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Abstract

In this thesis, a vehicle longitudinal control algorithm based on model predictive control

(MPC) is applied to compute the desired relative acceleration of the following vehicle in

leader-follower systems. Kinematic equations are used to describe the dynamic relationship

between the leading and following vehicles. Compared to the conventional model predictive

control (CMPC), the control horizon is expressed using Laguerre functions. This makes the

optimization problem easier to solve and available to be tuned. Appropriate parameters are

investigated by comparing the different approximation results under different decay factors.

The design of MPC based on Laguerre functions (LMPC) enables the system to be adjustable

through the selection of the decay factors depending on the characteristics such as response

time and overshoot of the closed-loop system. The effectiveness of the design approach was

demonstrated using simulations and experiments. Control performance of the closed-loop

system was investigated by selecting different parameters including the states weighting

matrix, the input weighting matrix, and Laguerre coefficients. With constraints on the

control variables and the difference of the control variables, the following vehicle can track the

leading vehicle with a specific distance and at the same speed in the simulation. Experiments

which illustrate the performance of the control system were performed on an experimental

platform used by Federal Highway Administration (FHWA), followed by the experimental

data showing the following vehicle can track the leading vehicle with a specific distance and

at the same speed. However, there is overshoot of the distance and the relative speed is not

zero. The reasons of the poor performance of the control system were explored, which include

the absence of the acceleration of the leading vehicle, large constraints on the difference of

the desired acceleration. Solutions such as decreasing the constraints on the incremental

variation and enlarging the input weighting matrix are discussed.
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Chapter 1

Introduction and Background

Driving has been a commonplace aspect of modern society. However, many uninten-

tional injuries and deaths have been caused by vehicle accidents [14]. There were 30,800

fatal car crashes in 2012 alone [15]. Researchers have been working on different driver as-

sistance systems such as Adaptive Cruise Control (ACC) and Blind Spot Detection. ACC

functionality is well known and available in many passenger cars and trucks today which

has yielded increased safety, better fuel economy and more efficient traffic flow [16]. ACC is

an optional cruise control system that automatically adjusts the vehicle speed to maintain

a safe distance from the vehicle ahead for ground vehicles [17]. Commonly, a radar system

is used to measure the distance and the relative velocity between the vehicles [22].

As vehicle automated following has become realized, applicable topics like automated

lane change and merge and driverless vehicle have been explored by researchers. The radar

system is not enough for the self-driving capabilities like automated lane change. With the

development of wireless communication, the concept of connected vehicle (Vehicle-to-Vehicle

Communication (V2V)) has been determined as the next step moving forward. Connected

vehicle technology enables vehicles to have the ability to share vehicle information including

position, velocity and other important navigation related information with other surrounding

vehicles. V2V communication is implemented by Dedicated Short Range Communications

(DSRC), leading to Cooperative Adaptive Cruise Control (CACC). Compared to the radar

system, V2V communication has the following characteristics: fast network acquisition, high

reliability [21] and higher accuracy. Additionally, data can be collected by the host vehicle

to help the vehicle make decisions, such as accelerate or decelerate, lane change or not. With

the concept of connected vehicles enabled by DSRC, a sequence of research activities was
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initiated to evaluate vehicle safety applications like automated vehicle following by relying on

V2V communication. However, how to integrate the DSRC with the other support systems

including advanced positioning system and the control system, was the key point for the

research, and the goal of this thesis.

When the vehicles have the ability to communicate with each other through DSRC,

decisions (i.e. to command acceleration to accelerate or not in longitudinal control and

to execute a lane change command or not in lateral control) made by control algorithms

or control logic is the final step of the automated system. The framework of intelligent

vehicle is shown in Figure 1.1, which is structured as a higher level controller and lower

level controller. The higher level controller is the brain of the system, which could achieve

some sophisticated tasks, such as decision making according to the traffic situation and the

environment information. For vehicle following behavior, desired velocity of host vehicle can

be calculated by higher level controller, which can maintain the desired gap and relative

speed between the leading vehicles and following vehicles. For lane changing behavior, the

value of desired yaw and steering angle can be given by the high level, which can implement

automated lane change. The outputs from the higher level controller is sent to the lower

controller, which is essentially comprised for a throttle/brake controller that regulates the

speed and a steering controller that regulates the lateral displacement and yaw rate.

In this thesis, the focus is on the automated car following behavior implemented using

DSRC. The TORC speed controller is the default lower controller shown in Figure 4.8. A

higher level controller based on model predictive control is explored in this work. For the

higher level controller, different control methods such as fuzzy logic-based controller [18],

MPC [19] [22], PID controller [20], and PD controller [23] are applied for calculating the

desired acceleration. In the next section, prior research about different control methods is

discussed.

2



Figure 1.1: Framework of intelligent vehicle [34]

1.1 Prior Research

A considerable number of models or control methods are proposed in the literature.

An Intelligent-Driver Model (IDM) is proposed in [35]. More specifically, the IDM is a car-

following model. The decision to accelerate or to brake depends on the speed of host vehicle

and on the position and speed of the leading vehicle immediately ahead. The IDM model

equations are expressed as below:

dv

dt
= a[1− (

v

v0

)δ − (
s∗(v,∆v)

s
)2] (1.1)

s∗(v,∆v) = s0 +max[0, (vT +
v∆v

2
√
ab

)] (1.2)
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where v0 is desired speed when driving on a free road, T is desired safety time headway

when following other vehicles, a is the acceleration of everyday traffic, b is the comfortable

braking deceleration in everyday traffic, s0 is the minimum bumper-to-bumper distance to

the front vehicle, and δ is the acceleration component. The desired acceleration is given

by the model represented by Equation (1.1) and Equation (1.2) . The model parameters

describe the driving style such as slow or fast, careful or reckless.

A PID controller designed in [20], used the control law given by

u(t) = kpev(t) + ki

∫
ev(t)d(t) + kd

dev(t)

dt
(1.3)

where ev(t) is the deviation between the actual speed and the command speed, kp, ki and

kd are the coefficients of proportional, integral and derivative gains. The input u(t) is the

control input of the lower controller. Note this control algorithm just considers the speed

error. The most commonplace PID controller will take into account the velocity error and

the position error at the same time resulting from the control objective to maintain the

distance and the relative speed. In this case, the control law for a PI controller is generally

given by

u(t) = kp1ev(t) + kp2ed + ki1

∫
ev(t)d(t) + ki2

∫
ed(t)d(t) + kaea (1.4)

where ed is the deviation between the actual gap and the desired gap, kp1, ka and kp2 denote

the coefficients of the proportional terms, ki1 and ki2 are the coefficients of the integral term,

and ea is the acceleration error between the host vehicle and target vehicle.

The use of the terms ev and ed in the integral part is found in [36]. The primary benefit

for including the time varying proportional terms is the reduction of the speed overshoot

due to a large position error. But, in most of the literature, only a proportional action over

the distance error, acceleration error and velocity error are considered [37], [38], [39], [41].
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All the coefficients of proportional or integral terms should be determined considering the

influence of the distance error and speed error.

Furthermore, a fuzzy logic-based controller is also widely explored considering a trade-

off between a proper car-following gap error and the smoothness of the control signal[18],

[40], [41], [42]. A fuzzy logic controller is a set of rules describing a set of actions to be

taken for given inputs such as distance error and speed error without using a conventional,

mathematical model. An example of the fuzzy logic rule is designed in [45]. GapError

represents the error between the actual inter-vehicle distance with respect to the desired

distance in meters, and its derivative dGapError, permitting faster responses to vehicle changes.

The crisp numeric values are transformed into linguistic values. Five fuzzy subsets called

Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero Error (ZE), Positive

Small (PS),Positive Medium (PM), and Positive Big (PB) are used as linguistic variables.

The final output is computed by the inference engine. The linguistic values will be defuzzified

and transformed into crisp values of desired speed.

Although the fuzzy logic controller is designed in these works [18], [40], [41], [42], there

are still some differences between each other. A cost function is incorporated in the fuzzy

logic-based controller. The controller is tuned to minimize a cost function in order to obtain

a tradeoff between a proper car-following gap error and the smoothness of the control signal

[18]. In [41], a sophisticated algorithm is applied to smooth the output for controlling

the throttle and brake actuator. The packet delay ratio, delay and throughput of V2V

communication are considered in the design of the fuzzy control system [41]. The maximum

of the performance of a fuzzy logic controller is found using a genetic algorithm.

The CACC system is classified as a smart system. It takes advantage of the communica-

tion link to have access to the leading vehicle’s position, speed and acceleration information.

The vehicles equipped with CACC systems can track the other vehicle with a desired dis-

tance and at the same speed. Meanwhile, ride comfort of passengers, fuel savings, and the

traffic flow are considered. To account for different characteristics, the MPC approach is
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appropriate choice because it can use different constraint satisfactions. For conventional

control methods like a PID controller, the outputs have to be limited to obey the minimum

acceleration or minimum distance when the acceleration and distance are bounded. Because

MPC is able to anticipate future situations and to implement constraints directly into the

control algorithm, it is appears to be more promising than a PID control and fuzzy logic

controllers. Minimal tracking error, low fuel consumption, and driver dynamic car-following

characteristics can be considered in the quadratic cost function. The ride comfort, driver

permissible tracking range and safe distance are formulated as linear constraints in [43].

However, these objectives usually conflict with each other. For instance, the improvement

of the tracking capability increases the fuel consumption. If the system possesses better

tracking capability, it leads to unnecessary acceleration and deceleration. Current state of

the art suggest the MPC approach to be promising to comprehensively deal with different

objectives simultaneously.

MPC applies the first input of a control sequence that optimizes a performance index

calculated from predicted system behavior based on a prediction model in a receding horizon

approach [1]. The controller is designed to control the acceleration of the following vehicle

subject to operational constraints on acceleration. The MPC-based controller at each time

step minimizes the expected errors in position and velocity and the corresponding input

variation. Bageshwar et al. developed an MPC which is used for computing the spacing-

control laws for transitional maneuvers [26] . A transitional maneuver is defined as a switch

from ACC to Cruise Control (CC) and vice verse. For example, a transition from ACC

to CC would occur if the leading vehicle disappear. The spacing-control laws based on

MPC are obtained by solving the constrained optimal control problem using a receding-

horizon approach, where the desired acceleration is computed at each sampling instant. The

standard constant time gap algorithm is unable to perform the transitional maneuvers [26].

Feyyaz et al. demonstrates a model predictive controller with PID structure, which is able

to accommodate actuator limits and parameter estimation [25] . Two different MPC models
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are used in the system. When the the distance between the vehicles is less than 10 meters,

a following MPC model with six states considering a rear-end check is activated. Otherwise,

a four state model considering a preceding vehicle collision check is used.

Different parameterization methodologies have been investigated. A systematic ap-

proach to the design and tuning based on model predictive control was presented in [22].

The parameterization is a unique feature of the synthesized ACC. The system is available to

be tuned considering the safety, comfort, and fuel economy. The methodology is to change

the weights in the minimization function directly [22]. Implementation and performance

evaluation of explicit MPC are presented in [11]. When a multi-parametric quadratic pro-

gram with parameter vector is used as the cost function, the performance of the controller

is available to be tuned depending on requirements by selecting different decay factors. The

tuning method still attempts to change the weights in the cost function directly. Hybrid

model predictive control system has also been used to solve a control problem for the track-

ing of a vehicle[27]. The controller aims to track the velocity transmitted by the leading

vehicle. The control law in [27] is divided into two phases: tracking is considered during the

transient of the reference trajectory and stability is the goal after the reference reaches its

steady state using the hybrid MPC in the regulation. Also, robust MPC is discussed with

the presence of disturbances which are approximated by piecewise affine systems.

Laguerre functions-based MPC (LMPC) is developed in [47, 54]. Laguerre functions are

a set of orthonormal functions. When the control trajectory ∆U is expressed using Laguerre

functions, the predictive control problem is reformulated and the solution is simplified. La-

guerre functions have many advantages such as good approximation capability for different

systems, low computational complexity, and better feasibility. For, large-scale systems, the

optimization problem may be computationally intractable due to the large number of vari-

ables and the complexity of the constraints [47]. The system is difficult to implement in

hardware with limited memory or low processing power required for the high online com-

putational costs. It has been shown that LMPC reduces the computational complexity and
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provides better feasibility then CMPC [53], [54]. Examples are given to show that LMPC

gives better performance and feasibility than CMPC. At the same time, the loss of perfor-

mance is negligible enough to ignore [48]. A novel mechanism is given to demonstrate the

performance and feasibility benefits with respect to CMPC. The algorithm outperforms a

conventional dual mode algorithm by giving substantially better feasibility with little com-

promise to performance [49], [52]. The design objectives such as feasibility, performance,

and computational cost are conflicted. A multi objective evolutionary algorithm is given to

obtain a suitable balance between feasibility, performance, and computational cost [54].

Moreover, some experiments have been done to validate the automatic vehicle following.

Field tests of a Cooperative Adaptive Cruise Control (CACC) on real vehicles was carried out

by California Partners for Advanced Transportation Technology (PATH) in United States

using two Infinity FX45s [31]. In 2014, the researchers also successfully implemented a CACC

system in four production Infinity M56s [33]. DSRC was used for wireless communication and

MPC-based controller was designed as the gap regulation controller. The results showed that

the time gaps of CACC are shorter than ACC, which will significantly increase the highway

capacity in the future. At the same time, a control system was implemented on a test fleet

consisting of six Toyota Prius in the Netherlands. CACC allows time gaps significantly

smaller than 1s (0.7s) while maintaining string stability. As result, road throughput is

increased and fuel consumption and emissions are decreased as expected [32]. Three different

control strategies are designed depending on three driving situations which include safe,

warning and dangerous mode for the vehicle following scenario in [24]. The test vehicle is

equipped with a laser radar, accelerometers, ESC module, wheel speed sensors and wheel

pressure sensors. The higher and lower level controllers are implemented by dSpace hardware

(MicroAutoBox), which is also used in this work. However in this thesis, the distance is

calculated by the vehicle information received through V2V communication not the radar

system.
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1.2 Contributions

The goal of this work is to design a control system based on model predictive control

and implement the control system in MicroAutoBox. The distance and relative speed in

leader-follower system is maintained to a pre-set value by controlling the speed of the follow-

ing vehicle. The communication system (DSRC), positioning system (PinPoint), and control

system (MicroAutobox) are introduced. Compared to the conventional solution methodol-

ogy, the control trajectory is expressed by Laguerre functions. The results of approximating

the impulse response of the system are presented. Different parameters including the number

of network terms (N) and decay factor (a) are determined from simulations. This modifica-

tion allows the closed-loop system to be tuned via the adjustment of different decay factors.

Additionally, this work shows the capability of using V2V communication to share vehicle

information consisting of position and velocity with the surrounding vehicles. Compared to

the conventional ACC using radar to detect the distance between the vehicles, V2V commu-

nication improve the efficiency and precision of distance and speed detection. The following

are the contributions contained in this thesis:

• An augmented model is developed for model predictive control based on the kinematic

relationship between following and leading vehicles (initial results presented by Gerrit

et al. in [11]).

• Coefficients of Laguerre functions were determined by simulations.

• Performance of Laguerre functions based MPC (LMPC) are compared depending on

different decay factors with the constraints of control variables.

• The concept of connected vehicles and LMPC control algorithm are experimental val-

idated and future improvements of the control system are discussed.

The first contribution of this work is the development of an augmented model specifically

used for MPC. The model is originally based on kinematic equations which is a well known
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car-following model used in [11], [12]. The states are distance between the two vehicles and

relative speed. According to the model predictive control theory presented in this thesis, the

other two states are the error of distance and the error of the relative speed. Therefore, the

augmented model has four states. The objective of the controller is to maintain a pre-set

distance and a zero relative speed between the leading and following vehicles.

Laguerre functions are used to approximate the transfer function model of a physical

system. Different approximation results are presented depending on the different parameters

of the Laguerre functions. In the time domain, the Laguerre functions are polynomials

multiplied by a decaying exponential [13]. This property is very significant when it is used

for describing the control horizon in MPC. Namely, the system with Laguerre functions is

tunable via adjustment of several parameters. Additionally, for some large scale system,

it has other advantages such as low computational cost and better feasibility. Unique to

Laguerre formulation, suitable parameters are needed to describe the control horizon from

the simulation results.

Laguerre functions are a set of exponential functions with a decay factor. When the

control horizon is described by Laguerre functions, the incremental control signal is a forced

exponentially decay [8]. More emphasis is placed on the control trajectory at the current

time and less emphasis on those at future times while the sampling instant increases in the

cost function. The closed-loop control performance is affected by decay factor of Laguerre

functions. This is particularly useful when the CMPC can not provide satisfactory perfor-

mance. The LMPC provides additional methods for fine tuning the closed-loop performance

such as stability, response time, and overshoot.

The final contribution is the experimental implementation of the concept of the con-

nected vehicles. In the experiments, PinPoint, which is a combination of GPS and IMU

(Inertial Measurement Unit), provides the navigation and localization information such as

position and velocity. DSRC (Dedicated Short Range Communication) is used as the V2V
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communication which makes it possible for the vehicles to share messages with the surround-

ing vehicles. Accordingly, the distance and relative speed are calculated directly from the

individual vehicle measurement instead of the radar measurements. The MicroAutoBox is

responsible for implementing the control algorithm developed in Simulink, as it is much eas-

ier to change parameters such as speed command and desired distance through the interface

of ControlDesk.
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Chapter 2

Longitudinal Model for Vehicle Following

2.1 Problem Statement

A maneuver called automated following is the most common application for connected

vehicles. A schematic representation of vehicle following is shown in Figure 2.1. Focusing on

the design of the vehicle following control system, a model which can provide the longitu-

dinal relative dynamics in a vehicle following scenario is needed. Basically, the longitudinal

control consists of higher and lower control levels as discussed before. The higher level is a

supervisory controller that governs the desired distance and speed to maintain the distance

and relative speed between the two vehicles. The low-level controller is essentially a throt-

tle/brake controller that regulates the desired speed. The focus of this thesis is on the design

of higher level controller.

Figure 2.1: Vehicle Following, X represents position and V represents velocity [6]
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2.2 System Modeling

2.2.1 Augmented Model for Model Predictive Control

The formulation of MPC below is referenced primarily from [5]. Assuming that the

plant has m inputs, q outputs and n1 states and q ≤ m. The system is described by

x(k + 1) = Ax(k) +Bu(k) (2.1)

y(k) = Cx(k) (2.2)

where x denotes the state variable with assumed dimension n1; u is the input variable with

assumed dimension m; y is the process output with assumed dimension q. In Equation (2.1)

and Equation (2.2), A is state matrix with assumed dimension n1×n1, B is input matrix with

assumed matrix n1×m and C is output matrix with assumed dimension q×n1, respectively.

Note that from Equation (2.1), the following difference equation is given:

x(k) = Ax(k − 1) +Bu(k − 1) (2.3)

The difference of the state variable and control variable are:

∆x(k + 1) = x(k + 1)− x(k) (2.4)

∆x(k) = x(k)− x(k − 1) (2.5)

∆u(k) = u(k)− u(k − 1) (2.6)

Taking a difference operation on both sides of Equation (2.1), obtain

x(k + 1)− x(k) = A(x(k)− x(k − 1)) +B(u(k)− u(k − 1)) (2.7)
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Therefore

∆x(k + 1) = A∆x(k) +B∆u(k) (2.8)

In order to relate the output y(k) to the state variable ∆x(k), yields that

∆y(k + 1) = y(k + 1)− y(k) (2.9)

= Cx(k + 1)− Cx(k)

= C∆x(k + 1)

= CA∆x(k) + CB∆u(k)

(2.10)

Then

y(k + 1) = y(k) + CA∆x(k) + CB∆u(k) (2.11)

Putting together Equation (2.8) with Equation (2.11) leads to the following state-space

model:
x̄(k+1)︷ ︸︸ ︷ ∆x(k + 1)

y(k + 1)

 =

Ā︷ ︸︸ ︷ A OT

CA Iq×q


x̄(k)︷ ︸︸ ︷ ∆x(k)

y(k)

+

B̄︷ ︸︸ ︷ B

CB

∆u(k) (2.12)

y(k) =

C̄︷ ︸︸ ︷[
O Iq×q

]  ∆x(k)

y(k)

 (2.13)

where Iq×q is the identity matrix with dimension q× q, and q is the number of outputs; and

om is a q × n1 zero matrix. x̄(k + 1) and x̄(k) are the new states. The triplet (Ā, B̄, C̄)

is called the augmented model, which is used in the design of predictive control [5]. The

augmented model contains integrators which serve to eliminate steady state error. In next

subsection, these matrices are derived for the adaptive cruise control (ACC) model.
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2.2.2 Vehicle Following Model

Adaptive cruise control models described dynamic relationships between vehicles includ-

ing relative position, relative velocity and acceleration. Longitudinal control ensures equal

speeds of leader and follower vehicles as well as stable distances between them. The safety

distance is a function of the dynamics of the vehicle. The model below is typical to describe

the relative dynamic of the following and leading vehicles [11].

 xr(k + 1)

vr(k + 1)

 =

 1 Ts

0 1


 xr(k)

vr(k)

+

 −1
2
T 2
s

−Ts

u(k) (2.14)

where u(k) is the relative acceleration between the following vehicle and leading vehicle,

the distance is denoted as xr(k) and vr(k) represents the relative velocity between the two

vehicles. Note that this model is simply a kinematic relationship between the relative accel-

erations of the vehicles and the resulting speed and position. For the purpose of this thesis

it is assumed that a vehicle acceleration can be commanded directly (i.e the longitudinal

vehicle dynamics are ignored). It is important to remember that Ts is equal to 0.001s, which

is the operating frequency of MicroAutoBox [7]. The output variables are the distance and

the relative velocity, where

y(k) =

 1 0

0 1


 xr(k)

vr(k)

 (2.15)

The augmented model for the vehicle following model.



∆xr(k + 1)

∆vr(k + 1)

xr(k + 1)

vr(k + 1)


=



1 Ts 0 0

0 1 0 0

1 Ts 1 0

0 1 0 1





∆xr(k)

∆vr(k)

xr(k)

vr(k)


+



−1
2
T 2
s

−Ts

−1
2
T 2
s

−Ts


∆u(k) (2.16)
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y(k) =

 0 0 1 0

0 0 0 1





∆xr(k)

∆vr(k)

xr(k)

vr(k)


(2.17)

where

∆xr(k) = xr(k)− xr(k − 1) (2.18)

∆vr(k) = vr(k)− vr(k − 1) (2.19)

∆u(k) = u(k)− u(k − 1) (2.20)

Now there are four states in the augmented model, the deviation between the current

distance and the previous distance, the deviation between current relative speed between the

previous relative speed, the actual distance and relative speed. There are integrators with

the augmented model. In next chapter, the longitudinal controller is incorporated into the

MPC formulation.

2.3 Conclusion

In this chapter, the concept of vehicle automated following was discussed. Following

this, the development of vehicle following model which describes the longitudinal relative

dynamics was presented. Augmented model, which adds the error states to the actual states,

was specific designed for MPC. The benefit is that there is always at least one integrator in

the model, which serve to eliminate the steady state error. Augmented model was designed

based on the vehicle following model, which will be used in the design of LMPC controller.
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Chapter 3

Controller Design based on Model Predictive Control

3.1 Introduction

This chapter begins with a thorough description of the conventional model predictive

control (CMPC) and Laguerre functions based model predictive control (LMPC). Compared

to the CMPC, LMPC is available to be tuned by selecting decay factor of Laguerre functions.

The constraints on the acceleration and the difference of acceleration are determined based on

the experimental results of TORC speed controller. With the constraints, the performance of

the closed-loop system are compared to validate the performance of different decay factors.

The formulation of MPC below is referenced primarily from [5].

3.2 Basic Idea of Model Predictive Control

Assuming that at current time ki, ki > 0, the state x(ki) provides the current plant

information using the state equations

x(ki + j + 1 | ki) = Ax(ki + j | ki) +B∆u(ki + j) (3.1)

y(ki + j | ki) = Cx(ki + j | ki) (3.2)

With given information x(ki), from the Equation (3.1) and Equation (3.2), the future states

and future outputs can be predicted from:

x(ki + 1 | ki), x(ki + 2 | ki) ... x(ki + k | ki) ... x(ki +NP | ki) (3.3)

y(ki + 1 | ki), y(ki + 2 | ki) ... y(ki + k | ki) ... y(ki +NP | ki) (3.4)
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where the predicted states and output variables are denoted as x(ki+k | ki) and y(ki+k | ki)

respectively at time ki + k, and NP is defined as the prediction horizon. Assuming that the

future control trajectory are denoted as

∆u(ki), ∆u(ki + 1) ... ∆u(ki + k | ki) ... ∆u(ki +Nc − 1) (3.5)

where Nc is defined as the control horizon. Typically, the control horizon Nc should be

chosen to be less than (or equal to) the prediction horizon NP . The predicted state variables

can be formulated in terms of current state variables x(ki) and future control movement

∆u(ki + k | ki)as below:

x(ki + 1 | ki) = Ax(ki) +B∆u(ki) (3.6)

x(ki + 2 | ki) = Ax(ki + 1) +B∆u(ki + 1)

= A2x(ki) + AB∆u(ki) +B∆u(ki + 1)

...

x(ki +NP | ki) = ANpx(ki) + ANp−1B∆u(ki)

+ ANp−2B∆u(ki + 1) + ...+ ANp−NcB∆u(ki +Nc − 1)

The predicted output variables are denoted by:

y(ki + 1 | ki) = CAx(ki) + CB∆u(ki) (3.7)

y(ki + 2 | ki) = CAx(ki) + CB∆u(ki + 1)

= CA2x(ki) + CAB∆u(ki) + CB∆u(ki + 1)

...

y(ki +NP | ki) = CANpx(ki + 1) + CANp−1B∆u(ki)

+ CANp−2B∆u(ki + 1) + ...+ CANp−NcB∆u(ki +Nc − 1)
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The predicted states and output states are expressed as the functions of the current

states and the future control movements. The next step is to minimize the cost function

to find the optimal control horizon. Assuming that at time ki, Rs is the set-point matrix

defined as:

RT
s =

Np︷ ︸︸ ︷
[1 1 ... 1] r(ki) (3.8)

where r(ki) is the set-point signal for the output y(ki) at time ki. The cost function is defined

as

J = (Rs − Y )T (Rs − Y ) + ∆UTR∆U (3.9)

where

Y = [y(ki + 1 | ki) y(ki + 2 | ki) y(ki + 3 | ki) ... y(ki +Np | ki)]T (3.10)

∆U = [∆u(ki) ∆u(ki + 1) ... ∆u(ki + k) ... ∆u(ki +Nc − 1)]T (3.11)

and R is a diagonal matrix. The objective of the predictive control system is to bring the

predicted outputs as close as possible to the set-point signal. The control horizon is achieved

by minimizing the error function between the set-point and the predicted outputs. After

the control horizon is obtained, the first item of the horizon (∆u(ki + 1)) is implemented in

control system. Then another control sequence ∆U(ki+1) is calculated at the next sampling

instant ki+1.

3.3 Optimization of Incremental Control using Laguerre Functions

3.3.1 Discrete-time Laguerre Networks

The core technique in the design of discrete MPC is based on optimizing the future con-

trol trajectory, that is the difference of the control signal (∆u(k)). By assuming a finite con-

trol horizon Nc, the difference of the control signal is expressed by ∆u(k) for k = 1, 2, ..., Nc.
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The Laguerre functions are introduced into the design to generalize the design procedure

[9]. These functions will help reformulate the predictive control problem and simplify the

solutions. The control system is available to tune by different decay factors of Laguerre

functions. At time ki, the control variable is regarded as the impulse response of a stable

system. Thus, a set of Laguerre functions, l1(k), l2(k), ..., lN(k) are used to capture this dy-

namic response with a set of Laguerre coefficients that is determined iteratively from the

design process. More precisely, at arbitrary future sampling instant k,

∆u(ki + k) =
N∑
j=1

cjlj(k); (3.12)

with ki being the initial time and k being the future sampling instant; N is the number

of terms used in the expansion and cj, j = 1, 2, ..., N , are the coefficients. lj(k) are the set

of discrete Laguerre functions. From the definition of Laguerre functions, the z-transform

representations are,

ΓN(z, a) =

√
1− a2

1− az−1
(
z−1 − a
1− az−1

)N−1 (3.13)

where a is the pole of the discrete-time Laguerre network and N is the number of network

terms respectively. The Laguerre network is illustrated in Figure 3.1.

Figure 3.1: Discrete Laguerre network

Note that a is selected by the user [5], [9]. The stability of the network can be guaranteed

when 0 < a < 1. The approximation to the impulse response depends on the selection of a

and N . Furthermore, from Equation (3.13), the set of difference equations that the discrete

Laguerre functions satisfy

L(k + 1) = ΩL(k) (3.14)
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where

Ω =



a 0 ... 0

1− a2 a ... 0

a(1− a2) 1− a2 ... 0

a2(1− a2) a(1− a2) ... 0

... ... ... ...

aN−2(1− a2) aN−3(1− a2) ... a



(3.15)

L(k) = [l1(k) l2(k) . . . lN(k)]T (3.16)

with initial condition

L(0) =
√

1− a2[1 a a2 a3 ... aN−1]T (3.17)

Another important property of the Laguerre functions is the orthonormal property, which

can be expressed by:


Np∑
k=0

li(k)lj(k) = 0, if i 6= j

Np∑
k=0

li(k)lj(k) = 1, if i = j
(3.18)

This property is used for finding the minimum of the cost function later. The impulse

response of the system are approximated by selecting different values of a and N . Here, a

is selected equal to 0.3, 0.6, 0.9 and N is set to be 10, 20 and 50. The results are shown

in Figure 3.2 - 3.4 for the various values. There are 50 parameters required to capture the

response when a = 0. Increasing a requires less parameters to capture the response. For

example, 50 parameters are needed when a is equal to 0.3, 20 parameters are needed when

a equal to 0.6, and only 10 parameters are needed when a is equal to 0.9.
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Figure 3.2: Approximation to the Impulse Response (a = 0.3)
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Figure 3.3: Approximation to the Impulse Response (a = 0.6)
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Figure 3.4: Approximation to the Impulse Response (a = 0.9)

3.3.2 Minimization of Cost Function

When Laguerre functions are applied to the control variables, Equation (3.12) can be

re-written in a vector form:

∆u(ki + k) = L(k)Tη =
[
l1(k) l2(k) ... lN(k)

]


c1

c2

...

cN


(3.19)
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Hence, the future control trajectory is populated as:

∆U =



∆u(ki)

∆u(ki + 1)

...

∆u(ki + k)

...

∆u(ki +Nc − 1)



=



l1(0) l2(0) ... lN(0)

l1(1) l2(1) ... lN(1)

...

l1(k) l2(k) ... lN(k)

...

l1(Nc − 1) l2(Nc − 1) ... lN(Nc − 1)





c1

c2

...

ck

...

cN



(3.20)

where N is the number of Laguerre networks and Nc is length of the control horizon. Com-

pared to the Equation (3.11), the control variables are expressed by Laguerre functions.

Here, the special case is investigated when a = 0 such that Ω becomes

Ω =



0 0 0 ... 0 0

1 0 0 ... 0 0

0 1 0 ... 0 0

... ... ... ... ... ...

0 ... ... 0 1 0


(3.21)

L(0)T = [1 0 0 0 ... 0] (3.22)

Then the control trajectory becomes the “vector” of Laguerre coefficients, cj...cNc as repre-

sented by

∆U = [c1 c2 c3 ... cNc ]
T (3.23)

which is equivalent to Equation (3.11), the Laguerre coefficients take the place of the control

inputs at each future time instant accordingly. When a = 0, the MPC design using Laguerre

functions is equivalent to the CMPC.

Since the control trajectory is expressed using Laguerre functions, given the augmented

model (A,B,C) with ∆U as the input signal with the initial state variable information x(ki),
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the prediction of the future state variable, x(ki + k | ki) at sampling instant ki + k, becomes

x(ki + k | ki) = Akx(ki) +
k−1∑
i=0

Ak−i−1BL(i)Tη (3.24)

where ∆u(ki + k) is replaced by L(k)Tη. Similarly, the prediction for the plant output at

future sampling instant ki + k is

y(ki + k | ki) = CAkx(ki) +
k−1∑
i=0

CAk−i−1BL(i)Tη (3.25)

With this formulation, both predictions of states and outputs are expressed in terms of the

coefficient vector η, and the task becomes finding the coefficient vector η which can minimize

the cost function.

Recall the cost function defined by Equation (3.9), noting that Y ad ∆U are in the

vector form, it is equivalent to

J =
Np∑
k=1

(r(ki)− y(ki +m) | ki))TQ(r(ki)− y(ki +m) | ki)) +
Np∑
m=0

∆u(ki +m)TR∆u(ki +m)

(3.26)

Here, the cost function is re-formulated with a link to discrete-time linear quadratic

regulator (DLQR) [30], where

J =
Np∑
k=1

x(ki + k | ki)TQx(ki + k | ki) +
Np∑
k=0

∆u(ki + k)TR∆u(ki + k) (3.27)

with the weighting matrices Q ≥ 0 and R > 0. In particular, Q has the dimension equal to

the number of state variables and R has the dimension equal to dimension η. The reason for

this re-formulation is to connect the discrete-time MPC with the DLQR system so that the

numerous classical results in DLQR will lend themselves to the analysis, tuning and design of

discrete-time MPC. The cost function for minimization of output errors defined by Equation

(3.9) is identical to the cost function defined by Equation (3.27) [5]. Replacing ∆u(ki + k)

25



by Equation (3.19), and combining with the orthonormal property represented by Equation

(3.18), the cost function Equation (3.27) can be simplified as:

J =
Np∑
k=1

x(ki + k | ki)TQx(ki + k | ki) + ηTRη (3.28)

Using the Equation (3.24) and defining the matrix φ(k)T =
k−1∑
i=0

Ak−i−1BL(i)T , results in the

function becoming

J = ηT (
Np∑
k=1

φ(k)Qφ(k)T +R)η

+ 2ηT (
Np∑
k=1

φ(k)QAk)x(ki) +
Np∑
k=1

x(ki)
T (AT )kQAkx(ki) (3.29)

To find the minimum of Equation (3.29), without constraints, the derivative of the cost

function is,

∂J

∂η
= 2(

Np∑
k=1

φ(k)Qφ(k)T +R)η) + 2(
Np∑
k=1

φ(k)QAk)x(ki) (3.30)

Assuming that(
Np∑
k=1

φ(k)Qφ(k)T + R)−1 exists, when ∂J
∂η

= 0, the optimal solution of the

parameter vector η [5]is

η = −(
Np∑
k=1

φ(k)Qφ(k)T +R)−1(
Np∑
k=1

φ(k)QAk)x(ki) (3.31)

For simplicity of the expression, the components of η are defined as:

Ω =
Np∑
k=1

φ(k)Qφ(k)T +R (3.32)

Ψ =
Np∑
k=1

φ(k)QAk (3.33)
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leading to

η = −Ω−1Ψx(ki) (3.34)

where x(ki) is the state at sampling instant ki. The optimal parameter η is found which

can minimize the cost function. After obtaining the optimal parameter vector η, the control

trajectory can be computed when k is set to be 0.

U = Ω× η (3.35)

= −Ψx(ki)

(3.36)

The first term of U is used as the input of the system and the receding horizon control

law is realized as

∆u(ki) = L(0)Tη (3.37)

Also, the control ∆u(ki) can be written

∆u(ki) = −L(0)TΩ−1Ψx(ki) (3.38)

Now the control variable computed at each sampling instant is a function of the current

measurements of the states. In this work, the states are the deviation between the current

distance and the previous distance, the deviation between current relative speed between the

previous relative speed, the actual distance and relative speed defined by Equation (2.16).
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3.4 Constraints

3.4.1 Test of TORC Speed Controller

The acceleration capability of the real vehicle is limited in practice. The constraints

on the control variables and the difference of the control variables ensure that the desired

acceleration is possible to implement in the experimental vehicle. The constraints on the

inputs are expressed as umin and umax and the constraints on the difference of the control

variables are denoted by ∆umin and ∆umax. Note u represents the acceleration and ∆u is

the difference of the acceleration in this work. Suppose that at sample time ki, the previous

control signal is u(ki − 1). The system is subject to constraints of the form


umin ≤ u(ki) ≤ umax

∆umin ≤ ∆u(ki) ≤ ∆umax

(3.39)

The difference of desired acceleration (∆u) is computed depending on three different cases:

∆u(ki) =


umin − u(ki − 1), if u(ki) ≤ umin

L(0)Tη, if umin < u(ki) < umax

umax − u(ki − 1), if u(ki) ≥ umax

(3.40)

In this work, the acceleration limits used as the global limits are determined based on the

acceleration ability of the test vehicles. The TORC speed controller discussed in Chapter 4

is used as the lower controller. In order to acquire the acceleration ability of the test vehicles,

several trials were carried out to evaluate the performance of the TORC speed controller.

The TORC controller can regulate the speed of the vehicle automatically depending on the

speed commands, therefore speed commands were sent directly to the TORC controller. The

inner control method of the TORC speed controller is a PID control, and the coefficients of

a PID are 0.1, 0.01 and 0.001. The test procedure was:
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• First, turn on the ACC function of the vehicle by speeding up the vehicle more than

25km/h. Then set the control mode to mode 1 through the ControlDesk interface.

• When the control mode is set to be mode 1, the speed of the vehicle will be controlled

by desired speed command set via the ControlDesk interface.

• The desired speed commands are set by hand through the ControlDesk. The desired

speed commands were 6.9444 m/s at 0s, 11.111m/s at 5s, 5.5666 m/s at 9s, 4.1667 m/s

at 12s and 8.333 m/s at 15s. After 19s, the TORC speed controller is disabled and

the vehicle is taken over by the driver. The time and the speed value were selected

randomly.
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Figure 3.5: Step Change in Set Speed of the TORC Speed Controller

The experimental results are shown in Figure 3.5, where it is shown that the actual

speed of the vehicle can track the desired speed fairly well. Also, the accelerating ability

is evaluated from the test results, where umax and umin are 2m/s2 and −3m/s2 when the
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coefficients of PID are 0.1, 0.01, 0.001. The acceleration limits, umax and umin, are reasonably

set to be

umax = 1.5m/s2 (3.41)

umin = −1.5m/s2 (3.42)

−1.5m/s2 and −1.5m/s2 in the tests, which are smaller than the vehicle acceleration

capability. The constraints of ∆u are

∆umax = 1.5m/s2 (3.43)

∆umin = −1.5m/s2 (3.44)

The smaller acceleration or deceleration should be achievable. The other considerations

for the acceleration limits are the length of test field and ride comfort.

3.5 Use of Laguerre Functions as Tuning Parameters

The simulation results, obtained with the numerical values of the model given in Chapter

2, and the terminal cost function and constraints calculated in Chapter 3, are presented in

this section. The LMPC is considered successful if the following vehicle can follow the target

vehicle with a desired distance and the same speed, with the desired acceleration, and the

difference of the desired acceleration limits imposed. The simulations are executed in Matlab.

When Laguerre functions are used to describe the control horizon, different a and N values

affect the closed-loop performance of the LMPC system. This is particularly useful when

the CMPC can not provide a satisfactory closed-loop performance. Laguerre functions are a

set of exponential functions with a decay factor a when 0 < a < 1. The incremental control

signal ∆u(ki + k) is forced to decay exponentially as k increases [8]. Different decay factors

affect the closed-loop performance, which is shown through simulations with Matlab. In
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order to ensure N is large enough to capture the response for all a, the parameter N is set to

a value of 50. Because the sampling time is 0.001s, a large number of predictions is needed

to ensure the stability of the closed-loop system. Therefore, the number of prediction used is

Np = 1900. The pole location a is chosen as a = 0, a = 0.1, a = 0.5, a = 0.9. The acceleration

limits are −1.5m/s2 and 1.5m/s2 and the constraints on the difference of the acceleration

are −1.5m/s2 and 1.5m/s2. The state weighting matrix (Q) and input weighting matrix (R)

are

Q =



0 0 0 0

0 0 0 0

0 0 10 0

0 0 0 1


(3.45)

R = 1 (3.46)

To test the effect of different values of a, simulations were run with the constraints.

Table 3.1 and Table 3.2 show the eigenvalues of the closed-loop system for the cases for the

various a values.

Table 3.1: Discrete Eigenvalues of Closed-loop System of different decay factors (a)

a Eigenvalues of Closed-loop System
a=0 [0.9606 + 0.0288i 0.9606 - 0.0288i 0.9928 1]

a=0.5 [0.9776 + 0.0220i 0.9776 - 0.0220i 0.9965 1]
a=0.9 [0.9777 + 0.0219i 0.9777 - 0.0219i 0.9968 1]

Table 3.2: Feedback gain of Closed-loop System of different decay factors (a)

a Feedback Gain
a=0 [-2794.7 -79.5 -4.3 0.3]

a=0.5 [-1037.3 -47.6 -3.5 -1]
a=0.9 [-1107.8 -47.2 -3.1 0]

31



0 5 10 15 20 25 30 35 40
48

50

52

54

56

58

60

Time [s]

D
is

ta
n

c
e

 [
m

]

 

 

a = 0

a = 0.5

a = 0.9
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Figure 3.7: Relative Speed between Leader and Follower
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The effect of a on the eigenvalues of the closed-loop system is shown in Table 3.1. Figure

3.6 shows the simulated distance with the initial value of 60 m, Figure 3.7 represents the

simulated relative speed with the initial value of −2m/s. The effect of the decay factor can

be seen in these plots. When a = 0, the LMPC becomes the CMPC and the desired distance

and the desired relative speed can not be achieved with the constraints of control variable.

The distance is brought to 50 meters and the relative speed is brought to 0 when a is 0.5.

Between the three parameters a = 0.5 was determined to be the best. The performance of

the closed-loop system is desirable. The LMPC proved to be very sensitive to the different

values of a. Note that when a is increased to 0.9, the system becomes unstable again. The

parameter a affects the closed-loop system performance, but there is no specific relationship

between the value of a and the performance. In addition to using the weighting matrices Q

and R to tune the system, it is feasible to use a as another tuning parameter. The LMPC

is more flexible compared to the conventional solution methodology and presents another

way to tune the control system. In the simulation, controller works well with the ideal case,

which is that the desired acceleration can be acquired immediately.

3.6 Conclusion

The basic idea of MPC was presented. Future states are predicted and the optimal

solution is achieved by minimizing the errors between the set-points and the predicted out-

puts. Compared to the CMPC, the control variables are expressed using Laguerre functions.

The cost function is simplified and it is easier to find the optimal solution due to of the

orthonormal property of Laguerre functions. Additionally, the Laguerre functions are a set

of exponential functions with a decay factor such that the incremental control signal is also

forced to decay exponentially when it is expressed by Laguerre functions. In the cost func-

tion, more emphasis is placed on the control trajectory at the current time and less emphasis

on those at future times as the sampling instant increases. The closed-loop performance is
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susceptible to the different decay factors of the Laguerre functions. With a given cost func-

tion, the LMPC provides another method to tune the performance of the MPC system.

Constraints are determined based on the experimental data of TORC speed controller. Sim-

ulation results were presented to illustrate the closed-loop performance of different Laguerre

coefficients.
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Chapter 4

Experimental Validation

4.1 Introduction

In this chapter, an experimental platform consisting of a PinPoint navigation system,

Dedicated Short Range Communications (DSRC), Embedded PC, and MicroAutobox are

introduced. The PinPoint is a continuous positioning system. DSRC is used as V2V com-

munication. The embedded PC is the communication bridge between the PinPoint, DSRC,

and MicroAutobox. The TORC Automative Interface Module is a user defined speed con-

troller which can regulate the speed of vehicle through the CAN Bus. Experimental data is

collected to evaluate the performance of TORC controller and LMPC controller. Analysis of

the experimental data is given to explain the overshoot of distance and errors of the relative

speed. Solutions are given and evaluated by simulation to improve the performance of future

experiments.

4.2 System Architecture

As shown in Figure 4.1 and Figure 4.2, the system includes a PinPoint (navigation sys-

tem), DSRC (communication radio), Embedded PC, MicroAutobox and TORC controller.

More information about the hardware is presented below. Navigation and localization in-

formation of the host vehicle are achieved from PinPoint and the information from leading

vehicle is received from DSRC. All the messages are sent to the Embedded PC, which is a

communication bridge between the PinPoint, DSRC, and the MicroAutobox. The vehicle

information from the Embedded PC and CAN Bus are the inputs of the control algorithm

running in the MicroAutobox. The desired speed generated from the control algorithm is
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sent to the TORC speed controller, which is used to regulate the following vehicle speed.The

test vehicles are 2014 Cadillac SRX as shown in Figure 4.3. Each vehicle is equipped with the

PinPoint, DSRC, MicroAutoBox, Embedded PC and other support devices such as power

distribution system. Also, the vehicle speed, the throttle position and the other information

of the vehicle can be obtained via a controller area network (CAN) bus. This information

are potentially useful for future work such as automated lane change. In this work, velocity

from the CAN Bus is used for calculating the relative velocity.

Speed Commands CAN Messages 

Messages From 
Other Vehicle 

Messages of Host 
Vehicle 

Figure 4.1: System Infrastructure

4.3 Hardwares Descriptions

4.3.1 PinPoint Localization Module

The PinPoint localization system shown in Figure 4.4 is a continuous positioning sys-

tem for ground vehicles [10]. It provides multi-sensor fusion of dual-GPS receivers, inertial
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Figure 4.2: Experimental setup in the vehicle which includes MicroAutoBox, DSRC and
PinPoint

Figure 4.3: Cadillac SRX used for the experimental test

sensors, and wheel speed sensors to provide real time position, orientation, velocity, and time

information. Also, PinPoint operates with either a low-cost internal IMU or a high-precision
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external IMU and is based on an error-state, multiplicative, extended Kalman filter that

estimates the vehicles’ position, velocity, and attitude. These estimates are propagated in

time by the IMU measurements as the vehicle moves, and the GPS and wheel speed sensors

are used to correct the estimates in the measurement update phase of the filter. All outputs

are continuously updated regardless of a GPS fix, allowing operation during GPS degrada-

tion or complete signal loss. High dynamic measurements of the vehicle are provided to the

control system. Positions measured from PinPoint compared to the Google maps are shown

in Figure 4.5. In this work, PinPoint is used for the navigation which provide position,

velocity and acceleration of the vehicles.

Figure 4.4: PinPoint

4.3.2 DSRC Onboard Equipment (OBE)

Dedicated short-range communications (DSRC) shown in Figure 4.6 are one-way or

two-way short-range to medium-range wireless communication channels specifically designed

for automotive use and has a unique set of protocols and standards for this purpose. It

is a key enabling technology of connected automated vehicle systems. The US Federal

Communications Commission allocated 75 megahertz of spectrum in the 5.850-5.925 GHz

band for intelligent transportation services [29]. In experiments, the DSRC provides the

ability for the SRX vehicles to communicate with the other vehicles reliably.
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Figure 4.5: Positions from PinPoint

Figure 4.6: DSRC

4.3.3 MicroAutobox II

The core of the whole system is a MicroAutoBox II (MAB II) shown in Figure 4.7,

which is a real-time system for performing fast function prototyping in full pass and bypass

scenarios [7]. It operates without user intervention, just like an ECU. MicroAutoBox can
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be used for many different rapid control prototyping applications such as: classic control,

electric drives control, advanced driver assistance systems and etc. The major advantage is

that it provides a means to more rapidly develop and test systems using model-based control

design. The MAB II is meant to be used in combination with the dSpace implementation

tools and the Simulink modeling environment. With the dSpace implementation tools, a

Simulink model can be automatically complied to a real-time application that will run in

the MAB II. As shown in Figure 4.1, data from the PinPoint and DSRC is passed to the

MAB II through an Ethernet connection.

Figure 4.7: MicroAutoBox [7]

4.3.4 TORC Automotive Interface Module

Maximum and minimum acceleration were determined by the test performance of TORC

Speed controller. The TORC Automative Interface Module shown in Figure 4.8 is specifically

designed for automated vehicles and is responsible for the speed control. When a speed

command is received, the TORC module regulates the speed via a user defined command

for this test. The control method is proportional-integral-derivative (PID) controller. Here,

the coefficients of PID are set to be 0.1, 0.01,0.001, which are determined based on trial and
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error running during the experimental data collection. The TORC controller has two modes:

mode 0 represents that it is disabled and mode 1 represents that it is enabled.

Figure 4.8: TORC Quad CAN ECU Module

4.4 Software Setup

Software associated with the hardware consists of user written programs (c code) and

client supplied ControlDesk. The user write programs are required to execute in the test.

The information such as position and velocity from PinPoint and DSRC are regarded as

the inputs of the MicroAutobox, but the PinPoint and DSRC can not communicate with

MicroAutobox directly. The Embedded PC is used as a communication bridge between

the PinPoint, DSRC, and MicroAutobox. The programs are responsible for sending the

navigation and localization information of PinPoint and DSRC to the Embedded PC. All

the information can be displayed on a monitor. The benefit of using MicroAutobox is that

the control algorithm can be developed in Simulink. The Simulink model is compiled into

a real-time application (sdf file), which is running in MicroAutobox. ControlDesk is the

interface for the MicroAutobox shown in Figure 4.9. When the sdf file is downloaded into
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the MicroAutobox, all the variables defined in Simulink model such as desired distance and

acceleration limits can be changed and displayed.

Figure 4.9: User Interface of ControlDesk

4.5 Experimental Results

4.5.1 Test of Vehicle Following Controller

The Laguerre function based model predictive controller presented in this thesis was

also evaluated on the two experimental vehicles. Two vehicles as shown in Figure 4.3 are

involved in the test. The terrain condition is almost flat with some slightly hilly areas. Both

of the vehicles are equipped with V2V communication. In order to implement the designed

controller in MicroAutobox, the control algorithm was transferred to Simulink blocks. The

Simulink blocks were used for generating the real-time application named sdf file.

The Simulink blocks of the controller implementation is shown in Figure 4.10. First,

navigation information is collected for processing (Information Acquired). Specifically, the

position and speed of leading vehicle are received from DSRC; the position of the following

vehicle is received from PinPoint; and the speed and acceleration of following vehicle are
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acquired form CAN Bus of the following vehicle. Second, the distance between the two

vehicles and relative speed are computed (Calculation). Note, the desired distance (50m)

and desired relative speed (0 m/s) have been previously set by the user. After the information

is received successfully, the states which are the error between the current relative speed and

previous relative speed, the error between the current distance and previous distance, the

error between the actual relative speed and desired relative speed (0 m/s) and the error

between actual distance and desired distance can be updated. Third, the states multiplied

by the feedback gain is the difference of desired acceleration. The sum of the difference of

desired acceleration, the acceleration of following vehicle from PinPoint, and the acceleration

of leading vehicle from DSRC is the desired acceleration; the desired acceleration multiplied

by sampling period plus the current speed is the desired speed. Finally, the desired speed is

sent to the TORC speed controller, and the following vehicle speed is regulated by the speed

command to maintain the distance and the relative speed.

The MPC controller is executed in real time implementation on a MicroAutoBox plat-

form. The test is performed with a pre-set distance of 50 meters. The test procedure and

results are presented below. At the beginning of the test, the following vehicle was driven to

10m/s to enable the ACC function (minimum speed to enable the ACC function is 6.94m/s),

so the initial speed of the following vehicle at 0s is about 10m/s. During 0-6.4s, the follow-

ing speed is set to 5.5 m/s, as shown in Figure 4.12, by sending this speed through TORC

speed controller directly. Because the test field is small, these vehicles are tested at low

speed. The leading vehicle stops in front of the following vehicle, so the distance is getting

closer as shown in Figure 4.11 between 0-6.4s. At about 6.4s, the control switch is set from

mode 1 to mode 2, which enables the controller as shown in Figure 4.14. During 6.4-65s,

the following vehicle speed is automated controlled by the control algorithm running in the

MicroAutoBox without pressing the throttle or brake. Because by the initial speed is larger

than the leading speed, in the first phase, the following vehicle is trying to catch up to the
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Figure 4.10: Simulink Blocks of Controller Implementation

leading vehicle. When the speeds are almost the same at 20s, the vehicle decelerates to en-

large the distance between the vehicles. At 30s, the distance is brought to 50 meters which

is the desired distance, and the relative speed is close to zero, but with some errors. The

experimental results show that the controller succeeds in maintaining the desired distance

(with some overshoot) and the same speed (with errors) between the leading and following

vehicles. After 65s, the following vehicle is decelerated by manually pressing the brake. The

ACC function and controller are disabled automatically and without changing the value of

control switch. The leading vehicle went further and the experiment was stopped.
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4.6 Discussion of Experimental Data

4.6.1 Absence of the Acceleration of Leading Vehicle

The vehicles equipped with V2V communication can communicate with each other as

discussed previously . Information consists of position, velocity, and acceleration from other

vehicles are acquired through V2V communication. In general the control system based on
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the LMPC computes the desired relative acceleration between the following vehicle and the

leading vehicle. The assumption of the model is that the position, velocity and acceleration

messages can be sent and received through DSRC. But for the experimental results of this

work, access to the acceleration of the leading vehicle was not available. There are two

possible reasons, one is that the acceleration is not generated from the PinPoint and the

other one is the data is failed to send through the DSRC. Because the input of the control

system is the relative acceleration, the real model can not match the designed model because

of the absence of the acceleration of leading vehicle. Even through the acceleration of leading

vehicle is not received, the following vehicle is still following the leading vehicle with the

desired distance at the same speed. Additionally, the rapid change of the leading vehicle

speed in the test is another potential cause of control error.

4.6.2 Constraints on the Difference of Control Variable

Comparison of Different Constraints on ∆u

Another source for the poor performance could be that the desired acceleration is not

smooth enough. In the simulation and test, the constraints on the difference of the desired

acceleration are −1.5m/s2 and 1.5m/s2. Figure 4.15 shows the desired acceleration in the

test at a sampling frequency of 1000 Hz. The desired acceleration has many oscillations

because of the unsuitable constraints on ∆u. The oscillation of the desired acceleration can

explain the overshoot of the distance and the error of relative speed. Therefore methods to

smooth the desired acceleration should be explored.

The oscillation of the desired acceleration results in the poor performance of the following

vehicle. This is one reason that the following vehicle can not follow the leading vehicle very

quickly. In order to improve the performance, one solution is to decrease the constraints

on the difference of the acceleration. The absolute value of the constraints are set to be

1.5m/s2, 0.3m/s2, and 0.01m/s2. There is more constraint on the difference of the desired

acceleration. To validate the changes on the control performance, simulations were run with
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Figure 4.15: Desired Acceleration in the Test

the same weighting matrices defined in Equation (3.45) and Equation (3.46) and the same

decay factor(a = 0.5). The results of the changed acceleration constraints are shown in

Figure 4.16 - 4.18.

Comparison of Large Weighting Matrix (R)

Another way to eliminate the oscillations is increase the weighting matrix on the differ-

ence of the desired acceleration ∆u. This will also have the effect of reducing the constraints

of ∆u. Figure 4.18 shows that the desired acceleration is smoother without the sacrifice

of the control performance. A large weighting matrix (R = 10000) is used to improve the

smoothess of desired acceleration. The simulation results are shown in Figure 4.19 - 4.22.

Figure 4.19 and Figure 4.20 show that the performance of the control system is as same as

the performance when R = 1. The difference is shown in Figure 4.21, compared to the Figure

4.18. The acceleration almost has no oscillation and is very smooth. Further experimental

tests should be performed in the future to validate the controller improvement.
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Figure 4.17: Relative Speed
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Figure 4.18: Desired Relative Acceleration

0 5 10 15 20
48

50

52

54

56

58

60

Time [s]

D
is

ta
n

c
e

 

 

R=1

R=10000

Figure 4.19: Distance

50



0 5 10 15 20
−4

−3

−2

−1

0

1

Time [s]

R
e

la
ti

v
e

 V
e

lo
c

it
y

 [
m

/s
]

 

 

R=1

R=10000

Figure 4.20: Relative Speed

0 2 4 6 8 10 12 14 16 18 20 22
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

D
e

s
ir

e
d

 A
c

c
e

le
ra

ti
o

n

 

 

R=1

R=10000

Figure 4.21: Desired Relative Acceleration
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Figure 4.22: Incremental Variation of the Desired Relative Acceleration

4.7 Conclusion

The test equipment, sensors and experiments were discussed in this chapter. The exper-

imental data confirmed the concept of connected vehicle following using the LMPC methods

developed in Chapter 3. The vehicles can communicate with each other and share the vehicle

information needed for the LMPC control. The control system performed on the experimen-

tal platform with overshoot of the actual distance and the speed errors as observed in Figure

4.11 and Figure 4.13. The reasons for the experimental phenomenon were explored and

evaluated through the simulations. Two reasons including the absence of the acceleration

of leading vehicle and large constraints on the difference of desired acceleration led to the

overshoot of distance and the errors of the relative speed. Solutions explored for improving

the control performance included reducing the constraints on the difference of the desired

acceleration and adjusting the weighting matrix of the control variable. These solutions were

validated in simulation and should lead to improved performance of future experiments.
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Chapter 5

Conclusion and Future work

This thesis presents the concept of connected vehicles, which can share the vehicle nav-

igation and localization information with the other vehicles. The kinematic relationship of

the vehicles involved in the vehicle following maneuver was analyzed. Based on the kine-

matic equation, the augmented model of vehicle following maneuver and a LMPC were

developed to calculate the desired relative acceleration of the following vehicle. Different

approximation results were compared by selecting different decay factors (a) of Laguerre

functions. Simulations of several model parameters are presented to demonstrate the re-

sults. The LMPC algorithm is used as a computational tool to develop a control law for

ACC with V2V communication vehicles. A LMPC enabled the control system to be tuned.

Performance of closed-loop system was evaluated to show how the control system is tuned by

selecting different decay factors. The controller was developed in Simulink and tested on the

connected vehicles at Federal Highway Administration (FHWA) Turner-Fairbank Highway

Research Center (TFHRC), which had experimental equipment including PinPoint, DSRC,

and MicroAutobox. The control algorithm performed fairly well from the simulation results,

but the experimental results showed the following vehicle could not follow the leading vehi-

cle very fast. The possible reasons were analyzed. Suggested improvements of the control

system were given to improve the performance of the future experiments.

There are many interesting avenues of future work stemming from this thesis. First,

performance of the improved controller should be validated. One improvement is to send

the acceleration of leading vehicle back to the following vehicle through the DSRC. This

will make the designed model in the simulation match with the actual physical vehicle

system. Other improvements may be to reduce the constraints on the difference of the desired
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acceleration or increase the input weighting matrix. Both constraint reduction and input

weighting increase will eliminate the oscillation of the desired acceleration. The experimental

performance should be improved with the absence of the oscillated desired acceleration.

Second, performance of different control methods such as PID controller, fuzzy-logic control

and MPC can be compared through the experimental system. Next, further experimental

validation of the different safe distances dependent on different traffic situations should

be an objective of the future research. In addition an interesting issue to consider for

further research is a comparison of the ACC performance of radar based on relative distance

measurement and V2V communication relative distance estimate. Theoretically, connected

vehicles can track another vehicle with a closer safe distance, which will improve the traffic

flow capacity in the future [28]. Next to these fundamental issues, lane changing and merging

of vehicles in everyday traffic present several practical implementation concerns that need to

be investigated. With the respect to the lane change and merge concerns, the application of a

V2V communication based lateral control system is recommended. Finally, the assumption

is that the vehicles are equipped with V2V communication. However in the near future,

before all the vehicles have V2V communication, the most important issue for the practical

application of automated vehicles is how to resolve interaction of connected and unconnected

vehicles.
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