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Abstract 

 

 Catfish is the primary aquaculture species in the United States. Recently, the catfish 

industry in the USA has encountered unprecedented challenges due to increasing feed and 

energy costs, devastating diseases, and severe international competition. Therefore, prominent 

brood stocks should be developed with superior performance to profit aquaculture industry in the 

USA. However, little information is known about the genetic architecture controlling 

economically important traits, which hinders marker-assisted selection.  

In this project, we studied QTLs for two economically important traits. The first trait is 

columnaris disease resistance. Columnaris causes severe mortalities among many different wild 

and cultured freshwater fish species, and it is one of the major diseases threatening catfish 

production. The second trait is head size (head length, head width, and head depth). Skull 

morphology is fundamental to evolution and biological adaptation of species to its environments. 

With aquaculture fish species, head size is also important for economic reasons, because it has a 

direct impact on fillet yield.  

To identify genes associated with these economically important traits, columnaris 

resistance and head size, genome-wide association studies (GWAS) was performed using the 

catfish 250k SNP array with  backcross progenies derived from crossing female channel catfish 

(Ictalurus punctatus) with male F1 hybrid catfish (female channel catfish I. punctatus × male 

blue catfish I. furcatus). Backcross hybrid catfish serves as a great model for the QTL analysis, 
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because backcross hybrids can be produced where phenotypes and genotypes are segregating, 

providing a useful system for QTL analysis. 

The GWAS revealed four QTLs associated with columnaris resistance in catfish. 

Strikingly, the candidate genes may be arranged as functional hubs. The candidate genes within 

the associated QTLs on linkage groups 7 and 12 are not only co-localized, but also functionally 

related, with many of them being involved in the PI3K signal transduction pathway, suggesting 

its importance for columnaris resistance.  

Head size QTLs were mapped in catfish to genomic regions rich in genes involved in the 

small GTPase pathway on nine linkage groups. Comparative analysis revealed the conserved 

function of small GTPase pathway in controlling skull morphometric traits in different species. 
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Chapter 1 Introduction 

 

Commercial production of catfish (Ictalurus spp.) accounts for approximately 60% of US 

aquaculture production (www.ers.usda.gov). The catfish industry is estimated at approximately 

two billion dollars with value added. Catfish is one of the top agricultural commodities and is 

important to employment opportunities in the rural areas of the southeastern states, including 

Mississippi, Alabama, Louisiana, and Arkansas.  

However, the catfish industry has encountered unprecedented challenges in recent years 

due to increasing feed and energy costs, devastating diseases, and severe international 

competition. For example, the cost of catfish has drastically increased recently, so profit margins 

have been reduced. Meanwhile, disease can cause losses of up to one third of the industry each 

year. Moreover, imports of catfish have risen almost 10 times in the last decade. As a 

consequence, the catfish industry has drastically shrunk from its peak in 2003 with 650 million 

pounds down to 430 million pounds in 2014 (USDA). Therefore, prominent brood stocks should 

be developed with superior performance. 

Traditional selection breeding has been conducted for decades with aquaculture species, 

and major progress has been made with various traits, especially growth (Smitherman et al. 

1983). However, with some traits such as disease resistance and body conformation, many genes 

are involved and accurate selection using traditional selection is difficult. Moreover, low 

heritability limits the progress of traditional selection. Whole genome marker-assisted selection 

http://www.ers.usda.gov/
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allows increased selection accuracy and efficiency, which should be conducted to develop 

superior brood stocks for aquaculture industry, but genetics work must be done first to dissect the 

genomic architecture controlling the traits of interest. More importantly, there are many 

important traits, and selection in one trait may adversely affect other traits, especially when the 

traits are closely linked. Therefore, understanding of various important performance and 

production traits is the prerequisite for the application of genome based selection programs.  

Agricultural genetics is about the inheritance of agriculturally important traits, i.e., 

understanding the genetic basis of phenotypes of economic importance. The central goal of 

genetic stock enhancement is to discover the relationship between genetic polymorphism and the 

phenotypic variances observed among individuals. A phenotype of an organism is the 

measurement of observable characteristics or traits, while the genotype is the inherited genetic 

information. Qualitative traits, where the phenotypes could be assigned into different categories, 

are controlled by a single gene, or by a limited number of genes, such that the segregation of the 

traits can be followed by classical Mendelian genetics. However, quantitative traits have 

continuous variation, which is attributable to the combination of segregation of alleles at multiple 

loci controlling the trait, environment, and genotype-environment interactions. Different 

quantitative traits have different levels of sensitivity to genetic, sexual, and external 

environmental effects (Mackay 2001a). Moreover, because each causal gene may only have a 

small contribution to the overall heritability, identifying the genes related with quantitative traits 

can be difficult (Hirschhorn and Daly 2005). Most aquaculture performance and production traits 

of economic importance are quantitative in nature, such as grow rate, feed conversion efficiency, 

disease resistance for many different diseases, low oxygen tolerance, body shape, carcass and 

fillet yield, and behavioral traits (e.g., aggressiveness of feeding, and seinability).  
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Various techniques have been used to dissect the genes responsible for production and 

performance traits in aquaculture species. For instance, traditional QTL mapping was conducted 

to locate the region associated with resistance to infectious pancreatic necrosis virus in Atlantic 

salmon (Salmo salar) (Gheyas et al. 2010a; Gheyas et al. 2010b; Houston et al. 2008; Houston et 

al. 2012; Moen et al. 2009; Phillips et al. 2013). Utilizing RNA-seq, Li et al. (2012) 

characterized the role of catfish intestinal epithelial barrier following enteric septicemia of 

catfish (ESC, Edwarsiella ictaluri) challenge. Wang et al.(2013b) conducted bulked segregant 

analysis to study candidate gene locations and allele-specific expression associated with ESC 

resistance in catfish. However, genetic analysis of resistance against bacterial diseases such as 

columnaris has been limited.  

Although many types of molecular markers can be used for marker assisted selection, 

SNP markers are becoming the markers of choice for two reasons. First, SNPs are abundant and 

widespread throughout the genomes of most species. In most aquaculture species studied to date, 

SNP rates are 0.5-5% among species. For instance, one SNP exists within approximately 116 bp 

in catfish on average (Sun et al. 2014). Such a polymorphic rate provides no limitation for a 

dense genome-coverage for GWAS. Although not perfectly evenly distributed, SNPs are far 

superior to any other types of molecular markers in these terms. Secondly, SNPs are biallelic in 

most cases and codominantly inherited, making them more amenable to automation with reduced 

complexity for genotyping and analysis.  

SNPs can be readily discovered in a cost-effective fashion using the next-generation 

sequencing technology (Sun et al. 2014). After SNPs are defined, SNP arrays can be developed 

that provide high efficiency for high-throughput genotyping. Several SNP arrays have been 

developed for aquaculture species including catfish, carp, rainbow trout, and Atlantic salmon 
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(Liu et al. 2014; Palti et al. 2014; Sun et al. 2014; Xu et al. 2014). Because of these advantages, 

SNPs have rapidly become the marker of choice for genome-wide marker assisted selection 

(Morin et al. 2004).  

Heterosis is an important genetic force that contributes to world food production. 

Interspecific hybrids are particularly effective in generating significant heterosis (Birchler et al. 

2003). Hybrids of catfish have been investigated for about 50 years (Giudice 1966). Among all 

possible combinations, only one cross (female channel catfish X male blue catfish) exhibited 

better performance than its parental species (2008). The F1 hybrids made from female channel 

catfish X male blue catfish exhibit better performance in growth rate, feed conversion efficiency, 

among several other traits. Studying the mechanism of heterosis is of great economic value. 

Undoubtedly, hybrid catfish is the future of catfish industry, so it is economically important to 

identify the genetic basis underlying prominent performance of hybrid catfish. 

Our long-term goal is to enhance catfish breed stocks with superior traits. In this project, 

we conducted GWAS for identifying QTLs controlling columnaris resistance and head size. Our 

specific objectives are:  

1. Identifying QTLs for columnaris resistance and head size using backcross hybrid 

catfish with the 250K catfish SNP array to improve brood stocks by marker-assisted 

selection or introgression of valuable disease resistance QTLs from both channel 

catfish and blue catfish; 

2. Identifying candidate genes, and understanding the underlying mechanisms. 
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Chapter 2 Introduction of GWAS 

 

The recent breakthrough in genotyping technology allows the access to a large number of 

SNPs on a genomic scale. Association study, also known as linkage disequilibrium mapping, 

detects and locates quantitative trait loci (QTLs) based on the strength of the correlation between 

mapped markers and the trait in question. Although QTL mapping is well-suited for family-

based samples, association studies, especially genome-wide association studies, can potentially 

offer higher mapping resolution using markers with higher density. Moreover, recent 

developments in GWAS methodologies have offered mature software packages for association 

analysis.  

Genome-wide association study (GWAS), i.e., conducting association studies using 

genome-wide genotyping data, has evolved into a powerful tool for investigating the genetic 

architecture of important traits of human beings, crop, and animals during the last decade. For 

example, a genome-wide association study identifies five loci influencing facial morphology in 

Europeans (Liu et al. 2012). Schoenebeck et al. (2012) studied the genetic architecture of canine 

skull shape using GWAS, and found variation of BMP3 contributes to dog breed skull diversity. 

In Japanese Black cattle, a genome-wide association study identified three major QTLs for 

carcass weight including the PLAG1-CHCHD7 QTN for stature (Nishimura et al. 2012). 916 

varieties were phenotyped under five different environments and 512 loci were identified 

associated with 47 agronomic traits by GWAS in Setaria italic (Jia et al. 2013). However, in 
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aquaculture, GWAS has been seldom utilized. GWAS could facilitate marker-assisted selection, 

and discover causative mutation. The application of GWAS in aquaculture will undoubtedly help 

connecting sequence diversity with phenotypic differences. In this section, a general introduction 

for the procedures to conduct GWAS in aquaculture is reviewed concerning the special 

characters of aquaculture species.  

2.1 Study population 

The ideal samples should be homogenous in genetic background without population 

stratification, highly contrasted in phenotype, and highly intercrossed to provide high mapping 

resolution. Population stratification is generated from the different allele frequencies among 

subpopulations, and it always confounds association test in practical situations. Especially when 

phenotypic variation exists among different subpopulations, imbalanced sampling from the 

subpopulations will generate false positive results. For example, if fish from strain A are more 

resistant to one disease than those from strain B intrinsically, it is then possible most resistant 

fish are sampled from strain A. As a consequence, the identified “associated” loci could be more 

associated with the strain difference than with disease resistance. Because the researchers are 

faced with various biological or economic limitations, the most appropriate samples may not be 

available in practical situations, which may lead to false positive results. To eliminate the effect 

of population stratification, a number of experimental population structures and corresponding 

statistical methods have been designed for GWAS. In this section, we describe a few of the most 

popular designs for population structure. 

2.1.1 Samples from natural population 

Existing samples from non-manipulated natural populations with known phenotype can 

be used in GWAS. Obviously, using this kind of samples is more cost- and time-effective 



7 

 

compared with using samples from family-based population, because the latter requires 

additional time to generate higher generations. While it is easy to assume natural populations are 

unrelated, that may or may not be true. Population stratifications could be more problematic with 

aquaculture species than livestocks because in many cases, a large number of individuals could 

be derived from a very limited number of founders, forming subpopulations in a natural 

population. Therefore, it must be noted that the population stratification in random natural 

samples could cause false positive results. Recent developments in GWAS methodologies for 

random natural samples have offered mature software packages for association analysis to 

control population stratifications, so GWAS with samples from natural population could be 

widely performed in aquaculture species, considering the relatively abundant natural population 

resources compared with livestocks and human beings.  

2.1.2 Samples from family-based population 

In family-based association tests, families with one or more offspring are used as the 

subjects rather than unrelated samples. Family-based population designs are more immune to 

population stratification, which cannot be efficiently addressed in natural population design. 

Moreover, many aquaculture species have high fecundities with thousands of progenies per 

spawn, saving tremendous labor for reproduction compared with livestocks. Such samples can be 

produced by a few parents, and the progenies with homogenous genetic background are suitable 

for GWAS, which cannot be realized in humans and mammals. This situation makes aquaculture 

species unique for GWAS using family-based samples. Even the samples consists of more than 

one full-sibling families in most practical experiments, the clear pedigree information of family-

based population design makes correction of population stratification much easier compared with 

the natural population design. This and the other prominent advantages, including highly 
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contrasted phenotypes (sometimes realized by interspecific hybrid), allowing investigation of 

specific questions such as parent-of-origin effects, and power to detect rare variants, make it 

popular to use family-based populations for GWAS in aquaculture (Mott et al. 2000). For 

example, the interspecific hybrid catfish from mating female channel catfish (Ictalurus 

punctatus) with male blue catfish (I. furcatus) serves as a great model to detect major QTLs 

involved in columnaris disease resistance, because channel catfish is generally resistant to the 

disease while blue catfish is generally susceptible (Geng et al. 2015).  

However, some disadvantages of family-based population design need to be concerned. 

Due to limited founders, family-based population design is not powerful to detect the causal 

alleles that are homozygous in the subpopulation used in the association test but heterozygous in 

the whole population. Moreover, compared with the natural population which has more rounds 

of historical recombination, the limited numbers of recombination events in family-based 

population design make its mapping resolution low. In addition, for aquaculture, using family-

based sample requires additional breeding period. For example, the generation time of catfish is 

long (three years). Therefore, family based samples, especially higher generations, for 

association mapping are time consuming and costly. At last, the between-family stratification in 

both phenotype and genotype still needs to be addressed by statistical methods. 

Mott et al. (2000) proposed that higher generations of intercross hybrids can be produced 

by intermating F2 individuals for several generations, and such higher generations of hybrids can 

provide a higher resolution for association mapping. They applied multi-parent advanced 

generation intercross (MAGIC), and the MAGIC approach provides ideal samples with high 

diverse and no population stratification structure, which is suitable for fine mapping. The idea of 

higher generations of intercross hybrids is very simple: basically, the haplotype blocks become 



9 

 

shorter and shorter surrounding the gene of interest to allow the identification of the candidate 

genes within a small chromosome region. However, in spite of the advantages and theoretical 

attractiveness, this approach has limited application potential for many important aquaculture 

species, simply because of the long generation time of aquaculture species. It takes too long to 

produce high enough generations of progenies to effectively reduce the linkage disequilibrium 

(LD) block sizes.  

2.2 Phenotype design 

A good understanding of the observational data and a correct adjustment for the 

phenotype are key prerequisite steps for further analysis. Based on the phenotypes, i.e., 

qualitative and quantitative traits, two types of study design can be made: qualitative trait design 

(case-control design) and quantitative trait design. In some cases, if the trait does not have well-

established quantitative measures, the samples can be classified as categorical variable. For 

instance, in the case of disease resistance, the quantitative measurements may not be available 

for many species. Then the disease resistance trait can be classified as “resistant” versus 

“susceptible” as a binary variable (Geng et al. 2015). If the traits are binary, the data could be 

analyzed with logistic regression models.  Although some methods for association tests were 

developed with quantitative traits, they can also be used to analyze case-control datasets by using 

dummy variables (i.e., coding case phenotypes as 1 and control phenotypes as 0) (Kang et al. 

2010). From the statistical perspective, genetic effect size (the proportion of phenotypic variance 

explained by two alleles at a locus) can be easily calculated with quantitative traits, since the 

quantitative traits are measured by continuous numbers.  

Factors that influence the trait should be adjusted in or before the association tests to 

exclude spurious associations caused by confounding factors. These factors, which describe the 
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circumstances under which the data were collected and the characteristics of the samples, may 

include gender, age, experimental batch, body weight, known family structure, etc. The 

adjustment procedure could be conducted by linear models with the factors as the explanatory 

variables and the observational data of interest as the response variables, and the residuals could 

be used as the phenotype for further analysis, which just consist of the genetic component, other 

unaccounted effects, and random effects (Dominik 2013). In addition, outliers should be 

removed because they will affect the fitting of the model. 

2.3 Power of association test and sample size 

Power of a study is the probability that a true association between a marker and the trait 

of interest is found significant by the designed study. Calculating power before conducting 

experiment is a central element in a study design. Power depends on the significance level α set 

by the experimenter, design of experiment, statistical test, effect size of QTL, the allele 

frequency of the causal allele, the LD between the causal allele and the genotyped markers on 

the array, and sample size (Hayes 2013). Increasing the sample size is an obvious method to 

improve the power to detect associations.  

For the quantitative trait designs, selective genotyping is often utilized as a cost-effective 

strategy, which just genotypes individuals from the extremes of the phenotypic distribution 

(Lynch and Walsh 1998). It requires less sample size but keep the high power to detect QTLs 

(Van Gestel et al. 2000). However, the tradeoff is that it may cause the potential overestimation 

of effect size.  

Some software are available to calculate the sample size for unrelated individuals to 

ensure sufficient power (Gauderman and Morrison 2006). However, including a statistician 

during planning phase is often recommended to ensure a solid and powerful design. 
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2.4 Quality control procedures 

After genotype calling procedure based on signal intensities generated by the SNP assay 

for the alleles (Ziegler et al. 2008), quality control (QC) should be performed for genotypes to 

avoid false results. Quality control for GWAS data includes sample-level QC and SNP-level QC. 

Samples with low genotyping quality or a low call rate should be excluded from analysis. 

The “outliers” with different ancestry may cause false positive loci. For example, in the study 

conducted by Gudbjartsson  (Gudbjartsson et al.), the individuals have large deviations in terms 

of genetic background were removed to keep the samples homogenous. Principal component 

analysis or cluster analysis based on IBS (identity by state) kinship matrix with the genotypes of 

all samples can be used to detect outliers. After visualizing these structures, the outliers can be 

identified and removed (Geng et al. 2015). 

For markers, SNPs with low genotyping quality should also be excluded if they have any 

Mendelian inheritance errors or low calling rate. The rare SNPs, possibly generated by 

genotyping errors or population stratification, may lead to spurious results. Therefore, SNPs with 

low minor allele frequencies (MAF) should always be discarded. Hardy–Weinberg equilibrium 

test compares the observed proportion of the marker versus the expected proportion. If unrelated 

samples are used, the SNPs severely out of Hardy–Weinberg equilibrium should be flagged 

before further analysis, because disequilibrium can result from a true association, a potential 

genotyping error, or population stratification (Turner et al. 2011).  

2.5 Linkage disequilibrium analysis 

In population genetics, linkage disequilibrium (LD) describes the correlations of alleles at 

two or more neighboring loci (Reich et al. 2001). If one locus has alleles A and a with 

frequencies pA and pa, and a second has alleles B and b with frequencies pB and pb, then the 
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expected haplotype frequencies at equilibrium are the product of the two component allele 

frequencies. For example, pAB=pA×pB, where pAB is the frequency of AB haplotype. The deviation 

of the observed frequency of a haplotype from the expected under equilibrium is the linkage 

disequilibrium which is denoted by D: D=pAB-pA×pB (Table 1). The D statistic is dependent on 

the frequencies of the individual alleles (pA and pB), so D is not useful in describing the LD on 

different pairs of loci. Two alternative methods D’ and r2 are used to normalize D (Lewontin 

1964; Pritchard and Przeworski 2001):  

1) 𝐷′ =
𝐷

𝐷𝑚𝑎𝑥
 , where 𝐷𝑚𝑎𝑥 = {

min(𝑝𝐴𝑝𝐵, 𝑝𝑎𝑝𝑏) 𝑤ℎ𝑒𝑛 𝐷 < 0

min(𝑝𝐴𝑝𝑏, 𝑝𝑎𝑝𝐵) 𝑤ℎ𝑒𝑛 𝐷 > 0
 

2) 𝑟2 =  
𝐷2

𝑝𝐴𝑝𝐵𝑝𝑎𝑝𝑏
 

 

Table 1 Relationship between the haplotype frequencies, allele frequencies, and D. 

 A a Total 

B pAB=pApB+D paB=papB-D pB 

b pAb=pApb-D pab=papb+D pb 

Total pA pa 1 

 

LD is caused by the lack of recombinations breaking the linkage of nearby loci. 

Therefore LD decays with increasing distance between loci. The LD decay is also influenced by 

several other factors, such as population size, the number of founders in the population, and the 

number of generations of the populations (Bush and Moore 2012). A significantly associated 
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SNP detected from association mapping could be a causal variant, but in most cases, the 

identified SNPs are in high linkage disequilibrium with the causal variants. 

There are several reasons why LD is interesting. Firstly, the resolution of the association 

mapping depends on the decaying extent of LD. Secondly, we could generate independent SNPs 

which are not correlated with the surrounding SNPs (LD pruning). Using the number of 

independent SNPs, we can conduct the Bonferroni correction (Geng et al. 2015).  

2.6 Association test  

There are different kinds of association test models. The proper statistical test method 

should be chosen carefully according to specific situations, for example, quantitative trait studies 

versus qualitative trait studies, samples from family-based population versus samples from 

natural population, and different genetic effects including dominant, additive and recessive. If no 

population stratification exists in the samples, it is simple to evaluate the association between 

markers and trait by common methods, including linear model, Cochran–Armitage trend test, etc. 

However, population stratification almost always exists within the sample population and, 

therefore, correction of population stratification is the key issue in association test.  

Various software packages have been developed for statistical analysis of GWAS in 

different situations. Most are free that can be downloaded from the Internet. For example, Purcell 

et al. (2007) developed PLINK to conduct association test with free access, and it has been 

widely used in GWAS. Some commercial software packages assemble popular methods into an 

easy to use toolset with user-friendly interface.  

In the following, the strategies will be elucidated to detect population stratification and 

infer genetic ancestry. Two main approaches, mixed linear model and transmission 

disequilibrium test, are introduced.  
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2.6.1 Principal component analysis 

The principal components analysis (PCA), a dimensionality reduction method, is a 

powerful way of representing the genetic relationship. PCA summarizes the variation among 

different samples across all independent markers into a smaller number of principal components, 

which indicates the relationship of the individuals. When using PCA to correct the population 

stratification, the regression of genotype at a candidate SNP to the phenotype is adjusted by 

including the loadings of top principal components to remove all correlations to ancestry (Price 

et al. 2006). This method assumes a small number of ancestral populations and simple 

admixture, and it cannot correct stratification due to complex relationship (Yu et al. 2005). 

Among PCA-based software packages that have been proposed, EIGENSTRAT is the most 

widely used (Price et al. 2006). 

2.6.2 Linear mixed models 

Linear mixed model can be used to model population structure, family structure and 

cryptic relatedness (Yu et al. 2005). It has the ability to capture multiple levels of population 

structure of the samples, even from several families or inbred lines (Kang et al. 2008). 

The model is listed as follows: 

Y = Xb + a + e 

where Y is the vector of phenotype; X is data matrix of fixed effects ; b is the coefficient of fixed 

effects; a is the vector of random effects with covariance structure based on kinship matrix G 

(Var (a) = σg
2G, σg

2
  represent the parameter for additive genetic variance); e is the vector of 

random residuals. This method models phenotypes using a mixture of fixed and random effects. 

Fixed effects (Xb) include the SNPs and optional covariates, and random effects include 

heritable (a) and non-heritable random variation (e) (Price et al. 2010). An efficient mixed-model 
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association method, EMMAX, was developed that markedly reduced the computational cost and 

have been widely used in GWAS (Kang et al. 2010). First, EMMAX computes a genetic 

relatedness matrix representing the sample structure, whose entries are genetic relationship 

between every pair of individuals. Second, using a variance component model, the contribution 

of the sample structure to the covariance of phenotype is estimated, generating an estimated 

covariance matrix of phenotypes that models the effect of genetic relatedness on the phenotypes. 

Third, a generalized least square F-test or a score test is applied at each marker to detect 

associations accounting for the sample structure using the covariance matrix (Kang et al. 2010). 

Although EMMAX was designed preferably for quantitative traits that follow a normal 

distribution, the association test for qualitative traits can be approximately conducted using 0-1 

quantitative response variable to represent the case-control status (Kang et al. 2010). There are 

some similar methods, such as GCTA, TASSEL and GEMMA, which are proven to be effective 

in correcting complex structure stratification (Yang et al. 2011; Zhang et al. 2010; Zhou and 

Stephens 2012). Despite the advantage that linear mixed model could help eliminate false 

positives caused by complex population stratification, it is not guaranteed to adjust for all 

possible confounding population structures. A recommended practice is both using principal 

components as fixed effects and using estimated kinship matrix as variance-covariance matrix in 

the random effects (Price et al. 2010). Considering imperfect adjustments, the samples with less 

population stratification are still preferred to avoid spurious results. 

2.6.3 Transmission disequilibrium test and derivatives 

The transmission disequilibrium test (TDT), in which family pedigrees of samples are 

ascertained, is robust to the effects of population stratification (Laird and Lange 2006). The TDT 

was proposed by Spielman  et al. (1993) with family-based populations for the association test 
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between a genetic marker and a trait. When conducting TDT, the progenies in each family with a 

certain extreme phenotype of interest are selected, for example, the fish with albino or with an 

exceptionally high growth rate (Lange et al. 2002). Parents and progenies are genotyped and the 

loci where parents are heterozygous will contribute to the analysis. From each parent, one allele 

must be transmitted to the progeny and the other one not. Over all families, the ratio of 

transmission to non-transmission will be compared with the expected value of 1:1 (Mackay and 

Powell, 2007).  

Various extensions of the TDT have been developed, of which the family-based 

association test for quantitative traits is widely used (Abecasis et al. 2000). It can accommodate 

nuclear families of any size, with or without parental information. It breaks down the genotypes 

into between-family and within-family components, and the latter is free of population structure. 

The major drawback of TDT is its extreme susceptibility to genotype errors of parents. TDT, 

which needs additional genotype information of parents, is of lower power as it only uses the 

allele transmission information within pedigrees. Moreover, the family based studies still need to 

incorporate between-family information, which may be confounded from stratification (Lasky-

Su et al. 2010; Won et al. 2009).  

However, with a large number of progenies, aquaculture species may be ideally suited for 

the TDT design. Compared with the trio-design in humans, larger family design is possible with 

most aquaculture species, and this advantage greatly reduces the efficiency penalty for 

genotyping parents. Moreover, the parental genotypes could be validated to correct the genotype 

errors by the genotypes of numerous offspring based on the Mendelian laws of inheritance. 

Considering the immunity to population stratification, family-based design will perform 

efficiently for most aquaculture species. 
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2.7 Significance level for multiple testing 

Using a strict significance level for GWAS is important, because GWAS typically tests a 

very large number of hypotheses and spurious false positive results may arise by chance. In 

GWAS, the null hypothesis refers to the statement that no association exists between the markers 

and the trait. Thus rejecting the null hypothesis means an association. Under the null hypothesis, 

low P-value indicates that the chance for obtaining the observed sample results is small. When P-

value falls below a predetermined alpha value (significance level), which is usually 0.05 for 

single marker testing, the null hypothesis will be disproved. This also means that the null 

hypothesis will be disproved with a probability of 5% when it is true in fact (type 1 error), so the 

probability for a false positive in one single test will be 5%. However, when we conduct a 

multiple test in GWAS, hundreds of thousand SNPs are tested simultaneously. Therefore, the 

cumulative likelihood of false positive results will increase. To control the false positive results, 

Bonferroni correction converts α=0.05 to α=0.05/n, where n equals the number of independent 

tests. Because of linkage disequilibrium among GWAS markers, each association test of all the 

markers is not independent. Duggal et al.  (2008) proposed that the threshold P-value (α value) 

for genome-wide significance could be calculated based on Bonferroni correction with the 

estimated number of independent markers and LD blocks. For instance, if the probability of one 

type 1 error should be controlled at 0.05 with a total of 15,000 haplotype blocks, the genome-

wide significance level now is at 0.05/15,000 = 0.0000033. Apart from Bonferroni correction, an 

alternative method to adjust α value is using false discovery rate (FDR), which is widely used in 

multiple hypothesis testing but less common in the GWAS context (Hochberg and Benjamini 

1990). At last, using the -log10(P-value) and the positions of SNPs, Manhattan plots could be 

generated to show the locations of associated SNPs. 
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2.8 Comparison of GWAS with alternative designs  

Apart from GWAS, alternative statistical methods are available to investigate the genetic 

basis of variation causing different phenotypes. Here, the advantages and disadvantages of these 

methods compared with GWAS are described.  

Similar to GWAS, quantitative trait locus (QTL) mapping is also a statistical method that 

links phenotypic data and genotypic data to explain the genetic basis that causes phenotypic 

variations. QTL mapping can be regarded as a special case of GWAS where LD is derived from 

a small number of founders that established the population in the recent past (Mackay and 

Powell 2007). Different from GWAS, QTL analysis requires two or more strains of organisms as 

the parental population that differ genetically with regard to the trait of interest. Moreover, 

genetic markers which are different in the parental lines should segregate with the contrasted 

phenotype. 

 QTL mapping has been a powerful traditional method used to identify loci co-

segregating with a given trait. Without significant investment in the development of large 

genotyping platforms such as SNP arrays, QTL mapping is still widely used. However, QTL 

mapping suffers from some fundamental limitations. First, the mapping resolution of QTL is 

limited by the amount of recombination events within the pedigrees, although it can be improved 

by several generations of intercrossing (Darvasi and Soller 1995). Linkage analyses thus have a 

lower level of resolution than association studies, which also leverages all historic recombination 

events among founders (Mackay 2001a). In the natural populations that are utilized by GWAS, 

LD often decays more rapidly with increasing physical distances than in controlled crosses 

(Mackay and Powell 2007). Secondly, some loci will remain undetected if the analyzed families 

contain no segregating alleles at the loci. Thirdly, linkage analysis have less power to identify 
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common genetic variants with modest effects (Risch and Merikangas 1996). Fourthly, important 

quantitative traits usually have complex genetic architectures, such that the phenotype is 

determined by multiple factors (Wang et al. 2005),  such as genotype-by-sex, genotype-by-

environment, and epistatic interactions between QTLs. However not all QTL studies were 

designed to detect such interactions (Mackay 2001b). Moreover, the allele frequencies and 

combinations present in the sampled families may differ from those in the other populations 

(Korte and Farlow 2013). Because of these reasons, the number of times that individual genes 

have been identified utilizing a QTL mapping remains very small.  

The basic idea of bulk segregant analysis (BSA) is that phenotypic extremes should have 

drastic differences in the loci associated with the phenotype when samples are selected from 

phenotypic extremes and their genotypes are analyzed in bulk. Although the associated loci may 

be difficult to be detected comparing individuals with different performance in phenotype, the 

pooled samples (bulk) with the phenotypic extremes should reveal the contrast in the genotype 

(Michelmore et al. 1991; Wang et al. 2013b). In other word, if samples are grouped according to 

the contrasted trait, the frequency of the two marker alleles present within each of the two bulks 

should deviate significantly from the expected ratio in their specific population (Quarrie et al. 

1999). Thus, the correlation between genotype and phenotype can be identified. The major 

drawback of BSA is the imprecision caused by the genotype generated from the pooled sample. 

Moreover, the family stratification, if existing, is impossible to be eliminated due to the bulk 

analysis. Further, BSA will only be able to detect the genetic effects of single locus, precluding 

any analysis of haplotype or gene-by-gene interaction effects. However, because of high 

efficiency, low cost, and analytical simplicity, it is still broadly used, especially with plant 
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species.  The high fecundities of aquaculture species make BSA potentially a useful tool to 

provide preliminary result for aquaculture species (Wang et al. 2013b). 

2.9 Conclusions 

Undoubtedly, GWAS has accelerated the field of human, plant and livestock genetics. 

Using GWAS, numerous genetic risk factors for many common human diseases have been 

identified, and many genetic regions controlling important economical traits have been located in 

plants and livestocks. Genome-wide association studies could open new frontiers in our 

understanding of the relation of traits and the underlying genetic architecture in aquaculture. 

With the development of genotyping technologies, especially high-density SNP arrays, GWAS 

could be widely used for the analysis of aquaculture traits to improve the brood stocks of 

aquaculture species, with lower costs in the long term. 
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Chapter 3 A Genome-wide association study in hybrid catfish for QTLs controlling 

columnaris disease resistance 

 

3.1 Abstract 

Columnaris causes severe mortalities among many different wild and cultured freshwater 

fish species, but understanding of host resistance is lacking. Catfish, the primary aquaculture 

species in the United States, serves as a great model for the analysis of host resistance against 

columnaris disease. Channel catfish in general is highly resistant to the disease while blue catfish 

is highly susceptible. Backcross hybrids can be produced where phenotypes and genotypes are 

segregating, providing a useful system for QTL analysis. To identify genes associated with 

columnaris resistance, we performed a genome-wide association study (GWAS) using the catfish 

250k SNP array with 340 backcross progenies derived from crossing female channel catfish 

(Ictalurus punctatus) with male F1 hybrid catfish (female channel catfish I. punctatus × male blue 

catfish I. furcatus). 

A genomic region on linkage group 7 was found to be significantly associated with 

columnaris resistance. Within this region, five have known functions in immunity, including 

pik3r3b, cyld-like, adcyap1r1, adcyap1r1-like, and mast2. In addition, 3 additional suggestively 

associated QTL regions were identified on linkage groups 7, 12, and 14. The resistant genotypes 

on the QTLs of linkage groups 7 and 12 were found to be homozygous with both alleles being 

derived from channel catfish. The paralogs of the candidate genes in the suggestively associated 
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QTL of linkage group 12 were found on the QTLs of linkage group 7. Many candidate genes on 

the four associated regions are involved in PI3K pathway that is known to be required by many 

bacteria for efficient entry into the host. Strikingly, the candidate genes may be arranged as 

functional hubs; the candidate genes within the associated QTLs on linkage groups 7 and 12 are 

not only co-localized, but also functionally related, with many of them being involved in the PI3K 

signal transduction pathway, suggesting its importance for columnaris resistance.  

 

3.2 Background 

Flavobacterium columnare, a Gram-negative bacterium, is the causative agent of 

columnaris disease, which is very common in wild and cultured freshwater fish worldwide 

(Plumb et al. 2011). This pathogen can infect a variety of fish species through mucosal 

attachment points on the gill and skin, causing external erosion and necrosis (Declercq et al. 

2013). The bacterium can also enter the blood stream and invade the internal organs (Hawke and 

Thune 1992). The economically important foodfish channel catfish (Ictalurus punctatus) and the 

other members of the family Ictaluridae are extremely susceptible to columnaris disease. 

Columnaris disease is considered as one of the most important diseases in the catfish industry, 

causing tens of millions of dollars in losses every year (Declercq et al. 2013).  

There is no efficient method currently to control the disease problems in catfish other 

than genetic stock enhancement. Vaccines for columnaris are available now, but they are not cost 

efficient, because fish has low individual value compared to livestock. Additionally, the large 

numbers of fish make it difficult to apply vaccine to each fish. Antibiotics can be useful to 

control bacterial disease. However, antibiotics could have drastically adverse environmental 

impact and serious human health risks. Therefore, considering the moderate heredity of 
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columnaris disease resistance (about 0.2), improving disease resistance by genetic stock 

enhancement using various approaches including strain selection, crossbreeding, hybridization, 

and transgenics is required (Arias et al. 2012). 

In the last decade, various studies were conducted aiming at elucidating the mechanisms 

of columnaris entry, immune evasion, and the host response to the disease. Some studies have 

been conducted on the modes and dynamics of columnaris adhesion (Decostere et al. 1999; 

Olivares-Fuster et al. 2011). In recent years, the application of RNA-seq has allowed a 

significantly greater level of understanding of the complexities of columnaris induced gene 

expression (Sun et al. 2012). Several central signatures following infection were revealed by 

gene expression enrichment analysis and gene pathway analysis of differentially expressed genes 

(Sun et al. 2012). For instance, Beck (2012) revealed that rhamnose-binding lectin was induced 

dramatically after infection, which was correlated with columnaris susceptibility. Peatman  

(2013) carried out RNA-seq analysis to compare basal and post-challenge differences in 

expression between susceptible and resistant channel catfish lines. Some genes involved in 

critical innate immunity, such as iNOS2b, lysozyme C, IL-8, and TNF-alpha were constitutively 

expressed higher in resistant than in susceptible catfish gill tissues. In contrast, secreted mucin 

forms, rhamnose-binding lectin, and some mucosal immune factors were found to be expressed 

at higher levels in the susceptible catfish line than in the resistant line. Despite these efforts, the 

knowledge of molecular mechanism of columnaris resistance is still limited.  

In spite of very rapid progress made in genetic enhancement of aquaculture species with 

growth related traits, selection with disease resistance traits has lagged behind. To identify the 

QTLs in the hybrid catfish related to columnaris resistance, a genome-wide association study 
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using backcross hybrid catfish was conducted, and here we report the identified QTLs and their 

associated genes within the highly associated genomic regions. 

 

3.3 Methods 

3.3.1 Ethics statement 

All experiments involving the handling and treatment of fish were approved by the 

Institutional Animal Care and Use Committee (IACUC) at Auburn University. Tissue samples 

were collected after euthanasia. All animal procedures were carried out according to the Guide for 

the Care and Use of Laboratory Animals and the Animal Welfare Act in the United States. 

3.3.2 Experimental fish, bacteria challenge and sample collection 

The study population was the Auburn University one year old catfish generated from back 

cross of male F1 hybrid catfish (female channel catfish X male blue catfish) with female channel 

catfish. The backcross progenies were produced by using the F1 as the male parent to avoid 

possible maternal effects in the early growth stage. The population consisted of six families. Since 

the offspring were mixed for culture, the genotypes of the samples could be used to assign the 

offspring into their families (see Table 2). Three reasons make us to choose the backcross family-

based population as the study sample. First, the channel catfish × blue catfish interspecific system 

provides a useful research system for the understanding of columnaris resistance because they 

exhibit clear contrast in their phenotypes (Arias et al. 2012). Segregation of genotypes in F2, along 

with the highly contrasted phenotypes, provides a good system for QTL analysis. Second, family-

based association mapping is usually more powerful in detecting QTLs, since the lack of 

recombination between a QTL and linked marker increases the power of detection (Mackay and 
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Powell 2007). Third, family-based association mapping is preferred to detect rare markers related 

with QTLs (Mackay and Powell 2007).  

1200 fish (average body weight 55.3 grams) were randomly obtained from Auburn 

University Fish Genetics Facility and acclimated for one week in the aerated flow-through water 

(240×60×45cm (L×W×H)). The average water temperature was 25℃. A total of 340 backcross 

progenies were selected from the extremes of the disease resistance distribution of the 1200 fish 

based on the selective genotyping method (Darvasi and Soller 1992). The first 169 fish that died 

of columnaris were continuously sampled as the susceptible group. When the fish lost balance, 

blood samples were collected. 171 fish that survived from the disease and showed no symptoms 

were selected randomly as the resistant group.  

The bacteria challenge procedure was conducted as previously described (Sun et al. 2012). 

The bacteria F. columnare were provided by the Aquatic Microbiology Laboratory, Auburn 

University. To get a single F. columnare colony, several fish were experimentally infected with a 

virulent isolate (BGFS-27; genomovar II) (Olivares-Fuster and Arias 2011) and bacteria were re-

isolated from one symptomatic fish after confirmed visually and biochemically. We selected 

BGFS-27 as representative of F. columnare for the present study, to which the hybrid was more 

resistant than blue and channel catfish (Arias et al. 2012). A single colony was cultured in modified 

Shieh broth for 24 h in a shaker incubator (100 rpm) at 28 ℃. The final concentration of the 

bacteria was determined using colony forming unit (CFU) per mL. Challenge experiments were 

then conducted by immersion exposure for 2h at a final concentration of 3×106 CFU/mL. Control 

fish were treated with identical procedures except that they were exposed to sterile modified Shieh 

broth. 
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3.3.3 DNA isolation, genotyping, and quality control 

DNA was isolated from blood sample using standard protocols. After incubated at 55°C 

about 10h, the blood cells were broken by cell lysis solution first. Protease K and protein 

precipitation solution were used to remove the proteins. Next, DNA was precipitated by 

isopropanol and collected by brief centrifugation, washed twice with 70% ethanol, air-dried, and 

resuspended in TE buffer (pH 8.0). After quantified using spectroscopy by Nanodrop (Thermo 

Scientific) and checked by 1% agarose gel electrophoresis stained with ethidium bromide for 

integrity, DNA was diluted to 50 ng/uL. 

We have developed a catfish 250K SNP array using Affymetrix Axiom genotyping 

technology (Liu et al. 2014; Liu et al. 2011). Genotyping using the catfish 250K SNP array was 

performed at GeneSeek (Lincoln, Nebraska, USA). The informative SNPs in this GWAS were 

distributed across the catfish genome at an average interval of 3.6 Kb. No sample was excluded 

due to low quality or low call rate (<95%). 214,797 SNPs were kept after filtering out SNPs with 

an inheritance or genotyping error, a minor allele frequency (MAF) <5%, or a call rate < 95%. 

3.3.4 Statistical Analysis 

Statistical analysis was carried out using the SVS software package (SNP & Variation Suite, 

Version 8.0). Pairwise linkage disequilibrium (LD) for the backcross progeny population was 

calculated according to r2 value. LD pruning was conducted with a window size of 50 SNPs, a step 

of 5 SNPs, and r2 threshold of 0.5, resulting in 14,420 independent SNP markers. The population 

structure was assessed by principal component analysis with the independent SNP markers. 

EMMAX (Efficient Mixed-Model Association eXpedited) analyses using all SNPs were 

conducted with the first two principal components and the fish body weight as covariates (Kang 

et al. 2010).  
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The threshold P-value for genome-wide significance was calculated based on Bonferroni-

correction with the estimated number of independent markers and LD blocks (Duggal et al. 2008). 

A Manhattan plot of the P-value results was produced using the SVS software. Although channel 

catfish and blue catfish are two species, apparently their genome architecture is extremely similar 

according to our former studies and unpublished data (Ninwichian et al. 2012). Thus, the genetic 

marker map was constructed according to channel catfish genome sequence. 

3.3.5 Sequence analysis 

The upstream and downstream genes of the significant SNPs were determined. GENSCAN 

program(Burge and Karlin 1997) and FGENESH+ (Salamov and Solovyev 2000) were used to 

analyze the catfish genome sequences (unpublished data) that surround the SNPs to identify the 

upstream and downstream genes. The identified genes were annotated by searching against the 

non-redundant protein database (Altschul et al. 1990). Genomicus (Muffato et al. 2010) was 

utilized to construct the synteny of the counterpart genes from zebrafish to provide evidence for 

orthology. 

 

3.4 Results 

3.4.1 Mortality rate 

The accumulative mortality rate was 45.7%. A total of 1,200 channel catfish from a mix 

of six families were pooled and communally challenged. The mortalities started 46 hours after 

challenge and peaked approximately 218 hours after challenge (Figure 1). Based on the selective 

genotyping method (Darvasi and Soller 1992), the blood samples of the first 169 dead fish were 

collected, serving as the “susceptible” fish. After 12 days of challenge, 652 fish survived. From 
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the survivors, 171 fish without symptoms of columnaris were randomly collected as the 

“resistant” fish.   

 

 

Figure 1 Mortality rate of hybrid catfish after Flavobacterium columnare infection. 

 

3.4.2 Sample structure 

The founders of the 6 families were known before the experiment, but the offspring were 

mixed for communal culture. In order to assign the genotyped fish to each of the six families, 

cluster analysis was conducted according to the IBS kinship matrix (Table 2). With known 

family pedigree, principal component analysis was conducted using PC scores of samples as 

coordinates to visualize the sample structure. As shown in Figure 2, apparently, families 4, 5, and 

6 were highly related, while families 1, 2, and 3 were distantly related.  

 

Table 2 The pedigree information of catfish samples used in this study. 

Family 

ID 

Dam Sire Sample 

number 

Susceptible  

sample 

number 

Resistant 

sample 

number 

1 Channel 1 Hybrid 1 96 48 48 

2 Channel 2 Hybrid 1 95 47 48 
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3 Channel 3 Hybrid 2 55 28 27 

4 Channel 4 Hybrid 1 14 8 6 

5 Channel 5 Hybrid 1 27 18 9 

6 Channel 6 Hybrid 1 53 20 33 

 

 
Figure 2 Sample structure identified by PCA with the first two principal components. 

The coordinates are the first two principal components. 

 

3.4.3 Analysis of linkage disequilibrium (LD) blocks  

The LD block was defined as a set of contiguous SNPs with the minimum pairwise r2 

value exceeding 0.50 (Gu et al. 2011). The number of independent SNP markers and LD blocks 

was 14,420. Thus the threshold P-value for genome-wide significance was 0.05/14420=3.47e-6 

(-log10(P-value)=5.46). The threshold P-value for the significance of “suggestive association”, 

which allows one false positive effect in a genome-wide test, was 1/14420=6.93e-5 (-log10(P-

value)=4.16). 

3.4.4 Linkage groups with associated QTLs for columnaris resistance 

A Manhattan plot constructed using the marker positions and the corresponding -log10(P-

value) is shown in Figure 3.  Linkage group 7 harbors markers that are statistically significant at 

the genome level (-log10(P-value)>5.46). A second genomic region on linkage group 7 appears to 
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harbor suggestively associated markers, but is not statistically significant at the genome level. In 

addition to linkage group 7, linkage groups 12 and 14 appear to harbor SNP markers that are also 

suggestively associated with columnaris resistance, although not statistically significant at the 

genome level (Figure 3).   

 

 

Figure 3 Manhattan plot of genome-wide association analysis for columnaris disease 

resistance. The black solid line indicates the threshold P-value for genome-wide significance. 

The gray solid line indicates the threshold P-value for the significance of “suggestive 

association”. The four boxes indicate the associated regions. 

 

3.4.5 Genomic region with significantly associated QTL for columnaris resistance 

Additional analysis was conducted with the chromosomal region where the significantly 

associated QTL is located on linkage group 7. A set of 12 most significant SNPs are listed in 
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Table 3. These SNPs are all significantly associated with columnaris resistance at the genome 

level (-log10(P-value)>5.46). These SNPs are all located in a genomic region on linkage group 7 

from 7,203,819 bp to 7,817,023 bp, spanning a total of approximately 620 Kb. Their minor allele 

frequencies vary between 0.24-0.39, and their nearby genes are listed in Table 3. Because 

family-based population with 8 founders were utilized, the haplotypes extend very long regions 

as expected (Figure 4). 

 

Table 3 The significantly associated SNPs on linkage group 7. 

SNP ID Position  

(bp) 

-log10(P-

value) 

Nearest gene 

AX-86060479 7252290 5.75 upstream of pik3r3b 

AX-85347098 7505396 5.70 mast2 intron 

AX-86056344 7633758 5.68 adcyap1r1 exon 

AX-85337705 7639440 5.65 adcyap1r1 exon 

AX-85377681 7569451 5.59 downstream of akr1a1b 

AX-85265763 7503336 5.51 mast2 intron 

AX-85240370 7203819 5.48 upstream of pik3r3b 

AX-85319066 7447662 5.47 mast2 intron 

AX-85346312 7618017 5.47 adcyap1r1 intron 

AX-85378689 7755734 5.47 zc3h3 intron 

AX-85233717 7803806 5.47 zc3h3 intron 

AX-85260766 7817023 5.47 zc3h3 intron 
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Figure 4 Regional genome scan for the QTL significantly associated with columnaris 

resistance on linkage group 7. A) Heat map of the LD between the most significant SNPs in the 

QTL region. B) Regional –log10(P-value) plot for the QTL. The horizontal red line indicates the 

threshold P-value for genome-wide significance. C) Synteny analysis comparing catfish and 

zebrafish. Candidate gene names are underlined. Genes with gray names are located in the region 

of zebrafish but not channel catfish. 

 

EMMAX was used to investigate the contribution of the significantly associated QTL to 

the phenotype. Because of high correlation between SNPs in one locus (Figure 4), when 

analyzing the fraction of variance explained by the QTL, we chose only the most significant SNP 

(AX-86060479) to represent this region, which could explain 6.6% of the phenotypic variance. 

Nevertheless, binary phenotype and selective genotyping used in our study may cause potential 

overestimation of the QTL effect. 



33 

 

Based on the SNPs placed on the catfish 250K SNP panel (Liu et al. 2014), the parental 

origins of the SNPs could be determined. All the 12 significant SNPs are interspecific, which 

means on these loci, two species are simply fixed for alternate alleles. The resistant genotypes 

for the 12 SNP loci are homozygous with both alleles being originated from channel catfish.  

3.4.6 Genes located within the significantly associated QTL region for columnaris 

resistance  

The genes within the genomic region harboring the significant SNPs associated with 

columnaris resistance were annotated by BLAST analysis against the non-redundant protein 

database (Pruitt et al. 2007). To provide additional supporting evidence for the proper annotation 

of the region, syntenic analyses were also conducted to compare the gene contents in the 

genomic neighborhood around the significant SNPs. As shown in Figure 4, the conserved 

synteny was identified between the catfish and zebrafish genomes. The flanking genes of catfish 

are all conserved with zebrafish except efcab7 and tspan1 are missing in catfish and the gene 

orders are slightly different.  

Within the 620 Kb region containing the most significant SNPs, a total of 10 genes were 

identified (Figure 4). Of the 10 genes, five genes were found to have known functions in 

immunity, and these include phosphatidylinositol 3-kinase regulatory subunit gamma b 

(pik3r3b), cylindromatosis-like (cyld-like), pituitary adenylate cyclase-activating polypeptide 

type 1 receptor (adcyap1r1), adcyap1r1-like, and microtubule-associated serine and threonine 

kinase 2 (mast2). In order to be sure all the candidate genes were included in the analysis, the 

extended genomic region was examined, and no gene was found with known function in 

immunity.  
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3.4.7 Suggestively associated QTLs 

In addition to the significantly associated QTL on linkage group 7, three additional 

genomic regions were identified to contain SNPs suggestively associated with columnaris 

resistance (-log10(P-value)>4.16), although not statistically significant (Figure 3). As shown in 

Table 4, SNPs with relatively low P values were identified from the three suggestively associated 

regions on linkage groups 7, 12 and 14. 

 The first suggestively associated region is on linkage group 7. About 12 Mb downstream 

of the significantly associated region on linkage group 7, there is another locus suggestively 

associated with columnaris resistance. A series of SNPs on that region exhibit relatively low P 

values with the lowest ones listed on Table 4, with –log10 (P-value) ranging from 4.83-5.12.  In 

addition to linkage group 7, there are SNPs on linkage group 12 that reach suggestive genome-

wide significance (P-value<6.93e-5). The most significant SNP could explain 5.5% of the 

variance. Compared with the region strongly associated with the columnaris resistance on 

linkage group 7, the region detected on linkage group 12 is larger. According to the linkage map 

(Li et al. 2014), the recombinant frequency is very low on this region of linkage group 12. The 

distance of two most significant SNPs is 2.68 Mb on linkage group 12 expanding about 2 

centimorgans, while in catfish, on average, 1 cM is equivalent to approximately 250 Kb. 

According to the suggestively associated interspecific SNPs on linkage group 12, the resistant 

genotypes of the SNPs are homozygous with two channel catfish alleles, like the SNPs on 

linkage group 7. On linkage group 14, there is only one SNP reaching suggestive Bonferroni 

genome-wide significance, explaining 4.6% of the variance. The candidate genes surrounding the 

most significant SNPs of these 3 loci are listed in Table 4. 
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Table 4 The most significant SNPs with the closest and candidate genes in 3 suggestively 

associated regions. The paralogs are marked by different symbols following the gene names. 

Linkage 

group 
SNP ID 

SNP 

position 

(bp) 

-log10 

(P) 
Gene name 

Gene 

Position 

(bp) 

7 AX-85432363 

 

AX-85417541 

 

AX-85231041 

 

AX-85406722 

 

AX-85205344 

 

AX-85278425 

 

19715765 

 

20399460 

 

22082916 

 

22298185 

 

22410724 

 

25230627 

5.01 

 

5.33 

 

4.89 

 

4.83 

 

5.12 

 

5.12 

cysteinyl leukotriene 

receptor 2 

19913410, 

19914493 

guanine nucleotide-binding 

protein (G protein) subunit 

beta 1* 

19923349, 

19927379 

voltage-dependent calcium 

channel subunit alpha 

2/delta 2# 

20083452, 

20300502 

hyaluronidase 2 20409454, 

20413226 

tumor suppressor candidate 

2 

20415941, 

20421024 

diphosphoinositol 

polyphosphate 

phosphohydrolase 1 

20432914, 

20443526 

protein kinase C and casein 

kinase substrate in neurons 

protein 1 

20469564, 

20487008 

N-terminal EF-hand 

calcium-binding protein 1 

22274849, 

22324281 

alpha-1-syntrophin 22377042, 

22408256 

probable G-protein coupled 

receptor 27 

25065312, 

25066872 

12 AX-85394454 

 

AX-85211547 

12067569 

 

14746472 

4.89 

 

4.79 

phosphatidylinositol 3-

kinase regulatory subunit 5† 

12246367, 

12272207  

phosphatidylinositol 3-

kinase regulatory subunit 6† 

12281638,  

12300055 

guanine nucleotide-binding 

protein subunit beta 3* 

12763269, 

12767890 

voltage-dependent calcium 

channel gamma 6 subunit# 

14286927, 

14292214 

    chondroitin sulfate 

proteoglycan 4 

13668415, 

13668975 

14 AX-85234783 1601158 4.20 Spectrin beta chain, non-

erythrocytic 2 

1614033, 

1619504 
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3.4.8 Correlation of the SNPs associated with columnaris resistance 

Conditioned analyses were conducted to examine the correlation of the SNPs associated 

with columnaris resistance (Nishimura et al. 2012). Genotypes of the most significant SNP (AX-

86060479) on linkage group 7 were included as a covariate in the mixed linear model. After 

conditioning, the –log10(P-value) of all the other SNPs on linkage group 7 dropped below 2.0, 

while the SNP P-values remained generally unchanged on the other linkage groups. On the 

linkage groups 12 and 14, there were also strong correlations among these associated SNPs 

within the same linkage group (data not shown).  

  

3.5 Discussion 

In this study, for the first time, we identified a significantly associated QTL on linkage 

group 7 and three additional suggestive QTLs on linkage groups 7, 12, and 14 for columnaris 

resistance. The significant QTL on linkage group 7 was narrowed down to a small region of 620 

Kb. Therefore, in spite of being just an initial quantitative analysis for the complex disease 

resistance trait, this work is very significant because it has set the foundation for fine mapping of 

the columnaris resistance genes, providing basis for application of genome technologies for 

catfish aquaculture through marker- or genome-based selection. Additional fine mapping using 

larger or more families could narrow down the candidate genes underlining columnaris disease 

resistance.  

A number of genes involved in the PI3K pathway were found to be within the 

significantly associated genomic region of 620 Kb, suggesting the involvement of PI3K pathway 

in the resistance against columnaris. Among the 10 genes found in the 620 Kb region, five were 

involved in PI3K gene pathway. These are pik3r3b, cyld-like, adcyap1r1, adcyap1r1-like, and 
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mast2. The phosphatidylinositol 3-kinase regulatory subunit gamma b (pik3r3b) is the closest 

gene to the most significantly associated SNP (AX-86060479) (Table 3). Although the causative 

SNP could be within any one of the 10 genes found in the 620 Kb region, the fact that PI3K 

pathway was reported to be involved in immunity and resistance makes them particularly 

interesting as candidate genes (Koyasu 2006). In addition, many genes found in the suggestive 

QTL regions were also involved in the PI3K pathway (see below), further increasing the 

likelihood of PI3K pathway involvement in the resistance against columnaris. 

PI3 kinases have been known to play important roles in innate and adaptive immunity 

(Fukao et al. 2002; Jiang et al. 2000; Koyasu 2006; Vieira et al. 2001). For example, PI3K 

activity is important for NF-κB pathway activation in different mechanisms (Bone and Williams 

2001; Reddy et al. 1997). It was also shown that the infectious agents can manipulate the PI3K 

pathway to create a favorable environment by various mechanisms (Ireton et al. 1999). PI3K is 

required for modifying the cytoskeleton dynamics, regulating membrane traffic, coordinating 

exocytic membrane insertion and pseudopod extension, which could be utilized by some 

pathogenic bacteria for entry into host cell (Cox et al. 1999; Ireton et al. 1996; Ireton et al. 1999; 

Lambotin et al. 2005; Pizarro-Cerda and Cossart 2006). Ireton et al.(1999) showed that the 

protein InlB from Listeria monocytogenes is an agonist of mammalian PI3K, which causes rapid 

increases in cellular amounts of PI(3,4)P2 and PI(3,4,5)P3. Lambotin et al. (2005) found 

Neisseria meningitidis requires cortactin recruitment by triggering a PI3K/Rac1 signaling to 

elicit an efficient invasion in non-phagocytic cells. Kierbel et al.(2005) reported Pseudomonas 

aeruginosa requires the PI3K and Akt pathway for internalization. It was reported that 

Porphyromonas gingivalis could activate PI3K, which blocks phagocytosis and promotes 

inflammation (Maekawa et al. 2014). In addition, it was shown that blockade or deficiency of 
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PI3Kγ significantly enhanced resistance against Leishmania mexicana, which revealed the 

unique role for Class IB PI3K in parasite invasion (Cummings et al. 2012). The fact that pik3r3b 

is closest to the most significant SNP makes it an interesting candidate for future studies. 

In addition to pik3r3b gene, four other genes (cyld-like, adcyap1r1, adcyap1r1-like, and 

mast2) in the PI3K pathway (Figure 5) found within the 620 Kb region containing the significant 

QTL have also been shown to play important roles in immunity. CYLD is a deubiquitylating 

enzyme that negatively regulates various signaling pathways by cleavaging lysine 63-linked 

polyubiquitin chains from several specific substrates (Massoumi 2010). For example, CYLD 

could regulate inflammation and the innate immune response via its inhibition of NF-κB 

activation (Sun 2010). Besides that, CYLD is a deubiquitinating enzyme for Akt and suppressed 

Akt activation (Yang et al. 2013). Gao et al.(2008) reported that CYLD also plays a role in the 

regulation of microtubule dynamics. 

 

Figure 5 Signal transduction pathways involving PI3Ks and the other candidate genes. 

The candidate genes in the significant QTL are in red and underlined. The candidate genes in the 

suggestive QTLs are in black and underlined. 
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Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1) is the 

pituitary adenylate cyclase-activating polypeptide (PACAP) specific receptor (Arimura and 

Shioda 1995). PACAP could activate adenylate cyclase and phospholipase C (PLC) through an 

interaction with ADCYAP1R1 and stimulates cAMP and inositol phosphate formation (Bodart et 

al. 1997; Romanelli et al. 1997). In fish larvae, Lugo et al.(2010) reported that the PACAP 

influences immune functions. They observed an elevated level of nitric oxide synthase-derived 

metabolites and total immunoglobulin M concentration in serum of juvenile catfish and tilapia 

after intraperitoneal injection of PACAP.  

Microtubule-associated serine and threonine kinase 2 (MAST2) can interact with 

phosphatase and tensin homolog deleted on linkage group 10 (PTEN) which antagonizes PI3K-

dependent signaling pathways (Downes et al. 2001; Terrien et al. 2012). MAST2 inhibits TNF 

receptor associated factor 6 (TRAF6) activity (Xiong et al. 2004), which represents a molecular 

bridge for innate immunity and adaptive immunity (Wu and Arron 2003). For example, TRAF6 

could activate PI3K-dependent cytoskeletal changes and activate IκB kinase (IKK) in response to 

proinflammatory cytokines (Wang et al. 2006). Taken together, PI3 kinases themselves, or genes 

involved in PI3K pathway could play important roles in disease resistance. 

Interestingly, many genes mapped within the suggestively associated QTL regions on 

linkage groups 7, 12, and 14 are functionally related to the genes mapped within the significant 

QTL region on linkage group 7, further supporting the possibility that PI3K pathway may be 

important for disease resistance against columnaris (Table 4, Figure 5). On linkage group 7, 

cysteinyl leukotriene receptor 2 is a G protein-coupled receptor (GPCR) with various functions 

such as modulation of chemokine gene transcription and calcium signaling (Sjöström et al. 2003; 

Thompson et al. 2008). G beta gamma activates the class IB p110 gamma/p101 PI3K gamma on 
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the stimulation of GPCR (Brock et al. 2003). Voltage-dependent calcium channel subunit alpha-

2/delta-2 gene was found in this region, and PI3K could enhance native voltage-dependent 

calcium channel currents (Viard et al. 2004). Diphosphoinositol polyphosphate 

phosphohydrolase 1 could cleave a beta-phosphate from the diphosphate groups in PP-InsP5. PP-

InsP5 is similar to Ins(1,3,4,5)P4, the headgroup of PI(3,4,5)P3, which implied their competition 

relationship (Shears 2009). Chockalingam (1999) reported that alpha 1-syntrophin could bind 

PI(4,5)P2. Hyaluronidase-2, a glycosylphosphatidylinositol-anchored receptor, could hydrolyze 

hyaluronic acid which could be degraded by F. columnare (Declercq et al. 2013). On linkage 

group 12, the genes within the suggestive QTL region seemed to be related with those within the 

QTL region on linkage group 7, because the paralogs of some genes in this region on linkage 

group 12 are found on linkage group 7 including phosphatidylinositol 3-kinase regulatory 

subunit 5 (p101-PI3K), phosphatidylinositol 3-kinase regulatory subunit 6 (p87-PI3K), guanine 

nucleotide-binding protein subunit beta 3, and voltage-dependent calcium channel gamma 6 

subunit. On linkage group 14, spectrin beta chain, non-erythrocytic 2 (βIII spectrin) is located 

closest to the most significant SNP (AX-85234783). With a PH domain, βIII spectrin can bind 

PIP2 and get involved in membrane skeleton (Holleran et al. 2001; Viel and Branton 1996). As 

presented in Figure 5, clearly many of these genes mapped in the significant QTL region or the 

suggestive QTL regions are involved in the related gene pathways. 

It is notable that genes involved in the PI3K pathway were located together in “hubs” that 

were significantly associated with disease resistance. Theoretically, genes that are located 

together could be readily expressed in a coordinated fashion. However, here we do not have any 

evidence to indicate that the genes mapped within the QTLs involved in PI3K pathway are 

coordinately expressed. Analysis of RNA-seq data (Peatman et al. 2013) indicated that some 
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candidate genes indeed exhibited differences in baseline expression or after bacterial infection 

with columnaris. For instance, hyaluronidase-2 was expressed at a relative higher level in 

resistant fish than in susceptible fish before infection, and it was induced more in susceptible fish 

than resistant fish after infection. Guanine nucleotide-binding protein subunit beta-1, another 

gene that mapped within the suggestive QTL region, is expressed significantly higher in the 

susceptible fish than in the resistant fish. After infection, its expression in susceptible fish, but 

not in resistant fish, was drastically induced. However, because the experimental system is quite 

different, such expression data may not be directly transferable to our results here.  

The most striking finding of our study was that the genes closest to the most significant 

SNPs were both positionally and functionally related, i.e., they are structurally organized as 

“functional hubs”. Although it is unknown at present whether these genes are expressed in a 

coordinated fashion, it was reported that neighboring genes tend to have similar expression 

patterns and get involved in related functions (Michalak 2008; Sémon and Duret 2006; Williams 

and Bowles 2004). For instance, Schmid et al. (Schmid et al. 2005) elucidated that genes in close 

proximity are much more likely to be co-expressed than expected by chance.  Future analysis for 

coordinated expression of genes involved in PI3K pathway is warranted. 

The QTLs identified in this study explained a limited fraction of the phenotypic variance 

of columnaris disease resistance. Firstly, the population specificity of QTLs is the most 

important reason why our family-based association mapping cannot detect all the QTLs 

associated with columnaris resistance (Luo et al. 2013). Even within the same strain, various 

families showed drastically different susceptibilities to columnaris disease (LaFrentz et al. 2012). 

Secondly, segregating alleles within one species may lead to decreased power of analysis, 

especially in the case that one parental species systematically carries resistance alleles while the 
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other one carries susceptibility alleles (Ledur et al. 2009). Thus the region cannot be detected 

with strong significance using intraspecific SNPs. The associated SNPs on linkage group 14 are 

intraspecific, so the effect of the locus may be underestimated and we cannot infer the origins of 

the resistant alleles. Thirdly, because of the lack of recombination between nearby QTLs, the 

locus with minor effect cannot be detected if the favorite allele on a close QTL with a major 

effect have a different origin. Lastly, but not leastly, genome level variations such as allele 

variations can account for only a fraction of phenotypic variations. Gene expression regulations 

at various levels such as transcriptional and posttranscriptional levels, as well as environment 

and genotype-environment interactions can have a profound impact on the final phenotype in 

performance. 

 

3.6 Conclusions 

In summary, our GWAS using backcross interspecific hybrid population allowed 

mapping of associated QTLs and estimation of their effects for columnaris resistance. On linkage 

groups 7 and 12, the resistant genotypes were homozygous with both alleles from channel 

catfish.  Examination of genes in the mapped QTL regions allowed further analysis of candidate 

disease resistance genes. It appears that signal transduction pathways involving PI3Ks may play 

a crucial role for disease resistance against columnaris. This notion is not only supported by the 

presence of PI3K pathway genes in the significantly associated QTL on linkage group 7, but also 

by the fact that many genes within the suggestive QTL on linkage group 12 are paralogs of those 

found on linkage group 7.  In addition, many genes found within suggestive QTLs on linkage 

groups 7, 12 and 14 are also involved in PI3K pathway. Future studies are required for the 

identification of the causative genes for disease resistance. For example, GWAS using larger or 
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more families can be conducted to increase the power and resolution. Ultimately, gene knockout 

experiments are needed to demonstrate the candidate genes as the disease resistance genes. 

The most interesting discovery of this work is that functionally related genes that may be 

responsible for columnaris disease resistance are located closely in a limited number of positions, 

forming “functional hubs”. Future analysis of expression of genes in the PI3K pathway in 

relation to the resistance phenotype should determine whether the co-localized and functionally 

related genes are indeed expressed in a coordinated fashion.  
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Chapter 4 Mapping of genetic regions for head size in catfish: the involved GTPase 

pathway is evolutionarily conserved for skull morphometric traits 

 

4.1 Abstract 

Skull morphology is fundamental to evolution and biological adaptation of species to its 

environments. With aquaculture fish species, head size is also important for economic reasons, 

because it has a direct impact on fillet yield. However, little is known about the underlying genetic 

basis. Catfish is the primary aquaculture species in the United States. In this study, we performed 

a genome-wide association study using the catfish 250k SNP array with backcross hybrid catfish 

to identify the QTLs for head size (head length, head width, and head depth).  

Several QTLs were identified, including one significantly associated region on linkage 

group (LG) 9 and four suggestively associated regions on LGs 7, 16, 28 for head length, five 

significantly associated regions on LGs 5, 7, 9, 29 and two suggestively associated regions on LGs 

7, 27 for head width, and one suggestively associated region on LG26 for head depth. Two of the 

QTLs on LG7 were associated with both head length and head width. Phenotypic variance 

explained by the associated SNPs for head length, head width, and head depth were 0.16, 0.18, 

and 0.02 from the associated regions respectively. It is notable that each of these associated regions 

is rich of small GTPase related genes. Comparative analysis indicated that small GTPase pathway 

genes are also involved in skull morphology in various other species ranging from amphibian to 

mammalian species, suggesting evolutionary conservation of small GTPase pathway in the control 

of skull morphologies.  
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4.2 Background 

Skull morphology and body conformation are fundamental to evolution and biological 

adaptation of species to its environments. Species evolve to have different head shapes and sizes 

in response to their environments, and in relation to their behavior and mode of survival. As 

such, skull morphology and body conformation have been widely studied in various species. 

Wunnenberg-Stapleton et al. (1999) first reported the involvement of small GTPases RhoA and 

Rnd1 in control of head formation in Xenopus. Later, a number of studies were conducted in 

canine. As a companion species, dogs have been artificially bred and selected to have hundreds 

of breeds with various overall sizes and various head shapes and sizes, and their head sizes and 

shapes were found to be related to their behavior and personality (Schoenebeck and Ostrander 

2013). The finding that selection of a single gene, insulin-like factor I, is largely responsible for 

the huge variations in shapes and sizes in dogs astonished many scientists (Sutter et al. 2007). 

Since then, great efforts were devoted to the analysis of head shapes and sizes in dogs in order to 

understand the genomic basis underlining the large difference in skull shapes and sizes 

(Schoenebeck and Ostrander 2013). GWAS allowed mapping of QTLs controlling head shapes 

in eight chromosomes in dogs. As the canine genome is available, further analysis of the QTL 

regions allowed identification of candidate gene BMP3 for skull shapes (Schoenebeck et al. 

2012). Recently, seven QTLs were identified for skull size and 30 QTLs were identified for skull 

shape in mouse (Maga et al. 2015). Analysis of the genes within these QTLs suggested that 

genes involved in the small GTPase pathway were among the “high priority” candidate genes, 

such as Arhgap31, Fgfr3, and Kif7.  
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With aquaculture fish species, analysis of head sizes is important not only for 

understanding of evolution and biological adaptation, but also for economic reasons. Head 

shapes and sizes influence fillet yield directly. Smaller head and uniform body conformation 

provide a greater proportion of fillet, and thus selection for smaller head and uniform body 

conformation is of great aquaculture value.  

Genetic analysis of body shape has been conducted in fish species including common 

carp (Laghari et al. 2014), sea bass (Massault et al. 2010), and hybrid carp generated from silver 

carp x bighead carp (Wang et al. 2013a). However, limited by the number of markers, these 

findings are far from the requirements of marker-assisted selection (MAS), and little is known 

about genetic mechanisms for head shapes and sizes with aquaculture species. Channel catfish is 

the major aquaculture species in the United States. In recent years, hybrid catfish, produced by 

mating female channel catfish with male blue catfish, has become the breed of choice, because 

the F1 hybrid exhibits a number of superior traits due to heterosis including faster growth, 

enhanced disease resistance, and greater fillet yield (Argue et al. 2003; Dunham et al. 2008). 

Channel catfish in general has a relatively larger head than blue catfish. Therefore, the channel 

catfish X blue catfish hybrid system offers a great model to study head shapes and sizes. 

Understanding of genomic regions for head shapes and sizes in catfish will allow us to determine 

the level of evolutionary conservation in the controlling mechanisms. In addition, the linked 

markers will allow marker-assisted selection or marker-guided introgression. Traditional 

selective breeding has been used to enhance processing yield in catfish, but the progress has been 

limited due to low selection intensity and accuracy and low heritability (Argue et al. 2003).  

GWAS has been regarded as a powerful strategy for the identification of markers 

associated with traits of interest with high resolution, but it has been rarely used in aquaculture 
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species (Geng et al. 2015). Recent development of a number of genomic resources has made 

such work feasible, including a large number of SNPs (Sun et al. 2014) and the 250K SNP arrays 

(Liu et al. 2014). In this study, we explored the genetic architecture for catfish head size using 

GWAS for the first time, and here we report the identified QTLs and their associated genes 

within the highly associated genomic regions. 

 

4.3 Methods 

4.3.1 Ethics statement 

All experiments involving the handling and treatment of fish were approved by the 

Institutional Animal Care and Use Committee (IACUC) at Auburn University. Blood was 

collected after euthanasia. All animal procedures were carried out according to the Guide for the 

Care and Use of Laboratory Animals and the Animal Welfare Act in the United States. 

4.3.2 Experimental fish and sample collection  

The study population was the Auburn University one year old catfish generated from 

backcross of male F1 hybrid catfish (female channel catfish x male blue catfish) with female 

channel catfish. The population consisted of five families (Table 5). 386 fish in total (average 

body weight 53 grams ranging from 14g to 180g) were randomly obtained from Auburn 

University Fish Genetics Facility and blood samples were collected. The head size, including 

head length, head width, and head depth, was measured as the trait of interest (Figure 6). Head 

length is the horizontal distance between maxillary symphysis and posterior bony edge of 

operculum. Head width is the distance between the two sides of posterior bony edges of 

operculum. Head depth is the vertical distance from top to bottom of skull across posterior bony 

edge of operculum. 
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Table 5 The pedigree information of catfish samples used in this study. 

 

Family 

ID 
Dam Sire 

Sample 

number 

1 Channel 1 Hybrid 1 96 

2 Channel 2 Hybrid 1 91 

3 Channel 3 Hybrid 2 55 

4 Channel 4 Hybrid 1 51 

5 Channel 5 Hybrid 1 93 

 

 

Figure 6 Morphometric measurement of catfish skull. 
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4.3.3 DNA isolation, genotyping, and quality control 

DNA was isolated from blood sample using standard protocols. After incubated at 55°C 

about 10h, the blood cells were broken by cell lysis solution first. Protease K and protein 

precipitation solution were used to remove the proteins. Next, DNA was precipitated by 

isopropanol and collected by brief centrifugation, washed twice with 70% ethanol, air-dried, and 

resuspended in TE buffer (pH 8.0). After quantified using spectroscopy by Nanodrop (Thermo 

Scientific) and checked by 1% agarose gel electrophoresis stained with ethidium bromide for 

integrity, DNA was diluted to 50 ng/uL. 

A catfish 250K SNP array has been developed using Affymetrix Axiom genotyping 

technology with markers distributed across the catfish genome at an average interval of 3.6 Kb 

(Liu et al. 2014). Genotyping using the catfish 250K SNP array was performed at GeneSeek 

(Lincoln, Nebraska, USA). No sample was excluded due to low quality or low call rate (<95%). 

190,706 SNPs were kept after filtering out SNPs with any genotyping error, a minor allele 

frequency (MAF) <5%, or a call rate < 95%. 

4.3.4 Statistical analysis 

Statistical analysis was carried out using the SVS software package (SNP & Variation 

Suite, Version 8.0) and PLINK (Version 1.07) (Purcell et al. 2007). The LD block was defined 

as a set of contiguous SNPs with the minimum pairwise r2 value exceeding 0.50. In order to 

generate a set of independent SNPs, pairwise linkage disequilibrium for the backcross progeny 

population was calculated according to r2 value. LD pruning was conducted with a window size 

of 50 SNPs, a step of 5 SNPs, and r2 threshold of 0.5. Assuming each LD block represents one 

independent set of markers, the number of independent SNPs and LD blocks was 6044. To 

visualize the sample structure, principal component analysis with the independent SNP markers 
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was conducted, and the plots representing the sample structure were constructed with the first 

three principal components (Figure 7). 

 

 

Figure 7 Sample structure identified by PCA with the first three principal components 

using sample genotypes.  
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A two-step GWAS procedure was performed. First, to eliminate the effect of body weight 

and family phenotypic stratification, the phenotypic data in the backcross population were 

adjusted with cubic root of body weight by simple linear regression within each family after 

outliers were filtered out. Second, the residuals were used as adjusted phenotypes to carry out 

genome-wide association analysis. Two methods were utilized to compare their performance in 

this step.  The first method is EMMAX (Efficient Mixed-Model Association eXpedited) analyses 

(Kang et al. 2010). It was conducted in SVS without any covariates other than SNPs. The second 

method is family-based association test for quantitative traits (QFAM) conducted in PLINK 

(Abecasis et al. 2000; Fulker et al. 1999; Purcell et al. 2007).  

A Manhattan plot was produced using the SVS software. The genetic marker map was 

constructed according to channel catfish genome sequence (version Coco1.0, Liu et al., in 

review), since genome architectures of channel catfish and blue catfish are extremely similar 

with same sets of parallel chromosomes according to our former studies and unpublished data 

(Kucuktas et al. 2009; Liu et al. 2003; Ninwichian et al. 2012). The significance level for 

genome-wide significance was set as 0.05/6044=8.27e-6 (-log10(P-value)=5.08) based on 

Bonferroni correction. The threshold of –log10(P-value) for suggestive association was arbitrarily 

set as 4. 

 

4.4 Results 

4.4.1 Phenotypes 

Summary of original observations and adjusted phenotypes for head length, head width, 

and head depth was shown in Table 6. To cover individuals with a wide range of body size, 

samples were utilized with body weights varying from 14 g to 180 g. Because body weight could 



52 

 

explain over 70% variance for all the three traits, the effect of body weight should be eliminated 

before studying the association between markers and head sizes. The phenotypic data were 

adjusted with cubic root of body weight by simple linear regression. After adjustment, the means 

of the three traits were approximately 0. Adjusted head length ranged from -0.78 cm to 0.50 cm 

with standard deviation of 0.23 cm. Adjusted head width ranged from -0.74 cm to 0.43 cm with 

standard deviation of 0.17 cm. Adjusted head depth ranged from -0.61 cm to 0.77 cm with 

standard deviation of 0.20 cm. Adjusted phenotypes were utilized for further study. 

 

 

Table 6 Summary of original observation and adjusted phenotype for three traits. N=386. 

SD, standard deviation; Min, minimum; Max, maximum. 

 Original observation Adjusted phenotype 

 Mean SD Min Max Mean SD Min Max 

Body weight /g 53.0 25.4 14 180 - - - - 

Head Length /cm 3.42 0.50 1.97 5.16 0 0.23 -0.78 0.50 

Head Width /cm 2.53 0.41 1.38 3.75 0 0.17 -0.74 0.43 

Head Depth /cm 2.34 0.40 1.38 3.75 0 0.20 -0.61 0.77 

 

 

4.4.2 Determination of optimal model for analysis: EMMAX versus QFAM 

The Manhattan plots generated from EMMAX and QFAM were shown in Figure 8, 

Figure 10, and Figure 11. Generally, the association results generated by EMMAX and QFAM 

were positively correlated, but QFAM provided more power than EMMAX. For example, LG9 

harbored one significantly associated region for head length, and LG16 harbored one 

suggestively associated region according to EMMAX (Figure 8). The same regions were also 

identified by QFAM, but three more suggestively associated regions were identified using 

QFAM, including two on LG7 and one on LG28. The comparison of two methods for head width 

and head depth generated similar results. Therefore the QFAM performed better than EMMAX 
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with our family-based samples, considering QFAM had more power than EMMAX in detecting 

associated QTLs. In the following sections, we will describe the characters of identified regions 

according to the results generated from QFAM, unless otherwise noted. 

4.4.3 Genetic regions associated with head size 

For head length, significantly associated SNPs were identified around position 25.0 Mb 

of LG9 (Figure 8, Figure 9, and Table 7). The P-value of the most significant SNP reached 

3.59e-6 (–log10(P-value)=5.45). In addition to LG9, three additional linkage groups, LG7, LG16, 

and LG28, were found to contain QTLs suggestively associated with head length (Figure 8 and 

Table 7). The associated regions of LGs 7 and 16 extended a long distance of over 1Mb. It may 

be caused by two or more candidate genes with a long interval that were located in the associated 

regions, just like the case shown in Table 7. Another reason may be the low recombination rate 

to break the linkage of nearby loci in the backcross progenies. 
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Figure 8 Manhattan plots for head length. The plots in different colors in the front layer were 

generated from EMMAX and the plots in gray in the back layer were generated from QFAM. 

The arrows indicate the associated regions. 
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Figure 9 Regional genome scan for the QTL significantly associated with head length on 

LG 9. 
 

 

Table 7 Information of regions associated with head length.  “*” means the paralogs of the 

candidate genes were identified. “#” means the candidate genes are involved in small GTPases 

pathway. 

LG SNP ID 
SNP 

position 
Beta 

-

log10

(P) 

% 

variance 

Gene 

position 

(Kb) 

Gene Name 

9 85413092 25028079 0.13 5.45 5 
21984-

22010 

*#sphingomyelin 

phosphodiesterase 3 

      
22112-

22134 
#septin 7 

      
22301-

22304 

*#Ras-related protein rab-

33a 

      
24916-

24918 

*#fibroblast growth factor-

binding protein 1 

      
24925-

24927 

*#fibroblast growth factor-

binding protein 2a 
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25001-

25019 

transmembrane anterior 

posterior transformation 1 

      
25226-

25228 
follistatin-related protein 5 

      
25600-

25627 

#Rap guanine nucleotide 

exchange factor 2 

7 
85385268 21742476 0.09 5.01 3 

19874-

19877 
#inhibin beta B chain like 

85420069 22845333 0.07 4.76  
19948-

19951 
zinc finger protein GLI1 

85308436 20362832 0.08 4.75  
19974-

19988 

zinc finger E-box-binding 

homeobox 2 like 

     
20000-

20035 

*#Rho GTPase-activating 

protein 9 

     
20133-

20145 

#kinesin heavy chain 

isoform 5a 

     
20217-

20221 
transcription factor Sp7 

     
20236-

20249 

#ADP-ribosylation factor-

related protein 1 

     
20334-

20377 

*#Ral GTPase-activating 

protein subunit beta 

     
20591-

20593 
#alpha-1-syntrophin 

     
21084-

21109 
#cadherin 22 like 

     
21633-

21638 

#1,25-dihydroxyvitamin 

D(3) 24-hydroxylase, 

mitochondrial 

     
21936-

21939 

#regulator of G-protein 

signaling 9-binding protein 

     
21997-

22012 
synaptotagmin homolog 

     
22240-

22250 

*#sphingomyelin 

phosphodiesterase 2 

     
22522-

22536 

diphosphoinositol 

polyphosphate 

phosphohydrolase 1 

homolog 

     
23035-

23041 

#guanine nucleotide-

binding protein 

G(I)/G(S)/G(T) beta-1b 

     
23161-

23168 

#guanine nucleotide-

binding protein G(i) subunit 

alpha 2b 

     23547- #guanine nucleotide-
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23552 binding protein G(t) subunit 

alpha 1 

85230603 6633722 4.03 4.16  
4477-

4715 
#protocadherin 9 

85285134 5099134 -3.98 4.08  
5920-

5934 

*#regulator of G-protein 

signaling 8 

     
5946-

5948 

*#regulator of G-protein 

signaling 16 

     
5975-

5995 

*#regulator of G-protein 

signaling 5 

     
6015-

6019 

*#regulator of G-protein 

signaling 4 

     
6299-

6313 

discoidin domain-

containing receptor 2a 

     
6823-

6841 

tyrosine-protein kinase 

receptor Tie 1 

     
7188-

7203 

#phosphatidylinositol 3-

kinase regulatory subunit 

gamma b 

16 

 
85254932 11508537 4.36 4.77 4 

11590-

11625 
# asap2 

 85252501 14167899 -4.30 4.66  
11630-

11634 

#integrin beta-1-binding 

protein 1 

 85340383 16798283 4.03 4.16  
14152-

14180 
#kinectin 

      
16738-

16750 
*#sorting nexin 6 

      
16755-

16757 
cofilin 2 

28 86019627 2966557 4.01 4.13 4 
2321-

2324 

#Rho-related GTP-binding 

protein RhoV 

      
2426-

2429 

*#regulator of G-protein 

signaling 6 

      
2529-

2551 

#signal-induced 

proliferation-associated 1-

like protein 1 

      
2602-

2609 

*#Ras-related protein Rab 

15 

      
2614-

2627 

#farnesyltransferase subunit 

beta 

      
2705-

2717 

#G-protein coupled receptor 

176 

      
2978-

3019 
nesprin 1 

      
3120-

3131 

#nuclear receptor-binding 

protein 1 
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3170-

3174 
#protein Churchill 

      
3265-

3271 

ectonucleotide 

pyrophosphatase/phosphodi

esterase family 7l 

      
3287-

3295 
matrilin 3 

      
3462-

3493 
*#sorting nexin 9 

 

 

For head width, two associated regions around position 7Mb and position 23Mb on LG7 

were identified, which were also associated with head length, implying the correlation between 

these two traits (Figure 8 and Figure 10). Apart from LG7, significantly associated regions were 

identified on LGs 5, 9, and 29. One more region on LG27 was suggestively associated with head 

width (Table 8). 
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Figure 10 Manhattan plots for head width. The plots in different colors in the front layer were 

generated from EMMAX and the plots in gray in the back layer were generated from QFAM. 

The arrows indicate the associated regions. 

 

 

Table 8 Information of regions associated with head width. Regions on Linkage group 7 

explaining 0.03 of phenotypic variance for head width are not shown here, which are also 

associated with head length. “†” means the paralogs of the candidate genes were identified in the 

regions associated with head length. “#” means the candidate genes are small GTPases or related 

with small GTPases in function. 

LG SNP ID 
SNP 

position 
Beta 

-

log10

(P) 

% 

variance 

Gene 

position 

(Kb) 

Gene Name 

5 85206630 3471449 -0.10 5.89 4 3913-3940 #integrin beta 3b 

      3942-3956 
synaptopodin 2-

like b 
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      4203-4208 
galanin receptor 

type 2 

9 85362293 8919023 0.09 5.73 4 8993-9042 †#sorting nexin 25 

 85421035 3840292 0.07 5.42  3324-3336 
#fibroblast growth 

factor 16 

      3402-3429 plastin 3 

      4028-4032 
regulator of cell 

cycle RGCC-like 

      4034-4038 
†#protocadherin 

20 

      4058-4061 
†#Ras-related 

protein Rab 9b 

29 85361890 719786 0.09 5.20 4 539-542 
#fibroblast growth 

factor 20 

      607-613 
†#protocadherin 

18 

      1049-1067 

†#Rho GTPase-

activating protein 

7 

27 85263029 12235962 0.09 4.23 3 
11724-

11737 
†#cadherin 15 

      
12322-

12326 

zinc finger protein 

SNAI2 

      
12333-

12343 
†#cadherin 1 

 

 

For head depth, although no genome-wide significant SNP was identified, one SNP (AX-

85206421) with -log10 (P-value) of 4.32 was located on LG26 (Figure 11, Table 9). 
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Figure 11 Manhattan plots for head depth. The plots in different colors in the front layer were 

generated from EMMAX and the plots in gray in the back layer were generated from QFAM. 

The arrows indicate the associated regions. 

 
 

Table 9 Information of regions associated with head depth. 

LG SNP ID 

SNP 

position 

(Kb) 

Beta 

-

log10

(P) 

% 

variance 

Gene 

position 

(Kb) 

Gene Name 

26 85206421 8376 0.07 4.32 2 8270-8285 

Rho-related BTB 

domain-containing 

protein 2 

      8471-8503 

Ras GTPase-

activating-like 

protein IQGAP2 

      9182-9206 
Ras GTPase-

activating protein 1 
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4.4.4 Candidate genes for head size 

The regions surrounding the identified associated SNPs were examined for candidate 

genes according to their locations and functions. The genes within the genomic regions were 

predicted using FGENESH (Solovyev et al. 2006) and annotated by BLAST analysis against the 

non-redundant protein database (Altschul et al. 1990; Pruitt et al. 2007). Within the region 

significantly associated with head length, eight candidate genes related with bone development 

or head formation were identified (Table 7). Interestingly, like the candidate genes on the 

significantly associated region, most of the candidate genes on the suggestively associated 

regions are also functionally related with G protein, especially the small GTPases. Moreover, 

paralogs of the candidate genes were identified, including genes coding for small GTPase, small 

GTPase-activating protein (GAP), sphingomyelin phosphodiesterase, fibroblast growth factor-

binding protein, regulator of G-protein signaling, and sorting nexin (Table 7). 

In addition to LG7, the candidate genes for head width on LGs 5, 9, 27, and 29 are 

functionally related with those for head length, most of which are also involved in small GTPase 

pathway (Table 8). Some paralogs of candidate genes for head length were identified in the 

regions associated with head width as well, including protocadherin-20 and -18, Ras-related 

protein Rab-9b, sorting nexin-25, Rho GTPase-activating protein 7, and cadherin-15 and -1. 

Some other genes like integrin beta-3b, and fibroblast growth factor-16 and -20 were also 

included in the associated regions functionally related with small GTPases.  

For head depth, three candidate genes were identified including Rho-related BTB 

domain-containing protein 2, Ras GTPase-activating-like protein IQGAP2, and Ras GTPase-

activating protein 1, which are all involved in small GTPase pathway  
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4.4.5 Phenotypic variance explained by associated SNPs 

The phenotypic variance explained by associated SNPs of head size was estimated by 

EMMAX. Because of high correlation among SNPs on the same linkage group, when analyzing 

the fraction of phenotypic variance explained by the QTL, only the most significant SNP on the 

same linkage group was chosen. Thus the fraction of phenotypic variance explained may be 

underestimated. The fraction of variance of head length could be explained by the most 

significant SNP (AX-85413092) on LG9 is 0.05. In addition, the other suggestively associated 

regions could explain 0.11 in total (Table 7). The proportion of explained head width variance 

was 0.18 in total from significantly associated QTLs and suggestively associated QTLs (Table 

8). Since there was only one suggestively associated QTL on LG26 for head depth, the 

proportion is as low as 0.02 from this QTL.  

4.4.6 Conditioned analysis results 

Conditioned analyses were conducted to examine the correlation of the SNPs associated 

with head size. The association test was conducted with the most significant SNPs associated 

with head size on each linkage group as a covariate (one SNP at a time). Because of the lack of 

recombination among SNPs on the same linkage group in the backcross population, the -log10(P-

value) of SNPs on the same linkage group with the SNP included as covariate dropped 

drastically after conditioning, implying the SNPs on the same linkage group were highly 

correlated. For example, after the most significant SNP for head length on LG9 (ID AX-

85413092) was included in the association test, the -log10(P-value) of SNPs on LG9 all dropped 

below 2, while the -log10(P-value) of SNPs on the other linkage groups generally did not change. 

Similar results were obtained for other associated SNPs. The independence of SNPs on different 
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linkage groups proved that no associated QTL was identified on a wrong linkage group caused 

by incorrect scaffolding in the genome sequence (Liu et al., in review).  

 

4.5 Discussion 

Head shape is not only important for evolutionary adaptation, but also highly relevant to 

aquaculture, as smaller head would translate into greater percentage of fillet yield. Therefore, 

selection of catfish with uniform body shape and smaller head is of significance for aquaculture 

production and profit margins. In this work, we used the high density 250K catfish SNP arrays 

and the backcross progenies for mapping the QTLs controlling head size. Five QTLs, one 

genome-wide significant and four suggestive, for head length were mapped to four linkage 

groups, LG7 (2 QTLs), LG9, LG16, and LG28. Seven QTLs for head width, five genome-wide 

significant and two suggestive, were mapped to five linkage groups, LG5, LG7 (2 QTLs), LG9 

(2 QTLs), LG27, and LG29. One suggestive QTL for head depth was mapped to LG26. 

Interestingly, the two QTLs on LG7 were associated with both head length and head width, 

suggesting that they are pleiotropic.  

The analysis of the functions of candidate genes reveals the crucial roles of small GTPase 

pathway in the control of head size. It is apparent that genes involved in small GTPase pathway 

were included in QTLs for head length, head width, as well as head depth. Although these QTLs 

were located on eight distinct linkage groups, genes involved in small GTPase pathway were the 

commonality found in all eight linkage groups (Table 7, Table 8, and Table 9).  

Small GTPases were reported to be involved in bone morphogenesis with a variety of 

functions, including the dynamics of the actin cytoskeleton, cell adhesion, and membrane 

trafficking (Itzstein et al. 2011; Wunnenberg-Stapleton et al. 1999). They are involved in the 
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functions of some cell adhesion molecules, including cadherins, protocadherins and integrins 

(Watanabe et al. 2009). In our study, many candidate genes were involved in small GTPase 

pathway. For example, within the region associated with head length on LG9, eight candidate 

genes were found with functions related with head formation (Table 7 and Figure 9). One small 

GTPase gene and five genes with known functions highly related with small GTPase were 

identified in the region on LG 9, including ras-related protein rab-33a (rab33a), rap guanine 

nucleotide exchange factor 2 (rapgef2) (Quilliam et al. 2002), fibroblast growth factor-binding 

protein-1 (fgfbp1)  and -2a (fgfbp2a) (Szebenyi and Fallon 1998), sphingomyelin 

phosphodiesterase 3 (smpd3) (Aubin et al. 2005; Tomiuk et al. 1998), and septin-7 (sept7) 

(Longtine and Bi 2003) (Figure 12). Apart from these genes, the other candidate genes within the 

associated region are involved in the bone morphogenetic protein (BMP) pathway, which is 

related with small GTPase pathway. Follistatin-related protein (FSTL) could bind actin and 

BMP, which is important in cartilage and bone development (Sidis et al. 2002). Transmembrane 

anterior posterior transformation 1 (Tapt1), regulated by BMP (McPherron et al. 1999), is 

speculated to be related with axial skeletal patterning during development (Howell et al. 2007). 

Moreover, on the other linkage groups associated with head size, most of candidate genes are 

known related with small GTPases, further proving the importance of small GTPase pathway to 

head formation. 
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Figure 12 Signal transduction pathways involving small GTPases and the other candidate 

genes. 
 

It is also notable that apart from G protein genes, some paralogs were identified in the 

regions associated with head size on different linkage groups, including gene family members of 

small GTPase-activating protein, regulator of G-protein signaling, sphingomyelin 

phosphodiesterase, sorting nexin, protocadherin, and cadherin.  

Genes of the small GTPase pathway were previously reported to control skull shape and 

size in fish, frog, dog, mouse, and human. For instance, bmp4 was reported to play an important 

role in coordinating shape differences in the cichlid fish oral jaw apparatus (Albertson et al. 

2003). It was reported that small GTPases were important to cell adhesion and head formation in 

early Xenopus development (Wunnenberg-Stapleton et al. 1999). In human beings, mutation 

affecting FGFR, RAB, and TGFBR were associated with defects within the developing skull 

(Schoenebeck and Ostrander 2013). In dogs, eight QTLs were reported to be associated with 
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skull diversity (Schoenebeck et al. 2012). Schonenebeck et al. demonstrated that BMP3 

contained a likely causal variant. In addition to BMP3, we searched the other associated regions 

for candidate genes surrounding the proposed significant SNPs (Schoenebeck et al. 2012). In 

doing so, many candidate genes involved in small GTPase pathway were identified, coding for 

proteins including small GTPase, Ras guanine nucleotide exchange factor 1B (RASGEF1B), 

alpha-1-syntrophin (SNTA1), integrin alpha 11 (ITGA11), fibroblast growth factor 5 (FGF5), G-

protein coupled receptor (GPR), kinesin-like protein (KIF), and insulin-like growth factor 1 

(IGF1) (Figure 13). In mouse, Itga2, Arhgap31, Gnai3, Fgfr3, Chd7, and Kif7 were identified 

within the QTLs linked with mouse skull shape (Maga et al. 2015). Close to Gnai3, Itga2, and 

Chd7, we also found Gnat2, Itga1, Fst and Rab2a according to mouse genome sequence, which 

are involved in small GTPase pathway (Figure 13). The fact that the genes involved in the small 

GTPase pathway were found within the QTL regions in species ranging from fish, frog, mouse, 

dog, and human suggested that the involvement of small GTPase pathway in control of head 

shape and size is evolutionarily conserved.  
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Figure 13 Regional scan of QTLs associated with head shape identified in mouse and dog 

(Maga et al. 2015; Schoenebeck et al. 2012). The homologs of mouse and dog candidate genes 

within the associated QTLs in catfish were also shown. Homologs were marked in the same 

color. Solid gray boxes indicate candidate genes. Dash lines under the boxes indicate several 

genes located in the interval are not shown. 
 

 

The observation that many genes involved in the small GTPase pathways were found 

within QTLs in various species triggered us to determine if the genes were evolutionarily 

conserved to explain head shape variance in different species. By examining the genomic regions 
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associated with head shape in catfish, dog, and mouse, a total of 10 gene families involved in the 

small GTPase pathway were identified with candidate homologous genes in three species (Maga 

et al. 2015; Schoenebeck et al. 2012)(Figure 5) . It is clear that, with the exception of alpha-1-

syntrophin, all the identified genes were not orthologous. For instance, small GTPases were 

mapped in the QTLs in two chromosomes of dogs, five linkage groups of catfish, and one 

chromosome of mouse. However, the genes within the dog QTLs were RASSF3 and CDC42; the 

genes within the mouse QTL was Rab2a; and the genes within the catfish QTLs were rab33a, 

rab9b, rab15, rhov, and rhobtb2. Similarly, the situations were also true for small GTPase 

activating proteins, follistatin, guanine nucleotide exchange factor, integrin, fibroblast growth 

factor, heterotrimeric G protein, G-protein coupled receptor, and kinesin. Therefore, it appears 

that it is not orthologous genes that were identified to explain the variance of head shape in 

different species. The first reason for that may be that different landmarks were utilized to 

describe the head shape in three studies. Secondly, maybe not all the orthologous genes contain 

variants that could affect the phenotype in the sampled population within three species, despite 

the possibility that the orthologous genes are involved in head shape in three species, so the 

related regions cannot be mapped by GWAS.  Thirdly, it is not guaranteed that all involved 

QTLs could be identified by GWAS.  

We previously proposed the “functional hubs” within QTLs of columnaris resistance 

(Geng et al. 2015), where related genes in the same or similar pathways are physically together.  

Here once again, strong clusters of genes involved in the same pathway were also observed for 

head shape (Table 7, Table 8, and Table 9) (Geng et al. 2015; Michalak 2008). Although it is 

possible that just one causal gene is involved in each of the associated regions, it is also possible, 
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and even likely that the candidate genes in the functional hubs work together to regulate the 

involved traits, in this case, the head shape.  

Family-based population is suitable for GWAS of most aquaculture species. In our study, 

samples based on five families were used. Usually, family-based design needs additional 

genotype information of parents, but catfish have high fecundities with thousands of progenies 

per spawn, which reduces the efficiency penalty for genotyping parents. Compared with 

unrelated sample, family-based population takes some advantages in identifying QTLs by 

GWAS. Firstly, the lack of recombination between QTLs and associated markers increases the 

power for detection (Mackay and Powell 2007). However, the tradeoff is that mapping resolution 

is reduced, which results in the long-extending regions of QTLs. To narrow down the regions, 

saturated SNP markers at a high density could be selected from local regions around the 

identified QTLs. Instead of genotyping SNPs on whole genome, genotyping local SNPs costs 

less, which allows larger number of samples to be included to detect rare recombination. The 

large number of offspring per spawning in most aquaculture species could ensure enough 

samples at a low cost. Thus fine mapping could be achieved by the two-step methods cost-

efficiently. In order to improve brood stocks in catfish production by marker-assisted selection, 

further analysis on local SNPs is required to provide more accurate QTL information based on 

our preliminary data. Secondly, the clear pedigree information of family-based population design 

makes it much easier to control the confounding factor caused by population stratification. 

Moreover, family-based design obtains more power to detect rare variants, which only exist in 

specific families. Nevertheless, the pitfalls of family-based population should not be ignored. 

The family or population specification of QTLs is one of major reasons for the variance of 
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phenotype. The limited number of founders in the family-based samples may reduce power to 

detect QTLs.  

The high fecundity makes family-based samples feasible and efficient for GWAS in most 

aquaculture species. However, for samples consisting of large families in aquaculture, the 

performances of commonly used test methods have not been compared. In our study, two 

methods, EMMAX and QFAM, were evaluated for family-based samples. EMMAX and QFAM 

are both effective in correcting population stratification. Population stratification is the major 

confounding factor causing false positive results. If the population stratification is not corrected, 

false positive results that are associated with population structure rather than the trait of interest 

could be detected as the associated markers falsely. Different from the universal applicability of 

EMMAX, QFAM is just applicable for family-based population to control population 

stratification. QFAM partitions the genotypes into between- and within- family components 

(Abecasis et al. 2000; Fulker et al. 1999). The within-family components could control 

stratification, and the true association results could be identified without the effect from 

stratification. Unlike QFAM, EMMAX calculates a pairwise relatedness matrix according to 

high-density markers to represent the sample structure at first. Then EMMAX could estimate the 

contribution of the sample structure to the phenotype, and detect associations without 

confounding effect generated from sample structure (Kang et al. 2010). EMMAX has been 

proven widely applicable for correcting family structure, as well as population structure and 

cryptic relatedness (Price et al. 2010). However, it has been shown that inclusion of the candidate 

markers to calculate the pairwise relatedness matrix could lead to loss in power because of 

double-fitting of the candidate markers in the model (Yang et al. 2014). In our study, EMMAX 

has less power compared with FBAT. Because of loss in power in EMMAX, we conclude that 
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QFAM performs better than EMMAX for our samples consisting of large families according to 

our results. 

Our long-term goal is to enhance catfish stocks with favorite phenotype for head shape, 

incorporate such trait along with other traits such as disease resistance, and finally support a 

sustainable and profitable aquaculture industry. Parental fish with homozygous favorite alleles 

will be screened, making them immediately applicable to the catfish industry. To reach this long-

term goal, genetic basis underling the traits must be understood, especially the accurate location 

of QTLs controlling the traits of interest. Detailed QTL information will then be used to improve 

brood stocks by marker-assisted selection, or introgression of valuable disease resistance QTLs 

from both channel catfish and blue catfish. In our study, GWAS could locate part of associated 

QTLs into several Mb, so fine mapping of QTL is still needed for a more efficient marker-

assisted selection for these QTLs. Considering the high heritability, the improvement will be 

significant for the catfish industry. 

 

4.6 Conclusion 

This study investigated the genetic basis of head size of catfish backcross fingerlings. For 

head length, one genome-wide significant QTL was identified on LG 9. Besides LG 9, several 

suggestively associated QTLs were located on LGs 7, 16, and 28. For head width, significant 

SNPs were located on LGs 5, 7, 9 and 29, and suggestively associated SNPs were located on 

LGs 7 and 27. For head depth, only one suggestively associated region was identified on LG 26. 

Each of these associated regions is rich of small GTPase related genes, implying the crucial role 

of small GTPase pathway in controlling head size.  
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Note: Chapter 2 will be published in the book named as Bioinformatics in Aquaculture; Chapter 

3 was published on BMC Genomics (Geng et al. 2015); Chapter 4 was submitted to G3. 

  



74 

 

 

 

 

References 

 

Abecasis G, Cardon L, Cookson W (2000) A general test of association for quantitative traits in 

nuclear families. The American Journal of Human Genetics 66:279-292. 

Albertson RC, Streelman JT, Kocher TD (2003) Directional selection has shaped the oral jaws of 

Lake Malawi cichlid fishes. Proceedings of the National Academy of Sciences 100:5252-

5257. 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search 

tool. Journal of molecular biology 215:403-410. 

Argue BJ, Liu Z, Dunham RA (2003) Dress-out and fillet yields of channel catfish, Ictalurus 

punctatus, blue catfish, Ictalurus furcatus, and their F 1, F 2 and backcross hybrids. 

Aquaculture 228:81-90. 

Arias CR, Cai W, Peatman E, Bullard SA (2012) Catfish hybrid Ictalurus punctatus x I. furcatus 

exhibits higher resistance to columnaris disease than the parental species. Diseases of aquatic 

organisms 100:77-81. 

Arimura A, Shioda S (1995) Pituitary adenylate cyclase activating polypeptide (PACAP) and its 

receptors: neuroendocrine and endocrine interaction. Frontiers in neuroendocrinology 16:53-

88. 

Aubin I, Adams CP, Opsahl S, Septier D, Bishop CE, Auge N, Salvayre R, Negre-Salvayre A, 

Goldberg M, Guénet J-L (2005) A deletion in the gene encoding sphingomyelin 

phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the 

mouse. Nature genetics 37:803-805. 

Beck BH, Farmer BD, Straus DL, Li C, Peatman E (2012) Putative roles for a rhamnose binding 

lectin in Flavobacterium columnare pathogenesis in channel catfish Ictalurus punctatus. Fish 

& shellfish immunology 33:1008-1015. 

Birchler JA, Auger DL, Riddle NC (2003) In search of the molecular basis of heterosis. The 

Plant Cell Online 15:2236-2239. 

Bodart V, Babinski K, Ong H, De Lean A (1997) Comparative Effect of Pituitary Adenylate 

Cyclase-Activating Polypeptide on Aldosterone Secretion in Normal Bovine and Human 

Tumorous Adrenal Cells 1. Endocrinology 138:566-573. 

Bone H, Williams NA (2001) Antigen-receptor cross-linking and lipopolysaccharide trigger 

distinct phosphoinositide 3-kinase-dependent pathways to NF-kappa B activation in primary 

B cells. International Immunology 13:807-816. 

Brock C, Schaefer M, Reusch HP, Czupalla C, Michalke M, Spicher K, Schultz G, Nurnberg B 

(2003) Roles of G beta gamma in membrane recruitment and activation of p110 gamma/p101 

phosphoinositide 3-kinase gamma. The Journal of cell biology 160:89-99. 

Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. 

Journal of molecular biology 268:78-94. 



75 

 

Bush WS, Moore JH (2012) Genome-wide association studies. PLoS computational biology 

8:e1002822. 

Chockalingam PS, Gee SH, Jarrett HW (1999) Pleckstrin homology domain 1 of mouse α1-

syntrophin binds phosphatidylinositol 4, 5-bisphosphate. Biochemistry 38:5596-5602. 

Cox D, Tseng CC, Bjekic G, Greenberg S (1999) A requirement for phosphatidylinositol 3-

kinase in pseudopod extension. Journal of Biological Chemistry 274:1240-1247. 

Cummings HE, Barbi J, Reville P, Oghumu S, Zorko N, Sarkar A, Keiser TL, Lu B, Rückle T, 

Varikuti S (2012) Critical role for phosphoinositide 3-kinase gamma in parasite invasion and 

disease progression of cutaneous leishmaniasis. Proceedings of the National Academy of 

Sciences 109:1251-1256. 

Darvasi A, Soller M (1992) Selective genotyping for determination of linkage between a marker 

locus and a quantitative trait locus. Theoretical and applied genetics 85:353-359. 

Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine 

genetic mapping. Genetics 141:1199-1207. 

Declercq AM, Haesebrouck F, Van den Broeck W, Bossier P, Decostere A (2013) Columnaris 

disease in fish: a review with emphasis on bacterium-host interactions. Veterinary research 

44:27-44. 

Decostere A, Haesebrouck F, Van Driessche E, Charlier G, Ducatelle R (1999) Characterization 

of the adhesion of Flavobacterium columnare (Flexibacter columnaris) to gill tissue. Journal 

of Fish Diseases 22:465-474. 

Dominik S (2013) Descriptive Statistics of Data: Understanding the Data Set and Phenotypes of 

Interest. In Genome-Wide Association Studies and Genomic Prediction (Springer), pp. 19-35. 

Downes C, Bennett D, McConnachie G, Leslie N, Pass I, MacPhee C, Patel L, Gray A (2001) 

Antagonism of PI 3-kinase-dependent signalling pathways by the tumour suppressor protein, 

PTEN. Biochemical Society Transactions 29:846-851. 

Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE (2008) Establishing an adjusted p-

value threshold to control the family-wide type 1 error in genome wide association studies. 

BMC genomics 9:516. 

Dunham RA, Umali GM, Beam R, Kristanto AH, Trask M (2008) Comparison of production 

traits of NWAC103 channel catfish, NWAC103 channel catfish× blue catfish hybrids, Kansas 

Select 21 channel catfish, and blue catfish grown at commercial densities and exposed to 

natural bacterial epizootics. North American Journal of Aquaculture 70:98-106. 

Fukao T, Tanabe M, Terauchi Y, Ota T, Matsuda S, Asano T, Kadowaki T, Takeuchi T, Koyasu 

S (2002) PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nature 

immunology 3:875-881. 

Fulker D, Cherny S, Sham P, Hewitt J (1999) Combined linkage and association sib-pair analysis 

for quantitative traits. The American Journal of Human Genetics 64:259-267. 

Gao J, Huo L, Sun X, Liu M, Li D, Dong J-T, Zhou J (2008) The tumor suppressor CYLD 

regulates microtubule dynamics and plays a role in cell migration. Journal of Biological 

Chemistry 283:8802-8809. 

Gauderman W, Morrison J (2006) QUANTO 1.1: A computer program for power and sample 

size calculations for genetic-epidemiology studies. 

Geng X, Sha J, Liu S, Bao L, Zhang J, Wang R, Yao J, Li C, Feng J, Sun F (2015) A genome-

wide association study in catfish reveals the presence of functional hubs of related genes 

within QTLs for columnaris disease resistance. BMC genomics 16:196. 



76 

 

Gheyas A, Haley C, Guy D, Hamilton A, Tinch A, Mota‐Velasco J, Woolliams J (2010a) 

Effect of a major QTL affecting IPN resistance on production traits in Atlantic salmon. 

Animal genetics 41:666-668. 

Gheyas A, Houston R, Mota‐Velasco J, Guy D, Tinch A, Haley C, Woolliams J (2010b) 

Segregation of infectious pancreatic necrosis resistance QTL in the early life cycle of Atlantic 

Salmon (Salmo salar). Animal genetics 41:531-536. 

Giudice JJ (1966) Growth of a blue X channel catfish hybrid as compared to its parent species. 

The Progressive Fish-Culturist 28:142-145. 

Gu X, Feng C, Ma L, Song C, Wang Y, Da Y, Li H, Chen K, Ye S, Ge C (2011) Genome-wide 

association study of body weight in chicken F2 resource population. PLoS One 6:e21872. 

Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, Zusmanovich P, 

Sulem P, Thorlacius S, Gylfason A, Steinberg S (2008) Many sequence variants affecting 

diversity of adult human height. Nature genetics 40:609-615. 

Hawke JP, Thune RL (1992) Systemic isolation and antimicrobial susceptibility of Cytophaga 

columnaris from commercially reared channel catfish. Journal of Aquatic Animal Health 

4:109-113. 

Hayes B (2013) Overview of statistical methods for genome-wide association studies (GWAS). 

In Genome-Wide Association Studies and Genomic Prediction (Springer), pp. 149-169. 

Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and 

complex traits. Nature Reviews Genetics 6:95-108. 

Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. 

Statistics in medicine 9:811-818. 

Holleran EA, Ligon LA, Tokito M, Stankewich MC, Morrow JS, Holzbaur EL (2001) beta III 

spectrin binds to the Arp1 subunit of dynactin. The Journal of biological chemistry 

276:36598-36605. 

Houston R, Gheyas A, Hamilton A, Guy D, Tinch A, Taggart J, McAndrew B, Haley C, Bishop 

S (2008) Detection and confirmation of a major QTL affecting resistance to infectious 

pancreatic necrosis (IPN) in Atlantic salmon (Salmo salar). Developments in biologicals 

132:199-204. 

Houston RD, Davey JW, Bishop SC, Lowe NR, Mota-Velasco JC, Hamilton A, Guy DR, Tinch 

AE, Thomson ML, Blaxter ML (2012) Characterisation of QTL-linked and genome-wide 

restriction site-associated DNA (RAD) markers in farmed Atlantic salmon. BMC genomics 

13:244. 

Howell GR, Shindo M, Murray S, Gridley T, Wilson LA, Schimenti JC (2007) Mutation of a 

ubiquitously expressed mouse transmembrane protein (Tapt1) causes specific skeletal 

homeotic transformations. Genetics 175:699-707. 

Ireton K, Payrastre B, Chap H, Ogawa W, Sakaue H, Kasuga M, Cossart P (1996) A role for 

phosphoinositide 3-kinase in bacterial invasion. Science 274:780-782. 

Ireton K, Payrastre B, Cossart P (1999) The Listeria monocytogenes protein InlB is an agonist of 

mammalian phosphoinositide 3-kinase. The Journal of biological chemistry 274:17025-17032. 

Itzstein C, Coxon FP, Rogers MJ (2011) The regulation of osteoclast function and bone 

resorption by small GTPases. Small GTPases 2:117-130. 

Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H (2013) A 

haplotype map of genomic variations and genome-wide association studies of agronomic traits 

in foxtail millet (Setaria italica). Nature genetics 45:957-961. 



77 

 

Jiang K, Zhong B, Gilvary DL, Corliss BC, Hong-Geller E, Wei S, Djeu JY (2000) Pivotal role 

of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nature 

immunology 1:419-425. 

Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-y, Freimer NB, Sabatti C, Eskin E (2010) 

Variance component model to account for sample structure in genome-wide association 

studies. Nature genetics 42:348-354. 

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient 

control of population structure in model organism association mapping. Genetics 178:1709-

1723. 

Kierbel A, Gassama-Diagne A, Mostov K, Engel JN (2005) The phosphoinositol-3-kinase-

protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK 

internalization. Molecular biology of the cell 16:2577-2585. 

Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a 

review. Plant methods 9:29. 

Koyasu S (2006) Role of phosphatidylinositol 3-kinase in the immune system. Tanpakushitsu 

kakusan koso Protein, nucleic acid, enzyme 51:1569-1579. 

Kucuktas H, Wang S, Li P, He C, Xu P, Sha Z, Liu H, Jiang Y, Baoprasertkul P, Somridhivej B 

(2009) Construction of genetic linkage maps and comparative genome analysis of catfish 

using gene-associated markers. Genetics 181:1649-1660. 

LaFrentz BR, Shoemaker CA, Booth NJ, Peterson BC, Ourth DD (2012) Spleen index and 

mannose-binding lectin levels in four channel catfish families exhibiting different 

susceptibilities to Flavobacterium columnare and Edwardsiella ictaluri. Journal of aquatic 

animal health 24:141-147. 

Laghari M, Lashari P, Zhang X, Xu P, Xin B, Zhang Y, Narejo N, Sun X (2014) Mapping 

quantitative trait loci (QTL) for body weight, length and condition factor traits in backcross 

(BC1) family of Common carp (Cyprinus carpio L.). Molecular biology reports 41:721-731. 

Laird NM, Lange C (2006) Family-based designs in the age of large-scale gene-association 

studies. Nature Reviews Genetics 7:385-394. 

Lambotin M, Hoffmann I, Laran-Chich MP, Nassif X, Couraud PO, Bourdoulous S (2005) 

Invasion of endothelial cells by Neisseria meningitidis requires cortactin recruitment by a 

phosphoinositide-3-kinase/Rac1 signalling pathway triggered by the lipo-oligosaccharide. 

Journal of cell science 118:3805-3816. 

Lange C, DeMeo DL, Laird NM (2002) Power and design considerations for a general class of 

family-based association tests: quantitative traits. The American Journal of Human Genetics 

71:1330-1341. 

Lasky-Su J, Won S, Mick E, Anney RJ, Franke B, Neale B, Biederman J, Smalley SL, Loo SK, 

Todorov A (2010) On genome-wide association studies for family-based designs: an 

integrative analysis approach combining ascertained family samples with unselected controls. 

The American Journal of Human Genetics 86:573-580. 

Ledur M, Navarro N, Pérez-Enciso M (2009) Large-scale SNP genotyping in crosses between 

outbred lines: how useful is it&quest. Heredity 105:173-182. 

Lewontin R (1964) The interaction of selection and linkage. I. General considerations; heterotic 

models. Genetics 49:49. 

Li C, Zhang Y, Wang R, Lu J, Nandi S, Mohanty S, Terhune J, Liu Z, Peatman E (2012) RNA-

seq analysis of mucosal immune responses reveals signatures of intestinal barrier disruption 



78 

 

and pathogen entry following Edwardsiella ictaluri infection in channel catfish, Ictalurus 

punctatus. Fish & shellfish immunology 32:816-827. 

Li Y, Liu S, Qin Z, Waldbieser G, Wang R, Sun L, Bao L, Danzmann RG, Dunham R, Liu Z 

(2014) Construction of a high-density, high-resolution genetic map and its integration with 

BAC-based physical map in channel catfish. DNA research : an international journal for rapid 

publication of reports on genes and genomes:dsu038. 

Liu F, van der Lijn F, Schurmann C, Zhu G, Chakravarty MM, Hysi PG, Wollstein A, Lao O, de 

Bruijne M, Ikram MA (2012) A genome-wide association study identifies five loci 

influencing facial morphology in Europeans. 

Liu S, Sun L, Li Y, Sun F, Jiang Y, Zhang Y, Zhang J, Feng J, Kaltenboeck L, Kucuktas H 

(2014) Development of the catfish 250K SNP array for genome-wide association studies. 

BMC research notes 7:135. 

Liu S, Zhou Z, Lu J, Sun F, Wang S, Liu H, Jiang Y, Kucuktas H, Kaltenboeck L, Peatman E, 

Liu Z (2011) Generation of genome-scale gene-associated SNPs in catfish for the construction 

of a high-density SNP array. BMC genomics 12:53-66. 

Liu Z, Karsi A, Li P, Cao D, Dunham R (2003) An AFLP-based genetic linkage map of channel 

catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. 

Genetics 165:687-694. 

Longtine MS, Bi E (2003) Regulation of septin organization and function in yeast. Trends in cell 

biology 13:403-409. 

Lugo JM, Carpio Y, Oliva A, Morales A, Estrada MP (2010) Pituitary adenylate cyclase-

activating polypeptide (PACAP): a regulator of the innate and acquired immune functions in 

juvenile fish. Fish & shellfish immunology 29:513-520. 

Luo C, Qu H, Ma J, Wang J, Li C, Yang C, Hu X, Li N, Shu D (2013) Genome-wide association 

study of antibody response to Newcastle disease virus in chicken. BMC Genetics 14:42-51. 

Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits, Vol 1 (Sinauer 

Sunderland). 

Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends in 

plant science 12:57-63. 

Mackay TF (2001a) The genetic architecture of quantitative traits. Annual review of genetics 

35:303-339. 

Mackay TF (2001b) Quantitative trait loci in Drosophila. Nature Reviews Genetics 2:11-20. 

Maekawa T, Krauss JL, Abe T, Jotwani R, Triantafilou M, Triantafilou K, Hashim A, Hoch S, 

Curtis MA, Nussbaum G (2014) Porphyromonas gingivalis Manipulates Complement and 

TLR Signaling to Uncouple Bacterial Clearance from Inflammation and Promote Dysbiosis. 

Cell host & microbe 15:768-778. 

Maga AM, Navarro N, Cunningham ML, Cox TC (2015) Quantitative trait loci affecting the 3D 

skull shape and size in mouse and prioritization of candidate genes in-silico. Frontiers in 

physiology 6. 

Massault C, Hellemans B, Louro B, Batargias C, Van Houdt J, Canario A, Volckaert F, 

Bovenhuis H, Haley C, De Koning D (2010) QTL for body weight, morphometric traits and 

stress response in European sea bass Dicentrarchus labrax. Animal Genetics 41:337-345. 

Massoumi R (2010) Ubiquitin chain cleavage: CYLD at work. Trends Biochem Sci 35:392-399. 

McPherron AC, Lawler AM, Lee S-J (1999) Regulation of anterior/posterior patterning of the 

axial skeleton by growth/differentiation factor 11. Nature genetics 22:260-264. 



79 

 

Michalak P (2008) Coexpression, coregulation, and cofunctionality of neighboring genes in 

eukaryotic genomes. Genomics 91:243-248. 

Michelmore RW, Paran I, Kesseli R (1991) Identification of markers linked to disease-resistance 

genes by bulked segregant analysis: a rapid method to detect markers in specific genomic 

regions by using segregating populations. Proceedings of the National Academy of Sciences 

88:9828-9832. 

Moen T, Baranski M, Sonesson AK, Kjøglum S (2009) Confirmation and fine-mapping of a 

major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): 

population-level associations between markers and trait. BMC genomics 10:368. 

Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends in 

Ecology & Evolution 19:208-216. 

Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative 

trait loci in outbred animal stocks. Proceedings of the National Academy of Sciences 

97:12649-12654. 

Muffato M, Louis A, Poisnel C-E, Crollius HR (2010) Genomicus: a database and a browser to 

study gene synteny in modern and ancestral genomes. Bioinformatics 26:1119-1121. 

Ninwichian P, Peatman E, Liu H, Kucuktas H, Somridhivej B, Liu S, Li P, Jiang Y, Sha Z, 

Kaltenboeck L (2012) Second-generation genetic linkage map of catfish and its integration 

with the BAC-based physical map. G3: Genes| Genomes| Genetics 2:1233-1241. 

Nishimura S, Watanabe T, Mizoshita K, Tatsuda K, Fujita T, Watanabe N, Sugimoto Y, 

Takasuga A (2012) Genome-wide association study identified three major QTL for carcass 

weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC 

genetics 13:40. 

Olivares-Fuster O, Arias CR (2011) Development and characterization of rifampicin-resistant 

mutants from high virulent strains of Flavobacterium columnare. Journal of fish diseases 

34:385-394. 

Olivares-Fuster O, Bullard SA, McElwain A, Llosa MJ, Arias CR (2011) Adhesion dynamics of 

Flavobacterium columnare to channel catfish Ictalurus punctatus and zebrafish Danio rerio 

after immersion challenge. Diseases of aquatic organisms 96:221-227. 

Palti Y, Gao G, Liu S, Kent M, Lien S, Miller M, Rexroad C, Moen T (2014) The development 

and characterization of a 57K single nucleotide polymorphism array for rainbow trout. 

Molecular ecology resources. 

Peatman E, Li C, Peterson BC, Straus DL, Farmer BD, Beck BH (2013) Basal polarization of the 

mucosal compartment in Flavobacterium columnare susceptible and resistant channel catfish 

(Ictalurus punctatus). Molecular immunology 56:317-327. 

Phillips R, Ventura A, Dekoning J, Nichols K (2013) Mapping rainbow trout immune genes 

involved in inflammation reveals conserved blocks of immune genes in teleosts. Animal 

genetics 44:107-113. 

Pizarro-Cerda J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124:715-727. 

Plumb JA, Hanson LA, Plumb JA (2011) Health maintenance and principal : microbial diseases 

of cultured fishes, 3rd edn (Ames, Iowa, Wiley-Blackwell). 

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal 

components analysis corrects for stratification in genome-wide association studies. Nature 

genetics 38:904-909. 

Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification 

in genome-wide association studies. Nature Reviews Genetics 11:459-463. 



80 

 

Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: models and data. The 

American Journal of Human Genetics 69:1-14. 

Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-

redundant sequence database of genomes, transcripts and proteins. Nucleic acids research 

35:D61-D65. 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De 

Bakker PI, Daly MJ (2007) PLINK: a tool set for whole-genome association and population-

based linkage analyses. The American Journal of Human Genetics 81:559-575. 

Quarrie SA, Lazić-Jančić V, Kovačević D, Steed A, Pekić S (1999) Bulk segregant analysis with 

molecular markers and its use for improving drought resistance in maize. Journal of 

experimental botany 50:1299-1306. 

Quilliam LA, Rebhun JF, Castro AF (2002) A growing family of guanine nucleotide exchange 

factors is responsible for activation of Ras-family GTPases. Progress in nucleic acid research 

and molecular biology 71:391-444. 

Reddy SAG, Huang JH, Liao WSL (1997) Phosphatidylinositol 3-kinase in interleukin 1 

signaling - Physical interaction with the interleukin 1 receptor and requirement in NF kappa B 

and AP-1 activation. Journal of Biological Chemistry 272:29167-29173. 

Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, 

Farhadian SF, Ward R (2001) Linkage disequilibrium in the human genome. Nature 411:199-

204. 

Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 

273:1516-1517. 

Romanelli F, Fillo S, Isidori A, Conte D (1997) Pituitary adenylate cyclase-activating 

polypeptide regulates rat Leydig cell function in vitro. Neuropeptides 31:311-317. 

Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome 

research 10:516-522. 

Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, 

Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nature 

genetics 37:501-506. 

Schoenebeck JJ, Hutchinson SA, Byers A, Beale HC, Carrington B, Faden DL, Rimbault M, 

Decker B, Kidd JM, Sood R (2012) Variation of BMP3 contributes to dog breed skull 

diversity. PLoS Genet 8:e1002849. 

Schoenebeck JJ, Ostrander EA (2013) The genetics of canine skull shape variation. Genetics 

193:317-325. 

Sémon M, Duret L (2006) Evolutionary origin and maintenance of coexpressed gene clusters in 

mammals. Molecular biology and evolution 23:1715-1723. 

Shears SB (2009) Diphosphoinositol polyphosphates: metabolic messengers? Molecular 

pharmacology 76:236-252. 

Sidis Y, Tortoriello DV, Holmes WE, Pan Y, Keutmann HT, Schneyer AL (2002) Follistatin-

related protein and follistatin differentially neutralize endogenous vs. exogenous activin. 

Endocrinology 143:1613-1624. 

Sjöström M, Johansson A-S, Schröder O, Qiu H, Palmblad J, Haeggström JZ (2003) Dominant 

expression of the CysLT2 receptor accounts for calcium signaling by cysteinyl leukotrienes in 

human umbilical vein endothelial cells. Arteriosclerosis, thrombosis, and vascular biology 

23:e37-e41. 



81 

 

Smitherman RO, Dunham RA, Tave D (1983) Review of catfish breeding research 1969–1981 at 

Auburn University. Aquaculture 33:197-205. 

Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic 

genes, pseudogenes and promoters. Genome Biol 7:S10. 

Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the 

insulin gene region and insulin-dependent diabetes mellitus (IDDM). American journal of 

human genetics 52:506. 

Sun F, Peatman E, Li C, Liu S, Jiang Y, Zhou Z, Liu Z (2012) Transcriptomic signatures of 

attachment, NF-kappaB suppression and IFN stimulation in the catfish gill following 

columnaris bacterial infection. Developmental and comparative immunology 38:169-180. 

Sun L, Liu S, Wang R, Jiang Y, Zhang Y, Zhang J, Bao L, Kaltenboeck L, Dunham R, 

Waldbieser G (2014) Identification and analysis of genome-wide SNPs provide insight into 

signatures of selection and domestication in channel catfish (Ictalurus punctatus). PloS one 

9:e109666. 

Sun SC (2010) CYLD: a tumor suppressor deubiquitinase regulating NF-kappa B activation and 

diverse biological processes. Cell Death and Differentiation 17:25-34. 

Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, Padhukasahasram B, Karlins E, 

Davis S, Jones PG (2007) A single IGF1 allele is a major determinant of small size in dogs. 

Science 316:112-115. 

Szebenyi G, Fallon JF (1998) Fibroblast growth factors as multifunctional signaling factors. 

International review of cytology 185:45-106. 

Terrien E, Chaffotte A, Lafage M, Khan Z, Prehaud C, Cordier F, Simenel C, Delepierre M, Buc 

H, Lafon M (2012) Interference with the PTEN-MAST2 interaction by a viral protein leads to 

cellular relocalization of PTEN. Science signaling 5:ra58. 

Thompson C, Cloutier A, Bossé Y, Poisson C, Larivée P, McDonald PP, Stankova J, Rola-

Pleszczynski M (2008) Signaling by the Cysteinyl-Leukotriene Receptor 2 involvement in 

chemokine gene transcription. Journal of Biological Chemistry 283:1974-1984. 

Tomiuk S, Hofmann K, Nix M, Zumbansen M, Stoffel W (1998) Cloned mammalian neutral 

sphingomyelinase: Functions in sphingolipid signaling? Proceedings of the National Academy 

of Sciences 95:3638-3643. 

Turner S, Armstrong LL, Bradford Y, Carlson CS, Crawford DC, Crenshaw AT, Andrade M, 

Doheny KF, Haines JL, Hayes G (2011) Quality control procedures for genome‐wide 

association studies. Current protocols in human genetics:1.19. 11-11.19. 18. 

Van Gestel S, Houwing-Duistermaat JJ, Adolfsson R, van Duijn CM, Van Broeckhoven C 

(2000) Power of selective genotyping in genetic association analyses of quantitative traits. 

Behavior genetics 30:141-146. 

Viard P, Butcher AJ, Halet G, Davies A, Nürnberg B, Heblich F, Dolphin AC (2004) PI3K 

promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nature 

neuroscience 7:939-946. 

Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, 

Backer JM, Cantley LC, Grinstein S (2001) Distinct roles of class I and class III 

phosphatidylinositol 3-kinases in phagosome formation and maturation. The Journal of cell 

biology 155:19-25. 

Viel A, Branton D (1996) Spectrin: on the path from structure to function. Current opinion in cell 

biology 8:49-55. 



82 

 

Wang J, Yang G, Zhou G (2013a) Quantitative trait loci for morphometric body measurements 

of the hybrids of silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis). 

Acta Biologica Hungarica 64:169-183. 

Wang KZ, Wara-Aswapati N, Boch JA, Yoshida Y, Hu C-D, Galson DL, Auron PE (2006) 

TRAF6 activation of PI 3-kinase-dependent cytoskeletal changes is cooperative with Ras and 

is mediated by an interaction with cytoplasmic Src. Journal of cell science 119:1579-1591. 

Wang R, Sun L, Bao L, Zhang J, Jiang Y, Yao J, Song L, Feng J, Liu S, Liu Z (2013b) Bulk 

segregant RNA-seq reveals expression and positional candidate genes and allele-specific 

expression for disease resistance against enteric septicemia of catfish. BMC genomics 14:929. 

Wang WY, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: 

theoretical and practical concerns. Nature Reviews Genetics 6:109-118. 

Watanabe T, Sato K, Kaibuchi K (2009) Cadherin-mediated intercellular adhesion and signaling 

cascades involving small GTPases. Cold Spring Harbor perspectives in biology 1:a003020. 

Williams EJ, Bowles DJ (2004) Coexpression of neighboring genes in the genome of 

Arabidopsis thaliana. Genome Research 14:1060-1067. 

Won S, Wilk JB, Mathias RA, O'Donnell CJ, Silverman EK, Barnes K, O'Connor GT, Weiss ST, 

Lange C (2009) On the analysis of genome-wide association studies in family-based designs: 

a universal, robust analysis approach and an application to four genome-wide association 

studies. PLoS genetics 5:e1000741. 

Wu H, Arron JR (2003) TRAF6, a molecular bridge spanning adaptive immunity, innate 

immunity and osteoimmunology. Bioessays 25:1096-1105. 

Wunnenberg-Stapleton K, Blitz IL, Hashimoto C, Cho K (1999) Involvement of the small 

GTPases XRhoA and XRnd1 in cell adhesion and head formation in early Xenopus 

development. Development 126:5339-5351. 

Xiong H, Li H, Chen Y, Zhao J, Unkeless JC (2004) Interaction of TRAF6 with MAST205 

regulates NF-kappaB activation and MAST205 stability. The Journal of biological chemistry 

279:43675-43683. 

Xu J, Zhao Z, Zhang X, Zheng X, Li J, Jiang Y, Kuang Y, Zhang Y, Feng J, Li C (2014) 

Development and evaluation of the first high-throughput SNP array for common carp 

(Cyprinus carpio). BMC genomics 15:307. 

Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex 

trait analysis. The American Journal of Human Genetics 88:76-82. 

Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the 

application of mixed-model association methods. Nature genetics 46:100-106. 

Yang W-L, Jin G, Li C-F, Jeong YS, Moten A, Xu D, Feng Z, Chen W, Cai Z, Darnay B (2013) 

Cycles of ubiquitination and deubiquitination critically regulate growth factor-mediated 

activation of Akt signaling. Science signaling 6:ra3. 

Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, 

Nielsen DM, Holland JB (2005) A unified mixed-model method for association mapping that 

accounts for multiple levels of relatedness. Nature genetics 38:203-208. 

Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, 

Ordovas JM (2010) Mixed linear model approach adapted for genome-wide association 

studies. Nature genetics 42:355-360. 

Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association 

studies. Nature genetics 44:821-824. 



83 

 

Ziegler A, König IR, Thompson JR (2008) Biostatistical Aspects of Genome‐Wide Association 

Studies. Biometrical Journal 50:8-28. 

 


