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Abstract

A Steiner triple system of order n is a pair (S, T ) where T is an edge disjoint partition

of the edge set of Kn (the complete undirected graph on n vertices with vertex set S) into

triangles (or triples). It is by now well-known that the spectrum for triple systems is precisely

the set of all n ≡ 1 or 3(mod 6) [2]. Let J(n) denote the possible number of triples that two

triple systems of order n can have in common. In this thesis, we provide an alternative proof

of the following result of C.C. Lindner and A. Rosa [4] that

J(n) = {0, 1, 2, . . . , x =
n(n− 1)

6
}\{x− 1, x− 2, x− 3, x− 5}

for all n ≡ 1 or 3(mod 6) with the exceptions of n = 9 and n = 13. Our alternative proof

of this result makes use of H.L. Fu’s solution to the intersection problem for quasigroups [1]

which was not available at the time of the original publication.
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Chapter 1

Introduction

A Steiner triple system (or more simply triple system) of order n is a pair (S, T ) where

T is an edge disjoint partition of the edge set of Kn (the complete undirected graph on

n vertices with vertex set S) into triangles (or triples). It is by now well-known that the

spectrum for triple systems is precisely the set of all n ≡ 1 or 3(mod 6) [2]. It is trivial to

see that if (S, T ) is a triple system of order n that |T | = n(n−1)
6

.

A problem that has been around for some time is the intersection problem for triple systems.

The Intersection Problem. For which k ∈ {0, 1, 2, . . . , n(n−1)
6
} does there exist a pair of

triple systems (S, T1) and (S, T2) of order n such that |T1 ∩ T2| = k?

A routine computation shows that k ∈ I(n) = {0, 1, 2, . . . , x = n(n−1)
6
}\{x− 1, x− 2,

x− 3, x− 5} is necessary. It turns out that this necessary condition is also sufficient except

for n = 9 or 13. If we denote by J(n) the intersection numbers for STS(n), in [4] Lindner

and Rosa show that J(n) = I(n) for all n ≡ 1 or 3(mod 6) except for n = 9 and 13. In

the case of n = 9 Kramer and Mesner [3] have shown that J(9) = {0, 1, 2, 3, 4, 6, 12} =

I(9)\{5, 8}. This was done on a computer. In 1975 Lindner and Rosa [4] showed that

J(13) = I(13)\{15, 17, 19}. These are the only exceptions.

Theorem 1.1. (Lindner and Rosa [4])

J(n) = I(n) for all n ≡ 1 or 3(mod 6) except for n = 9 and 13. In these cases J(9) =

I(9)\{5, 8} and J(13) = I(13)\{15, 17, 19}.

The object of this thesis is a completely different and basic proof of this theorem using

results due to H. L. Fu [1] not available at the time. We will end the introduction with an

example.
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Example 1.2. J(7) = I(7) = {0, 1, 3, 7}.

Define Steiner triple systems (S, T1), (S, T2), (S, T3), and (S, T4) as follows:

T1 =

1 2 3

1 4 5

1 6 7

2 4 6

2 5 7

3 4 7

3 5 6

T2 =

1 2 3

1 4 6

1 5 7

2 4 7

2 5 6

3 4 5

3 6 7

T3 =

1 2 3

1 4 5

1 6 7

2 4 7

2 5 6

3 4 6

3 5 7

T4 =

1 3 4

2 4 5

3 5 6

4 6 7

5 7 1

6 1 2

7 2 3

Then |T1 ∩ T4| = 0, |T1 ∩ T2| = 1, |T1 ∩ T3| = 3, and |T1 ∩ T1| = 7.
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Chapter 2

Intersection of Two STS(15)

In this section we will give a construction which will allow us to construct a pair of

STS(15) which intersect in n triples for any n ∈ I(15). Before we do this, we need a theorem

about quasigroups.

Theorem 2.1. (H. L. Fu [1])

The intersection numbers for a pair of quasigroups of order 4 are {0, 1, 2, 3, 4, 6, 8, 9, 12, 16}.

For quasigroups of order n ≥ 5 the intersection numbers are {0, 1, 2, . . . , n2}\{n2 − 1,

n2 − 2, n2 − 3, n2 − 5}.

With this theorem in hand we now present our constructions for STS(15).

Construction 2.2. Let X be a set of size 4 and set S = {∞1,∞2,∞3} ∪ (X × {1, 2, 3}).

Define a collection of triples T as follows:

1. Define a triple system Ti of order 7 on each {∞1,∞2,∞3} ∪ (X × {i}), i ∈ {1, 2, 3},

making sure that {∞1,∞2,∞3} is a triple in each triple system, and place these triples

in T.

2. Let (X, ◦) be a quasigroup of order 4 and for each x, y ∈ X, place the triple {(x, 1), (y, 2),

(x ◦ y, 3)} in T.

Then (S,T) is a triple system of order 15.
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Lemma 2.3. J(15) = I(15).

Proof. Let (S, T1) and (S, T2) be two triple systems constructed using Construction 2.2. It is

straight forward to see that the number of Type 1 triples that T1 and T2 can have in common

is a + b + c where a ∈ {0, 1, 3, 7}, b ∈ {0, 2, 6}, and c ∈ {0, 2, 6}. The number of Type 2

triples, d, in common comes from the set {0, 1, 2, 3, 4, 6, 8, 9, 12, 16}. Since the numbers a, b, c,

and d can be chosen independently we can construct T1 and T2 so that |T1∩T2| ∈ I(n)\{26}.

In order to achieve an intersection of 26 triples we will need the following construction.

Construction 2.4. Let X be a set of size 7 and set S = {∞} ∪ (X × {1, 2}). Let (X, ◦) be

an idempotent commutative quasigroup of order 7 and define triples T as follows:

1. {∞, (x, 1), (x, 2)} ∈ T for all x ∈ X,

2. for all x 6= y ∈ X, {(x, 1), (y, 1), (x ◦ y, 2)} ∈ T , and

3. define any triple system on X × {2}.

Let (X, ◦1) and (X, ◦2) be the idempotent commutative quasigroups of order 7 defined

below:

(1) 1 3 2 5 4 7 6

3 2 1 6 7 5 4

2 1 3 7 6 4 5

5 6 7 4 2 3 1

4 7 6 2 5 1 3

7 5 4 3 1 6 2

6 4 5 1 3 2 7

(2) 1 3 2 5 4 7 6

3 2 4 6 7 1 5

2 4 3 7 6 5 1

5 6 7 4 1 3 2

4 7 6 1 5 2 3

7 1 5 3 2 6 4

6 5 1 2 3 4 7

Then (X, ◦1) and (X, ◦2) have 24 entries in common (off the main diagonal). Using this pair

of quasigroups gives 12 Type 2 triples in common. So taking the Type 3 triples to be the

same we have 7 + 12 + 7 = 26 triples in common.
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Chapter 3

Intersection of two STS(n), n ≥ 21 and n ≡ 3(mod 6)

In this section we will give two general constructions which will allow us to construct

two STS(n) intersecting in t triples for t ∈ I(n) for n ≥ 21 and n ≡ 3(mod 6). From here on

let n = 6k + 3. Our first construction will consider the cases when 2k + 1 ≡ 1 or 3(mod 6).

Construction 3.1. Let (Q, ◦) be a guasigroup of order 2k + 1 ≡ 1 or 3(mod 6) and define

the following collection of triples T on X = Q× {1, 2, 3}.

1. For each i ∈ {1, 2, 3} define a STS(2k + 1) Ti on Q× {i} and put these triples in T.

2. For each x,y ∈ Q put the triple {(x, 1), (y, 2), (x ◦ y, 3)} in T.

It is straight forward to see that (X,T ) is a triple system of order n = 6k + 3.

Lemma 3.2. J(n) = I(n) for all n ≡ 3(mod 6), where n = 3(2k + 1) ≥ 15 and 2k + 1 ≡

1 or 3(mod 6).

Proof. Let (Q×{i}, Ti1) and (Q,×{i}, Ti2). be a pair of STS(2k+ 1) for i ∈ {1, 2, 3} and let

(Q, ◦1) and (Q, ◦2) be a pair of quasigroups. We can take (Q×{i}, Ti1) and (Q×{i}, Ti2) to be

equal or disjoint [4] and |(Q, ◦1)∩(Q, ◦2)| ∈ {0, 1, 2, . . . , x = (2k+1)2}\{x−1, x−2, x−3, x−

5}. Denote by T1 the triples constructed using Ti1 and (Q, ◦1) and T2 the triples constructed

using Ti2 and (Q, ◦2). Then the triple systems (Q×{1, 2, 3}, T1) and (Q×{1, 2, 3}, T2) have

{0, t} + {0, t} + {0, t} + {0, 1, 2, . . . , x = (2k + 1)2}\{x − 1, x − 2, x − 3, x − 5} in common

where t = (2k+1)2k
6

. A simple computation shows that J(n) = I(n).

Now we will give a construction for n = 6k + 3 and 2k + 1 ≡ 5(mod 6).
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Construction 3.3. Let (Q, ◦) be a quasigroup of order 2k ≡ 4(mod 6) and define the fol-

lowing collection of triples T on X = {∞1,∞2,∞3} ∪ (Q× {1, 2, 3}).

1. For each i ∈ {1, 2, 3} define a STS(3 + 2k) Ti on X and place these triples in T. The

triple {∞1,∞2,∞3} must belong to T2 and T3.

2. For each x, y ∈ Q place the triple {(x, 1), (y, 2), (x ◦ y, 3)} in T.

Then (X,T ) is a triple system of order 6k + 3.

Lemma 3.4. J(n) = I(n) for all n ≡ 3(mod 6), where n = 3 + 6k ≥ 33 and

2k ≡ 4(mod 6).

Proof. Let Xi = {∞1,∞2,∞3} ∪ (Q × {i}) and let (Xi, Ti1) and (Xi, Ti2) be a pair of

STS(3 + 2k) for i ∈ {1, 2, 3} and let (Q, ◦1) and (Q, ◦2) be a pair of quasigroups. We can

take (X1, T11) and (X1, T12) to be equal or disjoint and (X1, Ti1) and (Xi, Ti2) to be equal or

intersecting in {∞1,∞2,∞3} for i = 2 and 3; and |(Q, ◦1) ∩ (Q, ◦2)| ∈

{0, 1, 2, . . . , x = (2k)2}\{x − 1, x − 2, x − 3, x − 5}. Denote by T1 the triples constructed

using Ti1 and (Q, ◦1) and T2 the triples constructed using Ti2 and (Q, ◦2). Then the triple

systems (X,T1) and (X,T2) have {0, t}+{0, t−1}+{0, t−1}+{0, 1, 2, . . . , x = (2k)2}\{x−

1, x− 2, x− 3, x− 5} triples in common where t = (2k+3)(2k+2)
2

= (2k + 1)(k + 1). A simple

computation shows that J(n) = I(n).

Combining [3], Construction 2.4, and Lemma 3.4 gives the following Theorem.

Theorem 3.5. J(n) = I(n) for all n ≡ 3(mod 6), except for J(9). In this case, J(9) =

I(9)\{5, 8}.
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Chapter 4

Intersection of two STS(n), n ≥ 19 and n ≡ 1(mod 6)

In this section we will give two general constructions which will allow us to construct

two STS(n) intersecting in t triples for t ∈ I(n) for n ≥ 19 and n ≡ 1(mod 6). From here

on let n = 6k + 1. Our first construction will consider the cases when 2k ≡ 0 or 2(mod 6).

Construction 4.1. Let X be a set of size 2k ≡ 0 or 2(mod 6) and (X, ◦) a quasigroup of

order 2k. Denote by T the following collection of triples defined on S = {∞}∪(X×{1, 2, 3}).

1. For each i ∈ {1, 2, 3} let {∞} ∪ (X × {i}) be a STS(2k + 1) (Remember that 1 + 2k ≡

1 or 3(mod 6)) and place these triples in T.

2. For each x, y ∈ X place the triple {(x, 1), (y, 2), (x ◦ y, 3)} in T.

Then (S, T ) is a triple system of order 2k + 1.

Lemma 4.2. J(n) = I(n) where n = 6k + 3 and 2k ≡ 0 or 2(mod 6).

Proof. For each i ∈ {1, 2, 3} let ({∞}∪ (X ×{i}), T1i) and ({∞}∪ (X ×{i}), T2i) be a pair

of STS(2k + 1) and let (X, ◦1) and (X, ◦2) be a pair of quasigroups (any pair). We can take

T1i and T2i to be equal or disjoint and |(X, ◦1) ∩ (X, ◦2)| ∈ {0, 1, 2, . . . , x = (2k)2}\{x− 1,

x − 2, x − 3, x − 5}. Let T1 be constructed from the triples T1i and T2 constructed from

the triples T2i . It is immediate that |T1 ∩ T2| ∈ {0, (2k+1)2k
6
}+ {0, (2k+1)2k

6
}+ {0, (2k+1)2k

6
}+

{0, 1, 2, . . . , x = (2k)2}\{x− 1, x− 2, x− 3, x− 5} and that J(n) = I(n).

We will now give a construction for n = 6k + 1 and 2k ≡ 4(mod 6).
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Construction 4.3. Let 2k ≡ 4(mod 6), X a set of size 2k, and (X,P ) a GDD(2k, {4∗, 2}, 3).

Define triples T on S = {∞} ∪ (X × {1, 2, 3}) as follows:

1. Let g∗ be the group of size 4 and let ({∞}∪ (g∗×{1, 2, 3})) be a triple system of order

13.

2. For each group h of size 2 let {∞} ∪ (h× {1, 2, 3}) be a triple system of order 7.

3. Finally for each triple {x, y, z} let (P,B) be a GDD(9, 3, 3) of order 9 with groups

{x} × {1, 2, 3}, {y} × {1, 2, 3}, {z} × {1, 2, 3}. This is equivalent to a quasigroup of

order 3.

Then (S, T ) is a triple system of order 6k + 1, and we can take the intersection of two of the

GDD(9, 3, 3)s to be 0, 3, or 9.

Lemma 4.4. J(n) = I(n) for n = 6k + 1 and 2k ≡ 4(mod 6).

Proof. We can now build two STS(n)s using Construction 4.3 with intersection numbers

belonging to J(13) = I(13)\{15, 17, 19}, J(7) = I(7) = {0, 1, 3, 7}, and {0, 3, 9} for each

triple. This gives intersection numbers J(6k + 1) = I(6k + 1)\{x − 11, x − 9, x − 7} where

x = (6k+1)6k
6

. To obtain the numbers x−11, x−9, x−7 is easy. Let (S,T) be any STS(6k+1)

constructed using Construction 4.3. To obtain x− 7 define a pair of disjoint triple systems

on one of the groups of size 2. To obtain x− 9 use a pair of GDD(9,3,3)s having 0 triples in

common. To obtain x− 11 define a pair of disjoint triple systems on one of the groups and

a pair of triple systems intersecting in 3 triples on one of the groups.

Theorem 4.5. J(n) = I(n) for all n ≡ 1(mod 6), except for J(13). In this case, J(13) =

I(13)\{15, 17, 19}.
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Chapter 5

Concluding Remarks

Combining Theorems 3.5 and 4.5 gives the following theorem.

Theorem 5.1. J(n) = I(n) for all n ≡ 1 or 3(mod 6) except for n = 9 and 13. In these

cases J(9) = I(9)\{5, 8} and J(13) = I(13)\{15, 17, 19}.

As mentioned in the introduction the object of this thesis is a new and much shorter

proof of the intersection problem for Steiner triple systems. What makes the constructions

easier and shorter than the original paper is the use of H. L. Fu’s results [1] on the complete

solution of the intersection problem for quasigroups. Fu’s results were obtained 10 years after

the initial solution by C. C. Lindner and A. Rosa. As the old saying goes: time marches on.
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