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The relatively new subject of stochastic differential equations has increasing impor-

tance in both theory and applications. The subject draws upon two main sources, prob-

ability/stochastic processes and differential equations/dynamical systems. There exists a

significant “culture gap” between the corresponding research communities. The objec-

tive of the dissertation project is to present a concise yet mostly self-contained theory of

stochastic differential equations from the differential equations/dynamical systems point of

view, primarily incorporating semigroup theory and functional analysis techniques to study

the solutions. Prerequisites from probability/stochastic processes are developed as needed.

For continuous-time stochastic processes whose random variables are (Lebesgue) absolutely

continuous, the Fokker-Planck equation is employed to study the evolution of the densities,

with applications to predator-prey models with noisy coefficients.
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Chapter 1

Introduction and Preliminaries

1.1 Stochastic Processes and Their Distributions

Let (Ω,A, P ) be a probability space, (S,B) a measurable space, and X an S-valued

random variable on Ω, that is, a mapping from Ω into S that is measurable with respect

to the σ-algebras A and B. By the distribution of X, denoted by PX, we mean the image

of the probability measure P under the mapping X, that is, the probability measure on B,

defined by PX(B) := P (X ∈ B) := P (X−1(B)) for B ∈ B. (Here, as in the sequel, we

take some liberties in our terminology. To be precise, we should of course refer to X as an

(S,B)-valued random variable on (Ω,A) and to PX as its P -distribution.)

Now let T be a non-empty set and X = (Xt)t∈T a family of S-valued random variables

on Ω; we call X a stochastic process on Ω, with state space S and index set T . Clearly,

X can be thought of as a mapping from Ω into the Cartesian product ST, defined by

X(ω) := Xω := (Xt(ω))t∈T for ω ∈ Ω. The image Xω of a point ω ∈ Ω is called the path of

ω; the set ST , endowed with the product σ-algebra induced by B, is called the path space

of X. With slight abuse of notation, we denote the product σ-algebra of ST by BT . Since

BT is generated by the coordinate projections Πt : ST → S, defined by Πt(x) := xt for

x ∈ ST and t ∈ T , and since Xt = Πt ◦ X for t ∈ T , measurability of X with respect to

the σ-algebras A and BT is equivalent to the measurability of Xt for every t ∈ T . In other

words, X is an ST -valued random variable on Ω. Its distribution PX, a probability measure

on BT, is called the joint distribution of the random variables Xt, t ∈ T .
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It follows from a standard uniqueness theorem of measure theory that the probability

measure PX is uniquely determined by the values

PX
(⋂

t∈F

Π−1
t (Bt)

)
= P

(⋂

t∈F

X−1
t (Bt)

)
= P (Xt ∈ Bt ∀ t ∈ F ),

where F varies over the non-empty finite subsets of T and (Bt)t∈F over the corresponding

finite families of sets in B. In particular, even if T is infinite, the distribution of the family

(Xt)t∈T is uniquely determined by the distributions of the “finite subfamilies” (Xt)t∈F with

∅ 6= F ⊂ T finite, that is, by the probability measures Qt1,...,tn := P (Xt1 ,...,Xtn ) with n ∈ N

and (t1, . . . , tn) ∈ Tn injective (that is, t1, · · · , tn are pairwise distinct); these are called

the finite joint distributions of the random variables Xt, t ∈ T , or the finite-dimensional

distributions of the process X.

Note that for each n ∈ N and (t1, . . . , tn) ∈ Tn injective, Qt1,...,tn is a probability

measure on the product σ-algebra Bn of Sn induced by B. Clearly, if B1, . . . , Bn ∈ B and

π is a permutation of the set {1, . . . , n}, then

Qt1,...,tn

(
Bπ−1(1) × · · · ×Bπ−1(n)

)
= P

(
Xti ∈ Bπ−1(i) ∀ i ∈ {1, . . . , n})

= P
(
Xtπ(j)

∈ Bj ∀ j ∈ {1, . . . , n}) = Qtπ(1),...,tπ(n)

(
B1 × · · · ×Bn

)
.

Also, if n ≥ 2 and Bn = S, then

Qt1,...,tn

(
B1 × · · · ×Bn

)
= P

(
Xti ∈ Bi ∀ i ∈ {1, . . . , n})

= P
(
Xti ∈ Bi ∀ i ∈ {1, . . . , n− 1}) = Qt1,...,tn−1

(
B1 × · · · ×Bn−1

)
.

Under certain restrictions on the state space S, a theorem due to Kolmogorov ensures,

roughly speaking, that any family of probability measures Qt1,...,tn , consistent with the
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above conditions, is in fact the family of finite-dimensional distributions of a stochastic

process on some probability space (Ω,A, P ); recall that (S,B) is a Polish space if B is the

Borel σ-algebra generated by a complete and separable metric topology on S. Then we

have

Theorem 1.1 (Kolmogorov). Suppose (S,B) is a Polish space (that is, B is the Borel σ-

algebra generated by a complete and separable metric topology on S), T is a non-empty

set, and for each n ∈ N and (t1, . . . , tn) ∈ Tn injective, Qt1,...,tn is a probability measure

on Bn (the product σ-algebra of Sn, which in this case coincides with the Borel σ-algebra

generated by the product topology of Sn). Further suppose that the following two conditions

are satisfied for all n ∈ N, (t1, . . . , tn) ∈ Tn injective, and B1, . . . , Bn ∈ B:

(a) If π is a permutation of {1, . . . , n}, then

Qt1,...,tn

(
Bπ−1(1) × · · · ×Bπ−1(n)

)
= Qtπ(1),...,tπ(n)

(
B1 × · · · ×Bn

)
.

(b) If n ≥ 2 and Bn = S, then

Qt1,...,tn

(
B1 × · · · ×Bn

)
= Qt1,...,tn−1

(
B1 × · · · ×Bn−1

)
.

Then there exists a probability space (Ω,A, P ), along with a family X = (Xt)t∈T of S-valued

random variables on Ω, such that Qt1,...,tn = P (Xt1 ,...,Xtn ) for all n ∈ N and (t1, . . . , tn) ∈ Tn

injective.

Note that while neither the probability space (Ω,A, P ) nor the process X are uniquely

determined, the distribution PX is. We refer to [3, Section 35] for a detailed exposition

of these issues and a proof of Kolmogorov’s theorem (see in particular Theorem 35.3 and
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Corollary 35.4 ibidem). For most purposes, the distribution of a stochastic process is much

more important than the process itself. This implies, of course, that both have the same

state space and index set, but the underlying probability spaces may be different.

Definition 1.1. Two processes are called equivalent if both have the same distribution.

Definition 1.2. Two processes X = (Xt)t∈T and Y = (Yt)t∈T over the same probability

space (Ω,A, P ), with the same state space and index set, are called modifications of each

other if P (
⋃

t∈T (Xt 6= Yt)) = 0.

It is easily verified that any two processes that are modifications of each other have the

same finite-dimensional distributions and are thus equivalent.

Now suppose that X is a stochastic process over (Ω,A, P ), with state space (S,B),

index set T , and distribution Q = PX. Then X is equivalent to the process Π := (Πt)t∈T on

(ST ,BT , Q). To see this, note that the coordinate projections Πt, for t ∈ T , are S-valued

random variables on ST and that Π, as a mapping from ST into ST , is the identity map:

Π(ω) := Πω := (Πt(ω))t∈T = (ωt)t∈T = ω for all ω ∈ ST ; hence, QΠ = Q.

Definition 1.3. The process Π as above is called the canonical process with distribution Q.

We can think of the canonical process as the standard representative of the equivalence

class of stochastic processes with distribution Q. Using this terminology, the assertion of

(1.1) may be stated as follows: There exists a unique probability measure Q on BT such that

the given probability measures Qt1,...,tn coincide with the finite-dimensional distributions of

the canonical process Π with distribution Q.

In the following we assume that the state space (S,B) is Polish (as in (1.1)) and that

X is a so-called continuous-time process, that is, the index set T is R+. For each ω ∈ Ω,

4



the path Xω is then a curve in S, parametrized with t ∈ R+. If the curve Xω is continuous

for every (or P -almost every) ω ∈ Ω, we say that X has continuous (or almost surely

continuous) paths. If X has almost surely continuous paths, an obvious and inconsequential

modification of the underlying probability space will turn X into a process with continuous

paths. Also, any process with almost surely continuous paths admits a modification with

continuous paths.

Saying that X has continuous paths is equivalent to saying that X maps Ω into the

subspace C := C(R+, S) of SR+ , that is, the subspace of continuous mappings from R+

into S. This space is, in general, not measurable as a subset of SR+ ; in fact, C /∈ BR+

unless S is a singleton (see [3, Corollary 38.5]). However, C is a Polish space under

the topology of uniform convergence on compact subsets of R+, and the trace σ-algebra

C ∩ BR+ := {C ∩B |B ∈ BR+} coincides with the Borel σ-algebra generated by this topol-

ogy. Also, C inherits a topology from SR+ (the product topology, which coincides with the

topology of pointwise convergence on R+), and the trace σ-algebra C ∩BR+ coincides with

the Borel σ-algebra generated by that topology as well (see [3, Theorem 38.6]).

Now suppose that X is a continuous-time process with Polish state space (S,B) and

distribution Q and that X is equivalent to a process with continuous paths. Then X is in

fact equivalent to the process Π̃ := (Πt|C)t∈R+ on (C,C ∩ BR+ , Q̃), where C := C(R+, S)

and Q̃ is defined by Q̃(C∩B) := Q(B) for B ∈ BR+ . That Q̃ is well defined as a probability

measure on the trace σ-algebra C ∩ BR+ follows from the (non-trivial) fact that Q(B) = 1

for all B ∈ BR+ with B ⊃ C (in other words, C has Q-outer measure 1). For the proof, we

refer to [3, Sections 38–39], in particular Theorems 38.2–3 and Lemma 39.2 ibidem. To see

that X and Π̃ are equivalent, observe that Π̃, as a mapping from C into SR+ , is simply the
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restriction of the identity map of SR+ to C. Thus, Q̃
eΠ(B) = Q̃(Π̃−1(B)) = Q̃(C∩B) = Q(B)

for all B ∈ BR+ ; that is, Q̃
eΠ = Q.

Definition 1.4. The process Π̃ as above is called the C-canonical process with distribution

Q.

Whenever an equivalence class of continuous-time processes with Polish state space

contains a process with continuous paths, we think of the associated C-canonical process

Π̃ (rather than the canonical process Π) as the standard representative of the equivalence

class.

In the next two sections, we discuss semigroups, which will be used in the short term

to prescribe a family of measures that satisfies Kolmogorov’s theorem and hence allows us

to construct Brownian motion.

6



1.2 Semigroups of Linear Operators

Let X be a Banach space. A family T := (Tt) = (Tt)t∈R+ of bounded linear operators

Tt : X → X is called a semigroup of linear operators (or, more simply, a semigroup) if

T0 = idX and Tt+s = TtSs for all t, s ∈ R+. If limt→0+ ‖ x−Ttx ‖= 0 for all x ∈ X, then we

say T is strongly continuous. The infinitesimal generator (or, more simply, the generator)

of a strongly continuous semigroup T is the operator A : D(A) ⊂ X → X defined by

Ax := lim
t→0+

Ttx− x

t

for all x ∈ D(A), the set of x ∈ X such that the limit exists. We say a semigroup T is

a γ-contraction semigroup if, for some nonnegative constant γ, ‖ Tt ‖≤ eγt for all t ≥ 0,

where ‖ Tt ‖ is the operator norm of Tt. We say T is a contraction semigroup if γ = 0.

Call Cb(Rn,R) the space of bounded, continuous functions mapping Rn into R, and

call C0(Rn,R), the subset of Cb(Rn,R) such that lim|x|→∞ f(x) = 0. Equip C0(Rn,R) with

the sup norm to make it a Banach space.

Definition 1.5. A contraction semigroup of linear operators T on C0(Rn,R) is called a

Feller semigroup if

1. for every t ≥ 0, Tt maps C0(Rn,R) into itself, and

2. limt→0 Ttf(x) = f(x) for all f ∈ C0(Rn,R) and x ∈ Rn.

It can be shown ([9, Theorem 19.6]) that Feller semigroups are strongly continuous.

Strong continuity is quite valuable due to the following theorem (see [17, Theorem

2.3.2]):

7



Theorem 1.2. Any strongly continuous semigroup (Gt) with infinitesimal generator A has

the property that, for any x ∈ D(A), Gtx ∈ D(A) for all t ∈ R+, t 7→ Gtx is C1, and

d

dt
(Gtx) = AGtx = GtAx.

In another way, u : t 7→ Ttx solves the initial value problem u̇ = Au, u(0) = x. So,

formally, u(t) should be of the form etA, that is, Ttx = etAx or Tt = etA. We would like to

have a way to guarantee that a given operator A, generally unbounded, indeed will be the

generator of a strongly continuous semigroup.

Let X be a normed linear space, A : D(A) ⊂ X → X a linear operator. Consider the

equation

Ax = y.

To guarantee the existence and uniqueness of a solution x ∈ D(A), for every y ∈ X, and

the continuous dependence of x on y, the operator A must be one-to-one and onto, with

a bounded inverse A−1. Assuming X to be complete and A to be closed, the latter is

automatic, by the open-mapping theorem. More generally, consider the equation

(A− λI)x = y,

where I := idX and λ ∈ C. Existence, uniqueness, and continuous dependence are guaran-

teed if λ belongs to the resolvent set of A, as defined below.

8



Definition 1.6. For a Banach space X and a closed linear operator A : D(A) ⊂ X → X,

define ρ(A), the resolvent set of A, by ρ(A) := {λ ∈ C | A − λI is one-to-one and onto}.

Then define R(λ;A), the resolvent of A, by R(λ;A) := (A− λI)−1.

Theorem 1.3 (Hille-Yosida). For a Banach space X, a closed, densely defined linear oper-

ator A : D(A) ⊂ X → X is the infinitesimal generator of a strongly continuous semigroup

of contractions if and only if

1. (0,∞) ⊂ ρ(A), and

2. for each λ > 0, ‖ R(λ;A) ‖≤ 1
λ .

We refer to [17, pp. 51-56] for the proof.

In the next section, we present a discussion of semigroups of kernels with the construc-

tion of Brownian motion in mind.

9



1.3 Kernels and Semigroups of Kernels

Let (Ω1,A1) and (Ω2,A2) be given measurable spaces.

Definition 1.7. A function k : Ω1 ×A2 → R+ with the properties

1. k(·, A2) is A1-measurable for all A2 ∈ A2,

2. k(ω, ·) is a (probability) measure on A2 for all ω ∈ Ω1,

is called a (probability) kernel from (Ω1,A1) to (Ω2,A2).

We also call a probability kernel a Markov kernel or say that the kernel is Markovian.

Further, if (Ω1,A1) equals (Ω2,A2), we call k a kernel on (Ω1,A1), or simply a kernel on

Ω1.

Let us establish some notation here; call B the Borel σ-algebra on R, call B+ the Borel

σ-algebra on R+, and call Bn the Borel σ-algebra on Rn for any n ∈ N. Call λn the Lebesgue

measure on (Rn,Bn); we may simply call λ := λn when n is understood. Given x ∈ Rn, call

εx the point mass at x, that is, the measure that satisfies εx(A) = 1 if x ∈ A and εx(A) = 0

else, for A ∈ Bn.

Let (Ω,A, µ) be a σ-finite measure space and let M(Ω,A) denote the space of all R-

valued functions on Ω that are measurable with respect to A and B. For p ∈ [1,∞), let

Lp(Ω,A, µ) denote the space of functions f belonging toM(Ω,A) such that |f |p is integrable

(with respect to µ); call L := L1. Let L∞(Ω,A, µ) denote the space of functions f belonging

to M(Ω,A) such that the essential supremum of |f | is finite. When the associated σ-algebra

and measure are understood, we may abbreviate Lp(Ω) and L∞(Ω) for Lp(Ω,A, µ) and

L∞(Ω,A, µ), respectively; we frequently understand R+×Ω to have σ-algebra B+×A and

measure λ+ × µ (where λ+ is Lebesgue measure on (R+,B+).

10



Given f and g in M(Ω,A), we say that f is equivalent to g (with respect to µ) if

µ(f 6= g) = 0. Note that if f is integrable and equivalent to g, then g is also integrable.

Denote the equivalence classes of M(Ω,A) and Lp(Ω,A, µ) by M(Ω,A, µ) and Lp(Ω,A, µ),

respectively; we frequently “identify” an equivalence class with an arbitrary member. Also,

if f ∈M(Ω,A) and f is nonnegative, we say f ∈M+(Ω,A); we give the analogous meaning

to Lp
+,M+, and Lp

+.

Now, a kernel k from (Ω1,A1) to (Ω2,A2) determines a mapping K of M+(Ω2,A2)

into M+(Ω1,A1), defined by

(Kf2)(ω1) :=
∫

f2(ω2)k(ω1, dω2),

for ω1 ∈ Ω1 and f2 ∈ M+(Ω2,A2). Let us refer to K as the integral operator associated

with k. Note that for any A2 ∈ A2, K1A2 = k(·, A2). In particular, K1Ω2 = 1Ω1 if and only

if k is Markovian.

Kernels may be composed in the following way: for i = 1, 2, let ki be a kernel from

(Ωi,Ai) to (Ωi+1,Ai+1). We may define the composition k1k2 in terms of the composition

of the associated integral operators K1 and K2:

(k1k2)(·, A3) := K1K21A3 .

Then k1k2 is a kernel from (Ω1,A1) to (Ω3,A3), and we have

(k1k2)(ω1, A3) =
∫

k1(ω1, dω2)k2(ω2, A3),

11



for all ω1 ∈ Ω1 and A3 ∈ A3. Observe that if k1, k2 are Markovian then so is k1k2. We need

the composition of kernels to define semigroups of kernels.

Definition 1.8. If (Pt) is a family of kernels on a measurable space (S,B) and if Ps+t = PsPt

for all s, t ≥ 0, then we say (Pt) := (Pt)t∈R+ is a semigroup of kernels on S.

We remark that a semigroup of kernels satisfies Ps+t(x,B) =
∫

Ps(x, dy)Pt(y, B) for

x ∈ S,B ∈ B, often called the Chapman-Kolmogorov property.

Definition 1.9. A semigroup of kernels (Pt) is called normal if P0(x, ·) = εx for all x ∈ S.

We call (Pt) Markovian if each kernel Pt is Markovian.

Now, let (Pt) be a semigroup of kernels on (Rn,Bn).

Definition 1.10. (Pt) is called translation-invariant if Pt(x,B) = Pt(x + z, B + z) for all

x, z ∈ Rn, t ≥ 0, and B ∈ Bn.

It can be shown that translation-invariant semigroups of kernels must be normal (see

[3, 29.7 and p.311]). The following proposition demonstrates the importance of these semi-

groups.

Proposition 1.1. Given a translation-invariant (Pt) as above,

1. define T := (Tt)t≥0 by

Ttf =
∫

f(y)Pt(·, dy), (1.1)

for any t ∈ R+ and f ∈ L∞(Rn). Then T is a contraction semigroup of linear

operators on L∞(Rn);

12



2. define (µt) := (µt)t≥0 by µt(B) := Pt(0, B) for all B ∈ Bn. Then (µt) is a convolution

semigroup of measures on Bn, that is, for all s, t ≥ 0, for all B ∈ Bn, (µt) satisfies

µs+t(B) =
∫

µs(dy)µt(B − y) = (µs ∗ µt)(B).

Proof. The second claim is simple, so we only address the first claim (which in fact does

not require translation invariance of (Pt)). It remains to note that T is indeed a semigroup;

(Pt) satisfies the Chapman-Kolmogorov property and T0 is the identity mapping since (Pt)

is normal:

T0f(x) =
∫

f(y)P0(x, dy) =
∫

f(y)δx(dy) = f(x).

Note that ‖Ttf‖ ≤ ‖f‖ since (Pt) is Markovian, so that T is a contraction semigroup.

Conversely, given a convolution semigroup of measures (µt) on Bn, if we define

Pt(x,B) := µt(B − x) for all t ≥ 0, x ∈ Rn, B ∈ Bn, then (Pt) is a translation-invariant

semigroup of kernels on Rn ([3, pp. 310-311]). Notice that (Pt) is a translation-invariant

Markov semigroup iff (µt) is a convolution semigroup of probability measures.

At this point, an intuitive interpretation of a translation-invariant Markov semigroup

is helpful. Think of Pt(x,B) as the probability that a randomly moving particle starting

at x at time 0 is in the set B at time t. We see that the semigroup property means

there is no memory, in the sense that we need not understand the history of the particle’s

movement, rather, we only need to know where it is at time t to yield the probability that

it is in some set at time t + s. Thinking that the particle is “in dy” at time t, we can see

from the Chapman-Kolmogorov property that Pt+s(x,B) =
∫

Pt(x, dy)Ps(y, B), or that the

probability a particle is in a set B at time t + s can be obtained from Pt(x, dy) (which we

13



think of as the “present”) and Ps(y, B) (which is the probability that the particle starting at

y ends up in B at time s). This semigroup reasoning is similar to concepts in deterministic

dynamical systems, which will be discussed later.

Armed with this intuitive understanding of translation-invariant Markovian semigroups

of kernels, we realize the next step: that translation-invariant Markovian semigroups of ker-

nels lead to measures which satisfy the hypotheses of Kolmogorov’s theorem, and hence, lead

to the construction of stochastic processes (in particular, Brownian motion) which will model

random particle motion in a natural way. The idea is, if we take times t1 < t2 < · · · < tk

and sets B1, B2, · · · , Bk in Bn, we may construct the iterated integral

∫

B1

∫

B2

· · ·
∫

Bk

Ptk−tk−1
(xk−1, dxk)Ptk−1−tk−2

(xk−2, dxk−1) · · ·Pt1(x0, dx1). (1.2)

For a particle starting at x0, this integral models random particle motion without memory,

in the sense that it gives the probability that at times t1, t2, · · · , tk, the particle is found

successively in B1, B2, · · · , Bk. We could even, by tacking on another integral in (1.2),

impose that the particle’s initial location is random; let µ be a probability measure on

Bn that describes the distribution of the initial location of the particle. Then we would

integrate over Rn with respect to µ over the variable x0:

∫

Rn

∫

B1

· · ·
∫

Bk

Ptk−tk−1
(xk−1, dxk) · · ·Pt1(x0, dx1)µ(dx0). (1.3)
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Then it can be shown [3, 36.4] that given (Pt) and µ as above, for x := (x1, x2, · · · , xk) and

for any B ∈ ⊗k
i=1 Bi (where Bi = Bn for all 1 ≤ i ≤ k), the measures Pt1,t2,··· ,tk , defined by

Pt1,t2,··· ,tk(B) :=
∫

Rn

∫

B1

· · ·
∫

Bk

1B(x)Ptk−tk−1
(xk−1, dxk) · · ·Pt1(x0, dx1)µ(dx0), (1.4)

for B ∈ Bn, satisfy the hypotheses of Kolmogorov’s theorem. The family of measures in

(1.4) are thus the finite-dimensional distributions of some stochastic process with state space

Rn.

The canonical process X associated with this stochastic process has a distribution

which depends only on (Pt) and µ, so let us denote this distribution by Pµ. This means

Pµ(Xt1 ∈ B1, Xt2 ∈ B2, · · · , Xtk ∈ Bk) =

∫

Rn

∫

B1

∫

B2

· · ·
∫

Bk

Ptk−tk−1
(xk−1, dxk) · · ·Pt0(x0, dx1)µ(dx0)

holds for all B1, B2, · · · , Bk in Bn. Also, the Pµ-distribution of X0 is µ, and so we may

refer to µ as the initial distribution of the process.

Processes constructed as in the above enjoy some useful and intuitive properties.

Definition 1.11. A process X with state space (Rn,Bn) has stationary increments if there

is a family of probability measures (µt) on Bn such that µt−s = PXt−Xs; this means that

the distribution of Xt −Xs depends only on t− s.

Definition 1.12. A process X with state space (Rn,Bn) has independent increments if

Xt0 , Xt1 −Xt0 , · · · , Xtk −Xtk−1
are all independent for any t0, t1, . . . , tk ∈ R+ with

t0 < t1 < . . . < tk, for any k ≥ 1.
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It can be shown ([3, 37.2]) that the canonical process derived from a translation-

invariant Markov semigroup of kernels (Pt) and initial distribution µ has stationary and

independent increments.

In the next section, we will explain conditional probability, martingales, and Markov

processes, and then we will be able to prescribe a particular (Pt) so that we can construct

Brownian motion.
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1.4 Conditional Expectation, Martingales, and Markov Processes

Let (Ω,A, µ) be a σ-finite measure space, f ∈ L(Ω,A, µ). Then for any A ∈ A, we

define

µf (A) :=
∫

A
fdµ.

We say that µf is the signed measure that has density f with respect to µ; this implies the

relation

∫
gdµf =

∫
gfdµ,

for all g ∈ L(Ω,A, µf ). Further, note that g ∈ L(Ω,A, µf ) iff gf ∈ L(Ω,A, µ). Finally, note

that µf is a finite signed measure on (Ω,A) that is absolutely continuous with respect to

µ, that is, µf (A) = 0 whenever A ∈ A and µ(A) = 0.

Conversely, given any finite signed measure ν on (Ω,A) that is absolutely continuous

with respect to µ, there exists by the Radon-Nikodym theorem a function f ∈ L(Ω,A, µ),

unique up to modification on a µ-null set, such that ν = µf . The equivalence class of all

f such that ν = µf is called the Radon-Nikodym derivative of ν with respect to µ and

is denoted dν
dµ . Note that if f is any representative of dν

dµ , we have
∫

gdν =
∫

gfdµ for

all g ∈ L(Ω,A, ν), or (formally) dν = fdµ; we frequently “identify” dν
dµ with an arbitrary

representative. This justifies the “differential” notation dν
dµ for Radon-Nikodym derivatives.

We also have a number of rules for Radon-Nikodym derivatives that are reminiscent of the

rules of differential calculus, for example, the chain rule: if µ1 is a finite signed measure

on (Ω,A), if µ2 and µ3 are finite measures on (Ω,A), if µ1 is absolutely continuous with

respect to µ2, and if µ2 is absolutely continuous with respect to µ3, then µ1 is absolutely
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continuous with respect to µ3, and

dµ1

dµ3
=

dµ1

dµ2

dµ2

dµ3
.

In particular, dµ2

dµ3

dµ3

dµ2
= 1 when µ2 and µ3 are both absolutely continuous with respect to

each other.

Now, let (Ω,A, P ) be a probability space, let ξ ∈ L(Ω,A, P ), and let F ⊂ A be a

σ-algebra. Then Pξ, the signed measure that has density ξ with respect to P , restricts to

a measure on F , namely, Pξ|F , which is absolutely continuous with respect to P |F , the

restriction of P to F . This leads to the definition of conditional expectation.

Definition 1.13. The conditional expectation of ξ given F , denoted EFξ or E(ξ|F), is the

Radon-Nikodym derivative of Pξ|F with respect to P |F .

Note that E(ξ|F) is the unique member of L(Ω,F , P |F ) such that

∫

F
E(ξ|F)dP =

∫

F
ξdP,

for all F ∈ F .

Definition 1.14. The expected value of ξ, denoted by Eξ, is defined as

Eξ :=
∫

Ω
ξdP.

The conditional expectation of ξ given an event A ∈ A with P (A) > 0, denoted by E(ξ|A),

is defined as

E(ξ|A) :=
1

P (A)

∫

A
ξdP.
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It is helpful to consider examples. We see if F is the σ-algebra induced by ξ, or if ξ has

an F-measurable version, then EFξ = ξ P -a.s.; in this case we have the “pull out” property

EFξη = ξEFη P -a.s., for any η ∈ L(Ω). If instead F = {∅,Ω}, or if ξ is independent of F ,

then EFξ = Eξ P -a.s. Along these lines, for A ∈ A such that 0 < P (A) < 1, if we take

F = {∅, A, Ac,Ω}, then EFξ = E(ξ|A)1A + E(ξ|Ac)1Ac P -a.s. Also, if A ∈ F , P (A) > 0,

and A has no proper nonempty subset belonging to F , then EFξ|A = E(ξ|A) P-a.s.

We use conditional expectation to define conditional probability; observe that

E1A =
∫
Ω 1AdP = P (A).

Definition 1.15. The conditional probability given F , denoted PF , is defined by

PF (A) := EF (1A),

for all A ∈ A.

Note that PF is not a probability measure, rather, it maps members of A into R-valued

random variables on Ω, with the property that
∫
F PF (A)dP = P (A ∩ F ), for all F ∈ F .

We will use conditional expectation to define martingales, but first we need some

definitions.

Definition 1.16. Given a measurable space (Ω,A), a family of σ-algebras F := {Ft}t≥0

such that Fs ⊂ Ft for s ≤ t with Ft ⊂ A for all t ≥ 0 is called a filtration of A.

For simplicity we usually just call F a filtration. Now let X be a continuous-time

stochastic process on (Ω,A) with state space (S,B).

Definition 1.17. We call σ(Xs|s ≤ t) the σ-algebra generated by (Xs)s≤t, that is, the

smallest σ-algebra that contains X−1
s (B) for every B ∈ Bn and s ≤ t.
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We call F(X) := (Ft(X))t∈R+ the filtration generated (or induced) by X, where

Ft(X) = σ(Xs|s ≤ t) for each t.

We say X is adapted to a filtration F if Xt is Ft-measurable for all t.

Observe that F(X) is the smallest filtration for which X is adapted. If F is understood

we may simply say that X is adapted.

We see that filtrations add more and more sets (or at least, no less sets) as time

increases; by increasing the size of a σ-algebra, the potential for the process to take new

values is increased. For example, a measurable R-valued function on Ω that has only one

value only generates the trivial σ-algebra (φ,Ω). A measurable function taking two values,

say, f(ω) = 1 when ω ∈ A and f(ω) = 0 when ω ∈ Ac, generates the σ-algebra {φ,A, Ac,Ω}.

Thus the increasing in the filtration describes the “increase of randomness,” and the size of

Ft is indicative of the possible deviation of Xt from its expected value.

Now let X have state space (R,B).

Definition 1.18. We say X is an integrable process, or simply, X is integrable, if Xt is

an integrable random variable for each t.

Given a filtration F , we say X is a martingale with respect to F if X is an integrable,

adapted process that satisfies, P -a.s.,

Xs = E(Xt|Fs),

for every t, for s ≤ t.
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For an example of a martingale, fix ξ ∈ L(Ω,A, P ) and a filtration F . Define a

continuous-time process M by

Mt = E(ξ|Ft),

for every t. Then M is integrable and adapted to F . For s ≤ t, we have Fs ⊂ Ft, so

EFsEFtξ = EFsξ P -a.s. Thus we have the P -a.s. relation

Ms = E(ξ|Fs) = E(E(ξ|Ft)|Fs) = E(Mt|Fs).

Thus, M is a martingale. Intuitively, martingales are “fair games” in the sense that the

expected value of “winnings” at a later time are exactly the value of “winnings” at present.

Next, let F1,F2, and G be sub σ-algebras of A.

Definition 1.19. The σ-algebras F1 and F2 are called conditionally independent given G,

denoted F1 ⊥G F2, if a.s.,

PG(F1 ∩ F2) = PG(F1)PG(F2)

for all F1 ∈ F1, F2 ∈ F2.

We now define Markov processes.

Definition 1.20. For X a continuous-time process on (Ω,A) and a filtration F of A, we

call X a Markov process if it is adapted to F and if for all s, t ∈ R+ with s ≤ t, Fs and

σ(Xt) are conditionally independent given σ(Xs).

Intuitively, for Markov processes one may think that the past is independent of the

future given the present, in the sense that knowing the state Xs makes the future predictions

Xt independent of the “history” Fs.
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Markov processes are precisely those processes which are generated by translation-

invariant Markovian semigroups of kernels (with respect to the induced filtration; the non-

trivial proof can be found in [3, Theorem 42.3]). Since the semigroup property is essential

both to dynamical systems and the construction of a Markov process, one can interpret

a Markov process as a randomized dynamical system. As we will see, Markov processes

are of value in understanding the dynamics generated by solutions of stochastic differential

equations (much like the dynamics of deterministic differential equations).

In the next section, we will motivate the need for Brownian motion and prescribe a

special translation-invariant Markovian semigroup of kernels in order to construct it. We

will further prove some useful properties of Brownian motion.
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1.5 Brownian Motion

We will now proceed to prescribe the specific Markov semigroup of kernels (Pt) to

construct Brownian motion. We will first motivate our selection of (Pt) by returning to our

intuition of how particles undergo random motion. Consider the “drunken sailor” problem,

where a drunken sailor stands on the origin 0 and starts taking unit length steps in random

directions. After each step, he randomly steps in a different direction. The question is,

“Where does he end up after n steps?”

The obvious answer is that we do not know; his position is described by a random

variable. He is expected to be where he started, as he has the same chance of going left as

right, or forward as backward. But the variance depends directly on the number of steps; he

cannot stray far in a short number of steps, for example, so one could expect a low variance

in this case. So what is the distribution of this random variable?

The key is the Central Limit Theorem; one fairly simple version is in [9, Proposition

5.9], which says that for independent, identically distributed Rd-valued random variables

ξ, ξ1, ξ2, . . . with Eξ = 0 and Eξ2 = 1, then as n →∞, n−
1
2
∑

k≤n ξk converges in distribu-

tion to a standard normally distributed random variable ζ, that is, a normally distributed

random variable with mean 0 and variance 1. We may say for brevity that ζ is N(0, 1).

So, in the drunken sailor problem, the random variable describing where a sailor will end

up after a large enough number of steps is normal with mean 0 and variance n (see e.g. [3,

p.221-p.226]).

Now, one can think of n as time moving continuously rather than as a discrete number

of steps; call it t now. So, imagine a continuous-time stochastic process X having initial

distribution εx. This represents the initial location of a particle at x known with probability
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1, where the densities (assuming they exist) of Xt as time increases “flatten” into a Gaussian

curve, successively getting “more flat” the more time increases.

Imagine now that the sailor is not drunk, but in a heavy crowd, so that he is being

pushed around in a random direction. This is essentially the same problem, but it makes

more sense in a physical interpretation; particles are interacting with other particles, being

bumped into other particles which in turn bump into other particles ad infinitum. This

model of particle movement is called Brownian motion, and it is a stochastic process where,

at time t, each random variable Bt has distribution N(0, t).

This type of random interference can be thought to perturb a trajectory as well, not

just a stationary object. For example, if a ball is thrown, one can model its path. But

now suppose there is lots of wind blowing in random directions; where does the ball go?

To describe this, we incorporate a “noise term” in the differential equation. Quite sensibly,

this term should somehow be based on Brownian motion, which changes the otherwise

deterministic trajectory of the ball into a continuous-time stochastic process.

Recall that N(m, t) as a probability measure over (R,B) has (Lebesgue) density

gm,t(x) := (
1

2πt
)

1
2 e

−(x−m)2

2t ,

and observe that N(0, s)∗N(0, t) = N(0, s+t). Define the Brownian convolution semigroup

of measures (µt) on Rd by setting µt equal to the product measure (d-many times) of N(0, t)

in R for each t, that is, µt :=
⊗d

i=1 N(0, t). Then we can define the translation-invariant

Markov semigroup of kernels (Pt) by

Pt(x,A) :=
∫

A
(

1
2πt

)
1
2 e

−(y−x)2

2t dy,
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for any t ∈ R+, x ∈ Rd, A ∈ B. After defining our initial condition µ := µ0 := εx, we may

construct a process B̃ as in Section 1.3. If we write B̃ = (B̃1, B̃2, · · · , B̃d), then B̃i and B̃j

are independent for all i 6= j (see [9, Lemma 3.10]).

We now prove B̃ has a continuous version using the following result from [3, Theorem

39.3].

Theorem 1.4 (Continuous Paths). For a continuous-time stochastic process X on (Ω,A)

with state space (Rd,Bd), if for some positive constants a, b, and C, the inequality

E(|Xt −Xs|a) ≤ C|t− s|b+1 (1.5)

holds for all s, t ∈ R+, then X has a continuous version.

We use the following lemma to verify (1.5) for B̃.

Lemma 1.1. For B̃ as above,

E(|B̃t − B̃s|4) = d(d + 2)(t− s)2, (1.6)

Proof. This claim follows from the property that B̃t−s is equal in distribution to (t− s)
1
2 B̃1

(called the scaling property) and the following recursion for N(0, 1)-distributed R-valued

random variables ξ on (Ω,A) (which is easy to prove using integration by parts; see [3,

4.20]):

∫

R
x2ng0,1dx = E(ξ2n) = (2n− 1)E(ξ2n−2), (1.7)
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for any n ∈ R. Now, to prove (1.6), we see that, for (B̃t − B̃s)i the i-th component of

B̃t − B̃s, and for 1 ≤ i ≤ d,

E(|B̃t − B̃s|)4 = E([(B̃t − B̃s)21 + (B̃t − B̃s)22 + · · ·+ (B̃t − B̃)2d]
2),

and by stationarity and scaling, the above equals

(t− s)2E([Z2
1 + Z2

2 + · · ·+ Z2
d ]2),

where Z := (Z1, Z2, · · · , Zd) is an Rd-valued N(0, 1)-distributed random variable. By alge-

bra and the independence, the above equals

(t− s)2[
d∑

i=1

E(Z4
i ) +

∏

i6=j

2E(Z2
i )E(Z2

j )]. (1.8)

Now, E(Zi)2 = 1 for all 1 ≤ i ≤ n, and by the recursion (1.7), E(Zi)4 = 3E(Zi)2, so (1.8)

becomes (3d + d(d− 1))(t− s)2, which is d(d + 2)(t− s)2, so (1.6) holds.

So, it is a simple corollary to select a = 4, b = 1, C = d(d + 2) and thus satisfy (1.5), so

we indeed have a continuous modification B of B̃.

Definition 1.21. B as above is defined to be a Brownian motion.

B is unique (up to equivalence to another C-canonical process); in another way, we

may interpret Brownian motion to be a probability measure PB0
(called Wiener measure)

on the path space (C(R+,Rn),B(C(R+,Rn)).

By construction, Brownian motion is a Markov process; it is easy to see that one-

dimensional Brownian motion is also a martingale (with respect to the induced filtration)
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since, a.s.,

E(Bt|Fs) = E(Bt + Bs −Bs|Fs) = E(Bs|Fs) + E(Bt −Bs|Fs)

= Bs + E(Bt −Bs) = Bs,

since B has independent increments, E(Bt − Bs) = E(Bt) − E(Bs) = 0, and EF (X) = X

a.s. when X is an F-measurable random variable. This means B has stationary increments

as well, as we argued in the section on kernels.

Since µ0 = εx, we sometimes write Bx instead of B to emphasize the starting point,

and hence we sometimes refer to Bx as a Brownian motion starting at x; if otherwise not

stated, we assume the Brownian motion starts at zero. Now we observe that the variance

of Bx
t −Bx

s := Bs −Bt is t− s. This is because

var(Bt −Bs) = var(Bt−s − x) = E[(Bt−s − x)2]− E(Bt−s − x)2

= E[B2
t−s − xBt−s + x2]− 0 = E[B2

t−s]− x2 + x2 = t− s,

since Bt has variance t for any t.

In the next chapter, we will see how to integrate with respect to a Brownian motion;

this will prove essential to the definition of a stochastic differential equation.
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Chapter 2

Ito Integrals and Stochastic Differential Equations

2.1 The Ito Integral

Let (Ω,A, P ) be a probability space and X a continuous-time, real-valued stochastic

process on Ω. Assuming that the paths of X are differentiable, we can define the time-

derivative Ẋ of X by

Ẋ(t, ω) :=
d

dt
Xω(t),

for t ∈ R+ and ω ∈ Ω. It is easy to see that the mappings Ẋt = Ẋ(t, ·) are measurable for all

t ∈ R+, so that Ẋ is a stochastic process. Unfortunately, differentiability of the paths is a

very restrictive assumption. For example, the paths of a one-dimensional Brownian motion

B on Ω are continuous but nowhere differentiable [10, Theorem 2.9.18]. Thus, the time-

derivative Ḃ of B, frequently referred to as “white noise,” does not exist in the näıve sense.

Nevertheless, “white noise” plays an important role in the theory of stochastic differential

equations.

By way of motivation, consider a simple scalar ODE,

ẋ = r(x)x

for a function x : R+ → R, where r : R → R is a given, sufficiently smooth function. We

can interpret x(t), for t ∈ R+, as the density of a population at time t, in which case r(x)

represents the per-capita growth rate of the population as a function of its density. The

growth rate of any real population is subject to random fluctuations; to model these, we
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would like to add “white noise” to the function r. On a purely formal level, this idea leads

to a “stochastic differential equation” of the form

Ẋ =
(
r(X) + W

)
X, (2.1)

where W = Ḃ is the (formal) time-derivative of a Brownian motion B. The “solutions”

of this “stochastic differential equation” should, of course, be continuous-time stochastic

processes X rather than functions x : R+ → R. Since already the “antiderivatives” of W

(one-dimensional Brownian motions) have nowhere differentiable paths, we cannot hope to

find stochastic processes X that satisfy (2.1) in the näıve sense, that is,

d

dt
Xω(t) =

(
r(Xω(t)) + Wω(t)

)
Xω(t) (2.2)

for all t ∈ R+ and ω ∈ Ω, where (Ω,A, P ) is the underlying probability space; instead, we

have to develop a notion of “weak” or “generalized” solutions of (2.1). The first step, still

on a purely formal level, is to rewrite (2.2) as an “integral equation,”

Xω(t) = Xω(0) +
∫ t

0

(
r(Xω(s)) + Wω(s)

)
Xω(s) ds, (2.3)

for t ∈ R+ and ω ∈ Ω. The most problematic term in (2.3) is, of course, the one involving

W (the formal time-derivative of B). This raises the question of how to make sense of

integrals of the form
∫ t
0 Xω(s) Wω(s)ds, where t ∈ R+, W = Ḃ, for some one-dimensional

Brownian motion B on Ω, and X is a continuous-time, real-valued process on Ω. Note that,

29



formally,
∫ t

0
Xω(s) Wω(s)ds =

∫ t

0
Xω(s)Ḃω(s) ds =

∫ t

0
Xω(s) dBω(s)

for all t ∈ R+ and ω ∈ Ω. The integral on the right appears to be a Riemann-Stieltjes

integral involving the real-valued functions Xω and Bω, but unfortunately, the paths of B

are not of bounded variation on compact subintervals of R+ [9, Corollary 13.10]. Thus, the

integral does not exist, in general, in the classical Riemann-Stieltjes sense, no matter what

assumptions we make about the process X. Nevertheless, it is possible to rigorously define

the integral

(ItX)(ω) =
∫ t

0
Xω(s) dBω(s),

for t ∈ R+, ω ∈ Ω, and a reasonably large class of continuous-time, real-valued processes X

on Ω, in such a way that ItX is measurable for every t ∈ R+. The process Y := (ItX)t∈R+

then qualifies as a weak or generalized antiderivative of WX (that is, a solution of the

“stochastic differential equation” Ẏ = WX). In fact, there are several ways of doing

this. Our definition will be based on the use of left Riemann-Stieltjes sums and leads to

the so-called Ito integral. Other choices are possible; for example, the use of mid-point

Riemann-Stieltjes sums leads to the so-called Stratonovich integral [10, p. 350].

For all of the following, suppose that B is a one-dimensional Brownian motion on Ω

and that X is a continuous-time, real-valued stochastic process on Ω. Also, suppose that X

is adapted to the filtration F(B). As discussed in the section on conditional probabilities,

this has the interpretation that the random variable Xt, for t ∈ R+, is “no more random”

than the Brownian motion B up to time t, certainly a reasonable assumption if we think of

X as the solution of a “stochastic differential equation” whose randomness is produced by
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B. (For now, we ignore the effect of a “random initial condition” X0 = X0 a.s., where X0

is a given random variable on Ω, on the solution X.)

Now fix a, b ∈ R+ with a < b. We wish to define the Ito integral

(Ia,bX)(ω) =
∫ b

a
Xω(t) dBω(t),

for ω ∈ Ω, under suitable additional assumptions on X. To that end, endow the interval

[a, b] with the Borel σ-algebra B[a,b] and the Lebesgue-Borel measure λ[a,b]. The Cartesian

product [a, b]× Ω is then naturally endowed with the product σ-algebra B[a,b] ×A and the

product measure λ[a,b]×P . Given any filtration F of A, let Lp
F ([a, b]×Ω), for p ≥ 1, denote

the set of all (equivalence classes of) F-adapted functions in Lp([a, b]×Ω) (that is, functions

Y ∈ Lp([a, b]× Ω) such that Yt = Y (t, ·) is Ft-measurable for every t ∈ [a, b]); we are most

interested in L2
F ([a, b]× Ω).

Lemma 2.1. For any filtration F of A, L2
F ([a, b]× Ω) is a closed linear subspace of

L2([a, b]× Ω).

Proof. That L2
F ([a, b]× Ω) is closed is the only nonobvious part; to see this let

(Yn)n∈N ∈ L2
F ([a, b]× Ω)N, let Y ∈ L2([a, b] × Ω), and let Yn → Y in L2([a, b] × Ω). Then

there is a subsequence (Ykn)n∈N of (Yn)n∈N that converges to Y pointwise almost everywhere.

Modifying the functions Ykn on a set of measure zero if necessary, we may assume that

Ykn(t, ω) → Y (t, ω) for all t ∈ [a, b] and ω ∈ Ω. But then, for every t ∈ [a, b], Y (t, ·) is the

pointwise limit of the Ft-measurable functions Ykn(t, ·), and thus, Ft-measurable; that is,

Y ∈ L2
F ([a, b]× Ω).
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Definition 2.1. We call a measurable function Y on [a, b] × Ω simple if it can be written

in the form

Y (t, ω) =
n∑

j=1

Yj(ω)1[tj−1,tj)(t),

for t ∈ [a, b] and ω ∈ Ω, where n is a positive integer, (tj)n
j=0 is a partition of the interval

[a, b], and (Yj)n
j=1 is a sequence of measurable functions on Ω.

Given a filtration F of A, such Y will belong to L2
F ([a, b]×Ω) if and only if Yj is square-

integrable and Ftj−1-measurable for every j ∈ {1, . . . , n}. The set of all simple functions in

L2
F ([a, b]× Ω) can be shown to be dense in L2

F ([a, b]× Ω) [12, pp. 18-20].

It is obvious how to define the Ito integral Ia,bX if X ∈ L2
F ([a, b]×Ω) is simple; given a

representation of the form X(t, ω) =
∑n

j=1 Xj(ω)1[tj−1,tj)(t), for t ∈ [a, b] and ω ∈ Ω, with

n ∈ N, (tj)n
j=0 a partition of [a, b], and (Xj)n

j=1 ∈ L2(Ω)n where Xj is Ftj−1-adapted for all

j ∈ {1, 2, · · · , n}, we let

(Ia,bX)(ω) :=
n∑

j=1

Xj(ω)
(
Bω(tj)−Bω(tj−1)

)
,

for ω ∈ Ω. The sum on the right-hand side is independent of the representation of X and

coincides with the left Riemann-Stieltjes sum of Xω with respect to Bω for any partition

of [a, b] that is a refinement of the partition (tj)n
j=0.

Theorem 2.1 (Ito Isometry for Simple Functions). Let F = F(B) and let

X ∈ L2
F ([a, b]× Ω) be simple. Then Ia,bX ∈ L2(Ω) with

‖Ia,bX‖2
L2(Ω) =

n∑

j=1

(tj − tj−1)‖Xj‖2
L2(Ω) = ‖X‖2

L2([a,b]×Ω).
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Proof. First note that

‖Ia,bX‖2
L2(Ω) =

∫

Ω

( n∑

j=1

Xj(Btj −Btj−1)
)2

dP

=
n∑

i,j=1

∫

Ω
XiXj(Bti −Bti−1)(Btj −Btj−1)dP

=
n∑

i,j=1

E
(
XiXj(Bti −Bti−1)(Btj −Btj−1)

)
,

where E denotes expectation with respect to P . Next, realize that i 6= j (say, without loss

of generality, i < j) implies

E
(
XiXj(Bti −Bti−1)(Btj −Btj−1)

)
= 0. (2.4)

This is because Xi, Xj , and (Bti −Bti−1) are Fti−1-measurable and because of independent

increments (so that E(Btj − Btj−1) = EFti−1
(Btj − Btj−1)). Therefore, by definition of

conditional probability and use of the the “pull out” property (see the section on conditional

probability), we have

E
(
XiXj(Bti −Bti−1)(Btj −Btj−1)

)

= E
(
EFti−1

(XiXj(Bti −Bti−1)(Btj −Btj−1))
)

= E
(
XiXj(Bti −Bti−1)EFti−1

(Btj −Btj−1)
)

= E
(
XiXj(Bti −Bti−1)E

(
Btj −Btj−1)

)

= E
(
XiXj(Bti −Bti−1)

)
E(Btj −Btj−1).
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Since E(Btj −Btj−1) = 0, we have shown (2.4).

Next, when i = j,

E(XiXj(Bti −Bti−1)(Btj −Btj−1)) = E(X2
i )(ti − ti−1), (2.5)

since by the same argument used to show (2.4),

E(X2
i (Bti −Bti−1)

2) = E(X2
i )E(Bti −Bti−1)

2,

and since B has stationary increments,

E(Bti −Bti−1)
2 = E(Bti−ti−1)

2 = var(Bti−ti−1) = ti − ti−1.

Finally, by combining (2.4) and (2.5), we see that

‖Ia,bX‖2
L2(Ω) =

n∑

i,j=1

E(XiXj(Bti −Bti−1)(Btj −Btj−1))

=
n∑

i=1

E(X2
i )(ti − ti−1) = ‖X‖2

L2([a,b]×Ω).

Therefore, Ia,b is a (linear) isometry from a dense (linear) subspace of L2
F ([a, b]× Ω) into

L2(Ω); as such, it has a unique extension to a linear isometry Ia,b : L2
F ([a, b]× Ω) → L2(Ω).

This defines the Ito integral Ia,bX for every X ∈ L2
F ([a, b]×Ω), and we have the Ito isometry,

‖Ia,bX‖L2(Ω) = ‖X‖L2([a,b]×Ω).
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We will use the symbol
∫ b
a Xt dBt to denote the Ito integral Ia,bX.

Stated rigorously:

Definition 2.2. Let F := F(B). For every X ∈ L2
F ([a, b] × Ω), the Ito integral

∫ b
a Xt dBt

exists and is defined by

∫ b

a
X(t, ω) dBt(ω) := lim

n→∞

∫ b

a
Yn(t, ω) dBt(ω)

(convergence in L2(Ω)), where (Yn)n∈N is any sequence of simple functions that approach

X in L2
F ([a, b]× Ω).

Note that, due to Fubini’s theorem,
∫ b
a X2

t dt is an integrable function on Ω, with
∫
Ω

(∫ b
a X2

t dt
)
dP = ‖X‖2

L2([a,b]×Ω). This allows us to write the Ito isometry in the form

E
(∫ b

a
Xt dBt

)2
= E

(∫ b

a
X2

t dt
)
.

Now, if X is a continuous-time, real-valued process on Ω such that

X ∈ L2
F ([0, t]× Ω) for every t ∈ R+ then ItX =

∫ t
0 XsdBs is defined for every t ∈ R+,

and IX := (ItX)t∈R+ is a stochastic process. It can be shown that IX is a martingale

with respect to F , and as a consequence, has a modification with continuous paths (see

[12, pp.22-26] for more details). In the future, we will assume without saying that IX has

continuous paths.

Definition 2.2 is enough to make sense of
∫ t
0 XsWsds =

∫ t
0 XsdBs on the right hand side

of (2.3), provided that X ∈ L2
F ([0, t] × Ω). This condition needs to be part of the notion

of a “solution” of equation (2.3). As discussed earlier, F = F(B)-adaptedness of X is a

reasonable requirement as long as the “randomness” of X is “caused” solely by B.
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Now, instead of solving just one scalar “stochastic differential equation”, we would like

to solve coupled systems of such equations. By way of motivation, consider the system

Ẋi = (ri(X) + W i)Xi, 1 ≤ i ≤ n (2.6)

for an Rn-valued process X = (X1, X2, · · · , Xn), where

r = (r1, r2, · · · , rn) : Rn → Rn

is a sufficiently smooth vector field, B := (B1, B2, · · · , Bn) is an n-dimensional Brownian

motion, and W = (W 1,W 2, · · · ,Wn) = (Ḃ1, Ḃ2, · · · Ḃn). In integral form, equation (2.6)

reads

Xi
t = Xi

0 +
∫ t

0
ri(Xs)Xi

sds +
∫ t

0
Xi

sdBi
s, 1 ≤ i ≤ n. (2.7)

Using Definition (2.2), the integral on the far right would make sense if we could assume

that Xi ∈ L2
F(Bi)

([0, t]×Ω). Unfortunately, this is not a reasonable assumption: due to the

coupling of the equations, Xi is affected by all components of B; thus Xi should be F(B)-

adapted, but cannot be expected to be F(Bi)-adapted! Luckily, the assumption F = F(B)

in Theorem 2.1 and Definition 2.2 (where B is a one-dimensional Brownian motion) can be

relaxed — it is enough to assume that F is a filtration of A such that B is a martingale

with respect to F .

Under this assumption (clearly satisfied if F = F(B)), the proof of the Ito isometry

for simple functions (Theorem 2.1) still goes through (note that EF (Bi
tj − Bi

tj−1
) = 0 , for
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1 ≤ j ≤ n, and then, so does the entire construction, culminating in Definition 2.2 (for

more details, see ([12, p.24]))

Now, if B = (B1, B2, · · · , Bn) is an n-dimensional Brownian motion, then each com-

ponent Bi is a martingale with respect to F = F(B). This is true since Bi
t − Bi

t−c is

independent of Ft−c for c ∈ (0, t), which means

E(Bi
t|Ft−c) = E(Bi

t −Bi
t−c + Bi

t−c|Ft−c) = 0 + Bi
t−c. (2.8)

As a consequence, the integral on the far right of equation (2.7) is defined if

Xi ∈ L2
F(B)([0, t]× Ω) for 1 ≤ i ≤ n, as desired.

Note that, in vector notation, the system can be written as

Ẋ = U(X) + V (X)W, (2.9)

where U(X) = (r1(X)X1, r2(X)X2, · · · , rn(X)Xn) and V (X) is the diagonal n× n-matrix

whose diagonal entries are X1, · · · , Xn. Of course, we would like to consider more general

systems of the form (2.9), with arbitrary (sufficiently smooth) functions U : Rn → Rn and

V : Rn → Rn×n. Also we would like to allow for the possibility that only some of the

equations are affected by white noise, say, the first d equations, where 1 ≤ d ≤ n. In this

case,

W = (W 1, · · · ,W d, 0, · · · , 0) = (Ḃ1, · · · , Ḃd, 0 · · · , 0),

where B is a d-dimensional Brownian motion. Only the first d columns of V are then

relevant, and we may as well assume that V : Rn → Rn×d.
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Under these assumptions, the integral version of equation (2.9) is

Xt = X0 +
∫ t

0
U(Xs)ds +

∫ t

0
V (Xs)dBs. (2.10)

Of course, the integrals are understood “componentwise”, that is,

∫ t

0
U(Xs)ds =

(∫ t

0
U i(Xs)ds

)n

i=1

,

∫ t

0
V (Xs)dBs =

(∫ t

0

d∑

j=1

V ij(Xs)dBj
s

)n

i=1

=
( d∑

j=1

∫ t

0
V ij(Xs)dBj

s

)n

i=1

.

The second integral is well defined, provided that V ij(X) ∈ L2
F ([0, t]×Ω) for all 1 ≤ i ≤ n,

1 ≤ j ≤ d, where F is a filtration of A such that each component of B is a martingale with

respect to F . Note that if X is F-adapted and V is continuous, then V (X) is F-adapted.

This motivates the following definition.

Definition 2.3. Let (Ω,A, P ) be a probability space, n ∈ N, d ∈ {1, · · · , n}. Let B be a

d-dimensional Brownian motion on Ω, F a filtration of A such that each component of B

is a martingale with respect to F . Let U be an Rn-valued process on Ω, V an Rn×d-valued

process on Ω such that U i ∈ L2
F ([0, t] × Ω) and V ij ∈ L2

F ([0, t] × Ω) for all 1 ≤ i ≤ n,

1 ≤ j ≤ d, t ∈ R+.

If X0 is an Rn-valued random variable on Ω, the process X, defined by

Xt = X0 +
∫ t

0
Usds +

∫ t

0
VsdBs, (2.11)
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for t ∈ R+, is called a stochastic integral generated by (U, V ). The set of all stochastic

integrals generated by (U, V ) is denoted by

∫
Utdt +

∫
VtdBt; (2.12)

with slight abuse of language, we call this the stochastic integral generated by (U, V ).

Formally, the process X defined by (2.11) is an “antiderivative” of U + V Ḃ, that is, a

solution of the “stochastic differential equation”

Ẋ = U + V Ḃ, (2.13)

or, in differential notation,

dXt = Utdt + VtdBt. (2.14)

In the same sense, the stochastic integral (2.12) is the set of all “antiderivatives” (the

“indefinite integral”) of U + V Ḃ, that is, the “general solution” of (2.13)/(2.14). The

formal expression Utdt + VtdBt is called the stochastic differential generated by (U, V ).

We note that the assumptions on V in Definition 2.3 are needed to guarantee the exis-

tence of the second integral in (2.11). They also guarantee that the process
(∫ t

0 VsdBs

)
t∈R+

is F-adapted and square-integrable in the sense that
∫ t
0 VsdBs ∈ L2(Ω) for all t ∈ R+. The

assumptions on U are stronger than necessary to guarantee the existence of the first inte-

gral in (2.11); in fact, U i ∈ L1([0, t]× Ω) for all 1 ≤ i ≤ n and t ∈ R+ would be sufficient.
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However, the stronger assumptions on U guarantees that the process
(∫ t

0 Usds
)
t∈R+

is F-

adapted and square-integrable in the sense that
∫ t
0 Usds ∈ L2(Ω) for all t ∈ R+. Indeed, we

have the following lemma.

Lemma 2.2. Under the assumptions of Definition 2.3, the processes
(∫ t

0 Usds
)
t∈R+

and
(∫ t

0 VsdBs

)
t∈R+

are well-defined, F-adapted and square-integrable in the sense that
∫ t
0 Usds,

∫ t
0 VsdBs ∈ L2(Ω) for all t ∈ R+.

Corollary 2.1. Assume the hypotheses of Definition 2.3 with F = F(B) and let X0 ∈ L2(Ω).

Then the process X defined by (2.11) is F(B,X0)-adapted and square-integrable in the sense

that Xt ∈ L2(Ω) for all t ∈ R+.

Let us return to the integral equation (2.10), that is, the integral version of the “stochas-

tic differential equation”

dXt = U(Xt)dt + V (Xt)dBt. (2.15)

It is natural to seek a solution X of (2.15) subject to an initial condition of the form

X0 = X0, (2.16)

where X0 is a given Rn-valued random variable on Ω. The integral equation corresponding

to (2.15/(2.16)) reads

Xt = X0 +
∫ t

0
U(Xs)ds +

∫ t

0
V (Xs)dBs (2.17)
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Due to the random initial condition, a solution of (2.17) cannot be expected to be

F(B)-adapted, but should be F(B,X0)-adapted. The same would then hold for U(X)

and V (X). However, under this assumption, the Ito integral in (2.17) is defined only if

each component of B is a martingale with respect to F(B,X0). This is the case if X0

and B are independent ; this follows from an argument similar to (2.8) and is reasonable

intuitively, as we expect that the randomness of the initial condition should have nothing

to do with an arbitrarily given Brownian motion. Along these lines, note that if X were

only F(B)-adapted, then X0 being independent of B would force X0 to be a.s. constant!

The above consideration motivates the following version of Corollary (2.1).

Corollary 2.2. Assume the hypotheses of Definition 2.3 with F := F(B,X0), where X0 ∈

L2(Ω) is independent of B. Then the process X defined by (2.11) is F(B,X0)-adapted and

square-integrable in the sense that Xt ∈ L2(Ω) for all t ∈ R+.

Now we move to the next section, where we formally define stochastic differential

equations, define the solution to a stochastic differential equation, and discuss the existence

and uniqueness of solutions.

2.2 Stochastic Differential Equations and their Solutions

As we discussed in the previous section, (2.13) or (2.14) is a stochastic analog of the

deterministic antidifferentiation problem dx = f(t)dt or ẋ = f(t), where f : R+ → Rn is a

given, sufficiently regular function. To arrive at the stochastic analog of dx = f(t, x)dt or

ẋ = f(t, x), where f : R+ × Rn → Rn is a given, sufficiently regular function, we need to

discuss the composition of stochastic processes.
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Let (Ω,A), (S,S), and (S′,S ′) be measurable spaces, let H be a continuous-time S-

valued stochastic process on (Ω,A) and let G be a continuous-time S′-valued stochastic

process on (S,S). We now (with slight abuse of notation) define the composition of G with

H, denoted by G ◦H.

Definition 2.4. For G and H as above, we define the composition G ◦H to be the process

defined by (G ◦H)t := Gt ◦Ht, for all t ∈ R+.

In this way, G ◦H is a continuous-time S′-valued stochastic process on (Ω,A).

Now, if X is a stochastic integral, then X is a continuous-time Rn-valued stochastic

process on (Ω,A, P ). So, take U : R+ × Rn → Rn to be measurable with respect to the

second variable (so U is a continuous-time Rn-valued stochastic process on (Rn,Bn)). Then

U ◦X is an Rn-valued process on Ω, and we have

(U ◦X)(t, ω) = (Ut ◦Xt)(ω) = Ut(Xt(ω)) = Ut(X(t, ω)) = U(t,X(t, ω)),

for all t ∈ R+ and ω ∈ Ω.

Similarly, take V : R+ × Rn → Rn×d to be measurable with respect to the second

variable. Then V ◦X is an Rn×d-valued process on Ω, and at least formally, we can consider

the stochastic differential equation

dXt = U(t,Xt)dt + V (t,Xt)dBt, (2.18)

or the equivalent integral equation

Xt = X0 +
∫ t

0
U(s,Xs)ds +

∫ t

0
V (s,Xs)dBs. (2.19)
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This motivates the definition of solution to a stochastic differential equation.

Definition 2.5. We say X is a solution to (2.18) if X is any continuous-time Rn-valued

process X on Ω such that (U ◦ X, V ◦ X) satisfy the hypotheses of Definition 2.3 and X

satisfies (2.19) for all t ∈ R+.

We remark that this definition makes sense due to Lemma 2.2. We will soon give

particular conditions on U and V in order to guarantee that a unique solution to (2.18)

exists. For now, assume that U and V are appropriate enough for (2.18) to make sense.

We can now rigorously impose an initial condition to (2.18), state the definition of the

stochastic initial value problem, and define the notion of solution.

Let X be a solution to (2.18) as above, and suppose we are given an Rn-valued random

variable X0 = (X1
0 , X2

0 , · · · , Xn
0 ) such that Xi

0 ∈ L2(Ω) for each 1 ≤ i ≤ n and such that X0

is independent of B. Recalling the argument preceding Corollary 2.2, if X0 = X0 a.s. then

we specify F to be F(X0, B), where F(X0, B) = {Ft(X0, B)}t∈R+ and where Ft(X0, B) is

the σ-algebra generated by X0 and {Bs|s ≤ t}, for every t ∈ R+. Motivated by this and

Corollary 2.2, the following definition is justified.

Definition 2.6. Given X0 ∈ L2(Ω), independent of B, we call

dXt = U(t,Xt)dt + V (t,Xt)dBt, (2.20)

X0 = X0 a.s.

a (strong) stochastic initial value problem, and we say X is a (strong) solution to (2.20) if X

is a solution to dXt = U(t,Xt)dt + V (t,Xt)dBt in the sense of Definition 2.5 and satisfies

X0 = X0 a.s.
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In Problem (2.20) the Brownian motion B is given in advance and we are seeking a

solution X. A “weak” version of (2.20) would require that, along with X, we find a Brownian

motion B on a probability space (Ω,A, P ) and a filtration F such that each component of

B is a martingale with respect to F . Then, since (Ω,A, P ) is not given, we cannot impose

an initial condition as in (2.20), but we can impose an initial distribution µ. This leads to

the following definition.

Definition 2.7. We call

dXt = U(t,X)dt + V (t,X)dBt, (2.21)

PX0 = µ a.s.

a weak stochastic initial value problem, and we say (X, B,F) is a weak solution to (2.21) if

B is an Rd-valued Brownian motion such that Bi is a martingale with respect to F for all

1 ≤ i ≤ d, and X is a solution to dXt = U(t,X)dt + V (t,X)dBt in the sense of Definition

2.5 and satisfies µ = PX0.

Clearly, a strong initial value problem induces a weak initial value problem (by replacing

the given initial condition with its distribution and then removing the given probability

space and Brownian motion); if that strong initial value problem has a solution then clearly

the induced weak initial value problem must also have a solution. Also, if a weak initial

value problem has a solution, then there is at least one associated strong initial value

problem (by taking the Brownian motion B in the weak problem’s solution as the given

Brownian motion in the strong problem and constructing a random variable X0 over B’s

accompanying probability space such that X0 has distribution µ). Further, the existence
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of a weak solution X to a weak initial value problem does not necessarily imply that X is a

strong solution to the induced strong initial value problem; this is believable simply because

X may be adapted to some filtration F but not to F(X0, B).

From a modeling perspective, we really have weak problems (as no one can realistically

present up front the specific representation of the white noise involved). Weak solutions are

also useful because there are examples of weak initial value problems which have a weak

solution but no strong solutions (see [10, pp. 301-302]). We drop the adjective weak or

strong when there is no ambiguity.

Along these lines, there are also strong and weak notions of uniqueness.

Definition 2.8. We say that the strong initial value problem (2.20) has the strong unique-

ness property if any two solutions X and X̃ are modifications of each other.

For convenience we often say that X is a strongly unique solution, or that X is strongly

unique. Strong uniqueness is often called pathwise uniqueness.

Definition 2.9. We say that the weak initial value problem (2.21) has the weak unique-

ness property if any two solutions (X, B,F) and (X̃, B̃, F̃) are equivalent in the sense that

PX = P X̃ .

Again, for convenience, we often say that X is a weakly unique solution or X is weakly

unique, and since we may identify any weak solution with its (unique) distribution, we

sometimes call PX the weak solution. Weak uniqueness is often called uniqueness in distri-

bution.

Analogously, we can have an initial value problem starting at any time s > 0.
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Now we have the ingredients to present an existence and uniqueness theorem, which

gives us at least one way to place conditions on U and V to guarantee the situation of

Definition 2.5 is satisfied (one proof can be found in [12, Theorem 5.5]):

Theorem 2.2 (Existence/Uniqueness). Let (Ω,A, P ) be a measure space, n ∈ N,

d ∈ {1, . . . , n}, B a d-dimensional Brownian motion on Ω, U : R+ × Rn → Rn and

V : R+ × Rn → Rn×d measurable functions, X0 ∈ L2(Ω), X0 independent of B,

F = F(B,X0).

Assume that there exist positive constants C and D such that, for all t ∈ R+ and

x, y ∈ Rn,

|U(t, x)|+ |V (t, x)| ≤ C(1 + |x|), (2.22)

where | · | is the Euclidean norm, and

|U(t, x)− U(t, y)|+ |V (t, x)− V (t, y)| ≤ D|x− y|. (2.23)

Then the initial value problem (2.20) has a strongly unique strong solution X.

Before proving this important theorem, we remark that (2.22) is imposed to avoid

that X explodes, i.e., that there is a finite time T0 such that P (limt→T0 |Xt(·)| = ∞) > 0

(see [9, Lemma 21.6]) while (2.23) ensures uniqueness. Compare this to the deterministic

case, where an at most linear growth estimate insures that solutions do not explode (see

[1, Theorem 7.6]) and a Lipschitz condition guarantees uniqueness. The idea of the proof

is similar to the deterministic case; let us only consider the scalar case.
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Proof. First, we show uniqueness. Suppose two solutions X and Y exist, having initial

values X0 and Y 0, respectively. Then we can estimate E|Xt−Yt|2 for a fixed t by using the

inequality (x + y + z)2 ≤ 3(x2 + y2 + z2), the Ito isometry, the Cauchy-Schwarz inequality,

and (2.23) so that Gronwall’s inequality applies. This yields an inequality of the form

E|Xt − Yt|2 ≤ 3E|X0 − Y 0|2eKt,

where K is a constant depending only on D and T . Assuming X0 = Y 0 then im-

plies that P (|Xt − Yt| = 0) = 1 (recall t is fixed). We can repeat this argument for

all rational t and then use that stochastic integrals are continuous in time to obtain

P (
⋃

t∈[0,T ] |Xt − Yt| = 0) = 1, which means X and Y are modifications of each other. This

shows the strong uniqueness.

To show existence, first define the iterations Y
(0)
t := X0 and

Y
(k+1)
t := X0 +

∫ t

0
U(s, Y (k)

s )ds +
∫ t

0
V (s, Y (k)

s )dBs, (2.24)

for k ∈ Z+. We claim that (2.24) is well defined; first note that Y
(k)
t is Ft(X0, B)-measurable

for each k ∈ Z+ and for all t ∈ [0, T ]. Next, we have by a similar calculation to that in the

uniqueness proof, by (2.22), and by Fubini, that

E|Y (1)
t − Y

(0)
t |2 ≤ 2C2(t + t2)(1 + E|X0|2) ≤ L1t, (2.25)

where L1 only depends on C, T , and E|X0|2. Therefore (2.24) makes sense for k = 1.

One can proceed by induction to show that (2.24) makes sense for all k; we can estimate
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E|Y (2)
t − Y

(1)
t |2 similarly and use (2.23) to yield an inequality of the form

E|Y (2)
t − Y

(1)
t |2 ≤ 3(1 + T )D2

∫ t

0
E|Y (1)

s − Y (0)
s |2ds (2.26)

≤ 3(1 + T )D2

∫ t

0
L1s ds ≤ L2

t2

2
,

where L2 only depends on C,D, T , and E|X0|2. Iterating this, we can estimate

E|Y (k+1)
t − Y

(k)
t |2 similarly:

E|Y (k+1)
t − Y

(k)
t |2 ≤ 3(1 + T )D2

∫ t

0
E|Y (k)

s − Y (k−1)
s |2ds ≤ Lk+1t

k+1

(k + 1)!
(2.27)

where Lk+1 is a constant depending only on T,C, D, and E|X0|2; in fact,

Lk+1 = L1(3(1 + T )D2)k, for k ∈ Z+. Since t ≤ T , this inequality shows {Y (k)
t }k∈Z+ is

a Cauchy sequence in L2([0, T ] × Ω), so for every t ∈ [0, T ], {Y (k)
t }k∈Z+ has a Ft(X0, B)-

measurable limit Xt. In fact, this convergence is uniform; from (2.27), we apply the in-

equality (see [6, Theorem 2.8])

P (sup
[a,b]

|
∫ b

a
f(s)dBs| > r) ≤ 1

r2
E(

∫ b

a
f2(s)ds)

yielding

P (sup
[0,T ]

|Y k+1
t − Y k

t | >
1
k2

) ≤ Lk+1t
k+1

k + 1!
k4.
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Since
∑∞

k=1
Lk+1tk+1

k+1! k4 converges, by the Borel-Cantelli Lemma (see e.g. [6, Theorem 1.1])

there exists a sufficiently large M ∈ N such that, for all m ≥ M ,

P (sup
[0,T ]

|Y m+1
t − Y m

t | > 1
m2

) = 0.

Therefore the convergence of {Y (k)
t }k∈Z+ to Xt is uniform, which means

Xt = X0 + lim
k→∞

(
∫ t

0
U(s, Y (k)

s ) +
∫ t

0
V (s, Y (k)

s )) = X0 +
∫ t

0
U(s,Xs) +

∫ t

0
V (s,Xs)dBs,

so X is indeed a solution.

Unless we say otherwise, we assume (2.22) and (2.23) hold when we discuss stochastic

differential equations.

As we discussed before, a strong initial value problem induces a weak initial value

problem; it can be shown that if a strong initial value problem enjoys the strong uniqueness

property, then the strong initial value problem and its induced weak initial value problem

have the weak uniqueness property (see e.g. [10, pp. 306-310]).

We will soon discuss how deterministic dynamical systems generalize to the stochastic

case, but before this, we reserve the next section for Ito’s formula, which allows us to

calculate specific examples of Ito integrals and hence solutions to stochastic differential

equations.
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2.3 Ito’s Formula and Examples

Equipped with Ito integral and stochastic differential equation concepts, we now focus

on explicitly calculating Ito integrals and solutions to stochastic differential equations. The

tool we need is Ito’s formula, which is essentially a stochastic analog of the chain rule.

First, we prove Ito’s formula in one dimension, and then we present the n-dimensional

version and study some examples. Let X be the stochastic integral generated by (U, V )

(for U, V satisfying the assumptions in Defintion 2.3) and let g ∈ C2(R+ × R). Then the

process (g(t,Xt))t∈R+ is also a 1-dimensional stochastic integral, and for all t,

g(t,Xt) = g(0, X0) +
∫ t

0

(∂g

∂s
(s,Xs) + Us

∂g

∂x
(s,Xs)

+
1
2
V 2

s

∂2g

∂x2
(s,Xs)

)
ds +

∫ t

0
Vs

∂g

∂x
(s,Xs)dBs,

which we call Ito’s formula.

Notice the “extra” term
∫ t
0

1
2V 2

s
∂2g
∂x2 ds; such a term is often called a “correction term.”

We can, in fact, recover the “natural” form of the chain rule by using the Stratonovich

integral (which differs from the Ito integral in that it uses the midpoint instead of the left

endpoint), but Stratonovich integrals “look into the future” and (among other things) do

not enjoy the martingale property.

To see where this extra term comes from, let us examine a Taylor expansion of g(t,Xt);

it is enough to assume that g, ∂g
∂t ,

∂g
∂x , and ∂2g

∂x2 are bounded, for if we can prove it in this

case, then we can take sequences of bounded functions gn, ∂gn

∂t , ∂gn

∂x , and ∂2gn

∂x2 to uniformly

approximate a C2 function g and ∂g
∂t ,

∂g
∂x , and ∂2g

∂x2 , respectively on compact subsets of R+×R

(by Stone-Weierstrass) and then the uniform convergence allows the limit to carry through
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the integral (for the stochastic term, use Ito’s isometry). Recall that the norm of any

partition P of [0, t] is defined to be ‖ P ‖= max1≤i≤n(ti − ti−1), and let P = (tj)n
j=0 be a

partition of [0, t] with sufficiently small norm. Then, carrying out a Taylor expansion of

g(t,Xt),

g(t,Xt) = g(0, X0) +
n∑

j=1

(
g(tj , Xtj )− g(tj−1, Xtj−1)

)

= g(0, X0) +
n∑

j=1

(
∂g

∂t
(tj−1, Xtj−1)(tj − tj−1)

+
∂g

∂x
(tj−1, Xtj−1)(Xtj −Xtj−1)

)
+

1
2

n∑

j=1

(
∂2g

∂t2
(tj−1, Xtj−1)(tj − tj−1)2

+ 2
∂2g

∂x∂t
(tj−1, Xtj−1)(Xtj −Xtj−1)(tj − tj−1)

+
∂2g

∂x2
(tj−1, Xtj−1)(Xtj −Xtj−1)

2

)
+

n∑

j=1

Rj ,

where Rj in the remainder
∑n

j=1 Rj takes the form

Rj =
∑

{|α|≥3}

∂α1

∂tα1

∂α2

∂xα2

g(tj−1, Xtj−1)
α1!α2!

(tj − tj−1)α1(Xtj −Xtj−1)
α2 .

Let us approximate each term, using that the norm of the partition is small. For the

first-order terms, we see

∑

j

∂g

∂t
(tj − tj−1) ≈

∫ t

0

∂g

∂t
(s,Xs)ds,
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and
∑

j

∂g

∂x
(Xtj −Xtj−1) ≈

∫ t

0

∂g

∂x
(s,Xs)dXs,

where

∫ t

0

∂g

∂x
(s,Xs)dXs =

∫ t

0

∂g

∂x
(s,Xs)U(s,Xs)ds +

∫ t

0

∂g

∂x
(s,Xs)V (s,Xs)dBs,

For the second order terms, only the term
∑n

j=1
∂2g
∂x2 (tj−1, Xtj−1)(Xtj −Xtj−1)

2 is not

approximately zero. We expand this term:

n∑

j=1

∂2g

∂x2

(
(Utj − Utj−1)

2(tj − tj−1)2 + (Vtj − Vtj−1)
2(Btj −Btj−1)

2+ (2.28)

(Utj − Utj−1)(Vtj − Vtj−1)(tj − tj−1)(Btj −Btj−1)
)
.

We claim that (2.28) has only one term that is not approximately zero, namely,
∑n

j=1
∂2g
∂x2 (Vtj − Vtj−1)

2(Btj −Btj−1)
2, and it satisfies

‖
n∑

j=1

∂2g

∂x2
(Vtj − Vtj−1)

2(Btj −Btj−1)
2 −

∫ t

0

∂2g

∂x2
V 2

s ds ‖L2≈ 0. (2.29)

For details on how to prove (2.29), see [12, p.32]; we present a similar and more

transparent argument to clearly convey the essence of Ito’s formula. To this end, we now

show that

lim
‖P‖→0

‖
n∑

j=1

[(Btj −Btj−1)
2 − (tj − tj−1)] ‖L2= 0. (2.30)
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To see this, call Mj = (Btj −Btj−1)
2 − (tj − tj−1). Then EMj = 0 because

E(Btj −Btj−1)
2 = tj − tj−1. Further, E(Mj)2 = 2(tj − tj−1) because

E(Mj)2 = E((Btj −Btj−1)
4 − (Btj −Btj−1)

2(tj − tj−1) + (tj − tj−1)2)

= 3(tj − tj−1)2 − 2(tj − tj−1)2 + (tj − tj−1)2,

by (1.5) (in the section on Brownian motion).

Now, since Brownian motion has independent increments, each Mj is independent,

which means

E(
n∑

j=1

Mj)2 = E
n∑

j=1

(Mj)2 =
n∑

j=1

2(tj − tj−1)2,

which clearly goes to zero as the norm of the partition goes to zero.

So, we have taken the Taylor expansion of g(t,Xt) and approximated each term when

the norm of the partition is small; combining all of them yields Ito’s formula, as claimed.

Using differential notation, we can express (2.30) as “(dBt)2 = dt”. Also, we may write

“(dt)2 = dtdBt = 0,” since terms containing (tj − tj1)
2 or (tj − tj1)(Btj − Btj1

) go to zero

when the norm of the partition goes to zero; thus we could write

“(dXt)2 = U2(dt)2 + UV dtdBt + V 2(dBt)2 = V 2dt.”

We could then rewrite Ito’s formula more conveniently:

dg(t,Xt) =
∂g

∂t
(t,Xt)dt +

∂g

∂xi
(t,Xt)dXt +

1
2

∂2g

∂x2
(t,Xt)(dXt)2. (2.31)
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We may extend this result to n-dimensions: taking X to be an n-dimensional stochastic

integral and taking g ∈ C2(R+ × Rn,Rn), where X = (Xi)n
i=1 and g = (gi)n

i=1, then

(g(t,Xt))t∈R+ is an n-dimensional stochastic integral, and for all t ∈ R+,

dgk(t,Xt) =
∂gk

∂t
(t,Xt)dt +

n∑

i=1

∂gk

∂xi
(t,Xt)dX i

t (2.32)

+
n∑

i,j=1

1
2

∂2gk

∂xi∂xj
(t,Xt)dX i

tdXj
t ,

for 1 ≤ k ≤ n (understanding dBi
tdBj

t = δijdt and dtdBi
t = 0).

We remark that Ito’s formula can be stated and proved in higher generality using

martingale theory (as in ([9, Theorem 17.18])), but we do not need such a level of abstraction

in the specialized environment of stochastic differential equations.

Now for some examples; let B be a real-valued Brownian motion on a probability space

(Ω,A, P ). Also, let X0 = x a.s. always be the initial condition (for some x ∈ R).

To start, let us observe an integration by parts formula: for f ∈ C1(R+),

∫ t

0
f(s)dBs = f(t)Bt −

∫ t

0
Bsdf(s), (2.33)

for all t ∈ R+. This follows from Ito’s formula; we think that
∫ t
0 f(s)dBs should some-

how yield a “f(t)Bt” sort of term, so we take g(t, x) = f(t)x. Then it is clear that

∂
∂tg(t, x) = f ′(t)x, ∂

∂xg(t, x) = f(t), and ∂2

∂x2 g(t, x) = 0. Since g(t, Bt) = f(t)Bt, by Ito’s

formula,

d(g(t, Bt)) = d(f(t)Bt) = f ′(t)Btdt + f(t)dBt + 0,
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which easily yields (2.33). Note that f only depends on time, and note that (similarly to

the above argument)

∫ t

0
f(s)dXs = (f(t)Xt − f(0)X0)−

∫ t

0
Xsdf(s) (2.34)

holds for any 1-dimensional stochastic integral X (for a more general result, see [9, Theorem

17.16]).

Along these lines, consider

dXt = dBt −Xtdt. (2.35)

Calling g(t, x) = etx and using Ito’s formula yields

d(etXt) = etdXt + etXtdt = etdBt,

and it is easy to see that the solution is

Xt = e−tx +
∫ t

0
e(s−t)dBs.

Similarly,

dXt = σdBt − bXtdt,
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where σ, b are constants, has solution

Xt = e−btx + σ

∫ t

0
eb(s−t)dBs.

Next, we have a basic example of an Ito integral calculation:

∫ t

0
BsdBs =

1
2
(B2

t − t). (2.36)

We expect the 1
2B2

t term from deterministic calculus, but we inherit the extra 1
2 t term from

the stochastic case (often called a correction term). To use Ito’s formula, take g(t, x) = 1
2x2

and Xt = Bt, which yields

dg(t, Bt) = BtdBt +
1
2
(dBt)2,

which means

1
2
dB2

t =
∫ t

0
BsdBs +

1
2

∫ t

0
ds,

and this easily reduces to (2.36).

This example shows how the realization (dBt)2 = dt helps calculate Ito integrals. Notice

that the integral of a purely random process ends up having a deterministic part; for deeper

insight along these lines, see [9, pp. 339-340].

Along these lines, let us solve

dXt = bXtdt + σXtdBt, (2.37)
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where σ and b are positive constants. The noiseless case would produce the solution Xt =

ebXt , so we may expect something like this but with a correction term. Since (2.37) can be

interpreted as
∫ t

0

dXs

Xs
= bt + σBt,

we apply Ito’s formula (using that (dt)2 = 0):

d(ln(Xt)) =
dXt

Xt
− (dXt)2

2X2
t

=
dXt

Xt
− σ2X2

t dt

2X2
t

=
dXt

Xt
− 1

2
σ2dt.

Thus, solving for dXt
Xt

and integrating, we get

bt + σBt = ln(
Xt

x
) +

1
2
σ2t,

or

Xt = xe(b− 1
2
σ2)t+σBt .

Notice that we recover the proper solution for the noiseless case when σ := 0, and that we

have solved the one-dimensional equation Ẋ = (r(X) + W )X when r(X) is constant.

For the next example we study the logistics equation

dXt = (aXt − b(Xt)2)dt + σXtdBt, (2.38)

for a, b, and σ positive constants. We remark that only a is perturbed; if b is perturbed,

then the probability that solutions do not explode in finite time is zero (except, of course,

for the trivial solution x = 0; see [2, p. 99]).
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To solve (2.38), substitute Yt = −1
Xt

to get

dYt = (−aYt − b)dt− σYtdBt,

which is solved in a similar fashion to (2.37):

Yt = e−[(a− 1
2
σ2)t+σdBt][−1

x
− b

∫ t

0
e(a− 1

2
σ2)s+σdBsds].

Transforming back to Xt gives

Xt =
xe(a− 1

2
σ2)t+σBt

1 + xb
∫ t
0 e(a− 1

2
σ2)s+σdBsds

.

Observe that in the noiseless case one yields the familiar elementary solution

Xt =
xK

x− (K − x)e−at
,

for K = b
a and all t ∈ R+.

Finally, let us move to a two-dimensional system; now let B be an R2-valued Brownian

motion on a probability space (Ω,A, P ). We will “reverse engineer” the classical system

where

dx1 = −x2dt

dx2 = x1dt,
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with initial value x(0) = (x1(0), x2(0)) = (1, 0) ∈ R2. It is well-known that the solution is

x(t) = (cos(t), sin(t)) = eit. Now pick g(t, x) = eix, so that

g(t, B) = eiB = (cos B, sinB) := (X1, X2).

Then by Ito’s formula, we see

dX1
t = − sin(Bt)dBt − 1

2
cos(Bt)dt = −X2dBt − 1

2
X1dt

dX2
t = cos(Bt)dBt − 1

2
sin(Bt)dt = X1dBt +

1
2
X2dt

is the stochastic system (with initial condition X0 = (1, 0) a.s.) whose solution is a one-

dimensional Brownian motion traveling around the unit circle.
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Chapter 3

Dynamical Systems and Stochastic Stability

3.1 “Stochastic Dynamical Systems”

In this section we present an overview of dynamical systems and their “stochastic”

analogies. Let X be a metric space and let S : D(S) ⊂ R × X → X. For t ∈ R, let

St := S(t, ·).

Definition 3.1. We say S is a local dynamical system or local flow if D(S) is open in

R×X, S is continuous and

i) S0 = idS, and

ii) St+s = St ◦ Ss for all t, s ∈ R.

We say S is a global flow if S is a local flow with D(S) = R×X. We say S is a local

(global) semiflow if the above conditions hold with R replaced by R+.

Definition 3.2. We say that a set A ⊂ X is positively invariant for a local semiflow S if

St(A ∩D(St)) ⊂ A for all t ∈ R+. We say x is an equilibrium point if, for every t ∈ R+,

x ∈ D(St) and St(x) = x.

Recall that autonomous ordinary differential equations generate flows: let

b ∈ C1(Rn,Rn) and consider the system u̇ = b(u). Given any initial value x ∈ Rn there

exists a largest open interval of existence Ix ⊂ R containing 0 such that the system u̇ = b(u)

has a unique solution ux ∈ C1(Ix,Rn) with ux(0) = x. The system u̇ = b(u) generates a

local solution flow S : D(S) ⊂ R × Rn → Rn with D(S) := {(t, x) ∈ R × Rn|t ∈ Ix} where

S(t, x) := ux(t) for all (t, x) ∈ D(S); D(S) is open and S is continuous by [1, Theorem
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8.3], S is C1(D(S),Rn) since b ∈ C1(Rn,Rn) by [1, Theorem 9.5], and the uniqueness of

the solution guarantees the group property: St+s = StSs for all s, t ∈ R+. Similarly, we can

obtain the local solution semiflow S|D(S)∩(R+×Rn). Observe that ∂
∂tS(t, x) = b(S(t, x)) for

all (t, x) ∈ D(S).

Assume u̇ = b(u) generates a global solution flow S. Then St ∈ C1(Rn,Rn) for all

t ∈ R and St is invertible with S−1
t = S−t ∈ C1(Rn,Rn). So, for each t ∈ R, St : Rn → Rn

is a C1-diffeomorphism. This means that for any A ∈ Bn we have the change of variable

formula

∫

S−1
t (A)

f(x)dx =
∫

A
f(S−1

t (y))|det(D(S−1
t (y)))|dy (3.1)

=
∫

A
f(S−t(y))|det(DS−t)(y)|dy

where D(S−1
t ) is the (nonzero) Jacobian matrix for S−1

t . Thus, λ(A) = 0 implies

λ(S−1
t (A)) = 0 for all t; we shall soon see the importance of this property.

Analogously, compare the above to the autonomous case of stoachastic differential

equations. For (U, V ) ∈ Sn,d
F ,B, this amounts to making U and V constant in time; call

Ut := b for all t ∈ R+ and Vt := σ for all t ∈ R+, where b : Rn → Rn is (Bn, Bn)-measurable

and σ : Rn → Rn×d is (Bn, Bn×d)-measurable. We remark that this may seem like a strange

and sudden notation change, but it is quite common in the literature to use “σ, b” notation

and so we adhere to this convention now, specially reserving it for the autonomous case

(even though many authors use σ and b for more general cases).

We shall now see how solutions in the autonomous case enjoy some of the “nice dynam-

ical systems properties” that we hope for. Considering only degenerate initial distributions,
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we see that (2.20) takes the form

dXt = b(Xt)dt + σ(Xt)dBt, (3.2)

X0 = x a.s.,

with x ∈ Rn. To emphasize the initial condition in the solution’s expression, call X0,x the

strong solution to (3.2), where B is given, and X0,x is F(B)-adapted. Let us study the

induced weak problem

dXt = b(Xt)dt + σ(Xt)dBt, (3.3)

PX0 = εx.

We will now provide two weak solutions to (3.3) that are “time shifts” of each other and

use the weak uniqueness property to conclude that they must have the same distribution.

Obviously, (X0,x, B,F(B)) is a weak solution to (3.3).

Now consider the process (Xs,x
t+s)t∈R+ , that is, the shifted version of X0,x as above

where Xs,x
s = x a.s. We would like to shift back in time by s to solve (3.3); observe that

one cannot simply shift the Brownian motion B in time without affecting the variance, so

to “shift” B, we need to define a new Brownian motion with the appropriate distribution

(this is why we must appeal to the weak problem!). So, define B̃t := Bt+s − Bs for all

t ≥ 0. Then B̃ = (B̃t)t∈R+ is a Brownian motion starting at zero, has the same distribution

as (Bt+s)t∈R+ by stationary increments, and F̃(B̃) is defined by F̃t(B̃) := Ft+s(B) for all
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t ∈ R+. Now, by definition of Xs,x and shifting,

Xs,x
t+s = x +

∫ t+s

s
b(Xs,x

r )dr +
∫ t+s

s
σ(Xs,x

r )dBr

= x +
∫ s

0
b(Xs,x

r+s)dr +
∫ s

0
σ(Xs,x

r+s)dB̃r.

This means ((Xs,x
t+s)t∈R+ , B̃, F̃(B̃)) is also a weak solution of (3.3). Thus, by the weak

uniqueness,

(X0,x
t )t∈R+ ∼d (Xs,x

t+s)t∈R+ , (3.4)

which leads us to the following definition:

Definition 3.3. We say a process X is time-homogeneous if X satisfies (3.4).

We call this the diffusion case, often referring to the solution X as a diffusion; we

think of x as a particle that would move with velocity b (b is sometimes called the “drift”

coefficient) except that random collisions with other particles (say, the collisions occur with

some kind of “intensity” σ, also called a “diffusion” coefficient) may cause interference. As

we will see later, there is an intimate relationship between stochastic differential equations

and second-order partial differential equations, which is one reason why the term “diffusion”

is used.

Again, time-homogeneity has much to do with the “nice dynamical systems properties”

we want; we may think of a diffusion as a “stochastic semiflow.” In fact, in probability

theory, a diffusion refers to a Markov process with continuous paths (with perhaps some

extra properties); it therefore is not a surprise that a solution to a stochastic differential

63



equation with initial values that are a.s. constant will be a Markov process (see [12, Theorem

7.2]).

So what if the initial condition is a nondegenerate random variable? Then we have

a semiflow action on a set of probability measures. More precisely, recall that Cb(Rn,R)

is the set of bounded, continuous functions mapping Rn into R, and call MBn the set

of all finite Borel measures. Equip Cb(Rn,R) with the the sup norm, that is, the norm

‖f‖ = supx |f(x)|, to make it a Banach space. Then MBn is a subset of C∗
b (Rn,R), the dual

space of Cb(Rn,R), so if we equip C∗
b (Rn,R) with the weak∗ topology, MBn inherits it. It

can be shown that MBn is metrizable as a complete metric space (see [13, p.371]), therefore

a dynamical system could be defined over MBn . In fact, we are most interested in the

(Lebesgue) absolutely continuous measures; this allows us the luxury of using semigroup

theory to “fluctuate functions” rather than “fluctuate measures.”

Now define a family U = (Ut)t≥0 such that for each t ∈ R+, Ut : MBn →MBn by

Utµ :=
∫

Pt(x, ·)µ(dx). (3.5)

Then U is the dual semigroup to T , as 〈f, Utµ〉 = 〈Ttf, µ〉 for all f ∈ C0(Rn,R) and all

µ ∈ C∗
0 (Rn,R), where 〈f, µ〉C0(R),C∗0 (R) :=

∫
fdµ. Note that U is a semidynamical system

on MBn : µ ∈MBn implies Utµ ∈MBn for every t ∈ R+. Also, for any B ∈MBn , we have

U0µ(B) =
∫

P0(x,B)µ(dx) =
∫

1B(x)µ(dx) = µ(B)

and

Us+tµ(B) =
∫

Ps+t(x,B)µ(dx) =
∫ ( ∫

Pt(y, B)Ps(x, dy)
)

µ(dx) =
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∫
Pt(y, B)

∫
Ps(x, dy)µ(dx) =

∫
Pt(y, B)Usµ(dy) = Ut(Usµ(B)).

All we lack is the continuity, the proof of which can be found in ([13, pp. 370-371]). Notice

that if µ is a probability measure, then Utµ is a probability measure for every t ∈ R+ since

T is a contraction semigroup.

3.2 Koopman and Frobenius-Perron Operators:

The Deterministic Case

In this section, we define the Koopman and Frobenius-Perron operators, which are

useful in understanding how deterministic cases for differential equations extend to stochas-

tic ones. Primarily, we are interested in describing the distribution of a (continuous-time

Rn-valued) solution process X of a stochastic differential equation via semigroup theory; in

the case where the distributions PXt have densities for every t, one can represent the flow

as a semigroup of linear operators on L1(Rn) whose generator is a second-order differential

operator on Rn. This leads to the set-up of a partial differential equation called the Fokker-

Planck equation, which describes the fluctuation of the densities of the distributions of X

(assuming that the random variable Xt has a Lebesgue density for all t ∈ R+).

A brief outline of the procedure is as follows. First, we define the Koopman operator

and the Frobenius-Perron operators. We show they are adjoint and derive the infintesimal

generators for each in the case of a deterministic ordinary differential equation. We then

make a stochastic generalization of these operators and mimic the deterministic case, em-

ploying stochastic calculus. Finally, we yield the form for the infintesimal generator of the

semigroup describing the solution process X and use its adjoint to obtain the Fokker-Planck

equation.
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Given a measureable space (X,F) equipped with a signed measure ρ, let (Y,G, ν̄) be a

(σ-finite) measure space, and let S : X → Y be measurable.

Definition 3.4. We define the image measure of ρ under S by

ρS(G) = ρ(S−1(G)),

for any G ∈ G.

A useful characterization which follows from the definition is

∫
gdρS =

∫
(g ◦ S)dρ, (3.6)

for g nonnegative and measurable. Also, a measurable g is ρS-integrable iff g ◦ S is ρ-

integrable, in which case (3.6) holds.

Definition 3.5. S is nonsingular if ν̄(G) = 0 implies ρ(S−1(G)) = 0 for every G ∈ G.

So, if S is nonsingular, then ρS is absolutely continuous with respect to ν̄ and thus,

has a Radon-Nikodym derivative dρS

dν̄ (which is in L1(ν̄) := L1(Y,G, ν̄) iff ρS is finite).

Now let (X,F , µ̄) be another σ-finite measure space, and let f ∈ L1(µ̄) := L1(X,F , µ̄),

and recall that µ̄f (A) :=
∫
A fdµ̄, for A ∈ F .

We now define the Frobenius-Perron operator P (associated with S as above) by apply-

ing the image measure construction to the signed measure µ̄f ; denote this by µ̄S
f = (µ̄f )S .

Note that since f is µ̄-integrable and

µ̄S
f (G) = µ̄f (S−1(G)) =

∫

S−1(G)
fdµ̄
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holds for any G ∈ G, then µ̄S
f is a finite signed measure.

Definition 3.6. The operator P , where P : L1(µ̄) → L1(ν̄) is defined by

Pf =
d(µ̄S

f )
dν̄

,

is called the Frobenius-Perron operator (associated to S).

We obtain this by taking f ∈ L1(µ̄), creating µ̄f , associating it to µ̄S
f , and using the

nonsingularity of S to take the the Radon-Nikodym derivative with respect to ν̄. In another

way, for G ∈ G,

µ̄S
f (G) = µ̄f (S−1(G)) =

∫

S−1(G)
fdµ̄ =

∫

G
Pfdν̄.

In fact, what happens in general is that S is causing a change in measure, so one can

think of µ 7→ µS as a mapping from MF into MG , where MA denotes the set of all finite

signed measures on a σ-algebra A. Define, for a given measure γ0 on A,

Mγ0

A = {γ ∈MA|γ << γ0},

which is the set of all finite signed measures which are absolutely continuous with respect

to γ0 over A. By Radon-Nikodym, there is a one-to-one correspondence between elements

of Mγ0

A and L1(γ0). Also, if S is nonsingular, then µ 7→ µS is a mapping from Mµ̄
F into

Mν̄
G ; by the above one-to-one correspondence, this mapping can be identified with the

Frobenius-Perron operator.

Closely related to this concept is the Koopman operator.
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Definition 3.7. The operator U , where U : L∞(ν̄) → L∞(µ̄), defined by Ug = g ◦ S, is

called the Koopman operator (associated to S).

Clearly, U is nonnegative in the sense that g ≥ 0 implies Ug ≥ 0 for all g ∈ L∞(ν̄),

and U is a bounded linear operator with operator norm 1. Further, P is a nonnegative

bounded linear operator with operator norm 1. To see that P is nonnegative, let f ∈ L1(µ̄)

be nonnegative everywhere and suppose that Pf is negative over a set G ∈ G of positive

measure. This implies
∫

S−1(G)
fdµ̄ =

∫

G
Pfdν̄ < 0,

which contradicts that f is nonnegative. To see that the operator norm of P is 1, observe

for nonnegative f ∈ L1(µ̄)

‖Pf‖L1(ν) =
∫

Y
Pfdν̄ =

∫

X
fdµ̄ = ‖f‖L1(µ).

This extends easily to the case of arbitrary f ∈ L1(µ̄), using the decomposition of f into

positive and negative parts.

Lemma 3.1. The Koopman operator is the adjoint of the Frobenius-Perron operator.

Proof. By (3.6), for all f ∈ L1(µ̄), g ∈ L∞(ν̄),

< Pf, g >L1(ν̄),L∞(ν̄)=
∫

(Pf)gdν̄ =
∫

dµ̄S
f

dν̄
gdν̄

=
∫

gdµ̄S
f =

∫
(g ◦ S)dµ̄f =

∫
(g ◦ S)fdµ̄ =< f, Ug >L1(µ̄),L∞(µ̄) .
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Now, let X = Y be a metric space, and let F = G = B, where B is the Borel σ-algebra

on X, and let µ̄, ν̄ be two σ-finite measures on B. Now we take S : R+ × X → X to

be a nonsingular semidynamical system, that is, S is a semidynamical system such that

St : X → X is nonsingular for all t. Then we can define Ptf :=
dµ̄

St
f

dν̄ and Utg := g ◦ St, for

each t ∈ R+.

More specifically, let X = Y = Rn, let µ̄ = ν̄ = λn, and let F = G = Bn. As in the

previous section, let b ∈ C1(Rn,Rn) and let ẏ = b(y) generate a global solution flow S; recall

that S is nonsingular due to the change of variable formula (3.1). We now observe that

P := {Pt}t≥0 and U := {Ut}t≥0 (both of which are associated to S) are in fact semigroups;

let t, s ≥ 0, and let g ∈ L∞(Rn). U is a semigroup because

Ut+s(g) = U((St+s(g)) = U(St(Ss(g))) = Ut(Ss(g)) = Us(Ut(g)),

and clearly, U0(g) = g. Also, P is a semigroup, since for any f ∈ L1(Rn) and A ∈ Bn

∫

A
Pt+sf =

∫

S−1
t+s(A)

f =
∫

S−1
s (S−1

t (A))
f =

∫

S−1
t (A)

Psf =
∫

A
Ps(Ptf),

so Pt+sf = Ps(Ptf) (and clearly, P0f = f). We have already observed that Ut and Pt

have operator norm equal to one for each t ≥ 0, therefore P and U are in fact contraction

semigroups.

The next property we need is strong continuity. Call C1
c (Rn) the space of functions in

C1(Rn) that have compact support.

Lemma 3.2. P is a strongly continuous semigroup.
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Proof. By (3.1), we have (a.s.)

Ptf(x) = f(S−tx)|det((DS−t)(x))|

for all f ∈ C1
c (Rn), and

lim
t→0+

f(S−tx)|det((DS−t)(x))| = f(x).

We claim that the limit is uniform in x. To see this, define Kt for t ∈ [0, 1] to be the support

of Ptf , so K0 is the support of f . Then Kt = St(K0) for all t ∈ [0, 1], since |det(DS−t)(x)|

is never zero and

Ptf(x) 6= 0 ⇔ f(S−tx) 6= 0 ⇔ S−tx ∈ K0 ⇔ x ∈ St(K0).

But K0 is compact and S is continuous on R+ × Rn, so K :=
⋃

t∈[0,1] Kt = S([0, 1] ×K0)

is compact. Therefore, (t, x) 7→ f(S−tx) is uniformly continuous on [0, 1] × K, and so is

(t, x) 7→ f(S−tx)|det((DS−t)(x))|. Finally, realizing that if h : [0, 1]×Rn → R is uniformly

continuous, then h(t, ·) converges uniformly to h(0, ·) as t → 0+ proves our claim.

Our claim implies

lim
t→0

‖ Ptf − f ‖L1=
∫

Rn

lim
t→0

|Ptf(x)− f(x)|dx =
∫

K
lim
t→0

|Ptf(x)− f(x)|dx = 0.

Since P is uniformly bounded, by Banach-Steinhaus, Ptf → f in L1 for any f ∈ L1(Rn)

(the closure of C1
c (Rn) in the L1-norm). This means P is strongly continuous.
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As a consequence, we know that P has an infinitesimal generator AFP by Hille-Yosida.

To identify AFP , we will use the duality between the Frobenius-Perron and Koopman

operators, first showing that U has an infinitesimal generator AK and identifying it. To

this end, let t ∈ R+, x ∈ Rn, and suppose f ∈ C1
c (Rn); then by the Mean Value Theorem,

definition of U , and definition of solution semiflow,

Utf(x)− f(x)
t

=
f(S(t, x))− f(x)

t
=

∇f(S(ct, x)) · ∂

∂t
S(ct, x) = b(S(ct, x)) · ∇f(S(ct, x)),

for some 0 ≤ c ≤ 1. Then

lim
t→0+

Utf(x)− f(x)
t

= lim
t→0+

b(S(ct, x)) · ∇f(S(ct, x)) = b(x) · (∇f(x)).

By a similar argument as in the proof of Lemma 3.2, the limit is uniform in x. Thus, for

at least f ∈ C1
c (Rn), Utf−f

t converges in L∞; in particular, Utf converges to f in L∞ for

all f ∈ C1
c (Rn) (differentiability implies continuity). Since U is uniformly bounded, by the

Banach-Steinhaus theorem, Utf → f in L∞ for all f ∈ C0 (the closure of C1
c (Rn) in the

L∞-norm). Further, Ut(C0) ⊂ C0, so U restricts to a strongly continuous semigroup on

C0. So, by Hille-Yosida, U |C0 has an infinitesimal generator AK ; our calculation shows

C1
c (Rn) ⊂ D(AK) and that, for all f ∈ C1

c (Rn),

AKf = b · (∇f). (3.7)
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We now use the duality between the Frobenius-Perron operators and the Koopman

operators to identify AFP . Note that P is not really the dual of U |C0 ; also, we would

need reflexivity to insure that a strongly continuous contraction semigroup T has a strongly

continuous dual contraction semigroup T ∗, and that the dual of the generator of T is really

the generator of T ∗ [17, Theorem 3.7.1]. However, let g ∈ C1
c (Rn) and let f ∈ D(AFP ) be

continuously differentiable. Then for any t ≥ 0 we have

< Ptf, g >L1(Rn),L∞(Rn)=< f, Utg >L1(Rn),L∞(Rn),

and we can subtract < f, g >L1(Rn),L∞(Rn) from both sides and divide by t:

<
Ptf − f

t
, g >L1(Rn),L∞(Rn)=< f,

Utg − g

t
>L1(Rn),L∞(Rn) .

We know that the limit as t → 0+ exists on both sides; on the right hand side, take this

limit and use (3.7) and integration by parts:

< f, AKg >L1(Rn),L∞(Rn)=
∫

f(AKg) =
∫

f [b · (∇g)]

= −
∫

g[∇ · (bf)]dx =< −∇ · (bf), g >L1(Rn),L∞(Rn) .

The above calculation identifies AFP , which we have already shown to exist. In fact, for all

f ∈ D(AFP ) ∩ C1(Rn),

AFP f = −∇ · (bf).

Thus, we have proved
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Theorem 3.1. The infinitesimal generator AK of the Koopman semigroup (restricted to

C0) is given by AKf = b · ∇f for f ∈ C1
c (Rn). The infinitesimal generator AFP of the

Frobenius-Perron semigroup is given by AFP g = −∇ · (bg) for continuously differentiable

g ∈ D(AFP ).

Consider what happens in the case where we have a deterministic differential equation

with global solution flow S = {St}t≥0 with a “noisy” initial value, that is, an initial value

that is a nondegenerate random variable, say, X0 = X0 a.s. Then we have the initial value

problem

dXt = b(Xt)dt, (3.8)

X0 = X0 a.s.

Lemma 3.3. X := (Xt)t∈R+ defined by Xt := St ◦X0 for all t ∈ R+ solves (3.8).

Proof. The proof is easy. Obviously, the initial condition is satisfied, and further,

∂

∂t
X(t, ω) =

∂

∂t
S(t,X0(ω)) = b(S(t,X0(ω))) = b(Xt(ω)),

for any ω ∈ Ω.

Remark: As a result of the lemma, we get the following useful equations:

PXt(B) = PSt◦X0(B) = (PX0)St(B) = PX0(S−1
t (B)),
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for all t ∈ R+ and B ∈ Bn. Extending this to finite-dimensional distributions, we get

P (Xt1 ,Xt2 ,··· ,Xtk
)(B1 ×B2 × · · · ×Bk) = PX0(

k⋂

i=1

S−1
ti

(Bi)), (3.9)

for all t1, t2, · · · , tk ∈ R+ and B ∈ Bn.

The Frobenius-Perron semigroup P gives us a new way of understanding (3.8) if X0

has a density. Let X0 have density g, so PX0
= λg. Recall that, for any t ∈ R+, we denote

the distribution of Xt by PXt (so PX0 = PX0
). Then PXt also has a density (since St is a

diffeomorphism for each t), and PXt = λPtg since for any A ∈ Bn,

PXt(A) = P (St◦X0)(A) = PX0(S−1
t (A)) =

∫

S−1
t (A)

g(x)dx =
∫

A
Ptg(x)dx.

But the strong continuity of P allows us to use Theorem 1.2; we may set up the Cauchy

problem

ut = −∇ · (bu) = AFP u (3.10)

u(0, x) = g(x),

where g is the density of X0. Solving (3.10) gives u(t, ·) = Ptg(·), the density of PXt , for

any t ∈ R+. We call (3.10) the Liouville equation; one can interpret this physically as a

conservation of mass equation (where b is a velocity field for a fluid with density u).

In summary, we have following lemma:

Lemma 3.4. If X solves (3.8) and PX0 = λg, then PXt = λPtg = λu(t,·) for all t ≥ 0,

where u is the solution of (3.10).
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Probably the easiest example is the scalar “transport” equation ẋ = b, for a positive

constant b, with initial condition x(0) = x0 whose solution is x(t) = St(x0) := bt + x0. If

there were an entire family of degenerate initial conditions (occurring with some probabil-

ity), they would all be subject to the “transporting” motion x 7→ x + bt.

Now, add a noisy initial condition so the transport equation becomes dXt = b dt

with initial condition X0 = X0 having density g, where b is a positive constant. Then

we can use the Frobenius-Perron semigroup to study the fluctuation of g via the equation

∂
∂tu(t, x) = AFP u := −∇ · (bu) with initial condition u(0, x) = g(x), which has solution

Ptg(x) = g(x − bt). This makes sense; imagine a process heavily concentrated at x0 ∈ R

initially, so that g(x0) is a “spike”. Then the process should be heavily concentrated at

x0 + bt after some time t, so the density g at this time should be “spiking” at g(x0 − bt).

For the weak version of (3.8), we would be given the initial condition PX0 = µ instead

of X0 = X0 a.s.; let us point out another way to determine PXt , for t ≥ 0, given PX0 = µ,

a way that works whether µ has a density or not.

Lemma 3.5. Suppose, for every x ∈ Rn, that ẏ = b(y), y(0) = x has a global forward-in-

time solution Xx with distribution P x := PXx
. Given a probability measure µ on Bn, define

Pµ by

Pµ(A) :=
∫

x∈Rn

P x(A)µ(dx),

for any A ∈ B(C). Then a stochastic process X = (Xt)t∈R+ is a solution to the initial value

problem

dXt = b(Xt)dt, (3.11)
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PX0 = µ,

iff PX = Pµ.

Remark 1: Pµ is well-defined (ẏ = b(y) determines a trivial convolution semigroup of

measures; see [9, Lemma 8.7] or the discussion on pp. 9-10 in the section “Kernels and

Semigroups of Kernels”).

Remark 2: Clearly, Xx
t = S(t, x) a.s. by Lemma 7, where S is the solution semiflow

generated by ẏ = b(y), and so, PXx
t = εS(x,t) for all t ∈ R+, x ∈ Rn. Further, (Xx)x∈Rn is

a family of strong solutions to ẏ = b(y) parameterized by x ∈ Rn (in the initial condition

y(0) = x) such that each process Xx may live on a different probability space (Ωx,Fx, Px)

for each x; however, this doesn’t matter, as all we care about is P x.

Proof. Let X := (Xt)t≥0 be a stochastic process on a probability space (Ω,F , P ). We want

to show that X solves (3.11) iff PX = Pµ. To this end, suppose that X solves (3.11); we

must show that PX = Pµ. Since X solves (3.11), X = (St ◦ X0)t≥0 by Lemma 3.3 and

PX0 = µ. Now let k ∈ N, let t1, t2, · · · , tk ∈ R+, let B1, B2, · · · , Bk ∈ Bn, and call πt1,t2,··· ,tk

the mapping from C := C(R+,Rn) into Rn×k given by ω 7→ (ω(t1), ω(t2), · · · , ω(tk)) Then,

by definition of Pµ,

Pµ(π−1
t1,t2,··· ,tk(B1 ×B2 × · · · ×Bk))

=
∫

Rn

PXx
(π−1

t1,t2,··· ,tk(B1 ×B2 × · · · ×Bk))µ(dx)

=
∫

Rn

P (Xx
t1

,Xx
t2

,··· ,Xx
tn

)(B1 ×B2 × · · · ×Bk)µ(dx).
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Now, since Xx solves (3.8) and since Xx
0 = x a.s., we may apply (3.9) twice to see that the

above equals
∫

1(S−1
t1

(B1)∩S−1
t2

(B2)∩···∩S−1
tk

(Bk))(x)µ(dx)

= µ(S−1
t1

(B1) ∩ S−1
t2

(B2) ∩ · · · ∩ S−1
tk

(Bk))

= P (Xt1 ,Xt2 ,··· ,Xtk
)(B1 ×B2 × · · · ×Bk),

and so Pµ = PX .

For the other implication, suppose that PX = Pµ. Then we must show that X is a

solution to (3.11). To see this, observe that X satisfies the initial condition, since

PX0(B) = µ(B),

for any B ∈ Bn. It only remains to show that (Xt)t∈R+ and (St ◦X0)t∈R+ have the same

joint distributions, which follows similarly to the above:

P (Xt1 ,Xt2 ,··· ,Xtk
)(B1 ×B2 × · · · ×Bk)

= Pµ(B1 ×B2 × · · · ×Bk)

= µ(S−1
t1

(B1) ∩ S−1
t2

(B2) ∩ · · · ∩ S−1
tk

(Bk))

= P (St1◦X0,St2◦X0,··· ,Stk
◦X0)(B1 ×B2 × · · · ×Bk),

thus X is a solution and the lemma holds.
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To interpret this result, fix x1, x2 in Rn and α ∈ [0, 1], and call µα = αεx1 + (1−α)εx2 .

Let Xx1 and Xx2 denote the respective solutions to (3.8) with initial conditions X0 = x1

a.s. and X0 = x2 a.s. Then if X solves (3.11) with initial condition PX0 = µα, X must

have distribution Pµα , where

Pµα = αPXx1 + (1− α)PXx2
.

So, if X is a strong solution to (3.8) with initial condition X0 = X0, where X0 is a

random variable equal to x1 with probability α and x2 with probability 1 − α, then X

is a modification of the process X̃, where X̃ = Xx1 with probability α and X̃ = Xx2

with probability 1 − α. In this way, one may interpret the action of the above lemma as

a kind of “stochastic superposition” (not the usual “superposition principle,” which says

that the linear combination of solutions is also a solution, which we cannot expect unless

we assume b is linear). More profoundly, this extends to even nonzero σ, which means it

suffices to examine degenerate initial conditions for (weak) stochastic differential equations.

We extend the above ideas to the stochastic case in the next section, emphasizing the use

of the Frobenius-Perron semigroup.
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3.3 Koopman and Frobenius-Perron Operators:

The Stochastic Case

We have studied (0, b) with a degenerate initial distribution, and also for a noisy initial

condition which is the nondegenerate distribution of an initial random variable (with a

density). We want σ to be non-zero now, so let us extend the notions of Koopman operator

and Frobenius-Perron operator to the stochastic case and then derive extended versions of

AK and AFP . As before we derive AK and exploit “duality” to obtain AFP .

As in the previous section, it suffices to study the degenerate solutions by integrating

P x over x with respect to a given nondegenerate initial distribution µ; the proof involves

deep probabilistic concepts (see [9, Theorem 21.10] and the preceding theorems ibidem) so

we will simply state the result.

Lemma 3.6. Suppose, for every x ∈ Rn, that dXt = b(Xt)dt + σ(Xt)dBt, X0 = x a.s. has

a global forward-in-time solution Xx = (Xx
t )t∈R+ with distribution P x := PXx

. Given a

probability measure µ on Bn, define Pµ by

Pµ(A) :=
∫

x∈Rn

P x(A)µ(dx),

for any A ∈ B(C). Then a stochastic process X = (Xt)t∈R+ is a solution to the initial value

problem

dXt = b(Xt)dt + σ(Xt)dBt, (3.12)

PX0 = µ,
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iff PX = Pµ.

Under the assumptions of Lemma 3.6, let Xx := (Xx
t )t≥0 denote the solution process to

(σ, b) with initial condition X0 = x a.s. and let P x be the distribution of Xx. Define Ex to be

the expectation with respect to P x. We can now define the stochastic Koopman operator; as

before, we want something like “Utf = f ◦ St” for a “stochastic solution semiflow” (we can’t

backsolve; the noise in the flow causes a “diffusion” ) S (which acts on random variables)

and we also want U to map L∞(Rn) into L∞(Rn). But something must give; we are dealing

with a space of Rn-valued random variables rather than Rn. So, let f ∈ L∞(Rn); then for

fixed t ∈ R+ and fixed x ∈ Rn, f ◦ (Xx
t ) is a bounded and Borel-measurable function that

maps C(R+,Rn) into R, and so Ex(f ◦ Xx
t ) makes sense. This leads us to the following

definition:

Definition 3.8. Let f ∈ L∞(Rn) and (Xx
t ) := (Xx

t )t≥0,x∈Rn be the family such that, for

every fixed x, (Xx
t ) is the canonical realization of the solution to (σ, b) with initial condition

X0 = x a.s. Define for all t ∈ R+ the stochastic Koopman operator Ut : L∞(Rn) → L∞(Rn)

by

Utf(x) := Ex(f ◦Xx
t ),

for all f ∈ L∞(Rn) and x ∈ Rn.

Let us comment on this definition; first observe that the canonical realization is nec-

essary; P x (and hence Ex) lives over B(C). Next, note that it is consistent with the

deterministic Koopman operator as Xt = St ◦ X0 = St(x) when X0 = x a.s. for a global

solution flow S generated by ẏ = b(y), so Utf(x) reduces to f(St(x)). Next, it is obvious

that Utf ∈ L∞(Rn) for all t ∈ R+ and f ∈ L∞(Rn), and that Ut is nonexpansive for all
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t ∈ R+. In fact, U := {Ut}t≥0 restricts to a strongly continuous semigroup on C0 (see

[9, Theorem 21.11]), so it has an infinitesimal generator. We emulate the argument in the

deterministic case to identify it; let n = 1 for notational ease (the argument for any n is

similar). Let f ∈ C2
c (R) and recall that if Xx solves (σ, b) with initial condition X0 = x a.s.,

then Xx and f(Xx) are continuous martingales (which means we may apply Ito’s formula).

For the remainder of this argument, we call Xt := Xx
t for convenience. Then we have

Xt = x +
∫ t
0 b(Xs)ds +

∫ t
0 σ(Xs)dBs, so apply Ito’s formula to f(Xt):

f(Xt) = f(x) +
∫ t

0
[b(Xs)f ′(Xs) +

1
2
σ2(Xs)f ′′(Xs)dt] +

∫ t

0
σ(Xs)f ′(Xs)dBs.

Taking the expected value with respect to P x of both sides, we get

Exf(Xt) = f(x) + Ex

( ∫ t

0
b(Xs)f ′(Xs) (3.13)

+
1
2
σ2(Xs)f ′′(Xs)dt

)
+ Ex(

∫ t

0
σ(Xs)f ′(Xs)dBs).

By basic properties of Ito integrals, Ex(
∫ t
0 σ(Xs)f ′(Xs)dBs) = 0, so (3.13) becomes

Exf(Xt) = f(x) + Ex(
∫ t

0
b(Xs)f ′(Xs) +

1
2
σ2(Xs)f ′′(Xs)dt).
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Now, by definition of infinitesimal generator,

Af(x) = lim
t→0

Exf(Xt)− f(x)
t

= lim
t→0

Ex(
∫ t
0 [b(Xs)f ′(Xs) + 1

2σ2(Xs)f ′′(Xs)]dt)
t

= Ex(b(X0)f ′(X0) +
1
2
σ2(X0)f ′′(X0))

= b(x)f ′(x) +
1
2
σ2(x)f ′′(x).

Thus we have the characterization for the infinitesimal generator of the stochastic Koopman

operator:

AKf = bf ′ +
1
2
σ2f ′′, (3.14)

for any f ∈ C2
c (R), or, for any dimension n, for 0 ≤ i, j ≤ n,

AKf =
n∑

i=1

bi
∂f

∂xi
+

1
2

n∑

i,j=1

aij
∂2f

∂xi∂xj
, (3.15)

for any f ∈ C2
c (Rn), where (aij) =

∑d
k=1 σikσjk (the Brownian motion is d-dimensional,

for 1 ≤ d ≤ n). Note that if the noise were zero, the generator would correspond to the

deterministic case, as expected.

Next, we obtain the infinitesimal generator of Frobenius-Perron operator associated to

the “stochastic solution semiflow” S induced by the solution of (σ, b) in the case that S is

nonsingular. We must impose here that ∂b
∂x , ∂σ

∂x , and ∂2σ
∂x2 exist and are bounded.
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Naively, if something like “A∗FP = AK” holds then from (3.14) and integration by parts

we would get

AFP f = −(bf)′ +
1
2
(σ2f)′′, (3.16)

or for any dimension n,

AFP f = −
n∑

i=1

∂(bif)
∂xi

+
1
2

n∑

i,j=1

∂2(aijf)
∂xi∂xj

. (3.17)

In fact, this is the case; for a “from scratch” proof, see [11, Theorem 11.6.1].

Now, let X solve (σ, b) with initial condition X0 = X0 a.s. and suppose X0 has density

g. Then we can set up the problem

∂u

∂t
= AFP u, (3.18)

u(0, x) = g(x),

where the AFP is as in (3.17) and the solution u(t, ·) to (3.18) is the density of Xt for

every t; ∂u
∂t = AFP u is called the Fokker-Planck equation. We are interested in finding a

fundamental solution to (3.18); we digress slightly to give some necessary definitions and

notation that leads to one result that guarantees existence/uniqueness under some technical

conditions.

First, let us rewrite AFP u in nondivergence form:

AFP u = −
n∑

i=1

∂(bi(x)u)
∂xi

+
1
2

n∑

i,j=1

∂2(aij(x)u)
∂xi∂xj

(3.19)
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= c̃(x)u +
n∑

i=1

b̃i(x)
∂u

∂xi
+

1
2

n∑

i,j=1

aij
∂2u

∂xi∂xj
,

where

b̃i(x) = −bi(x) +
n∑

i,j=1

∂aij(x)
∂xj

and

c̃(x) =
1
2

n∑

i,j=1

∂2aij(x)
∂xi∂xj

−
n∑

i=1

∂bi(x)
∂xi

.

Of course, the coefficients must be sufficiently smooth for the above to make sense; we

also want them to satisfy growth conditions, namely, that there is a positive constant M

such that

|aij(x)| ≤ M, |b̃i(x)| ≤ M(1 + |x|), |c̃(x)| ≤ M(1 + |x|2). (3.20)

We know aij = aji, so given any λ = (λ1, λ2, · · · , λn) ∈ Rn, we at least know
∑n

i,j=1 aijλiλj =
∑n

k=1(
∑

i=1 σik(x)λi)2 ≥ 0. We would like strict inequality, so let us

assume that the uniform parabolicity property holds, that is, that there is a constant ρ > 0

such that

n∑

i,j=1

aij(x)λiλj ≥ ρ

n∑

i=1

λ2
i , (3.21)

for any x ∈ Rn and λ ∈ Rn.

We condense the above into the following definition:

Definition 3.9. Given (3.18), we say aij and bi are Cauchy-regular if they are C4 functions

such that the corresponding aij, b̃i and c̃ of (3.19) satisfy (3.21) and (3.20).
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Now we recall the definition of a classical solution.

Definition 3.10. Let f ∈ C(Rn). We say u : R+ × Rn → Rn is a classical solution of

(3.18) if

i) for all T > 0 there are positive constants c, α such that |u(t, x)| ≤ ceαx2
for all

0 < t ≤ T , x ∈ Rn,

ii) ut, uxi , uxi,xj are continuous for all 1 ≤ i, j,≤ n and u satisfies

ut = c̃(x)u +
n∑

i=1

b̃i(x)
∂u

∂xi
+

1
2

n∑

i,j=1

aij
∂2u

∂xi∂xj
,

for all t > 0 and x ∈ Rn, and

iii) limt→0 u(t, x) = f(x).

We are now able to state the desired existence/uniqueness theorem:

Theorem 3.2. Given (3.18), let aij , bi be Cauchy-regular and let f ∈ C(Rn) satisfy

|f(x)| ≤ ceαx2
with positive constants c, α. Then there is a unique classical solution to (3.18)

given by u(t, x) =
∫

Γ(t, x, y)f(y)dy, where the fundamental solution (or kernel) Γ(t, x, y)

is defined for all t > 0, x, y ∈ Rn, is continuous and differentiable with respect to t, twice

differentiable with respect to xi for all 1 ≤ i ≤ n, and satisfies the equation

ut = c̃(x)u +
n∑

i=1

b̃i(x)
∂u

∂xi
+

1
2

n∑

i,j=1

aij
∂2u

∂xi∂xj

as a function of t and x for every fixed y.
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Our slight digression concludes with at least one condition under which a fundamental

solution exists. Now, if we are able to find a fundamental solution Γ(t, x, y) to the Fokker-

Planck equation then given any initial condition u(0, x) = g(x), where g ∈ L1(Rn), we can

define a family of operators {Pt}t≥0 by

u(t, x) = Pt(g(x)) =
∫

Rd

Γ(t, x, y)g(y)dy, (3.22)

and u is often called a generalized solution in this case (of course, g has to be continuous

in order for u to be a classical solution).

Definition 3.11. We call {Pt}t≥0 a stochastic semigroup if {Pt}t≥0 is Markovian semigroup

of linear operators (on L1(Rn)) that is monotone (Ptf ≥ 0 when f ≥ 0, for all t ∈ R+) and

norm-preserving (‖Ptf‖ = ‖f‖ when f ≥ 0, for all t ∈ R+).

The proof of the next theorem can be found in ([11, pp. 369-370]).

Theorem 3.3. {Pt}t≥0 as defined in (3.22) is a stochastic semigroup.

This theorem justifies the following definition:

Definition 3.12. We call P := {Pt}t≥0 as defined in (3.22) the stochastic Frobenius-Perron

semigroup.

Let us now consider the simple example

dXt = dBt, (3.23)

X0 = X0 a.s.,
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where X0 has density g. Then the solution is a Brownian motion, and (3.18) becomes the

heat equation

ut =
1
2
∆u,

u(0, x) = g(x),

which has solution

u(t, x) = (
1

2πt
)

d
2

∫

Rd

e−
|x−y|2

2t g(y)dy, (3.24)

for x ∈ Rd, t ≥ 0. Notice that the fundamental solution

(
1

2πt
)

d
2 e−

|x−y|2
2t

is the density of a Brownian motion, as we expect.

One way to think about what happens is that, for a noiseless stochastic differential

equation with degenerate initial condition, we have a point moving through space in time

governed by a flow (in essence, an ordinary differential equation). If the initial condition

is nondegenerate with a density, we may understand how the family of points evolves as a

density via the partial differential equation generated by the Frobenius-Perron operator.

Now, if a stochastic differential equation has a degenerate initial condition, we still

have a point moving through space in time governed by a flow, but there is noise and we

cannot actually tell where that point is; we are fluctuating random variables or measures.

If the measures are absolutely continuous, we may instead fluctuate densities just as in the
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previous case, which means that “deterministic partial differential equations have the same

complexity as stochastic differential equations with degenerate initial conditions.”

Another interpretation for the latter case is that a point moves through space governed

by a Brownian motion whose “expected flow” is described by b and whose “spread” or

“intensity” is described by σ. For example, in (3.23), the flow is trivial, so we expect that

the point stays where it started in space, but as time goes the noise may move it away. With

the above interpretation, we see now that there is no difference between (σ, b) := (1, 0) with

degenerate initial condition X0 = x and (σ, b) := (0, bL) with nondegenerate initial condition

having a Lebesgue density g, where bL can be derived from the Liouville equation.

So how much more complicated is the “mixed” case where neither σ nor b are zero?

We can actually remove b from our consideration; this result is called the “transformation

of drift” formula (so-called because b is often referred to as the “drift” term), which in our

situation can be stated as follows (see [5, p. 43]):

Given any x ∈ Rn, let Xx solve (σ, b) with initial condition Xx
0 = x a.s. Assume

σ : Rn → Rn × Rn and σ(y) has positive eigenvalues for every y. Further, let f : Rn → Rn

and suppose Y x
t solves (σ, b + σf). Then PXx

t and P Y x
t are absolutely continuous with

respect to each other and

dP Y x
t = exp[

∫ t

0
f(Xx

s )dBs − 1
2

∫ t

0
|f(Xx

s )|2dt]dPXx
t . (3.25)

In particular, we could pick f such that σf = −b, and obtain a relationship between

(σ, b) and (σ, 0); we have already realized how (σ, 0) relates to a deterministic partial dif-

ferential equation (as we did in the study of (3.23)). So, in theory, one can describe the
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dynamical systems aspects of (σ, b) in general by tracing back to (σ, 0) or (0, b) (although

this may be quite unwieldy).

Now that we understand dynamical systems in a stochastic setting, we move to the

notions of stability in a stochastic setting, defining what the various notions of “stochastic

stability” are as well as emulating Liapunov theory to demonstrate stability/instability of

solutions to stochastic differential equations.
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3.4 Liapunov Stability

We begin by recalling some notation and some basic notions of stability of deterministic

dynamical systems.

As we discussed in section 3.1, “Stochastic Dynamical Systems,” we let b ∈ C1(Rn,Rn)

and consider the system u̇ = b(u). Given any initial value x ∈ Rn there exists a largest

open interval of existence Ix ⊂ R containing 0 such that the system u̇ = b(u) has a unique

solution ux ∈ C1(Ix,Rn) with ux(0) = x. The system u̇ = b(u) generates a local solution

flow S : D(S) ⊂ R×Rn → Rn with D(S) := {(t, x) ∈ R×Rn|t ∈ Ix} where S(t, x) := ux(t)

for all (t, x) ∈ D(S); we know D(S) is open, S is C1(D(S),Rn), and S is satisfies the group

property.

In what follows, we assume that S is a global solution flow.

Definition 3.13. We say x̄ is an equilibrium point of S if S(t, x̄) = x̄ for every t ∈ R.

Observe that x̄ is an equilibrium point of S iff b(x̄) = 0.

Definition 3.14. An equilibrium point x̄ of S is called stable if for any ε > 0, there

is δ(ε) > 0 such that whenever ‖x − x̄‖ < δ, it follows that ‖S(t, x) − x̄‖ < ε for all

t ≥ 0. An equilibrium point that is not stable is called unstable. An equilibrium point of

a system is asymptotically stable if it is stable and, in addition, there is r > 0 such that

limt→∞ S(t, x) = x̄ for all x such that ‖x− x̄‖ < r.

We now recall the principle of linearized stability, which in essence extracts information

about the stability of the nonlinear system from the stability of the linearized system. More

specifically, for an equilibrium point ū, we linearize b at ū so that our system becomes

v̇ = Db(ū)v, where v = u − ū and Db(ū) is the Jacobian matrix. It can be shown [8,
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Theorem 9.5 and Theorem 9.7] that if Db(ū) has only eigenvalues with negative real parts,

then ū is asymptotically stable, while if any eigenvalue has positive real part, then ū is

unstable (for eigenvalues with real part 0, the linearized system is insufficient to determine

stability).

Assuming that b(0) = 0, we are interested in the stability of the trivial solution u := 0;

we use Liapunov theory in this situation.

Definition 3.15. We say a C1-function V : D(V ) ⊂ Rn → R is positive definite if D(V )

is open and contains the origin, if V (0) = 0 and if V (x) > 0 for all non-zero x. If

−V is positive definite, we call V negative definite. Define the orbital derivative of V to

be AKV = (b · ∇)V =
∑n

i=1 bi
∂V
∂xi

. We call a positive definite V (strictly) Liapunov if

AKV (x) ≤ (<)0 for all nonzero x.

The utility of Liapunov functions is illustrated in the following theorem, which is proven

e.g. in [8, Theorem 9.12].

Theorem 3.4. If 0 is an equilibrium point of u̇ = b(u), and if there exists a (strictly)

Liapunov function V , then 0 is (asymptotically) stable. Further, 0 is unstable if AKV > 0.

Moving to the stochastic case, we generalize the concepts of stability, orbital derivative,

Liapunov function, and the principle of linearized stability. Stability and orbital derivative

are fairly straight forward to generalize, and Liapunov functions are only a little trickier,

but unfortunately, the principle of linearized stability is quite difficult to generalize. Recall

that Xx denotes the solution to (σ, b) with degenerate initial condition X0 = x a.s.; assume

global solvability, that is, assume Xx exists for every x ∈ Rn. Throughout, assume that

b(0) = 0 and σ(0) = 0, so that (σ, b) admits that trivial solution X = 0.
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Definition 3.16. If for all ε > 0, we have

lim
x→0

P (sup
t≥0

|Xx
t | > ε) = 0,

then we say the trivial solution X = 0 is stable in probability.

In essence, this means that as x goes to 0, the probability that a path starting at x

will remain in an arbitrarily prescribed neighborhood of 0 is 1. This is quite similar to the

deterministic version of stability, except now when x is close to 0, the probability that Xx

is also close to zero is close to 1.

Definition 3.17. If X = 0 is stable in probability and, for every x,

lim
x→0

P ( lim
t→∞ |X

x
t | = 0) = 1,

we say X = 0 is asymptotically stable in probability.

Basically, this means that as x goes to 0, the probability that a path starting at x will

eventually approach 0 as time goes to infinity is 1.

Definition 3.18. Let (σ, b) admit a trivial solution X0 = 0. If X0 is stable in probability

and, for every x,

P ( lim
t→∞Xx

t = 0) = 1

we say X0 is asymptotically stable in the large.

Asymptotic stability in the large is the most powerful notion of stability, since the

probability that any path (no matter where it starts) goes to 0 as time goes to infinity is 1.
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If we are to generalize the Liapunov stability theory to the above concepts, we would

need to study the sign of the “stochastic orbital derivative”; to see what the “stochastic

orbital derivative” is, we do a little reverse engineering. Notice that the deterministic orbital

derivative takes the form of the generator of the deterministic Koopman semigroup AK , so

analogously, it makes sense to think that the “stochastic orbital derivative” should take

the form of the generator of the stochastic Koopman semigroup. This formally justifies the

following definition.

Definition 3.19. For V in C2(Rn), we define the stochastic orbital derivative of V to be

AKV =
n∑

i=1

bi
∂V

∂xi
+

1
2

n∑

i,j=1

aij
∂2V

∂xi∂xj
,

where as before, A := (aij) = (
∑n

k=1 σikσjk).

We remark that the notation “AK” as well as the stochastic generalization of orbital

derivative are consistent; they reduce to the deterministic case when σ is 0.

Now we can generalize the Liapunov theory, which parallels the deterministic case

quite similarly; we remark up front that we are presenting a brief summary with some

simplifying conditions and we are only operating in the time-homogeneous case, and that

there are plenty of weaker assumptions and technical details behind what follows (the reader

is invited to check [7, Chapter 5] for more).

Definition 3.20. Let V : D(V ) ⊂ Rn → R, where D(V ) is open and contains the origin,

V (0) = 0, and V (x) > 0 for all non-zero x. Further, let V ∈ C2(D(V ) \ {0}). We say V is

a (strict) stochastic Liapunov function if AKV (x) ≤ (<)0 for all nonzero x.
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Theorem 3.5. If V is a stochastic Liapunov function then X = 0 is stable in probability.

Further, if the matrix A has positive eigenvalues, then X = 0 is stable in probability iff it

is asymptotically stable in probability.

The proof of this theorem can be found in [7, pp. 164,168].

Asymptotic stability in the large is almost “too nice” for practical purposes; still,

there are several conditions that are sufficient to guarantee it. One not surprising condi-

tion is that X = 0 is asymptotically stable in the large if X = 0 is stable in probabil-

ity and recurrent to the domain |x| < ε for all ε > 0 (a process Y is recurrent to A if

sup{t ≥ 0 : P (Yt ∈ A) = 1} = ∞, else it is transient). There are stricter conditions which

can be imposed on V which are of little interest to us; see ([7, Theorem 4.4, Theorem 4.5])

for those details.

As far as instability goes, things are usually a little trickier. Intuitively, systems that are

stable without noise may become unstable with the addition of noise. Much less intuitively,

an unstable system can be stabilized by the addition of noise! We shall soon see examples

of these situations, but for now, we state one sufficient condition for instability.

Theorem 3.6. Let V be a stochastic Liapunov function with the exception that D(V )

may not contain zero, let limx→0 V (x) = ∞, and call Ur = {x ∈ D(V ) | |x| < r} for

r > 0. If A has positive eigenvalues, then X = 0 is unstable in probability, and further,

P (supt>0 |Xx
t | < r) = 0 for all x ∈ Ur.

Contrast this to the deterministic case, and notice that AKV does not change sign but

V is now “inversely positive definite,” which makes the above believable.
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Let us now look at some examples; of course, there is little to do with the trivial

solutions to the transport equation or the Langevin equation, so let us move the next most

complicated example.

Example 3.1.

Reconsider the one-dimensional equation dXt = bXtdt+σXtdBt, where b, σ are positive

constants, with initial condition X0 = x a.s. We have already solved this explicitly, and we

know its solution is

Xt = xe(b− 1
2
σ2)t+σBt .

We can see that when 2b < σ2, the expected value of the solution decays to 0 as time goes

to infinity, so we expect that the condition 2b < σ2 insures the zero solution X = 0 is stable;

let us use the Liapunov theory to verify this. Pick V (x) = |x|1− 2b
σ2 ; V is positive-definite

and twice-continuously differentiable (except at 0) so we may examine AKV for nonzero x:

AKV (x) = bxV ′(x) +
1
2
σ2x2V ′′(x),

which is the same as

AKV (x) = bx(1− 2b

σ2
)|x|− 2b

σ2 +
1
2
σ2x2(1− 2b

σ2
)(− 2b

σ2
)|x|− 2b

σ2−1.

With a bit of algebra, it is clear that AKV < 0 when 2b < σ2. Thus, X = 0 is asymptotically

stable in probability.

Computationally, this example is quite simple, and interpreting stability in this case as

an “extinct population” is reasonable. However, the results may cause the reader difficulty
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when it comes to a physical interpretation. Notice that if there is no noise, we have ẋ = bx,

where b > 0; clearly this has an unstable trivial solution, so in this case, adding “enough”

noise actually stabilizes the trivial solution. This does not jibe with our physical intuition,

so for consistency’s sake the condition 2b < σ2 as above is deemed “physically unfeasible”

(for a further discussion of this, see [7, 173-176]).

Remark: The discussion in ([7, 173-176]) will appeal to readers interested in a contrast

of the Ito (left-endpoint) interpretation and the Stratonovich (midpoint) interpretation of

the stochastic integral. It turns out that, under the Stratonovich interpretation, the sign of

b alone determines the stability of the trivial solution.

Along these lines, if “not enough” noise is added, or really, “not enough physically

feasible” noise is added, then the trivial solution should remain unstable; this is indeed the

case when 2b > σ2. To see this, select V (x) = − ln |x|. Then all the conditions to determine

instability are satisfied, since for non-zero x,

AKV = −b +
1
2
σ ≤ 0.

Of course, if b is negative, the trivial solution is stable no matter what σ is.

It is intuitive to think that any stable system will become unstable with the addition

of enough noise, but in fact it depends upon the dimension of the space. We can mimic the

above argument in a fairly general setting: suppose we have a system of n equations, each

equation of which has a stable trivial solution. Now add noise to it so our system becomes

dXt = b(Xt)dt + σXtdBt,
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for σ > 0 a constant. Then picking V (x) = − ln(|x|2), we see after several steps of calculus

that

AKV (x) = −2x · b(x)
|x|2 − σ2(n− 2).

We satisfy the hypotheses of Theorem 3.6 when n > 2, as we can pick σ large enough to

destroy the stability of the trivial solution of the original system. Notice that if n = 2

and we take b(i)(Xt) := biXt for i = 1, 2, where bi are negative constants for i = 1, 2, the

asymptotic stability of the system cannot be destroyed by arbitrarily large noise; let σ be

any constant. Then there is a sufficiently small positive constant a := a(σ) such that taking

V (x) = |x|a yields

AKV (x) = a|x|a−2(b1x
2
1 + b2x

2
2 +

aσ2|x|2
2

) < 0.

This means the trivial solution of the system is still asymptotically stable (in fact, asymp-

totically stable in the large).

Let us move to the situation where the trivial solution is stable, but not asymptotically

stable. In this case, stability may be so delicate that even the slightest of noise ruins it;

this is exhibited in the next example.

Example 3.2.

Consider the system

dX1 = X2dt + σ(X)dB1
t ,

dX2 = −X1dt + σ(X)dB2
t ,
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where X = (X1, X2) and B1, B2 are independent Brownian motions. In the determin-

istic case, we have a stable equilibrium at zero that is not asymptotically stable. Pick

V (x) = − ln(|x|2) for x = (x1, x2); similarly to the above example this satisfies all the

necessary requirements to test for instability, and we see

AKV (x) = x2
∂V (x)
∂x1

− x1
∂V (x)
∂x2

+
1
2
σ2(x)[

∂2V (x)
∂x2

1

+
∂2V (x)

∂x2
2

].

With a bit of calculation we see AKV (x) = 0 whenever σ(x) is nonzero for x nonzero, which

means we have instability for arbitrarily small positive noise.

So we have seen simple examples where

i) instability becomes stability with enough noise (although this is not “physically

feasible”),

ii) stability is not affected by (arbitrarily large) noise, and

iii) stability is destroyed by (arbitrarily small) noise,

which shows the complicated and interesting nature of stochastic stability.

Now we briefly discuss the principle of linearized stability; with the above in mind it

should not be surprising that there are quite a lot of difficulties with extracting information

about the full system from the linear approximation. So, what can we say about the full

system if we know how its linearization acts? For one thing, the full system is stable if the

linearized system has constant coefficients and is asymptotically stable. One needs some

other concepts like “exponential stability” to say more; interested readers may want to start

with [7, Chapter 7]. From this point we abandon Liapunov theory in favor of the “density

fluctuation” type of stability theory.
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3.5 Markov Semigroup Stability

Of more practical importance to us is the use of Frobenius-Perron operators and the

Fokker-Planck equations when dealing with stability of solutions to stochastic differential

equations.

Let (X,A, µ) be a measure space, let P := {Pt}t≥0 be a stochastic semigroup, and call

D := {f ∈ L1(X) | ‖f‖ = 1, f ≥ 0} the set of densities.

Definition 3.21. We say f∗ ∈ D is an invariant density for P (also called a stationary

density) if Ptf
∗ = f∗ for all t ≥ 0.

When P is obvious, we may just say that f∗ is an invariant density.

Definition 3.22. We say P is asymptotically stable if P has a unique invariant density

f∗, and if, for all f ∈ D,

lim
t→∞ ‖Ptf − f∗‖L1(X) = 0.

The analog to instability is called sweeping.

Definition 3.23. We say that P is sweeping with respect to a set A ∈ A if, for all f ∈ D,

lim
t→∞

∫

A
Ptf(x)dx = 0.

Given some σ-algebra F ⊂ A of X, if P is sweeping for all A ∈ F , then we say it is

sweeping with respect to F .

When the context is clear, we usually just say that a semigroup is sweeping.

Of particular interest are stochastic semigroups that are kernel operators (when

(X,A, µ) := (Rn,Bn, λn)).
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Definition 3.24. We say P is a stochastic semigroup of kernel operators (on Rn) if for

any x ∈ Rn, t ∈ R+, and f ∈ D,

Ptf(x) =
∫

Rn

K(t, x, y)f(y)dy,

where K := K(t, x, y) : R+ × Rn × Rn → R+ is a (stochastic) kernel, in the sense that

∫

Rn

Ptf(x)dx = 1.

Stochastic semigroups of kernel operators will correspond to a semigroup of Frobenius-

Perron operators associated to a Fokker-Planck equation having a fundamental solution;

for the remainder of the section, let the hypotheses of Theorem 3.2 be satisfied (so aij and

bi are Cauchy-regular for (3.18)) and call P := {Pt}t≥0 the stochastic Frobenius-Perron

semigroup associated to (3.18).

We emulate the Liapunov-type stability theory by again appealing to AK .

Definition 3.25. Let V ∈ C2(Rn) be nonnegative, let lim|x|→∞ V (x) = ∞, and let there

exist constants γ, δ such that V (x), |∂V (x)
∂xi

|, and |∂2V (x)
∂xi∂xj

| are all bounded by γeδ|x|, for

1 ≤ i, j ≤ n. If in addition, there exist positive constants α and β such that V satisfies

AKV (x) ≤ −αV (x) + β,

then we call V Markovian-Liapunov (ML).

The next theorem is quite natural; a proof can be found in ([11, Theorem 11.9.1]).
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Theorem 3.7. P (associated to (3.18)) is asymptotically stable if there exists a ML function

V .

When P is asymptotically stable we can determine the invariant density u∗; since u∗

does not change in time, then u∗ is the unique density that satisfies the special case of

(3.18):

1
2

d∑

i,j=1

∂2

∂xi∂xj
(aiju∗)−

d∑

i=1

∂

∂xi
(biu∗) = 0.

Next we deal with the conditions under which P is sweeping; in this context it is

understood that we are considering sweeping from the family of compact subsets Bc of Rn.

In other words, if for all A ∈ Bc and for all f ∈ D,

lim
t→∞

∫

A
Ptf(x)dx = lim

t→∞

∫

A
u(t, x)dx = 0,

then P is sweeping.

Definition 3.26. Let V ∈ C2(Rn) be positive and let there exist constants γ, δ such that

V (x), |∂V (x)
∂xi

|, and |∂2V (x)
∂xi∂xj

| are all bounded by γeδ|x|. If in addition, there exists a positive

constant α such that V satisfies

AKV (x) ≤ −αV (x), (3.26)

then we call V a Bielecki function.

The proof of the next theorem can be found in [11, Theorem 11.11.1].

Theorem 3.8. P (associated to (3.18)) is sweeping if there exists a Bielecki function V .
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Example 3.3.

One very simple example in one dimension is (σ,−bx) with initial condition X0 = X0

a.s., where X0 has density f and σ and b are positive constants. We have already explicitly

solved this; recall that the solution is

Xt = e−btX0 + σ

∫ t

0
eb(s−t)dBs.

Trying to use Liapunov theory as before proves fruitless, as the trivial solution would have

to have σ := 0. However, we can see that the expected value of this process at any time

t is E(Xt) = e−btE(X0), and that the variance V (Xt) is e−2btV (X0) + σ2
∫ t
0 e2b(s−t)ds; if

time goes to infinity then V (Xt) goes to σ2

2b and E(Xt) goes to 0. Thus we should see some

kind of asymptotic stability with a limiting density exhibiting the same kind of variance; a

natural guess is a Gaussian density centered at zero with variance σ2

2b .

Pick V (x) = x2; observe that V is ML since

AKV (x) =
1
2
(σ2)(2) + (−bx)(2x) ≤ −αx2 + β

is satisfied when α := 2b and β := σ2. Hence P is asymptotically stable and the limiting

density satisfies AFP u∗ = 0, or

1
2
(σ2u∗(x))′′ − (−bxu∗(x))′ = 0,

and this has solution

u∗(x) =

√
b

πσ2
e
−bx2

σ2 .
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Note that this is a normal density with expected value zero and variance σ2

2b , which is

consistent with our expectations.

Example 3.4.

To see how sweeping works, we study dXt = bXtdt + σdBt with initial condition

X0 = X0 a.s., where X0 has density f and σ and b are positive constants. Pick V (x) = e−kx2
,

for some positive constant k. To see if V is a Bielecki function we need to find a positive α

such that

1
2
σ2e−kx2

[(4k2x2) + (−2k)] + bxe−kx2
(−2kx) ≤ −αV (x).

A bit of manipulation gives

2k((σ2k − b)x2 − σ2) ≤ −α,

and we satisfy this if we take k := b
σ2 and α := b . Thus the semigroup is sweeping.

Roughly speaking, sweeping and asymptotic stability are the only possibilities; this is

the so-called Foguel alternative ([11, Theorem 11.12.1]):

Theorem 3.9. Let the hypotheses of Theorem 3.2 be satisfied, and let P be the stochastic

Frobenius-Perron semigroup associated to (3.18). Suppose all stationary nonnegative solu-

tions to (3.18) take the form cu∗(x), where u∗ > 0 a.e. and c is a nonnegative constant,

and call

I :=
∫

Rn

u∗(x)dx. (3.27)

If I < ∞, P is asymptotically stable; if I = ∞, P is sweeping.
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This makes sense; some normalized version of u∗ would be the exact limiting density,

provided u∗ had a finite integral.

We now give a template in one dimension of how to utilize the Foguel alternative.

Consider

dXt = b(Xt)dt + σ(Xt)dt,

where a(x) = σ2(x) and b(x) are Cauchy-regular.

The Fokker-Planck equation takes the form

1
2
(σ2(x)u∗(x))′′ − (b(x)u∗(x))′ = 0,

or, writing z(x) = σ2(x)u∗(x),

dz

dx
=

2b(x)
σ2(x)

z + c1,

for c1 a constant. Then, if e
R x
0 B(y)dy makes sense, where B(y) := 2b(y)

σ2(y)
, we get, for c2 a

constant,

z(x) = e
R x
0 B(y)dy

(
c2 + c1

∫ x

0
e
R y
0 −B(z)dzdy

)
.

We only care about the a.s. positive stationary solutions for the application of the Foguel

alternative, so it is enough to examine the sign of c2 + c1

∫ x
0 (e

R y
0 −B(z)dz)dy for almost every

x.

If we assume that xb(x) ≤ 0 for all |x| ≥ r, for r a positive constant (so [−r, r] is not

repelling for trajectories of ẋ = b(x)), then (according to Maple)
∫ x
0 (e

R y
0 −B(z)dz)dy → −∞

when x → −∞; this means z cannot be positive for every x unless c1 = 0, and thus, the
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stationary nonnegative solutions must take the form

u∗(x) =
1

σ2(x)
c2e

R x
0 B(y)dy.

We now need to check whether
∫
R u∗(x)dx is finite or not, which is the same as observing

that

I :=
∫ ∞

−∞

1
σ2(x)

e
R x
0 B(y)dy (3.28)

is finite or not. If I < ∞, P is asymptotically stable, and if I = ∞, P is sweeping. We now

summarize these results:

Corollary 3.1. Assume a(x) = σ2(x) and b(x) are Cauchy-regular for

dXt = b(Xt)dt + σ(Xt)dt and assume xb(x) ≤ 0 for all |x| ≥ r, for r a positive constant.

Then if I in (3.28) is finite, P is asymptotically stable, and if I in (3.28) is infinite, P is

sweeping.

Example 3.5.

Let σ(x) := σ be a nonzero constant and let b(x) = − Kx
1+x2 , for K ≥ 0 constant. Then

B(x) =
−1
σ2

∫ x

0

2Ky

1 + y2
dy = −K ln(1 + x2),

and

u∗(x) = ce
−K

σ2 ln(1+x2) =
C

(1 + x2)κ
,

where κ := −K
σ2 . We see u∗ is integrable iff K

σ2 > 1
2 , which implies P is asymptotically

stable. Also, 0 ≤ K
σ2 ≤ 1

2 implies P is sweeping. In conclusion, the origin is attracting in
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the deterministic case, but in the stochastic case, we can calculate the critical amount of

noise needed to destroy the asymptotic stability.

Example 3.6.

Let b, σ be positive constants and reconsider the equation

dXt = −bXtdt + σXtdBt,

with initial condition X0 = X0 a.s. (so b(x) := −bx and σ(x) := σx).

We have already solved this explicitly and observed that, for any degenerate initial

condition X0 = x a.s., the solution will go to zero as time goes to infinity. We also

used a stochastic Liapunov function to deduce asymptotic stability. Note that we can-

not apply the template; the necessary prerequisites for the template are not satisfied since

a(x) = σ2(x) = σ2x2 is not bounded by any constant M and hence, is not Cauchy-regular.
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3.6 Long-time Behavior of a Stochastic Predator-prey Model

This is a summary of “Long-time behaviour of a stochastic prey-predator model” by

Rudnicki [16].

We consider the system

dXt = σXtdBt + (αXt − βXtYt − µX2
t )dt, (3.29)

dYt = ρYtdBt + (−γYt + δXtYt − νY 2
t )dt, (3.30)

which is a stochastic Lotka-Volterra predator-prey model. In [4], the existence of a solution

to (3.29, 3.30) is proven. We interpret the (positive) constant coefficients in the following

way: α is the growth rate of the prey in the absence of predators, β is the “predation

rate” that kills off the prey, and µ is inversely related to the “carrying capacity” of the

prey, in that if the population grows too much, the environment cannot support further

growth. We interpret γ as the decay rate of the predator in the absence of prey and δ as

the predation rate that causes predator growth. We may also think of ν as the “reciprocal

carrying capacity” of the predator. Further, we interpret σ, ρ as “noise terms” like disease

or weather fluctuations that would interfere with an ideal model.

Suppose that σ = ρ = 0 in (3.29, 3.30), so that we are in the deterministic case.

One can compute equilibrium points: (0, 0), (0,−γ
ν ), (α

µ , 0), and (x̄, ȳ), where

x̄ =
αν + γβ

δβ + µν
,
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ȳ =
αδ − µγ

δβ + µν
.

We observe that (0, 0) is unstable, (0,−γ
ν ) is biologically irrelevant, and (α

µ , 0) yields

2 cases, namely, stability for µγ > αδ and instability for µγ < αδ. Finally, (x̄, ȳ) yields 3

cases, namely, it lies in the fourth quadrant and is biologically irrelevant for µγ > αδ, lies

in the first quadrant and is asymptotically stable for µγ < αδ, and lies on the x-axis for

µγ = αδ.

So how does this relate to the stochastic case? Let us for now sacrifice technicality for

intuition, and examine the terms

c1 = α− σ2

2
, c2 = γ +

ρ2

2
.

These are the “stochastic versions” of α and γ, respectively (which make sense; if there are

very large fluctuations in disease, weather, etc., then it could significantly affect birth/death

rates). Then conditions like “µγ < (>)αδ” become “µc2 < (>)c1δ.” We get something

analogous in Rudnicki’s Theorem 1, namely, if c1 < 0, then the prey die, and so do the

predators. If c1 > 0, if we have “µc2 > c1δ”, the predators growth will be negative, and

eventually, the predators die out; if we have “µc2 < αc1”, then we obtain a “nice” result,

that somehow the system reaches a desired level of stability. One can see how large noise in

c1 could reduce the prey’s birth rate to below zero, and hence, cause extinction. Without

this noise term or predators, the population would converge to a positive equilibrium,

but with the noise term, “bad” environmental fluctuations cause extinction (even with no

predators!). Similarly, the predators can die if ρ is too large, no matter how the prey acts.

The effects of the incorporation of the noise term is in essence a decrease in the prey’s birth
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rate and an increase in the predator’s death rate. This is arguably a sensible refinement,

as it is a little idealistic to think that very small populations will always survive; one must

expect some role to be played by the unpredictability of nature.

So, equipped with the basic idea, we proceed to make more precise the above by formally

stating Rudnicki’s main theorem and outlining the strategy of the proof. First, transform

(3.29, 3.30) by calling Xt = eξt and Yt = eηt , so we arrive at the main system

dξt = σdBt + (α− σ2

2
− µeξt − βeηt)dt, (3.31)

dηt = ρdBt + (−γ − ρ2

2
+ δeξt − νeηt)dt. (3.32)

Let the solution process (ξt, ηt) be such that the distribution of the initial value (ξ0, η0)

is absolutely continuous with density v(x, y). Then (ξt, ηt) has density u(x, y, t), where u

satisfies the Fokker-Planck equation:

∂u

∂t
=

1
2
σ2 ∂2u

∂x2
+ σρ

∂2u

∂x∂y
+

1
2
ρ2 ∂2u

∂y2
− ∂(f1(x, y)u)

∂x
− ∂(f2(x, y)u)

∂y
, (3.33)

where f1(x, y) = c1 − µex − βey, f2(x, y) = −c2 + δex − νey, and where c1 = α − 1
2σ2,

c2 = γ + 1
2ρ2 > 0.

To verify this, it must be shown that the transition probability function for (ξt, ηt),

which we call P(t, x, y, A), is absolutely continuous with respect to Lebesgue measure for

each (x, y) and t > 0. This means that the distribution of any solution is absolutely contin-

uous and has density u satisfying (3.33). This allows us to proceed by studying “fluctuation
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of densities”, using advanced techniques based on the section on Markov semigroup stability

(see [14] and [15]). We now state the paper’s main theorem (Theorem 1):

Let (ξt, ηt) solve (3.31,3.32). Then for all t > 0 the distribution of (ξt, ηt) has a density

u(t, x, y) satisfying (3.33).

1) If c1 > 0 and µc2 < δc1, then there is a unique density u∗ which is an asymptotically

stable stationary solution of (3.33). This means that, no matter what the initial distribution

of (ξ0, η0) is, (ξt, ηt) converges in distribution to a random variable with density u∗.

2) If c1 > 0 and µc2 > δc1, then limt→∞ ηt = −∞ a.s. and the distribution of ξt

converges weakly to the measure with density f∗(x) = C exp(2c1x
σ2 − (2µ

σ2 )ex).

3) If c1 < 0, then ξt and ηt go to −∞ a.s. as t goes to ∞.

We outline the proof of this theorem by lemmas, introducing notation as necessary:

Call Ptv(x, y) = u(t, x, y). Then{Pt} is a Markov semigroup corresponding to (3.33) (write

(3.33) as ∂u
∂t = Au. Then A is the infinitesimal generator of {Pt}).

Lemma 1: {Pt}t≥0 is an integral Markov semigroup with a continuous kernel k.

In fact, k = k(t, x, y;x0, y0) ∈ C∞(R+×R2×R2) is the density of P(t, x0, y0, ·), so that

Ptv(x, y) =
∫ ∞

−∞

∫ ∞

−∞
k(t, x, y; ξ, η)v(ξ, η)dξdη (3.34)

is the integral representation of {Pt}. The Hormander condition is verified to prove that a

density exists.

We will need that k is positive to apply some “Foguel alternative type” results; the

basic idea is to find some set that is an attractor and realize that k is positive on that

set (which is all that is needed). To this end, a method based on support theorems is

introduced, and we get
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Lemma 2: For each (x0, y0) ∈ E and for almost every (x, y) ∈ E, there exists T > 0

such that k(T, x, y;x0, y0) > 0, where

i) E = R2 if σ > ρ or βρ ≥ νσ,

ii) E = E(M0) = {(x, y)|y < ( ρ
σ )x + M0}, where M0 is the smallest number such that

(f1, f2) · [ρ, σ] ≥ 0 for (x, y) /∈ E(M0), if σ ≥ ρ and βρ < νσ.

So, in the case of i) the invariant density u∗ is positive everywhere, while in the case

of ii) we have a smaller support. If i) we can use the following result:

If an integral Markov semigroup has only one invariant density that is a.e. positive,

then the semigroup is asymptotically stable. Also, if there is no invariant density, the

semigroup is sweeping from compact sets (or simply “sweeping”).

However, if ii) holds, the situation is more delicate, and we must insure that, a.e., for

any t > 0, f ∈ D,

∫ ∞

0
Ptfdt > 0 (3.35)

in order to yield that the (integral Markov) semigroup is either asymptotically stable or

sweeping (also called the Foguel alternative). In fact, in the case of ii) one can show

Lemma 3: In the situation of Lemma 2 ii),

lim
t→∞

∫ ∫

E
Ptf(x, y)dxdy = 1. (3.36)

Now we have

Lemma 4: {Pt} is either sweeping or asymptotically stable.
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Of course, one would like to know which one is happening, so naturally the next result

is

Lemma 5: If c1 > 0 and µc2 < δc1 then {Pt} is asymptotically stable.

The proof of this lemma relies upon the construction of a Khasminskii function, the

existence of which precludes sweeping. This yields Theorem 1 i).

For Theorem 1 ii) and iii), recall that, for equation (σ, b) and its solution Xt, if we

define

s(x) =
∫ x

0
exp(−

∫ y

0

2b(r)
σ2(r)

)drdy, (3.37)

then s(−∞) > −∞ and s(∞) = ∞ implies limt→∞Xt = −∞. From this fact (and a bit

of ergodic theory) it is simple to derive Lemmas 6 and 7, which are Theorem 1 iii) and ii),

respectively.
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