
ITEM-BASED RECOMMENDATION ALGORITHM USING HADOOP

by

Chetan Prakash Somani

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 12, 2015

Keywords: Hadoop, HDFS, MapReduce, Recommendation Systems, Collaborative
Filtering, Item-based Similarity, Distributed Computing, Cloud Computing, Cluster

Copyright 2015 by Chetan Prakash Somani

Approved by

Xiao Qin, Chair, Professor of Computer Science and Software Engineering
Daniela Marghitu, Professor of Computer Science and Software Engineering

Jeffrey Overbey, Assistant Professor of Computer Science and Software Engineering



Abstract

Recommendation systems are used to provide solutions to the problem of making per-

sonalized recommendations. They are achieving widespread success in E-commerce, social

networking and advertisements. In E-Commerce, day-to-day growth of customers and prod-

ucts poses key challenges for recommendation systems as they are responsible for producing

high quality recommendations. In addition, they are even needed to perform many recom-

mendations per second, for millions of customers and products. Hence, new recommendation

system technologies are required to produce high quality personalized recommendations. Im-

plementing a recommendation algorithm using a sequential approach for a large dataset has

large performance issues. We address the performance issues by implementing a parallel

algorithm to derive recommendations by using Hadoop map-reduce framework along with

an item-based similarity collaborative filtering technique. Map-Reduce is a programming

framework used for processing and generating large datasets. In map-reduce framework, in-

put and output is represented in terms of key-value pairs. Users specify a map function that

processes a key-value pair to generate a set of intermediate key-value pairs, and a reduce

function merges all intermediate key-value pairs associated with the similar intermediate

key to produce final output key-value pair. Similarity among item pairs followed by deriving

recommendations is computed using map-reduce programming approach. Similarity among

item pairs is configured by finding out the similarity ranking which is calculated by using

different similarity measures. The item ratings with highest degree of similarity with any

given item are given highest priority for recommendation for the given item. Map jobs are

responsible for gathering the information from the input dataset and then, compute rela-

tionship among items on multiple nodes in parallel to generate item pairs and reduce jobs

combine all item pairs from all nodes to generate the recommendation list by computing the

ii



similarity among the items using similarity measurement techniques. In this study, we will

focus on item-based collaborative filtering technique, which is a well known technique used in

recommendation systems using Hadoop map-reduce framework. They are two collaborative

filtering methods: User-based and Item-based collaborative filtering methods. User-based

collaborative filtering focus on computing relationship among users i.e. they find out how

similar two users are and based on their similarity recommendations are made. Item-based

collaborative filtering focus on computing relationship among items i.e. they find out how

similar two items are and based on their similarity recommendations are made. Experiments

prove that the implementation of item based collaborative recommendation algorithm on

Hadoop using map-reduce framework has higher degree of performance with the increase in

number of nodes within a cluster when compared to the results of implementation in a single

node cluster.

iii



Acknowledgments

This thesis would not have been completed without invaluable guidance, experience

sharing, constant support and encouragement from my adviser, people in our research group

and family members during my study at Auburn University.

First and foremost, I offer my sincerest gratitude to my adviser, Dr. Xiao Qin, who has

supported me throughout my thesis with his patience and knowledge while allowing me the

room to work in my own way. I attribute the level of my Masters degree to his encouragement

and effort and without him this thesis would not have completed or written. One simply

could not wish for a better or friendlier adviser.

I am also grateful to Dr. Daniela Marghitu and Dr. Jeffrey Overbey for serving as

members of my advisory committee. I would like to thank the Department of Computer

Science and Software Engineering and Auburn University for providing such great resources

and facilities.

A very special thanks goes out to my research group members without their support

and help, I would not have been able to finish my research. I doubt that I will ever to able

to convey my appreciation fully, but I owe everyone of the group my eternal gratitude.

Finally, I would like to thank my family for the love, encouragement and support they

provided me through my entire life to achieve my goals.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Recommendation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Hadoop Map-Reduce Framework . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Collaborative Filtering Algorithm . . . . . . . . . . . . . . . . . . . . 8

2.2 Apache Hadoop Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Hadoop Top Architecture . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Hadoop Distributed File System . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Name Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Data Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Secondary Name Node . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Map-Reduce Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Sequential Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Parallel Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.2 Similarity Computation . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.3 Deriving Recommendations . . . . . . . . . . . . . . . . . . . . . . . 28

5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Map-Reduce Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Compute Similarity between Item Pairs . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Map-Reduce Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Deriving Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4.1 Map-Reduce Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Map-Reduce Job 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Single Node Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.2 Multi-Node Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Map-Reduce Job 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



List of Figures

2.1 High-level Hadoop Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Hadoop Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Map Reduce Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Input Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Reorganized Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Partition Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Partition Dataset 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Reorganized Partition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 Reorganized Partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.7 Similarity Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.8 Similarity Measures for Computing Similarity. . . . . . . . . . . . . . . . . . . . 28

4.9 Parallel Processing of data by multiple nodes . . . . . . . . . . . . . . . . . . . 28

4.10 Deriving Recommendations using the similarity computation . . . . . . . . . . . 29

5.1 Input data format after pre-processing of data. Here, the item and rating for the

item is separated by ’,’. Collection of items are separated by ’;’ . . . . . . . . . 31

vii



5.2 Computation of Similarity between Item Pairs. Input key for Map Job is a Hash

code automatically generated by Hadoop. Input value for Map Job is a single

row of the input dataset. Input key of the reduce job is (I1,I2) where I represents

an Item. Input value is (R1,R2) where R represents the rating for item I. . . . . 32

5.3 Map Job for Similarity Computation. Input key for Map Job is a Hash code

generated by Hadoop. Input value for Map Job is a single row of the input

dataset. Output key of the map job is (I1,I2) where I represents an Item. Output

value of the map job is (R1,R2) where R represents the rating for item I. . . . . 34

5.4 Reduce Job for Similarity Computation. Input key for Reduce Job is (I1,I2) and

the input value is (R1,R2). Output key of the reduce job is (I1,I2) and the output

value is S1. I represents an item, R represents the rating associated with an item

and S represents similarity value for an item pair. . . . . . . . . . . . . . . . . . 35

5.5 Jaccard Similarity to compute similarity between two vectors. X and Y represents

two vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.6 Cosine Similarity to compute similarity between two vectors. A and B represents

two vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.7 Tanimoto Similarity to compute similarity between two vectors. A and B repre-

sents two vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.8 Pearsson’s Coefficient to compute similarity between two vectors. X and Y rep-

resents two vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.9 Deriving Recommendation. Input key for the map job is an item pair (I1,I2).

Input value is a similarity value S1. Input key for the reduce job is an item I1

and value is a pair of item with similarity value (I2,S1). . . . . . . . . . . . . . . 37

viii



5.10 Mapper Job Deriving Recommendation. Input key for the map job is an item

pair (I1,I2). Input value is a similarity value S1. Output key of the map job is an

item I. Output value of the map job is a pair of item with similarity value (I2,S1). 38

5.11 Reduce Job Deriving Recommendation. Input key for reduce job is an Item.

Input value of the reduce job is a pair of item with similarity value (I2,S1).

Output key of reduce job is an Item. Output value of the reduce job is a collection

of items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Single Node results for different datasets using different similarity measures. . . 43

6.2 Comparison of results for different set of movies using different similarity measure

on a Single Node cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Similarity Computation Results using Cosine Similarity. The results shows the

item pairs and the corresponding similarity values for item pairs. . . . . . . . . 45

6.4 Similarity Computation Results using Jaccard Similarity.The results shows the

item pairs and the corresponding similarity values for item pairs. . . . . . . . . 45

6.5 Similarity Computation Results using Tanimoto Similarity.The results shows the

item pairs and the corresponding similarity values for item pairs. . . . . . . . . 45

6.6 Similarity Computation Results using Pearson Coefficient.The results shows the

item pairs and the corresponding similarity values for item pairs. . . . . . . . . 46

6.7 Results for different similarity measures on a 1-Node, 2-Node and 3-Node Cluster. 47

6.8 Results for different similarity measures on a 4-Node and 6-Node Cluster. . . . . 48

6.9 Deriving Recommendation for Different Similarity Measures . . . . . . . . . . . 49

6.10 Deriving Recommendation for Different Set of Movies . . . . . . . . . . . . . . . 50

ix



6.11 Recommendation results for Cosine Similarity. The results show an item and a

recommended list of items for the item. . . . . . . . . . . . . . . . . . . . . . . . 51

6.12 Recommendation results for Jaccard Similarity. The results show an item and a

recommended list of items for the item. . . . . . . . . . . . . . . . . . . . . . . . 51

6.13 Recommendation results for Tanimoto Similarity. The results show an item and

a recommended list of items for the item. . . . . . . . . . . . . . . . . . . . . . 51

6.14 Recommendation results for Pearson Coefficient. The results show an item and

a recommended list of items for the item. . . . . . . . . . . . . . . . . . . . . . 51

x



List of Tables

2.1 Map Reduce Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.1 Hardware Configurations of the System . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Software Configurations of the System . . . . . . . . . . . . . . . . . . . . . . . 42

xi



Chapter 1

Introduction

In recent years, recommendations have become extremely prevalent and are applied

in variety of applications. Applications can be confined to movies, music, news, books,

research articles, social tags, and e-commerce products. The process of recommendation

algorithms for finding recommendations starts by finding a set of items, purchased and rated

by users which overlap with the other set of items which have been purchased and rated by

the similar user. The algorithm then aggregates and eliminates items the user has already

purchased or rated, and then recommends the remaining items to the user which have not

yet being purchased or rated. In order to generate accurate recommendations, the system

have to process large datasets with required information. As greater the information being

analyzed, greater the accuracy of the results being generated. Applications which are data-

intensive need to access datasets ranging from a few gigabytes to several terabytes or even

petabytes. For example, Google, uses the map-reduce model to process twenty petabytes of

data per day in a parallel fashion. The map-reduce programming framework simplifies the

complexity of running parallel data processing functions across multiple computing nodes in

a cluster, as scalable map-reduce helps programmers to distribute programs across nodes in

a cluster and have them executed in parallel. Map-Reduce automatically gathers the results

generated across multiple nodes and returns a single result or a set of results. In addition,

the map-reduce platform offers fault tolerance entirely transparent to programmers. Even if

one of the node in the cluster breaks, the processing of the task is not effected. Map-Reduce

is a programming model for parallel data processing in high-performance cluster computing

environments.

1



1.1 Recommendation Systems

Recommendation systems are part of information filtering system which aims at predict-

ing the preference the user would give to an item. Recommendation systems have changed

the way websites interact with their users. They eliminate the static experience, in which

users search for static information for potentially buying products, by increasing interaction

among users to provide rich user experience dynamically. Recommendation systems derive

recommendations for each individual user based on their past purchases, searches and on

other users’ purchase and search behaviors. Recommendation systems personalize the expe-

rience of each user by randomizing content that is particularly relevant to their experienced

interests, instead of providing a static experience to every user. Recommendation systems

can be extremely effective on large scale if they are implemented correctly. Many of the

world’s top used websites, such as Facebook, Twitter, LinkedIn, Amazon etc use recommen-

dation systems to engage their users with relevant content.

1.2 Collaborative Filtering

Recommendation systems use knowledge discovery techniques to provide solution to

the problem of making personalized recommendations. They solve the problem by taking in

account the users past experiences, such as music they have listened or rated, articles they

have read or products they have purchased or movies they have watched or rated to identify

potential user preferences. Recommendation algorithms are software techniques providing

suggestions for items that would be of an use to a specific user. Suggestions such as what

music to listen, what products to buy, what movies to watch or what news articles to read.

Many algorithmic approaches have been applied to the problem of making accurate and

efficient recommendation systems. Collaborative filtering is one of among many algorithmic

approaches.

2



Collaborative filtering is the most successful recommendation system technique till date.

It is used in many of the most successful recommendation systems on the web. Collaborative

filtering systems recommend products to a target user based on the behaviors of other users.

Collaborative filtering systems uses statistical techniques to find a set of users known as

neighbors, that have a similar experiences as that of the target user i.e. either they have

rated different products similarly or they tend to buy similar set of products or either they

have watch same set of movies or listened to similar kind of music. Once a neighborhood

of users is formed, the system uses several algorithms to derive recommendations. In order

to understand the algorithm and the recommendation process, its good to introduce basic

terms and then get familiar with approaches, methods, tasks, challenges and evaluation of

recommendation systems.

Items and users are the two important entities engaged in every recommendation system.

An item refers to any product such as a music song, a movie, a product, an article that

recommendation system is to recommend. User is a person ready to accept recommendations

when providing opinions about various items. The goal of collaborative filtering algorithms

is to either make suggestions about new items or to make prediction about the acceptance

of a certain item for recommendations when providing opinions about various items. In

addition, it even aims to either make suggestions of new items or to make prediction about

the acceptance of a certain item for a particular user based on users past experiences and

similarity with others users. Prediction is a numeric value expressing the affinity of an item

for the active user. Recommendation is a list of items that the active user will like the most.

This is also known as top N recommendations where the list contains top N liked items.

1.3 Hadoop Map-Reduce Framework

Map-Reduce is a programming framework designed for processing large amounts of

data, in parallel, by dividing a complete task into a set of independent tasks where each

independent task performs the similar computation. The data in the map-reduce framework

3



is not shared across the nodes. Instead, the data elements in the map-reduce are immutable

i.e. the data once written cannot be written twice and it can only be read many times. All

the data used as an input and the resultant data post processing is stored in HDFS (Hadoop

Distributed File System). The data read from the input files, stored in HDFS are processed

and converted into intermediate results and are further processed to generate final results.

Map-Reduce programs process the input data into two steps: Map and Reduce. In the

map step, the mapper takes in one element at a time from input list of data elements fetched

from the HDFS. It then, performs the required computation as defined within the map step

on the input data element and emits the required output to an intermediate output data

element. As the input file set is first split into several sets called file splits or input splits

before assigning it to a mapper, all the map operations are paralleled as every mapper would

have exactly one input split. Thus, the number of mappers created is dependent on the

number of input splits. Splitting the input dataset into smaller datasets helps in paralleling

the processing. In turn, as each mappers performs computation on its own dataset, they

do not have to synchronize with one another and are independent of one another. Every

mapper that receives the input split processes the data into a specified format.

The Record Reader known as input split parser in the mapper parses the input split and

generates the required key-value pairs as each mapper takes in input in the key-value format.

All the key-value pairs are processed in parallel by the mappers, to generate intermediate

key-value pairs. The output key-value pair of the mapper serves as input to the reducer.

Once the map step is complete, the intermediate key- value pairs are shuffled between nodes

in a cluster to send all values with the same key to a single reducer. The reducer receives

the intermediate key-value pairs generated by the mapper as input, combines the values

of all key-value pairs and generates a single output key-value that is unique to each other.

Reducers are similar as mappers in and generates a single output data corresponding to the

input data fetched by the mapper. Reducers are independent of one another and they do

not have to communicate with each other as that of mappers.

4



1.4 Contribution

In this research, item-based collaborative filtering algorithm, a specific type of collabora-

tive filtering algorithm is researched and a new parallel approach for item-based collaborative

recommendation algorithm is proposed for computation of item similarity. The item-based

collaborative filtering algorithm is implemented using Hadoop map-reduce framework by

writing two map-reduce jobs to derive the recommendation list of items. The proposed al-

gorithm uses the Pearson Coefficient, Cosine Similarity, Jaccard Similarity and Tanimoto

Similarity to find similarity among items and based on the similarities, the most accurate

recommendations for any type of data is found with increased performance and also increased

load.

The entire dataset is first pre-processed to identify the relationship among users and

items. This algorithm initially computes similarities between items from the dataset and rec-

ommends recommendations based on similarities among items. Map-Reduce jobs are written

to process the data in parallel on a cluster. Map jobs run on each cluster simultaneously and

pass on the results to the reduce jobs. The reduce jobs combine the results from map jobs

and form the final results. The map-reduce approach enables the algorithm to compute the

recommendations in less amount of time as mappers and reducers run in parallel to perform

the computation.

Experiments are executed by varying number of nodes in a cluster and increasing the

size of the dataset. For each experiment, the required results are recorded. The results are

compared with a single node cluster which shows significant improvement in performance

with the use of map-reduce jobs on a cluster of varying nodes.

1.5 Organization

The organization of documentation is as follows: we provide a general introduction to

map-reduce and HDFS in chapter 2. In chapter 3, we discuss the motivation for the Hadoop

5



map-reduce version of item-based collaborative filtering algorithm. In chapter 4, we present

the design of the algorithm and in chapter 5 we discuss the implementation details of map-

reduce jobs to derive the recommendation for items. In addition, we also describe the input

and output formats at each map-reduce phase of execution. In chapter 6, we provide the

experiments along with the results of this algorithmic approach. In chapter 7, we discuss the

future work that can be done in this research. In chapter 8, we provide the conclusion of our

research. In chapter 9, we summarize the main contributions and findings of this research.

6



Chapter 2

Background

Almost all large-scale E-Commerce websites recommend products to users. Recommen-

dation systems are responsible for analyzing large amounts of information in order to identify

potential user preferences. Most of the recommendation systems uses collaborative filtering

as the approach for deriving recommendations. Most of the recommendations algorithms

available for recommendation systems are from the field of machine learning. It is a sub-

field of artificial intelligence that produces algorithms applicable to learning, prediction, and

decision-making.

Recommendation algorithms are a form of unsupervised learning aims at finding a struc-

ture within a set of random data i.e. they work by identifying similarities among items by

calculating their distance from other items within feature space. Feature space represents

item data. In broad terms, any software system which actively recommends an item either

to purchase or to subscribe or to invest can be regarded as a recommendation system. An

advertisement can also be a recommendation. Many online advertisement systems such as

Google Adwords, uses recommendation systems to advertise products based on user profile.

Collaborative filtering is one of the approaches to personalized recommendation systems.

2.1 Collaborative Filtering

Collaborative filtering provides recommendations based on model of prior item pref-

erence level. The model can be constructed either from a single item preference level or

more effectively also from the preferences of other items who have similar attributes. When

other items preference levels are taken into consideration, collaborative filtering uses group

knowledge to form a recommendation based on likewise items. Recommendations are based

7



on an automatic collaboration of multiple items and filtered on those who exhibit simi-

lar attributes. Collaborative filtering techniques rely heavily on simple similarity measures

(Cosine Similarity, Pearson Correlation, Jaccard Similarity, Tanimoto Similarity) to match

similar items together. If we have a huge matrix with users in one dimension and items in

another, with the cells containing either votes or likes, then collaborative filtering techniques

use similarity measures on two vectors either rows or columns of such a matrix to generate

a number representing similarity.

2.1.1 Collaborative Filtering Algorithm

Collaborative Filtering algorithm is a classic personalized recommendation algorithm

which is widely used in many commercial recommendation systems [6]. Collaborative Fil-

tering algorithm is an algorithm based on the following assumptions:

1. Users preferences and interests for items do not change.

2. User choices for items can be predicted based on their past preferences.

Because of the above assumptions, the collaborative filtering algorithm is based on the com-

parison of one item with other set of items, to find how similar items are, and according to

the items similarity, its easy to predict users interests or preferences for an item.

Collaborative filtering systems are categorized into three subgroups: Memory-based,

Model-based and Hybrid. Memory-based methods construct a rating matrix and uses the

rating matrix as a reference to issue recommendations based on the similarity computed

between users or items. Neighborhood based recommendation algorithms, user-based recom-

mendation algorithms or item-based recommendation algorithms are some of the examples of

memory-based collaborative filtering systems. Model-based methods are used for generating

a model of the data under consideration for recommendation for generating predictions for a

set of users or items. It issues recommendations based on the model. Clustering methods for

recommendations is one of the example of model-based collaborative filtering. Hybrid based

is the collection of both memory-based and model-based collaborative filtering systems. The

8



most popular memory-based collaborative filtering methods are neighborhood-based meth-

ods, which predict ratings by referring to users whose ratings are similar to the queried user,

or to items that are similar to the queried item. This is motivated by the assumption that if

two users have similar ratings on some items they will have similar ratings on the remaining

items. Alternatively, if two items have similar ratings by a set of users, the two items will

have similar ratings by the similar set of users. Specifically, user-based collaborative filtering

methods identify users that are similar to the queried user, and compute the desired rating

to be the average ratings of these similar users. Similarly, item-based collaborative filtering

takes the average of the ratings of these similar items. Neighborhood methods vary consid-

erably in how they compute the weighted average of ratings. The first step of collaborative

filtering algorithm is to obtain the items history profile, which can be represented as a rat-

ings matrix with each entry the rate of a user given to an item [18]. A ratings matrix for

item-based collaborative filtering algorithm consists of a matrix where each row represents

an user, each column represents a specific item, and the number at the intersection of a row

and a column represents the rating given by the user for that item. The absence of a rating

score at this intersection indicates that user has not yet rated the item. The next step is

to calculate the similarity between the items and identify the similar items. The calculation

of similarity among items is done by considering columns of the rating matrix. There are

many similarity measure methods. We have used Pearson Coefficient, Cosine Similarity,

Tanimoto Similarity and Jaccard Similarity. The calculation process of Collaborative Fil-

tering algorithm would consume intensive computing time and computer resources. When

the dataset is very large, the calculation process would continue for several hours or even

longer. Therefore, we propose new method that is to implement the collaborative filtering

algorithm on Hadoop platform to reduce the computation time of the similarity.

9



2.2 Apache Hadoop Framework

Apache Hadoop is an open source software project that enables the distributed process-

ing of large data sets across clusters of commodity servers.[10] It is designed to scale from a

single server to thousands of servers, with high degree of fault tolerance. In place of relying

on high-end hardware, the flexibility of these clusters comes from the software’s ability to

detect and handle failures at the application layer. Hadoop enables a computing solution

that is scalable, cost effective, and fault tolerant.[10]

2.2.1 Hadoop Top Architecture

Hadoop is implemented using master slave design pattern. Masters are responsible for

controlling the slaves across the cluster. One of the masters is the Name Node, which is

responsible for managing the HDFS (Hadoop Distributed File System) and controlling the

slaves that store the data. The other master is the Job Tracker, responsible for handling the

parallel processing of data in slave nodes using the map-reduce programming model.[10] The

rest of the architecture contains all the slave nodes, which run both Data Node and Task

Tracker daemons. Data Nodes are responsible for obeying the commands from the Name

Node and store the partitioned data decoupled from the meta-data in the Name Node. Task

Trackers are responsible for obeying the instructions from the Job Tracker and does all the

computing work assigned by the Job Tracker. Finally, client machines are neither Master

nor Slaves. Client machines are responsible for assigning tasks to the masters to load data

into HDFS, submit map-reduce jobs describing how that data needs to be processed, and

then retrieve or view the results of the task once finished.

The above figure shows the basic organization of the Hadoop cluster. The client ma-

chines communicate with the Name Node to perform basic file operations i.e. add, move,

manipulate, or delete files in HDFS. The Name Node in turn calls the Data Nodes to store,

delete or make replicas of data being added to HDFS. When the client machines want to

process the data in the HDFS, they communicate to the Job Tracker to submit a job that

10



Figure 2.1: High-level Hadoop Architecture

uses map-reduce. Job Tracker divides the jobs to map and reduce tasks and assigns it to

the Task Tracker to process it. Typically, all nodes in Hadoop cluster are arranged in the

air-cooled racks in a data center. The racks are linked with each other with the help of rack

switches, which runs on TCP/IP.

2.3 Hadoop Distributed File System

The Hadoop Distributed File System or HDFS is a distributed file system designed to

run on commodity hardware.[11] HDFS is the main distributed storage used by Hadoop

applications on clusters. Although HDFS has many similarities with existing distributed

file systems, the differences between HDFS and other systems are significant. For example,

HDFS is highly fault-tolerant and is designed to deploy on cost-effective clusters. HDFS

offers high throughput access to application data which is suitable for applications that have

large datasets.

11



Figure 2.2: Hadoop Architecture

2.3.1 Architecture

HDFS uses master-slave architecture, in which a master is the Name Node and slaves

are Data Nodes. The below figure shows a diagram representing the architecture of HDFS.

Basically, an HDFS cluster consists of a single Name Node, which manages the file system

namespace and regulates access of clients to files. In addition, there are a number of Data

Nodes. Usually, each node in a cluster has one Data Node that manages storage of the node

on which tasks are running. HDFS exposes file system namespace and allows user data to

be stored in files. Internally, a file is split into one or more blocks stored in a set of Data

Nodes.

2.3.2 Name Node

The Name Node is the master of HDFS that maintains and manages the blocks present

on the Data Nodes. It keeps the information of all files in the file system, and keeps track

of the location of the file across the cluster. It does not store the data of these files itself.

12



There is just one Name Node in Hadoop, which is the single point of failure in itself. The

HDFS architecture is built in such a way that the user data is never stored in the Name

Node.

These are the following functions of a Name Node: The Name Node maintains and exe-

cutes the file system namespace. If there are any modifications in the file system namespace

or in its properties, this is tracked by the Name Node. It directs the Data Nodes to execute

all the low-level I/O operations. It keeps a record of how the files in HDFS are divided

into blocks, in which nodes these blocks are stored. In total, Name Node manages cluster

configuration. It maps a file name to a set of blocks and maps a block to the Data Nodes

where it is located.

It records the metadata of all the files stored in the cluster, e.g. the location, the size

of the files, permissions, hierarchy, etc. With the help of a transactional log, that is, the

Edit Log, the Name Node records each and every change that takes place to the file system

metadata. For example, if a file is deleted in HDFS, the Name Node will immediately record

this in the Edit Log. The Name Node is also responsible to take care of the replication factor

of all the blocks. If there is a change in the replication factor of any of the blocks, the Name

Node will record this in the Edit Log. Name Node regularly receives a heartbeat and a block

report from all the Data Nodes in the cluster to make sure that the Data Nodes are working

properly. A Block Report contains a list of all blocks on a Data Node. In case of a Data

Node failure, the Name Node chooses new Data Nodes for new replicas, and balances disk

usage and also manage the communication traffic to the Data Nodes.

2.3.3 Data Node

A Data Node stores data in the HDFS. A functional file system has more than one Data

Node with data replicated across them. On start up, a Data Node connects to the Name

Node; spinning until that service comes up. It then responds to requests from the Name

Node for file system operations. These are the following functions of a Data Node: Data

13



Nodes perform the low-level read and write requests from the file systems clients. They

are also responsible for creating and deleting blocks and replicating the same based on the

decisions taken by the Name Node. They regularly send a report on all the blocks present

in the cluster to the Name Node. Data Nodes also enables pipelining of data. They forward

data to other specified Data Nodes. Data Nodes send heartbeats to the Name Node once

every 3 seconds, to report the overall health of HDFS. The Data Node stores each block of

HDFS data in separate files in its local file system. When the Data Nodes gets started, they

scan through its local file system, creates a list of all HDFS data blocks that relate to each

of these local files and send a block report to the Name Node.

2.3.4 Secondary Name Node

The Name Node is the single point of failure for the Hadoop cluster, so the HDFS

copies the namespace in Name Node periodically to a persistent storage for reliability and

this process is called check pointing. Along with the namespace it also maintains a log

of the actions that change the namespace, this log is called journal. The checkpoint node

copies the namespace and journal from Name Node to applies the transactions in journal

on the namespace to create most up to date information of the namespace in Name Node.

The backup node however copies the namespace and accepts journal stream of namespace

applies transactions on the namespace stored in its storage directory. It also stores the up-

to-date information of the namespace in memory and synchronizes itself with the namespace.

When the Name Node fails, the HDFS picks up the namespace from either Backup Node or

Checkpoint Node.

2.4 Map-Reduce Model

The Map-Reduce model was mainly designed for unstructured data processed by large

clusters of commodity hardware; the functional style of map-reduce automatically parallelizes

14



and executes large jobs over a computing cluster. The map-reduce model is capable of pro-

cessing many terabytes of data on thousands of computing nodes in a cluster. Map-Reduce

automatically handles the messy details such as handling failures, application deployment,

task duplication’s, and aggregation of results, thereby allowing programmers to focus on the

core logic of applications. Each map-reduce application has two major types of operations -

a map operation and a reduce operation. Map-Reduce allows parallel processing of the map

and reduce operations in each application. Each mapping operation is independent of the

others so all mappers can be performed in parallel on multiple machines. Similarly, a set of

reduce operations can be performed in parallel during the reduction phase. All outputs of

map operations that share the same key are presented to the same reduce operation. Map-

Reduce can be applied to process significantly larger datasets than commodity servers. For

example, a large computing cluster can use map-reduce to sort a petabyte of data in only a

few hour.

Parallelism also offer some possibility of recovering for partial failure of computing nodes

or storage units during the operation. In other words, if one mapper or reducer fails, the

work can be rescheduled, assuming the input data is still available. Input datasets are

available even in presence of storage unit failures, because each dataset normally has three

replicas stored in three individual storage units. A map-reduce program has two major

phases - a map phase and a reduce phase. The map phase applies user specified logic to

input data. The results, called as intermediate results, are then fed into the reducer phase

so the intermediate results can be aggregated and written as a final result. The input data,

intermediate data and final data, all are represented in key-value pair format [3]. Figure 2.3

shows an executional example of the map-reduce model. As shown by the diagram during

their respective phases multiple map and reduce jobs are executed in parallel on multiple

computing nodes. Map-Reduce is also usually described in the form of the following functions

summarized in Table 2.1.

15



Input Output
map(k1,v1) list(k2,v2)

reduce(k2,list(v2)) list(k3,v3)

Table 2.1: Map Reduce Functions

Figure 2.3: Map Reduce Model

16



Chapter 3

Motivation

Data-intensive applications are popular and are increasing day by day. Applications

not limited to social networks, web auctions sites, e-commerce sites are data-intensive as

they generate data on day-to-day basis. Data-intensive applications need access to ever-

expanding datasets ranging from a few gigabytes to several terabytes or even petabytes.

Google, for example, leverages the map-reduce model to process twenty petabytes of data

per day in a parallel fashion [9]. Map-Reduce is an attractive model for processing large

data in parallel, as it breaks the larger task into smaller tasks, in high-performance cluster

computing environments. As map-reduce operates by partitioning large task into numerous

small tasks running on multiple machines in a large-scale cluster, its scalability is proven to

be high.

Collaborative Filtering algorithm is a widely used personalized recommendation tech-

nique in commercial recommendation systems [17], [18]. A lot of work has been carried out

in the field to improve the performance. Cloud computing has been one of the focus to

overcome the problem of large-scale computations. Cloud computing is the provision of dy-

namically scalable and often virtualized resources as a service over the Internet [15]. There is

no requirement for the users to have knowledge of, expertise in the technology infrastructure

in the cloud that supports them.

Cloud computing services provide common business applications online which are ac-

cessed from a client browser, while the software and data are stored on the servers. In order

to solve scalability problem and improve the performance of the recommendation system, we

implement the collaborative filtering algorithm on the cloud-computing platform. There are

several cloud computing platforms available, for example, the Dryad [24] of Microsoft, the

17



Dynamo [25] of amazon.com and Netune [23] of Ask.com etc. In this paper, we choose the

Hadoop platform as the base of our implementation since, the Hadoop platform [9], [14] is

an open source cloud- computing platform. It implements the map-reduce framework that

has been successfully evaluated by Google.com. The Hadoop platform uses a distributed file

system, Hadoop Distributed File System (HDFS) [15], to provide high throughput access

to application data. Using the Hadoop platform, we can execute a program in parallel.

Map-Reduce framework allows user to split a large task into many small tasks. All the

small tasks are then handled by the Hadoop platform, thus improving the computation

speed. The Hadoop map-reduce framework solves the scalability issue for systems dealing

with large datasets. The ability of Hadoop framework to process huge data very fast moti-

vated us to utilize its capability to generate recommendations by converting the sequential

approach to parallel that processes the huge dataset. The algorithm is divided into multiple

parts to identify the components that can take the advantage of parallelization. Motivation

to select the item-based collaborative filtering approach to solve the recommendation system

problem is that the item-based similarities derive the most accurate predictions to the item

based on the similarities of similar items.

3.1 Problem Statement

Let A be I1 x I2 matrix holding all known interactions between a set of items I1 and a

set of items I2. An item i is represented by his item interaction history Ii, the i-th row of

A. The top-N recommendations for this item correspond to the first N items selected from

a ranking r of all items according to how strongly the similarity measure between the items

are. This ranking is inferred from patterns found in A.

3.2 Contributions

In this research, we study the implementation details of item based collaborative filtering

algorithm on cloud computing platform. The work we have done is summarized as follows.

18



Firstly, we designed an item based collaborative filtering algorithm for the map-reduce pro-

gram framework, and implemented the algorithm on the Hadoop platform. Secondly, we

tested our implementation under several configurations. Two map-reduce jobs are written

to derive recommendations and these jobs are run on Hadoop cluster. The first map-reduce

job is responsible for computing the similarity among items. The second map-reduce job

is responsible for deriving recommendations based on the similarity computed using first

map-reduce job. The item-based collaborative filtering algorithm based on items similarity

is implemented using parallel programming environment of Hadoop map-reduce framework.

The algorithm processes the input dataset to compute similarities and then generate recom-

mendations for each item based on similarities computed. The idea for map reduce algorithm

is based on basic map reduce paradigm i.e. to split the task into smaller sub tasks and solve

each sub-task in parallel. The data is partitioned in a way to support the parallel similarity

computation. Thus taking the advantage of map-reduce the similarity computation which is

the key for resource consumption is parallelized.

19



Chapter 4

Design

In this chapter, we discuss about item-based collaborative filtering algorithm and its

respective map-reduce version. This section discusses the step-by-step development of our

algorithmic framework. We start with discussion on how to conduct distributed item simi-

larity calculation for our simple model for input data. After similarity calculation, we discuss

how to derive recommendations based on the similarity values being calculated among items.

We can add more nodes to process the data, in order to achieve linear scalability with a grow-

ing size of dataset

4.1 Approach

In order to relate a relationship between items and users, we define the value as 1 for

an item, if the user has purchased an item else the value for the item is defined as 0. Here,

we are considering the purchase history of the user. If we consider the rating given by the

user to the item, we can have some other parameter values assigned to build the relationship

between the item and the user. Let U be the user, I1 be a first item and I2 be a second item,

if user has purchased an item I1, the value of relationship between the user U and item I1

is 1 say R(U,I1) = 1. If the user has not purchased an item I2, the value of the relationship

between the user U and item I2 is 0 say R(U,I2) = 0.

In order to compare two items, a dot product of item vectors is computed, where a vector

of the item contains the relationship of the item with all the set of users i.e. the vector will

contain the values given by all the users to the item. Based on the computed value of two

item vectors, we can say how similar two items are. When computing recommendations for a

particular item with item-based collaborative filtering, we fetch all the computed similarity

20



values of the item with other set of items. Among all the fetched computed similarity values,

the top N values will be considered. The top N items are then recommended for the item.

In order to compute dot product of item vectors, we generate an item-item matrix

where each column represents an item. Each row has a value a user has given to the items

represented by the columns.

Notation Hints: Va denotes the vector for item a where Va contains a list of values of

item a given by all the users. Vb denotes the vector for item b where Vb contains a list of

values of item b given by all the users. Vab denotes the similarity value of item a with item

b.

4.2 Sequential Approach

As we are using different set of formulae to compute similarity between two items, the

sequential approach for computing the similarity of items Si varies based on the computation

of the formulae.

The standard sequential approach [21] for computing the similarity of items Si(u, v) is

defined as

Sim (u, v) = dot(u, v)/ItemsPurchased u + ItemsPurchased v − dot(u, v)

dot(u, v) = vector(u).vector(v)

ItemsPurchased(u) indicates the total count of users purchased item u.

To get the similarity of items we need to compute the dot product of each item vector

of U with each another item vector of V.

Algorithm to compute similarity of two items sequentially:

Step 1: Compute total count of users purchased item u:

21



Algorithm 1 Count of users purchased item i

1: for each user u who purchased item i do
2: Ci = Ci + 1
3: end for

Step 2: Compute the dot product of two vectors of items u and v

A be the matrix containing all the items and the values indicating whether the user has

purchased item a or not.

Vi be the dot product value of item a with item b

Ia be the value indicating whether user has purchased item a or not

Ib be the value indicating whether user has purchased item b or not

Suv be the similarity value of item u with item v

Algorithm 2 Dot Product of Two Item Vectors

1: for each item a in matrix A do
2: for each item b in matrix A do
3: Vi = Vi + (Ia * Ib)
4: Suv = Vi / (Ca + Cb - Vi)
5: end for
6: end for

The sequential algorithm takes more time with the increasing number of users and items.

The components calculated in the previous algorithm are used here to compute the similarity.

The computation for each item with other item is computed more than once. The algorithm

to compute the dot product is the most resource consuming part of similarity computation

and has to be addressed to improve the performance. In order to improve the run-time

speed-up proportional to the number of machines in the cluster, the algorithm should be

modified to a parallel version.

One solution to this problem is to pre-process the data in a way that the computation can

take place by column-wise of the matrix across multiple machines and can achieve parallelism

of the similarity computation. After applying the pre-processing technique we design a map

reduce program to compute the similarity and derive recommendations using the similarity

computed between two items.

22



4.3 Parallel Approach

We need to devise a parallel algorithm in order to improve the complexity of the sequen-

tial algorithm for the similarity computation to make its run-time speed-up proportional to

the number of machines in the cluster. This is not possible with the standard sequential ap-

proach, as it requires random access to the rows and columns of matrix A in the inner loops

of algorithm for similarity computation, which cannot be efficiently realized in a distributed,

shared-nothing environment where the algorithm has to work on partitioned data. We can

efficiently compute the similarity by the use of a map-reduce paradigm which is compatible

to partitioned data.

Multiple map-reduce jobs can run mappers in parallel to compute different components

of the equation and reduce jobs finally compute the similarity and ratings. Each row of

the item-item matrix represents the value given by user to the item i. We can compute

the similarity of one item with another item by just processing each row of matrix for each

item. The data is pre-processed such that all items ratings of set of users is available on one

node so that the computation happens with all items. Data is partitioned by Hadoop row

wise, each row creates a mapper, the computation for each item is parallelized and all the

results are combined in reducer to get the overall similarity of all items for each item pair.

The item pairs with all the similarity values are processed by another map-reduce job to

derive recommendations for each item. We discuss more details of the algorithm like data

pre-processing, data partitioning, similarity computation and deriving recommendations in

the further sections.

4.3.1 Data Pre-processing

In order to parallelize the similarity calculation, the computation has to be carried out

in small parts on multiple machines. The key is to pre-process data such that all the data

required to complete small tasks specific to a machine can be present within that machine.

In our problem, we need to compute the item-similarity for each pair of items. So all the

23



Figure 4.1: Input Dataset

item data needs to be available on one node. Hence, the data partition can be user based.

Each node can just have the data of some users. The results of these small tasks can be

joined together to compute similarity for a pairs of items.

The dataset we have is a user-item matrix, which has ratings for each item given by

all the users. Each row represents a user followed by a set of items along with their ids

and the ratings given by the user to the respective item. In order to compute the similarity

of items across multiple machines, we can split the whole dataset randomly based on the

total number of machines used. As we require the data to be in the format where each row

represents a single user with all the set of items, we don’t have a requirement of reorganizing

the data to a new format. Thus, we can randomly split the data row wise so that each

individual machine gets a split of the whole pre-processed dataset.

The sample dataset is shown in figure: 4.1. Each line in the dataset represents a user id

followed by an item id and the rating given by the user for that item. The value 0 represents

the user has not given any rating to the item and hence, by default, it is set to 0.

The data shown in figure: 4.1 is reorganized as shown in figure: 4.2 to be available for

Hadoop for processing. The data reorganized is similar to what we represent the data in a

matrix form. The conversion of data into matrix format is really easy.

The dataset is divided into two partitions partition one is shown in figure: 4.3 and

partition two is shown in figure: 4.4, each of which contains a set of items and their ratings.

The reorganization of partition data is shown in figure: 4.5 and figure: 4.6 respectively.

24



Figure 4.2: Reorganized Dataset

Figure 4.3: Partition Dataset 1

Figure 4.4: Partition Dataset 2

Figure 4.5: Reorganized Partition 1

Figure 4.6: Reorganized Partition 2

25



Here, we partitioned the input dataset by user-based, so that each row will contain all

the items and the ratings given by a particular user for all the items. Now map-reduce jobs

will merge the similarity results with the raw data partitioned using user-based strategy.

This enables to leverage the map-reduce programming advantage at more higher level.

4.3.2 Similarity Computation

Once the data is being partitioned, the similarity values among the items needs to be

calculated. We have used four different formulae to compute similarity among items. Each

formulae is different in its own sense. The process for computing the similarity between items

is the same in different experiments. The only change we have made in different experiments

is the use of computational formulae to compute similarity.

Process to compute similarity among items:

1. For each user u, generate item pairs with ratings given by the user for that item.

2. Once, we have item pairs, merge all the similar items pairs into a single large item

pair.

3. For each large item pair, compute the similarity among the two items by using the

respective similarity computational formulae.

4. Once similarity among item pair is computed, we can then use the similarity values

to recommend the top N items for a particular item based on the similarity value.

All the nodes that have item data follows the above process and results for each item

pairs are saved. The saved results are passed on to be computed for similarity based on

different similarity formulae.

The above task is handled in parallel as the data for each pair can reside on any data

node and each data node will compute the similarities of the item-pair whose items rated

values are present on the node.

The similarity measures used for computing similarity among item pairs are Jaccard

Similarity, Cosine Similarity, Tanimoto Similarity and Pearson’s Coefficient. Figure 4.8

26



Figure 4.7: Similarity Computation

27



Figure 4.8: Similarity Measures for Computing Similarity.

Figure 4.9: Parallel Processing of data by multiple nodes

provides the required similarity measure formulae used for computing the similarities among

items.

4.3.3 Deriving Recommendations

The next part of the problem is to derive recommendations by using the similarity values

computed in the previous step for a pair of items. We can generate recommendations for all

the items at a time.

To derive recommendations for each item, the ranking among the item pairs (i,j) needs

to be computed. For each item pair (i, j) ranking is computed based on the descending order

28



Figure 4.10: Deriving Recommendations using the similarity computation

of similarity value of item i with rest of the items. This process should be repeated for all

item pairs and all the individual item ratings are computed. From all the items, items with

top N ranking are selected and provided as the recommendation to the user for an item i. In

simpler terms, we can list the steps of deriving recommendations for each item as follows:

1. Fetch the list of item-pairs containing the target item i with similarity values.

2. Sort the list of item-pairs in descending order of their similarity values.

3. Once sorted, merge the top N items from the sorted list of item-pairs.

4. Once merged, recommend the merge list of items for the target item i.

29



Chapter 5

Implementation

5.1 Map-Reduce Jobs

Map-Reduce jobs run in parallel on a Hadoop cluster. Hadoop cluster is a collection of

two or more nodes and each node has Hadoop installed on it. A map-reduce job is divided

into smaller map-reduce jobs, where in each job executes the same task but on a different

dataset. The input dataset which is processed by Hadoop is partitioned into several smaller

datasets and are distributed across several data nodes and the map-reduce job on each node

uses the dataset respective to the node as input and performs the required computation

as specified within the map-reduce job. Each map task after processing the input dataset

generates a (key, value) pair as intermediate output which is stored on the local disk. The

reduce tasks will collect all the intermediate results with same key and performs the required

computation as specified within the reduce job to generate the final output. Map-Reduce

jobs use text files as input and output the final results into text files.

5.2 Input Data

In Hadoop, for map-reduce jobs to process dataset, dataset should be in the form of

key-value pairs. The input data is created as a text file by querying the movie lens database

system which provides us with the required input data. We can pre-process the data so that

it can processed by Hadoop map-reduce jobs. The text file contains the data where each

row contains all the items and the rating given by the user for all the items. As map-reduce

jobs works based on key-value pairs, we assume that the input data is pre-processed in the

required format.

30



Figure 5.1: Input data format after pre-processing of data. Here, the item and rating for the
item is separated by ’,’. Collection of items are separated by ’;’

The hash-code generated internally by Hadoop for each input line of the text file is used

as key and entire single line within the text file(containing the item id and rating) as value.

When a map-reduce job executes, each row data is processed by an individual mapper. Each

line within the input text file represents an user and the line contains the information about

all the items represented by item id and the rating given by the user for all the items. All the

items within the input file is separated by delimiter ’;’ and the rating for each item given by

the user is separated by delimiter ’,’. When Hadoop runs the map-reduce job, it processes

each line as a different mapper and uses the data to create intermediate results as key-value

pairs.

As the recommendation problem is divided into two parts: building relationship among

item pairs then computing the similarity among item pairs and deriving the recommendations

among item pairs, map-reduce jobs are written to finish each part of the problem.

5.3 Compute Similarity between Item Pairs

The similarity computation phase of the recommendation problem is sub-divided into a

single map-reduce job. Mapper of the map-reduce job is responsible for building relationships

among items i.e. it is responsible for emitting the key-value pairs where each key is a set of

two items and the value represents the rating given by a user for both the items. Reducer of

the map-reduce job is responsible for computing the similarity among the items being emitted

31



Figure 5.2: Computation of Similarity between Item Pairs. Input key for Map Job is a Hash
code automatically generated by Hadoop. Input value for Map Job is a single row of the
input dataset. Input key of the reduce job is (I1,I2) where I represents an Item. Input value
is (R1,R2) where R represents the rating for item I.

by the mapper i.e. it is responsible for computing the similarity of each key represented by

pair of items.

5.3.1 Map-Reduce Job

As mentioned earlier, each row of data is processed by a mapper, the map job creates

item-item pair keys and values represents the ratings given by the user for item-item pair.

The map job generates the required (key,value) pair by splitting the input data by delimiter

’;’. The output data is again split into sets by the use of delimiter ’,’. The final output data

32



is paired in a way to form item pairs as keys and the corresponding values i.e. ratings for

each item is paired to form as value for the key. The map task produces intermediate results

in the form of (key, value) pairs as discussed earlier, which are then sent as input to the

reduce job.

The reduce job collects all the item-item keys and values representing the ratings given

by the user for item-item keys. Post collection, similarity for each unique key collection

is calculated. In order to calculate similarity, reducer first converts the value of the key

collection into a vector. Two vectors are constructed where in each vector representing

an item. Then, we use four different similarity calculation formulae to calculate similarity

among the item pairs by considering the vectors being generated. The four different formulas

are used based on different experiments. Post, the computation of similarity, the final result

for the item pair is outputted.

Figure 5.2 shows the input to the map job and the corresponding output of the map

job. It even shows the input and output to the reduce job.

Four different formulae used for the similarity calculation are Jaccard Similarity, Pears-

son’s Coefficient, Cosine Similarity and Tanimoto Similarity. Figure 5.5 shows the Jaccard

Similarity to compute similarity between two vectors. Figure 5.6 shows the Cosine Similar-

ity to compute similarity between two vectors. Figure 5.7 shows the Tanimoto Similarity

to compute similarity between two vectors. Figure 5.8 shows the Pearsson’s Coefficient to

compute similarity between two vectors.

The computation time taken to compute similarity using map-reduce job is greatly

reduced when compared to sequential computation of the similarity among item pairs as the

tasks is divided into smaller tasks and each smaller tasks is performed by a map-reduce in

parallel.

33



Figure 5.3: Map Job for Similarity Computation. Input key for Map Job is a Hash code
generated by Hadoop. Input value for Map Job is a single row of the input dataset. Output
key of the map job is (I1,I2) where I represents an Item. Output value of the map job is
(R1,R2) where R represents the rating for item I.

34



Figure 5.4: Reduce Job for Similarity Computation. Input key for Reduce Job is (I1,I2) and
the input value is (R1,R2). Output key of the reduce job is (I1,I2) and the output value is
S1. I represents an item, R represents the rating associated with an item and S represents
similarity value for an item pair.

Figure 5.5: Jaccard Similarity to compute similarity between two vectors. X and Y represents
two vectors.

Figure 5.6: Cosine Similarity to compute similarity between two vectors. A and B represents
two vectors.

35



Figure 5.7: Tanimoto Similarity to compute similarity between two vectors. A and B repre-
sents two vectors.

Figure 5.8: Pearsson’s Coefficient to compute similarity between two vectors. X and Y
represents two vectors.

5.4 Deriving Recommendations

The final part of the implementation is to derive recommendation for items in the system

based on the similarity value being calculated for the item pairs. The item pair which has

the highest similarity value for the selected item is considered highest in ranking and its

given the top most priority in the recommendation list. In order to compute this, we need

to take in consideration the similarity values among the item pairs. Then sort the item pairs

in decreasing order of their similarity values and select top N item pairs and provide the list

for the selected item.

5.4.1 Map-Reduce Job

The second map-reduce job is responsible for deriving the recommendations based on the

similarity values between item pairs computed using the first map-reduce job. The second

map-reduce job takes in the input as the output of the reduce job of the first map-reduce

job. The map-reduce job is responsible for emitting an item pair where each item within

the pair act as a key. The reduce job takes in collection of values of the item key. It sorts

the collection in decreasing order of the similarity values. Once, we get the list of decreasing

order, the items associated with the similarity values are outputted in the order of their

similarity values as the recommendation list for the item key.

36



Figure 5.9: Deriving Recommendation. Input key for the map job is an item pair (I1,I2).
Input value is a similarity value S1. Input key for the reduce job is an item I1 and value is
a pair of item with similarity value (I2,S1).

37



Figure 5.10: Mapper Job Deriving Recommendation. Input key for the map job is an item
pair (I1,I2). Input value is a similarity value S1. Output key of the map job is an item I.
Output value of the map job is a pair of item with similarity value (I2,S1).

The map job reads each key which is an item pair and the value which is the similarity

value among the item pairs. It then emits the key into two individual items i.e. if the key is

say (I1,I2), it emits the pair into I1 and I2. After emitting the key pairs, it merges the items

in a way such that each item behaves as an independent key and the value for each item is

an another item of the item pair along with the similarity value between the item pair i.e.

say (I1,I2) is an item pair and the similarity value among the item pair is 4.5, the mapper

output for the item pair (I1,I2) with similarity value 4.5 is (I1, I2-4.5) and (I2, I1-4.5).

The reduce job takes in collection of values of the item key. It splits each value pair of

the collection by the delimiter ’,’. Once splitting is done, a matrix is formed with set of items

and the corresponding similarity value for that item. After the matrix is formed, the matrix

is sorted in decreasing order of the similarity values. After sorting the matrix in decreasing

order, all the items associated with the similarity values within the sorted matrix are merged

based on the number of items we need to recommend. After merging, the final merged list

of items are outputted in the order of their similarity values as the recommendation list for

the item key.

38



Figure 5.11: Reduce Job Deriving Recommendation. Input key for reduce job is an Item.
Input value of the reduce job is a pair of item with similarity value (I2,S1). Output key of
reduce job is an Item. Output value of the reduce job is a collection of items.

39



Figure 5.5 shows the input to the map job and the corresponding output of the map

job. It even shows the input and output to the reduce job for deriving recommendations.

40



Chapter 6

Experiments

The algorithm is designed to derive recommendations to the items based on their sim-

ilarity with set of items. To derive recommendations we used movie-lens dataset as input

data for experiments. We use both the binary notation data and non-binary notation data

i.e. rating data to derive recommendations. The similarity computation for both the dataset

does not change as the difference is just the value representation.

Experiments are done on both single node and multi-node clusters with varying data

sizes and performance metrics are recorded. Both the map-reduce jobs run in sequence

as the output of first map-reduce job is the input for the second map-reduce job. All the

experiments run both the map-reduce jobs to perform the required computations and output

the required recommendations for all set of items.

Table 6.1 and 6.2 provides the hardware and software configurations of the system used

for experiments.

6.1 Map-Reduce Job 1

Map-Reduce job 1 is responsible for computing the similarity among item pairs. As

said earlier, we are using four different similarity measures i.e. Cosine Similarity, Pearson

Coefficient, Tanimoto Similarity and Jaccard Similarity to compute similarity among item

pairs. Computation of similarity is done on similar data sets. Based on the results from

Computer HP ProLiant ML110 G6
CPU Intel Xeon X3430 @ 2.4 GHz

Memory 2GB

Table 6.1: Hardware Configurations of the System

41



Operating System CentOS 6.5 Linux Kernel 2.6.32-431
Software Framework Hadoop 2.6.0

Table 6.2: Software Configurations of the System

the computation, the time taken by different similarity measures is different i.e. Jaccard

Similarity takes less time out of four similarities. The order of time taken in ascending order

is Jaccard Similarity, Tanimoto Similarity, Cosine Similarity and Pearsson’s Coefficient.

6.1.1 Single Node Cluster

Single Node Cluster has one of each HDFS components: JobTracker, TaskTracker, Na-

meNode, Secondary NameNode and DataNode.

A series of steps need to be executed to completely test the algorithm. We can ei-

ther write a shell script to execute them in a row or manually enter the list of commands

sequentially to execute the algorithm.

Command to start Hadoop Distributed File System:

sbin/start-dfs.sh

Command to start Node Manager:

sbin/start-yarn.sh

Command to create a directory in Hadoop File System to store input data:

bin/hadoop fs -mkdir ¡directory-name¿

Command to copy the test data from local system to Hadoop File System:

bin/hadoop fs copyFromLocal ¡local-file-path¿ ¡hdfs-path¿

Command to run a job on Hadoop cluster:

bin/hadoop jar ¡path-of-jar-file¿ ¡class-name¿ ¡input-data-path¿ ¡output-data-

path¿

Command to view the results on Hadoop cluster:

bin/hadoop fs -cat /¡output-directory¿/¡output-file-name¿

42



Figure 6.1: Single Node results for different datasets using different similarity measures.

Command to output the results from HDFS to local file system: bin/hadoop fs -

getmerge /¡output-directory¿/¡output-file-name¿ ¡local-file-system-file-name-path¿

On a single node-cluster, experiments are conducted using different input data sets. The

experiments are even conducted for different similarity calculation formulas.

Figure 6.1 provides the results in terms of time taken to compute the similarity among

items using different similarities. Different dataset is used for each computation. Dataset

includes different set of movie items with different set of users who have given ratings to the

movie items. Figure contains graphs for each similarity measure. X-axis represents similarity

measure used for computing the similarity among items. Y-axis represents the time taken

in minutes to compute the similarity. Legend represents the total number of users who have

rated the movie items.

43



Figure 6.2: Comparison of results for different set of movies using different similarity measure
on a Single Node cluster.

From the single node results, all we can say is the time taken to compute the similarity

for smaller set of movies using different similarities is almost the same. As the movies increase

and the number of users increase, the time taken by the respective similarity measure changes.

Figure 6.2 shows the results for different set of movies using different similarity measures.

The number of users for each graph is the same. We can say from Figure 6.2, as the number

of movies increases though the users remain the same, the time taken to compute similarity

increases.

Figure 6.3 shows the output results using Cosine Similarity computed among different

item pairs. Figure 6.4 shows the output results using Jaccard Similarity computed among

different item pairs. Figure 6.5 shows the output results using Tanimoto Similarity computed

among different item pairs. Figure 6.6 shows the output results using Pearson Coefficient

computed among different item pairs.

Based on the output results, we can say the similarity value among item pairs differ

among similarity measures. As each similarity measure has a different formulae, the output

44



Figure 6.3: Similarity Computation Results using Cosine Similarity. The results shows the
item pairs and the corresponding similarity values for item pairs.

Figure 6.4: Similarity Computation Results using Jaccard Similarity.The results shows the
item pairs and the corresponding similarity values for item pairs.

computation among item pairs will differ based on the rating given by different users for the

item pairs.

6.1.2 Multi-Node Cluster

A multi-node cluster is a collection of single node clusters, in which one of the nodes

act as master node and rest of the nodes act as slave nodes.

Figure 6.5: Similarity Computation Results using Tanimoto Similarity.The results shows the
item pairs and the corresponding similarity values for item pairs.

45



Figure 6.6: Similarity Computation Results using Pearson Coefficient.The results shows the
item pairs and the corresponding similarity values for item pairs.

There exits a DataNode and TaskTracker on each slave node and a NameNode and

JobTracker on master node. Master node can also have DataNode and TaskTracker in case

if it needs to handle the processing itself. A master can also act as Secondary NameNode.

In addition, we can even have a single node behave as a Secondary NameNode.

Following experiments were conducted on different set of node clusters with a map

reduce implementation of our approach.

Experiments with different datasets are conducted on 2-node, 3-node, 4-node and 6-node

clusters.

2-Node and 3-Node Cluster

A multi-node cluster is set up to test the algorithm performance on large data sets.

For a 2-Node cluster, the cluster has one master node and one slave node. The master

node triggers the task and assigns the tasks to the slave. The master node runs the Job

Tracker and NameNode and Secondary NameNode. The slave node runs the Task Tracker

and DataNode.

For a 3-Node cluster, the cluster has one master node and two slave nodes. The master

node triggers the task and assigns the tasks to the slave. The master node runs the Job

Tracker and NameNode and Secondary NameNode. The slave nodes run both the Task

Tracker and the DataNode.

46



Figure 6.7: Results for different similarity measures on a 1-Node, 2-Node and 3-Node Cluster.

Figure 6.7 shows the results for 1-Node, 2-Node and 3-Node cluster for different sim-

ilarity measures. The experiments on 1-Node,2-Node and 3-node cluster were carried out

on different sizes of the dataset. Based on the results, we can say as the number of nodes

increases, the time taken to compute the similarity decreases. The time taken by Jaccard

Similarity is relatively less when compared to other similarity measures. The ascending or-

der of similarity measures based on time taken to compute similarities is Jaccard Similarity,

Tanimoto Similarity, Cosine Similarity and Pearson Coefficient.

4-Node and 6-Node Cluster

A multi-node cluster is set up to test the algorithm performance on large data sets. For

a 4-Node cluster, the cluster has one master node and three slave nodes. The master node

triggers the task and assigns the tasks to the slave. The master node runs the Job Tracker

and NameNode and Secondary NameNode. The slave nodes run both the Task Tracker and

the DataNode.

47



Figure 6.8: Results for different similarity measures on a 4-Node and 6-Node Cluster.

For a 6-Node cluster, the cluster has one master node and five slave nodes. The master

node triggers the task and assigns the tasks to the slave. The master node runs the Job

Tracker and NameNode and Secondary NameNode. The slave nodes run both the Task

Tracker and the DataNode.

Figure 6.8 shows the results for 4-Node and 6-Node cluster for different similarity mea-

sures. The experiments on 4-Node and 6-Node cluster were carried out on different sizes of

the dataset. Based on the results, we can say as the number of nodes increases, the time

taken to compute the similarity decreases. The time taken by Jaccard Similarity is relatively

less when compared to other similarity measures. The ascending order of similarity mea-

sures based on time taken to compute similarities is Jaccard Similarity, Tanimoto Similarity,

Cosine Similarity and Pearson Coefficient.

48



Figure 6.9: Deriving Recommendation for Different Similarity Measures

6.2 Map-Reduce Job 2

Map-Reduce job 2 is responsible for computing recommendation based on the similarity

value among item pairs. Based on the results from the computation of similarity, the time

taken to compute recommendation for different similarity measures is almost the same for

same set of items. The main reason behind it is the output results of map-reduce job 1 will

have same number of item pairs for defined number of items. The only difference in the

output results is the similarity value among the item pairs.

Figure 6.9 provides the results in terms of time taken to compute the recommendation

among items. Though we have used different similarity measures for computing similarity,

all the similarity measures outputs the same set of items pairs for set of items irrespective

of input dataset size. X-axis represents Similarity Measure and Y-axis represents time taken

in computing recommendation among set of items.

49



Figure 6.10: Deriving Recommendation for Different Set of Movies

As the number of movies i.e. items increases, the time taken to compute recommenda-

tions among items increases. The reason behind it is as the number of items increases, the

number of pairs among items increases. The recommendation is derived by considering the

similarity value among the set of items and by comparison of similarity values among the

items pairs for a specific item.

Figure 6.10 provides the results in terms of time taken to compute the recommendation

among different set of items. X-axis represents Similarity Measure and Y-axis represents

time taken in computing recommendation among set of items.

Figure 6.7 shows the recommendation results for Cosine Similarity . Figure 6.8 shows

the recommendation results for Jaccard Similarity. Figure 6.9 shows the recommendation

results for Tanimoto Similarity. Figure 6.10 shows the recommendation results for Pearson

Coefficient.

50



Figure 6.11: Recommendation results for Cosine Similarity. The results show an item and a
recommended list of items for the item.

Figure 6.12: Recommendation results for Jaccard Similarity. The results show an item and
a recommended list of items for the item.

Figure 6.13: Recommendation results for Tanimoto Similarity. The results show an item
and a recommended list of items for the item.

Figure 6.14: Recommendation results for Pearson Coefficient. The results show an item and
a recommended list of items for the item.

51



All the experiments for map-reduce job 2 were carried out in a single node cluster due

to the dataset size. If the dataset size is huge, we can extend the computation of deriving

recommendations on multi-node cluster similar to map-reduce job 1 in order to maximize

the efficiency of time taken to compute recommendations. If the dataset is small enough as

in the case of experiments we carried out, we can derive the recommendations on a single

node cluster.

52



Chapter 7

Future Work

The current implementation of the algorithm uses four different similarity measures

for computing similarity among items to derive recommendations. Based on the similarity

measures used, we were able to decide which similarity measure performs best over the

other in terms of computing time. We need to decide which similarity measure is more

accurate over the other. In addition, there might be other similarity measures which can be

parallelized to find similar items.

The algorithm uses only the rating of the item given by the user to compute the similarity

among items but, there can be other parameters which can be considered to improve the

accuracy of the recommendations.

There have been two more proposals proposed for deriving item-based recommendations

using Hadoop. The proposals can be implemented and thus, can be compared with the

current implemented algorithm in order to find which proposal behaves the best in terms of

performance and accuracy.

53



Chapter 8

Conclusions

In this thesis, we discussed about recommendation system algorithms and map-reduce

programming model by Hadoop. A parallel algorithm to compute item-based similarity

using Hadoop map-reduce framework is explained. The reason behind parallelization of

the computation is inspired by word count example using map-reduce. The computation

is split into multiple small tasks and each of the small task is handled independently by a

map-reduce job. In the thesis, we showed details of the approach including the inputs and

outputs produced at each phase of execution.

Different experiments are conducted to show the performance improvement by using

a multi-node cluster. Test data for experiments is taken from movie-lens databases. The

results show that the performance of the algorithm improves as the number of nodes within

a cluster increases with constant dataset size. The Hadoop map-reduce approach saves a lot

of resources in computing similarities and generates recommendations in short time.

54



Chapter 9

Bibliography

1. Yahoo! The Hadoop Distributed File System. https://developer.yahoo.com/hadoop/tutorial/module2.html,

2012. [Online; accessed April 2014].

2. Yahoo! Hadoop Tutorial. https://developer.yahoo.com/hadoop/tutorial/module3.html,2012.

[Online; accessed April 2014].

3. Yahoo! MapReduce. http://developer.yahoo.com/hadoop/tutorial/module4.html, 2012.

[Online; accessed April 2014].

4. Yahoo! Advanced MapReduce Features. http://developer.yahoo.com/hadoop/tutorial/module5.html,

2012. [Online; accessed April 2014].

5. Yahoo! Managing Hadoop Cluster. http://developer.yahoo.com/hadoop/tutorial/module7.html,

2012. [Online; accessed April 2014].

6. Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., and Riedl, J. (2012). Grou-

pLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM,

40(3), pp. 77-87. [Online; accessed May 2014].

7. Shardanand, U., and Maes, P. (1995). Social Information Filtering: Algorithms for Au-

tomating Word of Mouth. [Online; accessed May 2014].

8. GroupLens Research Group. Recommender Systems for Large-scale E-Commerce: Scal-

able Neighborhood Formation Using Clustering. [Online; accessed May 2014].

9. Jeffrey Dean and Sanjay Ghemawat, Google, Inc. MapReduce: Simplified Data Process-

ing on Large Clusters. [Online; accessed June 2014].

10. Apache Software Foundation. Hadoop.. http://hadoop.apache.org/hadoop. [Online;

accessed June 2014].

11. Apache Hadoop. Hadoop Distributed File Systems (HDFS). http://hadoop.apache.org/docs/r0.17.1/hdfsdesign.html,(1997).[Online;

55



accessed June 2014].

12. Yahoo. Yahoo! launches worlds largest Hadoop production application.. http://

tinyurl.com/2hgzv7. [Online; accessed July 2014].

13. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994). GroupLens:

An Open Architecture for Collaborative Filtering of Netnews.. [Online; accessed August

2014].

14. Dean J, Ghemawat S. (2007). Distributed programming with Mapreduce.[Online; ac-

cessed August 2014].

15. Ghemawat S, Gobioff H, Leung ST. The Google file system.[Online; accessed August

2014].

16. A. Metwally and C. Faloutsos. (2012). V-smart-join: A scalable MapReduce framework

for all-pair similarity joins of multisets and vectors.. [Online; accessed September 2014].

17. J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative filter-

ing recommender systems. ACM Transactions on Information Systems.. [Online; accessed

September 2014].

18. Adomavicius G., Tuzhilin A. (2005). Toward the next generation of recommender sys-

tems: A survey of the state-of-the-art and possible extensions.. [Online; accessed October

2014].

19. Douglas Thain, Todd Tannenbaum, and Miron Livny. (2005). Distributed computing

in practice: the condor experience: Research articles. [Online; accessed October 2014].

20. Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip

Bohannon, Hans arno Jacobsen, Nick Puz, DanielWeaver, and Ramana Yerneni. (2008).

Pnuts: Yahoo!s hosted data serving platform.. [Online; accessed November 2014].

21. Shang Ming-Sheng, Zhang Zi-ke. (2009). Diffusion-Based Recommendation in Collabo-

rative Tagging Systems.China. [Online; accessed November 2014].

22. Shang Ming-Sheng, Jin Ci-Hang, Zhou Tao, Zhang Yi- Cheng. (2009). Collaborative

56



filtering based on multi-channel diffusion. Physics A: Statistical Mechanics and its Applica-

tions. [Online; accessed November 2014].

23. Chu LK, Tang H, Yang T, Shen K. (2003). Optimizing data aggregation for cluster-

based Internet services. [Online; accessed January 2015].

24. Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad. (2007). Distributed data-parallel

programs from sequential building blocks. [Online; accessed February 2015].

25. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasub-

ramanian S, Vosshall P, Vogels W. (2007). Dynamo: Amazons highly available key-value

store. [Online; accessed February 2015].

26. Brad Hedlund. Understanding Hadoop Clusters and the Network. www.ibm.com/software/data/infosphere/hadoop/.

[Online; created March 2015].

27. IBM. IBM Hadoop. http://www.ibm.com/cloud-computing/us/en/what-is-cloud-computing.html,

2012. [Online; accessed March 2015].

28. Apache Software Foundation. The hive project http://hadoop.apache.org/hive. [Online;

accessed April 2015].

29. Apache Software Foundation. The pig project.. http://hadoop.apache.org/pig. [Online;

accessed April 2015].

30. Apache Software Foundation. Apache Hadoop.. http://hadoop.apache.org/zookeeper.

[Online; accessed April 2015].

31. Badrul Sarwar, George Karypis, Joseph Konstan, John Riedl. (2001) Item-Based Collab-

orative Filtering Recommendation Algorithm. Grouplens Research Group. [Online; accessed

January 2015].

32. Charu C. Aggarwal, Alexander Hinneburg, Daniel A. Keim. On the Surprising Be-

haviour of Distance Metrics in High Dimensional Space. IBM T.J. Watson Research Center.

[Online; accessed April 2015].

33. Charu C. Aggarwal. Re-designing Distance Functions and Distance-Based Applications

for High Dimensional Data. IBM T.J. Watson Research Center. [Online; accessed April

57



2015].

34. Mohammad Kolahdouzan ad Cyrus Shahabi. Voronoi-Based K Nearest Neighbour

Search for Spatial Network Databases. Proceedings of the 30th VLDB Conference. [On-

line; accessed April 2015].

35. Alexander Hinneburg, Charu C. Aggarwal, Daniel A. Kein. What is the nearest neighbor

in high dimensional spaces?. Proceedings of the 26th VLDB Conference. [Online; accessed

May 2015].

36. Yang Song, Lu Zhang and C.Lee Giles. Automatic Tag Recommendation Algorithms

for Social Recommender Systems. Microsoft Research. [Online; accessed April 2014].

37. Maurice W Benson, Paul O. Frederickson. Fast Parallel Algorithms for the Moore-

Penrose Psuedo Inverse. (1986). Second Conference on Hypercube Multiprocessors. [Online;

accessed April 2014].

38. Joseph w. H. Liu. A Graph Partitioning Algorithm by Node Separators. ACM Trans-

actions on Mathematical Software. [Online; accessed May 2014].

39. Francois Foss, Alain Pirotte, Jean-Michael Renders, Marco Saerens. Random-Walk

Computation of Similarities between Nodes of a Graph with Application to Collaborative

Recommendation. (2007). IEEE Transactions on Knowledge and Data Engineering. [On-

line; accessed June 2014].

58


