
Alleviating Escape Panic with Evolutionary Intelligence

Except where reference is made to the work of others, the work described in this
project is my own or was done in collaboration with my advisory committee.

This project does not include proprietary or classified information.

Shelby Solomon Darnell

Certificate of Approval:

Juan Gilbert
Associate Professor
Department of Computer Science
and Software Engineering

Gerry Dozier, Chair
Associate Professor
Department of Computer Science
and Software Engineering

John A. Hamilton
Associate Professor
Department of Computer Science
and Software Engineering

Stephen L. McFarland
Acting Dean, Graduate School

Alleviating Escape Panic with Evolutionary Intelligence

Shelby Solomon Darnell

A Project

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Engineering

Auburn, Alabama
December 5, 2005

Alleviating Escape Panic with Evolutionary Intelligence

Shelby Solomon Darnell

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at their expense.
The author reserves all publication rights.

Signature of Author

Date

Copy sent to:

Name Date

iii

Vita

Shelby Solomon Darnell was born in a small country cabin in Jasper, Alabama

that he helped his father build. Shelby Darnell began life humbly, went to a

magnet high school and participated in a pre-engineering program. Shelby went to

college at University of Alabama in Huntsville for one year, and then switched over

to Auburn University in Auburn, Alabama and obtained a Bachelors of Science

in Computer Engineering. After obtaining a Bachelors, Mr. Darnell decided to

continue his education and is presenting his work in hopes of attaining a Masters

degree in Software Engineering.

iv

Project Report

Alleviating Escape Panic with Evolutionary Intelligence

Shelby Solomon Darnell

Master of Engineering, December 5, 2005
(B.S., Auburn University, 2003)

133 Typed Pages

Directed by Gerry Dozier

Reducing damage, danger, and panic by evolving room designs is possible

with artificial intelligence. Escape panic, brought on by groups of people being in

a life-threatening situation, increases the fatality rate and level of property damage

incurred during unfortunate disasters. Currently buildings are designed to a code

that tells how many exits a room should possess, but the code doesn’t specify

where to place the doors and exactly how many doors there should be in room

designs to help alleviate damages to people and property. A genetic algorithm and

particle swarm optimizer will be used to find a room design to help alleviate this

problem.

v

Acknowledgments

I acknowledge GOD. I love my Momma. Yay!

vi

Style manual or journal used Journal of Approximation Theory (together with

the style known as “aums”). Bibliography follows van Leunen’s A Handbook for

Scholars.

Computer software used The document preparation package TEX (specifically

LATEX) together with the departmental style-file aums.sty. All of the graphs in

this work were made using Gnuplot.

vii

Table of Contents

List of Figures x

1 Introduction 1
1.1 A Brief Explanation of the Social Force Model 2
1.2 A Brief Explanation of Escape Panic 2
1.3 Pedestrian Simulator (Pedsim) . 3
1.4 Evolutionary Computation with Pedestrian Simulation 3

2 Evolutionary Computation (EC) 5
2.1 Genetic Algorithms(GAs) . 6

2.1.1 Genetic Operators and Terminology 7
2.1.2 A Simple Genetic Algorithm 9

2.2 Particle Swarm Optimization (PSO) 10
2.2.1 Swarm Operators and Terminology 11
2.2.2 The Canonical Particle Swarm Optimizer 13
2.2.3 A Simple Particle Swarm Optimizer 14

3 Literature Review 15
3.1 Facilities: Layout and Design . 15
3.2 Crowd Flow and Dynamics . 16
3.3 Social Force Model . 17
3.4 Escape Panic Definition . 19
3.5 Pedestrian Simulation . 20

3.5.1 Models . 20
3.5.2 Implementations . 21

4 Problem Definition 22
4.1 Escape Panic . 22
4.2 Optimizing Room Design . 23

5 Evolving Exit Positions 25
5.1 Pedsim Review . 25
5.2 The Room Builder . 27
5.3 Evolutionary Computations Evolve Room Exits 29

viii

6 Experiments 31
6.1 Base Room Design . 31
6.2 Experimental Setup . 32

6.2.1 Round A . 33
6.2.2 Round B . 34
6.2.3 Round C . 35

6.3 Fitness Evaluation . 36

7 Results Analysis 38
7.1 Round A . 38
7.2 Round B . 42

7.2.1 Analysis . 49
7.3 Round C . 49

8 Conclusions and Future Work 53

Bibliography 55

Appendices 59

A Escape Panic Figures 60

B Source Code 71

ix

List of Figures

7.1 Round A – GA Best Geometry, Population Size 10, Fitness 0.153103 40

7.2 Round A – GA Best Geometry, Population Size of 20, Fitness 0.143241 40

7.3 Round A – GA Best Geometry, Population Size 30, Fitness 0.140714 41

7.4 Round A – GA Best Geometry, Population Size 40, Fitness 0.124682 41

7.5 Round A – GA Best Geometry, Population Size 50, Fitness 0.146423 42

7.6 Round B Graphs: Fitness Curves for GA/PSO with Exit Length 1 . 43

7.7 Round B Graphs: Fitness Curves for GA/PSO with Exit Length 2 . 44

7.8 Round B Graphs: Fitness Curves for GA/PSO with Exit Length 3 . 45

7.9 Round B Graphs: Fitness Curves for GA/PSO with Exit Length 4 . 45

7.10 Round B Graphs: Fitness Curves for GA/PSO with Exit Length 5 . 46

7.11 Round B Graphs: Fitness Curves for GA/PSO with Exit Length 6 . 47

7.12 Round B Graphs: Fitness Curves for GA/PSO with Exit Length 7 . 47

7.13 Round B Graphs: Fitness Curves for GA/PSO with Exit Length 8 . 48

7.14 Round C Graphs: Fitness Curves for GA and PSO 51

7.15 Round C – Best GA Geometry . 51

7.16 Round C – Best PSO Geometry . 52

A.1 Escape Panic Arc . 61

A.2 Pedsim Pic 01 . 62

A.3 Round B – Best GA Geometry with Exit Length of 1 63

x

A.4 Round B – Best GA Geometry with Exit Length of 2 63

A.5 Round B – Best GA Geometry with Exit Length of 3 64

A.6 Round B – Best GA Geometry with Exit Length of 4 64

A.7 Round B – Best GA Geometry with Exit Length of 5 65

A.8 Round B – Best GA Geometry with Exit Length of 6 65

A.9 Round B – Best GA Geometry with Exit Length of 7 66

A.10 Round B – Best GA Geometry with Exit Length of 8 66

A.11 Round B – Best PSO Geometry with Exit Length of 1 67

A.12 Round B – Best PSO Geometry with Exit Length of 2 67

A.13 Round B – Best PSO Geometry with Exit Length of 3 68

A.14 Round B – Best PSO Geometry with Exit Length of 4 68

A.15 Round B – Best PSO Geometry with Exit Length of 5 69

A.16 Round B – Best PSO Geometry with Exit Length of 6 69

A.17 Round B – Best PSO Geometry with Exit Length of 7 70

A.18 Round B – Best PSO Geometry with Exit Length of 8 70

xi

Chapter 1

Introduction

Imagine being in a burning building. Having knowledge of this fact is enough

to scare most people. Furthermore, imagine that you are in a room full to its legal

capacity with other people who all know the building is on fire. Now this room has

a single exit, the building is on fire, and you are crammed in with everyone else.

Unfortunately, this is quite an unwelcome event, but we’ve not yet reached the

point where we can keep this from happening ever again. As an interim solution

to this problem, as well as other similar situations, we’ve developed a tool using

evolutionary intelligence and simulation software to help alleviate panic felt by

humans in situations similar to the one explained above.

This master’s project is centered around a theme that is meant to help people

when under situations that cause great panic and duress. Escape panic is a problem

that occurs due to life-threatening situations and it sometimes occurs for seemingly

no reason at all [14]. Because it is much easier to change the way we build structures

than it is to change human nature we have decided to endeavor designing a room

so that the design helps alleviate the amount of panic experienced by people in

situations that counteract our natural rationale.

1

1.1 A Brief Explanation of the Social Force Model

Correctly simulating how people act in life-threatening situations has been

thoroughly researched [3, 13, 14, 15, 16, 17, 23, 24, 32]. In order to write a sim-

ulation for escape panic a model must be used. Such a model has already been

developed, and this model is called the social force model [13]. The social force

model was developed by Helbing and Molnar in 1998. The social force model was

developed citing the fact that “for relatively simple situations stochastic behav-

ioral models may be developed if one restricts oneself to the behavioral probabilities

that can be found in a huge population of individuals” [13]. The social force model

tracks simulated pedestrians with respect to time and uses several equations re-

lated to fluid and gas dynamics that have been changed to relate to pedestrian

movement [13].

1.2 A Brief Explanation of Escape Panic

Escape panic is simulated by solving a set of coupled differential equations or

by using the social force model for pedestrian dynamics [13] , where the movement

of panicked individuals is tracked with time [14]. Evolutionary techniques, a genetic

algorithm and a particle swarm optimizer, are used in this work to find room

geometries that will reduce the amount of time panic is felt, minimize damage

done, and substantially decrease casualties accumulated by individuals attempting

to escape from a confined space in life-threatening situations.

2

1.3 Pedestrian Simulator (Pedsim)

An open-source implementation of Helbing and Molnar’s social force model,

pedsim (short for pedestrian simulator), used to simulate escape panic was devel-

oped by Torsten Werner, an adviser for IT strategy at the German Foreign Office

whose former primary research interest was pedestrian simulation and panics, us-

ing programming language C++ and a development framework called Qt [28], a

platform with which open-source software may be developed for free.

Helbing, Farkas, and Vicsek also developed software to run continuous simu-

lation models of pedestrian motion, and this work is available at their website [16].

Their implementation wasn’t used in this work because the other implementation

we found was developed to be more extensible.

1.4 Evolutionary Computation with Pedestrian Simulation

In order to design better rooms to help mollify the devastation caused by

escape panic, we have used a genetic algorithm and particle swarm optimizer in

conjunction with the pedsim software. A genetic algorithm is a search method

that simulates evolution in order to find optimal or near optimal solutions to

problems with a high amount of complexity and extremely large solution spaces

[]. A particle swarm optimizer is a search method that simulates social behavior

of groups of animals and insects that is helpful for evolution. A particle swarm

optimizer is an evolutionary computation very similar to genetic algorithms but it

works on a slightly different paradigm. The genetic algorithm or particle swarm

3

submits different room designs to the pedsim software and causes a simulation to

run and obtains the calculation of how quickly pedestrians can escape the room

when panicked.

4

Chapter 2

Evolutionary Computation (EC)

According to Dozier in [8] “Evolutionary computation is the field of study de-

voted to the design, development, and analysis of problem solvers based on natural

selection”. This field of study was motivated by the realization that evolution or

natural selection “produce increasingly fit organisms in environments which are

highly uncertain for individual organisms” [19].

Evolutionary computations (ECs) are examples of simulated evolution or evo-

lutionary computation that were first proposed thirty years ago. ECs are charac-

terized by using search methods that are biologically inspired. ECs are optimizers

that are used to search for optimal or good enough solutions in exhaustively large

search spaces without having or attempting to evaluate all possible points within

a search space.

As EC is based on natural selection, the algorithms developed based on EC

use methods that mimic natural selection. The most notable processes in natural

selection which are mimicked in evolutionary algorithms are: selection, crossing

over (crossover), mutation, and replacement.

In nature, selection is when members or organisms in a group decide to repro-

duce together. Crossing over is when organisms swap genetic information during

reproduction. Mutation is a quality or trait found in offspring which helps add va-

riety to the population. Replacement qualifies when the population is at its upper

5

bound, in terms of organisms allowed in a particular group, and a decision must

be made concerning whether or not offspring are allowed to stay in the population

or not. Replacement allows for organisms to keep balance with their environment.

For example, from time to time the male lion in a pride is replaced by a stronger

male. During this replacement process the weaker male is forced to leave the pride

[25].

Several algorithms, referred to as ECs have been developed in the past thirty

years. This work implements and will explain in more detail two such algorithms:

genetic algorithms and particle swarm optimizers.

2.1 Genetic Algorithms(GAs)

GAs are optimization algorithms that randomly generate points within a so-

lution space and use biologically inspired techniques like crossover and mutation

to generate new points in the solution space. A GA uses a finite set of points in

the solution space that it continually modifies to find an optimal solution. A GA

is a first generation evolutionary technique originally developed in the late 1950s

[7].

GAs are applied to problems whose solution spaces are too large or too costly

to appropriately search using other, usually exhaustive, searching methods. For

example, the problem being researched in this paper has a solution space with

226 possible solutions. Attempting to evaluate all possible solutions in a solution

space this large is very time consuming if it is possible, and using a GA to optimize

6

such a problem allows one to realize allowably good solutions by evaluating only

a fraction of the possible solutions.

2.1.1 Genetic Operators and Terminology

When discussing GAs, there are several terms with which one should be famil-

iar: population, representation, candidate solution, individual, selection, fitness,

crossover, mutation, mutation rate, procreation, replacement, and function evalu-

ations or generations.

A population is a set of k (k > 0) states which are randomly initialized set

at the beginning of the procedure [30]. A representation is a correlation between

a GA and the problem it is optimizing. A representation is how the GA views a

possible solution to a problem or a form of the problem with which the algorithm

can understand and work. A candidate solution or an individual is a single state

from the k randomly generated states in the population.

Selection is the process that determines which individuals in the population

will be chosen to create new candidate solutions. Selection chooses individuals

based on their utility or ability to move toward an optimal value. There are several

different types of selection, two of which are random and tournament. Random

selection is randomly picking two individuals from the population and using them

to create new candidate solutions. Tournament selection uses random selection to

pick a number of individuals from the population and then compares the fitness

of the chosen individuals to determine which of the chosen individuals participate

7

in creation of new candidate solutions. Fitness is a value given to each state in a

GA that ranks or is indicative of its current utility. Fitness is usually a value that

allows for linear ranking of states in the population.

Crossover and mutation are ways to create individuals for the population dur-

ing the search. Crossing over is the act of selecting at least two distinct individuals

from the population, and taking some of the information from each individual to

create a candidate solution. Mutation takes this candidate solution and apply

random changes to it. Mutation isn’t an operation that is applied to each can-

didate solution, but crossover is usually applied to make each candidate solution.

Mutation is applied to new individuals only a given fraction of the time, which is

referred to as the mutation rate. If mutation rate is 1% then mutation is applied

to one out of every 100 new candidate solutions.

Procreation is an umbrella term under which crossover, and mutation fall.

Procreation refers to all three of the afore-mentioned terms as a single operation.

Replacement is when the algorithm replaces an individual(s) in the population

with a candidate solution(s) developed during procreation. GAs can replace any-

where from one member of the population up to every member of the population

with candidate solutions created during procreation. When a GAs replacement

procedure replaces either one or two members in the population, the GA is re-

ferred to as a steady-state GA. When a GAs replacement procedure replaces the

entire population, the GA is referred to as a generational GA. A function evalua-

tion is assigning fitness to a single state in the GA. A generation is a period that

8

involves procreation and replacement. In a generational GA, a generation would

be counted every time newly created candidate solutions replace the entire popu-

lation. In a steady-state GA a generation would be counted every time a member

in the population is replaced by a new candidate solution.

Crossover involves taking more than one individual and combining parts of

their representations into a new candidate solution. Mutation involves using a

newly created candidate solution and changing its representation in a random

manner. Mutation rate denotes how often a new candidate solution is mutated.

Procreation is the combined processes of crossover and mutation. Replacement is

a process that substitutes newly created candidate solutions for older members or

individuals in the population.

2.1.2 A Simple Genetic Algorithm

Listing 2.1 displays a simple GA with pseudo-code from [9]. In listing 2.1 the

variable t stands for time. Hence, the two operations “Initialize Population(t)”

and “Evaluate Population(t)” occur when time is zero. In a GA the population

size is always a number n where n > 0.

After creating and ranking the initial states in the GA, selection occurs, where

several states from the population are chosen to progress the algorithms search for

an optimal solution. The states that are selected to create new states are referred

to as “Parents”, and all states derived from other states in the algorithm are called

“offspring” or “children”. Every state in the algorithm whether parent of child may

9

Listing 2.1: Genetic Algorithm Pseudocode� �
Begin GA
t = 0 ;
I n i t i a l i z e Populat ion (t) ;
Evaluate Populat ion (t) ;
While Optimizat ion i s Incomplete
{

Parents (t) = Se l e c t Pa r en t s (P(t)) ;
O f f sp r ing (t) = Procreate (Parents (t)) ;
Evaluate (Of f sp r ing (t)) ;
Populat ion (t+1) = Se l e c t Su r v i v o r s (Populat ion (t) , O f f sp r ing (t)) ;
t = t + 1 ;

}
End GA
� �

be referred to as candidate solutions or individuals. The offspring or children are

then ranked according to the problems evaluation function. After being ranked

a new population is selected from the offspring and the parents, which is the

selection of survivors. The GA continues this cycle of selecting parents, creating

and ranking offspring, and selecting survivors continues until some stopping criteria

is met. Some stopping criteria are an upper limit of evaluations, a preset time limit,

or stopping after the states in the population have very similar ranking values or

fitness’s after evaluation.

2.2 Particle Swarm Optimization (PSO)

PSOs optimize “continuous nonlinear functions” which were found by simu-

lating “a simplified social model” [20]. The particle swarm optimizer was born

10

from the simulation of flocking birds or schools of fish [20]. The ability of flocks

of birds to fly synchronously, dissipate for a short interval, and then regroup and

re-synchronize into a tight formation is the social model from which PSO was

developed. Using this ability, flocks of birds are able to find food sources very

quickly in a dynamically changing environment [20]. This social model is shared

by other groups of animals including humans. The crux of this model that ties

in PSOs with ECs is that “sharing of information among conspeciates offers an

evolutionary advantage” [20].

2.2.1 Swarm Operators and Terminology

The candidate solutions for a PSO are called particles instead of individuals,

like they are referred to for GAs. In GAs individuals can die or be replaced by

more fit individuals or children created during procreation. In PSO particles never

die, as in a particle is never completely replaced like an individual in a GA. A

particle in PSO is made up of 3 major parts: x-vector, p-vector, and v-vector. The

x-vector is the current position of the particle in D-dimensional space (D > 1).

The p-vector is the best position recorded by the particle, or a copy of the best

x-vector it has found. The v-vector is the velocity of PSO, it is responsible for

the movement of the x vector. Instead of replacing an entire candidate solution

PSOs change the x and v vectors during each search update, and change the p

vector when necessary. The x and p vectors also have their own fitness values.

11

The p-vector and fitness values are updated when the fitness value of the x-vector

is ranked as being more fit than the p-vector.

In PSO, the particle position (x-vector) is changed by the velocity (v -vector),

and the velocities change is based on learning rates. The following equation is

used to change the position of a particle in a swarm using its velocity vector:

xi+1 = xi + vi. The learning rates change the velocity of a particle with respect to

ϕ1 and ϕ2, which are respectively cognitive and social components of the swarm.

The cognitive component or learning rate ϕ1 affects particle movement with respect

to its p vector. The social component or learning rate ϕ2 affects particle movement

with respect to the best p vector of all particles in the neighborhood. There is also a

random component to the movement of particles, represented in variables r1andr2.

The values of these random numbers are drawn from a Gaussian distribution from

0 a to 1. The following equation shows how the velocity of a particle in a swarm is

updated: vi+1 = vi + ϕ1r1(pi − xi) + ϕ2r2(pg − xi). The social behavior of flocking

birds is partially based on the flock having somewhere to roost (destination), by

basing the movement of the particles on their best and the populations best known

particle positions gives the swarm a searching direction.

Updating the velocity of each particle occurs every time a particle moves.

Since the velocity is always adding or subtracting from itself it tends to become

large and cause the swarm to “lack local search precision” [4]. Eberhart and

Kennedy recognized this problem and began limiting the value of the velocity to

a preset maximum [22]. Maurice Clerc’s research has produced another method

12

to constrain the rate a swarms velocities increase with his constriction factor K

[5]. Clerc’s constriction factor uses the sum of the cognitive and social component

values to calculate a value to use when changing a particles velocity. Clerc’s equa-

tion for his constriction coefficient and the new velocity equation is seen below:

ϕ = ϕ1 + ϕ2, K = 2

|2−ϕ−
√

ϕ2−4ϕ|
, vi+1 = K(vi + ϕ1(pi − xi) + ϕ2(pg − xi)) [4].

Changing the position of the x vectors in PSO to search a solution space is

called updating. In PSO during each update single particles check to see whether

their current position and fitness is the best they’ve ever found. If it is the particle

then updates its p vector to its current position. When using a global neighbor-

hood, the entire swarm keeps track of the best position of all of the particles in the

swarm, or the best p vector in the swarm. There are two ways to update the best

p vector in the swarm: synchronously and asynchronously. Synchronous updating

of the best p vector involves updating all of the particles in the swarm before as-

signing a new global best. Asynchronous updating will assign a new global best

after any single particle update.

2.2.2 The Canonical Particle Swarm Optimizer

The canonical PSO [4] uses Clerc’s velocity constriction factor, K, a cognitive

component of 2.8 and social component of 1.3, a population size of 30, asynchronous

updating, and a global population. These values were described and researched in

[4] as general settings and values for a reasonably good PSO.

13

2.2.3 A Simple Particle Swarm Optimizer

Listing 2.2 displays a simple PSO with pseudo-code. In listing 2.2 the variable

t stands for time or the number of function evaluations the PSO has already

completed. The currentParticle takes the modulus of the number of function

evaluations with respect to the swarm size to get which particle should be updated

at time t. Listing 2.2 shows a PSO with asynchronous updating and a global

topology.

Listing 2.2: Particle Swarm Optimizer Psuedocode� �
Begin PSO
t = 0 ;
swarmSize = 30 ;
Swarm . I n i t i a l i z e L o c a t i o n s () ;
Swarm . I n i t i a l i z e V e l o c i t i e s () ;
Swarm . Se tBe s tPa r t i c l e () ;
Swarm . Se tF i tne s s () ;
While Optimizat ion i s Incomplete
{

c u r r e n tPa r t i c l e = t mod swarmSize ;
Swarm . UpdateVelocity (c u r r e n tPa r t i c l e) ;
Swarm . UpdatePart i c l e (c u r r e n tPa r t i c l e) ;
Swarm . S e tPa r t i c l eF i t n e s s (c u r r e n tPa r t i c l e) ;
IF Necessary Swarm . UpdateLocalBest (c u r r e n tPa r t i c l e) ;
IF Necessary Swarm . UpdateGlobalBest () ;
t = t + 1 ;

}
End PSO
� �

14

Chapter 3

Literature Review

Using EC to evolve rooms that optimize escape times for pedestrians in evac-

uation situations is a subject for which there is currently no concrete research. In

order to properly understand and implement ECs to evolve rooms to help alleviate

escape panic we reviewed research about: facility layout and design, crowd flow

and dynamics, the social force model for pedestrian dynamics, escape panic, and

pedestrian simulation.

Crowd flow and dynamics, the social force model, escape panic, and pedes-

trian simulation all relate directly to the work done for this project, but facility

layout and design does not. Facility layout and design is reviewed because what

is optimized for its problem is very similar to what is being optimized for finding

room designs to alleviate escape panic. In particular [1] uses a GA to optimize the

location of input and output points for work centers in the design of a facility to

minimize interaction costs between the centers. Our work uses a GA to optimize

the location of exits in a room to help pedestrians escape quickly.

3.1 Facilities: Layout and Design

The facility layout problem (FLP) is a NP-hard combinatorial problem, where

a planar region is divided into blocks or work centers of given area to minimize

the interaction costs between blocks [1]. In [1] GAs are used to locate the best

15

input and output points in the design of a facility. The representation used by [1]

makes changes in the active exits or inputs and outputs for a set facility design ,

and calculates the cost of material flow between active inputs and outputs between

centers. In [11] GAs and genetic programming (another type of EC, based on GA)

are used to optimize a generic FLP. The representation of a facility layout in [11] is

first a specialized binary tree that evaluates into a candidate solution in the search

space and is assigned a fitness measure to be used during the evolutionary process.

3.2 Crowd Flow and Dynamics

In [15] we find that ECs have already been applied to room design for several

different room geometries. Room geometries refer to rooms with varying numbers

of walls, internal obstacles, that represent a wide range of objects such as furniture

and columns, sizes of rooms, and geometrical shape of rooms such as various ovals

and polygons. The focus of applying different ECs to room geometries has so far

been to evaluate where objects should be placed in a room to manipulate the flow

of pedestrian traffic. Another focus of the research in [15] was to find the best

and most efficient areas in rooms with different geometries to place furniture and

columns.

In [15] we see that ECs have been applied to different spatial areas such as

pedestrian crossings to organize crowd flow. It was found that placing objects

such as columns in the middle of broad walkways helps keep pedestrian traffic

organized. For example, placing columns in a large corridor like space will make

16

pedestrians designate sides for traveling in opposing directions. It has been noted

that in such situations pedestrians will liken the divided lanes to car lanes. If

you are in a country where people drive on the right side of the road, then when

found in corridors divided in half length wise by some obstacle pedestrians will

tend to form the same habit. It also has been found, using ECs, that having a

door that is twice the size of a single door does not help guide traffic as well as

intelligently placed dividers or obstacles. Current examples of placing dividers

or obstacles length wise through wide corridors can be observed in such places

as malls and train stations. Helbing et.al. also propose in [15] that ECs can be

used to optimize the location and form of planned buildings; to arrange walkways,

entrances, exits, staircases, elevators, escalators, and corridors; find the best shape

of rooms, corridors, entrances, and exits.

Kirkland and Maciejewski [24] manipulate crowd dynamics in simulations us-

ing autonomous robots that strongly attract pedestrians to find efficient crowd

flows. They make the robots take certain positions and actions within the crowd

to see what type of influence will encourage lane formation within hallways where

pedestrian traffic can flow against itself.

3.3 Social Force Model

Helbing and Molnar develop and explain the social force concept and then

model in [13]. The description that follows is a summary of the social force model

as explained in [13]. The general idea behind the social force model is based on

17

the perceived comfort of pedestrians in populated areas. People by nature desire

to have a certain area of free space around themselves in order to correctly react,

without danger of experiencing pain, to unforeseen circumstances. One would

naturally think that this area is spherical in nature, but contrary to the most

common belief, these areas of comfort are elliptical and not centered from an

individuals physical equilibrium. People naturally need or feel most comfortable

with more free space in front of them rather than to their sides, while they do not

place high importance of how much free space is behind them given their field of

vision.

People can not see behind them so their perceived level of comfort doesn’t

include how much free space they have to their rear [13]. A person’s perceived

level of comfort varies depending on the type of obstacle in their path and their

environment [13]. For instance, in a crowded room where several groups of people

are acquainted with each other their perceived level of comfort when around each

other, in their acquainted group, is much higher than when surrounded by other

unknown individuals in the same room. In panicked situations perceived levels of

comfort are almost completely disregarded. In a panicked situation the perceived

level of comfort between unacquainted and acquainted pedestrians becomes less

apparent and the priority of the perceived level of comfort bases itself more on

distance from harmful obstacles that are not other pedestrians. Say for instance

in a room where one wall is on fire, the perceived level of comfort of the people in

18

this situation becomes more strongly affected by their distance from the burning

wall rather than their distance from each other.

In other words, a person “acts as if he/she would be subject to external forces”

when they slow down or speed up according to changes in their environment [13].

3.4 Escape Panic Definition

Escape panic or crowd stampede induced by panic is “one of the most disas-

trous forms of collective human behavior” [14]. Escape panics can be summarized

by the following nine characteristics:

(a) people move or try to move considerably faster than normal,

(b) individuals start pushing, and interactions become physical in na-
ture,

(c) moving and, in particular, passing of a bottleneck becomes unco-
ordinated,

(d) at exits, arching and clogging are observed,

(e) jams are building up,

(f) physical interactions in the jammed crowd produce pressures that
exceed 4,450 Newtons per meter, which can bend steel barriers or
tear down brick walls,

(g) escape is slowed by fallen or injured people,

(h) people show a tendency of mass behavior(do whatever they see
others do, like in grade school),

(i) alternative exits are often overlooked or not efficiently used.

– [14]

19

3.5 Pedestrian Simulation

Pedestrian simulation is not a simple task. A lot of research has been per-

formed to develop competent models for pedestrian behavior in order to simulate

things like escape panic and crowd flow.

3.5.1 Models

Kirchner uses a bionics-inspired cellular automaton model to simulate pedes-

trian behavior in [23]. This model does not allow pedestrians to be directly influ-

enced by each other, but by positions on the floor to which they may move. In

this model a simulation space is divided into small cells that can be empty or not.

Each cell can accommodate only one simulated pedestrian, and once in a cell a

pedestrian can move to any adjacent cell that is empty, as long as the empty cell

is diagonal to the rectangular shaped cell being inhabited.

Helbing et.al. use the social force model for pedestrian dynamics. This model

uses mathematical equations to determine an individual pedestrians velocity with

respect to its obstacles [13]. Each pedestrian has a field of comfort and tries to

maintain a certain distance from other pedestrians and various other obstacles

(columns, walls, fire). Under panicked situations this field of comfort decreases

according to the severity of the panic [13].

20

3.5.2 Implementations

Pedestrian simulation has been achieved on the computer using the C [16],

C++ [34] and Java programming [18] languages along with equations from the

social force model [13]. A few different implementations of pedestrian simulations

derived from the social force model exist. The easiest way to perceive the results of

the calculations derived from equations in the social force model is to see a graph-

ical representation. The different pedestrian simulation software packages explore

different technologies to create their graphical representations. Two of the software

packages that have been used to implement graphical representations of pedestrian

simulation are openGL and Qt. OpenGL, [27], is a vendor-independent API for

the development of 2D and 3D graphics applications. Qt, [28], is a complete C++

application development framework with tools for cross-platform development and

internationalization.

The pedestrian simulator off of which this work is a result was developed

using the Qt development framework. The simulation model used for this work is

based off of software named pedsim developed by a Torsten Werner under the Gnu

General Public License [12]. This model was chosen because the GPL (General

Public License) allows for free usage, distribution, and modification of all software

developed under this license. His model implementation is referred to as simply

Escape Panic Simulation. The authors of both software implementations of the

pedestrian simulators followed the model presented in [14].

21

Chapter 4

Problem Definition

Our problem is to see how well GAs and PSOs can design the exits to a

certain type of room design. Within this problem we must dynamically create

room designs, and before that we must find an efficient representation of a room

design. We will use a GA and a PSO to evolve exits for a room in order to

determine what type of exit positions help alleviate escape panic. This research

will potentially decrease fatality rate due to better room design as well as help

keep buildings intact by making it less likely that pedestrians create destructive

forces that can undermine the structure of pedestrian facilities. Understanding how

dangerous escape panics can be as well as the difficulty involved with optimizing

room design will help you to better comprehend the significance of our problem.

4.1 Escape Panic

It has been observed in confined spaces, when life-threatening situations ensue,

individuals tend to be extremely selfish and disregard the welfare of others so that

they may relieve themselves of the adverse situation. In cases like these humans

tend to push, pull, grab, and trample each other in order to exit a confined space.

People act in this way because they become panicked and do whatever they can

to alleviate this feeling. Groups of people becoming panicked due to being in a

life-threatening situation in a confined space while trying to find an exit is called

22

escape panic. Escape panic has been shown to be very costly in terms of fatalities

and property loss [32].

Escape panic causes people to stop thinking about others and get out of the

situation that caused them to panic as soon as possible; at this moment the weaker

members in the population involved in this predicament are often trampled and

end up dying because of the life-threatening situation or because they are crushed

by the stronger members of the population. During escape panic people have been

observed forming an arc around an exit and pushing upon each other to get out.

The amount of pressure caused by escape panic on the structure of a room can be

more disastrous than the situation that caused the crowd to panic. Appendix A

figure ”Escape Panic Arc” displays exactly what pedestrians look like from above

when all are clamoring to exit a room.

4.2 Optimizing Room Design

So far we’ve seen evolutionary algorithms used to plan facilities and the place-

ment of obstacles in high traffic areas [1, 15]. We’ve seen that evolutionary algo-

rithms can develop designs that help control pedestrian traffic and organize peoples

movements. Besides evolutionary computations there are several regulations and

guidelines that are used to instruct architects, city planners, and construction

workers on their designs and buildings [26]. For instance there is a set of indus-

trial planning guidelines that tell how many exits a room must have depending

on its size and how many people it can hold at one time. What isn’t in place are

23

regulations or guidelines that make people design buildings and rooms so that the

number of exits and their positions in the room help to alleviate escape panic if

the situation were to arise.

Developing a room design that can help more quickly relieve such a situation

would greatly improve the fatality rates in already life-threatening situations, while

keeping other accidents from occurring like premature collapsing of structures due

to pressure on an exit. To design such a room we will use the existing pedsim

software and submit to it room designs. The amount of time that the simulation

takes to show the pedestrians exit the room will be the means by which we evaluate

the design of the room. Pedsim will simulate pedestrians in the room who are all

panicked and begin to act according to the social force model.

24

Chapter 5

Evolving Exit Positions

5.1 Pedsim Review

The first task for this work was to go through pedsim and figure out how to

correctly interact with it. Pedsim uses configuration files to define several vari-

ables that is uses for simulation. Some of the variables that are defined by the

configuration files are the length and width of the room, the configuration name,

the number of pedestrians in the room, the minimum and maximum allowed size

for the randomly sized pedestrians, and several other variables that are necessary

for the social force model.

Depending on the room design you desire to use for simulation one can specify

the length and the width of the room. Depending on the situation you want to

simulate, as well as the amount of time you look to spend on a single simulation, you

may vary the number of pedestrians that are created inside of the room. Pedsim is

built so that the number of pedestrians that can be generated inside of any room

is dependent on the room dimensions. In a room that is eight meters long and

five meters wide a maximum of one hundred pedestrians can be placed into that

room. Since this is the maximum and pedsim was designed to simulate escape

panic the default value for the number of pedestrians placed into a room is the

maximum possible for every different room design. The one hundred pedestrian

limit in a room eight meters long and five meters is also based on the size limits

25

of the pedestrians. The values for the size limits of the pedestrians are based on

typical scaled values for the shoulder widths of men and women. All of the variable

values are based off of real values. The configuration name chooses the room design

to which the other configuration variables will be applied.

All of the room designs for pedsim are static and placed into separate files.

In other words, in order to simulate a room that is 8 x 5 meters with a single

door in the middle of the left wall and another similar room with a single door

in the middle of the right wall, two different configuration files must be used with

different configuration names. Pedsim is an application that is designed to do one

simulation per execution; there is no option within pedsim that allows one to run

more than one simulation at a time. In order to use a GA to find the best room

design for alleviating escape panic we had to be able to run pedsim continually with

varying room designs. Two problems solved for this master’s work was figuring out

the best way to modify pedsim to run serial simulations on dynamic room designs.

The first concern was figuring out a way to build different geometries. Ini-

tially, to figure out the best way to build geometries, we compared the different

hard coded geometries to see how similar the files were, and whether there was a

methodical way to build geometries. Unfortunately, most of the geometries were

static and used several different (and some unnecessary) classes and methods avail-

able in pedsim. Some of the classes and methods available to build geometries can

create horizontal and vertical walls, create corners, create horizontal and vertical

gates (exits or doors), as well as perform several different mirroring operations

26

on all other classes and methods. The hard-coded geometries use different classes

and methods to do the same operations. For instance, some geometries use walls

and gates to make a room, while other geometries use corners, gates, and walls

with mirroring to achieve the same effect. To test whether the simulator produces

different results for geometries made using mirroring and corners, as opposed to

just walls that correctly connect at corners, we created new hard-coded geome-

tries using the different classes and methods for the same design. After comparing

the two geometries using the same configuration no differences, that couldn’t be

attributed to the random number generators, were found in the results of the

hard-coded geometries. With this knowledge we decided to not use corners and

mirroring to generate geometries. Instead we used horizontal and vertical walls

and gates, which simplified part of our task.

5.2 The Room Builder

After making a few simple geometries for pedsim and testing them to figure

out which classes and methods needed to be used for making valid rooms for the

simulation of escape panic, we endeavored to make modifications that enable dy-

namic creation of geometries instead of having only static geometries. A room

builder was developed to build the most simple geometries. A most simple geom-

etry is a room that is rectangular and has a varied number of doors and positions

for the doors. The room builder can take different dimensions for the length and

width of a room as well as the length of the door. After taking these dimensions

27

into consideration the room builder divides the length and width of the walls by

the length of a single door to get the total number of doors possible for the room

size. The calculation does not include space between doors because the object is

for the GA to find the best room geometry. The best geometry may call for doors

that are twice or three times as wide as a single door. We believed this to be

the best choice for the room builder because upon expansion, a requirement of a

simulated room may be for it to have at least one set of double doors, or a slightly

larger exit may aide evacuation.

When creating exits using pedsim one must be careful of the sequence in which

the door positions are presented to the exit object. If presented incorrectly, instead

of getting an exit, the exit that was supposed to be one meter in length becomes

an obstacle and the exit field is displaced to all other walls to both sides of the

exit.

The room builder calculates exits based on the length of the walls and doors.

If the length of a wall is not a multiple of the exit length the room builder will

use the center section of the wall that is a multiple of the door length as possible

positions for exits. All of the possible exit information for a room of a given length

and width is stored in a simple data structure that maintains the starting and

ending positions of every possible exit in a room. This simple data structure also

maintains the number of possible exits for a room with a given perimeter.

Before creating the room builder all geometries were static and different ge-

ometries were represented in separate files with corresponding configuration names.

28

In all of the static geometries each wall, exit, and corner were defined separately

and pushed into a collection that pedsim references to build a room. Using the idea

of pushing information into a collection, the room builder was able to dynamically

build geometries given certain inputs by pushing every section of a room geometry

onto a collection. This is possible by way of reading the position information from

the special data structure and combining it with the inputs from the room builder.

The side by side positioning of the exits makes the dynamic scheme of creating

geometries easy to represent with a binary string, or a sequence of ones and zeroes.

The input to the room builder is a binary string that acts as a map telling the

room builder how to create a room. The length of the binary string represents

the number of possible doors in the entire room. The positioning, which is pre-

calculated, is matched with the elements in the binary string. For the room builder,

an element value of zero means that a wall is present, and an element value of one

means that an exit is present. To correctly build a room the total number of

possible doors and the number of elements in the binary string must be equivalent.

5.3 Evolutionary Computations Evolve Room Exits

Due to the nature of life-threatening situations that cause escape panic people

discontinue compliance of normal social rules or constraints [17]. For instance,

it has been observed in documented crowd stampedes that “people are obsessed

by short-term personal interests” [17]. Currently there are safety standards that

outline how many exits are necessary for confined spaces of certain sizes, shapes

29

and capacity [26]. These standards do not consider the optimal positioning and

number of doors to help reduce escape panic. In order to address this oversight we

will use a genetic algorithm and particle swarm optimizer to evolve room geometries

and simulate escape panic in the rooms developed using our ECs to design rooms

that help alleviate escape panic.

We will use a steady-state GA and binary PSO using canonical settings [4] to

evolve an optimal number of exits and their positions for rooms of a specific size.

The ECs will then run pedsim to simulate escape panic and use as a fitness value

the amount of time it takes for all individuals to exit the room. If an individual,

attempting to leave the room, ends up dying, pedsim reflects this information in

the fitness value of probable room geometries because that person becomes an

extra obstacle which slows the progress of other simulated pedestrians.

30

Chapter 6

Experiments

6.1 Base Room Design

Escape panic was simulated on a rectangular room eight meters long and five

meters wide, with exits measuring a single meter in width. The base pedsim soft-

ware was built with hard-coded geometries or pre-defined room definitions (the

definition includes the shape, size, number of exits, and positions of exits). There

was no feature in the software that facilitates building various room geometries

with varying numbers of doors or other obstacles. Pedsim is the software solution

that incorporates a third party application development framework, Qt, in order

to visualize the escape panic simulation. For this work, that feature of the soft-

ware was disabled after having tested an addition to the software that allowed for

dynamic creation of room geometries for a rectangular room. The original version

of pedsim was used to make sure that the room builder addition correctly created

geometries. The pedsim software used in this work was also checked and tested

against the software developed for Helbing et.al’s work presented in [14] and found

at [16].

31

6.2 Experimental Setup

There were three rounds of experiments done for this work. The different

rounds will be referred to as: rounds A, B, and C. Simulation constants for the

experiments were: the room dimensions (8 by 5 meters), the exit length (1 meter),

the smallest and largest diameter for pedestrians (between .5 and .7 meters), all

of the settings for the correct execution of the social force model that controls the

simulation, and the number of panicked pedestrians placed in a room. Simulation

values that changed during the experiments were: the number of exits in a room

and the placement of exits in a room. Round A dealt only with the GA. Round A

was a preliminary round of experiments, and it helped us figure out how to best

set parameter values for the GA. The round A experiments also helped us come up

with more efficient way to run our experiments because we began to understand

what was the most important information we wanted from each experiment and

the format in which to record it. In rounds A and B we optimized escape time as

the fitness. In round C we modified our fitness value to optimize two objectives:

escape time and fitness. Each simulation requires a random seed. This means that

two simulations run using the same geometry can produce different escape times.

In order to get a better escape value for each geometry we must run the simulation

several times on each geometry using different random seeds. In experiment rounds

A and B we run our simulation ten times on each geometry and take the average

value as our escape time. In round C we run our simulation twenty times on each

32

geometry with different random seeds and use the average as the escape time for

that geometry.

In the GA several values were changed, like the mutation rate and population

size, in order to find optimal settings for use on our particular problem. For the

PSO we simply used the canonical PSO settings established by Carlisle and Dozier

in [4]. Rounds A dealt with finding the correct parameter settings and function

evaluations for a GA. In round B, because we didn’t have a set limit for the

number of exits in a geometry and we were only optimizing escape time, we would

set the maximum number of contiguous exits to see whether or not exit size aides

evacuation time. Round C is where we begin optimizing the escape time and the

number of exits. In round C we do not set the maximum number of contiguous

exits because our aim in this is to see what types of geometries our ECs evolve

when optimizing the escape time and the number of exits.

6.2.1 Round A

The first round of experiments was to find good parameter settings for and

function evaluations for the GA. We used a steady-state GA with tournament

selection that chose four members from the population and selected two to use

during procreation. We ran the GA once with a population size of 10 and mutation

rate of 0 for 2500 function evaluations to see how many function evaluations we

would need for our first round of experiments (we chose a population size of 10

because for the experiments we planned on incrementing the population size by

33

10, and a population size of 10 allows for moderate selection pressure, much better

than a population size of 5 or less). We plotted the best fitness values from this

initial experiment and found that the curve reached a point where the fitness

value stopped improving, which signifies an optimal solution, around 250 function

evaluations; hence, all of the round A experiments were run using 300 function

evaluations. After deciding on the number of function evaluations for each GA

experiment we ran tests with mutation rates of 0, 2, 4, 6, 8, and 10 and population

sizes of 10, 20, 30, 40 and 50. Each experiment was run 10 times each and the

results were all averaged and compared. The fitness value came from an aggregate

function that combined the escape time and number of exits for a geometry. The

aggregate function calculates the number of exits as half of the fitness value and

the escape time as the other half of the fitness value. The value for the number of

doors is taken from the equation FitnessV alueforExits = 0.5×(ExitNumber)
TotalExits

. The

value for the escape time was derived in a similar way, but instead of exit number

we used escape time and for total exits we used a tested value that was the upper

bound on how long it took for pedestrians to exit a room with a single exit. There

were fifty pedestrians in each simulation in this round.

6.2.2 Round B

This round of experiments is were we changed methods. Instead of running

each experiment ten times each, we ran each simulation five times in succession

and averaged escape times to get better fitness values. In this round of experiments

34

we use a geometry’s escape time as fitness. We also began experimenting with a

PSO. Our PSO was the canonical PSO which uses a population size of 30, a ϕ1

of 2.8 and ϕ2 of 1.3, asynchronous updating, Clerc’s constriction coefficient, and

a global neighborhood. The object of this round of experiments was to constrict

how many contiguous exits could be present in any geometry. Constricting the

number of contiguous exits is simply limiting the exit width. For instance, it is

possible for the ECs to evolve a geometry without walls. Our ECs evolved room

geometries where the number of contiguous exits was limit to 8, 7, 6, 5, 4, 3, 2,

and 1 doors. There were twenty-five pedestrians in each simulation in this round.

6.2.3 Round C

This round of experiments quadrupled the number of simulations we ran on

each geometry from 5 to 20. The reason to increase the number of times we

simulated a single geometry was to get a better averaged fitness value for each

design. This round of experiments uses another aggregate function to calculate

fitness values from the number of exits and escape time of a geometry. Instead of

the functions used in round A to get partial fitness values from the escape time and

number of exits, we implemented an easier approach. The aggregate function for

this round of experiments adds the number of exits to the escape time for the fitness

value. This new fitness calculation is used and is helpful because it bias’ evolution

towards geometries with very few exits and is very simple computationally. Round

C’s aggregate function is by no means optimal, but with the results from this

35

work we can set benchmarks when using a true multi-objective GA or PSO. We

used 400 function evaluations for each experiment in round C. There were also 25

pedestrians placed in the rooms for the simulations in this round.

6.3 Fitness Evaluation

Initially, for the first two rounds of experiments, we let the escape time, or

time it took for all pedestrians to exit a room, be the fitness value. This value

was calculated by the simulation for each room geometry it was presented. We

initially chose to rank the geometries this way in order to find the best geometry

despite the number of exits in the room. The second way we decided to get fitness

values was combining two aspects found in the simulation as fitness: the amount

of time that it takes for all pedestrian’s placed in a room to escape (escape time)

and the number of exits in the geometry. The fitness function combines these two

aspects into a single value. This method of combining to objectives into one fitness

value is using aggregate functions for multi-objective optimization. Combining

several objectives for an optimization function “was the first technique developed

for the generation of non-inferior solutions for multi-objective optimization” [6].

The fitness value is the escape time added to the number of exits. This combination

of values was decided upon because we desire to minimize both the number of exits

and the escape time. With this combination if the geometry has a high number of

exits and does not have a relatively fast escape time it will get phased out of the

population; if there is a low number of exits and the escape time is too slow, the

36

individual representing this cause will also be phased out of the population during

evolution. Using an aggregate function for multi-objective optimization fails to

“generate proper Pareto optimal solutions in the presence of non-convex search

spaces”, but it can be used as an “initial solution for other techniques” [6].

37

Chapter 7

Results Analysis

7.1 Round A

Rooms with four to seven exits have been found to most efficiently allow

pedestrians to escape the eight by five meter enclosure. Rooms with more exits

were always penalized by the GAs fitness evaluation because the number of doors

and the exit time associated with the number of doors did not produce a value

low enough to counteract a smaller number of exits. The fitness values in this

experiment are based equally on the number of exits and the amount of time it

takes people to escape the room.

In order to get a feel for the best configuration to evolve the geometries with

our GA we used 300 function evaluations and mutation rates of 0, 2, 4, 6, 8, and

10 percent with population sizes of 10, 20, 30, 40 and 50. Each trial configuration

was run ten times so that the results could be averaged and we could get a better

idea of which configuration is best for our problem.

At higher percentages, percentages above 6, the GA tends to find the best

candidate solutions or geometries. When obtaining the average fitness, escape

time, and exit count for every run of the algorithm, where a run is allowing the

GA to submit 300 different geometries to the pedestrian simulation. We find that

the best performing runs were those with these higher mutation rates. In particular

a mutation rate of 10 yields the best results among this set of experiments. The

38

graphical representations of all of these geometries can be found in the appendix

with the labels Figure 7.1,Figure 7.2, Figure 7.3, Figure 7.4, and Figure 7.5.

The configurations that were found in the data to allow pedestrians to escape

most quickly are not the pinnacle of the room design, but they have the aspects

that show great promise. In other words the figures all share aspects that lead

them to allow for quick pedestrian evacuation. Notice that four out of five of the

geometries have at least one double door (where a double door is two exits that

are side by side), and the geometry that allows pedestrians to escape most quickly

has a double door and a triple door on the opposite wall. The only geometry

without a double door has exits at every corner. Also notice that the geometries

found to be most efficient have exits on at least two walls. The only geometry,

Figure 7.3 on Page 41, with exits on only two walls has extra large exits on both

walls. From these geometries we see that an important element in alleviating

escape panic is having exits in different areas of the room to keep panicked people

from all converging in a single space. The aggregate function that combined the

escape time and exit count into a single number n, where (0 < n < 1), only evolved

rooms with between 4 and 7 exits, out of a possible 26.

The primary information from round A experiments that is used in both

rounds B and C are the population size of 40 and mutation rate of 10 percent for

the GA.

39

Figure 7.1: Round A – GA Best Geometry, Population Size 10, Fitness 0.153103

Figure 7.2: Round A – GA Best Geometry, Population Size of 20, Fitness 0.143241

40

Figure 7.3: Round A – GA Best Geometry, Population Size 30, Fitness 0.140714

Figure 7.4: Round A – GA Best Geometry, Population Size 40, Fitness 0.124682

41

Figure 7.5: Round A – GA Best Geometry, Population Size 50, Fitness 0.146423

7.2 Round B

Round B experiments were primarily testing different exit lengths to see

whether small or large exits are preferrable. During this set of experiments we

use the escape time as the fitness value. We tested geometries with maximum

lengths of 1, 2, 3, 4, 5, 6, 7, and 8 meters. Round B includes the use of PSOs

along with GAs to optimize the geometries with varying maximum exit sizes. Each

geometry in this set of experiments was simulated 5 times before getting a fitness

value assigned and the number of generations was 800. Figure 7.6 displays the

minimum fitness graphs for a GA and PSO with exit length 1.

42

7
8

9
10

11
12

13
14

0 100 200 300 400 500 600 700 800

Fitness

Generation

GA Exit Length 1
PSO Exit Length 1

Figure 7.6: Round B Graphs: Fitness Curves for GA/PSO with Exit Length 1

The PSO in Figure 7.6 on finds a better escape time than the GA in the

allowed function evaluations. With a room 8 meters long and 5 meters wide there

are 26 possible exits. When limiting the exit width to one meter only 13 exits may

exist in any design. The best geometry found by our PSO and GA contain 11 out

of the 13 possible exits.

The GA in Figure 7.7 on page 44 finds a better escape time than the PSO in

the allowed function evaluations. The GA uses 11 exits in its evolve and the PSO

uses 14 exits in its design. The maximum possible number of exits for a geometry

with a maximum exit width of 2 meters is 17.

A maximum exit length of 3 with a possibility of 19 exits the GA finds a

better escape time than the PSO; the graph of the GA and PSO can be seen in

Figure 7.8 on page 45. The winning geometry, evolved by the GA, has 16 exits,

and the losing geometry, evolved by the PSO, has 16 exits.

43

6.5
7

7.5
8

8.5
9

9.5
10

10.5
11

11.5
12

0 100 200 300 400 500 600 700 800

Fitness

Generation

GA Exit Length 2
PSO Exit Length 2

Figure 7.7: Round B Graphs: Fitness Curves for GA/PSO with Exit Length 2

A maximum exit length of 4 with a possibility of 20 exits the PSO finds a

better escape time than the GA; the graph of the GA and PSO can be seen in

Figure 7.9 on page 45. The winning geometry, evolved by the PSO, has 15 exits,

and the losing geometry, evolved by the GA, has 14 exits.

A maximum exit length of 5 with a possibility of 21 exits the PSO finds a

better escape time than the GA; the graph of the GA and PSO can be seen in

Figure 7.10 on page 46. The winning geometry, evolved by the PSO, has 17 exits,

and the losing geometry, evolved by the GA, has 15 exits.

44

6
7

8
9

10
11

12
13

0 100 200 300 400 500 600 700 800

Fitness

Generation

GA Exit Length 3
PSO Exit Length 3

Figure 7.8: Round B Graphs: Fitness Curves for GA/PSO with Exit Length 3

7
7.5

8
8.5

9
9.5
10

10.5
11

0 100 200 300 400 500 600 700 800

Fitness

Generation

GA Exit Length 4
PSO Exit Length 4

Figure 7.9: Round B Graphs: Fitness Curves for GA/PSO with Exit Length 4

45

7
7.5

8
8.5

9
9.5
10

10.5
11

0 100 200 300 400 500 600 700 800

Fitness

Generation

GA Exit Length 5
PSO Exit Length 5

Figure 7.10: Round B Graphs: Fitness Curves for GA/PSO with Exit Length 5

A maximum exit length of 6 with a possibility of 22 exits the PSO finds a

better escape time than the GA; the graph of the GA and PSO can be seen in

Figure 7.11 on page 47. The winning geometry, evolved by the PSO, has 18 exits,

and the losing geometry, evolved by the GA, has 17 exits.

A maximum exit length of 7 with a possibility of 22 exits the GA finds a

better escape time than the PSO; the graph of the GA and PSO can be seen in

Figure 7.12 on page 47. The winning geometry, evolved by the GA, has 15 exits,

and the losing geometry, evolved by the PSO, has 18 exits.

A maximum exit length of 8 with a possibility of 23 exits the GA finds a

better escape time than the PSO; the graph of the GA and PSO can be seen in

Figure 7.13. The winning geometry, evolved by the GA, has 15 exits, and the

losing geometry, evolved by the PSO, has 13 exits.

46

7.5

8

8.5

9

9.5

10

10.5

0 100 200 300 400 500 600 700 800

Fitness

Generation

GA Exit Length 6
PSO Exit Length 6

Figure 7.11: Round B Graphs: Fitness Curves for GA/PSO with Exit Length 6

6

7

8

9

10

11

12

0 100 200 300 400 500 600 700 800

Fitness

Generation

GA Exit Length 7
PSO Exit Length 7

Figure 7.12: Round B Graphs: Fitness Curves for GA/PSO with Exit Length 7

47

6.5
7

7.5
8

8.5
9

9.5
10

10.5
11

0 100 200 300 400 500 600 700 800

Fitness

Generation

GA Exit Length 8
PSO Exit Length 8

Figure 7.13: Round B Graphs: Fitness Curves for GA/PSO with Exit Length 8

48

7.2.1 Analysis

One of the first things we noticed when looking over these results is the large

number of exits found in each geometry. Although each geometry has a large

number of exits, none of the geometries in these experiments were evolved with

the maximum number of exits allowed for the limits imposed on them through

limiting the exit length. Futhermore, the largest number of exits used by any

geometry was 18, and the smallest number of exits used by any geometry was 11.

The escape times with the 25 simulated pedestrians for all of these geometries lies

within 6 and 10 seconds. With this we realize that after having a certain number

of exits open in a room there is a threshold where the escape time of pedestrians

does not make significant improvement. After around half of the allowable doors

in a geometry are open the placement of the doors has little effect on the escape

time. Because of this, we decided to use an aggregate function again to make the

GA and PSO evolve and find room designs that not only allow speedy escape, but

also minimize the number of exits in a room.

7.3 Round C

In round C we simulated pedestrians escaping from each geometry 20 times

and averaged the escape times for a single escape time for that geometry. We also

used an aggregate function that combined the escape time and exit number to

form a fitness value. The aggregate function simply adds the two values together

to form the fitness for a geometry. The final geometries evolved by our ECs have

49

findings similar to what we found in round A’s experiements. The number of exits

evolved by the ECs in this round were between 4 and 6 instead of 4 and 7, like

in round A’s experiments. The design for the best geometry evolved by the PSO,

found in figure 7.16, has 2 sets of double-sized doors, 2 meters wide, on opposite

sides of the room. We believe this type of design in effective because it effectively

divides the panicked individuals into half decreasing the possible pressure build

up. The design for the best geometry evolved by the GA, found in figure 7.15, has

a different design which consists of two different exits still, but on the same side

of the room. This design consists of a 4 meter wide door in the center of one of

the longest walls, and a 1 meter wide door a single door length away from the 4

meter door. We believe this design performed well because it has a small offset

door that a small percentage of less panicked individuals can slip out of without

having to engage the main group that all clamour to leave from the easily visible

large 4 meter wide exit. This design performs better than the design evolved by

the PSO. The geometry evolved by the GA most likely performs better because

having an offset door that resides on the same wall as the primary exit means

that panicked people do not have to change direction to find an alternate exit. In

[17] we learn that one of the problems with panicked people is that they do not

evaluate all of their options and everyone involved a situation that induces panic

act together. The geometry evolved by the PSO does not handle this reality as

well as the geometry evolved by the GA because its second exit is on an opposite

wall.

50

17

18

19

20

21

22

23

24

25

26

0 50 100 150 200 250 300 350 400

Fitness

Generation

Round C:
Minimum Fitness Values

Per Generation
Genetic Algorithm

Particle Swarm Optimizer

Figure 7.14: Round C Graphs: Fitness Curves for GA and PSO

Figure 7.15: Round C – Best GA Geometry

51

Figure 7.16: Round C – Best PSO Geometry

52

Chapter 8

Conclusions and Future Work

Evolutionary computations are not only useful in finding the most efficient

placement of obstacles in a room, but may also be used to find the best positions

and numbers of exits for rooms of varying geometries. For reactionary and evac-

uation purposes it is best for all rooms to be composed of a series of interlocking

doors. The ECs used in this work were only tested on a single room geometry

with no obstacles anywhere in the room. Now that there are ECs that can plan

cities, rooms, and exit number and placement we can make more holistic plans for

building and room planning. When combined with other work, like room planning,

this method can be used to evolve the best placement of doors and obstacles to

alleviate the amount ‘ of panic experienced when in a situation where a high vol-

ume of people need to exit a single space. With just finding the optimal placement

and number of exits in a room we can apply this methodology to a great host

of room geometries. Extra constraints can be introduced in the ECs so that the

exit placement and number correctly corresponds to current guidelines for room

construction.

One of the findings in experiment round B shows us that in order to evolve

effective room geometries we need to optimize more than the escape time. We have

already used simple aggregate functions to optimize both the exit count and es-

cape time, but it may prove very interesting to also evolve the comfort experienced

53

by pedestrians when leaving an enclosure. In [17] one of the values of pedestrian

simulation they recommend to evolve is the comfort experienced by panicked in-

dividuals. Comfort is measured by the number of times pedestrians must change

their velocities when exiting an enclosure. In order to get better, more definitive

room designs it would also be interesting to use a true multi-objective genetic al-

gorithm (MOGA) [6] to evolve geometries using escape time, number of exits, and

comfort.

54

Bibliography

[1] Arapoglu, R. A., Norman, B. A., Smith, A. E., ”Locating input and out-
put points in facilities design - a comparison of constructive, evolutionary,
and exact methods.” IEEE Transactions on Evolutionary Computation. 2001
Volume 5. pp. 192-203.

[2] Azarm, S., Reynolds, B.J., Narayanan, S. ”Comparison of Two Multi-
objective Optimization Techniques With and Within Genetic Algorithms”,
In CD-ROM Proceedings of the 25th ASME Design Automation Conference,
volume Paper No. DETC99/DAC-8584, Las Vegas, Nevada, September 1999.

[3] Bierlaire, M., Antonini, G. and Weber M. ”Behavioral dynamics for pedes-
trians”, International Conference on Travel Behaviour Research. August 10,
2003.

[4] Carlisle, A., and Dozier, G. (2001). An off-the-shelf PSO. Proceedings of the
Workshop on Particle Swarm Optimization. Indianapolis, IN: Purdue School
of Engineering and Technology, IUPUI (in press).

[5] Clerc, M. ”The Swarm and the Queen: Towards a Deterministic and Adaptive
Particle Swarm Optimization”. Proceedings, 1999 International Conference on
Evolutionary Computation (ICEC), Washington, DC, pp 1951-1957.

[6] Coello Coello, C.A. A Comprehensive Survey of Evolutionary-Based Multiob-
jective Optimization Techniques, Knowledge and Information Systems, vol. 1,
no. 3, pp. 269-308, Aug.1999.

[7] Dozier, G., Homaifar, A., Tunstel, E., and Battle, D., ”An Intro-
duction to Evolutionary Computation” (Chapter 17), Intelligent Con-
trol Systems Using Soft Computing Methodologies, A. Zilouchian and
M. Jamshidi (Eds.), pp. 365-380, CRC press. (can be found at:
<http://www.eng.auburn.edu/g̃vdozier/chapter17.doc>)

[8] Dozier, G. Introduction to Evolutionary Computation.
<http://www.eng.auburn.edu/ gvdozier/Intro2EC.ppt>.

[9] Dozier, G. Genetic Algorithms. <http://www.eng.auburn.edu/ gvdozier/GAs.ppt>.

55

[10] Eaton, B.C., Eswaran, M. The Evolution of Competition. December 14, 2001.

[11] Garces-Perez, J., Schoenefeld, D.A., Wainwright, R.L., ”Solving Facility Lay-
out Problems Using Genetic Programming” (PS), Proceedings of the First
Annual Conference Genetic Programming 1996, (GP-96), J. Koza, D. Gold-
berg, D. Fogel, R. Riolo, Editors, MIT Press, July 28-31, 1996, pp. 182-190

[12] ”GNU General Public License”. The GNU Operating System.
Free Software Foundation, Inc. June 07, 2005. October 24, 2005.
<http://www.gnu.org/licenses/gpl.html>.

[13] Helbing, D., and Molnar, P. (1998) ”Social force model for pedestrian dynam-
ics”, Physical Review E 51, 4282-4286.

[14] Helbing, D., Farkas, I. and Vicsek, T. ”Simulating Dynamical features of
escape panic”, Nature, 407, 487 - 490, doi:10.1038/35035023 (2000).

[15] Helbing, D., Molnar, P., Farkas, I.J., Bolay, K. ”Self-organizing pedestrian
movement”, Environment and Planning B: Planning 2001, volume 28, pages
361-383.

[16] Helbing, D., Farkas, I.J., Vicsek, T., Molnar P., Bolay, K., Keltsch, P.
http://pedsim.elte.hu .

[17] Helbing, D., Farkas, I.J., Molnar, P., Vicsek, T., (2002) Simulation of
pedestrian crowds in normal and evacuation situations. Pages 21-58 in: M.
Schreckenberg and S.D. Sharma (eds.) Pedestrian and Evacuation Dynamics
(Springer, Berlin).

[18] ”Leaving a Room”. Panic: A Quantitative Analysis. Helbing, D., Farkas, I.J.,
Vicsek, T. November 06, 2005. <http://angel.elte.hu/panic/>

[19] Holland, J. H., Adaptation in natural and artificial systems, University of
Michigan Press, Ann Arbor, 1975.

[20] Kennedy, J. and Eberhart, R. ”Particle Swarm Optimization”, Proceedings of
the 1995 IEEE International Conference on Neural Networks, pp. 1942-1948,
1995.

[21] Kennedy, J. and Eberhart, R. ”A Discrete Binary Version of the Particle
Swarm Algorithm”, IEEE International Conference on Systems, Man, and
Cybernetics, ’Computational Cybernetics and Simulation’., 1997.

56

[22] Kennedy, J. ”The Particle Swarm: Social Adaptation of Knowledge”, IEEE
International Conference on Evolutionary Computation., pp. 303-308, 1997.

[23] Kirchner, A., Schadschneider, A. ”Simulation of evacuation processes using a
bionics-inspired cellular automaton model for pedestrian dynamics”. Physica
A, 2002, Vol 312, Iss 1-2, pp 260-276.

[24] Kirkland, J.A., Maciejewski, A.A., A simulation of attempts to influence
crowd dynamics. IEEE International Conference on Systems, Man and Cy-
bernetics October 5, 2003. Volume: 5, pages: 4328-4333.

[25] McGrath, M., ”Lions Creature Feature Fun Facts”.
NationalGeographic.com Kids. October 30, 2005.
<http://www.nationalgeographic.com/kids/creature feature/0109/lions2.html>.

[26] Cote, R., Harrington, G. E., National Fire Protection Association, Inc.
Quincy, Massachusetts. 02169-7471.

[27] Silicon Graphics, ”OpenGL: Developed by Silicon Graph-
ics”. SGI United States. 2005. October 23, 2005.
<http://www.sgi.com/products/software/opengl/>

[28] ”Qt Product Overview - single source C++ cross-platform application de-
velopment for Windows, Linux, Mac”. Trolltech. (2005) October 24, 2005.
<http://www.trolltech.com/products/qt/index.html>

[29] Rabinovich, Y., Wigderson, A. ”An Analysis of a Simple Genetic Algorithm”,
Proceedings of the 4th International Conference on Genetic Algorithms, pp.
215-221, Morgan Kaufmann, July 1991.

[30] Russell, S., Norvig, P. Artificial Intelligence: A Modern Approach, 2nd Edi-
tion. Prentice Hall Pearson Education, Inc., Upper Saddle River, New Jersey,
2003.

[31] Sadoun, B. ”Simulation in city planning and engineering”, Applied system
simulation: methodologies and applications, pages 315-341, 2003.

[32] Saloma, C., Perez, G. J., Tapang, G., Lim, M. and Palmes-Saloma, C.
”Self-organized queuing and scale-free behavior in real escape panic”, Pro-
ceedings of the National Academy of Sciences USA published on-line,
doi:10.1073/pnas.2031912100 (2003).

57

[33] Shaw, J. Multi-objective Genetic Algorithms for Schedule Operation. Report
on the Manufacturing Complexity Network Meeting. International Manufac-
turing Centre Warwick Manufacturing Group, August 1999.

[34] Werner, T., ”Pedestrian Simulation 0.1”. Homepage Torsten Werner. August
6, 2003. October 23, 2005. <http://www.twerner42.de/ped/sim/>.

58

Appendices

59

Appendix A

Escape Panic Figures

The following images were taken from pedestrian simulation visualizations.

60

Figure A.1: Escape Panic Arc

61

Figure A.2: Pedsim Pic 01

62

Figure A.3: Round B – Best GA Geometry with Exit Length of 1

Figure A.4: Round B – Best GA Geometry with Exit Length of 2

63

Figure A.5: Round B – Best GA Geometry with Exit Length of 3

Figure A.6: Round B – Best GA Geometry with Exit Length of 4

64

Figure A.7: Round B – Best GA Geometry with Exit Length of 5

Figure A.8: Round B – Best GA Geometry with Exit Length of 6

65

Figure A.9: Round B – Best GA Geometry with Exit Length of 7

Figure A.10: Round B – Best GA Geometry with Exit Length of 8

66

Figure A.11: Round B – Best PSO Geometry with Exit Length of 1

Figure A.12: Round B – Best PSO Geometry with Exit Length of 2

67

Figure A.13: Round B – Best PSO Geometry with Exit Length of 3

Figure A.14: Round B – Best PSO Geometry with Exit Length of 4

68

Figure A.15: Round B – Best PSO Geometry with Exit Length of 5

Figure A.16: Round B – Best PSO Geometry with Exit Length of 6

69

Figure A.17: Round B – Best PSO Geometry with Exit Length of 7

Figure A.18: Round B – Best PSO Geometry with Exit Length of 8

70

Appendix B

Source Code

Listing from header file code/roombuilder.h

Listing B.1: Multi-Page C Code for Roombuilder header� �
#ifndef ROOMBUILDER H
#define ROOMBUILDER H

#include ” f l o o r . h”
#include ” ob s t a c l e . h”
#include ”room . h”
#include ” gate . h”
#include ” trans form . h”
#include ” emi t t e r . h”

#include ” c on f i g . h”
#include <iostream>

class RoomBuilder
{
public :

// Constructor
RoomBuilder (int exitCount , double xmax ,

double ymax , double doorWidth ,
double l e n g thS ca l e) ;

// Deconstructor
˜RoomBuilder () {}

// Begin Get t er s
int getExitCount () { return exitCount ; }
int getTotalNumExits ()
{ return (2 ∗ (numHorizontalExits + numVert ica lExits)) ; }
double getXMAX() { return xmax ; }
double getYMAX() { return ymax ; }
double getDoorWidth () { return doorWidth ; }
double getLengthSca le () { return l e ng thSca l e ; }

// End Get ter s

// Begin S e t t e r s

71

void setXMAX(double xmax) { xmax = xmax ; }
void setYMAX(double ymax) { ymax = ymax ; }
void setDoorWidth (double doorWidth) { doorWidth = doorWidth ; }
void setExitCount (int ex i tCount) { exitCount = exitCount ; }
// ex i tCount must be 1 or g r ea t e r
void setDP (bool ∗ doo rPo s i t i on s) { doorPos i t i on s = doo rPo s i t i on s ; }
void s e tLengthSca l e (double l e n g thS ca l e) { l e ng thSca l e = l eng thS ca l e ; }
void se tMostVar iab le s () ;

// End S e t t e r s

void i n i t (int exitCount , double xmax ,
double ymax , double doorWidth ,
double l e n g thS ca l e) ;

void geometry (int N , Pos i t i on p) ;
void makeRoom(int N , Pos i t i on p) ;

// p r i v a t e :
bool ∗ doorPos i t i on s ;

int exitCount ;
int numHorizontalExits , numVerticalExits , index , index2 , po s i t i on s Index ;

double xmax ;
double ymax ;
double doorWidth , l eng thSca l e ;
double ex i tSpanHor izonta l , ho r i z on ta lEx i tS ta r t ,

hor izontalExitEnd , hor izonta lExitEnd2 ;
double ex i tSpanVert i ca l , v e r t i c a lEx i t S t a r t ,

ver t i ca lEx i tEnd , ve r t i ca lEx i tEnd2 ;
double s t a r tHor i z on ta l , s t a r tV e r t i c a l ;
double ∗ ho r i z on t a lEx i t S t a r tPo s i t i on s , ∗ v e r t i c a l E x i t S t a r tP o s i t i o n s ;
double ∗ hor i zonta lEx i tEndPos i t i ons , ∗ ve r t i c a lEx i tEndPos i t i on s ;

} ;

#endif� �
Listing from source file code/roombuilder.cc

Listing B.2: Multi-Page C Code for Roombuilder source� �
#include "floor.h"
#include "obstacle.h"
#include "room.h"
#include "config.h"
#include "gate.h"
#include "transform.h"
#include "emitter.h"

72

/∗ beg in added ∗/
#include "other.h"
#include "roombuilder.h"
#include <vector>
#include <s t d i o . h>
#include <iostream>
#include <iomanip>
/∗ end added ∗/

RoomBui lder : : RoomBui lder (int e x i tCoun t , double xmax ,
double ymax , double doorWidth , double l e n g t h S c a l e)

{
i n i t (e x i tCoun t , xmax , ymax , doorWidth , l e n g t h S c a l e) ;

s e t M o s t V a r i a b l e s () ;
}

void RoomBui lder : : i n i t (int e x i tCoun t , double xmax ,
double ymax , double doorWidth , double l e n g t h S c a l e)

{
s e tEx i tCoun t (e x i t C o u n t) ;

setXMAX (xmax) ;
setYMAX (ymax) ;
s e tDoorWidth (doorWidth) ;
s e t L e n g t h S c a l e (l e n g t h S c a l e) ;

}

void RoomBui lder : : s e t M o s t V a r i a b l e s ()
{

setXMAX (getXMAX () / g e t L e n g t h S c a l e ()) ;
setYMAX (getYMAX () / g e t L e n g t h S c a l e ()) ;
s e tDoorWidth (getDoorWidth () / g e t L e n g t h S c a l e ()) ;

numHo r i z o n t a l E x i t s = (int) f l o o r (getXMAX () / getDoorWidth ()) ;
num Ve r t i c a l E x i t s = (int) f l o o r (getYMAX () / getDoorWidth ()) ;

s t a r t H o r i z o n t a l = numHo r i z o n t a l E x i t s ∗ getDoorWidth () ;
s t a r t V e r t i c a l = num Ve r t i c a l E x i t s ∗ getDoorWidth () ;

h o r i z o n t a l E x i t S t a r t = (getXMAX () − s t a r t H o r i z o n t a l) ∗ 0.66666667 ;
v e r t i c a l E x i t S t a r t = (getYMAX () − s t a r t V e r t i c a l) ∗ 0.66666667 ;
h o r i z o n t a l E x i t E n d = h o r i z o n t a l E x i t S t a r t + getDoorWidth () ;

73

v e r t i c a l E x i t E n d = v e r t i c a l E x i t S t a r t + getDoorWidth () ;

h o r i z o n t a l E x i t S t a r t P o s i t i o n s = new double [numHo r i z o n t a l E x i t s] ;
h o r i z o n t a l E x i t E n d P o s i t i o n s = new double [numHo r i z o n t a l E x i t s] ;
v e r t i c a l E x i t S t a r t P o s i t i o n s = new double [num Ve r t i c a l E x i t s] ;
v e r t i c a l E x i t E n d P o s i t i o n s = new double [num Ve r t i c a l E x i t s] ;

}

void RoomBui lder : : makeRoom (int N , P o s i t i o n p)
{

F l o o r& f l o o r = F l o o rV e c t o r : : c r e a t e (1 , 1) ;

Room∗ room = f l o o r . c reateRoom () ;

C o l l e c t i o n ent i r eRoom ;

bool d o o r P o s i t i o n s 2 [p . g e tL eng th ()] ;

// Get the v a r i a b l e room rep and
// make your door p o s i t i o n s

i n d e x = 0 ;
while (i n d e x < p . g e tL eng th ())
{

i f (r o om rep . a t (i n d e x))
{

d o o r P o s i t i o n s 2 [i n d e x] = 1 ;
}

else
{

d o o r P o s i t i o n s 2 [i n d e x] = 0 ;
}

i n d e x++ ;
}

// This l oops pushes a l l o f the wa l l s onto the c o l l e c t i o n
i n d e x = 0 ;
while (i n d e x < p . g e tL eng th ())
{

i f (d o o r P o s i t i o n s 2 [i n d e x]) {}
else
{

i f (p . getType (i n d e x) == ’h’)

74

{
en t i r eRoom . pu sh ba ck

(room−>newObstac l e<HWall>
(p . getP (i n d e x) ,
p . g e tB e g i n (i n d e x) ,
p . getEnd (i n d e x) ,
R)) ;
}
else
{

en t i r eRoom . pu sh ba ck
(room−>newObstac l e<VWall>

(p . getP (i n d e x) ,
p . g e tB e g i n (i n d e x) ,
p . getEnd (i n d e x) ,
R)) ;
}

}
i n d e x++ ;

}

// This l oops pushes a l l o f the e x i t s onto the c o l l e c t i o n
i n d e x = i n d e x 2 = 0 ;
while (i n d e x < p . g e tL eng th ())
{

i f (d o o r P o s i t i o n s 2 [i n d e x])
{

i f (p . getType (i n d e x) == ’h’)
{

// i f (index % 2 != 0)
i f (p . getP (i n d e x) != 0)
{

en t i r eRoom . pu sh ba ck
(room−>newGate<HGate>

(p . getP (i n d e x) ,
p . g e tB e g i n (i n d e x) ,
p . getEnd (i n d e x) ,
0)) ;

}
else
{

en t i r eRoom . pu sh ba ck

75

(room−>newGate<HGate>
(p . getP (i n d e x) ,

p . getEnd (i n d e x) ,
p . g e tB e g i n (i n d e x) ,

0)) ;
}

}
else
{

// i f (index % 2 != 0)
i f (p . getP (i n d e x) != 0)
{

en t i r eRoom . pu sh ba ck
(room−>newGate<VGate>
(p . getP (i n d e x) ,

p . g e tB e g i n (i n d e x) ,
p . getEnd (i n d e x) ,
0)) ;

}
else
{

en t i r eRoom . pu sh ba ck
(room−>newGate<VGate>
(p . getP (i n d e x) ,

p . getEnd (i n d e x) ,
p . g e tB e g i n (i n d e x) ,
0)) ;

}
}

}
i n d e x++ ;

}

L a t t i c e E m i t t e r ∗ e m i t t e r =
new L a t t i c e E m i t t e r (0 , 0 , getXMAX () , getYMAX () , N) ;
room−>newSource<S i n g l e S o u r c e >(e m i t t e r) ;

}
/∗∗/

void RoomBui lder : : geomet ry (int N , P o s i t i o n p)
{

int N = N ;

76

p o s i t i o n s I n d e x = 0 ;

// Set the p o s i t i o n s o f the h o r i z on t a l e x i t s and wa l l s

// Top Wall
i n d e x = 0 ;
while (i n d e x < numHo r i z o n t a l E x i t s)
{
h o r i z o n t a l E x i t S t a r t P o s i t i o n s [i n d e x] = h o r i z o n t a l E x i t S t a r t ;
h o r i z o n t a l E x i t E n d P o s i t i o n s [i n d e x] =

h o r i z o n t a l E x i t S t a r t P o s i t i o n s [i n d e x] + doorWidth ;
h o r i z o n t a l E x i t S t a r t += doorWidth ;

p . setGroupWithType (p o s i t i o n s I n d e x , 0 ,
h o r i z o n t a l E x i t S t a r t P o s i t i o n s [i n d e x] ,
h o r i z o n t a l E x i t E n d P o s i t i o n s [i n d e x] , ’h’) ;

p o s i t i o n s I n d e x++ ;
i n d e x++ ;
}

// Right Wall
i n d e x = 0 ;
while (i n d e x < num Ve r t i c a l E x i t s)
{
v e r t i c a l E x i t S t a r t P o s i t i o n s [i n d e x] = v e r t i c a l E x i t S t a r t ;
v e r t i c a l E x i t E n d P o s i t i o n s [i n d e x] =

v e r t i c a l E x i t S t a r t P o s i t i o n s [i n d e x] + doorWidth ;
v e r t i c a l E x i t S t a r t += doorWidth ;

p . setGroupWithType (p o s i t i o n s I n d e x , xmax ,
v e r t i c a l E x i t S t a r t P o s i t i o n s [i n d e x] ,
v e r t i c a l E x i t E n d P o s i t i o n s [i n d e x] , ’v’) ;

p o s i t i o n s I n d e x++ ;

i n d e x++ ;
}

// Bottom Wall
i n d e x = numHo r i z o n t a l E x i t s − 1 ;
while (i n d e x > −1)
{
p . setGroupWithType (p o s i t i o n s I n d e x , ymax ,

77

h o r i z o n t a l E x i t S t a r t P o s i t i o n s [i n d e x] ,
h o r i z o n t a l E x i t E n d P o s i t i o n s [i n d e x] , ’h’) ;

p o s i t i o n s I n d e x++ ;

i ndex−− ;
}

// Le f t Wall
i n d e x = num Ve r t i c a l E x i t s − 1 ;
while (i n d e x > −1)
{

p . setGroupWithType (p o s i t i o n s I n d e x , 0 ,
v e r t i c a l E x i t S t a r t P o s i t i o n s [i n d e x] ,
v e r t i c a l E x i t E n d P o s i t i o n s [i n d e x] , ’v’) ;

p o s i t i o n s I n d e x++ ;

i ndex−− ;
}

makeRoom (N , p) ;
}
� �

Listing from header file code/other.h

Listing B.3: Multi-Page C Code for Other header� �
#ifndef OTHER H
#define OTHER H

#include <c s t r i ng >

/∗∗
∗ A c l a s s t ha t i s made to pass room crea t i on in format ion
∗/

class P o s i t i o n
{
public :

// Constructor
P o s i t i o n (int l e n g t h)
{

s e t L e n g t h (l e n g t h) ;
t ype = new char [l e n g t h] ;

78

p = new double [l e n g t h] ;
b e g i n = new double [l e n g t h] ;
end = new double [l e n g t h] ;

}
˜ P o s i t i o n () {} // Deconstructor

// S e t t e r s
void s e t L e n g t h (int l e n g t h) { l e n g t h = l e n g t h ; }
void s e tP (int i ndex , double p) { p [i n d e x] = p ; }
void s e t B e g i n (int i ndex , double b e g i n) { b e g i n [i n d e x] = b e g i n ; }
void s e tEnd (int i ndex , double end) { end [i n d e x] = end ; }
void s e tType (int i ndex , char t y p e) { t ype [i n d e x] = t y p e ; }

// Group S e t t e r s
void s e tGroup (int i ndex , double p , double b e g i n , double end)
{

p [i n d e x] = p ;
b e g i n [i n d e x] = b e g i n ;
end [i n d e x] = end ;

}
void setGroupWithType (int i ndex , double p ,

double b e g i n , double end , char t y p e)
{

p [i n d e x] = p ;
b e g i n [i n d e x] = b e g i n ;
end [i n d e x] = end ;
t ype [i n d e x] = t y p e ;

}

// Get ter s
int g e tL eng th () { return l e n g t h ; }
double getP (int i n d e x) { return p [i n d e x] ; }
double g e tB e g i n (int i n d e x) { return b e g i n [i n d e x] ; }
double getEnd (int i n d e x) { return end [i n d e x] ; }
char getType (int i n d e x) { return t ype [i n d e x] ; }

private :
int l e n g t h ;
char ∗ t ype ;
double ∗p ;
double ∗ b e g i n ;
double ∗ end ;

79

} ;

#endif
� �
Listing from header file code/base.h

Listing B.4: Multi-Page C Code for Base functions header� �
/∗ ∗∗
∗ Created by She lby Darne l l
∗ May 16 , 2005
∗
∗ base . hh
∗ F i l e con ta ins gener i c i n c l u d e s and
∗ u s e f u l f unc t i on s
∗
∗∗∗ ∗/

#ifndef BASE H
#define BASE H

#include <cmath>
#include <c s t d l i b >
#include <ctime>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <s t r i ng >
#include <vector>

#define UB 10
#define LB −10

using namespace s t d ;

typedef v e c t o r < int > Vec In t ;

class Base
{
public :

// S t r ing manipulat ion methods

80

stat ic int c h a r S t r i n g T o I n t (char∗ word) ;
stat ic int s t r i n g T o I n t (s t r i n g word) ;

stat ic double c h a r S t r i n gToDoub l e (char∗ word) ;
stat ic double s t r i n gToDoub l e (s t r i n g word) ;

stat ic s t r i n g d o ub l eT oS t r i n g (double number) ;
stat ic s t r i n g i n t T o S t r i n g (int number) ;

// Number manipulat ion methods
stat ic int c o n v e r tT o I n t (double n , int l e n g t h) ;
stat ic int d e c od eB i n a r y (int l e n g t h , v e c t o r <int> b ina ryRep) ;

stat ic double c onve r tToDoub l e (int n , int l e n g t h) ;

stat ic v e c t o r <int> c onv e r tToB i n a r y (int l e n g t h , int p) ;

// Random number methods
stat ic int r a n d I n t (int max) ;

stat ic double randDoub l e () ;

// Other methods
stat ic double c l e r c s (double g1 , double g2) ;
stat ic double ga sd ev (double mult) ;
stat ic double g e tCSF i t (s t r i n g c s) ;
stat ic double s i gmo i d (double x) ;

stat ic s t r i n g g e t D i r e c t o r y (s t r i n g s o u r c e) ;
} ;

#endif // BASE H
� �
Listing from header file code/base.cc

Listing B.5: Multi-Page C Code for Base functions source� �
#include "base.h"

using namespace s t d ;

/∗∗
∗ S t r ing manipulat ion methods

81

∗/

//−−−

// Converts a charac t e r s t r i n g in t o an i n t e g e r
int Base : : c h a r S t r i n g T o I n t (char∗ word)
{

int r e s u l t ;
s t r i n g s t r e a m temp ;

temp << word ;
temp >> r e s u l t ;

return r e s u l t ;
}

//−−−

// Converts a s t r i n g in t o an i n t e g e r
int Base : : s t r i n g T o I n t (s t r i n g word)
{

int r e s u l t ;
s t r i n g s t r e a m temp ;

temp << word ;
temp >> r e s u l t ;

return r e s u l t ;
}

//−−−

// Converts a charac t e r s t r i n g in t o a doub le
double Base : : c h a r S t r i n gToDoub l e (char∗ word)
{

double r e s u l t ;
s t r i n g s t r e a m temp ;

temp << word ;
temp >> r e s u l t ;

return r e s u l t ;

82

}

//−−−

double Base : : s t r i n gToDoub l e (s t r i n g word)
{

double r e s u l t ;
s t r i n g s t r e a m temp ;

temp << word ;
temp >> r e s u l t ;

return r e s u l t ;
}

//−−−

// Converts a doub le in t o a s t r i n g
s t r i n g Base : : d oub l eToS t r i n g (double number)
{

s t r i n g r e s u l t ;
s t r i n g s t r e a m temp ;

temp << number ;
temp >> r e s u l t ;

return r e s u l t ;
}

//−−−

// Converts an i n t e g e r in t o a s t r i n g
s t r i n g Base : : i n t T o S t r i n g (int number)
{

s t r i n g r e s u l t ;
s t r i n g s t r e a m temp ;

temp << number ;
temp >> r e s u l t ;

return r e s u l t ;
}

83

/∗∗
∗ Number Manipulat ion Methods
∗/

//−−−

int Base : : c o n v e r tT o I n t (double n , int l e n g t h)
{

return (int) (((n − LB)
∗ (pow (2 . 0 , l e n g t h) − 1)) / (UB − LB)) ;

}

//−−−

/∗∗
∗ Method works c o r r e c t l y .
∗
∗ I t take the l e n g t h o f a b inary r ep r e s en t a t i on
∗ and ob ta in s i t s i n t e g e r va lue .
∗/

int Base : : d e c od eB i n a r y (int l e n g t h , Vec In t b ina ryRep)
{

int up , down , pheno type ;

pheno type = up = 0 ;
down = l e n g t h − 1 ;
while (up < l e n g t h)
{

i f (b ina ryRep . a t (up) == 1)
{

pheno type += (int) pow (2 . 0 , down) ;
}

up++ ;
down−− ;

}
return pheno type ;

}

//−−−

84

double Base : : c onve r tToDoub l e (int n , int l e n g t h)
{

return (((UB − LB) ∗ n) / (pow (2 . 0 , l e n g t h) − 1) + LB) ;
}

//−−−

Vec In t Base : : c onv e r tToB i n a r y (int l e n g t h , int p)
{

int i n d e x = l e n g t h − 1 ;
int s u b t r a c t o r ;
Vec In t r e p s ;

while (i n d e x > −1)
{

s u b t r a c t o r = (int)pow ((double)2 , i n d e x) ;
i f (p >= s u b t r a c t o r)
{

p −= s u b t r a c t o r ;
r e p s . pu sh ba ck (1) ;

}
else
{

r e p s . pu sh ba ck (0) ;
}
i ndex−− ;

}
return r e p s ;

}

/∗∗
∗ Random Number Methods
∗/
//−−−

// Function to de r i v e a random in t e g e r
int Base : : r a n d I n t (int max)
{

return (int) ((double)max ∗ rand () / (RAND MAX + 1.0)) ;
}

//−−−

85

// Function to de r i v e a random doub l e ing po in t number
double Base : : randDoub l e ()
{

return (double) (rand () / (RAND MAX+1.0)) ;
}

/∗∗
∗ Other methods
∗/

//−−−

/∗∗
∗ Function to he l p move a p a r t i c l e in PSO
∗ The inpu t s t ha t the func t i on take s are phi 1
∗ and phi 2 which denote s o c i a l and c o gn i t i v e
∗ awareness .
∗/

double Base : : c l e r c s (double g1 , double g2)
{

double k , gam , gam4 , g s r , gabs ;

gam = g1 + g2 ;
gam4 = gam ∗ 4 ;
g s r = s q r t (pow (gam , 2)) ;
gabs = f a b s (2 − gam − g s r − gam4) ;
k = 2 / gabs ;

return k ;
}

//−−−

double Base : : ga sd ev (double mult)
{

stat ic int i s e t =0;
stat ic double g s e t ;
double f a c , r sq , v1 , v2 ; // , idum ;

i f (i s e t == 0)

86

{ // We don ’ t have an ex t ra d e v i a t e handy so ,
do {

v1=2.0 ∗ randDoub l e () − 1 . 0 ;
// p i ck two uniform #’s in the square

v2=2.0 ∗ randDoub l e () − 1 . 0 ;
// ex tend ing from −1 to +1 in each

r s q = (v1∗v1) + (v2∗v2) ;
// d i r e c t i on , see i f they are in the un i t c i r c l e ,

} while (r s q >= 1.0 | | r s q == 0.0) ;
// and i f they are not , t r y again .

f a c=s q r t (−2.0∗ l o g (r s q)/ r s q) ;
// Now make the Box−Muller t rans format ion to
// ge t 2 normal d e v i a t e s .
// Return one and save the o ther f o r next time .
g s e t=v1∗ f a c ; // Set f l a g .
i s e t =1;
return v2∗ f a c ∗mult ;

}
else
{

// We have an ex t ra d e v i a t e handy .
i s e t =0; // so unset the f l a g .
return g s e t ∗mult ; // and re turn i t .

}
}

//−−−

/∗∗
∗ Runs pedsim to ge t the f i t n e s s o f the
∗ candida te s o l u t i o n
∗/

double Base : : g e tCSF i t (s t r i n g c s)
{

s t r i n g c o n f i g F i l e , peds imExecute , f i t n e s s F i l e ;

c o n f i g F i l e = g e t D i r e c t o r y ("pedsim") + "config2.in" ;
// pedsimExecute = ge tD i r e c t o ry (”pedsim”) + ”pedsim −n” ;
ped s imExecu t e = g e t D i r e c t o r y ("pedsim") + "user-base.pl" ;
f i t n e s s F i l e = g e t D i r e c t o r y ("pedsim") + "fit.in" ;

87

// Write the cand ida te s o l u t i o n to f i l e so
// t ha t pedsim can read i t
double f i t n e s s ;
o f s t r e a m out (c o n f i g F i l e . c s t r ()) ;
out << c s << e n d l ;
out . c l o s e () ;

sy s t em (ped s imExecu t e . c s t r ()) ;
// cout << ”Pedsim execu te ” << pedsimExecute << end l ;

// Read the candida te s o l u t i o n f i t n e s s from the
// f i l e wr i t t en by pedsim
i f s t r e a m i n (f i t n e s s F i l e . c s t r ()) ;
i n >> f i t n e s s ;
i f (f i t n e s s == 0) { f i t n e s s = 100 ; }
i n . c l o s e () ;

return f i t n e s s ;
}

//−−−

double Base : : s i gmo i d (double x)
{

double r e s u l t , temp ;
temp = 1 − exp (−x) ;
r e s u l t = 1 / temp ;
return r e s u l t ;

}

//−−−

s t r i n g Base : : g e t D i r e c t o r y (s t r i n g s o u r c e)
{

s t r i n g r e s u l t ;
i f (s o u r c e == "pedsim")
{

i f s t r e a m i n F i l e ("data/pedsimDirectory.dat" , i o s : : i n) ;
i n F i l e >> r e s u l t ;

}
else
{

88

i f s t r e a m i n F i l e ("data/particle_swarm.dat" , i o s : : i n) ;
i n F i l e >> r e s u l t ;

}
return r e s u l t ;

}

//−−−
� �
Listing from header file code/randpack.h

Listing B.6: Multi-Page C Code for Dozier’s RandPack header� �
#ifndef RANDPACK H
#define RANDPACK H

#include "base.h"

class RandPack
{
public :

int s e e d ;

void myRandomize () ;
void seed myRandomize (int) ;

int myRandomInt (int) ;

double myRandom () ;
double myRandRange (double , double) ;

} ;

#endif // RANDPACK H
� �
Listing from header file code/randpack.cc

Listing B.7: Multi-Page C Code for Dozier’s RandPack source� �
#include "randpack.h"

using namespace s t d ;

//RandPack : : RandPack () {}

89

//−−−

//RandPack : : ˜ RandPack () {}

//−−−

void RandPack : : myRandomize ()
{

s e e d = rand () ; // time (NULL) ;
myRandom () ;

}

//−−−

void RandPack : : seed myRandomize (int s e e d)
{

s e e d = s e e d ;
myRandom () ;

}

//−−−

int RandPack : : myRandomInt (int modulus)
{

return (int) (myRandom () ∗ (modulus −0.00000001)) ;
}

//−−−

double RandPack : : myRandom ()
{

s e e d = rand () ;
int

a = 16807 ,
m = 2147483647 ,
q = 127773 , /∗ m div a ∗/
r = 2836 , /∗ m mod a ∗/

l o , hi , t e s t ;

h i = s e e d / q ;

90

l o = s e e d % q ;

t e s t = a ∗ l o − r ∗ h i ;

i f (t e s t > 0)
s e e d = t e s t ;

else
s e e d = t e s t + m;

return (double) s e e d /m;
}

//−−−

double RandPack : : myRandRange (double v1 , double v2)
{

double temp ;

i f (v2 < v1)
{

temp = v2 ;
v2 = v1 ;
v1 = temp ;

}

return ((v2−v1) ∗ myRandom () + v1) ;
}

//−−−
� �
Listing from header file code/individual.h

Listing B.8: Multi-Page C Code for the GA’s Individual or Candidate Solution
header� �
#ifndef INDIVIDUAL H
#define INDIVIDUAL H

#include "base.h"
#include "randpack.h"

typedef v e c t o r < int > Vec In t ;
using namespace s t d ;

91

/∗∗
∗ ’ rep ’ s tands f o r ’ r e p r e s en t a t i on ’
∗/

class I n d i v i d u a l
{
public :

I n d i v i d u a l () {}
I n d i v i d u a l (int , int) ;
˜ I n d i v i d u a l () ;

void i n i t (int , int) ;
void i n i t B i n a r y R e p () ;
void f l i pMembe r (int) ;
void mutate () ;
void f i x E x i t L e n g t h () ;

bool e q u a l s (Vec In t) ;

int repAt (int i n d e x) { return r ep . a t (i n d e x) ; }

s t r i n g r e pToS t r i n g () ;
s t r i n g t o S t r i n g () ;

// S e t t e r s
void c a l c u l a t e O n e s () ;
void s e t F i t n e s s () ;
void s e tOne s (int o n e s) { on e s = o n e s ; }
void s e tRep (VecInt , int) ;
void s e t R e p S i z e (int r e p S i z e) { r e p S i z e = r e p S i z e ; }
void s e tT ime (double s imTime) { s imTime = s imTime ; }
void s e tMaxEx i tLeng th (int maxEx i tLeng th)
{ maxExi tLength = maxEx i tLeng th ; }

// Get ter s
int ge tOne s () { return on e s ; }
int g e tR e pS i z e () { return r e p S i z e ; }
int ge tMaxEx i tLeng th () { return maxExi tLength ; }
// i n t checkOddExits () ;
// i n t checkEvenExi ts () ;
double g e t F i t n e s s () { return f i t n e s s ; }

92

double getTime () { return s imTime ; }
Vec In t getRep () { return r ep ; }

private :
int ones ,

r e p S i z e ,
maxExi tLength ;

double simTime , f i t n e s s ;

RandPack rnd ;

v e c t o r < int > r ep ;

} ;

#endif // INDIVIDUAL H
� �
Listing from header file code/individual.cc

Listing B.9: Multi-Page C Code for the GA’s Candidate Solution source� �
#include "base.h"
#include "individual.h"

#define THRESHOLD 30

using namespace s t d ;

//−−−

I n d i v i d u a l : : I n d i v i d u a l (int r e p S i z e , int maxEx i tLeng th)
{

i n i t (r e p S i z e , maxEx i tLeng th) ;
}

//−−−

I n d i v i d u a l : : ˜ I n d i v i d u a l ()
{

r ep . c l e a r () ;
}

93

//−−−

void I n d i v i d u a l : : i n i t (int r e p S i z e , int maxEx i tLeng th)
{

rnd . myRandomize () ;

s e t R e p S i z e (r e p S i z e) ;
s e tMaxEx i tLeng th (maxEx i tLeng th) ;
i n i t B i n a r y R e p () ;
f i x E x i t L e n g t h () ;
s e t F i t n e s s () ;

}

//−−−

void I n d i v i d u a l : : i n i t B i n a r y R e p ()
{

r ep . c l e a r () ;

int i n d e x = 0 ;
while (i n d e x < g e tR e pS i z e ())
{

i f (rnd . myRandomInt (2) < 1)
{

r ep . pu sh ba ck (1) ;
}
else
{

r ep . pu sh ba ck (0) ;
}
i n d e x++ ;

}
}

//−−−

void I n d i v i d u a l : : f l i pMembe r (int i n d e x)
{

i f (r ep . a t (i n d e x) == 0)
{

r ep [i n d e x] = 1 ;

94

}
else
{

r ep [i n d e x] = 0 ;
}

}

//−−−

bool I n d i v i d u a l : : e q u a l s (v e c t o r <int> repB)
{

bool r e s u l t = true ;
int i n d e x = 0 ;
while (i n d e x < g e tR e pS i z e ())
{

r e s u l t = (r ep . a t (i n d e x) == repB . a t (i n d e x)) ? true : fa l se ;
// Exi t the loop i f t h i n g s don ’ t match
i f (r e s u l t == fa l se)
{

i n d e x = g e tR e pS i z e () ;
}
i n d e x++ ;

}
return r e s u l t ;

}

//−−−
/∗∗
∗ The s t r i n g r ep r e s en t a t i on o f the room geometry
∗ must have spaces in between each wa l l or e x i t
∗ r ep r e s en t i n g in t ege r , because the roombui lder
∗ reads the f i l e uses spaces .
∗/

s t r i n g I n d i v i d u a l : : r e pToS t r i n g ()
{

int i n d e x = 0 ;
s t r i n g r e s u l t = "" ;

while (i n d e x < g e tR e pS i z e ())
{

r e s u l t += Base : : i n t T o S t r i n g (r ep . a t (i n d e x)) + " " ;
i n d e x++ ;

95

}

return r e s u l t ;
}

//−−−

s t r i n g I n d i v i d u a l : : t o S t r i n g ()
{

return (r e pToS t r i n g ()
+ "," + Base : : d oub l eToS t r i n g (g e t F i t n e s s ())
+ "," + Base : : d oub l eToS t r i n g (getTime ())
+ "," + Base : : i n t T o S t r i n g (ge tOne s ())) ;

}

//−−−

void I n d i v i d u a l : : s e t F i t n e s s ()
{

double f i t n e s s S u m = 0 ;
c a l c u l a t e O n e s () ;
for (int i = 0 ; i < THRESHOLD ; i++)
{

do
{

f i t n e s s = Base : : g e tCSF i t (r e pToS t r i n g ()) ;
} while (f i t n e s s < 0) ;
f i t n e s s S u m += f i t n e s s ;

}
s e tT ime (f i t n e s s S u m / THRESHOLD) ;
f i t n e s s = getTime () + ge tOne s () ;

}

//−−−
/// Ca l cu l a t e the number o f e x i t s in the
/// geometry .
void I n d i v i d u a l : : c a l c u l a t e O n e s ()
{

int i ndex , sum ;

i n d e x = sum = 0 ;
while (i n d e x < g e tR e pS i z e ())

96

{
i f (r ep . a t (i n d e x) == 1)
{

sum++ ;
}
i n d e x++ ;

}
s e tOne s (sum) ;

}

//−−−

void I n d i v i d u a l : : s e tRep (Vec In t r ep , int maxEx i tLeng th)
{

s e t R e p S i z e (r e p . s i z e ()) ;
s e tMaxEx i tLeng th (maxEx i tLeng th) ;
r ep = r e p ;
f i x E x i t L e n g t h () ;
c a l c u l a t e O n e s () ;

}

//−−−
/// This func t i on goes to each i n t e g e r in the
/// b inary s t r i n g and w i l l f l i p i t wi th a 50%
/// p r o b a b i l i t y .
void I n d i v i d u a l : : mutate ()
{

int i n d e x = 0 ;
while (i n d e x < g e tR e pS i z e ())
{

i f (rnd . myRandom () <= 0.5)
{

f l i pMembe r (i n d e x) ;
}
i n d e x++ ;

}
}

//−−−
/∗
∗
∗

97

∗/
void I n d i v i d u a l : : f i x E x i t L e n g t h ()
{

int j = 0 ,
coun t = 0 ,

s p e c i a l C o u n t = 0 ;
bool f l a g = fa l se ;
while (j < g e tR e pS i z e ())
{

i f (repAt (j) == 1)
{

coun t++ ;
i f (j == 0)
{

f l a g = true ;
}
i f (j == g e tR e pS i z e () − 1)
{

s p e c i a l C o u n t += coun t ;
i f (s p e c i a l C o u n t == (ge tMaxEx i tLeng th ()+1))
{

// cout << ”Got him ” << repToString () << end l ;
f l i pMembe r (j) ;
// cout << ”New him ” << repToString () << end l ;

}
}

i f (coun t == (ge tMaxEx i tLeng th ()+1))
{

i f (f l a g == true)
{

s p e c i a l C o u n t = coun t ;
}
f l i pMembe r (j) ;
coun t = 0 ;
f l a g = fa l se ;

}
}
else
{

i f (f l a g == true)
{

98

s p e c i a l C o u n t = coun t ;
}
coun t = 0 ;
f l a g = fa l se ;

}

j++ ;
}

}

//−−−
� �
Listing from header file code/population.h

Listing B.10: Multi-Page C Code for the GA’s Population header� �
#ifndef POPULATION H
#define POPULATION H

#include "individual.h"

typedef v e c t o r < I n d i v i d u a l > VecInd ;
typedef v e c t o r < int > Vec In t ;

class Popu l a t i o n
{
public :

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Empty cons t ruc t o r
Popu l a t i o n () {}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Empty decons t ruc to r
˜ Popu l a t i o n () ;

Popu l a t i o n (int , int , int , int) ;

void i n i t (int , int , int , int) ;

int p r o c r e a t e () ;
int f i t n e s s L e v e l (s t r i n g) ;
int s e l e c t P a r e n t () ;

99

double g e t A v e r a g e F i t n e s s () ;
double g e t F i t n e s s (int) ;

s t r i n g t o S t r i n g (int) ;

//==
// Se t t e r s

void s e t P o p S i z e (int p o p S i z e) { popS i z e = p o p S i z e ; }
void s e t R e p S i z e (int r e p S i z e) { r e p S i z e = r e p S i z e ; }
void s e tMu t a t i o nRa t e (int muta t i o nRa t e)
{ muta t i onRat e = muta t i o nRa t e ; }
void s e tMaxEx i tLeng th (int maxEx i tLeng th)
{ maxExi tLength = maxEx i tLeng th ; }

//==
// Get ter s

int g e tP opS i z e () { return popS i z e ; }
int g e tR e pS i z e () { return r e p S i z e ; }
int g e tMuta t i onRa t e () { return muta t i onRat e ; }
int ge tMaxEx i tLeng th () { return maxExi tLength ; }

private :
int popS i z e ,

r e p S i z e ,
mutat ionRate ,
maxExi tLength ;

double f i t n e s s ;
// Average f i t n e s s o f a l l i n d i v i d u a l s in the popu la t i on

RandPack rnd ;

VecInd pop ;
} ;

#endif // POPULATION H
� �
Listing from header file code/population.cc

100

Listing B.11: Multi-Page C Code for the GA’s Population source� �
#include "population.h"

using namespace s t d ;

Popu l a t i o n : : Popu l a t i o n (int popS i z e , int r e p S i z e ,
int maxExi tLength , int mutRate)

{
i n i t (popS i z e , r e p S i z e , maxExi tLength , mutRate) ;

}

//−−−

Popu l a t i o n : : ˜ Popu l a t i o n ()
{

pop . c l e a r () ;
}

//−−−

void Popu l a t i o n : : i n i t (int popS i z e , int r e p S i z e ,
int maxExi tLength , int mutRate)

{
pop . c l e a r () ;
rnd . myRandomize () ;
s e t P o p S i z e (p o p S i z e) ;
s e t R e p S i z e (r e p S i z e) ;
s e tMaxEx i tLeng th (maxEx i tLeng th) ;
s e tMu t a t i o nRa t e (mutRate) ;

int i n d e x = 0 ;
while (i n d e x < g e tP opS i z e ())
{

pop . pu sh ba ck (I n d i v i d u a l (g e tR e pS i z e () , ge tMaxEx i tLeng th ())) ;
i n d e x++ ;

}
}

//−−−
/// This mutation opera tor t a k e s as an input
/// an i n t e g e r which w i l l determine the amount o f
/// mutation by d i v i d i n g i t by 1000.

101

///
/// So sending the number 5 , g i v e s a 0.5 % mutation
/// ra t e .

int Popu l a t i o n : : p r o c r e a t e ()
{

int mom ,
dad ,
i ndex ,
r ep l a c eMe ,
count ,
f i tA , // temp f i t va lue in i n t format to he l p t e s t f o r f i t n e s s
f i t B ; // temp f i t va lue in i n t format to he l p t e s t f o r f i t n e s s

// Boolean v a r i a b l e s used to s imp l i f y the code
bool c o nd i t i o nA = false ,

c o n d i t i o nB = false ,
c o n d i t i o nC = fa l se ;

Vec In t repA , repB ;
I n d i v i d u a l ch i l dA , c h i l dB ;

dad = s e l e c t P a r e n t () ;
do
{

mom = s e l e c t P a r e n t () ;
} while (dad == mom) ;

// Randomly s e l e c t s the gene o f e i t h e r
// parent f o r the new c h i l d
i n d e x = coun t = 0 ;
while (i n d e x < g e tR e pS i z e ())
{

i f (rnd . myRandomInt (2) == 1)
{

repA . pu sh ba ck (pop . a t (dad) . repAt (i n d e x)) ;
repB . pu sh ba ck (pop . a t (mom) . repAt (i n d e x)) ;

}
else
{

repA . pu sh ba ck (pop . a t (mom) . repAt (i n d e x)) ;
repB . pu sh ba ck (pop . a t (dad) . repAt (i n d e x)) ;

}

102

i n d e x++ ;

}

c h i l dA . s e tRep (repA , ge tMaxEx i tLeng th ()) ;

// Mutation
i f (rnd . myRandomInt (1000) <= g e tMuta t i onRa t e ())
{

c h i l dA . mutate () ;
}

c h i l dA . f i x E x i t L e n g t h () ;
c h i l dA . s e t F i t n e s s () ;
coun t++ ;
r e p l a c eMe = f i t n e s s L e v e l ("worst") ;
f i t A = int (c h i l dA . g e t F i t n e s s () + 0 .5) ;
f i t B = int (pop . a t (r e p l a c eMe) . g e t F i t n e s s () + 0 .5) ;
c o nd i t i o nA = c h i l dA . g e t F i t n e s s () < pop . a t (r e p l a c eMe) . g e t F i t n e s s () ;
c o n d i t i o nB = (f i t A == f i t B) ;
c o n d i t i o nC = (c h i l dA . ge tOne s () < pop . a t (r e p l a c eMe) . ge tOne s ()) ;

i f (c o nd i t i o nA | | (c o n d i t i o nB && c o n d i t i o nC))
{

pop [r e p l a c eMe] = c h i l dA ;
}

return coun t ;

}

//−−−
/// F i tne s s l e v e l i s based on minimizat ion .
///
/// Method has been s u c c e s s f u l l y t e s t e d

int Popu l a t i o n : : f i t n e s s L e v e l (s t r i n g l e v e l)
{

int i ndex , r e s u l t ;
double c u r r e n t , be s t , wor s t ;

i n d e x = r e s u l t = 0 ;

103

b e s t = pop . a t (i n d e x) . g e t F i t n e s s () ;
wor s t = pop . a t (i n d e x) . g e t F i t n e s s () ;
while (i n d e x < g e tP opS i z e ())
{

c u r r e n t = pop . a t (i n d e x) . g e t F i t n e s s () ;
i f (l e v e l == "best")
{

i f (c u r r e n t < b e s t)
{

b e s t = c u r r e n t ;
r e s u l t = i n d e x ;

}
}
else
{

i f (c u r r e n t > wor s t)
{

wor s t = c u r r e n t ;
r e s u l t = i n d e x ;

}
}

i n d e x++ ;
}
return r e s u l t ;

}

//−−−
/// Tournament S e l e c t i o n
/// Pick the b e s t o f 2

int Popu l a t i o n : : s e l e c t P a r e n t ()
{

int pA , pB , r e s u l t ;

pA = rnd . myRandomInt (g e tP opS i z e ()) ;
do
{

pB = rnd . myRandomInt (g e tP opS i z e ()) ;
} while (pA == pB) ;

i f (pop . a t (pA) . g e t F i t n e s s ()

104

< pop . a t (pB) . g e t F i t n e s s ())
{

r e s u l t = pA ;
}
else
{

r e s u l t = pB ;
}
return r e s u l t ;

}

//−−−

double Popu l a t i o n : : g e t A v e r a g e F i t n e s s ()
{

int i n d e x = 0 ;
double sum = 0.0 ;
while (i n d e x < g e tP opS i z e ())
{

sum += pop . a t (i n d e x) . g e t F i t n e s s () ;
i n d e x++ ;

}
return (sum/ g e tP opS i z e ()) ;

}

//−−−

double Popu l a t i o n : : g e t F i t n e s s (int i n d e x)
{

return pop . a t (i n d e x) . g e t F i t n e s s () ;
}

//−−−

s t r i n g Popu l a t i o n : : t o S t r i n g (int runNumber)
{

s t r i n g r e s u l t = "" ;
int i n d e x = 0 ;
while (i n d e x < g e tP opS i z e ())
{

r e s u l t += Base : : i n t T o S t r i n g (runNumber)
+ "," + Base : : i n t T o S t r i n g (i n d e x +1)

105

//+ ” ,” + Base : : in tToStr ing (ge tPopSize ())
//+ ” ,” + Base : : in tToStr ing (getMutat ionRate ())
+ "," + pop . a t (i n d e x) . t o S t r i n g ()
+ "\n" ;

i n d e x++ ;
}
return r e s u l t ;

}

//−−−
� �
Listing from source file code/ga.cc

Listing B.12: Multi-Page C Code that Runs the GA source� �� �
#include "base.h"
#include "population.h"

using namespace s t d ;

typedef v e c t o r < int > Vec In t ;

int main (int argc , char ∗∗ a rgv)
{

s r and (t ime (NULL)) ;

int popS i z e ,
i ndex ,
r e p S i z e ,
mutRate ,
runs ,

// func t i on eva lua t ion ,
// j u s t about akin to genera t i ons
// f o r a steady−s t a t e GA

count ,
maxExitLength ,
temp ;

Popu l a t i o n pop ;

popS i z e = Base : : c h a r S t r i n g T o I n t (a rgv [1]) ;
r e p S i z e = Base : : c h a r S t r i n g T o I n t (a rgv [2]) ;

106

mutRate = Base : : c h a r S t r i n g T o I n t (a rgv [3]) ;
r un s = Base : : c h a r S t r i n g T o I n t (a rgv [4]) ;
maxExi tLength = Base : : c h a r S t r i n g T o I n t (a rgv [5]) ;

pop . i n i t (popS i z e , r e p S i z e , maxExitLength , mutRate) ;
coun t = popS i z e ;

i n d e x = 0 ;
c ou t << "Runs,Individual" ;
c ou t << ",Representation ,Fitness" ;
c ou t << ",EscapeTime ,Exits" ;
c ou t << e n d l ;
while (coun t < r un s)
{

c ou t << pop . t o S t r i n g (i n d e x + 1) ;
c ou t << e n d l ;
coun t += pop . p r o c r e a t e () ;
i n d e x++ ;

}
return 0 ;

}
 	� �
Listing from header file code/particle.h

Listing B.13: Multi-Page C Code for the PSO’s Particle header� �
#ifndef PARTICLE H
#define PARTICLE H

#include "base.h"
#include "randpack.h"

#define VMAX 6

using namespace s t d ;

class P a r t i c l e
{
public :

P a r t i c l e () {}
P a r t i c l e (int , int) ;
˜ P a r t i c l e () ;

107

void i n i t (int , int) ;
void f l i pMembe r (int) ;
void c a l c u l a t e O n e s () ;
void f i x E x i t L e n g t h () ;
void i n i t B i n a r y R e p () ;
void i n i t V s () ;

// PhiA , PhiB , P vec to r o f b e s t p a r t i c l e
void move (double , double , v e c t o r < int >) ;

int repAt (int i n d e x) { return x . a t (i n d e x) ; }

s t r i n g r epXToSt r i ng () ;
s t r i n g r epPToS t r i n g () ;
s t r i n g v sToS t r i n g () ;
s t r i n g t o S t r i n g () ;

// S e t t e r s
void s e tMaxEx i tLeng th (int maxEx i tLeng th)
{ maxExi tLength = maxEx i tLeng th ; }
void s e t R e p S i z e (int r e p S i z e) { r e p S i z e = r e p S i z e ; }
void s e tT ime (double s imTime) { s imTime = s imTime ; }
void s e tOne s (int e x i t s) { e x i t s = e x i t s ; }
void s e t F i t n e s s () ;
void s e tP ()
{ p = x ; p F i t n e s s = f i t n e s s ; pEx i t s = e x i t s ; pSimTime = s imTime ; }

// Get ter s
int ge tMaxEx i tLeng th () { return maxExi tLength ; }
int g e tR e pS i z e () { return r e p S i z e ; }
int ge tOne s () { return e x i t s ; }
double getTime () { return s imTime ; }
double g e t F i t n e s s () { return f i t n e s s ; }
v e c t o r < int > getX () { return x ; }

private :
int maxExitLength ,

ne ighborA ,
ne ighborB ,
r e p S i z e ,
e x i t s ,

pEx i t s ;

108

// F i tne s s
double f i t n e s s ,

pF i t n e s s ,
pSimTime ,

s imTime ;

// Swarm Vectors
v e c t o r < int > x ;
v e c t o r < int > p ;
v e c t o r < double > v ;

RandPack rnd ;
} ;

#endif // PARTICLE H
� �
Listing from header file code/particle.cc

Listing B.14: Multi-Page C Code for the PSO’s Particle source� �
#include "particle.h"
#include "base.h"

#define THRESHOLD 30

using namespace s t d ;

//−−−

P a r t i c l e : : ˜ P a r t i c l e ()
{

x . c l e a r () ;
v . c l e a r () ;
p . c l e a r () ;

}

//−−−

P a r t i c l e : : P a r t i c l e (int r e p S i z e , int maxEx i tLeng th)
{

i n i t (r e p S i z e , maxEx i tLeng th) ;
}

109

//−−−

void P a r t i c l e : : i n i t (int r e p S i z e , int maxEx i tLeng th)
{

x . c l e a r () ;
v . c l e a r () ;
p . c l e a r () ;

rnd . myRandomize () ;

s e tMaxEx i tLeng th (maxEx i tLeng th) ;
s e t R e p S i z e (r e p S i z e) ;
i n i t B i n a r y R e p () ;
i n i t V s () ;
f i x E x i t L e n g t h () ;
s e t F i t n e s s () ;
s e tP () ;

}

//−−−

void P a r t i c l e : : i n i t B i n a r y R e p ()
{

int i n d e x = 0 ;
while (i n d e x < g e tR e pS i z e ())
{

i f (rnd . myRandom () < 0 .5)
{

x . pu sh ba ck (1) ;
}
else
{

x . pu sh ba ck (0) ;
}
i n d e x++ ;

}
}

//−−−

void P a r t i c l e : : i n i t V s ()

110

{
int i n d e x = 0 ;
while (i n d e x < g e tR e pS i z e ())
{

v . pu sh ba ck (rnd . myRandom ()) ;
i f (rnd . myRandom () < 0 .5)
{

v [i n d e x] ∗= −1 ;
}
i n d e x++ ;

}
}

//−−−

void P a r t i c l e : : move (double phiA , double phiB , v e c t o r < int > pg)
{

int i ndex ,
l o c a l B e s t L e s s C u r r e n t ,

g l o b a l B e s t L e s s C u r r e n t ;
double k ;

// Clercs l i k e s s o c i a l and c o gn i t i v e components
// t ha t add up to 4 .1 , and i f they are not
// g r ea t e r than 4 , the Clercs d e f a u l t s to 1 which
// does not add anyth ing to the PSO.
k = Base : : c l e r c s (phiA , phiB) ;
i f ((phiA + phiB) < 4)
{

k = 1.0 ;
}

i n d e x = 0 ;
while (i n d e x < g e tR e pS i z e ())
{

l o c a l B e s t L e s s C u r r e n t = p . a t (i n d e x) − x . a t (i n d e x) ;
g l o b a l B e s t L e s s C u r r e n t = pg . a t (i n d e x) − x . a t (i n d e x) ;

v [i n d e x] += (phiA ∗ Base : : ga sd ev (1) ∗ l o c a l B e s t L e s s C u r r e n t)
+ (phiB ∗ Base : : ga sd ev (1) ∗ g l o b a l B e s t L e s s C u r r e n t) ;

v [i n d e x] ∗= k ;

111

i f (abs (v . a t (i n d e x)) > VMAX)
{

v [i n d e x] = rnd . myRandom () ;
i f (rnd . myRandom () < 0 .5) { v [i n d e x] ∗= −1 ; }

}
x [i n d e x] = (rnd . myRandom () < Base : : s i gmo i d (v . a t (i n d e x))) ? 1 : 0 ;

i n d e x++ ;
}

f i x E x i t L e n g t h () ;
s e t F i t n e s s () ;
c a l c u l a t e O n e s () ;

i f (f i t n e s s < p F i t n e s s | |
(int (0.5+ f i t n e s s) == int (0.5+ p F i t n e s s) && e x i t s < pEx i t s))

{
s e tP () ;

}
}

//−−−

s t r i n g P a r t i c l e : : r epXToSt r i ng ()
{

int i n d e x = 0 ;
s t r i n g r e s u l t = "" ;

while (i n d e x < g e tR e pS i z e ())
{

i f (i n d e x > 0)
{

r e s u l t += " " ;
}
r e s u l t += Base : : i n t T o S t r i n g (x . a t (i n d e x)) ;
i n d e x++ ;

}

return r e s u l t ;
}

//−−−

112

s t r i n g P a r t i c l e : : r e pPToS t r i n g ()
{

int i n d e x = 0 ;
s t r i n g r e s u l t = "" ;

while (i n d e x < g e tR e pS i z e ())
{

i f (i n d e x > 0)
{

r e s u l t += " " ;
}
r e s u l t += Base : : i n t T o S t r i n g (p . a t (i n d e x)) ;
i n d e x++ ;

}

return r e s u l t ;
}

//−−−

s t r i n g P a r t i c l e : : v sToS t r i n g ()
{

int i n d e x = 0 ;
s t r i n g r e s u l t = "" ;

while (i n d e x < g e tR e pS i z e ())
{

i f (i n d e x > 0)
{

r e s u l t += " " ;
}
r e s u l t += Base : : d oub l eToS t r i n g (v . a t (i n d e x)) ;
i n d e x++ ;

}

return r e s u l t ;
}

//−−−

s t r i n g P a r t i c l e : : t o S t r i n g ()

113

{
return (r epXToSt r i ng ()

+ "," + Base : : d oub l eToS t r i n g (g e t F i t n e s s ())
+ "," + Base : : d oub l eToS t r i n g (getTime ())
+ "," + Base : : i n t T o S t r i n g (ge tOne s ())
+ "," + r e pPToS t r i n g ()
+ "," + Base : : d oub l eToS t r i n g (p F i t n e s s)
+ "," + Base : : d oub l eToS t r i n g (pSimTime)
+ "," + Base : : i n t T o S t r i n g (pEx i t s)
) ;

}

//−−−

void P a r t i c l e : : s e t F i t n e s s ()
{

int i = 0 ;
double f i t n e s s S u m = 0 ;
while (i < THRESHOLD)
{

do
{

f i t n e s s = Base : : g e tCSF i t (r epXToSt r i ng ()) ;
} while (f i t n e s s < 0) ;
f i t n e s s S u m += f i t n e s s ;
i++ ;

}
c a l c u l a t e O n e s () ;
s e tT ime (f i t n e s s S u m / THRESHOLD) ;
f i t n e s s = getTime () + ge tOne s () ;

}

//−−−

void P a r t i c l e : : c a l c u l a t e O n e s ()
{

int i ndex , sum ;

i n d e x = sum = 0 ;
while (i n d e x < g e tR e pS i z e ())
{

i f (x . a t (i n d e x) == 1)

114

{
sum++ ;

}
i n d e x++ ;

}
s e tOne s (sum) ;

}

//−−−

void P a r t i c l e : : f i x E x i t L e n g t h ()
{

int j = 0 ,
coun t = 0 ,

s p e c i a l C o u n t = 0 ;
bool f l a g = fa l se ;
while (j < g e tR e pS i z e ())
{

i f (repAt (j) == 1)
{

coun t++ ;
i f (j == 0)
{

f l a g = true ;
}

i f (j == (g e tR e pS i z e ()) − 1 && s p e c i a l C o u n t != 0)
{

s p e c i a l C o u n t += coun t ;
i f (s p e c i a l C o u n t > ge tMaxEx i tLeng th ())
{

f l i pMembe r (j) ;
}

}

i f (coun t > ge tMaxEx i tLeng th ())
{

i f (f l a g == true)
{

s p e c i a l C o u n t = coun t ;
}
f l i pMembe r (j) ;

115

coun t = 0 ;
f l a g = fa l se ;

}
}
else
{

i f (f l a g == true)
{

s p e c i a l C o u n t = coun t ;
}
coun t = 0 ;
f l a g = fa l se ;

}

j++ ;
}

}

//−−−

void P a r t i c l e : : f l i pMembe r (int i n d e x)
{

i f (x . a t (i n d e x) == 0)
{

x [i n d e x] = 1 ;
}
else
{

x [i n d e x] = 0 ;
}

}

//−−−
� �
Listing from header file code/swarm.h

Listing B.15: Multi-Page C Code for the PSO’s Swarm header� �
#ifndef SWARM H
#define SWARM H

#include "particle.h"

116

typedef v e c t o r < P a r t i c l e > VecPart ;

class Swarm
{
public :

Swarm () {}
Swarm (int , int , int , double , double) ;
˜Swarm () ;

void i n i t (int , int , int , double , double) ;
void update (int) ;

int f i n d G l o b a l B e s t () ;
int update () ;

double g e tB e s t () { return swarm . a t (f i n d G l o b a l B e s t ()) . g e t F i t n e s s () ; }

s t r i n g t o S t r i n g (int) ;

// S e t t e r s
void s e t S i z e (int s i z e) { s i z e = s i z e ; }
void s e t R e p S i z e (int r e p S i z e) { r e p S i z e = r e p S i z e ; }
void s e tMaxEx i tLeng th (int maxEx i tLeng th)
{ maxExi tLength = maxEx i tLeng th ; }
void s e tPh iA (double ph iA) { phiA = ph iA ; }
void s e tPh iB (double ph iB) { phiB = ph iB ; }

// Get ter s
int g e t S i z e () { return s i z e ; }
int g e tR e pS i z e () { return r e p S i z e ; }
int ge tMaxEx i tLeng th () { return maxExi tLength ; }
double getPhiA () { return phiA ; }
double ge tPh iB () { return phiB ; }

private :
int s i z e ,

r e p S i z e ,
runNumber ,

maxExitLength ,
b e s t ;

double phiA ,
phiB ;

117

P a r t i c l e g ;
VecPart swarm ;

} ;

#endif // SWARM H
� �
Listing from header file code/swarm.cc

Listing B.16: Multi-Page C Code for the PSO’s Swarm source� �
#include "swarm.h"

Swarm : : ˜ Swarm ()
{

swarm . c l e a r () ;
}

//−−−

Swarm : : Swarm (int s i z e , int r e p S i z e ,
int maxExi tLength , double phiA , double ph iB)

{
i n i t (s i z e , r e p S i z e , maxExi tLength , phiA , ph iB) ;

}

//−−−

void Swarm : : i n i t (int s i z e , int r e p S i z e ,
int maxExi tLength , double phiA , double ph iB)

{
s e t S i z e (s i z e) ;
s e t R e p S i z e (r e p S i z e) ;
s e tMaxEx i tLeng th (maxEx i tLeng th) ;
s e tPh iA (ph iA) ;
s e tPh iB (ph iB) ;
// cout << ”Before G I n i t ” << end l ;
//g . i n i t (ge tRepSize () , getMaxExitLength ()) ;

int i n d e x = 0 ;
while (i n d e x < g e t S i z e ())
{

// cout << ” Pa r t i c l e ” << (index+1) << end l ;
swarm . pu sh ba ck (P a r t i c l e (g e tR e pS i z e () , ge tMaxEx i tLeng th ())) ;

118

i n d e x++ ;
}
// cout << ”Af ter Pushing p a r t i c l e s in t o vec t o r ” << end l ;
b e s t = f i n d G l o b a l B e s t () ;
g = swarm . a t (b e s t) ;

}

//−−−
/∗
∗ This update method i s f o r synchronous updat ing
∗/

int Swarm : : update ()
{

b e s t = f i n d G l o b a l B e s t () ;
g = swarm . a t (b e s t) ;
int i n d e x = 0 ;
while (i n d e x < g e t S i z e ())
{

swarm . a t (i n d e x) . move (getPhiA () , ge tPh iB () , g . getX ()) ;
i n d e x++ ;

}
return g e t S i z e () ;

}

//−−−
/∗
∗ This update method i s f o r asynchronous updat ing
∗/

void Swarm : : update (int i n d e x)
{

b e s t = f i n d G l o b a l B e s t () ;
g = swarm . a t (b e s t) ;
swarm . a t (i n d e x) . move (getPhiA () , ge tPh iB () , g . getX ()) ;

}

//−−−

/∗
∗ Best i s i n i t i a l i z e d in the i n i t f unc t i on so i t
∗ doesn ’ t have to be i n i t i a l i z e d in t h i s f unc t i on .
∗/

119

int Swarm : : f i n d G l o b a l B e s t ()
{

int i n d e x = 0 ,
b = 0 ;

while (i n d e x < g e t S i z e ())
{

i f (swarm . a t (i n d e x) . g e t F i t n e s s () < swarm . a t (b) . g e t F i t n e s s ())
{

b = i n d e x ;
}
i n d e x++ ;

}
b e s t = b ;
return b ;

}

//−−−

s t r i n g Swarm : : t o S t r i n g (int runNumber)
{

int i n d e x = 0 ;
s t r i n g r e s u l t = "" ;
while (i n d e x < g e t S i z e ())
{

r e s u l t += Base : : i n t T o S t r i n g (runNumber)
+ "," + Base : : i n t T o S t r i n g (i n d e x+1)
+ "," + swarm . a t (i n d e x) . t o S t r i n g () ;

r e s u l t += "\n" ;
i n d e x++ ;

}

return r e s u l t ;
}

//−−−
� �
Listing from source file code/pso.cc

Listing B.17: Multi-Page C Code that Runs the PSO source� �� �
#include "base.h"

120

#include "swarm.h"

using namespace s t d ;

typedef v e c t o r < int > Vec In t ;
typedef v e c t o r < P a r t i c l e > VecPart ;

int main (int argc , char ∗∗ a rgv)
{

s r and (t ime (NULL)) ;

int p o p u l a t i o n S i z e ,
i ndex ,
r e p S i z e ,
count ,
g e n e r a t i o n ,
maxExitLength ,
c u r r e n t P a r t i c l e ,
r un s ; // func t i on e va l u a t i on s

double phiA ,
phiB ;

Swarm swarm ;
P a r t i c l e p a r t ;

i f (! a rgv [1] | | ! a rgv [2] | | ! a rgv [3]
| | ! a rgv [4] | | ! a rgv [5] | | ! a rgv [6])

{
c ou t << "Try something like ./pso 30 26 2.8 1.3 1000 3" << e n d l ;
e x i t (0) ;

}

p o p u l a t i o n S i z e = Base : : c h a r S t r i n g T o I n t (a rgv [1]) ;
r e p S i z e = Base : : c h a r S t r i n g T o I n t (a rgv [2]) ;
phiA = Base : : c h a r S t r i n gToDoub l e (a rgv [3]) ;
phiB = Base : : c h a r S t r i n gToDoub l e (a rgv [4]) ;
r un s = Base : : c h a r S t r i n g T o I n t (a rgv [5]) ;
maxExi tLength = Base : : c h a r S t r i n g T o I n t (a rgv [6]) ;

swarm . i n i t (p o p u l a t i o n S i z e , r e p S i z e , maxExitLength , phiA , phiB) ;
c ou t << "generation ,individual" ;
c ou t << ",xrepresentation ,xescapetime ,xexits" ;
c ou t << ",prepresentation ,pescapetime ,pexits" << e n d l ;

121

coun t = p o p u l a t i o n S i z e ;
g e n e r a t i o n = 1 ;
while (coun t <= r un s)
{

c u r r e n t P a r t i c l e = coun t % p o p u l a t i o n S i z e ;
swarm . update (c u r r e n t P a r t i c l e) ;
c ou t << swarm . t o S t r i n g (g e n e r a t i o n) << e n d l ;
coun t++ ;
g e n e r a t i o n++ ;

}

return 0 ;
}
 	� �

122

