Ecological Distribution of Shrews in the Cumberland Plateau of Alabama

by

Jackson Lane Moss

A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the degree of Master of Science

> Auburn, Alabama December 12, 2015

Keywords: shrews, habitat partitioning, interspecific interactions

Copyright by Jackson Lane Moss

Approved by

Troy L. Best, Chair, Professor of Biological Sciences Robert S. Lishak, Associate Professor of Biological Sciences Sharon M. Hermann, Assistant Professor of Biological Sciences

Abstract

Shrews are small mammals that often occur in sympatry with other species of shrews. This suggests some form of resource partitioning is occurring. I examined eight habitats in Jackson County, Alabama, and detected evidence of habitat partitioning by shrews in pine forests, mixed forests with liana undergrowth, and deciduous riparian zones. Also, I discovered that I was 11 times more likely to capture a shrew on a night with rainfall than on a night with clear skies. Habitat segregation and increased activity on rainy nights should both be considered when researchers attempt to capture shrews in the field.

ACKNOWLEDGMENTS

I thank all persons that helped with various aspects of this research including Troy L. Best, Sharon M. Hermann, Robert S. Lishak, John D. LaCoste, Danielle J. Marin, Malcolm W. Moss, Deborah U. Moss, Will M. Alves, Matthew M. Stallings, Benjamin B. Neuffer, and Jarron B. Patterson. Thanks also to personnel at the organizations, agencies, and institutions that provided permits and access to research sites; especially Auburn University and the Alabama Department of Conservation and Natural Resources James D. Martin-Skyline Wildlife Management Area.

TABLE OF CONTENTS

Abstract	ii
Acknowledgements	iii
Introduction	1
Materials and Methods	
Results	6
Discussion	
Literature Cited	
Tables	
Appendix	

LIST OF TABLES

Table 1. Trap, date, location, habitat, type of soil, depth of litter, canopy cover, and shrews captured at sites where pitfall traps were set for shrews in northern
Alabama 18
Table 2. Evaluation of the relationship between habitat and success in capturing shrews in northern Alabama. Asterisks indicate habitats with significant differences in species of shrews present at an 85% confidence
interval
 Table 3. For each habitat, β-estimates and <i>P</i>-values based on probability that partitioning of habitats is occurring and species of shrews based on probability that the species is selecting specific habitats derived from logistical-regression analysis conducted using R. Deciduous forest was the
intercept
significant 32
Table 5. Date, weather conditions, lunar illumination, time of moonrise and moonset, time of sunset and sunrise, and duration of lunar illumination on each night at sites where pitfall traps were set for shrews in northern
Alabama
Alabama
LIST OF APPENDICES
Appendix 1. Taxonomic key to shrews (Mammalia: Soricomorpha: Soricidae) in Alabama45
Appendix 2. Habitat, type of soil, depth of litter, and canopy cover at sites where pitfall traps were set for shrews (Soricidae) in northern Alabama for all habitats sampled in 2013 and 2014. Small pitfall traps (0.4 liters) were used in the 2013 and large pitfall traps (3.7 liters) were used in
201447

ECOLOGICAL DISTRIBUTION OF SHREWS IN THE CUMBERLAND PLATEAU OF ALABAMA

INTRODUCTION

Partitioning of habitats is a method of reducing competition between species that have similar ecological requirements, feeding preferences, or feeding times, and allows coexistence of species (Rychlik 2000). Partitioning of habitats happens in many types of vertebrates from foxes, coyotes, gerbils and lizards to fishes (Shine 1986, Theberge and Wedeles 1989, Zaret and Rand 1971, Ziv et al. 1993). Shrews are small, semi-fossorial mammals in the order Soricomorpha and family Soricidae (Vaughan et al. 2015). Species of shrews rarely occur in allopatry and diverse assemblages of four or more species have been reported in many parts of the world (Kirkland 1991). Most studies of shrews in sympatry have determined that some partitioning of habitats has occurred.

Characteristics of macrohabitats of most species of shrews are well known; however, details of microhabitats occupied need additional assessment (Malmquist 1985, Rychlik 2000). Throughout the Northern Hemisphere, shrews use partitioning of habitats to reduce interspecific competition. Species that are similar in size and foraging mode often will not occur in the same area (McCay et al. 2004). Larger shrews can occur with smaller shrews because larger shrews often have the musculature to be more fossorial, while smaller shrews usually stay in the leaf litter (McCay et al. 2004, Saarikko 1989). Previous studies have compared ecological relationships among species of shrews that share the same geographic area (Brannon 2000). Brannon (2000) discovered that the two species he studied, *Sorex cinereus* and *S. fumeus*, were separated ecologically by differences in microhabitats, such as moisture, depth of litter, and size

of body. In the United States, much research has been conducted on the six species of shrews reported from Alabama. Habitat preferences for each of these species have been assessed and researchers seem to agree on the type of habitat each species occupies (Dusi 1959, French 1980*a*, Hamilton 1934, Kaufman et al. 2004, Miller and Getz 1977).

Shrews usually forage for arthropods and annelids in leaf litter (Dusi 1959), but they may burrow to obtain food (Churchfield 1980). Shrews use leaf litter and vegetation as natural cover when foraging for prey or moving to avoid predation (Dusi 1959). Due to their foraging habits, shrews rely primarily on scent and auditory cues rather than sight (Churchfield 1980). Shrews have a high metabolic rate because of their high surface-to-volume ratio. Because of this ratio, they lose heat quickly and must burn many calories to maintain body temperature. Shrews consume foods that total \geq 75% of their body weight each day (Pearson 1947).

There is a paucity of research on the impact of weather on activity of shrews. In a study of *S. cinereus*, activity seemed to increase on rainy nights (Doucet and Bider 1974). There has been no previous comparison of weather conditions and activity of shrews in Alabama. However, these species of shrews and the interaction with rainfall have been studied elsewhere (McCay 1996, Brannon 2002, Otto and Roloff 2011). These studies determined that activity of shrews increased on nights with rainfall. However, Whitaker and Feldhamer (2005) suggested that rainfall was not a contributing factor to the activity of shrews and that humidity was the factor that changed activity of shrews. In rodents, there is an increase in nighttime foraging activity when weather is warm and rainy; also, rodents were nocturnal during winter and diurnal in summer (Stokes et al. 2001). This activity pattern is most likely a way to help avoid hot daytime temperatures and predators by foraging on rainy nights (Stokes et al. 2001). Rodents

and shrews have the same natural predators, so foraging on rainy nights is most likely true for shrews as well.

Shrews occur throughout most of the world (McCay et al. 2004). Alabama has six species of shrews native to the state (Appendix 1): *Blarina brevicauda* (northern short-tailed shrew), *Blarina carolinensis* (southern short-tailed shrew), *Cryptotis parva* (North American least shrew), *Sorex fumeus* (smoky shrew), *Sorex hoyi* (American pygmy shrew), and *Sorex longirostris* (southeastern shrew; Best and Dusi 2014, Felix et al. 2009, Laerm and Lepardo1996). The primary purposes of my study were to determine 1) habitats occupied by each species, 2) whether partitioning of habitats is occurring, and 3) whether weather, lunar cycles, and other nocturnal conditions affect activity of shrews. My null hypothesis is that there is no significant correlation between distribution of shrews and variation in habitats and that there will be no significant relationship among lunar cycle, weather condition, and number of captures.

MATERIALS AND METHODS

Jackson County is in northeastern Alabama, and all six species of shrews that occur in the state have been reported there (Best and Dusi 2014); the county is characterized by diverse habitats that range from lowland agricultural fields to high-elevation forested slopes. Based on previous research (Dusi 1959, French 1980*a*, George et al. 1986, Kaufman et al 2004, Long 1974), I chose several habitats with a high probability of being occupied by shrews in the Cumberland Plateau of James D. Martin Skyline Wildlife Management Area, Jackson County, Alabama, and in Horton, Marshall County, Alabama. James. D. Martin Skyline Wildlife Management Area (Skyline) occupies about 163 km² in Jackson County (Alabama Cooperative Fish and Wildlife Research Unit

http://www.ag.auburn.edu/auxiliary/alcfwru/documents/ALCFWRU%202009.pdf). This area contains a diversity of habitats that were similar to those assessed by previous researchers who sought shrews occurring in sympatry (Dusi 1959, French 1980a, George et al. 1986, Kaufman et al 2004, Long 1974). Habitats were evaluated based on predominant vegetation (deciduous, pine, and mixed forests, or more open habitats), by presence or absence of riparian zones within habitats, and by composition of understory (e.g., open, lianas *Parthenocissus*, grasses). Type and composition of understory was measured using a quadrant-sampling square as described by Cottam and Curtis (1956). GPS location, habitat, canopy cover, type of soil, and depth of litter were recorded in a 1-meter-diameter, circular area around each trapping site (Appendix 2). Canopy cover was estimated using a spherical densitometer (model C; Forest Densitometers, Bartlesville, Oklahoma). Depth of litter was measured to the nearest 1 millimeters using a ruler. Soil in each habitat was categorized based on data from the soil survey of Jackson County (United States Department of Agriculture Natural Resources Conservation Service http://websoilsurvey.nrcs.usda.gov/). Types of soil were shallow sandy loam, fine sandy loam, stony fine loam, and sand. Shallow sandy loam is soil that has 0-15-millimeter particles and is usually a dark gray or dark brown with large amounts of rocks. Fine sandy loam is similar to shallow sandy loam, but lacks large amounts of rocks. Stony fine loam has particles <1 millimeter in diameter (Bennett and Griffen 1904). Sand was soil with 0.5-2.0-millimeter particles (Kettler et al. 2001) and usually occurred near a body of water or in riparian zones in my study area.

Pitfall traps are an efficient way to capture shrews (Mengak and Guynn 1987). The trap is usually a can or bucket placed into the ground so the rim is flush with the surface. Depth and diameter of the pitfall trap must be large enough so that the shrew cannot crawl or jump out

(Felix et al. 2009). Pitfall traps range in size from a small cup to an in-ground swimming pool, but the general design is a hole in the ground into which an unwary animal falls (Fisher et al. 2008). Pitfall traps and drift fences were set following the methods of Fisher et al. (2008). Traps were checked each morning, GPS locations of captured individuals was recorded, and shrews were identified to species (Appendix 1). In 2013, 8 traplines of 15-20 pitfall traps consisting of a total of 108 small (0.4-liter) plastic containers were open for 5 nights and closed for 2 nights for a total of 43 nights yielding 4,644 trap nights. Small pitfall traps had a diameter of 8.5 centimeters at the opening. Pitfall traps were placed 3-5 meters apart along an 85-meter-long by 1-meter-high drift fence. Number of habitats sampled at each locality was determined by consulting previous reports on habitat preferences of shrews (Dusi 1959, French 1980a, George et al. 1986, Kaufman et al. 2004, Long 1974). In 2014, 37 large (\geq 3.7-liters) pitfall traps were set during spring and summer. Large pitfall traps had a diameter of 10.5 centimeters at the opening. I followed the method of Whitaker and Cudmore (1986), Clark and Blom (1992), and Whitaker and French (1984) who used 3.7-liter pitfall traps with no drift fence were open for 5 nights and closed for 2 nights for a total of 72 nights yielding 2,664 trap nights, but I placed pitfall traps next to fallen trees, shrubs, brambles, and bases of trees. Shrews use fallen trees, bases of trees, brambles, and shrubs as foraging sites to avoid being attacked by predators (French 1980*a*). In addition, the swimming pool in Marshall County was checked for shrews each day beginning 7 May through 1 August. The pool was in open field with scattered trees and acted as a giant pitfall trap. I examined size of pitfall traps and use of drift fences to increase success in capturing shrews.

Data were analyzed using Poisson and binomial-logistical regression (R statistical program; Real et al. 2006), which are generalized-linear models (Guisan et al. 2002).

Generalized-linear models used in assessments of ecological data do not have as many assumptions as linear models, and because of this, they are less likely to force data into unnatural statistical scales (Guisan et al. 2002). This also allows for more variance in data that would be expected in non-model analyses (Guisan et al. 2002). Because binomial-logistical regression is useful in assessing presence or absence of species (MacKenzie et al. 2005), I used it to assess presence (coded as 1) or absence (coded as 0) based on habitat where each individual shrew was captured, similar to analyses conducted by previous researchers (e.g., Theberge and Wedeles 1989, Zaret and Rand 1971, Ziv et al. 1993). In addition, Compton et al. (2002) examined partitioning of habitats among wood turtles (*Glyptemys*) and determined that binomial-logistical regression was an appropriate assessment technique. To investigate the relationship among weather, lunar cycle, and number of captures of shrews, I also used binomial-logistical regression. I used a pairwise *t*-test to evaluate the relationship between number of shrews captured, percentage illumination of the moon, and number of minutes of overnight illumination (Real et al. 2006).

Rainy nights were characterized as having >0.5 millimeters of rainfall that continued for >30 minutes from 1900 h to 1100 h CDT the next day. Cloudy nights were characterized as having >50% cloud cover that persisted for >1 hour from 1900 h to 1100 h CDT the next day. Clear nights were characterized as having <50% cloud cover that persisted >1 hour from 1900 h to 1100 h CDT the next day. Clear nights were characterized as having <50% cloud cover that persisted >1 hour from 1900 h to 1100 h CDT the next day. Snowy nights were nights that had snowfall. I evaluated percentage illumination of the moon using records from the United States Naval Observatory (http://www.usno.navy.mil/USNO) and dividing it into five categories based on percentage illumination; 0-19%, 20-39%, 40-59%, 60-79%, and 80-100%.

To be considered statistically significant, I used an 85% confidence interval because this is a robust confidence interval that demonstrates correlation between two or more habitats, weather, lunar cycle, and species of shrews. In previous analyses, there was no statistical difference between the use of an 85% and a 95% confidence interval (Payton et al. 2000). Thus, it was recommended that using an 85% confidence interval reduced the probability of a type 1 error to ≤ 0.05 in ecological assessments (Payton et al. 2000).

RESULTS

In spring and summer of 2013 and 2014, I placed a total of 145 pitfall traps in nine locations representing seven habitats and 7,308 trap nights. I captured 32 shrews representing five species during 115 nights at seven sites (Table 1). At the swimming pool in Marshall County, four shrews (*C. parva*) were collected in 87 nights and two shrews (*C. parva*) were killed by domestic cats in adjacent open field.

A total of four *S. hoyi* was captured; three were in an ephemeral creek-bed and one was next to a stream in deciduous riparian forest with sandy soil. Six *C. parva* were captured in open fields with scattered trees, five in pine forest, and one in mixed forest (n = 12, P = 0.118; $SE = \pm 1.16$; z = 1.562). Association of *C. parva* with pine forest was statistically significant (P = 0.027; z = 2.212). Five *S. longirostris* were in mixed forest with an understory of lianas and one was in mixed forest without lianas (Table 2). I also captured 5 *B. carolinensis* and 2 *B. brevicauda*, but the samples were too small for statistical analyses.

Deciduous riparian forests revealed a significant relationship between habitat and species of shrew present (P = 0.139; z = 1.478; Table 3). Mixed forests with an understory of lianas or woody shrubs approached significance (P = 0.155; z = 1.424), and other habitats exhibited no significant associations with any species of shrew ($P \ge 0.400$; $z \ge 0.700$). Analyses of number of nights in each category of lunar illumination revealed no significant correlation with number of shrews captured (Table 4). When compared, there was a significant relationship between duration of lunar illumination and number of shrews captured. When lunar illumination was 181 to 360 minutes, I was about 4 times less likely to catch a shrew than on nights with more or less lunar illumination (P = 0.011; z = -2.545; Table 5). A binomial-logistical regression between number of shrews captured and weather each night revealed that captures were 11 times more likely to occur on nights when it rained compared to nights with clear skies (P = 0.002; z = 3.042; Table 6) for *B. carolinensis*, *C. parva*, *S. hoyi*, and *S. longirostris*. The only two *B. brevicauda* caught were on cloudy nights. Also, captures were 5.8 times as likely on rainy nights compared to nights with cloudy skies (P = 0.011; $SE = \pm -0.7$; z = 2.546).

In comparing the two sizes of pitfall traps, there was a difference between them. Large pitfall traps were 18 times more likely to capture shrews than small pitfall traps and this difference was statistically significant (P < 0.001; z = 4.389).

DISCUSSION

Some species of shrews were more common in pine forests (*B. carolinensis*, *C. parva*), mixed forests with lianas (*S. longirostris*), or deciduous-riparian forests (*S. hoyi*; Appendix 2). I infer that this is evidence of partitioning of habitats among species. It is likely that other habitats (open fields, riparian-mixed, mixed forest, and deciduous forest) would show a significant relationship, but samples of captured shrews were too small in those areas.

The larger species of shrews, *B. brevicauda* and *B. carolinensis*, did not co-occur at any site (Table 2). This could be because the level of competition is greater between larger species than between larger and smaller species of shrews. This could best be explained by differences in prey of larger shrews compared to prey of smaller shrews (Whitaker and French 1984).

Because they have different prey, there is less competition among species of shrews of different sizes. *B. brevicauda* is a large shrew with silver-to-black pelage. Its hair often is tipped with brown and the tail is only 20% as long as the head and body (George et al. 1986). *B. brevicauda* usually occupies microhabitats with >50% vegetation cover (Miller and Getz 1977). I did not capture enough *B. brevicauda* to make comparisons with previous research, but the two I did capture were in a deciduous forest near a riparian area (Table 2). This indicates that they live near sources of water.

Most captures of *B. carolinensis* were in pine forests (Table 2). Two of the *B. carolinensis* that were captured were large, both weighed 12 grams and were captured in the same pitfall trap on two different nights. A large portion of the geographic range of *B. carolinensis* is in non-climax pine forests (Genoways and Choate 1998). This correlates with previous work on the species in Nebraska (Genoways and Choate 1998). *B. carolinensis* is a large shrew common in the southeastern United States (McCay 2001). However, little is known about this species in Alabama (Best 2004). General characteristics of *B. carolinensis* are similar to *B. brevicauda* (McCay 2001), but size is useful in distinguishing the two species in the field as *B. brevicauda* is longer than *B. carolinensis* (Appendix 1; Hall 1981). These species also differ in occiptio-premaxillary length, which on average is 19 millimeters in *B. carolinensis* and 24 millimeters in *B. brevicauda* and cranial breadth, which on average is 10.4 millimeters in *B. carolinensis* and 23.5 millimeters in *B. brevicauda* (Genoways and Choate 1972, Hall 1981). Species of *Blarina* generally inhabit moist woods with well-drained soils and dense ground cover (Kaufman et al. 2004).

Areas where *C. parva* was detected matched the microhabitat requirements of open field with broomsedge (*Andropogon*) and open canopy described by Hamilton (1934) and Whitaker (1974). *C. parva* is the only North American shrew with four unicuspid teeth (Hall 1981, Whitaker 1974). These shrews sometimes nest together to conserve energy (Hamilton 1934, Jackson 1961, Whitaker 1974). *C. parva* occupies brushy fields (Hamilton 1934, Whitaker 1974). Type of soil is believed to play a key role in habitats occupied by this species, but it also needs dense herbaceous ground cover and downed woody debris (Davis and Joeris 1945).

S. hoyi was captured in areas with sandy soils and stream beds. This is additional evidence that this species occupies wet soil as described by Long (1974). Specimens I obtained are new records for Alabama and indicate that this species might occur in adjacent counties.

As in previous research indicating it is a habitat generalist (French 1980a), I captured S. longirostris in a variety of habitats. S. longirostris is a reddish-brown shrew with a long-narrow snout and a tail \geq 50% as long as the head and body (Kaufman et al. 2004). This shrew is smaller than other species of Sorex (French 1980a). Of the six species of shrews in Jackson County, this is the most studied in Alabama (French 1980a). One was captured and observed making a soft, bird-like chirp that approached a frequency of 22,000 cycles/second (French 1980a). It is believed this chirping is used for echolocation (French 1980b). This species often is captured in moist areas bordering swamps; however, S. longirostris occurs in a variety of habitats from arid grasslands to moist deciduous forests (French 1980a). This habitat generalist could have an interesting effect in an area with so many species of shrew coexisting such as Jackson County.

Crypotis parva was captured in a variety of habitats suggesting that it is a habitat generalist as is *S. longirostris*. I could not verify if the habitat generalist, *S. longirostris*, was impacting abundance of shrews in habitats occupied where one or more species of shrews are present. I

caught eight S. longirostris and, in areas where it was present, I did not catch any other species of Sorex. This is likely due to the fact that these smaller species would be in direct competition, whereas larger species, such as B. brevicauda and B. carolinensis, would be foraging for different foods or in different areas (McCay et al. 2004). Although most of these shrews have different habitat preferences in other areas of North America (Whitaker and French 1984), it is possible that the generalist species S. longirostris could be affecting habitat preference of other species of shrews in the area, but I could not verify this. S. longirostris lives in a variety of habitats and is the only species to have such a flexible range of habitats (French 1980a). This means that S. longirostris could displace S. hovi or C. parva through either direct competition or even predation in areas that are not optimal habitat for S. hoyi and C. parva. Shrews are cannibalistic on dead shrews in the lab (Davis and Joeris 1945). This could mean that interspecific predation occurs between species of shrews living in sympatry, but no previous research has made note of this. This may explain why I only caught C. parva in open fields and S. hoyi in areas of sandy, moist soil. This is where I would expect to catch these species based on research by Hamilton (1934) and Long (1974).

Habitat partitioning and general trends for habitats selected by shrews has been well studied elsewhere (Genoways and Choate 1998, Rychlik 2000), but not in Alabama. More research is needed to compare body size among species of shrews in the same habitat or different habitats. A difference in size could be a product of resource partitioning and researchers might even see character displacement in these situations. *Sorex minutus* has significantly smaller jaws when in sympatry with *Sorex araneus* (Malmquist 1985). Character displacement is likely affecting feeding ecology of these two species to allow them to coexist (Malmquist 1985). Shrews are generalized predators, so the simplest way for two species to coexist would be to

have different important prey and an important factor in prey is size of the predator (Whitaker and French 1984).

Shrews did not show a change in activity based on percent lunar illumination. This is most likely because they forage primarily under leaf litter and underground (Churchfield 1980, Dusi 1959). Duration of lunar illumination at 181-360 minutes was correlated with a decrease in activity. This could be because shrews are staying sedentary to help avoid predators until the moon sets (Churchfield 1980); however, due to their high metabolic demand, they cannot stay sedentary on nights with >360 minutes of illumination (Pearson 1947).

My results indicated that rainfall affects success in capturing shrews; *Sorex cinereus* is most active during nights with rains that begin in the afternoon (Doucet and Bider 1974). In my study, number of rainy nights (n = 38) was about equal to cloudy (n = 31) and clear nights (n = 36). Weather and its association with success in capturing shrews is an understudied phenomenon; my results support what Brannon (2002), McCay (1996) and Otto and Roloff (2011) previously suggested about activity of shrews and weather. This relationship between weather and activity may be because earthworms (*Amynthus gracilus*) come to the surface of the soil during rainstorm events (Chuang and Chen 2008). Another possible reason is that shrews move about less while foraging on clear nights. Predators of shrews, such as owls and feral cats, would have an advantage on a clear night. Shrews have relatively poor eyesight, so foraging in darker situations is to their advantage when trying to avoid predators (Churchfield 1980).

The difference in size of pitfall traps is something future researchers should take into consideration. Shrews may have been able to escape the small pitfall traps, so it is better to use larger pitfall traps when attempting to capture shrews.

Habitat diversity shows some relationships with presence of shrews. This must be considered in the future to preserve these truly amazing micropredators. Rainfall promotes activity of shrews and more work is needed to determine the cause of this foraging pattern. Presence of *S. hoyi* in new localities suggests more research on this shrew should be conducted in northern Alabama.

LITERATURE CITED

- BENNETT, F., JR., AND A. M. GRIFFEN. 1904. Soil survey of the Huntsville area, Alabama. Field Operations of the Bureau of Soils 3:373-392.
- BEST, T. L., COMPILER. 2004. Mammals. Pages 185-204 in Alabama wildlife: a checklist of vertebrates and selected invertebrates: aquatic mollusks, fishes, amphibians, reptiles, birds, and mammals (R. E. Mirarchi, editor). University of Alabama Press, Tuscaloosa, 1:1-209.
- BEST, T. L., AND J. L. DUSI. 2014. Mammals of Alabama. University of Alabama Press, Tuscaloosa.
- BRANNON, M. P. 2000. Niche relationship of two syntopic species of shrews, *Sorex fumeus* and *S. cinereus*, in the southern Appalachian Mountains. Journal of Mammalogy 81:1053-1061.
- BRANNON, M. P. 2002. Epigeal movement of the smoky shrew *Sorex fumeus* following precipitation in ridgetop and streamside habitats. Acta Theriologica 47:363-368.

- CHUANG, S. C., AND J. H. CHEN. 2008. Role of diurnal rhythm of oxygen consumption in emergence from soil at night after heavy rain by earthworms. Invertebrate Biology 127:80-86.
- CHURCHFIELD, S. 1980. Subterranean foraging and burrowing activity of the common shrew. Acta Theriologica 25:451-459.

CLARK, W. H., AND P. E. BLOM. 1992. An efficient and inexpensive pitfall trap system.

Entomological News 103:55-59. COMPTON, B. W., J. M. RHYMER, AND M. MCCOLLOUGH. 2002. Habitat selection by wood turtles

(*Clemmys insculpta*): an application of paired logistic regression. Ecology 83:833843.

COTTAM, G., and J. T. CURTIS. 1956. The use of distance measures in phytosociological sampling.

Ecology 37:451-460.

- DAVIS, W. B., AND L. JOERIS. 1945. Notes on the life-history of the little short-tailed shrew. Journal of Mammalogy 26:136-138.
- DOUCET, G. J., AND J. R. BIDER. 1974. The effects of weather on the activity of the masked shrew. Journal of Mammalogy 55:348-363.

DUSI, J. L. 1959. Sorex longirostris in eastern Alabama. Journal of Mammalogy 40:438-439.

FELIX, Z., L. J. GATENS, Y. WANG, AND C. J. SCHWEITZER. 2009. First records of the smoky shrew (*Sorex fumeus*) in Alabama. Southeastern Naturalist 8:750-753.

FISHER, R. N., D. STOKES, C. J. ROCHESTER, C. BREHME, S. A. HATHAWAY, AND T. J. CASE. 2008.

Herpetological monitoring using a pitfall trapping design in southern California. United States Geological Survey Techniques and Methods, United States Geological Survey, Reston, Virginia 2-A5:1-44. FRENCH, T. W. 1980a. Sorex longirostris. Mammalian Species 143:1-3.

- FRENCH, T. W. 1980b. Natural history of the southeastern shrew, *Sorex longirostris* Bachman. American Midland Naturalist 104:13-31.
- GENOWAYS, H. H., AND J. R. CHOATE. 1972. A multivariate analysis of systematic relationships among populations of the short-tailed shrew (genus *Blarina*) in Nebraska. Systematic Biology 21:106-116.

GENOWAYS, H. H., AND J. R. CHOATE. 1998. Natural history of the southern short-tailed shrew, *Blarina carolinensis*. Occasional Papers of the Museum of Southwestern Biology 8:1-43.

- GEORGE, S. B., J. R. CHOATE, AND H. H. GENOWAYS. 1986. *Blarina brevicauda*. Mammalian Species 261:1-9.
- GUISAN, A., T. C. EDWARDS, AND T. HASTIE. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modeling 157:89-100.
- HALL, E. R. 1981. The mammals of North America. John Wiley & Sons, Inc., New York.
- HAMILTON, W. J., JR. 1934. Habits of *Cryptotis parva* in New York. Journal of Mammalogy 15:154-155.
- JACKSON, H. H. T. 1961. Mammals of Wisconsin. University of Wisconsin Press, Madison.
- KAUFMAN, K., N. BOWERS, AND R. BOWERS. 2004. Mammals of North America. Houghton Mifflin Harcourt, Boston, Massachusetts.
- KETTLER, T. A., J. W. DORAN, AND T. L. GILBERT. 2001. Simplified method for soil particlesize determination to accompany soil-quality analyses. Soil Science Society of America 65:849-852.

KIRKLAND, G. L., JR. 1991. Competition and coexistence in shrews (Insectivora: Soricidae). Occasional Papers of the Museum of Southwestern Biology 1:15-22.

- LAERM, J., AND L. LEPARDO. 1996. First records of the pygmy shrew, *Sorex hoyi winnemana* preble (Insectovora, Soricidae), in Alabama. Journal of the Alabama Academy of Science 67:43-47.
- LONG, C. A. 1974. Microsorex hoyi and Microsorex thompsoni. Mammalian Species 33:1-4.
- MACKENZIE, D., J. NICHOLS, J. ROYLE, L. BAILEY, AND J. HINES. 2005. Occupancy estimation and modeling inferring patterns and dynamics of species occurrence. Academic Press, Waltham, Massachusetts.
- MALMQUIST, M. G. 1985. Character displacement and biogeography of the pygmy shrew in northern Europe. Ecology 66:372-377.
- MCCAY, T. S. 1996. Response of masked shrews (*Sorex cinereus*) to precipitation in irrigated and nonirrigated forests. American Midland Naturalist 135:178-180.

MCCAY, T. S. 2001. Blarina carolinensis. Mammalian Species 673:1-7.

- MCCAY, T. S., M. J. LOVALLO, W. M. FORD, AND M. A. MENZEL. 2004. Assembly rules for functional groups of North American shrews: effects of geographic range and habitat partitioning. Oikos 107:141-147.
- MENGAK, M. T., AND D. C. GUYNN, JR. 1987. Pitfalls and snap traps for sampling small mammals and herpetofauna. American Midland Naturalist 118:284-288.
- MILLER, D. H., AND L. L. GETZ. 1977. Factors influencing local distribution and species diversity of forest small mammals in New England. Canadian Journal of Zoology 55:806-814.

- OTTO, C. R. V., AND G. J. ROLOFF. 2011. Using multiple methods to assess detection probabilities of forest-floor wildlife. Journal of Wildlife Management 75:423-431.
- PAYTON, M. E., A. E. MILLER, AND W. R. RAUN. 2000. Testing statistical hypotheses using standard error bars and confidence intervals. Communications in Soil Science and Plant Analysis 31: 547-551.
- PEARSON, O. P. 1947. The rate of metabolism of some small mammals. Ecology 28:127-145.
- REAL, R., A. M. BARBOSA, AND J. M. VARGAS. 2006. Obtaining environmental favourability functions from logistic regression. Environmental and Ecological Statistics 13:237-245.

RYCHLIK, L. 2000. Habitat preferences of four sympatric species of shrews. Acta Theriologica 45:173-190.

- SAARIKKO, J. 1989. Foraging behaviour of shrews. Annales Zoologici Fennici 26:411-423.
- SHINE, R. 1986. Food habits, habitats and reproductive biology of four sympatric species of varanid lizards in tropical Australia. Herpetologica 42:346-360.
- STOKES, M. K., N. A. SLADE, AND S. M. BLAIR. 2001. Influences of weather and moonlight on activity patterns of small mammals: a biogeographical perspective. Canadian Journal of Zoology 79:966-972.

THEBERGE, J. B., AND C. H. R. WEDELES. 1989. Prey selection and habitat partitioning in sympatric coyote and red fox populations, Southwest Yukon. Canadian Journal of

Zoology 67: 1285-1290.

VAUGHAN, T. A., J. M. RYAN, AND N. J. CZAPLEWSKI. 2015. Mammalogy. Sixth edition. Jones and Bartlett Publishers, Sudbury, Massachusetts.

WHITAKER, J. O., JR. 1974. Cryptotis parva. Mammalian Species 43:1-8.

- WHITTAKER, J. C., AND G. A. Feldhamer. 2005. Population dynamics and activity of southern short-tailed shrews (*Blarina carolinensis*) in southern Illinois. Journal of Mammalogy 86:294-301.
- WHITAKER, J. O., JR., AND T. W. FRENCH. 1984. Foods of six species of sympatric shrews from New Brunswick. Canadian Journal of Zoology 62:622-626.
- WHITAKER, J. O., JR., AND W. W. CUDMORE. 1986. Food and ectoparasites of shrews of south central Indiana with emphasis on *Sorex fumeus* and *Sorex hoyi*. Proceedings of the Indiana Academy of Science 96:543-552.
- ZARET, T. M., AND A. S. RAND. 1971. Competition in tropical stream fishes: support for the competitive exclusion principle. Ecology 52:336-342.
- ZIV, Y., Z. ABRAMSKY, B. P. KOTLER, AND A. SUBACH. 1993. Interference competition and temporal and habitat partitioning in two gerbil species. Oikos 66:237-246.

Table

1.—Trap, date, location, habitat, type of soil, depth of litter, canopy cover, and shrews captured at sites where pitfall traps were set for shrews (Soricidae) in northern Alabama.

Pitfall	Depth of	Latitude, longitude	Canopy cover (%)	Type of soil Captures	Habitat Trap	ping dates litter (cm)
1A	2	34°52.296'N, 86°06.214'W	76	Stony fine sandy loam N	one Pine fore:	st 13 May-6 June 2013
2A	2	34°52.295'N, 86°06.213'W	76	Stony fine sandy loam N	one Pine fore	st 13 May-6 June 2013
3A	1	, 86°06.209'W	88	Stony fine sandy loam 1 Crypto	tis parva Pine fore	st 13 May-6 June 2013
4A	2	34°52.303'N, 86°06.209'W	85	Stony fine sandy loam N	one Pine fores	st 13 May-6 June 2013
5A	3	34°52.303'N, 86° 06.210'W	90	Stony fine sandy loam N	one Pine fore:	st 13 May-6 June 2013
6A	1	34°52.304'N, 86° 06.210'W	74	Stony fine sandy loam 1 Crypto	tis parva Pine fore	st 13 May-6 June 2013
7A	3	34°52.308'N, 86° 06.209'W	92	Stony fine sandy loam N	one Pine fore	st 13 May-6 June 2013
8A	3	34° 52.311'N, 86° 06.206'W	93	Stony fine sandy loam N	one Pine fore	st 13 May-6 June 2013
9A	1	34° 52.314'N, 86° 06.210'W	87	Stony fine sandy loam N	one Pine fore	st 13 May-6 June 2013
10A	0	34° 52.317'N, 86° 06.202'W	91	Stony fine sandy loam N	Ione Pine fore:	st 13 May-6 June 2013
11A	1	34° 52.319'N, 86° 06.201'W	90	Stony fine sandy loam N	Ione Pine fore:	st 13 May-6 June 2013
12A	4	34° 52.320'N, 86° 06.201'W	84	Stony fine sandy loam N	Ione Pine fore:	st 13 May-6 June 2013

Table

13A	2 1.—Contin	34° 52.321'N, 86° 06.200'W nued.	76	Stony fine sa	andy loam None	Pine forest	13 May-6 June 2013
14A	1	34° 52.322'N, 86° 06.200'W	69	Stony fine sandy loam	None	Pine forest	13 May-6 June 2013
15A	2	34° 52.327'N, 86° 06.195'W	85	Stony fine sandy loam	None	Pine forest	13 May-6 June 2013
1B	4	34° 52.274'N, 86° 06.217'W	97	Fine sandy loam	None	Mixed forest	13 May-6 June 2013
2B	1	34° 52.273'N, 86° 06.218'W	95	Fine sandy loam	None	Mixed forest	13 May-6 June 2013
3B	3	34° 52.27'N, 86° 06.221'W	96	Fine sandy loam	None	Mixed forest	13 May-6 June 2013
4B	1	34° 52.269'N, 86° 06.223'W	92	Fine sandy loam	1 Blarina carolinensis	Mixed forest	13 May-6 June 2013
5B	2	34° 52.267'N, 86° 06.223'W	90	Fine sandy loam	None	Mixed forest	13 May-6 June 2013
6B	0	34° 52.265'N, 86° 06.225'W	46	Fine sandy loam	None	Mixed forest	13 May-6 June 2013
7B	1	34° 52.262'N, 86° 06.225'W	53	Fine sandy loam	None	Mixed forest	13 May-6 June 2013
8B	1	34° 52.259'N, 86° 06.227'W	43	Fine sandy loam	None	Mixed forest	13 May-6 June 2013

							Trapping dates
9B	2	34° 52.255'N, 86° 06.227'W	61	Fine sandy loam	None	Mixed forest	13 May-6 June 2013
10B	1	34° 52.252'N, 86° 06.228'W	62	Fine sandy loam	None	Mixed forest	13 May-6 June 2013
11 B	2	34° 52.25'N, 86° 06.229'W	87	Fine sandy loam	None	Mixed forest	13 May-6 June 2013
12B	1	34° 52.247'N, 86° 06.228'W	55	Fine sandy loam	None	Mixed forest	13 May-6 June 2013
Pitfall	Depth of	Latitude, longitude	Canopy cover	Type of soil	Captures	Habitat Trapping dates litte	er (cm) (%)

Table

Pitfall	Depth of (%)	- Latitude, longitude	Canopy '	Type of soil	Captures	Habitat litter (cm	l) cover	_
13B	0	34° 52.244'N, 86° 06.227'W	9	Fine sandy loa	ım	None	Mixed forest	13 May-6 June 2013
14B	0	34° 52.243'N, 86° 06.277'W	9	Fine sandy loa	am	None	Mixed forest	13 May-6 June 2013
15B	0	34° 52.240'N, 86° 06.277'W	0	Fine sandy loa	am	None	Mixed forest	13 May-6 June 2013
1C	0	34° 52.276'N, 86° 06.231'W	30	Fine sandy loa	am	None	Open field scattered trees	with13 May-6 June 2013
2C	0	34° 52.275'N, 86° 06.232'W	22	Fine sandy loa	am	None	Open field scattered trees	with13 May-6 June 2013
3C	0	34° 52.273'N, 86° 06.232'W	23	Fine sandy loa	am	None	Open field scattered trees	with13 May-6 June 2013
4C	0	34° 52.270'N, 86° 06.233'W	17	Fine sandy loa	am	None	Open field scattered trees	with13 May-6 June 2013
5C	0	34° 52.268'N, 86° 06.236'W	4	Fine sandy loa	am	None	Open field scattered trees	with13 May-6 June 2013
6C	1	34° 52.264'N, 86° 06.238'W	3	Fine sandy loa	am	None	Open field scattered trees	with13 May-6 June 2013
7C	0	34° 52.263'N, 86° 06.239'W	22	Fine sandy loa	am	None	Open field scattered trees	with13 May-6 June 2013

					T	rapping dates	
8C	0	34° 52.259'N, 86° 06.243'W	13	Fine sandy loam	None	Open field with scattered trees	13 May-6 June 2013

Table

_____ 1.—____ Continued

9C	2	34° 52.257'N, 86° 06.244'W	4	Fine sandy loam	None	13 May-6 June 2013
						Open field with
10C	2	34° 52.251'N, 86° 06.248'W	26	Fine sandy loam	None	13 May-6 June 2013
11C	1		35	Fine sandy loam	None	scattered trees 13 May-6 June 2013
		34° 52.249'N, 86° 06.249'W				Open field with
12C	2		39	Fine sandy loam	None	scattered trees 13 May-6 June 2013
		34° 52.248'N, 86° 06.251'W				Open field with
13C	2		44	Fine sandy loam	None	Scattered field with
		34° 52.246'N. 86° 06.253'W				scattered trees
14C	2		37	Fine sandy loam	None	Open field with13 May-6 June 2013
		34° 52.245'N, 86° 06.253'W				scattered trees
15C	0		27	Fine sandy loam	None	Open field with 13 May-6 June 2013 scattered trees
1D	0	34° 52.243'N, 86° 06.254'W	100	Shallow sandy loam	None	Mixed forest 13 May-6 June 2013
2D	2		100	Shallow sandy loam	None	Mixed forest 13 May-6 June 2013
3D	2	34° 52.298'N, 86° 06.249'W	99	Shallow sandy loam	None	Mixed forest 13 May-6 June 2013
		34° 52.297'N, 86° 06.254'W				
		34° 52.298'N, 86° 06.254'W				
4D	1	34° 52.297'N, 86° 06.260'W	97	Shallow sandy loam	None	Mixed forest 13 May-6 June 2013

Table 1.—Continued

		-						Trapping dates
5D	0	34° 52.298'N, 86° 06.264'W	100	Shallow sandy loa	am	None	Mixed forest	13 May-6 June 2013
6D	0	34° 52.300'N, 86° 06.269'W	99	Shallow sandy loa	am	None	Mixed forest	13 May-6 June 2013
7D	2	34° 52.303'N, 86° 06.274'W	97	Shallow sandy loa	am	None	Mixed forest	13 May-6 June 2013
Pitfall	Depth of	Latitude, longitude	Canopy	Type of soil	Captures	Habitat Trapping	dates litter (cm) c	over (%)

Table	1.—	-Continued
-------	-----	------------

Pitfall

Pitfall	Depth of co	Latitude, longitude over (%)	Canopy	Type of soil Captures	Habitat litte	er (cm)	
8D	1	34° 52.305'N, 86° 06.276'W	98	Shallow sandy loam	None	Mixed forest	13 May-6 June 2013
9D	2	34° 52.308'N, 86° 06.279'W	97	Shallow sandy loam	None	Mixed forest	13 May-6 June 2013
10D	3	34° 52.308'N, 86° 06.281'W	95	Shallow sandy loam	None	Mixed forest	13 May-6 June 2013
11D	2	34° 52.310'N, 86° 06.281'W	97	Shallow sandy loam	None	Mixed forest	13 May-6 June 2013
12D	1	34° 52.310'N, 86° 06.282'W	97	Shallow sandy loam	None	Mixed forest	13 May-6 June 2013
13D	0	34° 52.311'N, 86° 06.284'W	97	Shallow sandy loam	None	Mixed forest	13 May-6 June 2013
14D	2	34° 52.313'N, 86° 06.287'W	95	Shallow sandy loam	None	Mixed forest	13 May-6 June 2013
15D	4	34° 52.314'N, 86° 06.289'W	97	Shallow sandy loam	None	Mixed forest	13 May-6 June 2013
1E	5	34° 51.414'N, 86° 07.914'W	94	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013
2E	4	34° 51.414'N, 86° 07.914'W	95	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013
3E	5	34° 51.435'N, 86° 07.902'W	96	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013
4E	6	34° 51.434'N, 86° 07.909'W	97	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013

Table 1.—Continued

						-	Trapping dates
5E	8	34° 51.439'N, 86° 07.908'W	94	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013
6E	4	34° 51.446'N, 86° 07.907'W	97	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013
7E	3	34° 51.445'N, 86° 07.909'W	W 96 Fine sandy loam		None	Deciduous forest	13 May-6 June 2013
	Depth of	E Latitude, longitude	Canopy	Type of soil Captur	res Habitat Tr	apping dates litter (cm)) cover (%)
8E	0	34° 51.449'N, 86° 07.907'W	97	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013
9E	5	34° 51.452'N, 86° 07.907'W	90	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013
10E	7	34° 51.455'N, 86° 07.907'W	94	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013
11E	7	34° 51.459'N, 86° 07.908'W	97	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013
12E	3	34° 51.461'N, 86° 07.906'W	97	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013
13E	7	34° 51.463'N, 86° 07.907'W	94	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013
14E	5	34° 51.464'N, 86° 07.907'W	94	Fine sandy loam	None	Deciduous forest	13 May-6 June 2013
1F	2	34° 50.811'N, 86° 04.396'W	96	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
2F	2	34° 50.810'N, 86° 04.393'W	93	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
3F	3	34° 50.810'N, 86° 04.391'W	90	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
4F	2	34° 50.811'N, 86° 04.388'W	97	Fine sandy loam	1 Blarina brevicauda	Deciduous forest	10 June-8 August 2013

Table 1.—Continued

Pitfall							
5F	4	34° 50.809'N, 86° 04.386'W	98	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
6F	2	34° 50.808'N, 86° 04.385'W	97	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
7F	2	34° 50.809'N, 86° 04.385'W	91	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
8F	2	34° 50.811'N, 86° 04.384'W	92	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013

			-	Canopy			-	Trapping dates
Pitfall	Depth of	Latitude, longitude	Ty	pe of soil	Captures	Habitat litter (cm)	cover (%)	
9F	3	34° 50.815'N, 86° 04.3	84'W	89	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
10F	3	34° 50.816'N, 86° 04.3	84'W	93	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
11F	3	34° 50.817'N, 86° 04.3	83'W	95	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
12F	2	34° 50.817'N, 86° 04.3	79'W	97	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
13F	5	34° 50.816'N, 86° 04.3	77'W	94	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
14F	1	34° 50.826'N, 86° 04.3	74'W	94	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
15F	1	34° 50.830'N, 86° 04.3	77'W	98	Fine sandy loam	None	Deciduous forest	10 June-8 August 2013
1G	1	34° 50.953'N, 86° 04.4	97'W	97	Sand	None	Deciduous-riparian forest	10 June-8 August 2013
2G	2	34° 50.954'N, 86° 04.4	94'W	93	Sand	1 Sorex hoyi	Deciduous-riparian forest	10 June-8 August 2013
3G	1	34° 50.955'N, 86° 04.4	92'W	83	Sand	1 Sorex hoyi	Deciduous-riparian forest	10 June-8 August 2013
1H	1	34° 52.481'N, 86° 06.3	41'W	62	Sand	None	Deciduous-riparian forest	29 July-8 August 2013
2H	2	34° 52.480'N, 86° 06.3	34°'W	54	Sand	None	Deciduous-riparian forest	29 July-8 August 2013
3H	4	34° 52.479'N, 86° 06.3	38'W	97	Sand	None	Deciduous-riparian forest	29 July-8 August 2013

Pitfall			Canopy				Trapping dates
4H 6H	5 1	34° 52.477'N, 86° 06.337'W 34° 52.481'N, 86° 06.333'W	97 94	Sand Sand	None None	Deciduous-riparian forest Deciduous-riparian forest	29 July-8 August 2013 29 July-8 August 2013
	Depth of	Latitude, longitude	Type of so	il Captures	Habitat litter	r (cm) cover (%)	
7H	2	34° 52.484'N, 86° 06.329'W	92	Sand	None	Deciduous-riparian forest	29 July-8 August 2013
8H	0	34° 52.483'N, 86° 06.327'W	91	Sand	None	Deciduous-riparian forest	29 July-8 August 2013
9H	0	34° 52.482'N, 86° 06.326'W	91	Sand	None	Deciduous-riparian forest	29 July-8 August 2013
10H	1	34° 52.482'N, 86° 06.325'W	95	Sand	None	Deciduous-riparian forest	29 July-8 August 2013
11H	3	34° 52.481'N, 86° 06.323'W	96	Sand	None	Deciduous-riparian forest	29 July-8 August 2013
12H	2	34° 52.482'N, 86° 06.321'W	94	Sand	None	Deciduous-riparian forest	29 July-8 August 2013
13H	0	34° 52.482'N, 86° 06.319'W	93	Sand	None	Deciduous-riparian forest	29 July-8 August 2013
14H	1	34° 52.482'N, 86° 06.318'W	92	Sand	None	Deciduous-riparian forest	29 July-8 August 2013
15H	2	34° 52.482'N, 86° 06.317'W	89	Sand	None	Deciduous-riparian forest	29 July-8 August 2013
I1	1	34° 52.477'N, 86° 06.326'W	32 Stony	fine sandy loam	None	Pine forest	1 March-28 July 2014
I2	2	34° 52.293'N, 86° 06.218'W	26 Stony	fine sandy loam	None	Pine forest	1 March-28 July 2014

Ditfall	-		Cononu				Tranning datas	
Pitiali			Canopy				rapping dates	
I3	4	34° 52.293'N, 86° 06.222'W	30	Stony fine sandy loam	1 Sorex longirostris	Pine forest	1 March-28 July 2014	
I4	3	34° 52.293'N, 86° 06.219'W	46	Stony fine sandy loam	None	Pine forest	1 March-28 July 2014	
15	2	34° 52.296'N, 86° 06.220'W	31	Stony fine sandy loam	Stony fine sandy loam 2 <i>Cryptotis parva</i> 1 Sorex longirostris			
	Depth of	Latitude, longitude Ty	pe of soil	Captures H	abitat litter (cm)	cover (%)	_	
I6	3	34° 52.298'N, 86° 06.218'W	19	Stony fine sandy loam	None	Pine forest	1 March-28 July 2014	
I7	6	34° 52.301'N, 86° 06.219'W	23	Stony fine sandy loam	None	Pine forest	1 March-28 July 2014	
I8	2	34° 52.302'N, 86° 06.218'W	52	Stony fine sandy loam	None	Pine forest	1 March-28 July 2014	
I9	2	34° 52.301'N, 86° 06.226'W	29	Stony fine sandy loam	None	Pine forest	1 March-28 July 2014	
I10	2	34° 52.318'N, 86° 06.223'W	40	Stony fine sandy loam	None	Pine forest	1 March-28 July 2014	
I11	3	34° 52.313'N, 86° 06.221'W	36	Stony fine sandy loam	1 Blarina carolinensis	Pine forest	1 March-28 July 2014	
I12	5	34° 52.301'N, 86° 06.225'W	79	fine sandy loam	1 Cryptotis parva St	Pine forest	1 March-28 July 2014	
I13	4	34° 52.300'N, 86° 06.219'W	45	Stony fine sandy loam	2 Blarina carolinensis	Pine forest	1 March-28 July 2014	
I14	1	34° 52.301'N, 86° 06.217'W	16	Stony fine sandy loam	None	Pine forest	1 March-28 July 2014	
I15	1	34° 52.303'N, 86° 06.217'W	34	Stony fine sandy loam	None	Pine forest	1 March-28 July 2014	

Table 1.—Continued

				-				
Pitfall			Canopy				Trapping dates	
J1	2	34° 52.291'N, 86° 06.269'W	62	Shallow sandy loam	None	Mixed forest	1 March-28 July 2014	
J2	4	34° 52.291'N, 86° 06.261'W	77	Shallow sandy loam	None	Mixed forest	1 March-28 July 2014	
J3	4	34° 52.294'N, 86° 06.265'W	81	Shallow sandy loam	None	Mixed forest	1 March-28 July 2014	
J4	1	34° 52.297'N, 86° 06.264'W	83	Shallow sandy loam	None	Mixed forest	1 March-28 July 2014	
J5	3	34° 52.299'N, 86° 06.266'W	56	Shallow sandy loam	None	Mixed forest	1 March-28 July 2014	

Pitfall

Trapping dates

	Depth of litter (cm)	r Latitude, longitude	Canopy cover (%)	Type of soil	Captures	Habitat	
J6	3	34° 52.300'N, 86° 06.265'W	76	Shallow sandy loam	1 Sorex longirostris	Mixed forest	1 March-28 July 2014
J7	2	34° 52.31'N, 86° 06.267'W	81	Shallow sandy loam	None	Mixed forest	1 March-28 July 2014
J8	3	34° 52.308'N, 86° 06.261'W	74	Shallow sandy loam	None	Mixed forest	1 March-28 July 2014
K1	4	34° 52.473'N, 86° 06.322'W	88	Sand	None	Deciduous-riparian forest	1 March-28 July 2014
K2	4	34° 52.480'N, 86° 06.335'W	63	Sand	1 Sorex hoyi	Deciduous-riparian forest	1 March-28 July 2014
					1 Cryptotis parva		
K3	1	34° 52.480'N, 86° 06.327'W	39	Sand	1 Cryptotis parva	Deciduous-riparian forest	1 March-28 July 2014
K4	1	34° 52.481'N, 86° 06.326'W	39	Sand	None	Deciduous-riparian forest	1 March-28 July 2014
L1	2	34° 52.271'N, 86° 06.220'W	80	Fine sandy loam	2 Sorex longirostris	Mixed forest	7 April-28 July 2014
L2	3	34° 52.270'N, 86° 06.221'W	86	Fine sandy loam	1 Sorex longirostris	Mixed forest	7 April-28 July 2014
L3	3	34° 52.270'N, 86° 06.219'W	87	Fine sandy loam	None	Mixed forest	7 April-28 July 2014

L4	3	34° 52.269'N, 86° 06.220'V	V 82	Fine sandy loan	m 2 Sorex longiro	stris Mixed forest	7 April-28 July 2014
L5	4	34° 52.271'N, 86° 06.221'V	V 94	Fine sandy loan	m None	Mixed forest	7 April-28 July 2014
Pitfall	Depth o litter (cm)	Latitude, longitude f	Canopy cover (%)	Type of soil	Captures	Habitat	Trapping dates
L6	4	34° 52.272'N, 86° 06.221'W	87	Fine sandy loam	None	Mixed forest	7 April-28 July 2014
M1	0	34° 50.948'N, 86° 04.501'W	22	Sand	2 Sorex hoyi	Deciduous-riparian forest	7 April-28 July 2014
M2	1	34°50.949'N, 86° 04.501'W	92	Sand	None	Deciduous-riparian forest	7 April-28 July 2014
M3	2	34° 52.954'N, 86° 04.493'W	79	Sand	None	Deciduous-riparian forest	7 April-28 July 2014
M4	2	34° 50.957'N, 86° 04.492'W	16	Sand	1 Blarina brevicauda	Deciduous-riparian forest	7 April-28 July 2014
Pool	0	34° 18.145'N, 86° 34.430'W	0	Fine sandy loam	4 Cryptotis parva	Open field with scattered trees	7 April-28 July 2014

2.—Evaluation of the relationship between habitat and success in capturing shrews (Soricidae) in northern Alabama. Asterisks indicate habitats with significant differences in species of shrews present at an 85% confidence interval.

Habitat Blarina Blarina Cryptotis Sorex Sorex Individuals captured P-value z-value brevicauda carolinensis	parva hoyi	longirostris
--	------------	--------------

Deciduous 1 0 0 0 0 1 0.916 -1		st
--------------------------------	--	----

Table 1	.—Cor	ntinued						
Deciduo	us	1	0	0	4	0	5	0.139 1.478 riparian forest*
Mixed	0	0	1	0	1	2	0.478	0.709 forest
Mixed	0	1	0	0	5	6	0.155	1.424 forest with lianas*
Open fie	eld	0	0	6	0	0	6	0.396 0.849 with scattered trees

Table 2.—Continued

Habitat	Blarina brevicauda	Blarina carolinensis	Cryptotis parva ł	s Sore: noyi	x Sorex longirostris	Individuals captured	<i>P</i> -value	<i>z</i> -value
Pine forest*	0	4	5	0	2	11	0.027	2.212
Riparianmixed forest	0	0	0	1	0	1	1.00	0
Total number of individuals per species	2	5	12	5	8	32		

Table

3.—For each habitat, β -estimates and *P*-values based on probability that partitioning of habitats is occurring and species of shrews based on probability that the species is selecting specific habitats derived from logistical-regression analysis conducted using R (Real et al. 2006). Deciduous forest was the intercept.

Habitat and species	β-estimate	<i>P</i> -value	
Deciduous forest	-1.460	1.000	
Deciduous-riparian forest	2.095	0.139	
Mixed forest	1.066	0.478	
Mixed forest with lianas	1.07	0.155	
Open field with scattered trees	1.177	0.396	
Pine forest	3.154	0.027	
Riparian-mixed forest	<0.001	1.000	
Blarina. brevicauda	-2.487	0.916	
Blarina. carolinensis	0.549	0.646	
Cryptotis parva	1.83	0.118	
Sorex hoyi	0.88	0.454	
Sorex longirostris	1.59	0.175	

4.—Evaluation of the relationship between lunar illumunation and success in capturing shrews (Soricidae) in northern Alabama.

Zero illumination was the reference phase for calculation of β -values. No relationship was significant.

Table						
Lunar illumination (%)	Number of nights	Number of captures	Individuals captured	β-value	$\pm 1 SE$	<i>P</i> -value
0-19	42	12	4 Blarina carolinensis 3 Cryptotis parva 2 Sorex hoyi 3 Sorex longirostris	-1.022	0.389	0.991
20-39	13	1	1 Cryptotis parva	-0.482	0.676	0.475
40-59	15	3	1 Cryptotis parva 2 Sorex longirostris	-0.824	0.733	0.261
60-79	15	4	2 Blarina brevicauda 2 Sorex longirostris	-0.008	0.650	0.990
80-100	29	10	5 Cryptotis parva 3 Sorex hoyi 2 Sorex longirostris	0.105	0.571	0.854

5.—Date, weather conditions, lunar illumination, time of moonrise and moonset, time of sunset and sunrise, and duration of

lunar illumination on each night at sites where pitfall traps were set for shrews (Soricidae) in northern Alabama

					Duration of lunar	
	Weather	Lunar	Times of moonrise	Time of sunset and		
Date	conditions	illumination (%)	and moonset (CDT)	sunrise (CDT)	illumination	Captures
					(minutes)	

Table

13 May 2013	Clear	9	0729-2148	1839-0442	187	None			
14 May 2013	Clear	16	0821-2228	1839-0441	229	1 Blarir	na carolinensis	3	
15 May 2013	Clear	23	0914-2305	1840-0440	265	None			
16 May 2013	Clear	32	1009-2340	1841-0440	299	None			
17 May 2013	Rainy	41	1105-0015	1842-0439	333	None			
20 May 2013	Cloudy	71	1202-0014	1844-0437	330	None			
21 May 2013	Clear	80	1505-0155	1845-0437	370	None			
22 May 2013	Rainy	88	1612-0233	1845-0436	468	2 Crypt	otis parva		
27 May 2013	Clear	94	2131-0709	1849-0434	433	None			
28 May 2013	Cloudy	86	2218-0817	1850-0433	358	None			
29 May 2013	Cloudy	77	2300-0925	1850-0433		333	1 Blarina bro	evicauda	
3 June 2013 5.—Co	Cloudy ntinued	25	0119-1432	1853-0432	191	None			
	Weath	er	Lunar	Times of moor	nrise	Time of s	sunset and	Duration of lunar	
Date	conditio	ons	illumination (%)	and moonset (C	CDT)	sunrise	e (CDT)	illumination	Captures

Table

(minutes)

4 June 2013	Clear	17	0153-1529	1854-0431	158	None
5 June 2013	Clear	10	0229-1625	1854-0431	122	None
6 June 2013	Rainy	5	0308-1625	1855-0431	53	None
11 June 2013	Cloudy	2	0615-2028	1857-0431	91	None
12 June 2013	Clear	6	0708-2106	1857-0431	129	None
13 June 2013	Clear	11	0802-2142	1858-0431	164	None
14 June 2013	Rainy	18	0858-2215	1858-0431	196	None
2 July 2013	Cloudy	30	0031-1420	1901-0436	229	None
3 July 2013	Rainy	21	0109-1515	1901-0436	207	None
4 July 2013	Rainy	14	0149-1607	1901-0437	168	1 Sorex hoyi
5 July 2013	Rainy	8	0233-1657	1901-0437	124	1 Sorex hoyi
8 July 2013	Cloudy	0	0504-1907	1900-0439	7	None
9 July 2013	Cloudy	1	0558-1944	1900-0439	44	None

Lunar

Date	Weather conditi	ons illuminatior	Time: n (%) and m	s of moonrise oonset (CDI	e Time of sunset and (C) sunrise (CDT)	Duration of lunar illumination (minutes)	Captures
16 July 2013	Cloudy 51	1243-2345	1857-0444	288	None		
17 July2013	Clear 62	1347-0031	1856-0444	334	None		
18 July 2013	Cloudy 73	1453-0031	1856-0445	334	None		
19 July 2013	Clear 83	1557-0124	1855-0446	389	None		
22 July 2013	Cloudy 99	1843-0440	1854-0448	586	None		
23 July 2013	Rainy 99	1927-0551	1853-0449	622	None		
24 July 2013	Cloudy 97	2007-0700	1852-0449	522	None		
29 July 2013	Clear 55	2309-1212	1848-0453	344	None		
30 July 2013	Clear 45	2349-1308	1848-0454	305	None		
31 July 2013	Rainy 36	0043-1402	1847-0454	251	None		

1 August 2013	Rainy	27	Lunar 0031-1453	1846-0455	264	None		
2 August 2013	Clear	19	0118-1541	1845-0456	218	None		
5 August 2013	Clear	8	0352-1744	1842-0457	65	None		
Date	Weather	conditio	ons illuminatior	Times	of moonris	se Time of sunset and T) sunrise (CDT)	Duration of lunar illumination (minutes)	Captures
6 August 2013	Cloudy	1	0447-1820	1841-0459	12	None		
7 August 2013	Cloudy	0	0543-1853	1840-0500	13	None		
8 August 2013	Rainy	2	0639-1926	1839-0500	53	None		
22 February 2014	Si	now	55	00	10-1050	1734-0622	372	None
24 February 2014	S	now	33	02	10-1243	1736-0619	249	None
6 April 2014	Clear	40	1033-0046	1809-0523	397	None		

Lunar											
7 April 2014	Rainy 49	1125-0041	1810-0522	391	1 Sorex longirostris		parva				
8 April 2014	Cloudy 59	1218-0120	1811-0520	369			1 Sorex longirostris				
14 April 2014	Clear	99	1	754-0444	1815-0512	629	None				
Date	Weather condit	tions illuminatio	Time on (%) and n	es of moonris	se Time of sunset and T) sunrise (CDT)	Duration of lunar illumination (minutes)	– Captures				
28 April 2014	Cloudy 1	0433-1805	1827-0456	23	None						
29 April 2014	Rainy 0	0513-1906	1827-0455	39	None						
30 April 2014	Cloudy 1	0557-2004	1828-0454	96			1 Sorex longirostris				
1 May 2014	Clear	4	(0643-2059	1829-0453	150	None				

				Lunar			
5	May 2014	Clear	33	1008-2354	1832-0449	322	None
6	May 2014	Clear	42	1101-0048	1833-0448	375	None
7	May 2014	Clear	51	1155-0030	1834-0447	356	None
8	May 2014	Clear	61	1249-0103	1835-0446	388	None
9	May 2014	Rainy	70	1345-0135	1835-0445	420	None
10	May 2014	Rainy	78	1441-0207	1836-0444	452	None
12	May 2014	Cloudy	92	1640-0316	1838-0443	518	None

Date	Weath	er cond	L itions illumin	unar Time ation (%) and n	s of moonr noonset (CI	rise Time of sunset and DT) sunrise (CDT)	Duration of lunar illumination (minutes)	Captures
13 May 2014	Cloudy	97	1742-0355	1838-0442	557	None		
14 May 2014	Rainy	100	1845-0438	1839-0441	593	None		
15 May 2014	Rainy	100	1947-0527	1840-0441	534	None		
16 May 2014	Cloudy	97	2047-0622	1841-0440	473	None		
17 May 2014	Rainy	92	2143-0722	1842-0439	416	None		
18 May 2014	Rainy	85	2234-0825	1842-0438	364	1 Sorex hoyi		1 Cryptotis parva 1 Sorex longirostris
19 May 2014	Rainy	75	2319-0931	1843-0438	317	None		
20 May 2014	Clear	65	0025-1037	1844-0437	252	None		
21 May 2014	Clear	53	0001-1143	1845-0437	276	None		
25 May 2014	Rainy	13	0231-1555	1847-0435	124			1 Sorex

longirostris

Date	Weather conditions		atherLunarTimes of moonriselitionsillumination (%)and moonset (CDT)		noonrise	Time of sunset and	Duration of lunar illumination	Captures
					sunrise (CD1)	(minutes)		
26 May 2014	Clear	7	0310-1655	1848-0434	84	None		
27 May 2014	Rainy	3	0352-1754	1849-0434	42	carolinensis	1 Sorex	1 Blarina longirostris
28 May 2014	Cloudy	1	0436-1849	1849-0433	0	None		
29 May 2014	Cloudy	0	0524-1941	1850-0433	51	None		
1 June 2014	Rainy	12	0759-2152	1852-0432	180			1 Blarina carolinensi
2 June 2014	Cloudy	18	0852-2229	1853-0432	216	None		
8 June 2014	Rainy	73	1423-0112	1856-0431	376	brevicauda		1 Blarina 2 Sorer

longirostris

Table 5.—Continued											
9 June 20	14 Rainy	82	1524-0149	1856-0431	413	None					
	•										
10 June 20	14 Rainy	89	1626-0229	1857-0431	452	None					

	Weether	I	Times of more relies	Time of annext and	Duration of lunar		
Date	weather	Lullai	Times of moonifise	Time of sunset and	illumination	Captures	
	conditions	illumination (%) and moonset (CDT)		sunrise (CDT)	(minutes)		
11 June							
2014	Rainy	95	1730-0315	1857-0431	497	None	
12 June Rain 2014	y 99	1832-0407	1858-0431 549	1 Sorex hoyi		2 Cryptotis parva	
13 June							
2014	Rainy	100	1932-0506	1858-0431	539	None	
14 June	Clear	08	2026 0610	1858 0/31	485	None	
2014	Cical	70	2020-0010	1050-0451	-05	None	

Table 5.—C 2014	ontinued					
15 June 2014	Clear	94	2116-0717	1859-0431	435	None
16 June 2014	Clear	87	2200-0826	1859-0431	331	None
17 June 2014	Clear	78	2241-0933	1859-0431	350	None
18 June 2014	Clear	67	2319-1040	1900-0431	312	None
19 June	Clear	56	2356-1144	1900-0431	265	None

5.—Continued

Table

	XX / 1	.	T: 6 .		Duration of lunar	
Date	Weather conditions	Lunar illumination	Times of moonrise and moonset (CDT)	Time of sunset and sunrise (CDT)	illumination (minutes)	Captures
20 June 2014	Clear	45	0015-1247	1900-0431	256	None
21 June 2014	Clear	34	0033-1348	1900-0432	239	None
22 June 2014	Clear	24	0111-1449	1901-0432	201	None
23 June 1 <i>Blar</i> 2014	<i>ina</i> Cloudy	16	0151-1547	1901-0432	161	carolinensis

5.—Continued

24 June	D 1	0		1001.0102	110	
2014	Rainy	9	0234-1643	1901-0433	119	None
25 June	longirostris					1 Sorex
20 0 0 0 0	Rainy	4	0319-1736	1901-0433	74 2014	2 Cryptotis parva
26 June	D	1	0400 1005	1001 0422	25	N
2014	Rainy	I	0408-1825	1901-0433	25	None
27 June	Cloudy	0	0459-1910	1901-0434	Q	None
Table	cloudy	0	0737-1710	1701-0-5-		None
	Weather	Lunar	Times of moonrise	Time of sunset and	Duration of lunar	
Date	weather	Lunar		Time of subset and	illumination	Captures
	conditions	illumination (%)	and moonset (CDT)	sunrise (CDT)	(minutes)	
28 June	Doiny	1	0551 1051	1001 0434	50	None
2014	Kailiy	1	0331-1931	1901-0434	50	none
29 June	Cloudy	4	0645 2020	1001 0424	70	None
	Cloudy	4	0045-2029	1901-0454	/ð	inone

~	α	•	٢
```	ont	101100	I
)		IIIICU	L
~ .	\mathbf{v}		

30 June	C1. 1	0	0729 2102	1001 0425	122	
2014	Cloudy	8	0738-2103	1901-0435	122	1 Cryptotis parva
6 July	Clear	50	1208 2224	1000 0428	264	None

2014 2014						
7 July	Clear	68	1408-0023	1900-0438	323	None
8 July	Cloudy	77	1510-0105	1900-0439	365	None
2014	eroday			1,000 0.107		1,0110

5.—	-Continued					
9 July 2014	Rainy	86	1613-0153	1900-0439	413	None
10 July 2014	Cloudy	93	1714-0248	1859-0440	469	None
14 July Table	Clear	95	2037-0716	1858-0442	485	1 Sorex hoyi
Date	Weather conditions	Lunar illumination (%)	Times of moonrise and moonset (CDT)	Time of sunset and sunrise (CDT)	Duration of lunar illumination (minutes)	Captures
15 July 2014	Rainy	89	2118-0825	1857-0443	445	None
16 July 2014	Clear	80	2157-0933	1857-0444	407	None
17 July 2014	Clear	70	2234-1038	1857-0444	370	None
21 July 2014	Rainy	28	0034-1438	1854-0447	254	None
22 July 2014	Rainy	20	0118-1532	1854-0448	210	1 Cryptotis parva

5.—Continued

23 July 2014	Clear	12	0205-1622	1853-0448	163	None
24 July 2014	Cloudy	7	0347-1751	1852-0451	64	None
27 July 2014	Clear	0	0533-1905	1850-0451	15	None
28 July 2014	Rainy	2	0626-1938	1849-0452	49	None

Overnight weather	Number of nights	Number of captures	β-estimate	<i>P</i> -value	z-value
Clear	36	2	-2.970	0.999	-4.10
Cloudy	31	3	0.668	0.480	0.707
Rainy	38	24	2.431	0.002	3.042
Snowing	3	0	-13.600	0.992	-0.010

Table 6.—Evaluation of the relationship between overnight weather conditions and success in capturing shrews (Soricidae) in northern Alabama.

Appendix 1.—Taxonomic key to shrews (Mammalia: Soricomorpha: Soricidae) in Alabama (modified from Hall 1981).

1. Three unicuspid teeth on each side of upper jaw, brown on dorsal side of body, paler on venter, tail indistinctly bicolored......*Sorex hoyi*

2. Four unicuspid teeth on each side of upper jaw, total length

69-135 mm; length of tail 19-52% of length of body, pelage

brown or black.....Cryptotis parva

3. Five unicuspid teeth on each side of upper jaw

Tail <40% of length of head and body...... 4

4. Color grayish-black, sometimes with silvery or brownish cast.

Total length \geq 110 mm and occipito-premaxillary length

>20.5 mm.....Blarina brevicauda

Total length <110 mm and cranial breadth <11 mm......Blarina carolinensis Appendix 1.—Continued

5. Length of tail >40% of length of head and body

Distinctly bicolored tail, length of tail 45-52 mm.....Sorex fumeus

Length of tail length \leq 40 mm, reddish brown or brownish dorsal hair, and paler

on the venter.....Sorex longirostris

Appendix 2.—Habitat, type of soil, depth of litter, and canopy cover at sites where pitfall traps were set for shrews (Soricidae) in northern Alabama for all habitats sampled in 2013 and 2014. Small pitfall traps (0.4 liters) were used in the 2013 and large pitfall traps (3.7 liters) were used in 2014.

Habitat	Type of soil	Depth of litter (mean; range cm)	Canopy cover (mean; range %)
Deciduous forest	Fine sandy loam	2 (0-8)	94 (90-97)
Deciduous riparian forest	Sand	2 (0-4)	89 (54-96)
Mixed forest with lianas	Fine sandy loam	1 (0-4)	60 (43-97)
Mixed forest	Shallow sandy loam	1 (0-4)	98 (95-100)
Open-grass field	Fine sandy loam	1 (0-2)	23 (3-44)
Pine forest	Stony fine sandy loam	2 (1-4)	84 (75-93)

Riparian mixed

forest

Sand 1 (1-2) 91 (83-97)