, and 𝑆𝑆𝑇 = ∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1  is 

the total sum of squares, with �̅� as the average of 𝑦. 
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4.3 Geometric mean of sensitivity and specificity (𝑮) 

When the information on the true relevant variable is available, confusion matrix, 

as shown in Table 4.1, can be used to evaluate the variable selection performance. From 

the confusion matrix, accuracy, sensitivity, and specificity of variable selection can be 

calculated as follows. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑎 + 𝑑)/(𝑎 + 𝑏 + 𝑐 + 𝑑) (4.3) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑑/(𝑐 + 𝑑) (4.4) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑎/(𝑎 + 𝑏) (4.5) 

In this work, the geometric mean of sensitivity and specificity, 𝐺, i.e., Equation 

(4.6), is used as an overall variable selection performance indicator. 

 𝐺 = (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)1/2 (4.6) 

The value of 𝐺 ranges from 0 to 1. 𝐺 = 1 indicates that all the predictors are clas-

sified correctly. This index is in general only applicable in simulation case studies, where 

the ground truth of variable relevancy is known. 

Table 4.1: Confusion matrix 

  Predicted classes 

  Irrelevant predictor 

(IR) 

Relevant predictor  

(R) 

True classes Irrelevant predictor 

(IR) 

a: the number of ir-

relevant predictors 

classified correctly 

 

b: the number of ir-

relevant predictors 

classified incorrectly 

Relevant predictor  

(R) 

c: the number of rel-

evant predictors 

classified incorrectly 

d: the number of rel-

evant predictors 

classified correctly 
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4.4 The proposed indicator: consistency index (𝑰𝑪) 

When the information on the true relevant variables is not available, which is the 

case for most industrial applications, 𝐺 cannot be obtained. For such cases, how con-

sistent the variable selection results from different MC runs (i.e., different training data) 

can provide important information on the robustness and consistency of the variable se-

lection method. However, there is no such metric exists in the literature. Therefore, in this 

work we propose an entropy based consistency index, named 𝐼𝐶, as defined below. 

 𝐼𝐶 = 1 −
−𝑒 ∑ 𝑝𝑟𝑜𝑏(𝑥𝑗) ln (𝑝𝑟𝑜𝑏(𝑥𝑗))𝑝

𝑗=1

𝑚
 (4.7) 

where 𝑚 is the total number of variables being selected among all MC runs (100 in this 

work); 𝑒 is the Euler’s number; and 𝑝𝑟𝑜𝑏(𝑥𝑗) is the probability of variable 𝑥𝑗 being se-

lected, which can be approximated by the percentage of 𝑥𝑗 being selected among all MC 

runs. Note that − ∑ 𝑝𝑟𝑜𝑏(𝑥𝑗) ln (𝑝𝑟𝑜𝑏(𝑥𝑗))
𝑝
𝑗=1  is exactly the information entropy asso-

ciated with the probability for 𝑥𝑗 being selected, and multiplying 𝑒 scales the maximum 

entropy to 1. As a result, 𝐼𝐶 ranges between 0 and 1. A simple example is used here to 

illustrate the computation of 𝐼𝐶 based on a selection frequency plot, which is a bar chart 

showing the frequency of each variable being selected among all MC runs. In this exam-

ple, only the 10 variables at the extreme locations (i.e., variables 1-5 and 36-40) are the 

true relevant variables among all 40 variables. The selection frequency plots of two vari-

able selection methods, PLS-VIP and CARS-PLS are shown in Figure 4.1 (a) and (b) re-

spectively, where the frequencies of the true relevant variables are shown as the dark-

colored bars, while those of the irrelevant variables are shown as the light-colored bars. 

By approximating the probabilities in Equation (5.9) with the selection frequencies, we 
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can compute the 𝐼𝐶 values for both cases. As a comparison, 𝐺 values are also computed. 

In Figure 4.1 (a), PLS-VIP selects all the relevant variables correctly all the time, with 

very few errors of selecting irrelevant variables, which is correctly assessed by the high 

values in both 𝐺 and 𝐼𝐶 . In the case of CARS-PLS shown in Figure 4.1 (b), although 

CARS-PLS also selects the 10 relevant variables all the time; it also selects all the 30 ir-

relevant ones about 35% of the time. This means that, on average, there are more than 

twenty variables selected each time with only about half of them (i.e., 10) truly relevant. 

Given this poor performance, CARS-PLS still achieves moderate 𝐺 value of 0.65. On the 

other hand, the 𝐼𝐶 value of CARS-PLS is 0.25, which seems to be a better reflection of its 

poor selection performance. It is worth noting that 𝐼𝐶 is applicable not only for simulated 

cases where relevant variables are known, such as the one illustrated above, but also for 

the industrial cases where the exact relevant variables are often unknown. It is also worth 

noting that 𝐼𝐶 only evaluates the consistency of variables being selected when different 

training data are used. If the knowledge on the true relevant variable is available, that 

knowledge is not utilized by 𝐼𝐶. 

 

Figure 4.1: Comparison of 𝐼𝐶 and 𝐺 for (a) PLS-VIP and (b) CARS-PLS. The dark-

colored bars represent true relevant variables, while the light-colored bars representing 

true irrelevant variables   

(a) (b) 
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Chapter 5. Variable Selection Methods with Their Applications to Sim-

ulated and Industrial Polyester Datasets 

5.1 Introduction  

The performances of different variable selection methods are compared using a 

simulation case study and an industrial polyester case study. In addition, the sensitivities 

of variable selection methods to its tuning parameters are examined. In both case studies, 

100 MC simulations are performed to generate different sets of training, tuning, and test 

data. Three steps are followed to carry out the comparison. First, models are built from 

training set with suggested range of tuning parameters of each variable selection method. 

A summary of the tuning parameters and their search range is listed in Table 5.1. Next, 

each model is optimized using independent tuning datasets by minimizing the average 

MAPE. Finally, the optimized model is applied to the testing set and used for perfor-

mance comparison. 

5.2 Simulated case study 

The simulation case study introduced in [12] is used in this work. The dataset is 

generated to mimic typical characteristics of industrial data by considering four factors: 

proportion of relevant predictors (PR), magnitude of correlations between predictors 

(CBP), magnitude of signal to noise ratio (SNR), and structure of regression coefficients 

(SRC). The dataset is generated following a linear model as defined in Equation (5.1). 

 𝑦𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖

𝑝

𝑗=1

 (5.1) 
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where 𝜀𝑖  is a normal distributed random error sequence with zero mean and specified 

standard deviation, 𝜎.  

Table 5.1: Summary of tuning parameters and search range 

Methods Tuning Parameters Range 

PLS-VIP VIP Score 0.01:0.01:3 

PLS-BETA Regression Coefficients 0.01:0.01:1 

UVE-PLS Reliability Cutoff 0.5:0.05:1 

SR Confidence Limit 85, 90, 95, 99% 

Lasso Regression Coefficients 0.05:0.05:5 

RIVAL Regularization Parameter, λ 0.01:0.01:10 

GAPLS 

Maximum Generation 50:50:300 

Population Size 32:32:160 

Initial Percentage Included 10:10:50 

Mutation Rate 0.0025:0.0025:0.01 

Crossover Rule Double or Single 

 

5.2.1 Data descriptions 

A total of 108 different cases are designed by considering all the possible combi-

nations of the four factors. For each case, the data matrix 𝑿 of 1500 sample points is gen-

erated. The data matrix is first randomly permuted sample-wise. Then the first 500 sam-

ples are used for training, the second 500 samples are for tuning and the last 500 for test-

ing. This MC procedure is carried out 100 times to generate 100 different sets of training, 

tuning, and testing datasets. 

 For convenience, the number of relevant predictors is set to be 10. Different pro-

portion of relevant predictors are achieved by varying the total number of predic-

tors, 𝑝, in three levels, 20, 40 and 100, as shown in Equation (5.2), which result in 

PR in three levels of 0.5, 0.25, and 0.1, respectively. 
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 𝑃𝑅 =
10

𝑝
 

(5.2) 

 Data matrix 𝑿 is generated from multivariate normal distribution with zero mean 

vector and variance-covariance matrix of 𝜞, which is defined in Equation (5.3). 

The elements of matrix 𝜞 are function of the magnitude of correlations between 

predictors (CBP), 𝜌, which is varied in three levels, 0.5, 0.7 and 0.9.  

 𝜞𝑖𝑗 = 𝜌|𝑖−𝑗|, (𝑖, 𝑗 = 1, 2, … , 𝑝) 
(5.3) 

 The magnitude of signal to noise ratio (SNR) is introduced by manipulating 𝜎, the 

standard deviation of error terms in 𝑦, as defined in Equation (5.4).  

 𝜎 = 𝑘√𝑣𝑎𝑟(𝑿𝛽) 
(5.4) 

where 𝑘 is the reciprocal of signal to noise ratio, varied in three levels, 0.33, 0.74, 

1.22, which results in SNR of 3.03, 1.35, and 0.82, respectively. 

 The structure of regression coefficients (SRC) is also considered. Two types of 

equal and unequal coefficients are compared. Each type has two levels according 

to their locations of relevant predictors: in the middle of the range and at the ex-

tremes. All the irrelevant predictors have zero coefficients in both types. For the 

case with 10 relevant predictors, the regression coefficients are generated as fol-

lows: 

 Equal coefficients in the middle of range 

 𝛽𝑗 = 1, (𝑗 =
𝑝

2
− 4,

𝑝

2
− 3, … ,

𝑝

2
+ 5) 

(5.5) 

 Equal coefficients at the extreme  
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 𝛽𝑗 = 1, (𝑗 = 1,2, … ,5, 𝑝 − 4, 𝑝 − 3, … , 𝑝) 
(5.6) 

 Unequal coefficients in the middle of range 

 𝛽𝑗 = (5.5 − |𝑗 − 0.5(𝑝 + 1)|)2, (𝑗 =
𝑝

2
− 4,

𝑝

2
− 3, …

𝑝

2
+ 5) 

(5.7) 

 Unequal coefficients at the extreme 

 
𝛽𝑗 = (|𝑗 − 0.5(𝑝 + 1)| − 0.5(𝑝 − 11))

2
,

(𝑗 = 1,2, … ,5, 𝑝 − 4, 𝑝 − 3, … , 𝑝) 

(5.8) 

5.2.2 Comparison results  

Seven methods, PLS-VIP, PLS-BETA, RIVAL, UVE-PLS, SR, CARS-PLS, and 

GA-PLS, are compared on all 108 cases. Only six representative cases listed in Table 5.2 

are presented here. To better mimic industrial data, we compare the patterns of the eigen-

values of the covariance matrix of the simulated data to the industrial polyester data used 

in the next section. As can be seen from Figure 5.1, when correlation between predictors 

is high (e.g., 0.9 in this case), the simulated data mimics the industrial data better, which 

is also observed in [12]. Therefore, more cases with 𝜌 = 0.9 (i.e., 𝐶𝐵𝑃 = 0.9) are select-

ed. The results of the other cases are presented in Appendix A.  

Table 5.2: Properties of simulation cases. PR, CBP, SNR, and SRC stand for proportion 

of relevance, correlation between predictors, signal to noise ratio, and structure of regres-

sion coefficients, respectively. 

Cases 1 2 3 4 5 6 

PR 0.25 0.25 0.25 0.5 0.1 0.1 

CBP 0.5 0.9 0.9 0.9 0.5 0.7 

SNR 3.03 3.03 1.35 0.82 1.35 0.82 

SRC EE UE EM UE UM EM 
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(a) (b) 
 

 

Figure 5.1: Comparison of eigenvalues between (a) polyester data and (b) simulation data 

with three different correlations between predictors (CBP) levels 

First, the sensitivities of each method with respect to tuning parameters are inves-

tigated. In summary, PLS-BETA and RIVAL are the most sensitive; PLS-VIP is some-

what sensitive, while the rest of the methods are relatively insensitive to their respective 

tuning parameters. The selected sensitivity results of PLS-VIP, PLS-BETA, RIVAL, and 

UVE-PLS, in terms of change in prediction error in the testing sets with respect to tuning 

parameter, are shown in Figure 5.2. UVE-PLS is included as an example of insensitive 

methods to the tuning parameters. Even though the pattern for PLS-VIP and PLS-BETA 

are similar, there are some key differences. First, the optimal range in PLS-VIP is much 

wider than PLS-BETA. In addition, “greater than one rule” also falls in the region where 

the minimum occurs. On the other hand, there is no general guideline for tuning parame-

ter in PLS-BETA. The similarity between PLS-VIP and PLS-BETA is that when the cut-

off value is set too high, only a few variables are retained, which leads to high prediction 

error. However, the “greater than one rule” of PLS-VIP provides good starting point for 

tuning parameter optimization. The performance of RIVAL is a lot more sensitive to the 

tuning parameter than PLS-BETA, and a convergent solution is not always guaranteed. 
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Figure 5.2: Sensitivity in turning parameters in terms of prediction error for (a) PLS-VIP, 

(b) PLS-BETA, (c) RIVAL, and (d) UVE-PLS in simulated data 

The average 𝐺 and 𝐼𝐶 indicators based on 100 MC simulations for the seven vari-

able selection methods are listed in Table 5.3. The good methods are the ones that have 

both average 𝐺 and 𝐼𝐶 close to 1. The best and the second best performers are highlighted 

in bold face with and without underline, respectively. It can be seen that for all listed cas-

es, PLS-VIP is either the best performer or the second best performer. To further examine 

the consistency of different variable selection methods, the frequency of each variable 

being selected among the 100 MC runs for Case 3 are shown in Figure 5.3, along with the 

corresponding 𝐺 and 𝐼𝐶 values. Here, Case 3 is selected because its properties are closer 

to the industrial dataset, e.g., high correlation, low SNR and low PR. By comparing the 

(a) (b) 

(c) (d) 
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selection frequency plots for different methods, only PLS-VIP selects all the true relevant 

variables correctly most of the time (i.e., close to 100% sensitivity) with very few errors 

on irrelevant variables (i.e., high specificity). In contrast, all the other methods either se-

lect true relevant variables less frequency (e.g., PLS-BETA, RIVAL, SR, CARS-PLS, 

and GA-PLS). Therefore, PLS-VIP is the most consistent variable selection method for 

the case, which agrees with its high 𝐺 and 𝐼𝐶 values. 

Table 5.3: Average 𝐺 and 𝐼𝐶 indicators for the simulation case 

  Cases 

Methods Metrics 1 2 3 4 5 6 

PLS-VIP 
𝐺 1.00 0.95 0.99 0.80 0.89 0.99 

𝐼𝐶 0.91 0.72 0.83 0.64 0.81 0.84 

PLS-BETA 
𝐺 1.00 0.90 0.88 0.61 0.75 0.76 

𝐼𝐶 1.00 0.91 0.69 0.36 0.81 0.56 

RIVAL 
𝐺 0.92 0.87 0.79 0.73 0.82 0.87 

𝐼𝐶 0.46 0.47 0.47 0.33 0.16 0.30 

UVE-PLS 
𝐺 0.96 0.67 0.81 0.86 0.86 0.99 

𝐼𝐶 0.81 0.61 0.58 0.57 0.83 0.82 

SR 
𝐺 1.00 0.82 0.66 0.60 0.78 0.68 

𝐼𝐶 0.90 0.60 0.54 0.44 0.80 0.71 

CARS-PLS 
𝐺 0.65 0.80 0.71 0.45 0.78 0.75 

𝐼𝐶 0.25 0.53 0.31 0.10 0.43 0.41 

GA-PLS 
𝐺 0.88 0.77 0.71 0.61 0.77 0.76 

𝐼𝐶 0.34 0.26 0.18 0.20 0.20 0.19 

 

Next, the variable selection methods are compared by the performance of the PLS 

soft sensor built using the variables selected. For different variable selection methods, the 

percentage improvement compared to the full PLS model in terms of MAPE is calculated 

as follows and provided in Table 5.4. 
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Figure 5.3: Variable selection frequency for Case 3: (a) PLS-VIP, (b) PLS-BETA, (c) 

RIVAL, (d) UVE-PLS, (e) SR, (f) CARS-PLS, and (g) GA-PLS. The dark-colored bars 

represent true relevant variables, while the light-colored bars representing true irrelevant 

variables. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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 %𝐼𝑚𝑝 =
𝑀𝐴𝑃𝐸𝐹𝑢𝑙𝑙 − 𝑀𝐴𝑃𝐸𝑖

𝑀𝐴𝑃𝐸𝐹𝑢𝑙𝑙
× 100% (5.9) 

The positive values indicate improvement in the reduced models, while the nega-

tive values indicate deterioration. In summary, different levels of improvement are ob-

tained by variable selection. However, the improvements are not significant in the cases 

with higher correlation between predictors, i.e., Cases 2, 3, & 4. The best and the second 

bester performers are also highlighted in bold face with and without underline, respec-

tively. Again, PLS-VIP is either the best or the second best performer in terms of the pre-

diction performance, which is in accordance with the 𝐺 and 𝐼𝐶 values. 

Table 5.4: Percentage improvement of average MAPE values from different methods 

compared to the full model for testing data in the simulated case 

  Cases 

Methods Index 1 2 3 4 5 6 

PLS-Full MAPETe 3.3 3.4 6.0 8.0 6.7 8.6 

PLS-VIP % ImpTe 2.6 1.8 1.0 0.5 8.5 7.0 

PLS-BETA % ImpTe 2.7 1.8 0.5 0.1 6.9 4.5 

RIVAL % ImpTe -0.6 1.7 0.2 0.8 6.0 5.5 

UVE-PLS % ImpTe 2.4 0.9 0.4 0.4 8.2 6.6 

SR % ImpTe 2.5 0.9 -0.2 0.2 7.2 5.3 

CARS-PLS % ImpTe 1.6 1.2 -0.1 0.0 5.5 3.6 

GA-PLS % ImpTe -2.1 0.6 -0.3 0.2 4.5 3.7 

 

MAPETe stands for the average MAPE over 100 MC runs of the full PLS model. % ImpTe stands for per-

centage improvement for the method compared to the full PLS model. 

 

The prediction performance of the full model (PLS) and PLS-VIP for a specific 

MC run in Case 5 are shown in Figure 5.4. Only a portion of the testing performance is 

plotted in order to show the detail. The prediction performances of the soft sensors based 

on other variable selection methods are somewhat similar to PLS-VIP or between PLS-
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VIP and the full PLS model. To reduce clutter, they are not shown in the figure. But 

overall, the reduced models perform slightly better than the full model. 

Besides the MAPE values, the 𝑅2 values are also computed for this simulation 

case study. The results (shown in Appendix A) indicate that 𝑅2 values are similar among 

variable selection methods for all the cases. This is due to the way simulation case is gen-

erated. In the simulation case, the error term in Equation (5.1) has zero mean and stand-

ard deviation specified by SNR, as seen in Equation (5.4). In order to analyze the effect 

of measurement noise on variable selection performance, three levels of SNR are de-

signed. These levels are generated so that 𝑅2 values of the line of best fit become 0.9, 

0.65, and 0.4. The reciprocal of SNR in Equation (5.4), 𝑘, can be written as function of 

𝑅2, 𝑘 = √
1−𝑅2

𝑅2 . Therefore, different variable selection methods result in similar 𝑅2 val-

ues for different cases with same level of SNR. 

5.2.3 Remarks 

 Consistency: PLS-VIP is the most consistent variable selection method, followed 

by PLS-BETA and UVE-PLS. High 𝐼𝐶 indicates that variables being selected are 

insensitive to training data being used. High 𝐺 indicates that the selected variables 

are mostly true relevant variables. 

 Tuning: The performances of PLS-BETA and RIVAL, evaluated by MAPE of the 

soft sensor, are the most sensitive to their tuning parameters, which is in general 

not desirable. The tuning for GA-PLS is the most difficult due to the large number 

of tuning parameters. In addition, no significant improvement is obtained with pa-

rameter optimization for GA-PLS.  
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Figure 5.4: Comparison of predicted output for Case 5 in testing set 

5.3 Industrial polyester case study 

The industrial data was reported in [59], [60], which is the production of polyester 

resin used in the manufacturing of coatings via batch poly-condensation between a diol 

and a long-chain dicarboxylic acid. The main part of this plant is a 12 m
3

 stirred tank re-

actor, which is used for the production of different resins.  Water is also formed in the 

poly-condensation reaction as a byproduct. A packed distillation column, along with an 

external water-cooled condenser and a scrubber, are installed to remove the water. In ad-

dition, a vacuum pump is equipped to maintain the vacuum in the reactor. Thirty-four 

variables are routinely measured and recorded every 30 seconds. The number of samples 

in each batch is in the range of 4500 and 7500, varying from batch to batch. Variables are 

process measurements (e.g., temperature, pressure and valve opening, etc.) and controller 
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settings, which are adjusted manually by the operators. A list of these thirty-four varia-

bles is provided in Table 5.5. Product quality is assessed by acidity number and viscosity, 

which are measured manually and infrequently by the operators. There are only 15 to 25 

product quality measurements with uneven intervals available per batch. Thirty-three 

batches are made available in a 16-month period of time. More process details can be 

found in [59], [60].  

5.3.1 Data preprocessing 

For a batch process, the data are stored in a three-dimension array, with dimen-

sions 𝐾 × 𝐽 × 𝐼𝑘, as shown in Figure 5.5. Each row corresponds to one of the 𝐾 batches, 

while each column contains one of the 𝐽 variables; 𝐼𝑘is the total number of samples taken 

in 𝑘𝑡ℎ batch. This is one of the typical characteristics of batch process, where batch dura-

tion is not fixed. Due to such batch characteristics of the data, preprocessing steps are 

taken to unfold the three-way array by preserving the variable direction [61], as shown in 

Figure 5.5. A previous approach proposed by Nomikos and MacGregor [62], [63] is to  
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Figure 5.5: Illustration of unfolding three-dimension array to preserve the direction of 

variables 
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Table 5.5: List of process variables included in polyester resin dataset 

Online Monitored Variable Variable No. 

Mixing rate (%) 1 

Mixing rate 2 

Mixing rate SP 3 

Vacuum line temperature (°C) 4 

Inlet dowtherm temperature (°C) 5 

Outlet dowtherm temperature (°C) 6 

Reactor temperature (sensor 1) (°C) 7 

(dummy) 8 

Column head temperature (°C) 9 

Valve V25 temperature (°C) 10 

Scrubber top temperature (°C) 11 

Inlet water temperature (°C) 12 

Column bottom temperature (°C) 13 

Scrubber bottom temperature (°C) 14 

Reactor temperature (sensor 2) (°C) 15 

Condenser inlet temperature (°C) 16 

Valve V14 temperature (°C) 17 

Valve V15 temperature (°C) 18 

Reactor differential pressure 19 

(dummy) 20 

Column top temperature PV (°C) 21 

Column top temperature SP (°C) 22 

V42 way-1 valve opening (%) 23 

Inlet dowtherm temperature PV (°C) 24 

Inlet dowtherm temperature SP (°C) 25 

V42 way-2 valve opening (%) 26 

Reactor temperature PV(°C) 27 

Reactor temperature SP (°C) 28 

(dummy) 29 

Valve V25 temperature PV (°C) 30 

Valve V25 temperature SP (°C) 31 

Valve V42 valve opening (%) 32 

Reactor vacuum PV (mbar) 33 

Reactor vacuum SP (mbar) 34 
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unfold the three-way matrix so that the batch direction is preserved. This results in matrix 

with dimension of 𝐾 by (∑ 𝐽 × 𝐼𝑘
𝐾
𝑘=1 ). Since the objective of this work is to perform var-

iable selection, the approach that preserves the direction of variables is adopted. 

The score plot based on principal component analysis (PCA) of the unfolded pro-

cess variables is shown in Figure 5.6. Only one cluster is formed, with few data points 

outside of the vicinity, which indicates that the data is collected from a single operating 

model. The batch dynamics in the product quality variables can be observed in Figure 

5.7, where each cycle represents a batch. To synchronize the samples of the process vari-

ables and quality variables, two approaches are implemented:  

 Method 1: Process measurements collected between two product quality 

measurements are averaged and utilized as the regressor inputs to be 

paired up with the product quality measurement. Data preprocessed this 

way are termed “averaged data”. 

 Method 2: In contrast to the first method, the integral is taken instead of 

average. Data preprocessed this way are termed “integrated data”. 

When new set of measurements become available, same approach is taken to av-

erage or integrate the process measurements between two quality variable measurements. 

Before modeling, PCA is performed on both averaged data and integrated data to 

detect outliers. The score plots of the first two principal components are shown Figure 

5.8. It was found that the 33 potential outliers identified in the averaged data are all the 

first samples in each batch. All of them are also classified as outliers in the integrated da-

ta, along with 13 other samples. Removing the identified outliers can improve the PLS 

soft sensor models, which can be observed by comparing Figure 5.10 (a) with (c), and (b) 
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Figure 5.6: Score plot of unfolded original process variables 

 

Figure 5.7: Unfolded product quality variables. Each cycle corresponds to samples meas-

ured offline during each batch. 
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Figure 5.8: Score plots of (a) averaged data and (b) integrated data 

(a) 

(b) 
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Figure 5.9: Score plots of (a) averaged data and (b) integrated data after outlier removal 

(a) 

(b) 
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with (d). The score plots of both the averaged data and integrated data after outlier re-

moval are shown in Figure 5.9. 

 

 

Figure 5.10: Prediction performance of original PLS models on (a) acidity number, (b) 

viscosity models before outlier removal and (c) acidity number, (d) viscosity models after 

outlier removal 

Sample outliers detected by PCA are removed before variable selection and mod-

eling. Twenty-six batches i.e., approximately 80% of total batches, are used for training, 

three batches are used for parameter tuning, and the remaining four batches are used for 

testing. 100 MC simulations are performed so that different batches are used for training, 

tuning and testing in each run, then the average performance is obtained for evaluation. 

(a) (b) 

(c) (d) 
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5.3.2 Comparison results 

RIVAL is not evaluated using the industrial dataset since the data do not meet the 

criterion of positive regression coefficients. Lasso is added in its place. For each variable 

selection method, separate models are built to predict acidity number and viscosity, re-

spectively. 

First, we compare the performance of the full PLS models for both acidity number 

and viscosity using the two synchronization methods. The results are shown in Figure 

5.10, which clearly show that the model developed using the averaged data is significant-

ly better than the integrated data in terms of prediction performance. Even though remov-

ing outliers results in more significant improvement for integrated data, the prediction 

performance is still worse than averaged data. This is true for both acidity number and 

viscosity models. Comparing Figure 5.8 (a) with (b), it can be observed that the averaged 

data follow a Gaussian distribution to a much better degree than the integrated data, and 

the outliers identified by the averaged data are more meaningful than that identified in the 

integrated data. This is understandable because calculating the average improves the 

gaussianity of the data according to the central limit theorem [64], [65], while integration 

does not. Therefore, throughout the rest of the work, we only report the results obtained 

using the averaged data. 

For all the reduced models, the results presented are all optimized or tuned using 

the independent tuning batches. Unlike the simulation case, all methods are sensitive to 

their tuning parameters with much larger MAPE in the industrial polyester case. The se-

lected sensitivity results for acidity number model are shown in Figure 5.11. The sensitiv-

ity results for viscosity models are not shown here since they are similar to the ones from 
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(b) (a) 

(c) (d) 

acidity number models. Compared Figure 5.11 with Figure 5.2, all the methods showed 

higher sensitivity to the tuning parameter. However, it is worth noting that the “greater 

than one rule” still applies for PLS-VIP in this industrial polyester case, since it falls in 

the minimum region. For both PLS-BETA and Lasso, one must be able to pinpoint the 

narrow optimal region in order to obtain satisfactory results. 

 

 

 

Figure 5.11: Sensitivity in tuning parameters in terms of prediction error for (a) PLS-VIP, 

(b) PLS-BETA, (c) Lasso, and (d) UVE-PLS in acidity number model 

In terms of variable selection consistency when different batches are used as the 

training batches, the 𝐼𝐶 indices of different methods are given in Table 5.6. The best and 

second best performers are highlighted in bold face with and without underline, respec-

tively. It is worth noting that the G values cannot be assessed because the true relevant 
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variables are unknown. PLS-VIP produces the most consistent variable selection results 

with significantly higher 𝐼𝐶 values than others. As an example, the variable selection fre-

quency plots of PLS-VIP and GA-PLS for both acidity number and viscosity are com-

pared in Figure 5.12. Furthermore, most of the variables selected by PLS-VIP are tem-

peratures. Since both acidity number and viscosity are functions of temperature, the vari-

ables selected by PLS-VIP do reflect the process knowledge. 

Table 5.6: Comparison of 𝐼𝐶 values of different methods in the polyester case 

Methods Acidity Number Viscosity 

PLS-VIP 0.91 0.91 

PLS-BETA 0.65 0.60 

Lasso 0.56 0.53 

UVE-PLS 0.72 0.62 

SR 0.46 0.29 

CARS-PLS 0.48 0.41 

GA-PLS 0.28 0.26 

 

However, it was surprising to find out that some of the retained variables are 

highly correlated with each other, as one would expect variable selection to remove the 

correlations. Some of the correlated variables are shown in Figure 5.13. Two approaches 

are taken to remove those variables: 

1. To remove highly correlated variables before variable selection. 

2. To remove highly correlated variables after variable selection. 

This aspect has never been examined before, as one would simply perform varia-

ble selection and use the selected variables to build soft sensors; and let PLS to handle the 

collinearity. Despite the fact that PLS is able to deal with the collinearity among different 

variables, if we can get a smaller model without sacrificing the performance, principle of 

parsimony applies. With smaller model, first of all, the model maintenance is cheaper and  
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Figure 5.12: Variable selection frequency by PLS-VIP (a) acidity number, (b) viscosity; 

and by GA-PLS (c) acidity number, (d) viscosity 

easier. And more importantly, if the sensor on the variables used to build the model 

failed, the correlated variables can be substituted to keep the soft sensor working during 

that kind of circumstances.  

Three levels of correlation removal are implemented, at 0.99, 0.95, and 0.90. Re-

sults showed that the second removal approach, which removes highly correlated varia-

bles after variable selection, performed better than the first approach.  As one would ex-

pect the first approach to work better than the second one since a smaller model would be 

obtained before variable selection, which can result in an easier implementation of varia-

ble selection. However, if the highly correlated variables, which contain relevant infor-

(a) (b) 

(c) (d) 
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mation of primary variables, are removed ahead of time, the covariance explained by 

those highly correlated variables would be different. This significantly affects the results 

of variable selection. Hence, the second approach is adopted. To compare the correlation 

removal at three levels, the prediction error of the testing sets are examined. For removal 

at 0.99, the prediction errors are similar to the ones without correlation removal. For re-

moval at 0.95 and 0.90, the prediction errors increased, which means the models are 

oversimplified. Therefore, correlation removal at 0.99 is adopted. Even though the pre-

diction performance does not improve significantly, in terms of practicability, a smaller 

model is always better without sacrificing the performance. The selected variables after 

correlation removal are shown in Figure 5.14. 

 

Figure 5.13: Examples of highly correlated variables 

The percentage improvement in MAPE of soft sensors built based on the seven 

variable selection methods for both acidity number and viscosity models are shown in 

Table 5.7. The best and second best performers are highlighted in bold face with and 

without underline, respectively. All reduced models yield better performance than the full 

model. The most significant improvements are obtained by PLS-VIP (28.4%), followed 

by PLS-BETA (23.9%) in predicting acidity number; and Lasso (33.3%), followed by 
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PLS-VIP (30.5%) in predicting viscosity. The time series plots of both measured and 

predicted acidity number and viscosity for one of the batch are shown in Figure 5.15. It 

can be seen that the predictions made with variable selection follow the true measurement 

more closely than the original PLS. 

  

Figure 5.14: Variable selection frequency by (a) PLS-VIP and (b) GA-PLS for acidity 

number model after correlation removal 

For the industrial polyester case study, the 𝑅2 and bias values are also computed. 

They are listed in Table 5.8 and Table 5.9, respectively. Again, the best and second best 

performers are highlighted in bold face with and without underline, respectively. There 

are significant improvements in 𝑅2 values with variable selection, in contrast to no 𝑅2 

improvement in the simulated case study. Overall, the comparison results based on 𝑅2 

and bias values agree with the ones based on MAPE. Both demonstrate the benefits of 

applying variable selection before modeling and PLS-VIP performs the best among all 

methods compared. 

5.4 Comparison of the simulation and industrial polyester case studies 

It is observed that the improvements obtained in the industrial polyester case 

study are more significant than the ones in the simulation case study. The main reason for 

such discrepancy is most likely the difference in sample distribution. For the simulated 
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case study, the process data follows multivariate normal distribution and PLS is expected 

to handle the white noises in the data well, including the irrelevant variables. As a results, 

there is not much room for improvement over the full PLS model. On the other hand, for 

the industrial polyester case study, process data shown clear non-Gaussian distribution 

and contains outliers. For such cases, variable selection is demonstrated to eliminate vari-

ables that are irrelevant, which may contain high noise and outliers, and therefore signifi-

cantly improve the soft sensor performance. 

Table 5.7: Comparison of percentage improvement in MAPE of different methods in the 

polyester case 

  Quality Variables 

Methods Index Acidity Number Viscosity 

PLS-Full MAPETe 27.0 17.4 

PLS-VIP % ImpTe 28.4 30.5 

PLS-BETA % ImpTe 23.9 20.9 

Lasso % ImpTe 10.8 33.3 

UVE-PLS % ImpTe 10.5 12.9 

SR % ImpTe 19.8 17.3 

CARS-PLS % ImpTe 21.1 22.3 

GA-PLS % ImpTe 21.9 19.9 

 

MAPETe stands for the average MAPE over 100 MC runs of the full PLS model. % ImpTe stands for per-

centage improvement for the method compared to the full PLS model. 

 

5.5 Conclusions  

In this chapter, seven variable selection methods for PLS-based soft sensor devel-

opment are compared using a simulated case study and an industrial polyester case study. 

To address the challenge that there is no published method that directly evaluates the var-

iable selection performance when the true variable relevance is unknown, we propose an  
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Figure 5.15: Comparison of prediction on averaged data testing set for (a) acidity number 

and (b) viscosity from one batch 

(a) 

(b) 
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information entropy based performance index (𝐼𝐶) to directly assess the consistency of a 

variable selection method. It is shown that 𝐼𝐶 is consistent with 𝐺, but more sensitive, for 

simulated case studies where the true variable relevance is known. It is also shown that 𝐼𝐶 

is a good performance indicator for the industrial polyester case study where the true var-

iable relevance is unknown.  

Table 5.8: Comparison of 𝑅2 values of different methods in the polyster case 

Methods Acidity Number Viscosity 

PLS-Full 0.06 0.40 

PLS-VIP 0.95 0.92 

PLS-BETA 0.93 0.88 

Lasso 0.92 0.92 

UVE-PLS 0.89 0.83 

SR 0.43 0.87 

CARS-PLS 0.93 0.88 

GA-PLS 0.45 0.87 

 

Table 5.9: Comparison of bias in predicted variables of different methods in the polyester 

case 

Methods Acidity Number Viscosity 

PLS-Full 0.13 -0.19 

PLS-VIP -0.03 -0.01 

PLS-BETA 0.05 -0.10 

Lasso 0.05 -0.01 

UVE-PLS 0.19 -0.11 

SR 0.07 -0.10 

CARS-PLS 0.01 -0.11 

GA-PLS 0.07 -0.13 

 

From the simulation case study, we are able to observe how each variable selec-

tion method is affected by different characteristics of the data. Overall, PLS-VIP is the 

most consistent variable selection method. For most of the cases tested, PLS-VIP has the 
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highest or the second highest 𝐺 and 𝐼𝐶 values, which is consistent with the MAPE reduc-

tion on the reduced model over the full model where PLS-VIP performs the best or the 

second best most of the time.  

For the industrial polyester case study, independent models are developed for two 

product quality variables. Two different synchronization methods are used to synchronize 

the process variables with product quality variables that are sampled at different frequen-

cies. It is found that synchronization by taking the average of the process measurements 

between production quality variables performs better than synchronization by integration 

in terms of MAPE from soft sensors. The results also demonstrate the advantages of ap-

plying variable selection along with correlation removal before soft sensor development. 

Prediction errors from the best performing models after variable selection are reduced by 

28% and 33% for acidity number and viscosity, respectively. Furthermore, PLS-VIP is 

the most consistent variable selection method among all the methods compared based on 

𝐼𝐶 and MAPE. The consistency between 𝐼𝐶 and MAPE demonstrates the effectiveness of 

𝐼𝐶 for evaluating the variable selection performance, when the true variable relevance in-

formation of the data is unknown. 

The simulation case study indicates that some of the variable selection methods 

are insensitive to tuning parameters. However, the industrial polyester case study indi-

cates that one should always make the effort to search for the optimal parameter settings 

when industrial applications are considered. The performance can be greatly improved 

when optimal tuning parameters are chosen, especially for Lasso and RIVAL, which are 

sensitive to tuning parameters.  
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It is also observed that the improvements obtained in the industrial polyester case 

study are more significant than the ones in the simulation case study. The main reason for 

such discrepancy is most likely the sample distribution being non-Gaussian. For the 

simulated case study, the process data follows multivariate normal distribution, and PLS 

is expected to handle the white noises well in the data, including the irrelevant variables. 

As a result, there is not much room for improvement over the full PLS model. On the 

other hand, for the industrial polyester case study, process data shows clear non-Gaussian 

distribution and contains outliers. For such cases, variable selection could eliminate vari-

ables that are irrelevant, which may contain high noise and outliers, and therefore signifi-

cantly improve the soft sensor performance. 
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Chapter 6. Applications to Digester Case Study 

6.1 Introduction 

The performances of different variable selection methods are also compared using 

digester case studies: a high-yield digester simulated with extended Purdue model [43] 

and an industrial Kamyr digester [3].  

In pulping process, the wood chips are converted into pulp by displacing lignin 

from cellulose fibers by reacting with a chemical solution (referred to as white liquor). 

Kraft pulping is one of the most commonly used chemical  pulping processes, in which 

wood chips reacts with an aqueous solution of sodium hydroxide in a continuous Kamyr 

digester, which is a complex vertical plug flow reactor to remove lignin at high tempera-

ture [66]. Most of the continuous digesters consist of three basic zones: an impregnation, 

one or more cooking zones, and a wash zone. White liquor penetrates and diffuses into 

the wood chips as they flow through the impregnation zone. The white liquor and wood-

chips are then heated to reaction temperatures; and the lignin is removed through one or 

more cooking zones, where the white liquor is either in co-current or counter-current flow 

with respect to the wood chips. In the wash zone, a counter-current flow of liquor washes 

the degradation products from the pulp. This also cools the pulp to quench the reaction 

and reduces damage to the cellulose fibers from continued reaction. The schematic dia-

gram of a single-vessel Kamyr digester is shown in Figure 6.1. Kappa number is used to 

measure the residual lignin in the pulp, which becomes a direct indicator of pulp quality. 

It is desired to minimize the variations in Kappa number in the pulp product. [43] 
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Figure 6.1: Schematic of a high-yield single-vessel Kamyr digester [3] 

6.2 Simulated continuous digester 

The extended Purdue model developed in [43] is implemented to test the perfor-

mances of the different variable selection methods. The single-vessel high-yield digester 

is approximated by 50 continuous stirred tank reactors (CSTRs) in series, which results in 

950 nonlinear ordinary differential equations (ODEs). Each CSTR is assumed to contain 

three phases: solid, entrapped liquor, and free liquor. 

6.2.1 Data description 

The primary output of this simulator is the Kappa number. The secondary outputs 

are the effect alkali (EA), hydrosulfide (HS), dissolved lignin (DL), dissolved carbohy-

drate (DC), and free liquor temperature (T) of upper recirculation, lower recirculation, 

and extraction flow. [3] The measuring frequencies for both primary and secondary out-
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puts are every 6 minutes during simulation. White noises are added to both measurements 

during simulation. 

Four different types of disturbances are introduced:  

1. Integrated white noise with variance of 0.0009 in entering white liquor 

EA concentration. 

2. Integrated white noise with variance of 0.005 in upper and lower heater 

temperatures. 

3. Integrated white noises with variances of 0.0003, 0.0007, 0.007, 0.0001, 

and 0.002 in the five wood compositions at the inlet. 

4. The combination of the above three cases. 

For each case, 1500 hours of data are simulated, which is equivalent to 15000 

samples. Approximately 800 hours of data are used for training, and the rest are used for 

testing. There are 23 secondary variables included in the model, as listed in Table 6.1. 

They comprise the full model. The same procedures for variable selection are implement-

ed for each case. 

6.2.2 Comparison results 

The selection results for the seven variable selection methods are shown in Figure 

6.2 to Figure 6.5, for the four types of disturbances introduced, respectively. The vertical 

lines separate the groups of variables, e.g., the first group is EA concentrations from 12
th

, 

18
th

, and 35
th

 CSTR. For disturbance 1, EA concentrations are selected by all the seven 

methods, since the disturbance is introduced on the EA concentrations at the inlet. For 

disturbance 2, the fourth group of variables is selected by all the methods, except for 

PLS-BETA, due to the disturbance introduced in upper and lower heater temperatures.   
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Table 6.1: Regressors for digester simulator 

Variable No. Description Location  CSTR index 

1 EA12, free liquor effective alkali con-

centration 

Upper cooking 12 

2 EA18, free liquor effective alkali con-

centration 

Lower cooking 18 

3 EA35, free liquor effective alkali con-

centration 

Extraction 35 

4 DL12, free liquor dissolved lignin con-

centration 

Upper cooking 12 

5 DL18, free liquor dissolved lignin con-

centration 

Lower cooking 18 

6 DL35, free liquor dissolved lignin con-

centration 

Extraction 35 

7 T12, free liquor temperature Upper cooking 12 

8 T18, free liquor temperature Lower cooking 18 

9 T35, free liquor temperature Extraction 35 

10 TU, upper heater exit temperature Upper heater exit -- 

11 TL, lower heater exit temperature Lower heater 

exit 

-- 

12 pEA12, free liquor passive effective al-

kali concentration 

Upper cooking 12 

13 pEA18, free liquor passive effective al-

kali concentration 

Lower cooking 18 

14 pEA35, free liquor passive effective al-

kali concentration 

Extraction 35 

15 HS12, free liquor hydrosulfide concen-

tration 

Upper cooking 12 

16 HS18, free liquor hydrosulfide concen-

tration 

Lower cooking 18 

17 HS35, free liquor hydrosulfide concen-

tration 

Extraction 35 

18 pHS12, free liquor passive hydrosulfide 

concentration 

Upper cooking 12 

19 pHS18, free liquor passive hydrosulfide 

concentration 

Lower cooking 18 

20 pHS35, free liquor passive hydrosulfide 

concentration 

Extraction 35 

21 DC12, free liquor dissolved carbohy-

drates concentration 

Upper cooking 12 

22 DC18, free liquor dissolved carbohy-

drates concentration 

Lower cooking 18 

23 DC35, free liquor dissolved carbohy-

drates concentration 

Extraction 35 
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Figure 6.2: Variable selection for digester simulator with disturbance case 1 

 

Figure 6.3: Variable selection for digester simulator with disturbance case 2 
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Figure 6.4: Variable selection for digester simulator with disturbance case 3 

 

Figure 6.5: Variable selection for digester simulator with disturbance case 4 
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For disturbance 3, DL concentrations are all selected. Disturbance introduced on wood 

composition at the inlet directly affects the concentration of DL. Therefore, the selection 

also reflects the perturbations introduced. For disturbance 4, which is a combination of all 

the three disturbances, all the EA concentrations are selected as well. One other trend ob-

served is that the variables from 35
th

 CSTR are selected more frequent compared to the 

ones from the other two CSTR locations. Variables closer to the blow line are more rele-

vant to the Kappa number, since this is where the measurements are taken. 

 

 

 

Figure 6.6: Percentage improvements in prediction error for digester simulator with dis-

turbance on (a) EA concentrations, (b) upper and lower heater temperatures, (c) wood 

chip concentrations, (d) combination of all three  

(a) (b) 

(c) (d) 
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The prediction performances of the reduced models are compared with the full 

model. The results are shown in Figure 6.6 for the four different types of disturbances 

introduced. Most of the reduced models yield improvements compared to the full model. 

The improvements from the first three cases are insignificant. However, the ones from 

the fourth case, which is the one combines all three disturbances, yield quite significant 

improvement. The highest improvement is obtained by Lasso with 7.5%, followed by 

PLS-VIP with 4%. When the process is highly disturbed as in Case 4, variable selection 

can improve the prediction performance by eliminating the noises and irrelevant infor-

mation. In addition, even though the prediction improvements from the first three cases 

are insignificant, the selection results are easily interpretable.  

6.3 Industrial Kamyr digester 

The industrial Kamyr digester data was obtained from a paper mill located at 

Mahrt, Alabama, run by MedWestvaco Corporation. The digester has a DCS and a Dura-

lyzer-NIR digester analyzer system to measure secondary variables such as EA, DL, total 

dissolved solids (TS) and active alikali (AA) for the different zones of the digester [3].  

6.3.1 Data preprocessing 

84 process variables were made available from two separate datasets. Raw data is 

treated by visual inspection, extreme point removal and interpolation, and smoothing, etc. 

Only 49 variables are retained after preprocessing, such as manual outlier removal, with 

one being Kappa number, resulting in 13000 samples. 16 variables, listed in Table 6.2, 

are chosen by process knowledge [67]. The sampling frequency for Kappa number is 

much lower than that for other process variables. For the samples without Kappa meas-

urements, the previous measurement of Kappa number is used. Thus, many of the Kappa  
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Table 6.2: Selected regressors by process knowledge for industrial Kamyr digester 

Variable No. Description Zone 

1 Top circulation temperature Impregnation 

2 Combine heater temperature Impregnation 

3 Upper cooking [Na2S]  Upper cook 

4 Upper cooking [Na2CO3] Upper cook 

5 Upper cooking [Lignin] Upper cook 

6 Upper cooking [Total EA] Upper cook 

7 Lower cooking [Lignin] Lower cook 

8 Lower cooking [Na2CO3] Lower cook 

9 Lower cooking [Na2S] Lower cook 

10 Lower cooking [Total EA] Lower cook 

11 Extraction temperature Transition 

12 Lower extraction [Na2CO3] Transition 

13 Lower extraction [Lignin] Transition 

14 Lower extraction [Na2S] Transition 

15 Lower extraction [Total EA] Transition 

16 Lower extraction [% solids] Transition 

 

measurements have repeated values. 

For continuous process, moving window approach, shown in Figure 6.7, is uti-

lized to generate multiple datasets for MC simulation without corrupting the dynamics of 

the process. 100 MC runs are generated, with parameters listed in Table 6.3, and used for 

training. 3000 samples are used for testing.  

Different moving window parameters are tested to design MC runs. The prelimi-

nary results of variable selection over 100 MC runs are quite inconsistent.  The selection 

frequencies of each method over 100 MC runs, generated by window size of 500, are 

shown in Figure 6.8, as an example. Only Lasso selects variables with high frequency, 

but all the variables are selected by Lasso. All the other methods select variables with 

very low frequency. For instance, GA-PLS selects all the variables less than 40% of the 

time, while SR yields 35% frequency on average. The 𝐼𝐶 values are summarized in Table 



66 

 

6.4. Most of the selections are inconsistent. One of the main reasons is the fast dynamics 

of this industrial digester data. The dynamics of 100 MC runs are different from one an-

other since MC simulations are generated by moving window approach. As a result, the 

window size is chosen to be 2000 with step size of 50. The new information contained in 

the next subset of data would be minimal.  

 

Figure 6.7: Schematic of moving window approach 

Table 6.3: Moving window parameters 

Step size (SS) Window size (WS) 

50 300 

50 500 

50 800 

50 2000 

 

6.3.2 Comparison results 

To cope with the nature of such process, dynamic PLS (DPLS), an extension of 

the conventional PLS, is implemented along with variable selection. DPLS has been 

widely implemented in many dynamic applications [68]–[71]. In DPLS, original data ma-

trix is augmented with lagged measurements to capture process dynamics. The amount of 

lagged measurement to be included is determined by the parameter, past horizon. Based  
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Figure 6.8: Variable selection frequency for industrial digester with WS=500: (a) PLS-

VIP, (b) PLS-BETA, (c) Lasso, (d) UVE-PLS, (e) SR, (f) CARS-PLS, and (g) GA-PLS. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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on [3], the past horizon parameter is chosen to be 22 for this case study. This results in a 

regressor matrix with dimension of 2000 by 352. 

Table 6.4: Comparison of 𝐼𝐶 values of different methods in the industrial Kamyr digester 

Methods 𝐼𝐶 

PLS-VIP 0.15 

PLS-BETA 0.31 

Lasso 0.88 

UVE-PLS 0.13 

SR 0.07 

CARS-PLS 0.37 

GA-PLS 0.11 

 

The selection frequencies of all seven methods are shown in Figure 6.9. The se-

lection consistencies of some methods seem to improve compared to the ones with PLS, 

as shown in Figure 6.8. The vertical lines separate variables from different zones. The 

consistency index values are listed in Table 6.5. However, the selection performances are 

still not consistent enough, especially for the methods that performed well in the other 

case studies. The percentage improvement of reduced models compared to full DPLS 

models are shown in Figure 6.10. The average MSPE value for the full DPLS is 37.2%. 

PLS-BETA and PLS-VIP give the highest and second highest improvements of approxi-

mately 6%.  

Except the high dynamic nature of the digester data, one other reason for such se-

lection inconsistency may be caused by the repeated Kappa measurements used. The rec-

orded Kappa measurements are not the true Kappa values corresponding to the process 

variables taken at the time instance, which means the information used to train the model 

are not fully accurate. Therefore, models are also built for unique Kappa measurements. 

For all the time stamps with repeated Kappa measurements, regressor information is ne-
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glected during modeling. This process results in a significant reduction in the number of 

samples. 1100 samples are used for training, and 450 samples are used for testing.  

Table 6.5: Comparison of 𝐼𝐶 values of different methods with DPLS in Kamyr digester 

Methods 𝐼𝐶 

PLS-VIP 0.14 

PLS-BETA 0.12 

Lasso 0.38 

UVE-PLS 0.25 

SR 0.53 

CARS-PLS 0.33 

GA-PLS 0.23 

 

Due to the limited availability of the unique Kappa measurements, MC simulation 

is not performed. The prediction performance has been significantly improved compared 

to the model using repeated Kappa number. The prediction error in MSPE is 25.2% for 

the full DPLS model. The selection performances of seven variable selection methods are 

shown in Figure 6.11. The results are presented in terms of binary number, with ‘1’ being 

variable selected. Only PLS-VIP and Lasso completely eliminate variables from lower 

cooking and impregnation zones, respectively. The corresponding prediction performanc-

es are shown in Figure 6.12. Lasso yields the highest improvement of 6.5% compared to 

the full DPLS model. 

Even though the selection consistencies for this industrial digester case are not as 

good as other case studies, results showed that variable selection could still improve the 

prediction performance and reduce the model size and complexity. 

6.4 Conclusions  

In this chapter, seven variables selection methods for PLS-based soft sensors are 

implemented for the digester simulator case. Even though the prediction performances  
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Figure 6.9: Variable selection frequency for industrial digester: (a) DPLS-VIP, (b) DPLS-

BETA, (c) RIVAL, (d) UVE-DPLS, (e) SR, (f) CARS-DPLS, and (g) GA-DPLS. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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Figure 6.10: Percentage improvements in prediction error for industrial Kamyr digester 

 

Figure 6.11: Variable selection for industrial digester with unique Kappa measurements 
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Figure 6.12: Percentage improvements in prediction error for industrial Kamyr digester 

with unique Kappa measurements 

obtained by variable selection are not significant for the first three types of disturbances, 

but the selection results from the reduced models can be easily interpreted. The selected 

regressors reflect the type of disturbance introduced. For the combination case, the 

amount of prediction performance improvements is more notable, with 7.5% by Lasso 

and 4% by PLS-VIP. Furthermore, selection results also reveal the relevance of variable 

location. Regressors located closer to the blow line, where the Kappa measurements are 

taken, are identified to be more relevant compared to others. 

For the industrial Kamyr digester case study, the process has fast dynamics. To cope with 

the nature of such process, DPLS is implemented along with variable selection. The se-

lection performances are still inconsistent, but prediction performances are improved by 

6% with PLS-BETA and PLS-VIP. Even with the 6% improvement by variable selection, 



73 

 

the prediction performance is still quite poor, given MSPE value of 37% for the full mod-

el. Therefore, a new model is built using only the non-repeated Kappa measurements. 

The prediction error has been reduced to 25% by the full model. This is further boosted 

by 6.5% with Lasso. Despite the improvement obtained by using only the unique Kappa 

measurements, there is a drawback associated. The ratio of sample to variable (i.e., 1100 

to 352 for training, and 450 to 352 for testing) is not favorable for DPLS with such small 

dataset. For industrial applications, if there are vast amount of historical data stored, the 

performances of DPLS could be further improved. 
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Chapter 7. Conclusions and Future Works 

7.1 Conclusions 

In this work, seven variable selection methods for PLS/DPLS-based soft sensor 

development were investigated using four case studies: one simulated case, one industrial 

polyester case, one digester simulator, and one industrial Kamyr digester case. Current 

studies usually adopt the readily available performance indicators, such as 𝐺, to evaluate 

variable selection performance. However, all the available performance indicators are 

only accessible when the ground truth of the data is available. To address the challenge 

that there is no published method that directly evaluates the variable selection perfor-

mance when the true variable relevance is unknown, we proposed an information entropy 

based performance indicator (𝐼𝐶) to directly assess the consistency of a variable selection 

method. It was shown that 𝐼𝐶 is consistent with 𝐺, but more sensitive, for the simulated 

case studies where the true variable relevance is known. It was also shown that 𝐼𝐶 is a 

good performance indicator for the industrial case study where the true variable relevance 

is unknown.  

From the simulation case study, we were able to observe how each variable selec-

tion method was affected by different characteristics of the data. Generally speaking, as 

the magnitude of CBP increases, magnitude of SNR and PR decreases, more irrelevant 

variables are selected and less improvement are obtained for all variable selection meth-

ods. Overall, PLS-VIP was not only the most consistent variable selection method, but 

also the most reliable method since the most of the variables selected by PLS-VIP were 
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truly relevant. For most of the cases tested, PLS-VIP had the highest or the second high-

est 𝐺 and 𝐼𝐶 values, which was consistent with the MAPE reduction on the reduced mod-

el over the full model where PLS-VIP performed the best or the second best most of the 

time.  

For the industrial polyester case study, independent models were developed for 

two product quality variables. Two different synchronization methods were used to syn-

chronize the process variables with product quality variables that were sampled at differ-

ent frequencies. By comparing the prediction performances of the full models, it was 

found that synchronization by taking the average of the process measurements between 

production quality variables performed better than synchronization by integration in 

terms of MAPE from soft sensors. Outlier detection by PCA clearly identified the first 

samples taken at process start-up from 33 batches for the averaged data, along with 13 

other samples for the integrated data. With outlier removal, the prediction performance 

obtained on averaged data still exceeded the performance on the integrated data. The re-

sults also demonstrated the advantages of applying variable selection before soft sensor 

development. However, variable selection does not necessarily remove all the highly cor-

related variables. Correlation removal after variable selection is highly recommended for 

industrial processes. Prediction errors from the best performing models after variable se-

lection, along with correlation removal at 0.99, were reduced by 28% and 33% for acidity 

number and viscosity, respectively. Furthermore, PLS-VIP was the most consistent vari-

able selection method among all the methods compared based on multiple criteria, 𝐼𝐶, 𝑅2 

and MAPE. The consistency between 𝐼𝐶 and prediction performance indices demonstrat-

ed the effectiveness of 𝐼𝐶 for evaluating the variable selection performance, when the true 
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variable relevance information of the data is unknown. The variables selected by PLS-

VIP also reflected the process knowledge. 

The sensitivity of each variable selection methods on tuning parameters were also 

investigated in this work. The simulation case study indicated that most of the variable 

selection methods were insensitive to tuning parameters. However, the industrial polyes-

ter case study indicated that one should always make the effort to search for the optimal 

parameter settings when industrial applications are considered. The performance can be 

significantly improved when optimal tuning parameters were chosen, especially for Lasso 

and RIVAL, which are sensitive to tuning parameters.  

It was also observed that the amounts of improvements obtained in the industrial 

polyester case study were more substantial than the ones in the simulation case study. 

The main reason for such discrepancy was most likely the difference in sample distribu-

tion. For the simulated case study, the process data followed multivariate normal distribu-

tion. For such cases, PLS was expected to handle the white noises in the data well, in-

cluding the irrelevant variables. As a result, there was not much area for continued devel-

opment over the full PLS model on simulated case. On the other hand, for the industrial 

polyester case study, process data showed clear non-Gaussian distribution and contained 

outliers, as shown in the score plots. For such cases, the performance of soft sensors can 

be greatly improved by implementation of variable selection, in which irrelevant varia-

bles that may contain high noise and outliers were eliminated.  

For the digester simulated case study, soft sensors were built for data with four 

different types of disturbances introduced. Even though the prediction performances ob-

tained by variable selection were not significant for the first three types of disturbances, 
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but the selection results from the reduced models can be easily interpreted, as the selected 

regressors reflected the type of disturbance introduced. For the combination case, the 

amount of prediction performance improvements was more notable compared to the first 

three types of disturbances. Implementation of variable selection improved the prediction 

performance by eliminating the noises and irrelevant information. Consequently, there 

was 7.5% improvement in prediction performance by Lasso and 4% by PLS-VIP. Fur-

thermore, selection results also revealed the relevance of variable location. Regressors 

located closer to the blow line (the ones from 35
th

 CSTR), where the Kappa measure-

ments are taken, were identified to be more relevant compared to others by all the varia-

ble selection methods. 

For the industrial Kamyr digester case study, the fast dynamic nature of the pro-

cess became problematic. The selection results over 100 MC simulations, which were 

obtained through moving window approach, were inconsistent. To cope with the nature 

of such process, DPLS was implemented along with variable selection. Even though the 

selection performances were still inconsistent, over 6% of prediction performance im-

provements were obtained by PLS-BETA and PLS-VIP. Since the prediction error of the 

full model yielded 37% in MSPE value, the best performer after variable selection still 

gave around 35% in MSPE. Therefore, an alternative approach was proposed to build a 

new model using only the non-repeated Kappa measurements. Consequently, the predic-

tion error had been reduced to 25% by the full model. When variable selection was ap-

plied, the prediction performance was further boosted by 6.5% with Lasso. Despite the 

improvement obtained by using only the unique Kappa measurements, there is a major 

drawback associated with this approach. The ratio of sample size to variables is not fa-
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vorable for DPLS with such small dataset, as discussed previously. For industrial applica-

tions, if there are vast amount of historical data stored, the performances of DPLS could 

be further enhanced, along with implementation of variable selection. 

7.2 Future works 

The future research directions which require further investigation are summarized 

in this section.  

From literature studies, it is found that variable reduction can be carried out prior 

to variable selection based on two rules: elimination of variables with zero-variance and 

elimination of highly correlated variables. This would be beneficial in a case with high 

dimensionality of data.  

Furthermore, multi-criteria based variable selection can be considered as well. In 

our current work, only the predictive ability is considered and optimized. One possible 

approach is to apply a modeling power approach, which balances the predictive and de-

scriptive abilities of model. Another approach is to adopt the Pareto Analysis to obtain 

the balance between model simplicity and predictive power. 

As discovered in this work, variable selection can be implemented with dynamic 

modeling techniques to handle process with fast dynamics. Also, new variable selection 

methods that can deal with such process should be developed.  

The main focus of the future works will be concentrated on variable selection for 

process monitoring. In soft sensor development, there are product quality variables avail-

able for indication of model performance. In process monitoring, fault detection is ap-

plied to the process variables only. Once the fault is detected, fault diagnosis must be car-

ried out to find the root cause of the fault in order to take corrective action to prevent pro-
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cess failure. However, there is nothing that can directly relate process variables to model 

performance. Theoretically, fault detection performance can be greatly improved if only 

the variables that contribute to separation of normal data and faulty data are included. 

Furthermore, variable selection can be applied to fault diagnosis to select the subset of 

variables that are responsible for the abnormality in process. However, all of the current 

studies on variable selection for process monitoring require known normal and faulty data 

for model building. This would become a burden to industrial applications, where genera-

tion of faulty data is simply unaffordable. Another aspect of our work will focus on simu-

lation of faulty data using the available normal data.  

The optimal goal of our study is to implement variable selection method in the 

framework of Statistics Pattern Analysis (SPA). Due to the characteristics of SPA, it is 

very likely that the number of regressors would be greater than the number of samples. 

Variable selection method could be implemented to eliminate the uninformative variables 

prior to SPA. More importantly, variable selection can also be employed to select useful 

statistics in statistics pattern generation. 
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Appendix A: Simulation Case Results 

 

 

The selection frequency results of each method among 100 MC simulations for 

the six representative cases for simulated data are shown in Figure A.1 to Figure A.6, re-

spectively. The 𝐺 and 𝐼𝐶 values for each method are also labeled on their respective fig-

ures. The results from the other five cases agree with the ones from Case 3 as demon-

strated in Section 5.2.2. PLS-VIP is either the best or the second best performer, revealed 

by both 𝐺 and 𝐼𝐶 values. Furthermore, 𝐼𝐶 is a more indicative performance index for the 

given selection results, as compared to 𝐺. 

The model size of the six representative cases are summarized in Table A.1, in 

terms of average number of variables selected among 100 MC simulations, along with the 

corresponding standard deviations.  

Table A.1 Average and standard deviation of numbers of variables selected simulation 

case.  

Methods 
Cases 

1 2 3 4 5 6 

PLS-VIP 11 ± 0.6 15 ± 1.2 16 ± 0.7 9 ± 1.4 10 ± 1.1 18 ± 2.3 

PLS-BETA 10 ± 0 8 ± 0.4 9 ± 1.3 5 ± 1.3 7 ± 1.1 11 ± 1.8 

RIVAL 14 ± 2.0 12 ± 1.7 9 ± 2.0 8 ± 1.4 29 ± 4.4 22 ± 3.6 

UVE-PLS 12 ± 1.3 27 ± 3.5 20 ± 3.2 12 ± 2.0 8 ± 1.3 12 ± 1.7 

SR 10 ± 0.5 9 ± 1.5 5 ± 1.0 4 ± 1.1 7 ± 1.1 6 ± 1.2 

CARS-PLS 21 ± 13.4 9 ± 5.2 10 ± 6.3 8 ± 5.7 15 ± 4.9 14 ± 5.0 

GA-PLS 16 ± 2.7 13 ± 2.3 11 ± 2.9 7 ± 1.9 24 ± 4.2 23 ± 4.4 

 



89 

 

Results for all 108 simulation cases are shown in Table A.2 to Table A.5, in terms 

of 𝐺, 𝐼𝐶 , 𝑅2 , and percentage improvement of average MAPE values compared to full 

models, respectively. In Table A.5, only full models are given in average MAPE values, 

instead of percentage improvement, to provide the magnitude of prediction performance 

for both full models and reduced models.   
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Figure A.1: Variable selection frequency for Case 1: (a) PLS-VIP, (b) PLS-BETA, (c) 

RIVAL, (d) UVE-PLS, (e) SR, (f) CARS-PLS, and (g) GA-PLS. The dark-colored bars 

represent true relevant variables, while the light-colored bars representing true irrelevant 

variables. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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Figure A.2: Variable selection frequency for Case 2: (a) PLS-VIP, (b) PLS-BETA, (c) 

RIVAL, (d) UVE-PLS, (e) SR, (f) CARS-PLS, and (g) GA-PLS. The dark-colored bars 

represent true relevant variables, while the light-colored bars representing true irrelevant 

variables. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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Figure A.3: Variable selection frequency for Case 3: (a) PLS-VIP, (b) PLS-BETA, (c) 

RIVAL, (d) UVE-PLS, (e) SR, (f) CARS-PLS, and (g) GA-PLS. The dark-colored bars 

represent true relevant variables, while the light-colored bars representing true irrelevant 

variables. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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Figure A.4: Variable selection frequency for Case 4: (a) PLS-VIP, (b) PLS-BETA, (c) 

RIVAL, (d) UVE-PLS, (e) SR, (f) CARS-PLS, and (g) GA-PLS. The dark-colored bars 

represent true relevant variables, while the light-colored bars representing true irrelevant 

variables. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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Figure A.5: Variable selection frequency for Case 5: (a) PLS-VIP, (b) PLS-BETA, (c) 

RIVAL, (d) UVE-PLS, (e) SR, (f) CARS-PLS, and (g) GA-PLS. The dark-colored bars 

represent true relevant variables, while the light-colored bars representing true irrelevant 

variables. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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Figure A.6: Variable selection frequency for Case 6: (a) PLS-VIP, (b) PLS-BETA, (c) 

RIVAL, (d) UVE-PLS, (e) SR, (f) CARS-PLS, and (g) GA-PLS. The dark-colored bars 

represent true relevant variables, while the light-colored bars representing true irrelevant 

variables. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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Table A.2: Average 𝐺 values for simulation case. V: PLS-VIP; B: PLS-BETA; R: RI-

VAL; U: UVE-PLS; S: SR; C: CARS-PLS; G: GA-PLS. 
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Table A.3: 𝐼𝐶 values for simulation case. V: PLS-VIP; B: PLS-BETA; R: RIVAL; U: 

UVE-PLS; S: SR; C: CARS-PLS; G: GA-PLS. 
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Table A.4: 𝑅2 values of variable selection methods for simulation case. F: PLS-Full; V: 

PLS-VIP; B: PLS-BETA; R: RIVAL; U: UVE-PLS; S: SR; C: CARS-PLS; G: GA-PLS. 
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Table A.5: Percentage improvement of average MAPE from different methods compared 

to full model for simulation case. Only full PLS models are given in average MAPE.  
𝐶

𝐵
𝑃

=
0

.9
 

G
 

-0
.5

 

0
.2

4
 

0
.5

6
 

-0
.5

 

-0
.3

 

0
.1

4
 

-0
.4

 

-1
.1

 

-0
.3

 

-0
.7

 

0
.0

2
 

0
.4

5
 

-0
.8

 

-0
.8

 

-0
.4

 

1
.1

3
 

-1
.5

 

-1
.3

 

-0
.4

 

0
.0

0
 

0
.3

5
 

-0
.3

 

-0
.6

 

-0
.1

 

3
.2

2
 

-0
.5

 

-0
.4

 

-0
.5

 

0
.0

3
 

0
.2

4
 

0
.6

3
 

-0
.6

 

-0
.6

 

7
.2

4
 

0
.6

1
 

-0
.7

 

C
 

-0
.2

 

-0
.2

 

0
.1

3
 

-0
.2

 

-0
.1

 

0
.1

1
 

1
.5

5
 

-0
.1

 

-0
.0

 

-0
.0

 

-0
.2

 

0
.0

6
 

-0
.1

 

-0
.6

 

-0
.2

 

2
.9

2
 

-0
.1

 

-0
.6

 

-0
.2

 

-0
.2

 

0
.1

8
 

0
.2

8
 

-0
.1

 

0
.1

0
 

4
.7

7
 

0
.6

9
 

0
.1

2
 

-0
.1

 

-0
.1

 

0
.0

3
 

1
.2

1
 

-0
.2

 

-0
.2

 

9
.0

8
 

1
.5

8
 

0
.1

1
 

S
 

-0
.6

 

-0
.1

 

0
.3

4
 

-0
.5

 

-0
.2

 

0
.3

9
 

0
.5

1
 

0
.1

2
 

1
.1

2
 

-0
.1

 

-0
.3

 

0
.1

5
 

-0
.2

 

-0
.9

 

-0
.2

 

2
.3

6
 

-0
.4

 

-0
.1

 

-0
.3

 

-0
.2

 

0
.3

1
 

0
.0

7
 

-0
.5

 

0
.1

3
 

4
.6

8
 

1
.1

6
 

1
.2

9
 

-0
.3

 

0
.1

0
 

0
.2

4
 

0
.9

4
 

-0
.4

 

-0
.3

 

8
.7

1
 

1
.8

5
 

0
.6

3
 

U
 

0
.0

9
 

0
.3

3
 

0
.4

7
 

0
.3

2
 

0
.3

6
 

0
.6

2
 

1
.8

9
 

0
.7

4
 

1
.1

0
 

0
.1

9
 

0
.3

3
 

0
.5

1
 

0
.0

2
 

-0
.1

 

0
.1

7
 

3
.0

9
 

0
.5

9
 

0
.3

4
 

0
.0

4
 

0
.1

5
 

0
.3

8
 

0
.5

0
 

0
.2

6
 

0
.3

4
 

5
.1

5
 

1
.7

3
 

1
.3

1
 

0
.0

0
 

0
.1

7
 

0
.3

5
 

0
.8

9
 

0
.2

8
 

0
.1

8
 

8
.6

4
 

2
.4

0
 

1
.2

6
 

R
 

-1
.1

 

0
.2

6
 

0
.8

8
 

-0
.3

 

0
.2

1
 

1
.0

9
 

0
.6

9
 

0
.9

9
 

1
.5

3
 

-0
.2

 

0
.5

6
 

0
.8

1
 

-0
.9

 

-0
.3

 

0
.5

7
 

1
.3

4
 

0
.4

7
 

0
.7

9
 

0
.3

3
 

0
.5

9
 

0
.8

3
 

0
.7

6
 

0
.5

3
 

0
.7

9
 

5
.2

9
 

1
.8

5
 

1
.6

5
 

0
.2

7
 

0
.4

8
 

0
.7

9
 

1
.6

5
 

0
.4

7
 

0
.4

5
 

9
.3

7
 

2
.5

7
 

1
.5

7
 

B
 

0
.1

4
 

-0
.0

 

0
.0

5
 

0
.8

7
 

0
.4

5
 

0
.2

5
 

2
.6

0
 

1
.5

5
 

1
.8

0
 

0
.4

0
 

0
.0

2
 

-0
.0

 

0
.7

0
 

0
.2

4
 

0
.2

2
 

3
.7

5
 

1
.2

9
 

1
.1

8
 

-0
.1

 

-0
.0

 

0
.0

6
 

0
.9

1
 

0
.6

1
 

0
.8

1
 

5
.7

9
 

2
.4

1
 

2
.2

1
 

-0
.0

 

0
.0

6
 

0
.1

0
 

1
.7

9
 

0
.5

3
 

0
.5

0
 

9
.8

5
 

3
.0

4
 

2
.0

9
 

V
 

0
.0

4
 

0
.5

3
 

0
.5

7
 

0
.7

2
 

0
.9

9
 

0
.8

0
 

2
.1

5
 

0
.8

8
 

0
.9

2
 

-1
.5

 

-0
.8

 

-0
.6

 

0
.5

7
 

0
.1

6
 

0
.1

4
 

3
.2

3
 

0
.9

7
 

0
.4

7
 

0
.2

8
 

0
.4

6
 

0
.5

2
 

0
.8

0
 

0
.3

4
 

0
.3

8
 

5
.4

2
 

1
.9

2
 

1
.2

9
 

-0
.1

 

0
.4

7
 

0
.5

4
 

1
.8

3
 

0
.3

8
 

0
.1

0
 

7
.9

1
 

2
.3

2
 

1
.1

0
 

F
 

3
.2

3
 

6
.1

9
 

8
.1

1
 

3
.1

5
 

6
.0

2
 

7
.9

1
 

3
.2

1
 

6
.1

2
 

8
.0

9
 

3
.2

3
 

6
.1

5
 

8
.0

4
 

3
.3

1
 

6
.2

2
 

8
.1

3
 

3
.4

3
 

6
.3

1
 

9
8
.1

9
 

3
.1

8
 

6
.1

5
 

8
.0

7
 

3
.1

4
 

6
.0

4
 

7
.9

5
 

3
.3

3
 

6
.1

7
 

8
.1

0
 

3
.2

4
 

6
.1

6
 

8
.0

0
 

3
.3

5
 

6
.2

3
 

8
.1

0
 

3
.6

7
 

6
.4

0
 

8
.2

4
 

𝐶
𝐵

𝑃
=

0
.7

 

G
 

-0
.5

 

-0
.4

 

0
.0

4
 

0
.1

3
 

0
.5

1
 

0
.9

0
 

2
.0

6
 

2
.9

9
 

3
.6

6
 

-1
.5

 

-0
.1

 

-0
.1

 

-0
.5

 

0
.3

9
 

0
.7

6
 

1
.2

6
 

2
.4

9
 

3
.2

1
 

-0
.3

 

0
.1

5
 

0
.4

1
 

-0
.3

 

0
.2

3
 

0
.9

5
 

1
.0

6
 

2
.4

1
 

3
.5

9
 

-0
.5

 

-0
.3

 

0
.1

1
 

-0
.3

 

-0
.1

 

0
.3

2
 

1
.9

8
 

1
.3

4
 

2
.4

2
 

C
 

0
.0

4
 

-0
.2

 

-0
.2

 

0
.8

2
 

0
.2

0
 

0
.6

7
 

4
.1

9
 

3
.6

7
 

3
.6

4
 

0
.0

4
 

0
.0

3
 

-0
.2

 

0
.8

8
 

0
.4

0
 

0
.4

4
 

3
.8

2
 

3
.1

7
 

3
.1

5
 

-0
.1

 

-0
.0

 

-0
.0

 

0
.0

7
 

0
.5

3
 

0
.9

2
 

2
.2

6
 

3
.1

6
 

3
.6

4
 

-0
.2

 

-0
.2

 

-0
.1

 

0
.4

2
 

0
.3

8
 

0
.3

4
 

3
.7

2
 

2
.7

5
 

3
.1

2
 

S
 

0
.5

4
 

-0
.4

 

-0
.4

 

1
.7

4
 

0
.5

4
 

0
.9

0
 

5
.4

4
 

4
.4

3
 

5
.2

6
 

0
.8

0
 

0
.1

9
 

-0
.2

 

1
.9

6
 

0
.9

3
 

0
.7

7
 

4
.8

4
 

3
.9

4
 

4
.7

1
 

0
.0

8
 

0
.1

7
 

0
.2

0
 

0
.5

2
 

0
.9

2
 

1
.2

3
 

3
.7

8
 

4
.5

6
 

5
.3

4
 

0
.1

5
 

-0
.1

 

0
.3

1
 

1
.4

5
 

0
.8

0
 

0
.8

5
 

4
.5

7
 

4
.0

9
 

4
.6

7
 

U
 

0
.3

0
 

0
.4

0
 

0
.5

3
 

1
.6

0
 

1
.7

9
 

1
.9

6
 

5
.4

2
 

6
.1

7
 

6
.6

1
 

0
.4

0
 

0
.4

9
 

0
.6

3
 

1
.7

4
 

1
.7

2
 

1
.9

8
 

5
.0

2
 

5
.8

1
 

6
.4

2
 

0
.2

5
 

0
.5

6
 

0
.8

1
 

1
.3

5
 

1
.6

7
 

2
.0

3
 

4
.6

4
 

5
.5

4
 

6
.4

4
 

0
.3

7
 

0
.4

2
 

0
.5

9
 

1
.7

7
 

1
.3

9
 

1
.7

2
 

5
.4

0
 

4
.9

9
 

5
.5

9
 

R
 

-1
.8

 

-0
.1

 

0
.4

1
 

0
.3

7
 

1
.2

1
 

1
.7

9
 

-1
.3

 

3
.1

9
 

5
.4

7
 

-2
7
 

0
.3

5
 

0
.5

1
 

-6
5
 

1
.5

6
 

1
.7

3
 

-8
.9

 

2
.1

9
 

4
.7

4
 

0
.3

4
 

0
.6

4
 

0
.8

4
 

1
.0

0
 

1
.4

0
 

1
.8

3
 

3
.3

4
 

4
.4

3
 

5
.2

7
 

0
.4

7
 

0
.5

2
 

0
.7

3
 

1
.4

2
 

1
.1

6
 

1
.4

4
 

4
.0

3
 

3
.7

5
 

4
.5

3
 

B
 

0
.5

9
 

0
.0

8
 

-0
.2

 

1
.9

6
 

1
.6

5
 

0
.8

5
 

5
.9

5
 

5
.6

3
 

4
.4

6
 

0
.8

5
 

0
.4

1
 

-0
.0

 

2
.1

2
 

1
.7

4
 

1
.0

3
 

5
.4

1
 

5
.5

9
 

4
.2

6
 

0
.0

3
 

0
.0

9
 

0
.1

0
 

0
.8

9
 

0
.9

4
 

1
.2

6
 

4
.4

3
 

4
.7

7
 

5
.4

0
 

0
.3

8
 

0
.0

9
 

0
.2

4
 

1
.6

8
 

1
.1

7
 

1
.0

3
 

5
.1

6
 

4
.5

9
 

5
.1

2
 

V
 

-2
.8

 

-0
.1

 

0
.4

6
 

1
.8

8
 

2
.1

1
 

2
.2

9
 

5
.5

0
 

6
.3

0
 

6
.9

7
 

0
.6

3
 

0
.6

5
 

0
.6

6
 

1
.9

8
 

1
.9

3
 

2
.0

9
 

4
.8

2
 

5
.6

0
 

5
.6

1
 

-0
.1

 

0
.8

1
 

1
.0

0
 

1
.5

4
 

1
.9

1
 

2
.2

4
 

4
.5

8
 

5
.4

6
 

5
.7

8
 

0
.3

7
 

0
.6

9
 

0
.8

4
 

1
.8

7
 

1
.4

7
 

1
.6

5
 

5
.3

5
 

4
.7

6
 

4
.7

0
 

F
 

3
.2

3
 

6
.1

6
 

8
.0

8
 

3
.1

7
 

6
.0

9
 

8
.0

3
 

3
.3

9
 

6
.4

9
 

8
.5

5
 

3
.1

7
 

6
.0

3
 

7
.9

1
 

3
.3

1
 

6
.2

9
 

8
.2

9
 

3
.4

4
 

6
.5

8
 

8
.7

0
 

3
.1

7
 

6
.1

5
 

8
.0

9
 

3
.2

0
 

6
.1

6
 

8
.1

8
 

3
.3

7
 

6
.5

1
 

8
.5

1
 

3
.2

3
 

6
.0

9
 

7
.9

2
 

3
.3

1
 

6
.2

3
 

8
.1

5
 

3
.4

4
 

6
.4

9
 

8
.5

9
 

𝐶
𝐵

𝑃
=

0
.5

 

G
 

-0
.5

 

0
.1

0
 

-0
.1

 

-1
.3

 

1
.2

4
 

1
.0

7
 

3
.2

2
 

4
.2

6
 

4
.3

5
 

-1
.9

 

-0
.4

 

-0
.0

 

-2
.1

 

0
.5

6
 

0
.7

6
 

2
.9

3
 

4
.4

1
 

4
.5

8
 

-0
.4

 

0
.2

3
 

0
.3

2
 

0
.3

5
 

1
.3

5
 

1
.3

7
 

3
.8

6
 

4
.5

0
 

4
.9

3
 

-0
.9

 

-0
.2

 

0
.1

8
 

-0
.8

 

0
.8

3
 

1
.0

7
 

2
.9

0
 

3
.9

3
 

4
.5

7
 

C
 

0
.1

3
 

-0
.0

 

-0
.1

 

1
.4

7
 

0
.6

7
 

0
.3

4
 

6
.3

9
 

5
.5

8
 

4
.2

4
 

0
.0

8
 

0
.0

1
 

-0
.1

 

1
.5

7
 

0
.6

0
 

0
.5

3
 

6
.6

1
 

5
.1

8
 

4
.1

6
 

-0
.1

 

0
.1

8
 

0
.0

9
 

0
.6

9
 

1
.1

0
 

1
.2

8
 

5
.4

3
 

5
.4

6
 

4
.9

5
 

-0
.0

 

-0
.0

 

0
.2

1
 

0
.3

9
 

0
.9

9
 

1
.0

2
 

5
.4

8
 

5
.1

2
 

4
.7

1
 

S
 

0
.7

8
 

0
.5

1
 

-0
.2

 

2
.6

3
 

2
.4

0
 

1
.2

4
 

7
.5

4
 

7
.4

5
 

5
.8

6
 

0
.9

4
 

0
.8

4
 

0
.1

5
 

2
.4

7
 

2
.3

7
 

1
.1

2
 

7
.4

6
 

7
.5

6
 

5
.9

5
 

0
.4

1
 

0
.4

6
 

0
.4

1
 

2
.1

2
 

1
.8

9
 

1
.8

4
 

6
.9

7
 

7
.1

5
 

7
.2

5
 

0
.6

9
 

0
.4

1
 

0
.3

7
 

2
.0

4
 

1
.7

4
 

1
.6

3
 

7
.0

0
 

6
.8

1
 

7
.1

9
 

U
 

0
.5

7
 

0
.6

6
 

0
.6

3
 

2
.6

1
 

2
.5

7
 

2
.4

9
 

7
.7

2
 

7
.9

1
 

8
.0

2
 

0
.7

9
 

0
.8

4
 

0
.7

8
 

2
.4

3
 

2
.3

9
 

2
.3

6
 

7
.8

3
 

8
.1

1
 

8
.1

2
 

0
.7

3
 

0
.7

7
 

0
.8

6
 

2
.3

9
 

2
.5

3
 

2
.5

3
 

7
.6

0
 

8
.1

5
 

8
.1

6
 

0
.8

5
 

0
.8

1
 

0
.9

1
 

2
.2

9
 

2
.3

2
 

2
.4

0
 

7
.6

1
 

7
.7

8
 

8
.1

0
 

R
 

-0
.9

 

0
.1

3
 

0
.4

2
 

1
.0

4
 

1
.2

9
 

1
.9

4
 

-2
.2

 

5
.8

7
 

5
.7

5
 

-2
.3

 

0
.7

9
 

0
.8

0
 

-0
.6

 

1
.0

3
 

1
.6

2
 

-8
.7

 

5
.8

3
 

5
.7

6
 

0
.5

4
 

0
.7

2
 

0
.8

3
 

1
.8

7
 

2
.0

6
 

2
.1

6
 

5
.6

0
 

6
.0

3
 

6
.2

7
 

0
.7

7
 

0
.8

2
 

0
.8

8
 

1
.6

7
 

1
.8

4
 

1
.9

5
 

4
.2

0
 

5
.7

1
 

6
.0

7
 

B
 

0
.8

5
 

0
.5

4
 

-0
.0

 

2
.8

6
 

2
.6

0
 

1
.2

3
 

8
.1

4
 

7
.8

0
 

5
.5

9
 

1
.0

6
 

0
.8

8
 

0
.2

7
 

2
.6

7
 

2
.4

6
 

1
.3

0
 

8
.0

7
 

7
.7

7
 

5
.7

6
 

0
.4

3
 

0
.3

2
 

0
.3

0
 

1
.8

6
 

1
.6

1
 

1
.6

8
 

6
.8

5
 

6
.8

7
 

6
.9

2
 

0
.6

7
 

0
.3

6
 

0
.3

4
 

2
.0

0
 

1
.6

7
 

1
.4

5
 

6
.9

5
 

6
.9

5
 

6
.8

8
 

V
 

-6
.2

 

-1
.1

 

0
.1

2
 

2
.8

4
 

2
.8

9
 

2
.8

6
 

7
.9

1
 

8
.1

4
 

7
.2

6
 

-1
.2

 

0
.2

4
 

0
.5

1
 

2
.6

4
 

2
.6

1
 

2
.5

2
 

7
.8

7
 

7
.9

4
 

7
.1

4
 

-2
.3

 

0
.5

8
 

1
.0

1
 

1
.6

8
 

2
.7

7
 

2
.9

3
 

7
.7

4
 

8
.4

5
 

7
.5

0
 

-1
.3

 

0
.7

2
 

1
.0

6
 

2
.2

7
 

2
.6

2
 

2
.6

4
 

7
.6

5
 

7
.6

7
 

6
.9

3
 

F
 

3
.2

2
 

6
.1

5
 

8
9
.0

8
 

3
.2

4
 

6
.1

3
 

8
.0

5
 

3
.5

0
 

6
.6

8
 

8
.7

3
 

3
.1

5
 

5
.9

9
 

7
.8

3
 

3
.3

2
 

6
.3

1
 

8
.3

4
 

3
.4

9
 

6
.6

7
 

8
.8

0
 

3
.2

0
 

6
.1

7
 

8
.0

6
 

3
.3

1
 

6
.2

6
 

8
.1

9
 

3
.4

9
 

6
.7

4
 

8
.7

2
 

3
.2

5
 

6
.1

1
 

7
.9

4
 

3
.2

9
 

6
.2

2
 

8
.1

6
 

3
.5

0
 

6
.6

9
 

8
.7

5
 

 

S
N

R
 

3
.0

3
 

1
.3

5
 

0
.8

2
 

3
.0

3
 

1
.3

5
 

0
.8

2
 

3
.0

3
 

1
.3

5
 

0
.8

2
 

3
.0

3
 

1
.3

5
 

0
.8

2
 

3
.0

3
 

1
.3

5
 

0
.8

2
 

3
.0

3
 

1
.3

5
 

0
.8

2
 

3
.0

3
 

1
.3

5
 

0
.8

2
 

3
.0

3
 

1
.3

5
 

0
.8

2
 

3
.0

3
 

1
.3

5
 

0
.8

2
 

3
.0

3
 

1
.3

5
 

0
.8

2
 

3
.0

3
 

1
.3

5
 

0
.8

2
 

3
.0

3
 

1
.3

5
 

0
.8

2
 

 

P
R

 

 

0
.5

 

  

0
.2

5
 

  

0
.1

 

  

0
.5

 

  

0
.2

5
 

  

0
.1

 

  

0
.5

 

  

0
.2

5
 

  

0
.1

 

  

0
.5

 

  

0
.2

5
 

  

0
.1

 

 

 

S
R

C
 

    

E
M

 

        

E
E

 

        

U
M

 

        

U
E

 

    



100 

 

Appendix B: Industrial Polyester Case Results 

 

 

The average and standard deviation of numbers of variables selected by different 

variable selection methods are summarized in Table A.6, for both acidity number and 

viscosity. Acidity number seems to require slightly larger model, as compared to viscosi-

ty models. 

Table A.6 Average and standard deviation of numbers of variables selected for acidity 

number and viscosity models 

 Cases 

Methods Acidity Number Viscosity 

PLS-VIP 15.22 ± 0.50 10.98 ± 0.20 

PLS-BETA 14.15 ± 1.15 10.41 ± 1.61 

Lasso 16.29 ± 2.35 15.94 ± 4.29 

UVE-PLS 23.33 ± 2.48 19.41 ± 3.81 

SR 8.26 ± 1.13 8.61 ± 1.35 

CARS-PLS 8.37 ± 2.27 9.29 ± 3.90 

GA-PLS 7.68 ± 1.81 6.90 ± 1.79 

 

 


