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Abstract

This dissertation is concerned with the equations of linear poroelasticity and numerical

simulation in the framework of symmetric positive systems. Physical systems arising in

geomechanics, hydrology, soil mechanics, reservoir engineering, biomedical engineering etc.

are modeled with linear poroelasticity equations. The purpose of this dissertation is to

present well-posedness results and numerical analysis techniques using the framework of

symmetric positive systems for the variants of poroelasticity equations.

Symmetric positive system, commonly known as Friedrich’s system is a system of first

order partial differential equations (PDEs) with symmetry and positivity properties. A

PDE, that can be written in this framework is well-posed and such PDE can be numerically

solved easily. We will exploit these properties of Friedrich’s systems in our model problem

of poroelasticity.

We consider a quasi-static poroelasticity model with two sets of different base variables.

First we consider fluid content (η), rotation variables (wij) and pressure gradients (pxi). With

those variables, the original PDE (or its arbitrary purturbation) is written in a symmetric

positive form and subsequently a least square finite element analysis, followed by numerical

simulation results is presented. In the second case, we choose stress components (σij),

displacement variables (ui), pressure (p), pressure gradients (pxi). A scaling technique is

used after semi-descretization in order to ensure the sufficient condition for positivity. We

have successfully applied this technique for a wide varieties of rocks. Finally, a least square

finite element method has been employed to find its numerical solutions.
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Chapter 1

Introduction

Poroelasticity, first coined by J. Geertsma in 1966, describes the physical phenomenon

where fluid flows into a deformable porous medium under the assumption of relatively small

deformation. The deformable porous medium is generally described as solid. When fluid

flows into solid structure, the external load due to the fluid flow causes the deformation of

solid matrix, which in turn affects the fluid or pore pressure. Two inherent couplings can be

easily identified, solid-to-fluid coupling which refers to change of pore pressure due to change

in applied stress and fluid-to-solid coupling which refers to solid deformation due to change

in pore pressure. Modeling a poroelastic system requires recognition of these couplings. The

mathematical description which accounts for these couplings between solid and fluid is simply

a set of linear constitutive equations. More precisely, Darcy’s law relates fluid velocity and

pressure in a solid matrix, and another law relate fluid-to-solid interactions by introducing

pressure term in stress field. The earliest work incorporating the couplings between solid and

fluid dates back to 1923 when Terzaghi [1] and others proposed one dimensional consolidation

of clay soils. Although three dimensional generalization of consolidation was proposed by

Rendulic [2] in 1936, the most comprehensive mathematical formulation of isothermal linear

poroelasticity is given by Biot [3, 4] in 1935 and 1941. Since then, Biot [5, 6, 7, 8] reformulated

the theory for different specialized circumstances, also Rice and Cleary [9] explained the

asymtotic poroelastic behaviour of geological entity, especially for rocks and soils. Later

on, Barry and Mercer [15], Coussy [16] came up with a few analytical solutions of simplified

(axis-symmetric or one dimensional problems) poroelastic system. These analytical solutions

are of little importance because the corresponding modeling is too simple to represent any

real life problem. With the continuous advent of enormous computational power, numerical
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solution of poroelastic equations is now possible. Numerical solution with higher accuracy

for large engineering system can be achieved through using the tremendous computational

power available. Hence, developing numerical algorithm for solving poroelastic equations

has great prospect in future.

This chapter starts with the motivation behind our work where a few applications of

poroelasticity in various discipline will be described. It effectively gives an idea that the

application fields of poroelasticity keeps on increasing day by day by adding new areas,

which were completely unknown before. Later on, mathematical modeling of poroelasticity

will be derived from the very basic principles, such as mass, and momentum conservation

and also necessary assumptions will be stated in order to get it quasi static form. Plan of

this dissertation will be listed at the end.

1.1 Motivation

The mathematical theory of poroelasticity concerns the mechanics of porous elastic

solids with fluid-filled pores. It was first applied to solve several geological problems such as

consolidation of saturated soil under a uniform load, dynamic wave propagation problems in

geomechanics etc. Since then the theory has grown to cover many and varied applications

in many disciplines such as reservoir engineering, earthquake engineering, environmental

engineering, biomedical engineering etc. We have broadly classified the application of poroe-

lasticity as geophysical and biological, as described below.

1.1.1 Geophysical applications

The theories of poroelasticity are essential in many geophysical applications, where pore-

filling materials are of interest such as the seepage of liquid waste disposed of underground,

borehole damage, soil consolidation and glaciers dynamics, gas-hydrate detection, oil and

gas exploration, seismic monitoring of CO2 storage, wave propagation in the earth, hydro-

geology, etc. It is worthwhile to mention a couple of historical examples in this regard. F.H.
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King (1892) reported that water level in a well near the train station went up as trains

approached and went down as train left the station. The following Figure 1.1 [17] shows

the fluctuations. Other historical examples are vertical subsidence (due to oil or gas explo-

Figure 1.1: Water level fluctuations due to passing train [17]

ration or ground water removal) and earthquakes [17]. In 1926, massive vertical subsidence

occurred due to 100 million barrels of fluid and sand being extracted from the Goose Creek

oil field near Galveston, Texas. Subsidence related to exploitation of oil and gas fields also

include Wilmington, California; Lake Maracaibo, Venezuela; Niigata, Japan; and the Po

Delta in Italy. The areas of major subsidence related to ground-water withdrawal include

areas in Japan; Mexico City, Mexico; Texas, Arizona, Nevada, and California [18]. Some

examples [19] which show excessive ground water withdrawal caused huge environmental

problems such as sinking locality. On the other hand, in 1935, a number of small earth-

quakes occurred beneath Lake Mead in Colorado due to the newly constructed Hoover Dam

along the Colorado river. This dam and flowing water were stressing faults to the failure

point of the lake and as a result, the earthquake occurred. The consideration of subsidence

in oil industry is of great importance. Reservoir engineers often recommend drilling at a

certain location to maximize the oil/gas recovery and of course, drilling induced subsidence

phenomena must be considered beforehand to construct drilling platforms and other facil-

ities. Another problem in reservoir engineering is the borehole fracture due to subsurface

3



shifting. The poroelastic model can also be applied to different waste disposal and seepage

flow control problem, which have important application in environmental engineering. In

earthquake engineering, earthquake liquefaction describes a phenomenon whereby a satu-

rated or partially saturated soil substantially loses strength and stiffness in response to a

earthquake shaking, causing it to behave like a liquid. Some of the earthquake liquefaction

occurs in Alaska, USA, 1964, Niigata, Japan, 1964, Loma Prieta, USA, 1989, Kobe, Japan,

1995 (see Figure 1.2). Poroelastic model can be used for prediction and prevention of this

type of catastrophe.

Figure 1.2: Effects of earthquake liquefaction in Niigata, Japan, 1964

1.1.2 Biological applications

Poroelastic models of bone were first reported around 45 years ago [10, 11, 12, 13, 14].

A survey of the application of poroelasticity in bone mechanics has been given by Cowin

(1999). In this paper, there is a detailed review of the literature related to the application

of poroelasticity to bone saturated fluid. It also describes the specific physical and modeling

considerations that establish poroelasticity as an effective and useful model for deformation-

driven bone fluid movement in bone tissue. Several models [20, 21, 22] have been proposed to

investigate the biomechanics of soft biological tissue based on Biot’s poroelastic model. Later

on, the poroelastic model of soft biological tissue has been refined by considering the effect

of the micro-mechanics of cells on the macro-mechanics of tissue in [23]. A poroelastic model
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for interstitial pressure in tumors was proposed in [24]. In 2003, Roose et al. [25] proposed a

linear poroelasticity model to estimate tumor-induced stress in confined environments such

as the brain. The mathematical model can essentially be used to estimate tumor growth in

the brain and finally conclude tumor cell size could be a direct indicator of solid stress level

inside the tumors and hence provided assistance in a clinical diagnostic setting. In 2009, Li

et al. [26] proposed three dimensional poroelastic model of brain edema, a consequences of

serious head injury due to the enhancement of water content and thus the increased brain

volume. A detailed discussion of a poroelastic model of the cerebrospinal fluid (a water-like

liquid inside the brain) system in the human brain can be found in [27].

Depending on the characteristic Stokes length Ls =
√
ντ , where ν is the kinematic

viscosity of the interstitial liquid and τ is the time-scale of the motion, we can classify the

applications of poroelasticity, as found in the following table [28].

Geometry
Infinite medium Finite medium

Ls ∼ pore size
High-frequency acoustic
wave propagation in
saturated rock

Sound absorption
High-frequency vibrating
gels/ biological tissues

Ls ≥ pore size

Low-frequency acoustic
wave propagation in
saturated rock
Consolidation and settling
phenomena

Low-frequency vibrating
gels/ biological tissues
Bone mechanics
Cartilage deformation
Dynamics of poroelastic
filaments

Table 1.1: Applications of poroelasticity

1.2 Mathematical modeling

The equations of linear poroelasticity are in fact momentum and mass conservation

equations at macroscopic level [4, 29].
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Figure 1.3: Macroscopic scales in linear poroelasticity

Here, We consider its 3-dimensional formulation, where the axes are x1(1), x2(2), and

x3(3). We also consider a general situation where poroelastic system is not in static equilib-

rium, such as phenomenon during seismic wave propagation. The governing equation is the

equation of motion, which is found by applying the law of conservation of linear momentum

(second law of Newton). To formulate the law of motion, let B ⊂ Ω be an arbitrary finite

open set with the boundary ∂B. Different forces acting on B are

x1 − component of inertia =

∫∫∫
B

ρ
∂2u1

∂t2
dV,

x1 − component of force due to surface tractions =

∫∫
∂B

(σ11n1 + σ21n2 + σ31n3) dA,

x1 − component of body force =

∫∫∫
B

f1 dV,

where ρ is the density, u1 is x1-component of the displacement vector, σ’s are stress com-

ponents and f1 is the x1-component of the body force per unit volume. Force balance gives

∫∫∫
B

ρ
∂2u1

∂t2
dV =

∫∫
∂B

(σ11n1 + σ21n2 + σ31n3) dA+

∫∫∫
B

f1 dV.

Invoking the divergence theorem,

6



Figure 1.4: Stress tensor on a volume element

∫∫∫
B

[
ρ
∂2u1

∂t2
−
(
∂σ11

∂x1

+
∂σ21

∂x2

+
∂σ31

∂x3

)]
dV =

∫∫∫
B

f1 dV.

As the equation is valid for every B ⊂ Ω , it follows that

ρ
∂2u1

∂t2
−
(
∂σ11

∂x1

+
∂σ21

∂x2

+
∂σ31

∂x3

)
= f1.

Similar application of conservation of momentum in x2 and x2 direction gives

ρ
∂2u2

∂t2
−
(
∂σ12

∂x1

+
∂σ22

∂x2

+
∂σ32

∂x3

)
= f2,

ρ
∂2u3

∂t2
−
(
∂σ13

∂x1

+
∂σ23

∂x2

+
∂σ33

∂x3

)
= f3.

Using Einstein’s summation convention, we can write

ρ
∂2uj
∂t2
− ∂σij
∂xi

= fj, 1 ≤ j ≤ 3. (1.1)
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In vector-tensor notation,

ρ
∂2u(x, t)

∂t2
−∇ · σ(x, t) = f(x, t), (1.2)

where u is the displacement vector, σ is stress tensor and f is a volume-distributed external

force. In the poroelastic system, the total stress σ must account for effective stress σe due

to the deformation of the solid matrix according to the Hooke’s law and the stress σp due to

the fluid pressure inside the porous body, described as follows

σ = σe + σp. (1.3)

Effective stress σe is given by Hooke’s law

σe = 2µε+ λtr(ε)I, (1.4)

where ε = 1
2

(
∇u+∇uT

)
, tr(ε) = Trace of ε = εii, I is the identity matrix, and λ (Dilatation

modulus), µ (Shear modulus) are the Lamé constants. The Lamé constants can be found

[17] from the properties of solid matrix, Young’s modulus or modulus of elasticity E and

Poisson’s ratio ν are

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2 + 2ν
.

Young’s modulus E measures the force (per unit area) that is needed to stretch (or compress)

a material sample. On the other hand, Poisson’s ratio ν is the ratio of transverse contraction

strain to longitudinal extension strain in the direction of stretching force. When a material

is compressed in one direction, it usually induces expansion in the other two directions

perpendicular to the direction of compression. This effect is known as Poisson effect, which

is measured by Poisson’s ratio ν.

8



In order to find σp, we recall the stress-strain relationship for poroelastic system as in

[17]

ε11 =
1

2µ

[
σ11 −

ν

1 + ν
σkk

]
+

α

3K
p,

ε22 =
1

2µ

[
σ22 −

ν

1 + ν
σkk

]
+

α

3K
p,

ε33 =
1

2µ

[
σ33 −

ν

1 + ν
σkk

]
+

α

3K
p,

ε12 =
1

2µ
σ12,

ε23 =
1

2µ
σ23,

ε31 =
1

2µ
σ31.

For the last three equations, there is no term containing pore pressure as the change in pore

pressure does not induces shear strain. Here, α = K
H

is the Biot-Willis constant where

Compressibility of material under drained condition
1

K
=
δε

δσ

∣∣∣∣
p=0

,

Poroelastic expansion coefficient
1

H
=
δε

δp

∣∣∣∣
σ=0

,

where ε = δV
V

is the volumetric strain and σ is the isotropic applied stress field. α has the

following bound

0 < α ≤ 1.

α ≈ 1 corresponds to an incompressible solid matrix. The system can be written in index

notion

εij︸︷︷︸
Total Strain

=
1

2µ

[
σij −

ν

1 + ν
σkkδij

]
︸ ︷︷ ︸

Poroelastic Strain

+
α

3K
pδij,︸ ︷︷ ︸

Free Strain

(1.5)
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where δij is the Kronecker delta as defined by

δij =


1 if i = j,

0 if i 6= j.

In (1.5), we have seen that pore pressure has an effect on the total strain. In absence of

pore pressure, this equation is just a stress-strain relationship for nonporous material. Using

(1.5), we can easily find the stress

σ12 = 2µε12,

σ23 = 2µε23,

σ31 = 2µε31.

In order to find other stress


1 −ν −ν

−ν 1 −ν

−ν −ν 1



σ11

σ22

σ33

 =


2µ(1 + ν)(ε11 − α

3K
p)

2µ(1 + ν)(ε22 − α
3K
p)

2µ(1 + ν)(ε33 − α
3K
p)

. (1.6)

Inverting the matrix,


σ11

σ22

σ33

 =
1

(2ν − 1)(1 + ν)


ν − 1 −ν −ν

−ν ν − 1 −ν

−ν −ν ν − 1




(ε11 − α
3K
p)

(ε22 − α
3K
p)

(ε33 − α
3K
p)

 2µ(1 + ν). (1.7)
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For σ11

σ11 =
2µ

2ν − 1

[
(ν − 1)(ε11 −

α

3K
p)− ν(ε22 −

α

3K
p)− ν(ε33 −

α

3K
p)
]
,

⇒ σ11 =
2µ

1− 2ν

[
(1− ν)(ε11 −

α

3K
p) + ν(ε22 −

α

3K
p) + ν(ε33 −

α

3K
p)
]
,

⇒ σ11 =
2µ

1− 2ν

[
ε11 −

α

3K
pν − νε11 +

α

3K
pν + νε22 −

α

3K
pν + νε33 −

α

3K
pν
]
,

⇒ σ11 =
2µ

1− 2ν

[
ε11 − 2νε11 + ν(ε11 + ε22 + ε33)− α

3K
p− α

3K
pν
]
,

⇒ σ11 =
2µ

1− 2ν

[
ε11(1− 2ν) + νεkk −

α

3K
p(1 + ν)

]
,

⇒ σ11 = 2µε11 +
2µν

1− 2ν
εkk −

αp

3K
· 2µ(1 + ν)

(1− 2ν)
,

⇒ σ11 = 2µε11 + λεkk − αp.

The last equation is found using λ = 2µν
1−2ν

and µ = 3K(1−2ν)
2(1+ν)

. Similarly, we have

σ22 = 2µε22 + λεkk − αp,

σ33 = 2µε33 + λεkk − αp.

The stress field can be written as

σ = 2µε+ λtr(ε)I − αpI. (1.8)

Comparing with Equation (1.3), we have

σp = −αpI· (1.9)
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Using the σ of (1.8) in (1.1), we have

ρ
∂2u1

∂t2
− (λ+ µ)

∂

∂x1

(
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

)
− µ

(
∂2u1

∂x2
1

+
∂2u1

∂x2
2

+
∂2u1

∂x2
3

)
+ α

∂p

∂x1

= f1,

ρ
∂2u2

∂t2
− (λ+ µ)

∂

∂x2

(
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

)
− µ

(
∂2u2

∂x2
1

+
∂2u2

∂x2
2

+
∂2u2

∂x2
3

)
+ α

∂p

∂x2

= f2,

ρ
∂2u3

∂t2
− (λ+ µ)

∂

∂x3

(
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

)
− µ

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

+
∂2u3

∂x2
3

)
+ α

∂p

∂x3

= f3.

In vector-tensor notation

ρ
∂2u

∂t2
− (λ+ µ)∇ (∇ · u)− µ∆u+ α∇p = f. (1.10)

For the mass conservation equation, corresponding variables are increment of fluid content

(or just fluid content) η, the fluid flux q, and external volumetric fluid source h. To formulate

the law of mass conservation, let B ⊂ Ω be an arbitrary finite open set with the boundary

∂B. Mass balance on the control volume B

Rate of change of fluid volume =
∂

∂t

∫∫∫
B

η dV,

Fluid input rate =

∫∫∫
B

h dV,

Fluid output rate =

∫∫
∂B

q.n dA.

Mass conservation leads to

∂

∂t

∫∫∫
B

η dV =

∫∫∫
B

h dV −
∫∫
∂B

q.n dA,

⇒
∫∫∫
B

∂η

∂t
dV =

∫∫∫
B

h dV −
∫∫
∂B

(q1n1 + q2n2 + q3n3) dA.

12



Invoking the divergence theorem,

∫∫∫
B

∂η

∂t
dV +

∫∫∫
B

(
∂q1

∂x1

+
∂q2

∂x2

+
∂q3

∂x3

)
dV =

∫∫∫
B

h dV,

⇒
∫∫∫
B

[
∂η

∂t
+

(
∂q1

∂x1

+
∂q2

∂x2

+
∂q3

∂x3

)]
dV =

∫∫∫
B

h dV,

⇒
∫∫∫
B

[
∂η

∂t
+∇ · q

]
dV =

∫∫∫
B

h dV.

As the equation is valid for every B ⊂ Ω , it follows

∂η(x, t)

∂t
+∇ · q(x, t) = h(x, t). (1.11)

Before deriving the expression for fluid content η, the following definitions of parameters are

needed. The unconstrained specific storage coefficient Sσ is the change of fluid volume in

storage per unit control volume per unit change in pressure at constant stress

Sσ =
δη

δp

∣∣∣∣
σ=0

=
1

R
. (1.12)

Another specific storage coefficient, Sε is defined as the volume of fluid released from the

storage per unit control volume per unit pressure decline holding the control volume constant

Sε =
δη

δp

∣∣∣∣
ε=0

=
1

M
. (1.13)

Skempton’s coefficient B is defined as the ratio of the induced pore pressure to the change

in applied stress while no fluid is allowed to move in or out of the control volume.

B = − δp
δσ

∣∣∣∣
η=0

with 0 ≤ B ≤ 1. (1.14)
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This coefficient indicates how the applied stress is distributed over the solid matrix and the

fluid. B ≈ 0 for pores filled with gas because the load is supported by the solid matrix. On

the other hand, B ≈ 1 for saturated soil because the load is supported by the fluid. The

interrelationships between these coefficients are as follows

Sσ =
1

BH
=

α

KB
, (1.15)

Sε = Sσ −
K

H2
= Sσ −

α2

K
= Sσ (1− αB) . (1.16)

The fluid content is given by [29]

η = Sεp+ α∇ · u = Sεp+ αεkk. (1.17)

Here, Sεp accounts for the fluid content that can be injected into the fixed volume storage

by pressure and α∇ · u accounts for the fluid that can be squeezed out. Using (1.8)

σ11 + σ22 + σ33 = 2µ (ε11 + ε22 + ε33) + 3λεkk − 3αp,

⇒ σkk = (2µ+ 3λ) εkk − 3αp,

⇒ εkk =
σkk + 3αp

2µ+ 3λ
,

⇒ ∇ · u = εkk =
σkk
3K

+
α

K
p, using K = λ+

2

3
µ.

Using this expression

η = Sεp+ α∇ · u,

⇒ η = Sεp+ α
(σkk

3K
+
α

K
p
)
,

⇒ η =

(
Sε +

α2

K

)
p+

α

3K
σkk.
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So,

η = Sσp+
α

3K
σkk, (1.18)

η =
α

KB
p+

α

3K
σkk. (1.19)

On the other hand, the flux q is given by the Darcy’s Law for the diffusive flow through the

porous medium, as follows

q = − ks
µf
∇p, (1.20)

where µf is the fluid viscosity and ks is the permeability of solid matrix. Defining hydraulic

diffusivity or mobility k = ks
µf
, we have Darcy’s equation

q = −k∇p. (1.21)

Using (1.17) ,(1.19), and (1.21), the mass conservation equation (1.11) becomes

Sε
∂p

∂t
+ α

∂ (∇ · u)

∂t
−∇ · (k∇p) = h, (1.22)

α

KB

∂p

∂t
+

α

3K

∂σkk
∂t
−∇ · (k∇p) = h. (1.23)

If the hydraulic conductivity k is not a function of the spatial variables (such as in homoge-

neous and isotropic medium, the permeability and viscosity are constant), then we have

Sε
∂p

∂t
+ α

∂ (∇ · u)

∂t
− k∇2p = h, (1.24)

α

KB

∂p

∂t
+

α

3K

∂σkk
∂t
− k∇2p = h. (1.25)
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Parameters SI Unit Description

λ,µ N/m2 Positive Lamé constants

Sε or M−1
m2/N Constrained specific storage coefficient

Sσ or R−1
m2/N Unconstrained specific storage coefficient

α − Biot-Willis constant

µf (N · s)/m2 Viscosity of fluid

ks m2 Permeability of solid matrix

k m4/(N · s) Hydraulic conductivity

B − Skempton’s coefficient

K−1
m2/N Drained compressibility coefficient

H−1
m2/N Expansion coefficient at constant stress

ν − Poisson constant

E m2/N Young’s modulus

ε − Volumetric strain

Table 1.2: Different Physical Parameters
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The system of partial differential equations for poroelastic model,

In σ − u− p formulation



σ − 2µε− λtr(ε)I + αpI = 0,

ρ∂
2u
∂t2
−∇ · σ = f,

Sε
∂p
∂t

+ α∂(∇·u)
∂t
− k∇2p = h,

or α
KB

∂p
∂t

+ α
3K

∂σkk
∂t
− k∇2p = h.

(1.26)

In u− p formulation


ρ∂

2u
∂t2
− (λ+ µ)∇ (∇ · u)− µ∆u+ α∇p = f,

Sε
∂p
∂t

+ α∂(∇·u)
∂t
− k∇2p = h,

or α
KB

∂p
∂t

+ α
3K

∂σkk
∂t
− k∇2p = h.

(1.27)

We assume the deformation of solid matrix is much slower than the fluid flow rate. With

this quasi-static assumption, the term ρ∂
2u
∂t2

in (1.26) and (1.27) can be ignored. So, we

restrict our attention to linear quasi-static flow in a deformable porous medium. The PDEs

for quasi-static poroelasticity are listed below.

In the σ − u− p formulation



σ − 2µε− λtr(ε)I + αpI = 0,

−∇ · σ = f,

Sε
∂p
∂t

+ α∂(∇·u)
∂t
− k∇2p = h,

or α
KB

∂p
∂t

+ α
3K

∂σkk
∂t
− k∇2p = h.

(1.28)
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In the u− p formulation


− (λ+ µ)∇ (∇ · u)− µ∆u+ α∇p = f,

Sε
∂p
∂t

+ α∂(∇·u)
∂t
− k∇2p = h,

or α
KB

∂p
∂t

+ α
3K

∂σkk
∂t
− k∇2p = h.

(1.29)

In order to have well-possedness results, we must supplement the equations by suitable

boundary conditions. The following boundary conditions will be enforced along with the

initial condition.

1. Dirichlet boundary condition:

u = u1, p = p1 on Ω.

2. Neumann boundary condition:

σ · n = s, p = p1 on Ω.

3. Mixed boundary condition:Let us partition the boundary as ∂Ω = Γ̄c ∪ Γ̄t with Γc ∩

Γt = ∅ where Γc and Γt are regular open sets of Ω. Γc and Γt are called clamped

(Dirichlet form of boundary condition ) and traction (Neumann form of boundary

condition) boundary. We impose

u = u1 on Γc,

σ · n = s on Γt,

p = p1 on Ω.
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Figure 1.5: Partition of boundary, ∂Ω = Γ̄c ∪ Γ̄t

1.3 Notations and assumptions

We consider the system (1.26)-(1.28) on an open bounded subset Ω of Rd (d = 2 or

3). To understand the corresponding functional setting, the following Sobolev spaces are

defined [42, 43, 44].

Let α be an multi-index

α = (α1, α2, α3, · · · , αd) ∈ Nd.

Define

|α| =
d∑
i=1

αi and xα = (x1, x2, · · · , xd)α = xα1
1 x

α2
2 · · · x

αd
d ,

Dα =
∂|α|

∂xα1
1 ∂x

α2
2 · · · ∂x

αd
d

.

For k be a non-negative integer and p ∈ [1, ∞], the Sobolev space

W k, p = {f ∈ L1
loc| Dα ∈ Lp(Ω)}.
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The space W k, p is a Banach space with the norm,

for 1 ≤ p < 1

‖v‖k, p,Ω =

∑
|α|≤k

‖Dαv‖pLp(Ω)

 1
p

,

for p =∞

‖v‖k,∞,Ω = max
|α|≤k

‖Dαv‖pL∞(Ω).

The subscript Ω is often omitted in the norm when there is no confusion. The case

p = 2 is of great importance as it leads to a Hilbert space. In such case, W k, 2 = Hk is a

Banach space with ‖ · ‖k = ‖ · ‖k, 2,Ω. Moreover, it is a Hilbert space with following inner

product

(u, v)k =
∑
|α|≤k

∫
Ω

DαuDαv dΩ.

For k = 0, W 0, 2 = H0 = L2. We also denote C∞0 (Ω) the space of infinitely continuously

differentiable function with compact support in Ω. The space W k, p
0 (Ω) is the closure of

C∞0 (Ω) in W k, p(Ω). Similarly, for p = 2, W k, 2
0 = Hk

0 .

We can also define Sobolev space for non-negative non-integer order. For s = k + σ

with k ≥ 0 an integer and σ ∈ (0, 1), 1 ≤ p < ∞, W s, p is the collection of all function

v ∈ W k, p(Ω) such that

|Dαv(x)−Dαv(y)|
‖x− y‖σ+ d

p

∈ Lp(Ω× Ω) for all |α| = k,
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with the given norm (that makes it Banach space)

‖v‖s, p,Ω =

‖v‖pk, p,Ω +
∑
|α|=k

∫
Ω×Ω

|Dαv(x)−Dαv(y)|p

‖x− y‖σp+d
dx dy

 1
p

.

For p = 2, Hs(Ω) = W s, 2(Ω) is again a Hilbert space with the following inner product

(u, v)s,Ω = (u, v)k,Ω +
∑
|α|=k

∫
Ω×Ω

(Dαu(x)−Dαu(y)) (Dαv(x)−Dαv(y))

‖x− y‖2σ+d
dx dy.

A Sobolev space of negative order is in fact dual space of positive order Sobolev space.

As before W s, p
0 (Ω) is the closure of the space C∞0 (Ω) in W s, p(Ω). When p = 2, we have the

Hilbert space Hs
0(Ω) = W s, 2

0 (Ω). For s ≥ 0, p ∈ [1, ∞), q = p
p−1

, we define W−s, q(Ω) to

be the dual space of W s, p
0 (Ω). As before, for p = 2, H−s(Ω) = W−s, 2(Ω). Clearly, these

spaces are Banach space with appropriate norm. All the spaces defined above can be easily

extended for vector valued function as follows

Hk(Ω) =
(
Hk(Ω)

)d
, Hk

0(Ω) =
(
Hk

0 (Ω)
)d
, L2(Ω) =

(
L2(Ω)

)d
.

We also define spaces involving time. In this work, we define I = (0, T ] where T is a

finite real number. Let X be any Banach space, then the space Lp(0, T, X) consists of all

measurable function u : [0, T ]→ X with

for 1 ≤ p <∞

‖u‖Lp(0, T,X) =

(∫ T

0

‖u(t)‖p dt
) 1

p

<∞,
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for p =∞

‖u‖L∞(0, T,X) = ess sup
0≤t≤T

‖u‖X <∞.

With these norm, Lp(0, T, X) are Banach space. X is usually W s, p(Ω) for some s and p.

1.4 Plan of dissertation

Chapter 1 is concerned with introduction to model problem and its mathematical for-

mulation. Our model problem is poroelastic system, a few motivation for studying the

poroelastic system were presented, followed by the mathematical modeling of fluid saturated

porous medium. Necessary assumptions were made to get quasi-static form of poroelastic

system, which will be studied in the subsequent chapters. Physical parameters used in the

modeling were listed and a brief description of mathematical foundations were also discussed.

Chapter 2 deals with basic foundation of the analysis tools used in this dissertation and

its numerical approximation technique i.e. symmetric positive system and least square finite

element method. A review of symmetric positive system is discussed, followed by a couple

of examples relevant to this dissertation. The numerical tool, LSFEM is discussed briefly at

the end.

Chapter 3 commences with fluid content-rotation-pressure content formulation of quasi-

static poroelastic system. For simplicity, two dimensional formulation will be presented.

With necessary perturbation of the PDE system, the system is a symmetric positive sys-

tem. LSFEM adapts this framework and numerical analysis with its approximate solution

is presented.

In Chapter 4, a new practically useful formulation namely stress-displacement-pressure

formulation is developed. Although it can be generalized for any dimension, again for sim-

plicity, two dimensional formulation is presented. With necessary perturbation of the PDE
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system and later on with no perturbation, the system is a symmetric positive system. LS-

FEM for system of first order PDE easily accommodates this framework and numerical

analysis with its approximate solution is presented.

Chapter 5 deals with conclusions and remarks. This dissertation is concluded with a

brief discussion of future work.
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Chapter 2

Symmetric positive system and least square finite element method

2.1 Symmetric positive system

2.1.1 Introduction

Although solutions of elliptic, hyperbolic and parabolic partial differential equations

have very different properties, it may seem very difficult to have a unified treatment of these

equations. An attempt at such unified treatment has been made by Friedrich (1958) [30]. He

introduced a class of boundary value problems, named symmetric positive systems, encom-

passing a variety of elliptic, parabolic and hyperbolic problems. Also, his unified approach

provided a framework for a successful treatment of some equations of mixed type, such as

the Tricomi equation, y ∂
2φ
∂x2
− ∂2φ

∂y2
= 0 and transonic flow problems. The very basic idea is

to write any partial differential equation as a first order systems that satisfies some alge-

braic properties which will be sufficient to ensure its well-posedness provided with suitable

boundary conditions. This approach also allows us to enforce different boundary conditions

using different boundary operators satisfying certain properties. Such boundary conditions

are called admissible boundary conditions. Once a linear partial differential equation can

be written as a symmetric positive system, the existence and uniqueness of the solution is

immediate. However, writing a linear partial differential equation as a symmetric positive

system depends on proper choice of variables and multiplier or transformations which are

neither unique nor straightforward.

24



2.1.2 Mathematical formulation

Friedrich’s systems are systems of first-order PDE’s endowed with a symmetry and

positivity property. Let Ω be a bounded, open, Lipschitz domain in Rd and let m be a

positive integer that corresponds to the number of scalar-valued PDEs in the system. Let

(d+1) Rm,m -valued fields defined in the domain Ω, say A0, A1, . . . , Ad and set X =
d∑

k=1

∂kAk.

The assumption on the fields A0, A1, . . . , Ad are

• For all k ∈ {0, 1, . . . , d}, Ak ∈ [L∞(Ω)]m,m and X ∈ [L∞(Ω)]m,m.

• For all k ∈ {1, . . . , d}, Ak = (Ak)T a.e. in Ω (symmetry).

• There exists µ0 > 0, B = A0 + (A0)T − X ≥ 2µ0Im a.e. in Ω (positivity).

Let L = [L2(Ω)]m be equipped with its natural scalar product

(f, g)L =

∫
Ω

fTg, (2.1)

and the associated norm ‖.‖L.

We are interested in the following differential operator

A : [C1(Ω)]m 3 z 7−→ Az := A(0)z + A(1)z ∈ L, (2.2)

where

A(0)z := A0z, A(1)z :=
d∑

k=1

Ak∂kz.

We also consider the following differential operator which is the formal adjoint of A

A : [C1(Ω)]m 3 z 7−→ Az := A(0)z − A(1)z ∈ L, (2.3)

where

A(0)z := ((A0)t − X)z.
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Note that

∀φ, ψ ∈ [C∞0 (Ω)]m, (Aφ, ψ)L = (φ, Aψ)L.

Assuming the fields A1, A2, . . . , Ad are smooth enough to be defined on the boundary ∂Ω.

Introduce a boundary field D : ∂Ω→ Rm such that, for a.e. x ∈ ∂Ω, D :=
∑d

k=1 nkAk where

n = (n1, n2, . . . , nd) is the outward unit normal to Ω.

Assume, there is a boundary field M : ∂Ω → Rm, such that, for a.e. x ∈ ∂Ω, the following

conditions hold

M ≥ 0, ∀ξ ∈ Rm, (ξ)tMξ ≥ 0, (2.4)

Rm = Ker(D −M) + Ker(D +M). (2.5)

Note that D is symmetric by construction and by varying the boundary field M , we can

enforce different boundary conditions. Let f ∈ L and consider the following differential

equation

Az = f in Ω, (2.6)

(D −M)z = 0 on ∂Ω. (2.7)

Friedrich showed in [30] the uniqueness of the strong solution z ∈ [C1(Ω)]mof the above

mentioned boundary value problem. He also showed that the existence of a so-called weak

solution z ∈ L such that (z, Ay)L = (f, y)L for all y ∈ [C1(Ω)]m such that (D + M t)y = 0

on ∂Ω. The following two theorems are due to [30].

Theorem 2.1 (Uniqueness of strong solution). Let u ∈ C1(Ω), (D −M)u = 0 on ∂Ω and

v ∈ C1(Ω), (D + MT )v = 0 on ∂Ω, then there exist c1 and c2 such that c1‖u‖ ≤ ‖Au‖ and

c2‖v‖ ≤ ‖Av‖

Theorem 2.2 (Existence of weak solution). Let f ∈ L , then there exists a weak solution of

(2.6)-(2.7).
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Let us define the graph space of operator A, W ⊂ L as W = {u ∈ L; Au ∈ L}. This is

a Hilbert space with the following inner product

(u, v)W = (u, v)L + (Au, Av)L . (2.8)

Theorem 2.3. Let V = {u ∈ W ; (D −M)u = 0 on ∂Ω}, then the operator A : V → L is

an isomorphism.

Proof. See [33]

2.1.3 Classical applications

Soon after the concept of symmetric positive systems in 1958 as a unification tool for

general PDEs, it has been successfully applied to a vast number of model PDEs. A few of

them are

• Advection-reaction [32], µz + β · ∇z = f ,

• Diffusion-advection-reaction [32, 34], −∇ · (A∇u) + β · ∇u+ µu = f ,

• Linear elasticity (static/dynamic) [31, 32],

• The curl-curl problem [32],

• Maxwell’s equation [33],

• Darcy’s equation [33],

• Wave equation [34], utt − γ2uxx = f ,

• Second order linear ODE [34], −(p(x)u
′
(x))

′
+ q(x)u(x) = f(x),

• Tricomi equation [30], y ∂
2φ
∂x2
− ∂2φ

∂y2
= 0,

• Hyperbolic equation [30], ∂2φ
∂t2
− ∂2φ

∂x2
= h(x, t),
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• Parabolic equation [30], ∂φ
∂t
− ∂2φ

∂x2
= h(x, t),

• Non-homogeneous Laplace equation [30], ∂2φ
∂x2

+ ∂2φ
∂y2

= h(x, t),

• Embedding [30], Lu± ku = f ,

• Ultrahyperbolic equation [30], ∂2φ
∂x21

+ ∂2φ
∂x22
− ∂2φ

∂x23
− ∂2φ

∂x24
= 0,

• Cauchy-riemann equation [30], ( ∂
∂x1

+ i ∂
∂x2

)u = 0,

• Standard hyperbolic and elliptic equation of second order [30],

• Linear second order equation with variable co-efficient [34], (α(x, y)ux)x+(β(x, y)uy)y+

γ(x, y) = f(x, y),

• The generalized heat equation [35], ∂tu− div(A∇u) + b · ∇u+ cu = f .

2.1.4 Examples

Based on the relevance to our work, a couple of PDEs are chosen to show they can be

formulated as symmetric positive systems. We have chosen the linear elasticity equation,

the heat equation and the ultrahyperbolic equations for this purpose.

Linear elasticity equation

We consider the following linear elasticity equations

σ − λ(∇ · u)Id − µ(∇u+∇uT ) = 0,

−1

2
∇ · (σ + σT ) + βu = f.

(2.9)

Remark 2.1. Linear elasticity equation can be formulated as symmetric positive system as

in [32]. But we have slightly different approach in here based on how to prove the positivity

of B.
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One dimensional case:

In one dimension, (2.9) will be as follows

σ − λ∂u
∂x
− 2µ

∂u

∂x
= 0,

−∂σ
∂x

+ βu = f.

(2.10)

With further manipulation gives,

2µ

λ+ 2µ
σ − 2µ

∂u

∂x
= 0,

−2µ
∂σ

∂x
+ 2µβu = f1.

(2.11)

In matrix form,


2µ

λ+2µ
−2µ ∂

∂x

−2µ ∂
∂x

2µβ



σ

u

 =


0

f1

. (2.12)

Theorem 2.4. The PDE system (2.10) can be formulated as a symmetric positive system

with some unknown variables.

Proof. Referring to the equivalent formulation (2.12) of (2.10), the corresponding matrices

are

Ax =


0 −2µ

−2µ 0

, A0 =


2µ

λ+2µ
0

0 2µβ

, and B = A0 + (A0)T −
d∑

k=1

∂kAk =


4µ

λ+2µ
0

0 4µβ

.

Note that Ax is symmetric and B is positive definite, so by the definition the PDE sys-

tem (2.10) is symmetric positive.
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In order to generalize the symmetric positiveness of linear elasticity equations (2.9) for d = 2

or d = 3, we note

σ = σT ,

σkk = λd(∇ · u) + 2µ(∇ · u),

⇒∇ · u = σkk
λd+2µ

.

So,

σ − a(σkk)Id − µ(∇u+∇uT ) = 0,

−∇ · σ + βu = f,

(2.13)

where a = λ
λd+2µ

. Equation (2.9) can be written

σi,j − a(σkk)δi,j − µ(
∂ui
∂xj

+
∂uj
∂xi

) = 0 ∀i, j ∈ {1, 2, · · · , d},

−∇ · σ + βu = f.

(2.14)

Eliminating the Kronecker delta

bσi,i − a
∑
k 6=i

σkk − 2µ
∂ui
∂xi

= 0 ∀i ∈ {1, 2, · · · , d},

σi,j − µ(
∂ui
∂xj

+
∂uj
∂xi

) = 0 ∀i, j ∈ {1, 2, · · · , d}with i 6= j,

−∂σij
∂xi

+ βuj = fj ∀j ∈ {1, 2, · · · , d},

(2.15)

where a = λ
λd+2µ

and b = 1− a and note that a and b are positive constants.

Generalization of Theorem 2.4 can be listed as

Theorem 2.5. The PDE system (2.9) can be formulated as a symmetric positive system for

d = 2 or d = 3 with some unknown variables. Moreover, admissible boundary conditions

can be achieved for the system.
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Proof. Without loss of generality, we will prove it for d = 2. Referring to (2.15), the system

is as follows

bσ11 − aσ22 − 2µ
∂u1

∂x1

= 0,

bσ22 − aσ11 − 2µ
∂u2

∂x2

= 0,

σ12 − µ
(
∂u1

∂x2

+
∂u2

∂x1

)
= 0,

σ21 − µ
(
∂u2

∂x1

+
∂u1

∂x2

)
= 0,

−∂σ11

∂x1

− ∂σ21

∂x2

+ βu1 = f1,

−∂σ12

∂x1

− ∂σ22

∂x2

+ βu2 = f2.

(2.16)

Using the symmetry of σ, the system

bσ11 − aσ22 − 2µ
∂u1

∂x1

= 0,

σ21 − µ
(
∂u2

∂x1

+
∂u1

∂x2

)
= 0,

σ12 − µ
(
∂u1

∂x2

+
∂u2

∂x1

)
= 0,

bσ22 − aσ11 − 2µ
∂u2

∂x2

= 0,

−2µ
∂σ11

∂x1

− µ∂σ21

∂x2

− µ∂σ12

∂x2

+ 2µβu1 = f ∗1 ,

−µ∂σ21

∂x1

− µ∂σ12

∂x1

− µ∂σ22

∂x2

+ 2µβu2 = f ∗2 .

(2.17)

In matrix form,
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

b 0 0 −a −2µ ∂
∂x1

0

0 1 0 0 −µ ∂
∂x2

−µ ∂
∂x1

0 0 1 0 −µ ∂
∂x2

−µ ∂
∂x1

−a 0 0 b 0 −2µ ∂
∂x2

−2µ ∂
∂x1

−µ ∂
∂x2

−µ ∂
∂x2

0 2µβ 0

0 −µ ∂
∂x1

−µ ∂
∂x1

−2µ ∂
∂x2

0 2µβ





σ11

σ21

σ12

σ22

u1

u2



=



0

0

0

0

f ∗1

f ∗2



.

The corresponding matrices are

Ax1 =



0 0 0 0 −2µ 0

0 0 0 0 0 −µ

0 0 0 0 0 −µ

0 0 0 0 0 0

−2µ 0 0 0 0 0

0 −µ −µ 0 0 0


, Ax2 =



0 0 0 0 0 0

0 0 0 0 −µ 0

0 0 0 0 −µ 0

0 0 0 0 0 −2µ

0 −µ −µ 0 0 0

0 0 0 −2µ 0 0


,

A0 =



b 0 0 −a 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−a 0 0 b 0 0

0 0 0 0 2µβ 0

0 0 0 0 0 2µβ


,
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and B = A0 + (A0)T −
d∑

k=1

∂kAk = 2



b 0 0 −a 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−a 0 0 b 0 0

0 0 0 0 2µβ 0

0 0 0 0 0 2µβ


.

As b
a

= 1−a
a

= 1
a
− 1 = λd+2µ

λ
− 1 = d− 1 + 2µ

λ
= 1 + 2µ

λ
> 1, B is diagonally dominant and

hence positive definite. On the other hand, Ax1 and Ax2 are clearly symmetric matrices. So,

the PDE system (2.9) is symmetric positive.

For admissible boundary condition

D =
d∑

k=1

nkAk =



0 0 0 0 −2µn1 0

0 0 0 0 −µn2 −µn1

0 0 0 0 −µn2 −µn1

0 0 0 0 0 −2µn2

−2µn1 −µn2 −µn2 0 0 0

0 −µn1 −µn1 −2µn2 0 0


.

• Admissible boundary condition 1:

Consider M =



0 0 0 0 2µn1 0

0 0 0 0 µn2 µn1

0 0 0 0 µn2 µn1

0 0 0 0 0 2µn2

−2µn1 −µn2 −µn2 0 0 0

0 −µn1 −µn1 −2µn2 0 0


.
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So, D −M = 2



0 0 0 0 −2µn1 0

0 0 0 0 −µn2 −µn1

0 0 0 0 −µn2 −µn1

0 0 0 0 0 −2µn2

0 0 0 0 0 0

0 0 0 0 0 0


,

and (D −M)v = 0 is equivalent to u1 = u2 = 0 on the boundary. M satisfied the

required conditions, M ≥ 0 and Rm = Ker(D −M) +Ker(D +M).

• Admissible boundary condition 2:

Consider M =



0 0 0 0 −2µn1 0

0 0 0 0 −µn2 −µn1

0 0 0 0 −µn2 −µn1

0 0 0 0 0 −2µn2

2µn1 µn2 µn2 0 0 0

0 µn1 µn1 2µn2 0 0


.

So, D −M = 2



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−2µn1 −µn2 −µn2 0 0 0

0 −µn1 −µn1 −2µn2 0 0


,

and (D −M)v = 0 is equivalent to 2n1σ11 + n2σ21 + n2σ12 = 0 and n1σ21 + n1σ12 +

2n2σ22 = 0 on the boundary. As σ21 = σ12, it implies σ · n = 0 on the boundary. M

satisfied the required conditions, M ≥ 0 and Rm = Ker(D −M) +Ker(D +M).
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The Heat equation

Consider the heat equation

∂p

∂t
− k∇2p = h on Ω× (0, T ], (2.19)

where Ω is a rectangle.

Remark 2.2. The Heat equation can be formulated as symmetric positive system as in [30].

But we have slightly different approach in here based on the choice of unknown variables.

Theorem 2.6. The PDE (2.19) can be formulated as a symmetric positive system for d = 2

or d = 3 with some unknown variables. Moreover, admissible boundary condition can be

given for the system.

Proof. Without loss of generality, we will prove it for d = 2. In order to write as a first order

system, define px1 = ∂p
∂x1

and px2 = ∂p
∂x2

. The equation (2.19) can be written in the following

matrix form



e−t ∂
∂t

−ke−t ∂
∂x1

−ke−t ∂
∂x2

−ke−t ∂
∂x1

ke−t 0

−ke−t ∂
∂x2

0 ke−t





p

px1

px2


=



h1

0

0


. (2.20)

So, the corresponding matrices are At =


e−t 0 0

0 0 0

0 0 0

,
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Ax1 =


0 −ke−t 0

−ke−t 0 0

0 0 0

, Ax2 =


0 0 −ke−t

0 0 0

−ke−t 0 0

, and A0 =


0 0 0

0 ke−t 0

0 0 ke−t

.

It is easy to see At, Ax1 and Ax2 are symmetric and

B = A0 + (A0)T − ∂tAt − ∂x1Ax1 − ∂x2Ax2 =


e−t 0 0

0 2ke−t 0

0 0 2ke−t

 which is clearly positive

definite. So, the PDE (2.19) is symmetric positive. The arguments can be generalized for

any higher dimension.

Figure 2.1: Domain Ω× (0, T ]

Here D = e−t


nt −knx −kny

−knx 0 0

−kny 0 0

, .
We can describe admissible boundary condition as follows
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• On AEFB, nt = −1, nx = ny = 0. So, D = e−t


−1 0 0

0 0 0

0 0 0

 and set M = −D.

Now, D −M = 2D which implies p = 0 on AEFB.

• On DHGC, nt = 1, nx = ny = 0. So, D = e−t


1 0 0

0 0 0

0 0 0

 and set M = D.

Now, D −M = 0 which implies nothing to impose on DHGC.

• On ABCD, nt = 0, nx = −1, ny = 0. So, D = e−t


0 k 0

k 0 0

0 0 0

 and setM = e−t


0 k 0

−k 0 0

0 0 0

.

Now, D −M = e−t


0 0 0

2k 0 0

0 0 0

 which implies p = 0 on ABCD.

• On EFGH, nt = ny = 0, nx = 1. So, D = e−t


0 −k 0

−k 0 0

0 0 0

 and setM = e−t


0 −k 0

k 0 0

0 0 0

.

Now, D −M = e−t


0 0 0

−2k 0 0

0 0 0

 which implies p = 0 on EFGH.

• On AEHD, nt = nx = 0, ny = −1. So, D = e−t


0 0 k

0 0 0

k 0 0

 and setM = e−t


0 0 k

0 0 0

−k 0 0

 .

Now, D −M = e−t


0 0 0

0 0 0

2k 0 0

 which implies p = 0 on AEHD.
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• On BFGC, nt = nx = 0, ny = 1. So, D = e−t


0 0 −k

0 0 0

−k 0 0

 and setM = e−t


0 0 −k

0 0 0

k 0 0

.

Now, D −M = e−t


0 0 0

0 0 0

−2k 0 0

 which implies p = 0 on BFGC.

In each case M satisfied the required conditions, M ≥ 0 and Rm = Ker(D−M)+Ker(D+

M).

Sometime discretization in one variable is conducted and the resulted PDE is cast into

symmetric positive framework. This approach is specially important for numerical compu-

tation. We can discretize the equation (2.19) as follows

pn − pn−1

∆t
− k∂

2pn

∂x2
1

− k∂
2pn

∂x2
2

= hn. (2.21)

After manipulation

pn − k∆t
∂2pn

∂x2
1

− k∆t
∂2pn

∂x2
2

= hn1 . (2.22)

In matrix form,


1 −k1

∂
∂x1

−k1
∂
∂x2

−k1
∂
∂x1

k1 0

−k1
∂
∂x2

0 k1



pn

pnx1

pnx2

 =


hn1

0

0

, (2.23)

where k1 = k∆t. The following theorem shows that the equation (2.22) is indeed symmetric

positive.
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Theorem 2.7. The PDE (2.22) can be formulated as a symmetric positive system with some

unknown variables. Moreover, admissible boundary condition can be given for the system.

Proof. Equation (2.22) can be written as a system of first order (2.23). So, the corresponding

matrices are

Ax1 =


0 −k1 0

−k1 0 0

0 0 0

, Ax2 =


0 0 −k1

0 0 0

−k1 0 0

, and A0 =


1 0 0

0 k1 0

0 0 k1

.
Now Ax1 and Ax2 are symmetric, and

B = A0 + (A0)T − ∂x1Ax1 − ∂x2Ax2 = 2


1 0 0

0 k1 0

0 0 k1

,

which is clearly positive definite. The claim follows.

For admissible boundary condition, we note

D =


0 −k1nx1 −k1nx2

−k1nx1 0 0

−k1nx2 0 0

, and set M =


0 −k1nx1 −k1nx2

k1nx1 0 0

k1nx2 0 0

.

. Clearly, M satisfied the required conditions, M ≥ 0 and Rm = Ker(D−M)+Ker(D+M).

So,

D −M =


0 0 0

−2k1nx1 0 0

−2k1nx2 0 0

,
which implies pn = 0 on the boundary.
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Remark 2.3. We note, p(n) can be found once we have known p(n−1) = 0. Thus, we can

solve the time marching problem.

The Ultrahyperbolic equation

We consider

∂2φ

∂x2
1

+
∂2φ

∂x2
2

− ∂2φ

∂x2
3

− ∂2φ

∂x2
4

= 0, (2.24)

which can be written as

∂

∂x1

(
∂φ

∂x1

) +
∂

∂x2

(
∂φ

∂x2

)− ∂

∂x3

(
∂φ

∂x3

)− ∂

∂x4

(
∂φ

∂x4

) = 0,

∂

∂x2

(
∂φ

∂x1

)− ∂

∂x1

(
∂φ

∂x2

) = 0,

− ∂

∂x3

(
∂φ

∂x1

) +
∂

∂x1

(
∂φ

∂x3

) = 0,

− ∂

∂x4

(
∂φ

∂x1

) +
∂

∂x1

(
∂φ

∂x4

) = 0.

(2.25)

In matrix form,



∂
∂x1

∂
∂x2

− ∂
∂x3

− ∂
∂x4

∂
∂x2

− ∂
∂x1

0 0

− ∂
∂x3

0 ∂
∂x1

0

− ∂
∂x4

0 0 ∂
∂x1





∂φ
∂x1

∂φ
∂x2

∂φ
∂x3

∂φ
∂x4


=



0

0

0

0


. (2.26)

.

The Ultrahyperbolic equation (2.24) is symmetric positive as shown in the following theorem

[30].

Theorem 2.8. There is a transformation of PDE (2.24) or its equivalent form (2.26) such

that the resulting first order system can be formulated as a symmetric positive system.

Proof. It suffices to consider the following system as indicated in [30]
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

∂
∂x1

∂
∂x2

− ∂
∂x3

− ∂
∂x4

∂
∂x2

− ∂
∂x1

0 0

− ∂
∂x3

0 ∂
∂x1

0

− ∂
∂x4

0 0 ∂
∂x1





∂φ
∂x1

∂φ
∂x2

∂φ
∂x3

∂φ
∂x4


+ 2k



0

∂φ
∂x2

0

0


=



0

0

0

0


, (2.27)

where k is an arbitrarily small positive constant. Now, consider the transformation

v = e−kx1u with u =

(
∂φ

∂x1

∂φ

∂x2

∂φ

∂x3

∂φ

∂x4

)T
.

By the transformation, we can write



ekx1( ∂
∂x1

+ k) ekx1 ∂
∂x2

−ekx1 ∂
∂x3

−ekx1 ∂
∂x4

ekx1 ∂
∂x2

−ekx1( ∂
∂x1
− k) 0 0

−ekx1 ∂
∂x3

0 ekx1( ∂
∂x1

+ k) 0

−ekx1 ∂
∂x4

0 0 ekx1( ∂
∂x1

+ k)





e−kx1 ∂φ
∂x1

e−kx1 ∂φ
∂x2

e−kx1 ∂φ
∂x3

e−kx1 ∂φ
∂x4


=



0

0

0

0


. (2.28)

The corresponding matrices are

Ax1 =



ekx1 0 0 0

0 −ekx1 0 0

0 0 ekx1 0

0 0 0 ekx1


, Ax2 =



0 ekx1 0 0

ekx1 0 0 0

0 0 0 0

0 0 0 0


, Ax3 =



0 0 −ekx1 0

0 0 0 0

−ekx1 0 0 0

0 0 0 0


,
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Ax4 =



0 0 0 −ekx1

0 0 0 0

0 0 0 0

−ekx1 0 0 0


, A0 =



kekx1 0 0 0

0 kekx1 0 0

0 0 kekx1 0

0 0 0 kekx1


.

So,

B = A0+(A0)T−∂x1Ax1−∂x2Ax2−∂x3Ax3−∂x4Ax4 = ekx1



2k − k2 0 0 0

0 2k − k2 0 0

0 0 2k − k2 0

0 0 0 2k − k2


.

Now Ax1 , Ax2 , Ax3 and Ax4 are clearly symmetric. On the other hand, for 0 < k < 2, B is

positive definite. The claim follows.

2.2 Least square finite element method

Given a system of partial differential equations, the least square finite element method

(LSFEM) defines an unconstrained minimization problem and based on that, a finite element

method can be developed in a variational setting. The very basic concept of LSFEM is to

define the least square functional as the residuals measured in some suitable norm, often

challenging to find, in Hilbert space. Assuming the well-posedness of original PDE along with

suitable boundary conditions, the least square functional will have a unique minimizer and

thus, the corresponding variational formulation has a unique solution. Also, by construction

of the least square functional, the bilinear form associated with the corresponding variational

formulation is symmetric positive definite. So, in the case of the discrete formulation, it leads
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to a symmetric positive linear system, relatively easy to solve numerically. Additionally,

if the induced energy norm is norm-equivalent to some norm in a suitable Hilbert space,

optimal properties [40] of the resulting least-squares method can be achieved. One of the

main difference between conventional Galerkin method and LSFEM is to require different

regularity of finite element space. In the former case, regularity requirements are weakened

by the integration by parts whereas in LSFEM, it requires higher regularity of the finite

element space.

Application of LSFEM to solve problems dates back to early seventies [47, 48]. Soon

after that LSFEM suffered a couple of disadvantages that greatly limited its appeal. In many

problems, discretization requires C1 or better finite element spaces, which lead to assembly

matrix with high condition number and hence difficult to solve. Later on, this problem of

having higher regularity has been greatly optimized by first transforming the PDE into first

order system and then using LSFEM. Because of that, in the last few decades, the LSFEM

has been receiving increasing attention in both the engineering and mathematics communi-

ties [38, 39, 45]. The increased attention is also due to the fact that LSFEM offers significant

analytic and computational advantages over conventional finite element method. The main

advantages include LSFEM is not subject to the inf-sup stability condition, boundary con-

ditions can be enforced weakly, resulting assembly matrix is symmetric positive leading to

efficient computation etc. One of the great example of LSFEM application is to use this

method for the numerical approximation of Navier-Stokes equation instead of using conven-

tional mixed Galerkin method, needing to satisfy Ladyzenskaja-Babuska-Brezzi(LBB) con-

dition at discretization level. Using LSFEM in this case offers easy discretization process,

same finite element space for all unknowns, important information about physically impor-

tant variables such as vorticity, reasonable condition number for the discrete problem. Other

applications of LSFEM are stationary incompressible flow, time dependent incompressible

flow, convection-diffusion problems, purely hyperbolic problems etc.
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Basic strategies of LSFEM include transformation of the PDE and identification of

proper subspace. Before any numerical treatment, it is advantageous to transform the origi-

nal PDE into a system of first order PDE. This process often offers discretization by C0 finite

element and approximations of physically important fields, such as vorticity, fluxes, stresses

etc. On the other hand, identification of proper subspace ensures some priori estimate holds

or the original operator is bounded below. A number of advantages is derived from this step.

First of all, it provides existence and uniqueness of the minimizers. For numerical treatment,

it ensures stability of discretization, avoiding any inf-sup type condition. The linear systems

resulting from discretization process are symmetric positive definite matrices, which can be

solved by robust iterative methods (such as preconditioned conjugate gradient methods).

2.2.1 Applications of LSFEM

LSFEM is particularly used in engineering communities now a days. The followings are

typical applications of this method as found in [46].

• Div-Curl system,

• Div-Curl-Grad system,

• Incompressible irrotational flow,

• Subsonic compressible irrotational flow,

• The Stokes flows,

• The Navier-Stokes equations,

• Natural convection,

• Rayleigh Benard convection cells,

• Doubly diffusive convective flows,
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• Surface-Tension driven convection,

• Convective transport equations,

• Thermally stratified flows,

• Incompressible Euler equations,

• The compressible Navier-Stokes equations,

• Flows over a backward facing steps,

• Two fluid flows,

• High-speed compressible flows,

• Maxwell equations,

• Transient scattering waves,

• Coupled Stokes-Darcy flow,

• Poisson-Boltzmann equations,

• Domain decomposition based LSFEM for large scale parallel computations.

2.2.2 Mathematical formulation

Consider the following boundary value problem

Lu = f in Ω,

Bu = g on ∂Ω,

(2.29)

where L is a first order differential operator as follows

Lu =
d∑
j=1

Lj
∂u

∂xj
+ L0u. (2.30)
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Here Ω is an open bounded subset of Rd with sufficiently smooth boundary ∂Ω and

uT = (u1 u2 u3 · · ·um), a vector of m unknown functions of x = (x1 x2 x3 · · ·xd). For this

setting, Lj and L0 are d×m matrices, f and g are given vector valued (d×1) functions, and

B is a boundary operator. The fundamental principle of the least squares variational method

is the minimization of the mean squared error in the equations over the problem domain. In

particular, the objective is to find an approximation that satisfies equation (2.29). Without

loss of generality we may assume g = 0, and we now consider the following boundary value

problem

Lu = f in Ω,

Bu = 0 on ∂Ω.

(2.31)

For the proper functional setting, we suppose f ∈ L (Ω) and an appropriate Hilbert space

W = {v ∈ L (Ω) ; Bv = 0 on ∂Ω} ⊂ L (Ω). We consider the operator L maps W into L (Ω)

as follows

L : W → L (Ω) . (2.32)

Define the residual function

E(u) = Lu− f for all u ∈ W, (2.33)

and the least square quadratic functional

I(u) = ‖Lu− f‖2
L = (Lu− f, Lu− f) = (E(u), E(u)) . (2.34)

A solution u to the problem (2.31) can be interpreted as u ∈ W that minimizes E(u) i.e.

0 = I(u) ≤ I(v) for all v ∈ W. (2.35)

So, we are seeking a minimizer of the quadratic functional I in W . A necessary condition

that u ∈ W be a minimizer of the functional I in W is that its first variation vanishes at
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that point. It follows

lim
t→0

d

dt
I (u+ tv) = 0,

lim
t→0

d

dt
‖L(u+ tv)− f‖2

0 = 0,

lim
t→0

d

dt

∫
Ω

(L(u+ tv)− f)2 dΩ = 0,

lim
t→0

d

dt

∫
Ω

(
LuLv − 2fLu+ 2tLuLv − 2ftLv + t2LvLv

)
dΩ = 0,

lim
t→0

∫
Ω

(2LuLv − 2fLv + tLvLv) dΩ = 0,

∫
Ω

(2LuLv − 2fLv) dΩ = 0⇒ 2

∫
Ω

Lv (Lu− f) dΩ = 0,

(2.36)

for all v ∈ W . This leads to the following variational formulation.

Find u ∈ W such that

a(u, v) = F (v) for all v ∈ W, (2.37)

where

a(u, v) = (Lu, Lv) ,

F (v) = (f, Av) .

(2.38)

In the finite element approximation, we partition the domain into a finite number of el-

ements, characterized by a discretization parameter h and then introduce an appropriate

finite element basis. Let N denote the number of nodes for one element and φj denote the

element shape functions. Assuming the same finite element is used for all unknown variables,

we have

ueh(x) =
N∑
j=1

φj(x) (u1 u2 · · ·um)Tj , (2.39)

where (u1 u2 · · ·um)j are nodal values at the jth node. Introducing the finite element ap-

proximation defined in (2.39) into the variational formulation (2.37), we have the following
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linear system

AU = F,

Ae =

∫
Ωe

(Lφ1 Lφ2 · · ·LφN )T (Lφ1 Lφ2 · · ·LφN ) dΩ,

Fe =

∫
Ωe

(Lφ1 Lφ2 · · ·LφN )T f dΩ,

(2.40)

where U is global vector of nodal values and Ωe ⊂ Ω is the domain of the e-th element. The

global matrix A is assembled from Aes and F is assembled from Fes.

In LSFEM, boundary condition can be enforced weakly. In the mathematical formula-

tion, boundary conditions are imposed on W . If we want to use boundary conditions weakly,

we may do so by adding boundary terms in the least square functional as below

I(u) = ‖Lu− f‖2
L,Ω + ‖Bu− g‖2

L, ∂Ω. (2.41)

We summarize this section by stating the following theorem [41] without proof.

Theorem 2.9. Assume (2.29) is well-posed and a finite dimensional space W h ⊂ W . Then

1. The bilinear form a(·, ·) defined in (2.38) is continuous, symmetric, and coercive.

2. The linear functional F (·) defined in (2.38) is continuous.

3. The variational formulation defined in (2.37) has a unique solution u ∈ W that is also

the unique solution of the minimization problem (2.35).

4. The corresponding discrete problem of (2.37) has unique solution uh ∈ W h.

5. The matrix A is symmetric and positive definite.

6. There is a constant C > 0 such that u and uh satisfy the error estimate

‖u− uh‖W ≤ C inf
wh∈Wh

‖u− wh‖W . (2.42)
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2.2.3 An example of LSFEM

This example [46] is intended to show why LSFEM is advantageous in comparison with

other numerical methods. Consider the following first order differential equation

u′(x) =
e−

1−x
η

η (1− e−η−1)
for x ∈ [0, 1],

u(0) = 0,

(2.43)

with 0 < η < 1. The exact solution of this differential equation is

u(x) = 1−
(

1− e−η−1
)−1 (

1− e−
1−x
η

)
. (2.44)

The LSFEM is performed with equidistant 10 linear elements and Simpson quadrature rule.

The same setting has been used for Galerkin method. The Galerkin solution wildly oscillates

over the domain and it is far from the exact solution. On the other hand, the LSFEM solu-

tion is very close to the exact solution with any oscillation. The comparison is illustrated in

the following figure for η = 0.05 [46].

Figure 2.2: Solution of the model differential equation (2.43)

49



Chapter 3

Fluid content-rotation-pressure gradient formulation

We consider the following partial differential equations


− (λ+ µ)∇ (∇ · u)− µ∆u+ α∇p = f,

∂
∂t

[Sεp+ α (∇ · u)]− k∇2p = h.

(3.1)

Although one dimensional formulation for symmetric positive system is simple, it is different

in terms of unknown variables than that of higher dimensional case. Thus, we start with the

one dimensional case.

3.1 One dimensional case

One dimensional formulation for (3.1)

−(λ+ µ)
∂2u

∂x2
− µ∂

2u

∂x2
+ α

∂p

∂x
= f,

∂

∂t
[Sεp+ α∇.u]− k ∂

2p

∂x2
= h.

(3.2)

Define two positive constants α2 = Sεk + α2k
λ+2µ

and η = Sεp+ α∇ · u.

The first equation

−(λ+ 2µ)
∂2u

∂x2
+ α

∂p

∂x
= f,

⇒ ∂

∂x

(
(λ+ 2µ)

∂u

∂x
− αp

)
= −f,

⇒ ∂

∂x

(
α
∂u

∂x
− α2

(λ+ 2µ)
p

)
= − fα

(λ+ 2µ)
,

⇒ ∂

∂x

(
α
∂u

∂x
+ Sεp− Sεp−

α2

(λ+ 2µ)
p

)
= − fα

(λ+ 2µ)
,
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⇒ ∂

∂x

(
Sεp+ α

∂u

∂x

)
−
(
Sε +

α2

(λ+ 2µ)

)
∂p

∂x
= − fα

(λ+ 2µ)
,

⇒ −k∂η
∂x

+ k

(
Sε +

α2

(λ+ 2µ)

)
∂p

∂x
=

fαk

(λ+ 2µ)
,

⇒ −k∂η
∂x

+ α2
∂p

∂x
= f ∗.

So, the system of first order equations

∂η

∂t
− k ∂

∂x

(
∂p

∂x

)
= h,

−k∂η
∂x

+ α2
∂p

∂x
= f ∗.

(3.3)

In matrix form,

 ∂
∂t

−k ∂
∂x

−k ∂
∂x

α2


 η
∂p
∂x

 =

 h
f ∗

. (3.4)

Theorem 3.1. There is a transformation of PDE (3.2) such that the resulting first order

system can be formulated as a symmetric positive system. Moreover, there is at least one

admissible boundary condition.

Proof. As equation (3.2) and (3.4) are equivalent, we can work with (3.4). Consider the

transformation, v = e−ξt
(
η , ∂p

∂x

)T
where ξ is some positive constant. With this transfor-

mation equation (3.4) becomes

 ∂
∂t

+ ξ −k ∂
∂x

−k ∂
∂x

α2


 ηe−ξt
∂p
∂x
e−ξt

 =

 h1

f ∗∗

. (3.5)

The corresponding matrices are
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At =

1 0

0 0

, Ax =

 0 −k

−k 0

, and A0 =

ξ 0

0 α2


So,

B = A0 + (A0)T − ∂tAt − ∂xAx = 2

ξ 0

0 α2

.
Now At, Ax are clearly symmetric. On the other hand, as ξ > 0 and α2 > 0, B is positive

definite. So, the system is symmetric positive. Consider the domain of PDE is Ω × (0, T ]

where open subset Ω ⊂ R.

We can implement admissible boundary condition as follows

Here D =

 nt −knx

−knx 0

.

• On Ω× {0}, nt = −1, nx = 0. So, D =

−1 0

0 0

, and set M = −D.

Now, D −M = 2D which implies η = 0 on Ω× {0}.

• On Ω× {T}, nt = 1, nx = 0. So, D =

1 0

0 0

, and set M = D.

Now, D −M = 0 which implies nothing on Ω× {T}.

• On ∂Ω× (0, T ], nt = 0, nx = ±1. So, D =

 0 ∓k

∓k 0

, and set M =

 0 ∓k

±k 0

.

Now, D −M =

 0 0

∓2k 0

 which implies η = 0 on ∂Ω× (0, T ].

In each cases, M satisfied the required conditions, M ≥ 0 and Rm = Ker(D−M)+Ker(D+

M). So, the claim follows.
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3.2 Two dimensional case

For d = 2, we have the equation (3.1)

−(λ+ µ)
∂

∂x1

(
∂u1

∂x1

+
∂u2

∂x2

)
− µ

(
∂2u1

∂x2
1

+
∂2u1

∂x2
2

)
+ α

∂p

∂x1

= f1,

−(λ+ µ)
∂

∂x2

(
∂u1

∂x1

+
∂u2

∂x2

)
− µ

(
∂2u2

∂x2
1

+
∂2u2

∂x2
2

)
+ α

∂p

∂x2

= f2,

∂

∂t
[Sεp+ α∇.u]− k∇2p = h.

(3.6)

Define α2 = 2αµk
λ+2µ

, α3 = Sεk + α2k
λ+2µ

, wij = 1
2

(
∂ui
∂xj
− ∂uj

∂xi

)
and η = Sεp+ α∇.u.

The first equation

−(λ+ µ)
∂

∂x1

(
∂u1

∂x1

+
∂u2

∂x2

)
− µ

(
∂2u1

∂x2
1

+
∂2u1

∂x2
2

)
+ α

∂p

∂x1

= f1,

⇒ ∂

∂x1

(
(λ+ µ)

(
∂u1

∂x1

+
∂u2

∂x2

)
+ µ

∂u1

∂x1

− αp
)

+ µ
∂2u1

∂x2
2

= −f1,

⇒ ∂

∂x1

(
(λ+ µ)

(
∂u1

∂x1

+
∂u2

∂x2

)
+ µ

(
∂u1

∂x1

+
∂u2

∂x2

)
− µ∂u2

∂x2

− αp
)

+ µ
∂2u1

∂x2
2

= −f1,

⇒ ∂

∂x1

((λ+ 2µ)∇.u− αp) + µ
∂2u1

∂x2
2

− µ ∂2u2

∂x1∂x2

= −f1,

⇒ ∂

∂x1

((λ+ 2µ)∇.u− αp) + µ
∂

∂x2

(
∂u1

∂x2

− ∂u2

∂x1

)
= −f1,

⇒ ∂

∂x1

(
α∇.u− α2

λ+ 2µ
p

)
+

2αµ

λ+ 2µ

∂w12

∂x2

= − f1α

λ+ 2µ
,

⇒ ∂

∂x1

(
α∇.u+ Sεp− Sεp−

α2

λ+ 2µ
p

)
+

2αµ

λ+ 2µ

∂w12

∂x2

= − f1α

λ+ 2µ
,

⇒ ∂η

∂x1

−
(
Sε +

α2

λ+ 2µ

)
∂p

∂x1

+
2αµ

λ+ 2µ

∂w12

∂x2

= − f1α

λ+ 2µ
,

⇒ −k ∂η
∂x1

+

(
Sε +

α2

λ+ 2µ

)
k
∂p

∂x1

− 2αµk

λ+ 2µ

∂w12

∂x2

=
f1αk

λ+ 2µ
,

⇒ −k ∂η
∂x1

− α2
∂w12

∂x2

+ α3
∂p

∂x1

= f ∗1 .
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The second equation can be written as

−(λ+ µ)
∂

∂x2

(
∂u1

∂x1

+
∂u2

∂x2

)
− µ

(
∂2u2

∂x2
1

+
∂2u2

∂x2
2

)
+ α

∂p

∂x2

= f2,

⇒ ∂

∂x2

(
(λ+ µ)

(
∂u1

∂x1

+
∂u2

∂x2

)
+ µ

∂u2

∂x2

− αp
)

+ µ
∂2u2

∂x2
2

= −f2,

⇒ ∂

∂x2

(
(λ+ µ)

(
∂u1

∂x1

+
∂u2

∂x2

)
+ µ

(
∂u1

∂x1

+
∂u2

∂x2

)
− µ∂u1

∂x1

− αp
)

+ µ
∂2u2

∂x2
1

= −f2,

⇒ ∂

∂x2

((λ+ 2µ)∇.u− αp) + µ
∂2u2

∂x2
1

− µ ∂2u1

∂x1∂x2

= −f2,

⇒ ∂

∂x2

((λ+ 2µ)∇.u− αp)− µ ∂

∂x1

(
∂u1

∂x2

− ∂u2

∂x1

)
= −f2,

⇒ ∂

∂x2

(
α∇.u− α2

λ+ 2µ
p

)
− 2αµ

λ+ 2µ

∂w12

∂x1

= − f2α

λ+ 2µ
,

⇒ ∂

∂x2

(
α∇.u+ Sεp− Sεp−

α2

λ+ 2µ
p

)
− 2αµ

λ+ 2µ

∂w12

∂x1

= − f2α

λ+ 2µ
,

⇒ ∂η

∂x2

−
(
Sε +

α2

λ+ 2µ

)
∂p

∂x2

− 2αµ

λ+ 2µ

∂w12

∂x1

= − f2α

λ+ 2µ
,

⇒ −k ∂η
∂x2

+

(
Sε +

α2

λ+ 2µ

)
k
∂p

∂x2

+
2αµk

λ+ 2µ

∂w12

∂x1

=
f2αk

λ+ 2µ
,

⇒ −k ∂η
∂x2

+ α2
∂w12

∂x1

+ α3
∂p

∂x2

= f ∗2 .

So, the system of first order equations

∂η

∂t
− k ∂

∂x1

(
∂p

∂x1

)
− k ∂

∂x2

(
∂p

∂x2

)
= h,

−α2
∂

∂x2

(
∂p

∂x1

)
+ α2

∂

∂x1

(
∂p

∂x2

)
= 0,

−k ∂η
∂x1

− α2
∂w12

∂x2

+ α3
∂p

∂x1

= f ∗1 ,

−k ∂η
∂x2

+ α2
∂w12

∂x1

+ α3
∂p

∂x2

= f ∗2 ,

(3.7)

with unknown variables η, w12,
∂p
∂x1

and ∂p
∂x2

.
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In matrix form,



∂
∂t

0 −k ∂
∂x1

−k ∂
∂x2

0 0 −α2
∂
∂x2

α2
∂
∂x1

−k ∂
∂x1

−α2
∂
∂x2

α3 0

−k ∂
∂x2

α2
∂
∂x1

0 α3





η

w12

∂p
∂x1

∂p
∂x2


=



h

0

f ∗1

f ∗2


. (3.8)

With respect to symmetric positive formulation, it suffices to consider the following per-

turbed system



∂
∂t

0 −k ∂
∂x1

−k ∂
∂x2

0 0 −α2
∂
∂x2

α2
∂
∂x1

−k ∂
∂x1

−α2
∂
∂x2

α3 0

−k ∂
∂x2

α2
∂
∂x1

0 α3





η

w12

∂p
∂x1

∂p
∂x2


+ ε



0

w12

0

0


=



h

0

f ∗1

f ∗2


, (3.9)

for arbitrarily small ε > 0. So, the PDE system is



∂
∂t

0 −k ∂
∂x1

−k ∂
∂x2

0 ε −α2
∂
∂x2

α2
∂
∂x1

−k ∂
∂x1

−α2
∂
∂x2

α3 0

−k ∂
∂x2

α2
∂
∂x1

0 α3





η

w12

∂p
∂x1

∂p
∂x2


=



h

0

f ∗1

f ∗2


. (3.10)

Theorem 3.2. Consider the system of PDE (3.10) in Ω×(0, T ] where Ω is an open subset

of R2 with Lipschitz boundary. Then, there is a transformation of the PDE system such that

the resulting first order system can be formulated as a symmetric positive system. Moreover,

there is at least one admissible boundary condition.
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Proof. Consider the transformation, v = e−ξt
(
η, w12,

∂p
∂x1
, ∂p
∂x2

)T
where ξ is some positive

constant. With this transformation equation (3.10) becomes



∂
∂t

+ ξ 0 −k ∂
∂x1

−k ∂
∂x2

0 ε −α2
∂
∂x2

α2
∂
∂x1

−k ∂
∂x1

−α2
∂
∂x2

α3 0

−k ∂
∂x2

α2
∂
∂x1

0 α3





ηe−ξt

w12e
−ξt

∂p
∂x1
e−ξt

∂p
∂x2
e−ξt


=



h

0

f ∗1

f ∗2


. (3.11)

The corresponding matrices are

At =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, Ax1 =



0 0 −k 0

0 0 0 α2

−k 0 0 0

0 α2 0 0


, Ax2 =



0 0 0 −k

0 0 −α2 0

0 −α2 0 0

−k α2 0 0


,

and

A0 =



ξ 0 0 0

0 ε 0 0

0 0 α3 0

0 0 0 α3


.

So,

B = A0 + (A0)T − ∂tAt − ∂x1Ax1 − ∂x2Ax2 = 2



ξ 0 0 0

0 ε 0 0

0 0 α3 0

0 0 0 α3


.

Now At, Ax1 and Ax2 are clearly symmetric. On the other hand, as ξ, ε, α3 > 0 and

B is positive definite. So, the system is symmetric positive.
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An admissible boundary condition is as follows.

Here

D =



nt 0 −knx −kny

0 0 −α2ny α2nx

−knx −α2ny 0 0

−kny α2nx 0 0


.

Figure 3.1: A typical domain for equation (3.10)

• On bottom surface Ω× {0}, nt = −1, nx = ny = 0. So, D =



−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, and

set M = D.

Now, D −M = 2D which implies η = 0 on bottom surface.
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• On top surface Ω× {T}, nt = 1, nx = ny = 0. So, D =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, and

set M = D. Now, D −M = 0 which implies nothing to impose on top surface.

• On curved surface ∂Ω×(0, T ], nt = 0, n2
x+n

2
y = 1. So, D =



0 0 −knx −kny

0 0 −α2ny α2nx

−knx −α2ny 0 0

−kny α2nx 0 0


,

and set M =



0 0 −knx −kny

0 0 −α2ny α2nx

knx α2ny 0 0

kny −α2nx 0 0


.Now, D−M =



0 0 0 0

0 0 0 0

−2knx −2α2ny 0 0

−2kny 2α2nx 0 0


,

which implies

knxη + α2nyw12 = 0,

knyη − α2nxw12 = 0.

(3.12)

or

kn2
xη + α2nxnyw12 = 0,

kn2
yη − α2nxnyw12 = 0.

(3.13)

or ηk(n2
x + n2

y) = 0⇒ kη = 0⇒ η = 0 and so, w12 = 0 on the curved surface.

Remark 3.1. The two dimensional formulation can be easily generalized for higher dimen-

sional case allowing more unknown variables. We note in higher dimension increasing num-

ber of pressure gradient ( ∂p
∂xi

) and also the rotation vector (wij). As an example, the three
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dimensional formulation is as follows

∂η

∂t
− k ∂

∂x1

(
∂p

∂x1

)
− k ∂

∂x2

(
∂p

∂x2

)
− k ∂

∂x3

(
∂p

∂x3

)
= h,

−α1
∂

∂x2

(
∂p

∂x1

)
+ α1

∂

∂x1

(
∂p

∂x2

)
= 0,

−α1
∂

∂x3

(
∂p

∂x2

)
+ α1

∂

∂x2

(
∂p

∂x3

)
= 0,

−α1
∂

∂x1

(
∂p

∂x3

)
+ α1

∂

∂x3

(
∂p

∂x1

)
= 0,

−k ∂η
∂x1

− α1

(
∂w12

∂x2

− ∂w31

∂x3

)
+ α2

∂p

∂x1

= f ∗1 ,

−k ∂η
∂x2

− α1

(
∂w23

∂x3

− ∂w12

∂x1

)
+ α2

∂p

∂x2

= f ∗2 ,

−k ∂η
∂x3

− α1

(
∂w31

∂x1

− ∂w23

∂x2

)
+ α2

∂p

∂x3

= f ∗3 ,

(3.14)

with unknown variables η, w12, w23, w31,
∂p
∂x1
, ∂p
∂x2

and ∂p
∂x3
.

Remark 3.2. For d−dimensional case, we have the number of unknown variables

• 1 for η

• (d− 1) + (d− 2) + · · ·+ 1 = d(d−1)
2

for wij

• d for ∂p
∂xi

So, the total number of unknown is 1 + d(d−1)
2

+ d, which is 1 + d(d+1)
2

. On the other hand,

we have one mass conservation equation, C(d, 2) pressure gradient equations and d force

balance equations, all together 1 + C(d, 2) + d = d(d+1)
2

, same as the number of unknown.
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3.3 Time discretization formulation

The time discretization of equation (3.10) can be readily realized by using finite differ-

ence methods. Backward-Euler scheme is used in the following formulation

ηn − ηn−1

∆t
− k∂p

n
1

∂x1

− k∂p
n
2

∂x2

= hn,

εwn12 − α2
∂pn1
∂x2

+ α2
∂pn2
∂x1

= 0,

−k∂η
n

∂x1

− α2
∂wn12

∂x2

+ α3p
n
1 = fn1 ,

−k∂η
n

∂x2

+ α2
∂wn12

∂x1

+ α3p
n
2 = fn2 ,

(3.15)

where ∆t = tn − tn−1, p1 = ∂p
∂x1

and p2 = ∂p
∂x2

. We can write it in the form of Lu = f as

u =



ηn

wn12

pn1

pn2


, Lu =



ηn − k∆t
∂pn1
∂x1
− k∆t

∂pn2
∂x2

εwn12 − α2
∂pn1
∂x2

+ α2
∂pn2
∂x1

−k ∂ηn
∂x1
− α2

∂wn12
∂x2

+ α3p
n
1

−k ∂ηn
∂x2

+ α2
∂wn12
∂x1

+ α3p
n
2


, and f =



hn∆t+ ηn−1

0

fn11

fn22


. (3.16)

In matrix form,



1 0 −k ∂
∂x1

−k ∂
∂x2

0 ε −α2
∂
∂x2

α2
∂
∂x1

−k ∂
∂x1

−α2
∂
∂x2

α3 0

−k ∂
∂x2

α2
∂
∂x1

0 α3





ηn

wn12

pn1

pn2


=



hn∆t+ ηn−1

0

fn11

fn22


. (3.17)

Theorem 3.3. Consider the system of PDE (3.17) in Ω×(0, T ] where Ω is an open subset

of R2 with Lipschitz boundary. Then, there is a transformation of the PDE system such that

the resulting first order system can be formulated as a symmetric positive system. Moreover,

there is at least one admissible boundary condition.

Proof. Observing the equation (3.17), the corresponding matrices are
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Ax1 =



0 0 −k 0

0 0 0 α2

−k 0 0 0

0 α2 0 0


, Ax2 =



0 0 0 −k

0 0 −α2 0

0 −α2 0 0

−k α2 0 0


, A0 =



1 0 0 0

0 ε 0 0

0 0 α3 0

0 0 0 α3


.

So,

B = A0 + (A0)T − ∂x1Ax1 − ∂x2Ax2 = 2



1 0 0 0

0 ε 0 0

0 0 α3 0

0 0 0 α3


.

Now Ax1 and Ax2 are clearly symmetric. On the other hand, as ε, α3 > 0, and B is

positive definite, the system is symmetric positive.

An admissible boundary condition is as follows.

Here

D =



0 0 −knx −kny

0 0 −α2ny α2nx

−knx −α2ny 0 0

−kny α2nx 0 0


, set M =



0 0 −knx −kny

0 0 −α2ny α2nx

knx α2ny 0 0

kny −α2nx 0 0


.

So,

D −M =



0 0 0 0

0 0 0 0

−2knx −2α2ny 0 0

−2kny 2α2nx 0 0


,

which implies ηn = wn12 = 0 on the boundary.
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3.4 Error analysis

Theorem 3.4. Let Ω ⊂ R2 be a bounded domain with sufficiently smooth boundary ∂Ω.

The boundary value problem (3.17) Lu = f in Ω with ηn = wn12 = 0 on ∂Ω has a unique

solution u ∈ [L2(Ω)]4 for every f ∈ [L2(Ω)]4.

Proof. By theorem 3.3, L is a symmetric positive operator with an admissible boundary

condition ηn = wn12 = 0 on ∂Ω . Moreover, by theorem 2.3, L is an isomorphism between

the proper graph space and [L2(Ω)]4. So, the claim follows.

Theorem 3.5. Consider the PDE system (3.17). There is a normed subspace V ⊂ L =

L2(Ω)]4 and two positive constants c1 and c2 such that c1‖u‖V ≤ ‖Lu‖L ≤ c2‖u‖V for

every u ∈ V .

Proof. Define V = {u ∈ L; Lu ∈ L, ηn = wn12 = 0 on ∂Ω} with inner product (u, v)V =

(u, v)L + (Lu, Lv)L for every u, v ∈ V . Equipped with this inner product V is a Hilbert

space. The induced norm is ‖u‖2
V = ‖u‖2

L +‖Lu‖2
L for all u ∈ V . Now consider the operator

L : V → L

and for all u ∈ V

‖u‖2
V = ‖u‖2

L + ‖Lu‖2
L ⇒ ‖u‖2

V ≥ ‖Lu‖2
L ⇒ ‖Lu‖L ≤ ‖u‖V

So, we can choose c2 = 1. Moreover, as L is a symmetric positive operator, by theorem 2.3,

L is an isomorphism between V and L. So, L−1 is continuous and hence there is a c1 such

that c1‖u‖V ≤ ‖Lu‖L

Theorem 3.6. Consider the PDE system (3.17) and the least square problem, find u ∈ V

such that (Lu, Lv)L = (f, Lv)L for every v ∈ V . Then, the problem has a unique solution.
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Proof. Define a bilinear form, ã : V × V → R as

ã(u, v) = (Lu, Lv)L for every u, v ∈ V.

Due to the last theorem 3.5, ã is coercive and continuous. Since, f ∈ L and L is a bounded

linear operator, (f, L·)L is a continuous form on V . So, the conclusion follows from the

Lax-Milgram Lemma. As discussed in LSFEM formulation in Chapter 2, the unique solution

minimizes the quadratic functional E(v) = ‖Lv − f‖L for v ∈ V .

Theorem 3.7. Consider the PDE system (3.17), Vh ⊂ V be a finite dimensional space and

the least square finite element problem, find uh ∈ Vh such that (Luh, Lvh)L = (f, Lvh)L

for every vh ∈ Vh. Then, the problem has a unique solution.

Proof. Consider the bilinear form, ãh : Vh×Vh → R as ãh(uh, vh) = (Luh, Lvh)L for every

uh, vh ∈ Vh. Due to the conformity Vh ⊂ V , ãh is coercive and continuous. Since, f ∈ L

and L is a bounded linear operator, (f, L·)L is a continuous form on Vh. The conclusion

follows from the Lax-Milgram Lemma.

Consider two problems as follows, referring to PDE system (3.17) and V the graph

space of the linear operator L

find u ∈ V such that

(Lu, Lv)L = (f, Lv)L for every v ∈ V. (3.18)

Let Vh ⊂ V be a finite dimensional space,

find uh ∈ Vh such that

(Luh, Lvh)L = (f, Lvh)L for every vh ∈ Vh. (3.19)

Based on this setting, we can state the following theorem
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Theorem 3.8. Let u and uh be solution of problem (3.18) and (3.19) respectively. Assume

also, u ∈ Hm+1(Ω) for some integer m ≥ 1. Then, there is a c > 0 such that for every

h > 0,

‖η−ηh‖1+‖w12−w12h‖1+‖p1−p1h‖1+‖p2−p2h‖1 ≤ chm(‖η‖m+1+‖w12‖m+1+‖p1‖m+1+‖p2‖m+1).

Proof. Since vh ⊂ V

(Lu, Lvh) = (f, Lvh) for all vh ∈ Vh,

(Luh, Lvh) = (f, Lvh) for all vh ∈ Vh.

Upon subtraction

(L(u− uh), Lvh) = 0 for all vh ∈ Vh.

Let Πhu ∈ Vh be a equal order interpolant of u. Then,

‖L(u− uh)‖2
L = (L(u− uh), L(u− uh))

= (L(u− uh), L(u− Πhu)) + (L(u− uh), L(Πhu− uh))

= (L(u− uh), L(u− Πhu))

≤ ‖L(u− uh)‖L ‖L(u− Πhu)‖L.

So, ‖L(u− uh)‖L ≤ ‖L(u− Πhu)‖L.

By theorem 3.5

c1‖u− uh‖V ≤ ‖L(u− uh)‖L ≤ ‖L(u− uh)‖L ≤ c2‖u− Πhu‖V . (3.20)

Choosing Πhu ∈ Vh such that

‖u− Πhu‖V ≤ hm (‖η‖m+1 + ‖w12‖m+1 + ‖p1‖m+1 + ‖p2‖m+1) . (3.21)
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The claim follows from equation (3.20) and (3.21).

3.5 Numerical solution

The explicit weak form of the least square formulation is as follows.

Find u ∈ V such that

(Lu, Lv)L = (f, Lv)L for all v ∈ V,

with u = (ηn wn12 pn1 pn2 ), v = (η̃n w̃n12 p̃n1 p̃n2 ) and using (3.16), we have

(Lu, Lv)L =

∫
Ω

(I + II + III + IV ) dΩ,

where

I =

(
ηn − k∆t

∂pn1
∂x1

− k∆t
∂pn2
∂x2

)(
η̃n − k∆t

∂p̃n1
∂x1

− k∆t
∂p̃n2
∂x2

)
,

II =

(
εwn12 − α2

∂pn1
∂x2

+ α2
∂pn2
∂x1

)(
εw̃n12 − α2

∂p̃n1
∂x2

+ α2
∂p̃n2
∂x1

)
,

III =

(
−k∂η

n

∂x1

− α2
∂wn12

∂x2

+ α3p
n
1

)(
−k∂η̃

n

∂x1

− α2
∂w̃n12

∂x2

+ α3p̃
n
1

)
,

IV =

(
−k∂η

n

∂x2

+ α2
∂wn12

∂x1

+ α3p
n
2

)(
−k∂η̃

n

∂x2

+ α2
∂w̃n12

∂x1

+ α3p̃
n
2

)
.

Also,

(f, Lv)L =

∫
Ω

(A+B + C +D) dΩ,

where

A =
(
hn∆t+ ηn−1

)(
η̃n − k∆t

∂p̃n1
∂x1

− k∆t
∂p̃n2
∂x2

)
,

B = 0,

C = fn11

(
−k∂η̃

n

∂x1

− α2
∂w̃n12

∂x2

+ α3p̃
n
1

)
,

D = fn22

(
−k∂η̃

n

∂x2

+ α2
∂w̃n12

∂x1

+ α3p̃
n
2

)
.
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The PDE domain is a square of side 2 with center at (0, 0). The PDEs are supplemented by

boundary condition (η = w12 = 0). We also set ε = 10−200. We choose ∆t = 0.05, 0.1, 1.0.

COMSOL 4.3 Weak form PDE console is used to implement the corresponding weak for-

mulation. In this finite element implementation, 578 elements, 4868 degrees of freedom,

Lagrange shape functions with quadratic element order are used.

Parameters Value Parameters Value

λ, µ 1 fn11
xy

k, Sε 1 fn22
1

α 0.6 hn1
1

Table 3.1: Different parameters for COMSOL for the first formulation

(a) Physical domain (b) Meshed domain

Figure 3.2: Domain and its meshing for the first formulation
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(a) η at t = 0.05 (b) w12 at t = 0.05

(c) p1 at t = 0.05 (d) p2 at t = 0.05

Figure 3.3: Different variables at t = 0.05
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(a) η at t = 0.1 (b) w12 at t = 0.1

(c) p1 at t = 0.1 (d) p2 at t = 0.1

Figure 3.4: Different variables at t = 0.1
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(a) η at t = 1 (b) w12 at t = 1

(c) p1 at t = 1 (d) p2 at t = 1

Figure 3.5: Different variables at t = 1
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Chapter 4

Stress-displacement-pressure formulation

We consider the following PDE system


σ − 2µε− λtr(ε)I + αpI = 0,

−∇ · σ = f,

∂
∂t

[Sεp+ α (∇ · u)]− k∇2p = h.

(4.1)

or its equivalent form. Poroelastic equations can be considered as a coupling between linear

elasticity equations and heat equation in some sense. In chapter 2, linear elasticity equations

and heat equation are discussed. Now, we introduce coupling terms and discuss how the

system is a symmetric positive system. It suffices to consider the second equation in (4.1)

as in the following form [30, 32]

−∇ · σ + βu = f.

4.1 Completely decoupled system

Consider the following system


σ − 2µε− λtr(ε)I = 0,

−∇ · σ + βu = f,

∂
∂t

[Sεp]− k∇2p = h.

(4.2)

As linear elasticity equations and heat equation are symmetric positive system as proved in

chapter 2, and (4.2) is completely decoupled, we have proved the following theorem.
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Theorem 4.1. Consider the system of PDE (4.2) in Ω× (0, T ] where Ω is an open subset

of R2 with Lipschitz boundary. Then, there is a transformation of the PDE system such that

the resulting first order system can be formulated as a symmetric positive system. Moreover,

there is at least one admissible boundary condition.

4.2 Simplified coupled system

Consider the following system


σ − 2µε− λtr(ε)I + αpI = 0,

−∇ · σ + βu = f,

∂
∂t

[Sεp]− k∇2p = h.

(4.3)

This system has some practical importance as noted in [17]. It explains the problems of fluid

flow and mechanics are uncoupled when a highly compressible fluid (e.g. air) fills the pore

space. In such case, the coupling term σkk or ∇ · u term approaches zero. Without loss of

generality, we set Sε = 1. As in chapter 2, we can write

bσi,i − a
∑
k 6=i

σkk − 2µ
∂ui
∂xi

+ pα1 = 0 ∀i ∈ {1, 2, · · · , d}, (4.4a)

σi,j − µ(
∂ui
∂xj

+
∂uj
∂xi

) = 0 ∀i, j ∈ {1, 2, · · · , d} with i 6= j, (4.4b)

−∂σij
∂xi

+ βuj = fj ∀j ∈ {1, 2, · · · , d}, (4.4c)

∂p

∂t
− k∇2p = h, (4.4d)

where a = λ
λd+2µ

, b = 1−a, α1 = α−aαd and note that a, b and α1 are positive constants

with b
a

= (d− 1) + 2µ
λ

and α1 = 2µα
λd+2µ

.
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The system for d = 2

bσ11 − aσ22 − 2µ
∂u1

∂x1

+ pα1 = 0,

σ21 − µ
(
∂u2

∂x1

+
∂u1

∂x2

)
= 0,

σ12 − µ
(
∂u1

∂x2

+
∂u2

∂x1

)
= 0,

bσ22 − aσ11 − 2µ
∂u2

∂x2

+ pα1 = 0,

−∂σ11

∂x1

− 1

2

∂σ21

∂x2

− 1

2

∂σ12

∂x2

+ βu1 = f1,

−1

2

∂σ21

∂x1

− 1

2

∂σ12

∂x1

− ∂σ22

∂x2

+ βu2 = f2,

e−t
∂p

∂t
− ke−t∂px1

∂x1

− ke−t∂px2
∂x2

= h1,

−ke−t ∂p
∂x1

+ ke−tpx1 = 0,

−ke−t ∂p
∂x2

+ ke−tpx2 = 0.

(4.5)

As in the form of Lu = f

L =


B U2 U3

UT
2 M2 O

O O L3

, u =


σ

u

P

, where σ =



σ11

σ21

σ12

σ22


, u =

u1

u2

, and P =


p

px1

px2

. (4.6)

Also,

B =



b 0 0 −a

0 1 0 0

0 0 1 0

−a 0 0 b


, U2 =



−2µ ∂
∂x1

0

−µ ∂
∂x2

−µ ∂
∂x1

−µ ∂
∂x2

−µ ∂
∂x1

0 −2µ ∂
∂x2


, U3 =



α1 0 0

0 0 0

0 0 0

α1 0 0


, (4.7)

L3 =


e−t ∂

∂t
−ke−t ∂

∂x1
−ke−t ∂

∂x2

−ke−t ∂
∂x1

ke−t 0

−ke−t ∂
∂x2

0 ke−t

, M2 =

2µβ 0

0 2µβ

. (4.8)
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As f has nothing to do with symmetric positivity, it is often skipped unless numerical results

are needed. Here B = BT , L3 = LT3 and there is no derivative term in U3. So, the system

is clearly symmetric. Positivity of the system can be found in the following theorem.

Theorem 4.2. Consider the system of PDE (4.5) in Ω× (0, T ] where Ω is an open subset

of R2 with Lipschitz boundary. Then, there is a transformation of the PDE system such that

the resulting first order system can be formulated as a symmetric positive system. Moreover,

there is at least one admissible boundary condition.

Proof. With simple transformation, the system can be written as Lu = f with

L =


B U2 U3

UT
2 M2 O

O O L3

, u =


σ

u

P

, where σ =



σ11

σ21

σ12

σ22


, u =

u1

u2

, and P =


p
ε1

px1

px2

.

Also,

B =



b 0 0 −a

0 1 0 0

0 0 1 0

−a 0 0 b


, U2 =



−2µ ∂
∂x1

0

−µ ∂
∂x2

−µ ∂
∂x1

−µ ∂
∂x2

−µ ∂
∂x1

0 −2µ ∂
∂x2


, U3 =



ε1α1 0 0

0 0 0

0 0 0

ε1α1 0 0


,

L3 =


ε21ε2e

−t ∂
∂t

−ε1ε2ke−t ∂
∂x1

−ε1ε2ke−t ∂
∂x2

−ε1ε2ke−t ∂
∂x1

ε2ke
−t 0

−ε1ε2ke−t ∂
∂x2

0 ε2ke
−t

, M2 =

2µβ 0

0 2µβ

,

where ε1, ε2 are two positive constants. The system is clearly symmetric. The matrix
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B = A0 + (A0)T − ∂tAt −
2∑

k=1

∂kAk as follows

B =


2B O U3

OT 2M2 O

UT
3 OT L4

, where L4 =


ε21ε2e

−t 0 0

0 2ε2ke
−t 0

0 0 2ε2ke
−t

.

Sufficient conditions for B being positive definite, we need to have ε1ε2e
−T > 2α1 and

2b > 2a + α1ε1. As b
a

= (d− 1) + 2µ
λ

and hence b > a, we can easily choose some small ε1

and large ε2 satisfying the conditions. For such ε1 and ε2, the system is clearly symmetric

positive. The following admissible boundary condition can be enforced as in the same way

for linear elasticity and heat equation in chapter 2.

u1 = u2 = p = 0 on Ω× {0},

u1 = u2 = 0 on Ω× {T},

u1 = u2 = p = 0 on ∂Ω× (0, T ].

4.3 Time discretization of simplified coupled system

Time discretization of equation (4.3)

σn − 2µεn − λtr(εn)I + αpnI = 0,

−∇ · σn + βun = fn,

Sεp
n − Sεpn−1

∆t
− k∇2pn = hn.

(4.9)
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Without loss of generality, set Sε = 1 and drop the time index, then we have

σ − 2µε− λtr(ε)I + αpI = 0,

−∇ · σ + βu = f,

p− k1∇2p = h1.

(4.10)

The system for d = 2

bσ11 − aσ22 − 2µ
∂u1

∂x1

+ pα1 = 0,

σ21 − µ
(
∂u2

∂x1

+
∂u1

∂x2

)
= 0,

σ12 − µ
(
∂u1

∂x2

+
∂u2

∂x1

)
= 0,

bσ22 − aσ11 − 2µ
∂u2

∂x2

+ pα1 = 0,

−∂σ11

∂x1

− 1

2

∂σ21

∂x2

− 1

2

∂σ12

∂x2

+ βu1 = f1,

−1

2

∂σ21

∂x1

− 1

2

∂σ12

∂x1

− ∂σ22

∂x2

+ βu2 = f2,

p− k1
∂px1
∂x1

− k1
∂px2
∂x2

= h1,

−k1
∂p

∂x1

+ k1px1 = 0,

−k1
∂p

∂x2

+ k1px2 = 0.

(4.11)

As in the form of Lu = f with

L =


B U2 U3

UT
2 M2 O

O O L3

, u =


σ

u

P

, where σ =



σ11

σ21

σ12

σ22


, u =

u1

u2

, and P =


p

px1

px2

.
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Also,

B =



b 0 0 −a

0 1 0 0

0 0 1 0

−a 0 0 b


, U2 =



−2µ ∂
∂x1

0

−µ ∂
∂x2

−µ ∂
∂x1

−µ ∂
∂x2

−µ ∂
∂x1

0 −2µ ∂
∂x2


, U3 =



α1 0 0

0 0 0

0 0 0

α1 0 0


,

L3 =


1 −k1

∂
∂x1

−k1
∂
∂x2

−k1
∂
∂x1

k1 0

−k1
∂
∂x2

0 k1

, M2 =

2µβ 0

0 2µβ

.
Here B = BT , L3 = LT3 and there is no derivative term in U3. So, the system is clearly

symmetric. Positivity of the system can be found in the following theorem.

Theorem 4.3. Consider the system of PDEs (4.11) in Ω where Ω is an open subset of

R2 with Lipschitz boundary. Then, there is a transformation of the PDE system such that

the resulting first order system can be formulated as a symmetric positive system. Moreover,

there is at least one admissible boundary condition.

Proof. With simple transformation, the system can be written as Lu = f with

L =


B U2 U3

UT
2 M2 O

O O L3

, u =


σ

u

P

, where σ =



σ11

σ21

σ12

σ22


, u =

u1

u2

, and P =


p
ε1

px1

px2

.

Also,

B =



b 0 0 −a

0 1 0 0

0 0 1 0

−a 0 0 b


, U2 =



−2µ ∂
∂x1

0

−µ ∂
∂x2

−µ ∂
∂x1

−µ ∂
∂x2

−µ ∂
∂x1

0 −2µ ∂
∂x2


, U3 =



ε1α1 0 0

0 0 0

0 0 0

ε1α1 0 0


,
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L3 =


ε21ε2 −ε1ε2k1

∂
∂x1

−ε1ε2k1
∂
∂x2

−ε1ε2k1
∂
∂x1

ε2k1 0

−ε1ε2k1
∂
∂x2

0 ε2k1

, M2 =

2µβ 0

0 2µβ

,

where ε1, ε2 are two positive constants. The system is clearly symmetric. The matrix

B = A0 + (A0)T − ∂tAt −
2∑

k=1

∂kAk as follows

B =


2B O U3

OT 2M2 O

UT
3 OT L4

, where L4 =


2ε21ε2 0 0

0 2ε2k1 0

0 0 2ε2k1

.

Sufficient conditions for B being positive definite, we need to have ε1ε2 > α1 and 2b >

2a + α1ε1. As b
a

= (d − 1) + 2µ
λ

and hence b > a, we can easily choose some small ε1

and large ε2 satisfying the conditions. For such ε1 and ε2, the system is clearly symmetric

positive. The following admissible boundary condition can be enforced as in the same way

for linear elasticity and heat equation in chapter 2.

u1 = u2 = p = 0 on ∂Ω.

4.4 Completely coupled system

Consider the following equation


σ − 2µε− λtr(ε)I + αpI = 0,

−∇ · σ + βu = f,

α
KB

∂p
∂t

+ α
dK

∂σkk
∂t
− k∇2p = h.

(4.12)
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The system can be written as in chapter 2

bσi,i − a
∑
k 6=i

σkk − 2µ
∂ui
∂xi

+ pα1 = 0 ∀i ∈ {1, 2, · · · , d}, (4.13a)

σi,j − µ(
∂ui
∂xj

+
∂uj
∂xi

) = 0 ∀i, j ∈ {1, 2, · · · , d} with i 6= j, (4.13b)

−∂σij
∂xi

+ βuj = fj ∀j ∈ {1, 2, · · · , d}, (4.13c)

∂

∂t
[c1p+ θσkk]− k∇2p = h, (4.13d)

where a = λ
λd+2µ

, b = 1−a, α1 = α−aαd, b
a

= (d−1)+ 2µ
λ
, α1 = 2µα

λd+2µ
, c1 = α

KB
, θ = α

dK
.

Here, a, b, and α1 are positive constants.

4.4.1 Difficulty with time derivative

For d = 2, the system in the form of Lu = f with

L =


B U2 U3

UT
2 M2 O

L1 O L3

, u =


σ

u

P

, where σ =



σ11

σ21

σ12

σ22


, u =

u1

u2

, and P =


p

px1

px2

.

Also,

B =



b 0 0 −a

0 1 0 0

0 0 1 0

−a 0 0 b


, U2 =



−2µ ∂
∂x1

0

−µ ∂
∂x2

−µ ∂
∂x1

−µ ∂
∂x2

−µ ∂
∂x1

0 −2µ ∂
∂x2


, U3 =



α1 0 0

0 0 0

0 0 0

α1 0 0


,
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L1 =


θ ∂
∂t

0 0 θ ∂
∂t

0 0 0 0

0 0 0 0

, L3 =


c1

∂
∂t

−k ∂
∂x1

−k ∂
∂x2

−k ∂
∂x1

k 0

−k ∂
∂x2

0 k

, M2 =

2µβ 0

0 2µβ

.

In complete matrix form, we can write



b 0 0 −a −2µ ∂
∂x1

0 α1 0 0

0 1 0 0 −µ ∂
∂x2

−µ ∂
∂x1

0 0 0

0 0 1 0 −µ ∂
∂x2

−µ ∂
∂x1

0 0 0

−a 0 0 b 0 −2µ ∂
∂x2

α1 0 0

−2µ ∂
∂x1

−µ ∂
∂x2

−µ ∂
∂x2

0 2µβ 0 0 0 0

0 −µ ∂
∂x1

−µ ∂
∂x1

−2µ ∂
∂x2

0 2µβ 0 0 0

θ ∂
∂t

0 0 θ ∂
∂t

0 0 c1
∂
∂t

−k ∂
∂x1

−k ∂
∂x2

0 0 0 0 0 0 −k ∂
∂x1

k 0

0 0 0 0 0 0 −k ∂
∂x2

0 k





σ11

σ21

σ12

σ22

u1

u2

p

px1

px2



=



0

0

0

0

f1

f2

h

0

0



.

So, the system is not symmetric due to the presence of θ ∂
∂t

terms in the coefficient matrix.

Even with row or column manipulation, it seems very difficult to make it symmetric. There

is a chance to make it symmetric if we can get rid of time derivative in the matrix. So, we

turn into time discretization formulation to make it symmetric and hopefully positive later

on.
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4.4.2 Method without scaling

Time discretization of equation (4.12)

σn − 2µεn − λtr(εn)I + αpnI = 0,

−∇ · σn + βun = fn,

1

∆t

[ α

KB
(pn − pn−1) +

α

dK
(σnkk − σn−1

kk )
]
− k∇2pn = hn.

(4.14)

For notational simplicity, we drop the time index and after algebraic manipulation, then we

have

σ − 2µε− λtr(ε)I + αpI = 0,

−∇ · σ + βu = f,

α

B
p+

α

d
σkk − k2∇2p = h2.

(4.15)

The system for d = 2

bσ11 − aσ22 − 2µ
∂u1

∂x1

+ pα1 = 0,

σ21 − µ
(
∂u2

∂x1

+
∂u1

∂x2

)
= 0,

σ12 − µ
(
∂u1

∂x2

+
∂u2

∂x1

)
= 0,

bσ22 − aσ11 − 2µ
∂u2

∂x2

+ pα1 = 0,

−∂σ11

∂x1

− 1

2

∂σ21

∂x2

− 1

2

∂σ12

∂x2

+ βu1 = f1,

−1

2

∂σ21

∂x1

− 1

2

∂σ12

∂x1

− ∂σ22

∂x2

+ βu2 = f2,

α

B
p+

α

d
σkk − k2

∂px1
∂x1

− k2
∂px2
∂x2

= h2,

−k2
∂p

∂x1

+ k2px1 = 0,

−k2
∂p

∂x2

+ k2px2 = 0.

(4.16)

As in the form of Lu = f , we can write
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

b 0 0 −a −2µ ∂
∂x1

0 α1 0 0

0 1 0 0 −µ ∂
∂x2

−µ ∂
∂x1

0 0 0

0 0 1 0 −µ ∂
∂x2

−µ ∂
∂x1

0 0 0

−a 0 0 b 0 −2µ ∂
∂x2

α1 0 0

−2µ ∂
∂x1

−µ ∂
∂x2

−µ ∂
∂x2

0 2µβ 0 0 0 0

0 −µ ∂
∂x1

−µ ∂
∂x1

−2µ ∂
∂x2

0 2µβ 0 0 0

α
2

0 0 α
2

0 0 α
B

−k2
∂
∂x1

−k2
∂
∂x2

0 0 0 0 0 0 −k2
∂
∂x1

k2 0

0 0 0 0 0 0 −k2
∂
∂x2

0 k2





σ11

σ21

σ12

σ22

u1

u2

p

px1

px2



=



0

0

0

0

f1

f2

h

0

0



.

The system is clearly symmetric. The matrix B is as follows

B =



2b 0 0 −2a 0 0 α1 + α
2

0 0

0 2 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

−2a 0 0 2b 0 0 α1 + α
2

0 0

0 0 0 0 4µβ 0 0 0 0

0 0 0 0 0 4µβ 0 0 0

α1 + α
2

0 0 α1 + α
2

0 0 2 α
B

0 0

0 0 0 0 0 0 0 2k2 0

0 0 0 0 0 0 0 0 2k2



.

Sufficient condition for B to be a positive definite matrix

2b > 2a+
µα

λ+ µ
+
α

2
,

α

B
>

µα

λ+ µ
+
α

2
.

(4.17)
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For the d dimensional case, similar analysis indicates B will be positive definite if

2b > 2a(d− 1) + α
2µ

λd+ 2µ
+
α

d
,

2
α

B
> d

(
α

2µ

λd+ 2µ
+
α

d

)
.

(4.18)

Algebraic manipulation of (4.18) gives

2 > α

(
1 +

1

d
+

λ

2µ

)
,

1

B
>

µd

λd+ 2µ
+

1

2
.

(4.19)

Now, we can state the following theorem

Theorem 4.4. Consider the system of PDE (4.16) or its equivalent three dimensional for-

mulation in Ω where Ω is an open subset of R2 or R3 with Lipschitz boundary. Then,

the PDE system is symmetric positive if equation (4.19) holds. Moreover, there is at least

one admissible boundary condition.

Proof. Sufficient conditions (4.19) have already been established. It is easy to see u1 = u2 =

p = 0 on ∂Ω is an admissible boundary condition.

We wish to check if equation (4.19) is satisfied for more realistic situation (three dimen-

sional case) such as poroelastic system in geophysical application. For d = 3, equation (4.19)

becomes

2 > α

(
1 +

1

3
+

λ

2µ

)
,

1

B
>

3µ

3λ+ 2µ
+

1

2
.

(4.20)
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The following table lists different physical properties of some rocks. With those data,

we try to check whether equation (4.20) is satisfied or not.

Rock µ (GPa) K (GPa) α B λ (GPa)

Berea sandstone 1 6.0 8.0 0.79 0.62 4.0

Boise sandstone 4.2 4.6 0.85 0.5 1.8

Ohio sandstone 6.8 8.4 0.74 0.5 3.867

Pecos sandstone 5.9 6.7 0.83 0.61 2.767

Ruhr sandstone 13 13 0.65 0.88 4.333

Weber sandstone 12 13 0.64 0.73 5

Tennessee marble 24 40 0.19 0.51 24

Charcoal granite 19 35 0.27 0.55 22.333

Westerly granite 15 25 0.47 0.85 15

Berea sandstone 2 5.6 6.6 0.77 0.75 2.867

Indiana limestone 12.1 21.2 0.71 0.46 13.133

Table 4.1: Physical constants of Rocks as found in [17]

We find λ as λ = K − 2µ
3

as in [17].
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The following table summarizes the results.

Rock α(1 + 1
3

+ λ
2µ

) 3µ
3λ+2µ

+ 1
2

1
B

Positive?

Berea sandstone 1.317 1.25 1.613 Yes

Boise sandstone 1.315 1.413 2 Yes

Ohio sandstone 1.197 1.309 2 Yes

Pecos sandstone 1.301 1.381 1.639 Yes

Ruhr sandstone 0.975 1.5 1.136 No

Weber sandstone 0.987 1.423 1.369 No

Tennessee marble 0.348 1.1 1.961 Yes

Charcoal granite 0.519 1.043 1.818 Yes

Westerly granite 0.862 1.1 1.176 Yes

Berea sandstone 2 1.224 1.348 1.333 No

Indiana limestone 1.332 1.071 2.174 Yes

Table 4.2: Positivity of different poroelastic system without scaling

Here, positivity means being the system as symmetric positive. So, Yes on positive

indicates our system is symmetric positive satisfying equation (4.20).

4.4.3 Methods using scaling

We do not have symmetric positive system for Ruhr sandstone, Weber sandstone and

Berea sandstone 2. In order to have more control and flexibility, we may scale (row multi-

plication or column multiplication) some of the equations of (4.16)
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For d = 2, our system as in the form of Lu = f (B,U2,M2 as in (4.3) and (4.3))

L =


B U2 U4

UT
2 M2 O

L1 O L3

, u =


σ

u

P

, where σ =



σ11

σ21

σ12

σ22


, u =

u1

u2

, and P =


p
ε1

px1
ε1

px2
ε1

,

U4 =



α1ε1 0 0

0 0 0

0 0 0

α1ε1 0 0


, L3 =


ε1ε2

α
B

−ε1ε2k2
∂
∂x1

−ε1ε2k2
∂
∂x2

−ε1ε2k2
∂
∂x1

ε1ε2k2 0

−ε1ε2k2
∂
∂x2

0 ε1ε2k2

, L1 =


ε2
α
2

0 0 ε2
α
2

0 0 0 0

0 0 0 0

.

Here B = BT , L3 = LT3 , M2 = MT
2 and there is no derivative term in U4 and L1. So,

the system is clearly symmetric. The system is positive if the following matrix is positive

definite.

B =



2b 0 0 −2a 0 0 α1ε1 + α
2
ε2 0 0

0 2 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

−2a 0 0 2b 0 0 α1ε1 + α
2
ε2 0 0

0 0 0 0 4µβ 0 0 0 0

0 0 0 0 0 4µβ 0 0 0

α1ε1 + α
2
ε2 0 0 α1ε1 + α

2
ε2 0 0 2ε1ε2

α
B

0 0

0 0 0 0 0 0 0 2ε1ε2k2 0

0 0 0 0 0 0 0 0 2ε1ε2k2



.
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Sufficient conditions for being positive definite are as follows

2b > 2a+ α1ε1 +
α

2
ε2,

2ε1ε2
α

B
> 2(α1ε1 +

α

2
ε2).

(4.21)

Setting the values of a, b and α1 in terms of λ, µ and α, we need to have

2 > α

[
ε1 + ε2(

1

2
+

λ

2µ
)

]
,

1

B
>

µ

ε2(λ+ µ)
+

1

2ε1
.

(4.22)

Now, we can extend this to the d−dimensional case. For d−dimensions, sufficient conditions

are

2b > 2a(d− 1) + α1ε1 +
α

d
ε2,

2ε1ε2
α

B
> d

(
α1ε1 +

α

d
ε2

)
.

(4.23)

where a = λ
λd+2µ

, b = 1 − a and α1 = 2µ
λd+2µ

. After algebraic manipulation, sufficient

conditions are

2 > α

[
ε1 + ε2(

1

d
+

λ

2µ
)

]
,

1

B
>

µd

ε2(λd+ 2µ)
+

1

2ε1
.

(4.24)

So, we have proved the following theorem.

Theorem 4.5. Consider the system of PDE (4.16) or its equivalent three dimensional for-

mulation in Ω where Ω is an open subset of R2 or R3 with Lipschitz boundary. Then, the

PDE system is symmetric positive if equation (4.24) holds for some ε1, ε2 > 0. Moreover,

there is at least one admissible boundary condition.

Now, there are two controlling parameters ε1, ε2 to choose, so that equation (4.24) is

satisfied. In fact, equation (4.19) is a special case of equation (4.24) with ε1 = ε2 = 1.

Although ε1, ε2 are competing in nature, still there are many different options. Based on
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the previous geophysical data, we can write the equations as a symmetric positive system.

Using scaling technique, the systems corresponding to Ruhr sandstone, Weber sandstone are

symmetric positive, whereas without scaling they are not, as shown in Table 4.2. In the

three dimensional case, equation (4.24) becomes

2 > α

[
ε1 + ε2(

1

3
+

λ

2µ
)

]
,

1

B
>

3µ

ε2(3λ+ 2µ)
+

1

2ε1
.

(4.25)

The following table shows the results of the scaling method.

Rock ε1 ε2 α[ε1 + ε2(1
3

+ λ
2µ

)] 3µ
ε2(3λ+2µ)

+ 1
2ε1

1
B

Positive?

Berea sandstone 1 1 1 1.317 1.25 1.613 Yes

Boise sandstone 1 1 1.315 1.413 2 Yes

Ohio sandstone 1 1 1.197 1.309 2 Yes

Pecos sandstone 1 1 1.301 1.381 1.639 Yes

Ruhr sandstone 2 2 1.95 0.75 1.136 Yes

Weber sandstone 2.5 1 1.945 1.123 1.369 Yes

Tennessee marble 1 1 0.348 1.1 1.961 Yes

Charcoal granite 1 1 0.519 1.043 1.818 Yes

Westerly granite 1 1 0.862 1.1 1.176 Yes

Berea sandstone 2 2 1 1.994 1.098 1.333 Yes

Indiana limestone 1 1 1.332 1.071 2.174 Yes

Table 4.3: Positivity of different poroelastic systems with scaling
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4.5 Least square formulation

Consider the following two dimensional system

σ − λ(∇.u)1d − µ(∇u+∇uT ) + α(1d)p = 0,

−1

2
∇ · (σ + σT ) + βu = f,

∂

∂t

[ α
K

σkk
2

+
αp

KB

]
− k∇2p = h.

(4.26)

where β1, β2 > 0. After algebraic manipulation, we end up with the system as

bσi,i − a
∑
k 6=i

σkk − 2µ
∂ui
∂xi

+ pα1 = 0 ∀i ∈ {1, 2, · · · , d},

σi,j − µ(
∂ui
∂xj

+
∂uj
∂xi

) = 0 ∀i, j ∈ {1, 2, · · · , d} with i 6= j,

−∂σij
∂xi

+ βuj = fj ∀j ∈ {1, 2, · · · , d},

∂

∂t

[ α
K

σkk
2

+
αp

KB

]
− k∇2p = h,

(4.27)

where a = λ
λd+2µ

, b = 1 − a = λ(d−1)+2µ
λd+2µ

, α1 = α − aαd = 2µα
λd+2µ

, and d = 2. The time

discretization can be realized by using the Backward-Euler scheme.

bσn11 − aσn22 − 2µ
∂un1
∂x1

+ α1p
n = 0,

σn21 − µ(
∂un1
∂x2

+
∂un2
∂x1

) = 0,

σn12 − µ(
∂un2
∂x1

+
∂un1
∂x2

) = 0,

bσn22 − aσn11 − 2µ
∂un2
∂x2

+ α1p
n = 0,

−∂σ
n
11

∂x1

− ∂σn21

∂x2

+ βun1 = fn1 ,

−∂σ
n
12

∂x1

− ∂σn22

∂x2

+ βun2 = fn2 ,
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1

∆t

[
α

2
(σn11 + σn22) +

αpn

B
− α

2
(σn−1

11 + σn−1
22 )− αpn−1

B

]
− kK∂pn1

∂x1

− kK∂pn2
∂x2

= hn1 ,

−∂p
n

x1

+ pn1 = 0,

−∂p
n

x2

+ pn2 = 0,

where ∆t = tn − tn−1.

We can write as in Lu = f as follows where the unknown variables are σ11, σ21, σ12, σ22,

u1, u2, p, p1, p2 and

u =



σn11

σn21

σn12

σn22

un1

un2

pn

pn1

pn2



, Lu =



bσn11 − aσn22 − 2µ
∂un1
∂x1

+ α1p
n

σn21 − µ(
∂un1
∂x2

+
∂un2
∂x1

)

σn12 − µ(
∂un2
∂x1

+
∂un1
∂x2

)

bσn22 − aσn11 − 2µ
∂un2
∂x2

+ α1p
n

−∂σn11
∂x1
− ∂σn21

∂x2
+ βun1

−∂σn12
∂x1
− ∂σn22

∂x2
+ βun2

α
2
(σn11 + σn22) + αpn

B
− kK∆t

∂pn1
∂x1
− kK∆t

∂pn2
∂x2

−∂pn

x1
+ pn1

−∂pn

x2
+ pn2



, and f =



0

0

0

0

fn1

fn2

hn2

0

0



, (4.28)

where hn2 = hnK∆t+α
2
(σn−1

11 +σn−1
22 )+αpn−1

B
. The Backward-Euler method is unconditionally

stable with first order accuracy O(∆t) and thus can be used to find solution with any time

step.

For the least square formulation

(Lu, Lv)L = (f, Lv)L

where

u = (σ u1 u2 p p1 p2)T and v = (σ̃ ũ1 ũ2 p̃ p̃1 p̃2)T
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Using (4.28), we have

(Lu, Lv)L =

∫
Ω

(B1 +B2 +B3 +B4 +B5 +B6 +B7 +B8 +B9) dΩ,

where

B1 =

(
bσn11 − aσn22 − 2µ

∂un1
∂x1

+ α1p
n

)(
bσ̃n11 − aσ̃n22 − 2µ

∂ũn1
∂x1

+ α1p̃
n

)
,

B2 =

(
σn21 − µ(

∂un1
∂x2

+
∂un2
∂x1

)

)(
σ̃n21 − µ(

∂ũn1
∂x2

+
∂ũn2
∂x1

)

)
,

B3 =

(
σn12 − µ(

∂un2
∂x1

+
∂un1
∂x2

)

)(
σ̃n12 − µ(

∂ũn2
∂x1

+
∂ũn1
∂x2

)

)
,

B4 =

(
bσn22 − aσn11 − 2µ

∂un2
∂x2

+ α1p
n

)(
bσ̃n22 − aσ̃n11 − 2µ

∂ũn2
∂x2

+ α1p̃
n

)
,

B5 =

(
−∂σ

n
11

∂x1

− ∂σn21

∂x2

+ βun1

)(
−∂σ̃

n
11

∂x1

− ∂σ̃n21

∂x2

+ βũn1

)
,

B6 =

(
−∂σ

n
12

∂x1

− ∂σn22

∂x2

+ βun2

)(
−∂σ̃

n
12

∂x1

− ∂σ̃n22

∂x2

+ βũn2

)
,

B7 =

(
α

2
(σn11 + σn22) +

αpn

B
− k∗∂p

n
1

∂x1

− k∗∂p
n
2

∂x2

)(
α

2
(σ̃n11 + σ̃n22) +

αp̃n

B
− k∗∂p̃

n
1

∂x1

− k∗∂p̃
n
2

∂x2

)
,

B8 =

(
−∂p

n

x1

+ pn1

)(
−∂p̃

n

x1

+ p̃n1

)
,

B9 =

(
−∂p

n

x2

+ pn2

)(
−∂p̃

n

x2

+ p̃n2

)
,

with k∗ = kK∆t. Also,

(f, Lv)L =

∫
Ω

(D5 +D6 +D7) dΩ,

where

D5 = fn1

(
−∂σ̃

n
11

∂x1

− ∂σ̃n21

∂x2

+ βũn1

)
,

D6 = fn2

(
−∂σ̃

n
12

∂x1

− ∂σ̃n22

∂x2

+ βũn2

)
,
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D7 =

(
hnK∆t+

α

2
(σn−1

11 + σn−1
22 ) +

αpn−1

B

)(
α

2
(σ̃n11 + σ̃n22) +

αp̃n

B
− k∗∂p̃

n
1

∂x1

− k∗∂p̃
n
2

∂x2

)
.

4.6 Error analysis

Theorem 4.6. Let Ω ⊂ R2 be a bounded domain with sufficiently smooth boundary ∂Ω.

The boundary value problem Lu = f in Ω with un1 = un2 = pn = 0 on ∂Ω has a uniques

solution u ∈ [L2(Ω)]9 for every f ∈ [L2(Ω)]9.

Proof. The linear operator L is symmetric positive operator. Also, the boundary condition

un1 = un2 = pn = 0 on ∂Ω is admissible. so the claim follows.

Theorem 4.7. There is a normed subspace V ⊂ L = [L2(Ω)]9 and two positive constants c1

and c2 such that c1‖u‖V ≤ ‖Lu‖L ≤ c2‖u‖V for every u ∈ V .

Proof. Define V = {u ∈ L; Lu ∈ L, un1 = un2 = pn = 0 on ∂Ω} with inner product (u, v)V =

(u, v)L +(Lu, Lv)L for every u, v ∈ V . Then V is a closed subspace of L and hence a Hilbert

space. Now consider L : V → L. L is clearly continuous with respect to the induced norm

‖u‖2
V = ‖u‖2

L + ‖Au‖2
L. Also, L is symmetric positive operator. So, L is an isomorphism

between V and L. The conclusions follow from the fact L is an isomorphism.

Theorem 4.8. Consider the problem, find u ∈ V such that (Lu, Lv)L = (f, Lv)L for

every v ∈ V . Then, the problem has a unique solution.

Proof. Sketch of proof: Define a new bilinear form, ã : V × V → R as ã(u, v) = (Lu, Lv)L

for every u, v ∈ V . As L is an isomorphism between V and L as proved in the last theorem,

ã is clearly coercive and continuous. Since, f ∈ L, then (f, L·)L is a continuous form on

V . The conclusion follows from the Lax-Milgram Lemma. Note that, the solution minimizes

the quadratic function E(v) = ‖Lv − f‖L for v ∈ V .

Theorem 4.9. Let Vh ⊂ V be a finite dimensional space and consider the problem, find

uh ∈ Vh such that (Luh, Lvh)L = (f, Lvh)L for every vh ∈ Vh . Then, the problem has a

unique solution.
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Proof. Define the bilinear form, ãh : Vh × Vh → R as ãh(uh, vh) = (Luh, Lvh)L for every

uh, vh ∈ Vh. As Vh ⊂ V , ãh is clearly coercive and continuous. Since, f ∈ L, then (f, L·)L

is a continuous form on Vh. The conclusion follows from the Lax-Milgram Lemma.

Theorem 4.10. Let Vh ⊂ V be a finite dimensional space and consider two problems, find

uh ∈ Vh such that (Auh, Avh)L = (f, Avh)L for every vh ∈ Vh and find u ∈ V such

that (Au, Av)L = (f, Av)L for every v ∈ V . Moreover, if u ∈ Hm+1(Ω) for some integer

m ≥ 1. Then, there is a c > 0 such that for every h > 0,

I ≤ J

where

I = ‖σ − σh‖0,Ω + ‖∇.(σ − σh)‖0,Ω + ‖u− uh‖1,Ω + ‖p− ph‖1,Ω + ‖∇.(p∗ − p∗h)‖0,Ω

with

p∗ = (p1 =
∂p

∂x
, p2 =

∂p

∂y
)T and J = chm(‖σ‖m+1,Ω + ‖u‖m+1,Ω + ‖p‖m+1,Ω)

Proof. By Lax-Milgram Lemma, we have the existence and uniqueness of u and uh. Consider

the bilinear form, ã : V × V → R as ã(u, v) = (Lu, Lv)L for every u, v ∈ Vh. By the

symmetry and coercivity of ã together with the Galerkin orthogonality, it is easy to show

‖u− uh‖V ≤ C inf
wh∈Vh

‖u− wh‖V

The conclusion follows by choosing an appropriate interpolation of u with desired properties.
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4.7 Numerical solution

The PDE domain is a square of side 2 with center at (0, 0). The PDEs are supplemented

by the boundary condition (p = u1 = u2 = 0). We also set β = 10−200(1, 1)T . We choose

∆t = 0.001, 0.01, 0.05, 0.08, 0.1, 0.3, 0.6, 1.0. COMSOL 4.3 weak form PDE console is used

to implement the corresponding weak formulation. In this finite element implementation,

578 elements, 8519 degrees of freedom, Lagrange shape functions with quadratic element

order are used. Also, following parameters have been used.

Parameters Value Parameters Value

λ,µ 1 fn1
1

k,K 1 fn1
1

α,B 0.5 hn 1

Table 4.4: Different Parameters for COMSOL for the second formulation

(a) Physical domain (b) Meshed domain

Figure 4.1: Domain and its meshing for the second formulation
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(a) At t = 0.05 (b) At t = 0.08

(c) At t = 0.1 (d) At t = 0.3

(e) At t = 0.6 (f) At t = 1.0

Figure 4.2: σ11 at different times
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(a) At t = 0.01 (b) At t = 0.05

(c) At t = 0.1 (d) At t = 0.3

(e) At t = 0.6 (f) At t = 1.0

Figure 4.3: σ12 = σ21 at different times
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(a) At t = 0.01 (b) At t = 0.05

(c) At t = 0.08 (d) At t = 0.2

(e) At t = 0.6 (f) At t = 1.0

Figure 4.4: σ22 at different times
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(a) At t = 0.001 (b) At t = 0.01

(c) At t = 0.05 (d) At t = 0.1

(e) At t = 0.6 (f) At t = 1.0

Figure 4.5: u1 at different times
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(a) At t = 0.001 (b) At t = 0.01

(c) At t = 0.05 (d) At t = 0.1

(e) At t = 0.6 (f) At t = 1.0

Figure 4.6: u2 at different times
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(a) At t = 0.001 (b) At t = 0.01

(c) At t = 0.09 (d) At t = 0.1

(e) At t = 0.5 (f) At t = 1.0

Figure 4.7: p at different times
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(a) At t = 0.0001 (b) At t = 0.001

(c) At t = 0.1 (d) At t = 0.3

(e) At t = 0.6 (f) At t = 1.0

Figure 4.8: px at different times
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(a) At t = 0.0001 (b) At t = 0.0008

(c) At t = 0.1 (d) At t = 0.3

(e) At t = 0.6 (f) At t = 1.0

Figure 4.9: py at different times
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4.8 Convergence study

Let Ω = (−1, 1)× (−1, 1) be the domain. We run an experiment with following param-

eters ∆t = 1, λ = 1, µ = 1, k = 1, K = 1, α = 0.5, B = 0.5. We also set the following

variables such that the actual unique solution is known.

fn1 = I1 + I2, with

I1 = 2π2µ sin πx sin πy − µ
[
4xy − π2 sin πx sin πy

]
,

I2 = −λ
[(

4xy − π2 sin πx sin πy
)
− πα(y2 − 1) cosπx

]
,

fn2 = I3 + I4, with

I3 = −4µ(x2 − 1)− λ
[
2x2 + π2 cos πx cosπy − 2

]
,

I4 = −µ
[
2y2 + π2 cos πx cosπy − 2

]
− 2αy sin πx,

hn = J1 + J2 + J3 + J4,

J1 = 2k sin πx− π2k(y2 − 1) sinπx,

J2 =
1

∆t

[
2αλ

(
2y(x2 − 1) + π cosπx sin πy

)]
,

J3 =
1

∆t

[
4αµy(x2 − 1) + 2α2(y2 − 1) sinπx

]
,

J4 =
1

∆t

[
πµα cosπx sin πy

K2
− α(y2 − 1) sinπx

BK2

]
.

For this data, the solution is

σ11 = K1 +K2, with

K1 = λ
[
2y(x2 − 1) + π cos πx sinπy

]
,
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K2 = α(y2 − 1) sinπx+ 2πµ cos πx sinπy,

σ21 = σ12 = µ
[
2x(y2 − 1) + π cos πy sin πx

]
,

σ22 = K3 +K4, with

K3 = λ
[
2y(x2 − 1) + π cos πx sin πy

]
,

K4 = 4µy(x2 − 1) + α(y2 − 1) sinπx,

u1 = sinπx sin πy,

u2 = (1− x2)(1− y2),

p = (1− y2) sinπx,

p1 = −π(y2 − 1) cosπx,

p2 = −2y sin πx.

In this experiment, 268 elements, 11403 degrees of freedom, Lagrange shape functions with

cubic element order are used. The following figures show finite element solution and actual

solution for comparison.
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(a) Approximate σ11h (b) Actual σ11

(c) Approximate σ12h (d) Actual σ12

(e) Approximate σ22h (f) Actual σ22

Figure 4.10: Approximate and actual solution for σ
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(a) Approximate u1h (b) Actual u1

(c) Approximate u2h (d) Actual u2

(e) Approximate ph (f) Actual p

Figure 4.11: Approximate and actual solution for u and p
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We try to find different error norm with varying mesh structures. We have the following

meshes for comparison.

(a) Extremely coarse, 26 elements (b) Extra coarse, 68 elements

(c) Coarser, 166 elements (d) Coarse, 268 elements

(e) Normal, 578 elements (f) Fine, 928 elements

Figure 4.12: Different mesh structures
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Mesh No of Elements DOF ‖σ − σh‖2 ‖u− uh‖2 ‖p− ph‖2

Extremely coarse 26 1224 0.175 0.0185 0.00483

Extra coarse 68 3033 0.0382 0.00202 7.03E-04

Coarser 166 7164 0.00893 3.43E-04 1.08E-04

Coarse 268 11403 0.00431 1.33E-04 4.47E-05

Normal 578 24228 0.00127 2.71E-05 8.79E-06

Fine 928 38619 6.12E-04 1.05E-05 3.38E-06

Table 4.5: Different norms with varying mesh using Lagrange shape function with cubic

element at t = 1

Element order No of Elements DOF ‖σ − σh‖2 ‖u− uh‖2 ‖p− ph‖2

Linear 68 405 4.036 0.409 0.124

Quadratic 68 1413 0.343 0.0195 0.00777

Cubic 68 3033 0.0382 0.00202 7.03E-04

Quartic 68 5265 0.00388 1.09E-04 2.82E-05

Quintic 68 8109 2.85E-04 7.87E-06 1.61E-06

Table 4.6: Different norms with varying element order using Lagrange shape function with

extra coarse mesh at t = 1
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h ‖σ − σh‖2 Conv. Rate ‖u− uh‖2 Conv. Rate ‖p− ph‖2 Conv. Rate

0.66 4.684 0.751 0.279

0.40 3.333 0.679 0.409 1.213 0.139 1.395

0.26 2.304 0.857 0.209 1.550 0.0711 1.551

0.20 1.764 1.019 0.129 1.837 0.0445 1.785

0.134 1.186 0.991 0.0569 2.052 0.0204 1.943

0.106 0.948 0.955 0.0361 1.949 0.0128 1.992

0.074 0.658 1.014 0.0177 1.978 0.00628 1.984

0.04 0.357 0.993 0.00511 2.020 0.00181 2.0162

Table 4.7: Convergence rate at fixed time step ∆T = k = 0.01 in L2(0, 1, L2(Ω)) using

Lagrange shape function with linear element

Figure 4.13: Convergence rate for linear element
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h ‖σ − σh‖2 Conv. Rate ‖u− uh‖2 Conv. Rate ‖p− ph‖2 Conv. Rate

0.66 1.013 0.0838 0.0293

0.40 0.532 1.286 0.0256 2.364 0.00867 2.435

0.26 0.271 1.565 0.00843 2.580 0.00277 2.648

0.20 0.173 1.707 0.00397 2.869 0.00129 2.904

0.134 0.0758 2.063 0.00120 2.972 3.93E-04 2.975

0.106 0.0481 1.945 5.97E-04 2.994 1.91E-04 3.074

0.074 0.0236 1.982 1.99E-04 3.066 6.48E-05 3.010

0.04 0.00678 2.024 3.10E-05 3.021 1.02E-05 3.007

Table 4.8: Convergence rate at fixed time step ∆T = k = 0.01 in L2(0, 1, L2(Ω)) using

Lagrange shape function with quadratic element

Figure 4.14: Convergence rate for quadratic element
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Chapter 5

Conclusions and future works

In this work, we have studied a system of PDE modeling poroelasticity. Starting from

momentum and mass conservation equations at macroscopic level, along with the linear con-

stitutive equations, we formulated the equations describing the coupled processes of elastic

deformation and the pore fluid pressure in a porous medium. Upon reasonable assumptions

on fully developed poroelasticity equations, we have the quasi-static form and analysis in-

cluding well-posedness and approximation of this form is the main purpose of our study. We

have proved the existence and uniqueness of the quasi-static form with admissible boundary

conditions using the concept of symmetric positive system, as introduced by Friedrich [30] in

1958. We expressed the quasi-static form as symmetric positive system for two different for-

mulations, namely fluid content-rotation-pressure gradient and stress-displacement-pressure

formulation. The main advantage of having different formulations is to provide varied supple-

mental boundary data, necessary for its well-posedness. For both formulation, the unknown

variables are often physically important. For the stress-displacement-pressure formulation,

we have the existence and uniqueness results depending on the physical parameters of the

poroelastic system, which is kind of restrictive. Using the scaling technique, we have found

the requirement is not very strong, as it allows some poroelastic systems, which are non-

positive without scaling, to be symmetric positive. So, the scaling technique adapts a lot

of geophysical system into the symmetric positive framework. Having well-posedness of the

system, we have conducted numerical experiments approximating weak solutions of both for-

mulations using the least square finite element method. Convergence and numerical results

are presented for both cases to show that the numerical technique is working.
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A number of extension to the present work are possible. First, we have ignored the time

derivative term of the following equation in the mathematical modeling section

ρ
∂2u(x, t)

∂t2
−∇ · σ(x, t) = f(x, t).

Our numerical approximation is based on time discretization, and thus we may allow this

term to represent better modeling. A certain difficulty will arise to make the system sym-

metric positive because of the additional term. For real life poroelastic system, there are

usually complicated boundary conditions, not just Dirichlet or Neumann boundary condi-

tions. Although, in symmetric positive framework, boundary condition are dictated by the

algebraic form of the first order representation, still we can try accommodating more complex

boundary conditions. In poroelasticity, it is known that as λ → ∞, the error estimate in

poroelasticity might be unreliable. This locking phenomena can be studied in our numerical

setting in order to understand why it happens and how to get rid of this. In our numerical

technique, we have found solution vector for different times as our approximation is based on

time discretization formulation. An attempt to construct complete solution vector from the

discrete solution can be made. Then, an analysis on the continuity, differentiability i.e. the

regularity properties of the complete solution vector can be conducted. There are other effi-

cient numerical scheme as approximation technique, such as discontinuous Galerkin method,

finite volume method etc. It is worth mentioning that general symmetric positive system

can be approximated by using discontinuous Galerkin method [32]. So, these numerical

techniques can be considered for better approximation.

111



Bibliography

[1] K. Terzaghi. Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hy-
drodynamischen spannungserscheinungen, Sitz. Akad. Wissen. Wien Math. Naturwiss.
Kl., Abt. IIa, 132, 105-124, 1923.

[2] L. Rendulic. Porenziffer und Porenwasserdrunk in Tonen. Der Bauingenieur, 17, 559-
564, 1936.

[3] M. A. Biot. Le problme de la consolidation des matires argileuses sous une charge. Ann.
Soc. Sci. Bruxelles, B55, 110-113, 1935.

[4] M. A. Biot. General theory of three-dimensional consolidation. J. Appl. Phys., 12, 155-
164, 1941.

[5] M. A. Biot. Theory of elasticity and consolidation for a porous anisotropic solid. J.
Appl. Phys., 26, 182-185, 1955.

[6] M. A. Biot. General solutions of the equations of elasticity and consolidation for a porous
material. J. Appl. Mech., Trans. ASME, 78, 91-96, 1956.

[7] M. A. Biot. Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240-
253, 1956.

[8] M. A. Biot. Mechanics of deformation and acoustic propagation in porous media. J.
Appl. Phys., 33, 14821498, 1962.

[9] J.R. Rice and M.P. Cleary. Some basic stress-diffusion solutions for fluid saturated elastic
porous media with compressible constituents. Rev. Geophys. Space Phys., 14, 227-241,
1976.

[10] J. L. Nowinski and C. F. Davis . A model of the human skull as a poroelastic spherical
shell subjected to a quasistatic load. Mathematical Biosciences, 8, 397-416, 1970.

[11] J. L. Nowinski and C. F. Davis . The flexure and torsion of bones viewed as anisotropic
poroelastic bodies, International Journal of Engineering Science, 10, 1063-1079, 1972.

[12] J. L. Nowinski. Bone articulations as systems of poroelastic bodies in contact. AIAA
Journal, 9, 62-69, 1971.

[13] J. L. Nowinski. Stress concentrations around a cylindrical cavity in a bone treated as a
poroelastic body. AIAA Journal,Acta Mechanica, 13, 281-292, 1972.

112



[14] M. W. Johnson, D.A. Chakkalakal, R.A. Harper, J.L. Katz and S.W. Rouhana. Fluid
flow in bone. Journal of Biomechanics, 11, 881-885, 1982.

[15] S.I. Barry and G.N. Mercer. Flow and deformation in poroelasticity - I unusual exact
solutions. Mathematical and Computer Modeling, 30:2329, 1999.

[16] O. Coussy. Poromechanics. Wiley, 2004.

[17] Herbert F. Wang. Theory of Linear Poroelasticity with Applications to Geomechanics
and Hydrology. Princeton Series in Geophysics, Princeton University Press, Princeton,
2000.

[18] J. F. Poland and G. H. Davis. Land Ssubsidence due to withdrawal of fluid. Reviews in
Engineering Geology, 2, 187-270, 1969.

[19] N. Lubick. Modeling complex, Multiphase porous media systems. Siam News, 5(3),
2002.

[20] Arthur F. T. Mak, Lidu Huang and Qinque Wang. A biphasic poroelastic analysis of the
flow dependent subcutaneous tissue pressure and compaction due to epidermal loadings:
issues in pressure sore. J Biomech Eng, 116(4), 421-429, 1994.

[21] B. R. Simon, M. V. Kaufmann, M. A. McAfee and A. L. Baldwin. Finite Element
Models for Arterial Wall Mechanics. J Biomech Eng, 115(4B), 489-496, 1993.

[22] Ming Yang, Larry A. Taber. The possible role of poroelasticity in the apparent vis-
coelastic behavior of passive cardiac muscle. J Biomech, 24(7), 587-597, 1991.

[23] A. Pena, M.D. Bolton and J.D. Pickard. Cellular poroelasticity: A theoretical model
for soft tissue mechanics. First Biot Conference on Poromechanics, Louvain la Neuve,
Belgium, 1998.

[24] P. A. Netti, L.T. Baxter, Y. Coucher, R.K. Skalak and R.K. Jain. A poroelastic model
for interstitial pressure in tumors. Biorheology, 32(2), 346, 1995.

[25] T. Roose, P. A. Netti, L. L. Munn, Y. Boucher and R.K. Jain. Solid stress generated by
spheroid growth estimated using a linear poroelasticity model. Microvascular Research,
66(3), 204212, 2003.

[26] X. G. Li, H. von Holst, J. Ho and S. Kleiven. Three Dimensional Poroelastic Simulation
of Brain Edema: Initial Studies on Intracranial Pressure. IFMBE Proceeding, 25(4),
1478-1481, 2010.

[27] A. Eisentrager. Finite Element Simulation of a Poroelastic Model of the CSF System in
the Human Brain during an Infusion Test. DPhil thesis, University of Oxford, 2012.

[28] J. M. Skotheim , L. Mahadevan. Dynamics of poroelastic filaments. Proc. R. Soc. Lond.
A, 460, 19952020, 2004.

113



[29] R. E. Showalter. Diffusion in poro-elastic media. Jour. Math. Anal. Appl., 251:310340,
2000.

[30] K. O. Friedrichs. Symmetric positive linear differential equations. Comm. Pure Appl.
Math., 11:333-418, 1958.

[31] W. Min-Hua. On applications of symmetric positive systems to elasticity. Chinise Sci-
ence Bulletin, 35(21), 1769-1773, 1990.

[32] D. A. Di Pietro, A. Ern. Mathematical Aspects of Discontinuous Galerkin Methods.
Springer, 2012.

[33] A. Ern Guermond. Theory and practice of finite elements. Springer, 2004.

[34] N. Antonic, K. Burazin, and M. Vrdoljak. Second-order equations as Friedrichs systems.
Nonlinear Analysis: Real World Applications, 15, 290-305, 2014.

[35] N. Antonic, K. Burazin, and M. Vrdoljak. Heat equation as a Friedrichs system. Journal
of Mathematical Analysis and Applications, 404(2), 537-553, 2013.

[36] B. N. Jiang. The least-square finite element method. Springer, 1998.

[37] T. Bui-Thanh, L. Demkowicz and O. Ghattas. A Unified Discontinuous Petrov–Galerkin
Method and Its Analysis for Friedrichs’ Systems. SIAM Journal on Numerical Analysis,
2013.

[38] A. Aziz, R. Kellogg, and A. Stephens. Least-squares methods for elliptic systems. Math.
of Comp., 44:53-70, 1985.

[39] P. B. Bochev. Analysis of least-squares finite element methods for the Navier-Stokes
equations. SIAM J. Num. Anal., 1997.

[40] P. B. Bochev, M.D. Gunzburger. Finite element methods of least-squares type. SIAM
Rev., 40:789-837, 1998.

[41] P. B. Bochev, M.D. Gunzburger. Least-squares finite element methods. Proceedings of
the international congress of Mathematicians, 2006

[42] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods.
Springer-Verlag, volume 15 of Texts in Applied Mathematics, second edition, 2002.

[43] L. C. Evans. Partial differential equations. American Mathematical Society, volume 19
of Graduate Studies in Mathematics, second edition, 2010.

[44] K. Atkinson and W. Han. Theoretical numerical analysis, a functional analysis frame-
work. Springer, 2001.

[45] B.-N. Jiang and L. Povinelli. Least-squares finite element method for fluid dynamics.
Comput. Meth. Appl. Mech. Engr., 81:13-37, 1990.

114



[46] B.-N. Jiang. The least-squares finite element method. Springer, 1998.

[47] J. H. Bramble and A. H. Schatz. Least Squares Methods for 2mth Order Elliptic
Boundary-Value Problems. Mathematics of Computation, 25(113):1-32, 1971.

[48] G. A. Baker. Simplified proofs of error estimates for the least squares method for Dirich-
let’s problem. Mathematics of computation, 27(122), 1973.

115


