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Abstract

Next-Generation sequencing produces huge collections of strings to be analyzed. This

massive dataset challenges traditional analytics tools and increasingly requires novel solutions

adapting to big data platforms. MapReduce software framework presents a viable solution

to large-scale sequence analysis in terms of efficiency and scalability. Hadoop as an open-

source implementation of MapReduce framework is designed to run applications on large-

scale clusters built on commodity hardware. Hadoop distributed file system (HDFS) and

Hadoop MapReduce are two important components of Hadoop framework. HDFS provides

scalable, fault-tolerant and distributed data storage, while MapReduce is the core concept

of Hadoop framework and provides a scale-out data processing solution across hundreds or

thousands of nodes in Hadoop cluster. Since Hadoop version 0.23, MapReduce has changed

significantly, which we call MapReduce 2 (aka YARN). YARN is the resource manager of the

Hadoop cluster and has the ability to enhance the power of cluster computation. Hadoop is

being widely used in many domains including Bioinformatics.

BioPig, the current version of which is built on Hadoop 1, is a Hadoop-based toolkit for

large-scale sequence analysis. In this thesis, I present the YARN-based BioPig toolkit, which

is an upgrade and continuous development of current version of BioPig. Benefits are gained

from the development: not only the job throughput and cluster utilization are improved, but

also other computational frameworks are permitted to run on Hadoop cluster simultaneously.

k-mer counting is a preliminary step of subsequent sequence analyses in Bioinformatics

and acts as a central role in BioPig. Unlike usual application workloads, k-mer counting gen-

erates a large volume of intermediate data which makes general parameter tuning guidelines

inapplicable. To optimize BioPig performance on YARN cluster, I tuned Hadoop parameters

according to the distinct k-mer counting workload characteristic from five perspectives: data
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compression, HDFS block size, map-side spills, JVM garbage collection and reducer start-

time. The evaluation reveals that this tuning practice reaches a significant performance gain

comparing to the performance of the baseline configuration: the overall job execution time

is reduced by about 50% . Through feature enhancement and performance evaluation, this

thesis provides a valuable reference for other similar applications that generate large volume

of intermediate data. Besides migrating current BioPig to YARN and tuning parameters,

I also developed a new module, PigSimilarity, to extend the application domain of BioPig

tookit.
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Chapter 1

Introduction

In just several years, next-generation technologies have reduced the cost and increased

the speed of DNA sequencing by four orders of magnitude. Back many years ago, reading

DNA was a 3 billion long step job. Automation and computerization revolutionized the

speed of reading the letters of DNA sequences first. And then the advent of next-generation

sequencing technique increased it further. Up to now, modern Illumina systems can generate

6 hundreds of gigabytes per run [34] with 99.9% accuracy. As a result, this rapid pace of

sequencer improvement gives rise to large amount of raw sequence data to be processed and

hence places huge burden on external compute framework.

Meanwhile, extremely large scale sequencing projects are emerging, such as ENCODE

project, 1000 Genomes project, Cow Rumen Deep Metagenomes project and Human Mi-

crobiome project. These projects produce Next-Gen sequencing data on a massive scale.

Traditional analysis tools have got challenged by the fact that they have difficulty in scaling

with data size.

Facing Next-Generation sequencing platform improvement and these emerging large

scale sequencing projects, the life science has been transformed into a data-intensive field.

Parallel processing paradigm (e.g. MPI) and graphical processing unit (GPU) are used to

efficiently process large-scale sequencing datasets. However, both of these two models have

limitations, which are described in great details in the later background part.

Hadoop [2] platform emerged as an economically viable option to address the challenges

of increasingly large datasets. Hadoop distributed file system (HDFS) and MapReduce are

two core components of Hadoop framework. With the assistance of HDFS, Apache Hadoop

not only enables distributed and fault tolerance large dataset storage, but also built-in data
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locality and distributed data processing. MapReduce programming model permits tasks

running in a massively parallel way on large number of nodes. With the combination of

MapReduce and HDFS, Hadoop is considered as a load balancing, scalable and reliable

framework. Nowadays it becomes widely adopted and used in many scientific domains.

BioPig [25] is one of the Hadoop-based toolkits for large-scale NGS analysis in Bioinfor-

matics. It is fully open source under the BSD license, and is implemented on top of Apaches

Hadoop framework and Pig data flow language. Pig Latin [26], an expressive and flexible

language for data analysis, eases the development of sequence analysis tools in Bioinformat-

ics using Hadoop framework. Leveraging the advantages of Hadoop and Pig framework,

BioPig toolkit has both the scalability and robustness offered by Apache Hadoop and the

programmability offered by Pig. In addition, since both Hadoop and Pig are implemented

in Java, BioPig inherits their portability.

However, current BioPig has limitations because it was built on earlier Hadoop version

(v0.20). Hadoop framework has undergone a big architecture shift since version 0.23, the

new version of Hadoop is called Hadoop 2. HDFS federation and YARN [8] resource manager

are two significant advances in Hadoop 2, which were designed to overcome issues of lacking

scalability and high-availability in Hadoop 1.

In this paper, I first introduced the YARN-based BioPig which is migrated from current

BioPig. The new BioPig, inheriting all the Hadoop 2 features, not only scales efficiently on

modern cloud computing platform but also permits other computational frameworks (e.g.

MPI, Spark [4] etc) to run on the same cluster.

Secondly based on the workload characteristics of BioPig functions, I tuned Hadoop

parameters from 5 perspectives: data compression, HDFS block size, map-side spills, JVM

garbage collection and reducer start-time, to optimize the YARN-based BioPig performance.

The overall job execution time decreased by about 50% after these delicate tuning steps were

applied.
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Last I implemented another widely used function in Bioinformatics, which is calculating

pairwise sequence distance among a set of sequences, to extend BioPig framework. Multiple

existing tools can do the same job. However BioPig functions scale well with the data size

and k-mer size by leveraging the Hadoop framework.

The thesis is organized as follows:

• Chapter 2 introduces background of Bioinformatics and Hadoop for the BioPig tookit.

• Chapter 3 describes main modules in current BioPig framework.

• Chapter 4 talks about the implementation including both Hadoop/Pig upgrade and

new module development.

• Chapter 5 discusses the testing environment setup including EC2 cluster configuration,

input data preparation and baseline settings of Hadoop. The baseline performance is

also presented.

• Chapter 6, based on the baseline settings, tunes Hadoop parameters from five perspec-

tives. The final tuned performance is presented and compared with baseline perfor-

mance.

• Chapter 7, the last part, discusses the conclusion and future work.
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Chapter 2

Background

In this chapter, I first compare Hadoop framework with two other parallel computing

models: MPI (Message Passing Interface) and GPU (Graphics Processing Unit). The pur-

pose is to demonstrate Hadoop’s advantages over other parallel computing models. Then I

introduce the main components in Hadoop - Hadoop Distributed File System (HDFS) and

MapReduce framework - as well as the major differences between Hadoop 1 and Hadoop 2.

In the third section, I talks about the widely adoption of MapReduce programming model

in Bioinformatics and some available MapReduce-based tools. Then k-mer counting and its

implementation in MapReduce Paradigm are described next. Finally Cloud computing and

Elastic Computing Cloud (EC2) are introduced.

2.1 Parallel Computing Models Comparison

MPI, GPU and Hadoop are three mostly used parallel computing models to process

large volume of data in various scientific domains. Running Hadoop program with a limited

amount of data on a small number of nodes does not yield any benefit but the overhead of

starting Java processes. In this case MPI and GPU demonstrate much better performance.

However as data size increases significantly, the disadvantages of MPI and GPU emerges.

Specifically MPI program is considered to have the following disadvantages:

1. MPI program runs parallel on worker nodes. When jobs finish, master node combines

the results from the worker nodes to deliver the final result. All the worker processes run

copies of the same program, and they communicate with each other through messages.

When the number of nodes scales up to a certain threshold, the network bandwidth
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becomes the bottleneck. In other words MPI distributes program but data. The lack

of data distribution prevents it to scale as data size increases.

2. As cluster gets larger, fault tolerance becomes a more important issue. Current MPI

implementations do not provide any mechanism of fault tolerance. Program simply

crashes when hardware fails.

3. MPI program may require specific refactoring for large cluster.

4. Researchers with a Biology background consider MPI program too complicate to de-

velop.

The Compute Unified Device Architecture (CUDA) parallel computing platform pro-

vides significantly performance boosting by using the state of art GPU architecture. A GPU

consisting of hundreds of cores allows certain operations processing data concurrently. Hence

this programming model is suitable for computation-intensive Bioinformatics tasks for which

an operation need to be applied to many similar records. However, the limitation of shared

memory and global memory in a GPU is a fatal flaw when scaling with the number of records.

Unlike MPI and GPU, Hadoop provides linear scalability with data size. When data

size is significantly large, the overhead of spawning processes, querying data chunk location,

tracking the work processes, is completely insignificant comparing to the task execution cost.

Hadoop also eases development - a program runs in a single process can run successfully on

any size of cluster without any modification. Hardware and network failure are also handled

automatically by Hadoop framework.

2.2 Overview of Hadoop Framework

Apache Hadoop as an open source implementation of MapReduce paradigm provides a

reliable, scalable and distributed computing framework for data intensive applications. The

project includes 3 modules: Hadoop Common, Hadoop distributed File system (HDFS) and
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Hadoop MapReduce. Hadoop Common provides a set of utilities and libraries that support

other Hadoop modules. HDFS is a distributed file system that links together the file systems

on the Hadoop data nodes. It provides reliable data storage and high-throughput data access

for all Hadoop applications. MapReduce is the heart concept of Hadoop framework and

provides a scale-out data processing solution across hundreds or thousands of servers in a

Hadoop cluster.

2.2.1 Hadoop Distributed File System (HDFS)

Using low cost commodity hardware in a very large scale is one key difference of Hadoop

Framework from other parallel computing paradigms. Data to be processed in the cluster is

broken into blocks and is distributed stored in the inexpensive disk drives of the data nodes,

where hardware failure occurs pretty common. To achieve high availability, each block of

data is replicated to 3 machines by default to prevent the failure of one machine from losing

all copies of data. To improve data processing performance, HDFS supports data locality,

which means the workload would be assigned to the node where the data to be processed is

stored. This technology decreases network overhead and provides Hadoop cluster the ability

of linear scalability.

HDFS includes components of NameNode and DataNode. Even though NameNode

does not hold any cluster data, it holds the file system metadata for the Hadoop cluster

and monitors the health of the DataNodes through the heartbeats from DataNodes. As a

result NameNode is the center controller and the most critical component of HDFS. Prior

to Hadoop 2.0, HDFS architecture allows only a single namespace for the entire cluster and

the cluster size is limited because of the single NameNode. Since Hadoop 2.0, Federation is

designed to address this limitation, in which architecture allows multiple NameNodes and

NameSpaces. HDFS federation enables Hadoop cluster to scale horizontally. The HDFS

architecture difference between Hadoop 1 and Hadoop 2 is shown in Figure 2.1.
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Figure 2.1: HDFS Architecture Comparison

2.2.2 Hadoop MapReduce

MapReduce [10] reflects a new programming model for large volume of data computing

in a parallel fashion and has gained a lot of attention from various scientific communities

since it was introduced by Google in 2004. The term MapReduce actually comes from two

separate functions that users need to implement: one is map function which takes a set of

data and generates intermediate key-value pairs; the other one is reduce function which takes

the output from map functions and merges all intermediate values associated with the same

key. The reduce function can only take place when the map phase completes, just as the

term sequence in ”MapReduce” implies. In this model, the workload is decomposed into a

large number of small tasks and distributed to large number of nodes. Many (not all) real-

world applications tasks fit very well into the MapReduce paradigm and can be executed in

this environment. Users may use a general-purpose programming language such as Java or

Python to implement their own processing logic by developing customized map and reduce

functions.

MapReduce is in its second generation, which we call MapReduce 2 (MRv2) or YARN.

Its architecture has undergone a big shift compared to its earlier version. The motivation of

the development of YARN was to overcome several limitations in MRv1:
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• One of the most important issues in MapReduce 1 is that map and reduce slots are

separately pre-configured. This inflexibility leads to an underutilization of cluster

hardware resource. In YARN, resources (e.g. memory, cpu, disk, network bandwidth

etc) are put into one unit called resource container. Both the map task and reduce task

run in containers - there is no fixed usage for a container. In other words, the same

container can be used for Map task, Reduce task or other non-mapreduce task. As a

result YARN gives much more flexibility in scheduling, which leads to better hardware

utilization and brings performance improvement.

• Another limitation of MRv1 is the overburdened JobTracker(Resource management

and job scheduling/monitoring). YARN divides the two major responsibilities of the

Jobtracker into two separate components: global resource manager(RM) and per-

application ApplicationMaster(AM). RM only manages the allocation of resources to

the submitted jobs. AM takes care of application life cycle management. This function

separation enables Hadoop to run on much larger clusters.

• MRv1 only supports MapReduce type jobs, which makes large amount of data stored

in HDFS can only be used for MapReduce processing. YARN is more general and

opens the door for Non-MapReduce Big Data applications. Both the MapReduce and

Non-MapReduce applications can coexist running on the Hadoop cluster and share the

data stored in the HDFS in MRv2

In conclusion, compared to MRv1’s restricted batch processing model, MRv2 is more

capable and specialized. YARN as the operating system of Hadoop cluster not only allo-

cates resource more flexible and dynamic, but also extends the Hadoop ecosystem beyond

MapReduce and batch processing.
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2.3 MapReduce-based Bioinformatics Tools

DNA sequences, which consists of only four unique bases labeled A, T, C, and G (for ade-

nine, thymine, cytosine, and guanine respectively), make up any organism and determine the

genetic characters of organisms. DNA sequence analysis is the process of subjecting a DNA

to any of a wide range of analytical methods to understand its features, functions, structure,

or evolution. Methodologies used include sequence alignment, searches against biological

databases, etc [9]. Next Generation Sequencing (NGS) techniques decrease the cost of se-

quencing and produce huge volumes of DNA sequences every day. Advances in sequencing

technologies shift the burden from chemistry done in a laboratory to computational analy-

sis. MapReduce provides an easy-to-use and fault-tolerance parallel programming model for

processing petabytes of sequence data on commodity Linux clusters. Hadoop and Spark, as

two open-source implementations of the MapReduce framework, have a diverse and growing

community in Bioinformatics. Table 2.1 concludes related MapReduce-based Bioinformatics

tools in the market.

Name Year Description

CloudBLAST [21] 2008 Combining MapReduce and Virtualization on Distributed Resources for Bioinformatics Applications
CloudBurst [28] 2009 Highly sensitive read mapping with MapReduce
Crossbow [17] 2009 Searching for SNPs with cloud computing

GATK [22] 2010
The Genome Analysis Toolkit: A MapReduce framework for analyzing
next-generation DNA sequencing data

Myrna [16] 2010 Cloud-scale RNA-sequencing differentialexpression analysis

Galaxy [12] 2010
Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the life sciences

SEAL [27] 2011 SEAL: a Distributed Short Read Mapping and Duplicate Removal Tool
CloudAligner [23] 2011 A fast and full-featured MapReduce based tool for sequence mapping
FX [13] 2012 an RNA-Seq analysis tool on the cloud
BioPig [25] 2013 a Hadoop-based analytic toolkit for large-scale sequence data
SeqPig [29] 2014 simple and scalable scripting for large sequencing data sets in Hadoop
SparkSeq [33] 2014 fast, scalable, cloud-ready tool for the interactive genomic data analysis with nucleotide precision
ADAM [20] 2014 ADAM: Genomics Formats and Processing Patterns for Cloud Scale Computing
Halvade [11] 2015 Halvade: scalable sequence analysis with MapReduce

Table 2.1: Available MapReduce-based Bioinformatics Tools
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Figure 2.2: k-mer Counting Implementation in MapReduce

2.4 k-mer Counting and its Implementation in MapReduce Paradigm

In Bioinformatics, k-mers refer to all the possible subsequences of length k in a DNA/RNA

sequencing read. The k-mer counting problem, which is to count the occurrences of every

k-mer in a set of reads from genome sequencing projects, is the preliminary and central

step of many subsequent read analyses , including constructing de Bruijn graphs in sequence

assembly, elimination of erroneous reads in a relatively large number of dataset and fast

multiple sequence alignment. k-mer counting is simple in principle and hence the easiest

problem in Bioinformatics. Even novice with a few minutes of training in Perl or Python

can implement a k-mer counting function. But when the k-mer size is large and billions of

reads need to be processed, k-mer counting becomes the most difficult problem in Bioinfor-

matics. For huge amount of sequence data, as the k-mer size increases the space required to

store k-mer counting increase exponentially with k-mer size. Counting large k-mers in large

modern sequence data sets can easily overwhelm the memory capacity of standard comput-

ers. To address the scalability issue, BioPig framework provides a scalable k-mer counter

which scales well with the dataset size and k-mer size due to the linear scalability of Hadoop

framework. How k-mer counting is implemented using MapReduce paradigm can be seen in

Figure 2.2.
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2.5 Cloud Computing in EC2 for Bioinformatics

Cloud computing offers a solution for ever increasing large scale scientific analysis, re-

searchers can lease hardware resource from cloud computing vendors instead of purchasing

and maintaining expensive hardware resources. Amazon is the biggest cloud vendor on the

market. The Amazon Web Services (AWS) [5] cloud provides a highly reliable and scal-

able infrastructure for deploying web-scale solutions[32]. Amazon Elastic Compute Cloud

(EC2) [7] is a central part of AWS and provides scalable, pay-as-you-go compute capacity.

EC2 eases the availability of Hadoop clusters for biological researchers. With customized

Amazon machine images (AMIs), the computation environment of a particular application

can be saved and then be replicated later. Hence the past result can be easily reproduced.

We use EC2 to evaluate our YARN-based BioPig performance. BioPig AMI is also provided

to users to simplify the setup process and enhance user experience.
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Figure 3.1: BioPig Modules

Chapter 3

BioPig Modules

BioPig is an analytic toolkit for Next-Generation Sequencing analysis and is built on

Apache Hadoop framework and Pig Latin data flow language. Hadoop framework utilizes

the data-parallel paradigm of MapReduce which was first introduced by Google to dis-

tribute computations over many computing nodes. Data locality technique of HDFS takes

the computation to the data node and hence avoids network transfer bottleneck for large

cluster. With Pig Latin, an easy-to-write-and-understand high level language, Bioinformat-

ics researchers can accomplish their jobs by writing their own scripts. Testing shows BioPig

framework demonstrates scalability, programmability and portability.

The first release of BioPig consists of four core functional modules: Input/Output, k-

mer counter, Blast and Assembly. The Input/Output module takes the fasta and fastaq

as input and then splits and distributes the data across the Hadoop cluster. The k-mer

counter computes the frequencies of each k-mer in sequence reads and outputs a histogram

of the kmer counts. Blast provides a wrapper-based MapReduce implementation of BLAST

for Hadoop, Assembly is a wrapper for common Bioinformatics assembler, such as CAP3,

Velvet and KmerMatch. The main modules of BioPig are shown in Figure 3.1.
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Chapter 4

Implementation

4.1 Development Environment

Development and unit tests can be done on personal desktop or laptop without pow-

erful cluster environment. Linux or Mac operation system is preferred to Windows because

the installation of Hadoop/Pig on these systems is easier than on Windows system. The

development environment I used is as follows:

• Mac mini, OS X 10.9, 4G

• OpenJDK 7

• maven 3

• Hadoop 2.7.0

• Pig 0.15.0

• Git 1.9.5

• Eclipse 4.5

4.2 Biopig Upgrade

The task includes upgrading Hadoop 1 to Hadoop 2 and upgrading Pig 0.10 to version

0.15. Although Hadoop 2 has evolved a lot compared to Hadoop 1, Hadoop contributors

claim binary compatibility of mapred API and source compatibility of mapreduce API to

existing applications. However Pig has to be updated because Pig 0.10 can not run directly

on Hadoop 2 due to incompatility of APIs and configuration.

13



4.2.1 Hadoop Upgrade

Hadoop upgrade is relatively easy since Hadoop 2 are backward compatible with earlier

release at the source level. The maven dependency has to be modified to compile against

the new version as shown in Code 1 and Code 2. Notice that besides the version numbers,

the artifactedId ’s also changes.

Code 1 Hadoop 1 maven dependency
- <dependency>

- <groupId>org.apache.hadoop</groupId>

- <artifactId>hadoop-core</artifactId>

- <version>0.20.2</version>

- </dependency>

- <dependency>

- <groupId>org.apache.hadoop</groupId>

- <artifactId>hadoop-tools</artifactId>

- <version>0.20.2</version>

- </dependency>

- <dependency>

- <groupId>org.apache.hadoop</groupId>

- <artifactId>hadoop-test</artifactId>

- <version>0.20.2</version>

- </dependency>

Code 2 Hadoop 2 maven dependency
+ <dependency>

+ <groupId>org.apache.hadoop</groupId>

+ <artifactId>hadoop-client</artifactId>

+ <version>2.7.0</version>

+ </dependency>

+ <dependency>

+ <groupId>org.apache.hadoop</groupId>

+ <artifactId>hadoop-minicluster</artifactId>

+ <version>2.7.0</version>

+ <scope>test</scope>

+ </dependency>
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4.2.2 Pig Upgrade

Pig upgrade includes dependency changes and API changes. Code 3 shows the maven

dependency changes.

Code 3 Pig maven dependency changes
<!-- Pig 0.10 dependency -->

<dependency>

- <groupId>org.apache</groupId>

<artifactId>pig</artifactId>

- <version>0.10.0</version>

</dependency>

<!-- Pig 0.15 dependency -->

<dependency>

+ <groupId>org.apache.pig</groupId>

<artifactId>pig</artifactId>

+ <version>0.15.0</version>

</dependency>

There are some API differences between pig 0.10 and pig 0.15. Code 4 shows some of

pig-specific classes that were removed in pig 0.15. Because these classes are only used in

unit test cases, simply removing them fixes the issue. Code 5 shows another modification of

GruntParser constructor between these two versions.

Code 4 Pig API’s that has been removed
-import org.apache.pig.impl.logicalLayer.LogicalPlan;

-import org.apache.pig.impl.logicalLayer.parser.ParseException;

-import org.apache.pig.impl.logicalLayer.parser.QueryParser;

-import org.apache.pig.backend.hadoop.executionengine.

physicalLayer.LogToPhyTranslationVisitor;

4.3 k-mer Based Distance

Besides Hadoop and Pig upgrades, I also implemented an importance module: pigSim-

ilarity. Given a set of sequences, the pigSimilarity module computes the pairwise sequence

15



Code 5 GruntParser Interface Changes

/* Pig 0.10 code */

- GruntParser parser = new GruntParser(new StringReader(script));

parser.setInteractive(false);

- parser.setParams(ps);

/* Pig 0.15 code */

+ GruntParser parser = new GruntParser(new StringReader(script),ps);

parser.setInteractive(false);

distances. Similarity-based searches and joins are important for many applications such as

document clustering or near-duplicate and plagiarism detection [8, 9, 18]. In recent years,

much effort has been spent on developing tools to speed up similarity-based queries on se-

quences. BioPig function can scale well with data size and k-mer size.

4.3.1 Definition

The similarity between two nucleotide sequences can be quantified by the concept of k-

mer based distance. It is analogous to the distance in physical space. The larger the distance

between two sequences, the less their similarity. To be formal, some related definitions are

provided bellow.

Definition 4.1. k-mer generating. Given a k-mer size k, k-mer generated set Gk(s) of a

nucleotide string s of length n is the set of all possible substrings of s of length k, that is

Gk(s) := {t : t is a substring of length k of string s}

Example 4.1. Let s = CTTCGAAA, G4(s) = {CTTC, TTCG, TCGA, CGAA, GAAA}

Definition 4.2. Reverse complement. Let t be a nucleotide string, reverse complement

of t, RC(t), is formed by reversing the string and taking the complement of each symbol.

Example 4.2. Let s = CTTCGAAA, RC(s) = TTTCGAAG
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Definition 4.3. Less complement. Let t be a nucleotide string, less complement of t,

LC(t), is the smaller one of t and RC(t) in lexicographical order.

Example 4.3. Let s = CTTCGAAA, then RC(s) = TTTCGAAG. Because CTTCGAAA is

less than TTTCGAAG in lexicographical order, LC(s) = CTTCGAAA. Also LC(RC(s)) =

CTTCGAAA

Definition 4.4. k-mer counting. Given a k-mer size k, k-mer counting of string s, Ck(s),

is a map of k-mer to integer which represents the occurrence numbers of less complement

k-mers in Gk(s).

Example 4.4. Let s = CTTCGAAA,

C4(s) = {CTTC:1, TCGA:1, CGAA:2, GAAA:1}

Definition 4.5. k-mer space. Given k-mer size k, let Bk ={ all the less complement k-

mer’s of length k }, n is the size of the Bk and Bi
k is the i-th k-mer in Bk. Mapping Bk onto

the basises of an n-dimension space Ω, we say Ω is a k-mer space of k-mer size k and Bi
k is

the k-mer label of i-th dimension.

Definition 4.6. Euclidean distance. Let Bk and n be defined as above and Ω = Rn.

M = Ck(s) is the k-mer counting of string s. M can be mapped to a point X in Rn,

where Xi = M [Bi
k] for i = 1, ..., n. Then length of the k-mer counts can be defined as

lEk (s) :=

√
n∑

i=1

X2
i .

Let Y be the mapping point of string t. The Euclidean distance between string s and t for

k-mer size k is defined as:

DE
k (s, t) =

√√√√ n∑
i=1

( Xi

lEk (s)
− Yi

lEk (t)

)2

Definition 4.7. Hamming distance. Let Bk and n be defined as above, Ω = {0, 1}n and

M = Ck(s) is the k-mer counts of string s. M can be mapped to a point X in Ω, where
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Xi = 1M [Bi
k]>0 for i = 1, ..., n, where 1 is indicator function.

Let Y be the mapping point of string t. The Hamming distance between string s and t for

k-mer size k is defined as:

DH
k (s, t) =

n∑
i=1

|Xi − Yi|

4.3.2 Pig Functions

The advantage of Pig Latin data flow language is that we can implement small functions

and then write Pig script to express the data flows using built-in operations, built-in func-

tions and user-defined functions. Two distance functions, Hamming distance and Euclidean

distance, were implemented as Pig evaluation functions in BioPig. In this section, we mainly

describe user-defined functions.

k-mer generating function

The k-mer generating function was implemented in Biopig 1. It is included here for

completeness. The function takes DNA sequence and k-mer size as arguments and returns

a bag of k-mer strings. The meanings of data types in Pig can be found in Table 4.1

gov.jgi.meta.pig.eval.kmerGenerator(seq:chararray, kmer_size:int) as k-mer:bag

Data Type Description

int Signed 32-bit integer
long Signed 64-bit integer
float 32-bit floating point
double 64-bit floating point
chararray Character array (string) in Unicode UTF-8 format
bytearray Byte array (blob)
tuple An ordered set of fields.
bag An collection of tuples.
map A set of key value pairs.

Table 4.1: Pig Data Types
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Hamming distance function

The function takes a 2-tuple of k-mer bags which are the k-mer counts for two sequences

and returns the Hamming distance between the two sequences.

gov.jgi.meta.pig.eval.TNFHammingDistance(data:tuple) as distance:int

Euclidean distance function

The function takes a 2-tuple of k-mer bags which are the k-mer counts for two sequences

and returns the Euclidean distance between the two sequences.

gov.jgi.meta.pig.eval.TNFDistance(data:tuple) as distance:float

4.3.3 Pig Scripts

Given a set of sequences, the pigSimilarity module computes pairwise hamming distance

and outputs a matrix of these distance.s The following code list shows the BioPig script for

this calculation.

1 -- a more elaborate pig script example to calculate pairwise sequence distance of a set of

sequences

2 -- Command line parameters

3 -- READS = the location of the input file to read.

4 -- OUTPUTDIR = the directory to put the results

5 -- P= the level of parallelism for the reduce , defaults to 10

6 register ../ biopig/target/biopig.jar

7 %default READS ’../ biopig/src/test/resources /1M.fas ’

8 %default P ’10’

9 %default OUTPUTDIR ’x

10 A = load ’$READS ’ using gov.jgi.meta.pig.storage.FastaStorage as (readid: chararray , d:

chararray , seq: bytearray);

11 B = foreach A generate readid ,gov.jgi.meta.pig.eval.k-merGenerator(seq , 4) as k-mers ;

12 BB = foreach B generate readid , flatten(k-mers);

13 C = foreach BB generate readid , gov.jgi.meta.pig.eval.UnpackSequence(k-mer) as k-mer;

14 D = foreach ( group C by (readid , k-mer) ) generate flatten(group), COUNT($1) as cnt;

15 E = foreach (GROUP D by $0) {

16 data = foreach $1 generate $1 as k-mer , $2 as cnt;
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17 generate $0 as readid , data;

18 };

19 E2 = foreach E generate *;

20 J = foreach (CROSS E, E2) generate $0 as read1 ,$2 as read2 , ($1,$3) as data;

21 L = FOREACH J GENERATE $0 as read1 ,$1 as read2 , flatten(gov.jgi.meta.pig.eval.

TNFHammingDistance(data));

22 store L into ’$OUTPUTDIR ’;

A few key lines are explained here:

line 10 loads a fasta file located in HDFS or local disk and converts the reads to tuples.

line 11 generates k-mers for each read.

line 14 groups identical k-mers and generates a count of each group.

line 20 makes a cross product of reads to generate pairwise read data.

line 21 calculates the pairwise Hamming distance for all the reads.

20



Chapter 5

Evaluation

5.1 Hardware and Software Configuration

To evaluate YARN-based BioPig performance, 15 nodes (1 name node and 14 data

nodes) of the type c3.8x large instances were launched in EC2. Each node has 60GB RAM

and 108 Elastic Computer Units (Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz). A 500GB

solid-state drive (SSD) was attached to each node as local and HDFS storage for MapRe-

duce jobs. All the nodes are interconnected by 10Gbit/s Ethernet network. The software

configruation is as follows:

• Ubuntu Server 14.04 LTS (HVM), EBS General Purpose (SSD)

• OpenJDK 7

• Hadoop 2.7.0

• Pig 0.15.0

5.2 Input Data

Cow rumen metagenomics dataset, the same dataset used in the original BioPig Pa-

per [25], is chosen as test input. From the I250 serial, the one with the largest size and the

best quality fasta file is truncated to generated 7 different workloads: 1GB, 5GB, 10GB,

20GB, 40GB, 60GB and 100GB. The k-mer size is fixed to be 20.
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5.3 Baseline Test

5.3.1 Baseline Configuration

Hadoop has a large set of parameters that may be specified to control the behavior of

jobs. Of those, about 30 parameters can affect the performance significantly. Default values

are used if the parameters are not specified. Using default values most of the time leads to

underperformance due to the following reasons:

• First Hadoop 2 was first release in 2013. Hardware resource has been improved a lot

during the past two years.

• Secondly every cluster has its own hardware configuration. It is unlikely the default

values are applicable to any cluster.

• Thirdly the default values are usually set to be relatively low to avoid exceptions.

We are not going to use these default values as the baseline configuration. Thus the

first step is to set these configuration parameters to appropriate values. The goal is to get an

acceptable performance providing the limitations of hardware resources (e.g. CPU, memory,

disk, network). Having reviewed the best practices of other Hadoop applications, values of

some of the parameters are set as shown in table 5.3.1. These parameters phsically exists

in hdfs-site.xml, mapred-site.xml and yarn-site.xml accordingly. The differences between

baseline settings and default values are also shown in this table.

A few of key points of the configuration are emphasized below:

• Set 2Gb memory limitation to Map containers and Reduce containers.

• Allocate a max Java heap size of 1624Mb for Map/Reduce processes.

• Allocate 1000Mb buffer size for storing map output for Map tasks.

• Allocate 28 containers on each node

• Use the default block size 64Mb.

22



Configuration parameters Default value Baseline Value

yarn.nodemanager.resource.memory-mb 8192 58296
yarn.nodemanager.resource.cpu-vcores 8 30
yarn.scheduler.minimum-allocation-mb 1024 2048
yarn.scheduler.maximum-allocation-mb 8192 58296
yarn.scheduler.minimum-allocation-vcores 1 1
yarn.app.mapreduce.am.resource.mb 1536 2048
yarn.app.mapreduce.am.command-opts -Xmx1024m -Xmx1624m
mapreduce.map.memory.mb 1024 2048
mapreduce.reduce.memory.mb 1024 2048
mapreduce.map.java.opts -Xmx200m -Xmx1624m
mapreduce.reduce.java.opts -Xmx200m -Xmx1624m
io.sort.mb 100 1000
io.sort.factor 10 100
mapreduce.reduce.shuffle.parallelcopies 5 20
dfs.block.size 64M 64M
mapreduce.map.output.compress FALSE FALSE
mapreduce.map.output.compress.codec DefaultCodec DefaultCodec
mapreduce.output.fileoutputformat.compress FALSE FALSE
mapreduce.output.fileoutputformat.compress.codec DefaultCodec DefaultCodec
mapreduce.job.reduce.slowstart.completedmaps 0.05 0.05
yarn.nodemanager.pmem-check-enabled TRUE TRUE

Table 5.1: Baseline Configuration
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Figure 5.1: Baseline Performance Guided by General Tuning Practices

5.3.2 Baseline Result

Recall that each node in the cluster has 60GB RAM. YARN can only allocate up to

58296 MB of the amount to containers. The remaining memory is reserved for the OS

kernel, system processes and other non-Hadoop processes. After running a bunch of jobs

with various number of reducers, estimations of reducer numbers at various workloads are

found and shown in Table 5.2.

Input Size(GB) # of mappers # of reducers

1 16 60
5 78 100

10 156 200
20 311 400
40 622 800
60 954 1200

100 1586 2000

Table 5.2: Numbers of Mappers and Reducers for Different Data Size
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Using the baseline configuration and this set of reducer numbers, k-mer counting func-

tion runs against the 7 data sizes. The results are shown in Figure 5.1, which also illustrates

the linear performance trend.

Then the counters and logs of these jobs were collected and analyzed. It turned out

that the hardware is not fully untilized - there is room to improve the performance. In the

next chapter the jobs are tuned from five perspectives.
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Chapter 6

Performance Tuning

6.1 Challenges in Tuning Hadoop

The Hadoop community is growing exponentially as the amount of data generated by

the internet and scientific research increases at unprecedented speed. The advantage of

Hadoop over other parallel frameworks makes it adopted by many large companies and labs.

The advantages include but not limited to:

• A simplified programming model

• Linear scalability to large number of nodes.

• Automatic data distribution and failure recovery

However one challenge with Hadoop is that tuning parameters is a rather time-consuming

but necessary process. Factors, such as the implementation of map and reduce function,

hardware resources and Hadoop configuration parameters, all affect the overall performance

and especially the job execution time. Hadoop configuration parameters control the behav-

iors of jobs. It indicates the number of tasks that are allowed to run in parallel and specifies

the runtime command line options of the job. Practice shows parameter tuning is a time

consuming and daunting task due to the following reasons:

• Parameters cannot be tuned until the internals and interrelationship of Hadoop com-

ponents are well understood.

• Hadoop is distributed with a bunch of configuration files and a very large number of

parameters. The allocation and use of memory, CPU, I/O and network bandwidth are
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all controlled by these files. Some parameters works collaboratively - changing value

of one parameter may amplify or weaken the effect of another parameter.

• Default parameter values usually lead to underperformance due to default values are

set for beginners, who usually start with single node.

• Due to the cluster resource limitations, setting values too aggressively may cause task

failure.

Although there is lots of related research on this topic [32, 31, 15, 19, 18] there is no hard

and fast set of rules to achieve optimal performance, because the input data size, workload

characteristics and cluster hardware resource collaboratively decide the near-optimal values

for these parameters. Also, tuning Hadoop performance is not just tuning one or more

parameters, but getting balanced resources utilization.

Due to these difficulties, Hadoop performance tuning is an iterative process, including

launching a job, analyzing Hadoop counters/logs, adjust parameters, and re-run the job.

This process is repeated until the near-optimal performance reaches.

6.2 Configuration Difference between Hadoop 1 and Hadoop 2

As mentioned earlier, Hadoop 2 has undergone big architecture shift by adopting YARN

as its resource manager. In Hadoop 2, parameters related to tasks are separated from

mapred-site.xml into yarn-site.xml. Due to the different scheduling mechanism of Hadoop

2, some parameters are removed or depreciated and new container parameters are added.

More precisely, YARN uses container as its allocation unit rather than slot in Hadoop 1.

The differences between Hadoop 1 and Hadoop 2 has been addressed comprehensively

in a lot of literatures. The following only discusses two important ones pertinent to k-mer

counting application: resource allocation and spill mechanism.
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6.2.1 Resource Allocation: Slots vs. Containers

Hadoop 1: Slots

In Hadoop 1, the number of slots per node is set at the time that TaskTracker starts.

It is controlled via the two parameters in mapred-site.xml: mapred.map.tasks.maximum and

mapred.reduce.tasks.maximum. JobTracker lauches a JVM process for each map or reduce

task, whose command line options can be passed by the mapred.map.child.java.opts and

mapred.reduce.child.java.opts. Maximum heap size can be set by -Xmx option.

Hadoop 2: Containers

In Hadoop 2, YARN currently supports resource management for memory and CPU.

The available resource on each Node Manager (NM) node in Hadoop cluster is divided into

chunks and allocated as container - an encapsulation of resource elements (memory, CPU)

and basic unit of processing capacity in YARN. YARN only allows a container to start if the

node has enough resource to meet the container’s requirement. Every process in Hadoop 2,

including AppMaster, map task and reduce task, runs within containers.

The upper bound of physical RAM YARN can allocate on a node are specified by

yarn.nodemanager.resource.memory-mb property in yarn-site.xml. This value should be set

lower than the total memory available on each node because resources have to be reserved

for system processes and other user processes. The memory size for a Map or Reduce

task can be specified via mapreduce.map.memory.mb and mapreduce.reduce.memory.mb in

mapred-site.xml. The JVM heap size is set via the property mapreduce.map.java.opts and

mapreduce.reduce.java.opts and should be lower than the allocation size of containers. If

memory usage of a task process grows beyond the container’s setting (for example the task

program has memory leak), the process will be killed by resource manager. By enforcing the

resource limits, YARN ensures the cluster not being deteriorated by inexperienced users.
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There is no pre-defined numbers of slots for Map or Reduce tasks in Hadoop 2. Instead,

the total numbers of Hadoop processes including Map and Reduce tasks is limited by the

number of containers, which is determined by the following formula:

min(

yarn.nodemanager.resource.memory-mb / mapreduce.[map|reduce].memory.mb,

yarn.nodemanager.resource.cpu-vcores / mapreduce.[map|reduce].cpu.vcores

)

Parameter Values

How to set these parameters is still hard even having understood the mechanism of

resource allocation. There is a dilemma here. If starting more tasks simultaneously for a

high utilization of CPU, the memory allocated for each task has to be less which may impair

performance by spilling data on disks. On the other hand, if allocating more memory to

task processes to increase the data throughput and decrease disk spills, the number of task

processes has to be decreased, which makes the CPU underutilized.

The tradeoff requires careful calculation, evaluation and even testing. For our EC2

cluster the final setting is allocating 27 slots/containers for both Hadoop 1 (18 Map and 9

Reduce) and Hadoop 2. Setting the numbers to be same makes the comparison fair. The

details of configuration is shown in Table 6.1

Configuration parameters Hadoop 2 Hadoop 1

yarn.nodemanager.resource.memory-mb 55296
yarn.nodemanager.resource.cpu-vcores 27
mapreduce.map.memory.mb 2048
mapreduce.reduce.memory.mb 2048
mapred.map.tasks.maximum 18
mapred.reduce.tasks.maximum 9
# of concurrent tasks 27 27

Table 6.1: Hadoop Configuration
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Figure 6.1: Concurrent Task Numbers in Hadoop 1

Figure 6.2: Concurrent Task Numbers in Hadoop 2

With this settings, the maximum number of task process on each node is roughly 27

(application master also takes a container in Hadoop 2). There are totally 14 data nodes in

the cluster; hence the total number of slots/container is 14x27=378. However since slots are

dedicated in Hadoop 1 while containers are shared in Hadoop 2, the number of concurrent

tasks in Hadoop 1 is lower than the number in Hadoop 2. Figure 6.1 and Figure 6.2 decates

this difference during the three running phases.

6.2.2 Map Side Spills

Hadoop 1

While a map task is executing, intermediate data is temporarily stored into a circular

buffer which is a chunk of JVM heap space. The buffer is divided into two parts: one is
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reserved for data records and another one is for metadata. The percentage of metadata

in the buffer is governed by the io.sort.record.percent parameter in mapred-site.xml. By

default the size of the sort buffer is 100MB and the percentage is 0.05. That is, 5MB in

the buffer is reserved for the metadata and 95MB for the data records by default. The

spilling is controlled by io.sort.spill.percent parameter in mapred-site.xml. When either the

data or the metadata in the buffer reaches this percentage threshold, a background thread

sorts and spills the contents of the buffer to disks. By default the percentage is equal to

0.8(80%). Practice shows metadata portion is saturated much faster than the data portion,

which means even the data buffer is still far from full, a new spill is triggered by metadata

threshold. To decrease the number of spills tuning of io.sort.record.percent manually is

necessary, which is a tricky process.

Hadoop 2

In Hadoop 2 the io.sort.record.percent property was removed. Both the metadata and

data records share the same space and they can vary in size. A spill would be triggered as

soon as the whole size of records and metadata reaches the threshold. Hence less tuning is

required to avoid over-spilling in Hadoop 2. This difference is summarized in Figure 6.3.

6.3 k-mer Counting Workload Characteristics

The near-optimal set of parameters for Hadoop depends on the data characteristics,

application logics and hardware resources. Characteristics of intermediate data are vital to

a MapReduce application. Table 6.2 shows the ratio of intermediate data size to the input

data size for most common Hadoop applications. In contrast table 6.3 shows the ratio of

k-mer counting application.

Notice that k-mer counting application generated much larger size of intermediate data

compared to other applications. Taking 100GB input as an example, more than 1TB in-

termediate data are generated by map tasks. This distinctive characteristic makes most of

31



Figure 6.3: Comparison of Map-side Sort Buffer between Hadoop 1 and Hadoop 2

available Hadoop tuning guidelines inapplicable for k-mer counting application. According

to its characteristics the following section tunes the parameters in 5 consecutive steps: data

compression, HDFS blocks size, Map output spill, JVM garbage collection and reducer start-

time. For each step, the performance of 40GB and 60GB workloads are compared to the

performance of prior step. Testing data are provided to demonstrate the effect of each factor.

6.4 Parameters Tuning

6.4.1 Data Compression

k-mer counting application generates much larger volume of intermediate data than

common applications. These intermediate data are stored on the local disk of the node

where the task is executed. Hadoop job that generates a significant amount of map output
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Job Name Input size (TB) Int. data size (TB) Int./Input

LogProc 1.10 1.10 100%
NdayModel 3.54 3.54 100%
BehaviorModel 3.60 9.47 263%
ClickAttribution 6.80 8.20 121%
SegmentExploder 14.10 25.20 179%
LogRead 1.10 1.10 100%
LogCount 1.10 0.04 4%

Table 6.2: Characteristics of Intermediate Data for Common Hadoop Applications

Input size (GB) Int. data size (GB) Int./Input

1 13.5 1350%
5 67.7 1354%

10 135.4 1354%
20 270.9 1355%
40 541.5 1354%
60 830.0 1383%

100 1381.0 1381%

Table 6.3: Characteristics of Intermediate Data for k-mer Counting (k=20)

may benefit from the intermediate data compression without any application changes since

compression reduces disk IO and the amount of data transferred via HTTP to reducers.

Although compression and decompression may add extra load to the CPU, the overall job

execution time can be decreased by enabling compression for the large volume of intermediate

data.

Hadoop supports multiple compression formats (zlib, gzip, LZO, bzip2, Snappy etc).

Snappy was chosen for the testing because it has a good balance between speed and space.

By default the compression is disabled. To enable it follows the settings in Table 6.4

Parameter Value

mapreduce.map.output.compress true
mapreduce.map.output.compress.codec org.apache.hadoop.io.compress.SnappyCodec
mapreduce.output.fileoutputformat.compress true
mapreduce.output.fileoutputformat.compress.codec org.apache.hadoop.io.compress.SnappyCodec

Table 6.4: Configuration of Data Compression
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Tuning Result

The result in Table 6.5 shows data compression yielded more than 50% decrease in disk

IO. Taking 40GB workload as an example, the Number of bytes read and Number of bytes

written decreased from 604GB to 283GB and from 1200GB to 550GB respectively. Even

though high speed SSD was used for EC2 cluster, the overall job runtime still decreased by

6 minutes for 40GB input and 8 minutes for 60GB input. It is not unrealistic to expected

to decrease more in clusters with HDD storages.

Data Size Counter Group Uncompressed Compressed Diffrence
Map Reduce Total Map Reduce Total Map Reduce Total

40GB Number of bytes read(GB) 604 598 1,202 283 131 414 321 467 788
Number of bytes written(GB) 1,200 598 1,798 550 131 681 649 467 1,117

60GB
Number of bytes read(GB) 929 917 1,846 442 167 609 487 751 1,237
Number of bytes written(GB) 1,839 917 2,756 853 167 1,020 986 751 1,736

Table 6.5: IO Improvement from Data Compression

6.4.2 HDFS Block Size

HDFS block size is one of the most well-known parameters, which is set by dfs.block.size

in hdfs-site.xml. Data is split into blocks and the blocks are stored on data node. A map task

is created for each block by default. Hence the block size and input data size of a Hadoop

workload determine the number of Map tasks. Given an input file, the larger the block size

is, the fewer Map tasks will be spawned in the Hadoop cluster. Almost all the available

research relating to Hadoop tuning recommends a large block size. They claim that a large

block size improves performance because small block size means large number of Map tasks

and hence leads to more overhead of starting up and tearing down of Map JVMs. However

k-mer counting is an exception due to its large volume of intermediate data. Analyzing the

job logs found that large block size leads to more map-side spills. The overhead of merging

the spills is more than the benefits of small block size. Given the JVM heap settings in the

prior section, testing shows that a block size of 32MB gave the better performance than a
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Figure 6.4: Shuffle and Sort Process

block size of 64MB. With this change the overall job execution time decrease by 12 minutes

for 40GB input and by 17 minutes for 60 GB input.

6.4.3 Map Side Spill

A map task first writes its output to a circular buffer. Whenever the buffer reaches

a certain threshold, the content of the buffer is sorted and spilled to local storage by a

background thread. One map task may generate multiple spills depends on the buffer size

and map output data size. If more than one spills happens, the spilled data have to be

merged into a single sorted file partitioned by reduce keys. Reducer tasks pull their input

from this partitioned merged file via HTTP. The details of this process is shown in the

Figure 6.4.

Generally at least one spill happens for a map process. Additional spills during map

phase make additional overhead of reading and merging of the spilled records. If Map Output

Records counter is less than Spilled Records counter significantly, it means there are multiple

spills. The map task logs also shows the spilling events with timestamps. With the logs the

spill data size, the duration of spilling can be calculated. Three core parameters, which is

shown in Table 6.6, in mapred-site.xml control the merge-sorting process .

Spill mechanism implies that the performance is best when the intermediate data is well

contained in the sort buffer. Our analysis shows that even when the block size has been

decreased, there is still more than 1 spill. Increasing io.sort.mb to 1100M and increasing
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Parameter Description Default

mapreduce.task.io.sort.factor The number of streams to merge at once
while sorting files. This determines the
number of open file handles

10

mapreduce.task.io.sort.mb The total amount of buffer memory to use
while sorting files, in megabytes. By de-
fault, gives each merge stream 1MB, which
should minimize seeks.

100

mapreduce.map.sort.spill.percent The soft limit in the serialization buffer.
Once reached, a thread will begin to spill
the contents to disk in the background.
Note that collection will not block if this
threshold is exceeded while a spill is already
in progress, so spills may be larger than this
threshold when it is set to less than .5

0.8

Table 6.6: Parameters Related to Map-side Spills

maximum heap size to 1724M eliminated the additional spills. Table 6.7 shows more than

50% of IO overhead was eliminated by this tuning.

Data Size Counter Group Spill No spill Diffrence
Map Reduce Total Map Reduce Total Map Reduce Total

40Gb
Number of bytes read 283 131 414 0 125 125 283 6 289
Number of bytes written 550 131 681 278 125 403 272 6 278
Map output records 32 0 32 32 0 32 0 0 0
Spilled Records 63 31 95 32 32 63 31 0 31

60Gb

Number of bytes read 442 167 609 0 156 156 442 11 453
Number of bytes written 853 167 1,020 431 156 587 422 11 433
Map output records 49 0 49 49 0 49 0 0 0
Spilled Records 97 48 145 48 48 97 48 0 48

Table 6.7: IO Reduction from Map-side Spill Tuning

6.4.4 JVM Garbage Collection

The core of Hadoop framework is written in Java programming language. Map and

Reduce tasks run in their own JVM processes. Java garbage collection is an automatic

process to manage the runtime memory used by JVM. Analyzing GC logs may reveal un-

reasonable JVM settings for an application. To enable GC logs, options of -verbose:gc

-XX:+PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps has to be appended to

mapreduce.map.java.opts or mapreduce.reduce.java.opts parameters.
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The following log shows the GC activities for a map process with max heap size of

2048M.

6.120: [GC [PSYoungGen: 242176K- >19619K(282112K)] 242176K- >19691K(926208K), 0.2651340 secs]

[Times: user =0.29 sys =0.01 , real =0.27 secs]

8.895: [GC [PSYoungGen: 261795K->8291K(524288K)] 1388267K- >1134771K(1922048K), 0.3068380

secs] [Times: user =0.34 sys=0.02, real =0.31 secs]

10.541: [GC [PSYoungGen: 492643K- >6038K(524288K)] 1619123K- >1132526K(1922048K), 0.2413280

secs] [Times: user =0.23 sys=0.01, real =0.24 secs]

12.140: [GC [PSYoungGen: 490390K- >6102K(659456K)] 1616878K- >1132598K(2057216K), 0.3230520

secs] [Times: user =0.34 sys=0.01, real =0.33 secs]

13.869: [GC [PSYoungGen: 625622K- >5942K(625664K)] 1752118K- >1132438K(2023424K), 0.1553950

secs] [Times: user =0.23 sys=0.01, real =0.16 secs]

15.563: [GC [PSYoungGen: 625462K- >6166K(641024K)] 1751958K- >1132670K(2038784K), 0.2545130

secs] [Times: user =0.27 sys=0.00, real =0.26 secs]

17.311: [GC [PSYoungGen: 626710K->128K(640000K)] 1753214K- >1132468K(2037760K), 0.2842950

secs] [Times: user =0.28 sys=0.00, real =0.29 secs]

20.868: [GC [PSYoungGen: 620672K- >19960K(531968K)] 1753012K- >1312716K(1929728K), 0.8527240

secs] [Times: user =0.89 sys=0.09, real =0.85 secs]

21.721: [Full GC [PSYoungGen: 19960K->0K(531968K)] [ParOldGen: 1292756K- >1312033K(1397760K)]

1312716K- >1312033K(1929728K) [PSPermGen: 28974K- >28956K(58368K)], 45.0386940 secs] [

Times: user =73.50 sys=1.13, real =45.04 secs]

70.555: [Full GC [PSYoungGen: 512000K->0K(531968K)] [ParOldGen: 1312033K- >1133327K(1397760K)

] 1824033K- >1133327K(1929728K) [PSPermGen: 29102K- >29101K(65536K)], 0.3149510 secs] [

Times: user =0.21 sys=0.01, real =0.32 secs]

There are two types of GC shown in the log: GC (aka Minor GC) and Full GC. Minor

GC is a lightweight operation which only takes less than one second because it only cleans

the Yong Generation. Full GC is a heavy one which cleans the full heap space including

Yong Generation, Old Generation and Permanent Generation. The log shows that there is

one Full GC that takes 45 seconds, which implies that GC tuning is necessary.

It turns out the Full GC is triggered by expanding the Permanent Generation, which is

caused by the small initial setting (default setting). Based on guidelines in the paper [30],

Permanent Generation is set to 128Mb and 4 parallel threads are set to perform the garbage

collection.
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Table 6.8 shows the performance improvement from the tuning. The overall job running

time is decreased by 9 minutes for 40GB input and 11 minutes for 60GB input.

Data Size Counter Group before GC tuning After GC tuning Diffrence
GC Time (s) Map Reduce Total Map Reduce Total Map Reduce Total

40GB Job1 183,905 529 184,433 2,014 104 2,118 181,891 424 182,315
Job2 18,807 5,736 24,543 7,720 1,510 9,230 11,087 4,226 15,313

60GB
Job1 25,283 390 25,672 7,135 141 7,277 18,147 249 18,396
Job2 26,577 8,120 34,697 11,040 2,302 13,342 15,538 5,818 21,355

Table 6.8: Performance Gain from GC Tuning

6.4.5 Reducer Start Time

The timeline of a MapReduce job can be divided into Map phase and Reduce phase.

Map phase doesn’t need large network bandwidth because data locality guarantees map

tasks running on the nodes where the input data store and map output is only written into

local disks. In contrast, the reduce phase, which gathers and combines the output from

all the mappers, is network IO intensive, because each reducer pulls its input from almost

every other nodes and writes its output into HDFS. More precisely the Reduce phase can be

divided into 3 parts:

• Shuffle: collects input from mappers:

• Sort: sorts the records and merges them by keys.

• Reduce: runs the reduce program, then write its result into HDFS.

Figure 6.5 shows the timeline of a MapReduce job execution. Notice that shuffle may

start before the end of the Map phase but only finish after all map tasks have finished. Sort

and reduce may only start when the shuffle completes.

Since the map and shuffle overlaps, coordination of them is crucial for the overall job

execution time. The time that a reducer begins shuffle is controlled by

mapred.reduce.slowstart.completed.maps parameter (default 5%). Shuffle only starts when

the progress of the map task exceeds the parameter value. When there are a lot of map
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Figure 6.5: Decomposition of Reducer Phases

tasks performance suffers for the low default value. The started reducer processes get stuck

at the shuffle phase to wait for the completion of each map task, which is a waste of process

resource since the total number of containers is fixed. After having tried a set of different

values, mapred.reduce.slowstart.completed.maps parameter was set to 0.90 for the k-mer

counting application. The overall job execution time decreased by 4 minutes for 40GB input

and 8 minutes for 60GB input.

6.5 Tuning Results and Remarks

6.5.1 Tuning Results

Figure 6.6 and Figure 6.7 show how each tuning step affects the overall run time in

details. Note that block size and JVM GC are two biggest factors and performance improve-

ment roughly proportional to the data size.

Figure 6.8 shows the performance trend before and after tuning. The overall job exe-

cution time reduces by 44% for the 40GB input and 47% for the 60GB input. The linear

scalability is kept.
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Figure 6.6: Impact Factors on 40GB

6.5.2 Remarks

Disk IO and network bandwidth are usually two performance bottlenecks for Hadoop

applications. The configuration of SSD and 10Gigabit enhanced Ethernet for our EC2 cluster

ease the burden of these bottlenecks. SSD delivers up to 70% higher MapReduce performance

compared to HDDs of equal aggregate IO bandwidth [15] and 10 gigabit Ethernet allows data

speeds up to 10 billion bits per second. So disk IO and bandwidth may not be the constraints

to the overall performance in our case. We believes that applying these tunings to Hadoop

clusters with HDD and general speed Ethernet [14] may bring much larger performance

improvement.
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Figure 6.8: Performance Comparison
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Chapter 7

Future Work

Even though parameter tuning can bring obvious performance improvement, IO opera-

tion is still the bottleneck of Hadoop-based application. we can further optimize BioPig job

performance from the following 3 perspectives:

• using existing libraries or techniques, such as Hadoop-BAM [24], Apache Parquet [3]

and Apache Avro [1], to further decrease disk IO overhead.

• implementing a combiner to reduce the amount of data to be transferred to the reducers

is another optimization for the MapReduce job.

• migrating BioPig from Hadoop to Spark [4], which is an in-memory computing frame-

work suitable for iterative and interactive applications. It is claims Spark may bring

up to 100x faster than Hadoop framework.

Another issue is that even though AMI is created to simplify BioPig setup, it still seems

to be complicate to use for researchers of Biology background. The ideal scenario is to

provide web interfaces, just like what CloudMan [6] did for Galaxy. With web interfaces,

users only need to specify parameters to launch a BioPig cluster.

Last but not the least, YARN-based BioPig currently includes 5 modules. More Bioin-

formatics applications may be added to the toolkit to enhance the functionality of BioPig.
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Chapter 8

Conclusion

The emergence of massive datasets in Bioinformatics presents challenges in sequence

analysis. Hadoop MapReduce framework, which was designed to get its parallelism from

large collections of commodity hardware, is adopted to address the challenges. Currently, a

bunch of MapReduce-based Bioinformatics tools are available on the market. BioPig is one

of them. In this thesis, I introduced YARN-based BioPig toolkit for large-scale sequence

analysis. With YARN, the power of cluster computing with Hadoop was enhanced. Job

throughput and cluster utilization were improved.

To further improve YARN-based BioPig performance, I tuned Hadoop parameters from

5 perspectives according to k-mer counting characteristics. Result shows these tuning achieved

an average performance improvement of about 50% compared to baseline configuration.

Aside from migration and tuning work, scalable sequence distance functions were imple-

mented to extend YARN-based BioPig framework.
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