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Abstract

We created detailed profiles of the energy consumed by common operations done on

Java List, Map, and Set abstractions. The results show that the alternative data types

for these abstractions di↵er significantly in terms of energy consumption depending on the

operations. For example, an ArrayList consumes less energy than a LinkedList if items are

inserted at the middle or at the end, but consumes more energy than a LinkedList if items

are inserted at the start of the list. To explain the results, we explored memory usage and

bytecode executed during an operation. Expensive computation tasks in bytecode traces

appeared to have energy impact, but memory usage did not contribute. We evaluated our

profiles by using them to selectively replace Collections types used in six applications and

libraries. We found that choosing a wrong Collections type, as indicated by our profiles, can

cost as much as 300% more energy than the more e�cient choice. Our work shows that the

usage context of a data structure and our measured energy profiles can be used to decide

between alternative Collections implementations for energy e�ciency.

ii



Acknowledgments

I would like to take this opportunity to acknowledge all who helped me in completing

my research.

I would like to thank my supervisor Dr. Je↵rey Overbey for his excellent insights,

detailed feedback on my work, and the constant support he provided during the di�cult

phases of my graduate study. I am indebted to my previous supervisor Dr. Munawar Hafiz,

who has helped in every phase of the research and academics, and has always made the time

to resolve any issues that I had. I highly appreciate his extreme attention to detail, which

has shaped my research to what it is today. This would not have been possible without his

constant support and dedication.

I am also grateful to my other committee members, Dr. N. Hari Narayanan and Dr.

David Umphress, for their support and useful feedback on my research. They have been

very encouraging and patient with me.

I would like to express my deepest gratitude to Dr. Abram Hindle and his team at

University of Alberta, Canada, for letting me use the GreenMiner device, and making a

significant contribution into this work by providing useful suggestions and resources. I am

also thankful to Dr. Bram Adams and his team at Polytechnique Montreal, Canada, for

sharing their expertise on program analysis.

Finally, I would like to thank my parents who raised me to be able to fulfill my dreams

for higher studies, my wife who has always inspired and supported me, and my friends who

believe in me.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Energy Concerns in Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Java Collections Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Energy Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Statement and Contributions . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Energy Impact of Code Change . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Measurement Techniques for Energy . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Auto-tuning for Energy E�ciency . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Energy Measurement Infrastructure Setup . . . . . . . . . . . . . . . . . . . . . 10

3.1 GreenMiner Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 GreenMiner Webservice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Distribution and Visualization of Test Data . . . . . . . . . . . . . . 11

3.2.2 Remote Test Management . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Test Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iv



4.1 List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Impact of Data Type and Collection Size . . . . . . . . . . . . . . . . . . . . 23

4.4.1 Data Type of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4.2 Size of Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 A Guideline for Developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Why these Energy Di↵erences? . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Executed Dalvik Bytecodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Google Gson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Apache Commons Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 XStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4 K-9 Mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.5 Apache Commons Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.6 Stock Exchange Trading Simulator . . . . . . . . . . . . . . . . . . . . . . . 39

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



List of Figures

3.1 The GreenMiner infrastructure [22]. . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 The GreenMiner test report [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 A GreenMiner interface for scheduling a test run [22]. . . . . . . . . . . . . . . . 13

3.4 Experimentation workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 The setUp() method for inserting items into List instances. . . . . . . . . . . . 15

3.6 Code for inserting items at the end of a LinkedList instance. . . . . . . . . . . . 16

4.1 List: Energy profiles for insertions. . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Iteration and random access performance of List implementaitons. . . . . . . . . 19

4.3 Energy profiles for insertions, iteration, and queries on random keys on Map . . 20

4.4 Energy profiles for insertions, iteration, and queries on random keys on Set. . . 22

4.5 Comparison of energies for operations on lists of integers versus small objects. . 24

4.6 Color map showing the rank of each List, Map and Set implementation. . . . . 25

5.1 Code for measuring the memory consumption for insertions at the beginning of

an ArrayList instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Memory usage of List, Map and Set instances during insertions. . . . . . . . . . 29

vi



5.3 Frequently executed bytecodes for insertion at the middle. . . . . . . . . . . . . 30

5.4 Frequently executed bytecodes for insertion at the beginning. . . . . . . . . . . 31

6.1 Evaluation Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



List of Tables

1.1 Profiled Collections Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

6.1 Libraries and applications for evaluating the energy profiles . . . . . . . . . . . 35

viii



Chapter 1

Introduction

Energy consumption is rapidly becoming an emerging topic for software engineering

and research [8,9,23,29,31,36,40,42,43]. In particular, the scale of data centers and limited

battery lifetime of ubiquitous mobile devices have forced the owners of these systems to

monitor and budget for energy at all fronts—software included. Although there is a growing

need for developers to optimize the energy-e�ciency of their software, they are typically

unaware of how to do this [35, 51]. If a guideline was available, the developers could make

informed choices in building “greener” systems by choosing the most suitable energy-e�cient

coding alternative.

1.1 Energy Concerns in Software

A software system during execution makes use of hardware resources like CPU, memory,

hard disk, network, and display—all of which are electrical components that require some

form of energy to function. Given multiple executing applications, cloud computing, and vir-

tual machines, controlling energy at the hardware device level alone is not su�cient. Hence,

researchers have recently started focusing on autotuning the energy consumption inside soft-

ware to optimize energy-e�ciency [8, 9, 14, 15, 31]. Götz and colleagues [14, 15] contributed

the initial work following the autotuning optimization approaches in performance improve-

ment (e.g., [38]). Bunse and colleagues [8, 9] focused on adapting systems at runtime to use

the most energy-e�cient sorting algorithm. In recent work, Manotas and colleagues [31]

designed a tool for autotuning Java applications by selecting the most energy-e�cient im-

plementations for Collections APIs.
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Another approach to optimize energy-e�ciency is to inform developers about the en-

ergy consequences of their high-level coding decisions, specifically to find alternative coding

idioms. Researchers have explored the energy impact of design patterns [10, 30, 41] and

refactoring [36, 42]. However, they were not able to provide specific guidelines, perhaps

because the energy footprints of these coding decisions were too small. Manotas and col-

leagues [31] achieved significant energy saving only by replacing Java Collections classes,

but they were not able to explain what is contributing to the improvement. Instead, they

followed a search-based software engineering approach to find the alternative that produces

the most energy-e�cient result.

1.2 Java Collections Classes

Java Collections classes store group of objects and provide API to access, modify, or

iterate over the elements. Java ships with the Java Collections Framework (JCF) [25] that

provides reusable and convenient implementations of popular data structures and algorithms.

There are also many third-party implementations of similar structures.

In this work, we also studied two third-party implementations: Apache Commons Collec-

tions (ACC) [2] and Trove [48]. Form ACC, we studied implementations that are alternative

to those already in JCF. The Trove collections hold only primitive data types; the goal is to

reduce memory usage and improve performance (Trove requires three times less heap space

than JCF implementations for larger collections [48]). The Collections classes we studied

are shown in Table 1.1.

The List interface defines an API to insert items at the end and at an any particular

index. Other common operations include iterating the list and retrieving an element from

the list with an index. We studied five list implementations from the three frameworks.

Although they provide the same API, the underlying data layout are di↵erent, accounting

for di↵erent execution performance of the lists. For example, TreeList allows fast (O(lg n))

insertions at a random index in the list, while it is a O(n) operation on a LinkedList.
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TIntArrayList
TIntLinkedList TIntHashSetTIntIntHashMapTrove

HashedMap
LinkedMapTreeListApache Collections 

Framework (ACC)
ListOrderedSet
MapBackedSet

HashSet
TreeSet
LinkedHashSet

ArrayList
LinkedList

HashMap
TreeMap
LinkedHashMap

Java Collections 
Framework (JCF)

SetMapListLibrary

Table 1.1: Profiled Collections Classes

We studied six alternative Map implementations from the three frameworks. Common

operations on map include inserting a key-value pair into the map, iterating over the entries

and looking for a particular key in the map to retrieve the corresponding value. These maps

also employ di↵erent data structures internally.

Similarly, we profiled six Set implementations for energy consumption. Sets store unique

elements and provides API to iterate over the elements or perform fast lookups. HashSet,

TreeSet, LinkedHashSet and MapBackedSet actually use a map internally to emulate the set

behavior. TIntHashSet and ListOrderedSet use a di↵erent technique to manage the data.

We looked into how the energy consumption of these implementations compare.

1.3 Energy Profiles

Alternative Collections classes have common API but perform di↵erently in terms of

execution time and energy consumption, among other factors. Energy profiles illustrate how

much energy is consumed when a particular API is invoked for a varying number of times

on a specific Collections instance. These are graphs plotted with the frequency of invocation

on the x-axis and energy consumed (joules) on the y-axis.

We created energy consumption profiles of commonly used API methods for variants

of three Collections datatypes: List, Map, and Set. Using the per-method energy profiles
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as building blocks, a developer can estimate the energy impact of each Collections instance

and choose a more e�cient alternative, if available. An essential property is that the profiles

respect the constraints developers are tied to, since programmers choose a Collections class

on purpose, e.g., a List instead of a Set or a Map. Hence, proposing a Set or a Map to

swap a List is confusing as a guideline. This is di↵erent from an autotuning approach that

aggressively swaps Collections classes based only on API match [31].

1.4 Thesis Statement and Contributions

Collections in Java provide some of the building blocks used by developers. When

writing programs, developers are typically unaware of the energy consequences of using

these blocks. If energy profiles of the alternative coding idioms, such as the Collections

implementations, are available, developers can use them as a guideline to choose the “green”

option based on the coding context.

Our work is a case study that explores the energy footprints of di↵erent API from some

of the Collections implementations. We make the following contributions:

• We describe a method in which the energy consumption profiles are measured on coding

idioms in isolation, and are then used to provide guidance for choosing alternative coding

idioms.

• We measure the energy profiles of various kinds of Collections classes obtained from

di↵erent sources, and also profile energy consumption for varying input sizes and element

types (Chapters 4).

• We explored two possible alternatives to explain energy consumption di↵erences between

operations (Chapter 5).

• We evaluate on real applications that the alternative Collections classes can be swapped

to predictably improve or worsen energy consumption (Chapter 6).
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1.5 Thesis Outline

The thesis is outlined as follows:

• Chapter 2 discusses related work.

• Chapter 3 introduces GreenMiner, the energy measurement infrastructure that we used

perform our energy analysis, and describes our experimental setup for obtaining the

energy profiles.

• Chapter 4 demonstrates the energy profiles of the Collections implementations, the

impact that the number and type of data elements have on the overall energy con-

sumption, and a guideline for developers towards building “green” systems.

• Chapter 5 addresses the factors that may explain the energy profiles we illustrated in

Chapter 4.

• Chapter 6 discusses the results of evaluating the profiles in real Java applicaitons and

libraries.

• Chapter 7 provides concluding remarks and suggests future work.
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Chapter 2

Related Work

Energy consumption of software has earned the interest of many researchers in recent

years. The motivation for research in this area comes from studies on developer and consumer

knowledge about software energy consumption that indicate that developers and consumers

are not su�ciently aware of how much energy their software consumes, what the energy

bottlenecks are, and which programming practices should be avoided [35,39,51,54]. Pinto et.

al. [39] explored techniques for writing energy e�cient code and suggested several strategies,

such as doing minimum I/O, performing operations in bulks, minimizing interaction with

the hardware, making use of concurrent programming, using e�cient data structures and

performing lazy initialization when possible. Researchers have been trying to relate code

change with the energy consumption by employing a variety of tools and techniques for

energy measurement or estimation. Several auto-tuning approaches have been explored to

assist developers in making energy-e�cient coding choices. The next few sections highlight

the significant findings in these areas.

2.1 Energy Impact of Code Change

There has been a large body of empirical work measuring the impact of code change in

various domains. Sahin et. al. [42] reported that code refactorings can have an impact on the

application’s energy consumption, and common factors such as execution time and dynamic

execution counts are not enough to predict the energy usage. In a related study, Park et.

al. [36] studied the impact of the 63 refactoring techniques suggested by Martin Fowler [13]

on energy consumption. They shortlisted 33 techniques that are actually energy-e�cient.

Design patterns also have an impact as suggested by Bunse and Stiemer [10]. They found
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that the decorator pattern consumes more energy and observed that employing patterns

may not always be a good idea as far as energy-e�ciency is concerned. Litke et. al. [30]

studied the impact of Factory Method, Adapter, Observer, Bridge and Composite pattern,

and found that only the first three have noticeable energy impact. Moreover, these patterns

did not cause a significant increase in the energy usage. Sahin et. al. [41] conducted a

similar study and concluded that design patterns can cause the energy consumption to

both increase and decrease, and it is unlikely that the energy usage can be predicted based

solely on the employed patterns. Abtahizadeh et. al. explored design patterns applied

to recurrent problems in the cloud, and found that some patterns are e↵ective in reducing

energy consumption of a system [1]. A common technique to prevent piracy is obfuscating

the code. The impact of code obfuscation have been found to be statistically significant,

although for mobile applications the real magnitude may not be noticeable [43].

Hindle proposed Green Mining to study how changes across software versions a↵ect en-

ergy consumption [21]. The paper compares various branches and versions from Firefox and

Azeurus/Vuze, examines the source-level changes that occur with time and attempt to relate

software metrics to energy consumption. Sorting algorithms have also been found to have

an impact on the energy consumption of a program [8, 9]. Di↵erent sorting techniques have

di↵erent energy consumptions, and there seemed to be no direct correlation between the en-

ergy consumed and the runtime complexity. Hunt et. al. studied the energy consumption of

lock-free data structures [23]. The results show that the lock-free data structures performed

better and consumed less energy than their locking counterparts.

Manotas et. al. performed an empirical study on the energy consumption of web

applications [32]. They profiled di↵erent web servers and found that web servers make a

significant contribution in the energy usage. Moreover, di↵erent web servers contribute in

di↵erent amounts, so the choice can be directed by energy constraints.

Researchers have also looked at energy usage of various aspects of Android applications.

Linares et. al. performed an empirical study to investigate the API calls in the Android
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development framework that consume a significant amount of energy [29]. By studying the

data from 55 free Android applications, the authors found that some design choices, such

as implementing an MVC or a persistence layer with a relational database, can contribute

significantly to the overall energy consumption of an application. Saborido et. al. proposed

a recommendation system that help users to pick the most energy-e�cient as well as highly-

rated application for a particular category, such as email, browser, camera, etc [24]. They

achieved energy savings of 16.61% when following the recommendations. Advertisements

and ad-blocking have been found to have a negative e↵ect on the energy consumption of

applications [17, 40].

Li et al. [28] repeatedly profiled Java bytecode instructions to link source code and

bytecode to energy consumption in order to estimate the energy usage of a line of Java code.

JalenUnit [34] uses PowerAPI and statistical execution sampling to automatically generate

benchmarks to measure the energy consumption of an API.

2.2 Measurement Techniques for Energy

Researchers have measured energy in a number of ways. Hardware systems such as the

Atom LEAP platform [46] and WattsUp meters [50] can measure actual power consumed

by an application. Cycle accurate simulators such as SoftWatt [19], Sim-Panalyzer [33],

and simplepower [53] provide an energy estimate by simulating CPU cycles for each com-

ponent used in executing the application. Estimation based approaches [5–7, 12, 20, 34, 47]

use empirical data to propose a model for estimating energy consumption. Pathak et al. [37]

and Aggarwal et al. [5] show that dynamic analysis of running systems, specifically by ex-

tracting system calls, can produce accurate runtime models of a system and estimate the

energy consumption impact of a change. Similar work on execution logs by Gupta et al. [18]

fingerprinted modules for their energy consumption profile. Zhang et al. [55] describe an

online profiler called PowerTutor that models energy consumption by aggregate models of

individual components such as network and CPU.
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2.3 Auto-tuning for Energy E�ciency

Our work is closest to the approach taken by Manotas et al. [31]. The paper describes an

autotuning framework, SEEDS, that aids in automatically choosing the most energy-e�cient

collection from the Java Collections API. SEEDS achieves this by running an exhaustive trial-

and-error on all compatible collection implementations and measuring the impact of each on

the overall energy consumption of a given test suite for the application. In this empirical

study, the authors investigated 7 applications and demonstrated that the automated system

can be used to improve the energy consumption of an application, although it su↵ers from

hours of processing time. Our approach is significantly di↵erent in making the comparison.

Instead of an exhaustive search on which implementation is best for the particular application

(test suite), we use empirical evidence, i.e., the energy profiles that we derived in this work

and the API usage patterns, to predict the best alternative. This analysis also completes

very fast, usually in a minute.

Another closely related work is Chameleon [45], which is an autotuning approach for

optimizing collection usage. However, it is particularly focused on memory usage and runtime

performance (e.g., clock time), which could be a proxy for energy consumption. We believe

that an autotuning framework can be equipped with our profiles to make a more accurate

and realistic tool.
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Chapter 3

Energy Measurement Infrastructure Setup

We used GreenMiner’s hardware infrastructure to measure the actual energy consumed

by our test programs [22]. GreenMiner (Figure 3.1) is a hardware/software continuous testing

suite. It instruments numerous devices, runs tests on these devices, and measures the energy

consumption and power use of the entire device as the tests run. GreenMiner is developed

and maintained by a team of researchers at University of Alberta, Canada.

3.1 GreenMiner Hardware

The main components of the GreenMiner infrastructure are a Raspberry Pi, an Android

test device, the Adafruit INA219 IC and an Arduino Uno micro-controller as shown in Figure

3.1. The Raspberry Pi test-bed, the GreenMiner client, runs GNU/Linux equipped with

utilities such as the ADB (Android Debug Bridge), python and bash. It uses 8GB SD cards

for storage and filesystem. The Pi provides an serial-USB interface through which it controls

the Android test device.

The Samsung Galaxy Nexus phone running Android OS 4.2.2 was chosen as the test

device for GreenMiner. The Pi controls it through ADB, executing android programs/tests

on the device while the Arduino Uno monitors its energy consumption during the run. The

INA219 chip is connected to the power supply of the phone and measures voltage, amperage,

and wattage (W) consumed by the phone. The Arduino reads o↵ these measurements. When

the test application finishes running on the Android device, the Raspberry Pi gathers power

and energy consumption data from the Arduino, compiles them into a report with meta-data,

and uploads them to GreenMiner webservice.
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(a) GreenMiner hardware (all parts) (b) A Galaxy Nexus test device

Figure 3.1: The GreenMiner infrastructure [22].

3.2 GreenMiner Webservice

The GreenMiner webservice provides three primary services: distribution of test data,

visualization of the data, and controlling GreenMiner to schedule and monitor tests on the

system remotely.

3.2.1 Distribution and Visualization of Test Data

Once data is collected on the GreenMiner client Raspberry Pi, it is made available at

the GreenMiner’s website. A user visiting the site can choose one of the tests from a list of

previous runs and discover details on the test run. Figure 3.2 shows an example. The power

plot shows wattage of the Android device against time. Di↵erent colors on the plot represent

the di↵erent tasks as outlined in the legend and stacked plot. The page also provides energy

measurements in Joules, power usage, execution time, and other statistics on the test. The

download button at the top-right corner of page allows the user to obtain the experiment

data that can be used to prepare other customized graphs and perform further analysis.

A powerful feature of the GreenMiner website is its ability to aggregate results from

multiple test runs and prepare common visualizations useful for studying performance data.

Graphs such as T-test similarity matrices showing statistical significance between di↵erent

11



(a) Individual test report. (b) Vizualizations on test data for a single test.

Figure 3.2: The GreenMiner test report [22].

tests, stacked box-plots, run count plots and per-device graphs are some of the frequently

used visualizations to facilitate energy consumption analysis in GreenMiner.

3.2.2 Remote Test Management

The GreenMiner website provides interfaces to view currently running tests, schedule

new runs and stop running tests. It also shows logging information generated at the Pi

machines when the tests run on the Android device. This is very helpful since users can

get the log report when tests break at the remote end. Figure 3.3 shows the interface of

scheduling a test run into the queue.

12



Figure 3.3: A GreenMiner interface for scheduling a test run [22].

3.3 Experimental Setup

The previous section introduced GreenMiner as an energy consumption monitor for an

Android device. This is convenient since we wanted to profile Java Collections implementa-

tions and Android applications are built with Java. When we run an application or a test

suite on the Android test device, GreenMiner captures the energy footprints at intervals and

prepares a report. There were several factors that we needed to account for the measure-

ments, as discussed in subsequent sections. After collecting the data, we cleaned up and

aggregated them with scripts and prepared them for graphing with R. A workflow of our

measurement process is illustrated in Figure 3.4.
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Python 
Script

JUnit 
Test Suite

test_InsertionAtBeginning...
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upload 
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preparation
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Energy Profiles

Figure 3.4: Experimentation workflow.

3.3.1 Test Design

To measure the e↵ect of using di↵erent workloads on di↵erent collections, a basic An-

droid app was created. This test-app displays a blank screen and sits idle. The screen energy

consumption is constant throughout the test [11]. The test-app is a sca↵old for JUnit tests

to run the experiments. Each unit test for the test-app is a separate experiment or run. In

each test, a Collections class was created and initialized, and a workload (insertion, iteration,

etc.,) was run against it. We measured and recorded the energy consumed in joules (J) by

the test with GreenMiner (Figure 3.4).

Each GreenMiner run executes unit tests for a specific use case. For example, for the

use case Insertions at the Beginning of Lists, we wrote JUnit tests for the 5 list alternatives

(Table 1.1). In each test, N items were added to the beginning of the list. We varied the

input size N from 1 to 5000 (13 di↵erent sizes) and prepared tests for each of them. Thus,

for this use case, the test device ran 65 di↵erent tests (5 kinds of lists x 13 list sizes).

3.3.2 Measurements

Each test, given all parameters, was run 20 times on GreenMiner and the results were

collected. We chose 20 measurements per test to be able to measure a 95% confidence interval
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public void setUp () throws Exception {
arrayList = new ArrayList <Integer >(SIZE);
tIntArrayList = new TIntArrayList(SIZE);
linkedList = new LinkedList <Integer >();
treeList = new TreeList <Integer >();
tIntLinkedList = new TIntLinkedList ();

}

Figure 3.5: The setUp() method for inserting items into List instances.

and to have enough statistical power to distinguish between di↵erent energy e�ciencies of

the di↵erent collections. The reports were downloaded and collated, as they report the

energy consumed during each run and also the mean of 20 runs. We prepared the energy

consumption profiles by plotting the means against the input size N.

There were, however, a few issues with this approach. First, we needed to ensure that

each unit test encounters the same overhead. Second, since our code fragments were small,

their energy consumption could also be too small to be observable. Finally, the actual energy

consumed by a test suite varies from device to device and the GreenMiner system is attached

to 4 di↵erent devices.

Ensuring a Fixed Overhead

We created a new instance of all tested collections inside setUp(), irrespective of the

one that is actually used for the particular test. For instance, when inserting items into a

LinkedList, all the 5 list instances were first created through the setUp() method, followed

by the actual insertions as shown in Figure 3.5.

Producing Observable Changes

Inside a test method, we repeated the API invocation multiple times. For example,

when inserting 50 items, there were 20 runs of: (1) invoking setUp(); (2) inserting; (3)

invoking tearDown() as shown in Figure 3.6. All the unit tests were designed similarly.

15



public void test_InsertionAtEndOfLinkedList () throws
Exception {

// Parameters.REPS is 20
for(int rep = 0; rep < Parameters.REPS; ++rep) {

setUp ();
for(int i = 0; i < SIZE; ++i) // SIZE is 50

this.linkedList.add(i);
tearDown ();

}
}

Figure 3.6: Code for inserting items at the end of a LinkedList instance.

Thus, the numbers on our graphs are an aggregate instead of the performance of a single

run. This produces an observable e↵ect on the energy consumption of the test suite.

Ensuring Device Consistency

We ran all our tests on a single device to remove inconsistencies. All 4 devices in

the GreenMiner system use phones of the same model, but we chose to use one for all

measurements to minimize di↵erences in device-specific performance. Although each phone

may report slightly di↵erent energies, the important measure here is not the absolute energy

but rather the di↵erence between two readings. As long as we use a single device, we expect

the di↵erences to be consistent.
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Chapter 4

Results

We profiled the energy consumption of some of the common API methods provided

by List, Map, and Set implementations, and record how it varies with input sizes. Using

these profiles, we tried to identify which List, Map and Set implementations are the most

energy e�cient for each of the common operations: insertion, iteration and random access.

This led us to produce a general guideline for the developers to help them choose the right

implementation based on the di↵erent usage scenarios collectively. We also studied whether

other variables have an impact on the energy consumption of the collections, such as the

element size and the number of elements in the list. The next few sections discuss our

findings in detail.

4.1 List

Key Result: For insertions at the beginning, JCF’s LinkedList consumes the least energy,

followed by Trove’s LinkedList. For insertions at the middle and end, Trove’s ArrayList is

the most energy e�cient, followed by JCF’s ArrayList.

Figure 4.1(a), 4.1(b), and 4.1(c) demonstrate the energy consumption trends for inser-

tion tests for the five List implementations.

Insertion

For small sizes (1–500), the di↵erence in energy consumption for insertions at the begin-

ning of the list is not evident for all but two implementations—TreeList and TIntArrayList.

Even at size 250, TreeList consumes ⇡ 31% more energy than TIntArrayList, while others
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Figure 4.1: List: Energy profiles for insertions. Figures (a) – (c) shows list instances that
have been initialized with capacity if the API allows it (eg. ArrayList).

consume about the same energy. However, for larger sizes, LinkedList begins to perform

much better than others. At input size of 5,000, LinkedList consumes ⇡ 13% less energy

than TIntLinkedList, the next best performer. Compared to the worst performing TreeList,

LinkedList consumes ⇡ 79% less energy.

When inserting items at the middle, an interesting pattern emerges between the di↵erent

list implementations. ArrayList and TIntArrayList have very similar, and quite e�cient,

energy performance. Next, TreeList and LinkedList both have similar, yet not quite as

e�cient, performance. And finally, TIntLinkedList has the worst performance by far. At

input size of 500, ArrayList and TIntArrayList perform ⇡ 48% better than TIntLinkedList,

a large di↵erence which increases to ⇡ 93% at size 5,000. There is a substantial amount of

extra energy required by TreeList, LinkedList, and TIntLinkedList to perform insertion at

the middle as opposed to at the beginning.

For insertions at the end of the list, the energy di↵erences are not obvious for input sizes

below 1000 for all lists, with the exception of TreeList, which has a noticeable degradation

of ⇡ 32% at the size 250 (Figure 4.1(c)). For larger sizes, however, the di↵erences become

more evident. TIntArrayList saves ⇡ 25% energy compared to ArrayList and ⇡ 87% when

compared to TreeList, the next best and worst energy rated lists, respectively.

18



●●●●
●

●
●

●

●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

0 500 1250 2000 2750 3500 4250 5000

2
4

6
8

10 ●

●

ArrayList (JCF)
LinkedList (JCF)
TIntArrayList (Trove)
TIntLinkedList (Trove)
TreeList (ACC)

M
ea

n 
Jo

ul
es

 (J
)

# Elements in List

(a) Iteration

●●●●● ● ● ●
●

●
●

●
●

●●●●● ● ● ●
●

●
●

● ●

0 500 1250 2000 2750 3500 4250 5000

0
5

10
15

20
25

30

●

●

ArrayList (JCF)
LinkedList (JCF)
TIntArrayList (Trove)
TIntLinkedList (Trove)
TreeList (ACC)

M
ea

n 
Jo

ul
es

 (J
)

# Elements in List

(b) Random access

Figure 4.2: Iteration and random access performance of List implementaitons.

We also gathered similar profiles for the case when ArrayList and TIntArrayList are

not set to a predefined capacity during creation. Uninitialized array lists need to reallo-

cate memory when current capacity is not su�cient. Due to this dynamic resizing, we

expected a di↵erence in energy consumption trends compared to the previous initialized

version. However, there was no di↵erence in the energy consumption for the uninitialized

version, especially when adding items at the middle and at the end of the list. Even with

dynamic expansion, ArrayList and TIntArrayList are still more energy e�cient than others.

Therefore, initializing an ArrayList variant with a capacity is not necessary—it will perform

well anyway.

Iteration

Figure 4.2(a) shows the energy consumption profile for iteration with an iterator. For

small sizes, iterating an ArrayList is slightly more energy e�cient, while for 5000 items, it

has a maximum energy savings of ⇡ 4%. The results show that there is not much di↵erence

when comparing energy consumption of iteration over the lists.
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Figure 4.3: Energy profiles for insertions, iteration, and queries on random keys on Map

Random Access

When accessed through randomly generated indices, we did not observe any major dif-

ferences in energy consumption for list sizes smaller than 500 as shown in Figure 4.2(b). For

larger input, ArrayList, TIntArrayList and TreeList were the most energy e�cient, producing

a savings of ⇡ 40% compared to LinkedList and ⇡ 77% when compared to TIntLinkedList.

4.2 Map

Key Result: HashMap is the most energy e�cient alternative for insertions and random

query. If insertion order is required to be preserved, ACC’s LinkedMap is slightly better on

insertions than JCF’s LinkedHashMap. TreeMap is energy hungry and should be avoided

unless explicitly needed.

Insertion

Figure 4.3(a) shows the energy consumed by inserting key-value pairs in Map imple-

mentations. Unlike List implementations, there are some variations in energy consumption

even for smaller maps. For sizes up to 250 items, all except TreeMap perform equally well.

TreeMap energy consumption increases drastically with larger input size. For 5000 insertions,

it is ⇡ 73% more expensive than HashMap and ⇡ 88% more expensive than LinkedHashMap.
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All other maps perform equally well for sizes up to 1000. Interestingly, HashMap per-

forms consistently better than all other maps until size 5000 where LinkedHashMap has a

drop in energy consumption and saves ⇡ 8% energy over HashMap. For most of the cases,

Trove’s TIntIntHashMap uses slightly higher energies than HashMap. This was surprising,

since Trove implementation with primitive data types did not improve upon JCF HashMap,

and for some input sizes it was noticeably worse.

Iteration

Similar to our findings for lists, the iteration performance is almost the same for all

implementations (Figure 4.3(b)). For larger lists, JCF’s HashMap requires a little less energy,

while ACC’s HashedMap ended up being the most expensive. However, the di↵erences are

very small for large lists, and even more so than for smaller ones.

Query

The random query performance has an interesting trend as shown in Figure 4.3(c). For

sizes up to 500, TreeMap is consistently one of the two most energy e�cient maps. However,

for larger lists, TreeMap queries become the most expensive, while HashMap consumes the

least energy—a minimum savings of ⇡ 2% compared to LinkedHashMap, and a savings of

⇡ 12% when compared to TreeMap.

4.3 Set

Key Result: HashSet is the most energy e�cient alternative for insertions and random

query. ACC’s ListOrderedSet is the most energy e�cient Set for iterations, though not by

a large margin. TreeSet is energy hungry and should be avoided unless explicitly needed.
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Figure 4.4: Energy profiles for insertions, iteration, and queries on random keys on Set.

Insertion

Figure 4.4(a) shows the energy consumed by inserting values into Set implementations.

For input sizes less than 750, all implementations are quite close but for a larger size, no-

ticeable di↵erences arise.

Trove’s TIntHashSet is consistently the most e�cient, saving ⇡ 13% energy over Hash-

Set and ⇡ 49% over TreeSet.

Iteration

The iteration performance, as shown in Figure 4.4(b), is very similar for all implementations—

there are no apparent di↵erences for sizes up to 1000. At the larger sizes, ACC’s ListOrdered-

Set is the most energy e�cient, with a maximum energy saving of ⇡ 4%. Again, there are

often larger energy savings between smaller input sizes than there are between larger; for

example, at size 1500 ACC’s ListOrderedSet has an ⇡ 27% savings over JCF’s LinkedHash-

Set where the savings between the same implementations at size 5000 is only a mere ⇡ 2%

savings.

Query

The random query performance is shown in Figure 4.4(c). There are many energy

spikes throughout the various input sizes. Interestingly, the largest di↵erences between
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implementations are in the medium size inputs, between sizes 1000 and 3000. Another

notable trend is that TreeMap starts out in the smaller inputs to be one of the most e�cient

implementations for smaller sizes and then for larger sizes has an ⇡ 13% degradation from

the optimal performing HashSet. Whereas at size 50, TreeSet actually saves ⇡ 4% over

HashSet.

4.4 Impact of Data Type and Collection Size

Does di↵erent data types account for di↵erent energy consumptions of the Collections

types? To answer this question, we ran another set of experiments on the Collections in-

stances as we did for preparing the energy profiles, but changed the the elements to small

sized objects instead of Integer instances. We compared these new profiles against the

previous set and discuss the di↵erences. We also looked into our energy profiles to see if

the di↵erence in energy consumption between alternative Collections types is significant for

small versus large lists.

4.4.1 Data Type of Elements

We report here the tests on inserting into List instances of small objects. We expected

the energy consumption to be higher than when running the tests on List of integers due to

storing larger data inside the lists. But, the energy profiles of integer runs were consistently

more than those of the small objects. Figure 4.5 shows a scatterplot comparing the energy

consequences of List of integers vs List of small objects; the results are shown for ArrayList

and LinkedList. Some inputs of the ArrayList are not shown since it skews the graph. The

majority of the points lie below the line y = x, whereas we were expecting for all points

to lie above it. For size 4000, inserting an integer in the beginning of a JCF LinkedList is

⇡ 13% more expensive than inserting a small object. Though only insertion at beginning of

LinkedList and ArrayList are shown, these results are consistent with other scenarios. More

details and graphs are on the project webpage.
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Figure 4.5: Comparison of energies for operations on lists of integers versus small objects.

When running List insertion and iteration tests on small objects, we expected the energy

consumption to be higher than the integer based results. However, the results show that

integers are actually as energy expensive, and in many cases more expensive, than small

objects as elements. Since Java Generics do not support primitive types, the integers are

auto-boxed as Integer objects in order to be held in the Collections. The lists are constantly

adding and shedding this Integer wrapper at will. The results are likely due to this.

4.4.2 Size of Collections

From what input size on the energy di↵erences become significant? To determine the

statistical significance of energy di↵erences, we computed the 95% confidence intervals of

the energy consumption measurements for each alternative collection and each size. For a

particular size, we compared the confidence intervals in terms of overlap. Non-overlapping

intervals indicate a significant di↵erence between the corresponding collection types.

We found that smaller Collections with less than 500 elements do not show a significant

di↵erence in energy consumption between alternative implementations. The di↵erences get

larger and become significant as we deal with more elements. For example, for list insertions

at the beginning, we compared ArrayList and LinkedList (among others) and found that

for a size of 250, the confidence intervals were overlapping. However, for 500 elements, the

intervals became disjoint. After comparing all other collections in a similar way, we found
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500 to be an appropriate threshold across all Collections types. Therefore, for input sizes

1–500, all alternative implementations of List, Map, and Set perform equally well. The

di↵erences become significant when there are more than 500 elements in the collection.

4.5 A Guideline for Developers

The previous two sections describe the energy consumption trends of the Collections

instances for insertion, iteration and query APIs. Equipped with this information, can de-

velopers choose the most energy e�cient implementation wisely based on the usage scenarios?

We summarized our results to prepare a guideline that may help developers in making such

choices.

In Section 4.4.2, we saw that above the minimum threshold on the input size of 500

items, we can use our profiles to choose the most energy e�cient implementation based on

the way the Collections classes are used. For example, TIntArrayList is the most energy

e�cient list implementation, followed by ArrayList. For maps, HashMap performs the best.

For Sets, HashSet is the most energy e�cient with TIntHashSet as a close second. Figure 4.6

summarizes our findings as choice matrices that can help in making these decisions. Each

color denotes a rank: “green” identifies the most e�cient implementation, while “red” indi-

cates the worst among the six. A row in the table with more green in it is likely to be energy

e�cient on average.
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For example, if a developer is looking for a List implementation that will be used

heavily for insertions both at the beginning and at the end but not at the middle, his

best pick would be TIntArrayList (if applicable) as it is the greenest in these columns,

followed by LinkedList, then ArrayList, and so on. For iteration and random access, either

TIntArrayList or ArrayList works fine, since both of them are equally green when both the

columns are considered together. HashMap is excellent for all operations we studied. All

tree-based Collections implementations seem to perform poorly on insertions compared to

their alternatives. However, if the sorted order of the elements needs to be preserved, there

may not be any better choice available.

In general, TIntArrayList, HashMap and HashSet are the standout Collections imple-

mentations, followed closely by ArrayList and TIntHashSet. Therefore, lists stored as arrays

are usually preferred. Linked list variants only work better if they are required to behave

like a stack, i.e., a datatype with items added and removed from the front.

We will demonstrate the application of these color maps in Chapter 6, where we showed

that the energy consumption of real application and libraries can be improved or degraded by

following the trends depicted in the maps. The trends shown here may educate the developers

and help them choose the right Collections type ahead of time during their coding e↵orts.
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Chapter 5

Why these Energy Di↵erences?

We carried out further investigations to discover the key factors that may explain the

di↵erent energy consumption profiles. We explored two possible factors—(1) memory usage

during API operations and (2) time-consuming bytecode instructions executed during API

operations. Here, we explain the di↵erences in energy consumed during di↵erent kinds of

insertions into the Collections, since energy di↵erences are significant when inserting items

into Collections instances.

5.1 Memory Usage

We recorded memory consumption for List, Map and Set instances before and after

invoking the add() or put(...) operation, while adding 500 items to the collection. We

chose 500, since we showed in Section 4.4.2 that Collections with 500 items or more show

statistically significant di↵erences in energy consumption. We wrote new tests using the

java.lang.Runtime class to track the memory consumed before and after invoking the

add() or put(...) operation, as shown in Figure 5.1.

Figure 5.2(a) shows the resulting memory consumption when inserting at the beginning

of the list. The graphs for insertions at the middle and at the end of the list were almost

the same, which indicates that no matter how the items are inserted into the list, the

memory footprints are similar. Since we did find di↵erent energy profiles (Figures 4.1(a)–

4.1(c)) for the di↵erent insertion approaches, this suggests that memory consumption is not

a (significant) driving factor behind the energy consumption in this context.

For Map and Set implementations, we again found similar cases where the trend in

memory usage contradicts with that in energy consumption. For example, TreeMap and
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...
static HashSet <Integer > set = new HashSet <Integer >();
static ArrayList <Long > usage = new ArrayList <Long >(20);
static {

set.addAll(Arrays.asList(new Integer []{0, 1, 10, 50, 100,
250, 500,

750, 1000, 1500, 2000, 3000, 4000, 5000}));
}

public static void recordMemory(int iteration) {
if(set.contains(iteration +1)) {

Runtime rt = Runtime.getRuntime ();
usage.add(rt.totalMemory () - rt.freeMemory ());

}
}

public void test_InsertionAtBeginningOfArrayList ()
throws Exception {

recordMemory (-1);
this.arrayList = new ArrayList <Integer >();
for(int i = 0; i < SIZE; ++i) {

this.arrayList.add(0, i);
recordMemory(i);

}
writeMemoryInfo("ins_at_beg_AL");

}
...

Figure 5.1: Code for measuring the memory consumption for insertions at the beginning of
an ArrayList instance.

TreeSet use the least amount of memory among their respective alternatives (Figures 5.2(b)

and 5.2(c)), but they are both the most energy hungry implementations (Figures 4.3(a) and

4.4(a)). Apparently, there seems to be no direct relationship between the memory usage and

energy consumption even for maps and sets.

5.2 Executed Dalvik Bytecodes

We generated bytecode traces during the lifecycle of an add() operation of two List

instances (ArrayList and LinkedList) and compared them to reason about their energy dif-

ferences. We left further analysis of other Collections type as a future work.
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Figure 5.2: Memory usage of List, Map and Set instances during insertions.

To identify which parts of an Android application’s bytecode are being executed, we

first use dexdump to extract the application’s bytecode from its dex file (which is included

in the apk package), then instrument the bytecode using the AndBug debugger tool, which

implements the Java Debug Wire Protocol (JDWP). In particular, this tool allows to put

breakpoints on any source code line of interest, and, upon reaching such a breakpoint during

execution, prints out the corresponding source code line’s identifier. Since we are interested

in knowing all bytecode lines that are being executed, we added breakpoints on each source

code line. We then ran the android App using AndBug, generating the execution traces.

Finally, to determine which bytecode instructions have been executed (since one source code

line maps to one or more bytecode instructions), we use the bytecode file’s internal mapping

from bytecode identifiers to the line numbers of the corresponding source code.

Comparing the traces, we identified two bytecodes that may have an impact on the

runtime (and therefore energy) performance: iget-object and invoke-static. When

elements are inserted in the middle, iget-object is executed many more times than the

other instructions as shown in Figure 5.3. This is because LinkedList traverses half of the

list to reach to the middle and locate the position for the new item. The larger the List

becomes, the more traversals are needed. For example, when the 500th element is inserted to

a list, iget-object is executed 63 times more than the next frequently occurring instruction.
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Figure 5.3: Frequently executed bytecodes during insertions at the middle on ArrayList and
LinkedList instances.

This may explain why LinkedList consumes more energy than ArrayList, as shown in the

energy profile (Figure 4.1(b)).

The impact of bytecodes are less obvious when elements are inserted at the begin-

ning or at the end as shown (Figures 5.4(a) and 5.4(b)). When inserting at the beginning,

invoke-static dominates the execution for an ArrayList (used to execute the expensive

System.arraycopy() method). For every invocation of add(), LinkedList executes 2 ex-

tra iget-object instruction while ArrayList executes 2 invoke-static instruction. The

iget-object instruction in LinkedList loads a value into a register. The invoke-static for

ArrayList executes the System.arraycopy() method. Apparently, ArrayList is performing

more extensive work than LinkedList with respect to these two bytecodes. This di↵erence

in workload is probably why an ArrayList instance consumes more energy than a LinkedList

instance for insertions at the beginning, as shown in our profiles.

The bytecodes for end-insertions present a more complex scenario. There are more

invoke-static operations for ArrayList (10 times) than there are iget-object for LinkedList

(9 times). If these were the only ‘important’ instructions, ArrayList would probably have

consumed more energy than LinkedList. However, unlike the case with insertions at the

beginning, we have other instructions that we also need to consider: iput-object and

invoke-direct. Since now there are too many variables, and we do not know the relative
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(b) Insertions at the end.

Figure 5.4: Frequently executed bytecodes for insertion at the beginning and end of ArrayList
and LinkedList instances.

weights of each on the runtime performance, we can not directly deduce a bytecode execution

pattern that explains why ArrayList consumes less energy than LinkedList for end-insertions.

Hence, this analysis is not enough to explain why ArrayList performs better in this context.

We shall address this as future work.
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Chapter 6

Evaluation

The energy profiles compare the Collections classes for each API method and suggest

better alternatives. However, when Collections instances are used in applications, multiple

API methods are invoked on each object, depending on the role of the object in the system

and the load of the system. Hence, we expect that the energy footprint of each Collections

object in an application is determined by a combination of the energy impact of all invoked

API methods. To analyze this, we ask the following research questions:

RQ1. Do the di↵erent Collections classes have energy impact in real applications compared

to what we found for similar collections in the profiles? How big is the impact?

RQ2. Can we use the energy profiles to switch to an alternative collection and improve (or

degrade) the energy consumption of an application?

To answer RQ1, we modified real applications to use alternative Collections classes and

measured the energy consumed by the modified applications. Previous work has demon-

strated that Collections classes do have an impact [31]. We extend this state of the art by

selectively (based on the usage profile of each instance) modifying the Collections instances

using the energy profiles (RQ2): we create “good” and “bad” versions of the original program

when possible, and compare their energy consumption using GreenMiner.

Using the methodology of Figure 6.1, we studied the energy consumption of four pop-

ular Java libraries (Google Gson [16], Apache Commons Math [4], XStream [52], Apache

Commons Configuration [3]), an open source email client (K-9 Mail [27]), and a Stock Ex-

change Trading Simulator application. Each library came with a large test suite (16–137

KLOC). We analyzed the list datatypes used in the code to create usage profiles, i.e., which
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API methods are being invoked and where. We wrote an inter-procedural program analyzer

based on WALA [49] that automatically analyzes program bytecode.

Our WALA analyzer detected three kinds of Collections instances: (1) Collections in-

stances declared as fields of a class and used in multiple methods, (2) Collections instances

locally created inside methods and used in the same method, and (3) Collections instances

locally created inside methods but used in multiple methods since it is passed as a return

type. The inter-procedural analysis uses call graphs and control flow graphs created by

WALA to collect usage profiles for these instances. Currently, we do not support the anal-

ysis of Collections instances when they are passed as an argument to a method. Adding

this would require another inter-procedural analysis, but we did not find enough instances

of Collections passed as parameters to justify the implementation. We manually analyzed

these remaining instances.

For each Collections instance found by WALA or our manual analysis, we identified if it

is used in an energy-appropriate manner or a better alternative is available, based on simple

heuristics derived from Section 4.5. When creating a “good” version, we looked into the

usage of Collections instances to see whether swapping one with another may save energy.

For example, our profiles suggest that ArrayList is more energy-e�cient than LinkedList

when inserting items at the end of the list or when iterating over the list (these two are
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the most common List methods). So, if a LinkedList is used in a program for insertions at

the end and iterations, our WALA program will detect it and indicate that we can improve

energy consumption by replacing LinkedList with ArrayList.

Similarly, we prepared the “bad” versions by going against our profiles. For example,

the profiles suggested that ArrayList is more energy e�cient than LinkedList for common list

operations. Instead of following this recommendation, the ‘bad’ version replaces ArrayList

with LinkedList. We expected this change to increase the energy consumption.

Next, we used a Python script to perform lexical analysis on the source code and trans-

form the List instances to alternatives that should improve (or degrade) the energy con-

sumption. A simple lexical analysis was su�cient, since we swapped between alternative

Collections instances with (almost) the same API (similar to Manotas et al. [31]). Further-

more, we chose to deal only with lists during our evaluation. There are two reasons behind

the choice. First, changing ArrayList to LinkedList (or vice-versa) is safe—the code, if it

compiles, behaves the same way irrespective of the implementation. This may not be the case

if we change a HashMap to a TreeMap, since if the key object does not have an appropriate

compareTo() method defined, the maps may behave di↵erently. It is even more di�cult to

convert a TreeMap to a HashMap, since the sorting behavior of a TreeMap may be desired

in a usage scenario. Second, lists are more widely used than other collections such as maps

or sets (Gson: 60%, K-9 Mail: 57%, Apache Commons Math: 56%, XStream: 50%, Apache

Commons Configuration: 53%, Stock Exchange Trading Simulator: 57%). Therefore, the

energy contribution from lists is probably higher than that from other collections.

Eventually, we created four “bad” versions and three “good” versions. For the first

three libraries, the developers almost exclusively used ArrayList whenever they needed a

list data structure and followed the common usage profile of adding an item at the end

of a list and/or iterating the list. Thus, we found little scope to improve on the energy

consumption for these libraries. Instead, it was more interesting for those three systems

to demonstrate worse energy performance by changing most of the ArrayList instances to
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Table 6.1: Libraries and applications for evaluating the energy profiles

LinkedList. In K-9 Mail, we had comparatively more LinkedLists, and thereby had a scope

to show improvements. We therefore had both a “good” and a “bad” version for it. We

also made “good” changes in the Apache Commons Configuration library and the Stock

Exchange Trading Simulator application, since they also use LinkedLists for operations that

could be optimized for energy consumption.

The next sections describe the results of our analyses for the six applications. To address

RQ1, we report the energy impact when we used alternative Collections instances, while for

RQ2, we report that the changes that we made were deliberately done (guided by our profiles)

to get a “good” or a “bad” version.

6.1 Google Gson

Google Gson is a serialization/deserialization library that provides mechanisms to con-

vert Java objects to JSON and back [16]. We used version 2.1 for our study, consisting of

about 13 KLOC and a test suite of 16 KLOC. The Gson API refers to most of the collection

instances through Collections interfaces, e.g., List, Map, and Set. The developer chooses

whether to use an ArrayList or LinkedList instance, for example, where a List is required.

Changes Made We found 53 ArrayList instances in the codebase (Table 6.1). Only 4 of

these instances are part of the library code, while 49 are in the test suite. Our WALA program
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discovered 4 instances on which end-insertions and iterations were performed; modifying

these to LinkedList instances should be a “bad” change. We studied the rest of the instances

manually, and changed 47 instances to LinkedList that had the same usage pattern.

Energy Impact Table 6.1 shows the percentage of change in energy consumption of the

modified application. With LinkedList, the energy consumption increases by 309%. There

are two factors contributing to this large increase. First, the library performs 4 times slower

when LinkedList instances are used, which may cause more energy consumption during the

test run. Second, the Gson test suite has a number of performance tests that perform

serialization and deserialization on large inputs (⇡ 2-4 MB). Our profiles, as discussed in

RQ4, indicate that the energy di↵erences are more significant with larger collections, which

is directly reflected through the results that we achieved for Gson.

6.2 Apache Commons Math

The Apache Commons Math library provides implementations of mathematical and

statistical algorithms that are otherwise unavailable in the standard Java distribution [4].

We used version 3.4.1 (209 KLOC app + 137 KLOC test). The library creates 167 instances

of ArrayLists, while we have about 91 ArrayList instances in the test suite.

Changes Made Since it was not possible to run all the tests on our device due to memory

constraints, we selected a subset of tests for our study (71%).

Out of a total of 258 instances of ArrayList in the codebase and tests (Table 6.1), WALA

detected 77 instances that were used mostly for end-insertions (60 occurrences), iterations

(18 occurrences) and random access (5 occurrences). After manual inspection, we found 169

more instances that were used similarly. Our profiles suggest that LinkedList is a bad choice

for these instances. We made the ‘bad’ change.
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Energy Impact The modified version consumed 15% more energy (Table 6.1). Again,

the changed library runs ⇡ 1.2 times slower than the original version, and thereby consumes

more energy during the test run.

6.3 XStream

The XStream library can be used to serialize Java objects in XML and deserialize it

back [52]. XStream version 1.5 has a library of 34 KLOC and a unit test suite of 30 KLOC.

There are 33 ArrayList instances in the library code and 128 instances in the test code.

Changes Made We choose a subset of the test suite (80%) as some tests were incompatible

with the GreenMiner platform. Out of 161 instances of ArrayList, WALA detected 23

instances that were used for end-insertions (20 occurrences), iterations (4 occurrences) and

random access (2 occurrences). We manually found another 130 instances used in the same

way. In total, 153 ArrayList instances were converted to LinkedList, expecting higher energy

consumption.

Energy Impact There is a degradation of 5% when swapping the ArrayList instances with

LinkedList (Table 6.1). The modified version runs ⇡ 1.05 times slower than the original,

which may explain why it has a higher energy consumption.

6.4 K-9 Mail

The K-9 Mail version 5.101 codebase has 34 KLOC, with a test suite of 2 KLOC. There

are a total of 294 instances of collections used, out of which only 28 were covered by the test

suite. To make sure more of the collections are exercised, we augmented the original test

suite by generating 256 more test cases for the app. We used JTExpert [44] to automatically

generate tests. As this generates tests for the Java platform, and Android tests should

inherit from the class AndroidTestCase, we modified the generated tests to adapt them to
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the Android platform by using JavaParser [26]. In order to know which collection method

is called by the executed tests, we did a dynamic analysis using AspectJ.

Changes Made K-9 Mail application uses 148 ArrayList instances and 21 LinkedList

instances (Table 6.1). We analyzed the program with WALA, and found that there was

scope to prepare both a “good” and a “bad” version of the program.

Our WALA program found that 53 instances of ArrayLists that were used for ArrayList-

friendly operations (40 occurrences of end-insertions, 9 occurrences of iterations and 2 oc-

currences of random accesses). We manually found 72 other instances having a similar usage

pattern. We changed these instances to LinkedList, thereby creating a “bad” version.

With our WALA analysis, we also found 21 LinkedList instances in the codebase. Our

heuristics suggested that we should change 4 of these instances to ArrayList, because the

lists were being used for end-insertions, insertions at a random index, and queries using the

contains() API. According to our profiles, ArrayList is the most energy e�cient choice in

this context. We therefore created a “good” version of the app by changing these 4 instances

to ArrayList.

Energy Impact Table 6.1 shows the di↵erences in energy consumption of the two versions.

For bad changes, K-9 Mail performed only slightly worse, with an overall degradation of

0.32%. We did expect an increase in energy consumption, although it is only by a small

amount. For the good changes, we achieved an improvement of 0.25%.

For both versions, we noticed that the di↵erences were very small. The K-9 Mail test

suite is significantly di↵erent from the rest of the applications that we studied—it does not

exercise large collections. In Gson, the tests were feeding a huge load (⇡ 2-4 MB) to store

in lists. On the contrary, K-9 Mail tests were dealing with lists of only a few elements.

Therefore, the impact was not very large.
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6.5 Apache Commons Configuration

The Apache Commons Configuration library facilitates storage and retrieval of config-

uration information for Java applications [3]. We studied version 1.10 that has 40 KLOC

of library code, and a test suite of 36 KLOC. There are 13 instances of LinkedList and 166

instances of ArrayList in the original codebase.

Changes Made We again choose a subset of the program (83%) that was compatible

with the testing platform. In the reduced version, we had 69 ArrayList instances and 12

LinkedList instances. Out of these 12 LinkedList instances, WALA detected 8 that were used

for end-insertion and iteration. We manually found the other 4 of them used in a similar

way. Since our profiles indicate that ArrayList is a better choice for these operations, we

changed these 12 instances to ArrayList, expecting a decrease in the energy consumption of

the test suite.

Energy Impact Changing the LinkedList instances to ArrayList improved the energy

consumption by 1.47% (Table 6.1). The modified version of the library ran ⇡ 1.02 times

faster than the original, which is probably why the energy consumption was lesser.

6.6 Stock Exchange Trading Simulator

This is a Java based simulation application developed in-house at Auburn University.

The program has 11 KLOC lines of application code, with 8 instances of LinkedList used in

the codebase.

Changes Made Our WALA program detected 7 instances of LinkedList that were used for

end-insertions and iterations. We manually found 1 more instance being used in a similar way.

Since ArrayList is better for both these operations, we made “good” changes by swapping

the LinkedList instances with ArrayList.
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Energy Impact Our modified program demonstrated a 38% reduction in energy consump-

tion and ran ⇡ 1.6 times faster.

6.7 Discussion

For all our test applications, we were able to get di↵erences in energy consumption

by changing the Collections instances (RQ1). The magnitude of change, however, depends

on how aggressively the instances are exercised during program execution. With signifi-

cant usage, we can get large changes in energy consumption when we make bad choices for

Collections instances (RQ2).

We also noticed that for each of the applications, the degradation factor for energy

consumption was the same as the slowdown factor of the bad version of the program. For

example, the version of Gson with bad changes ran ⇡ 4 times slower and consumed ⇡ 4 times

more energy than the original version. However, the power consumption of both versions

(i.e., the rate of energy consumption per time unit) was very similar, which indicates that the

bad version (with ArrayList instances changed to LinkedList) just does more work during

the extra time it takes. This may explain why it consumes more energy. We found a similar

trend in execution times while generating our profiles. But is it a consistent trend that slower

applications will consume more energy? More investigation is needed to answer this.

In our WALA analyzer, we chose a simple heuristic to help us decide whether to change

a Collections instance. This worked well owing to the fact that we dealt only with lists,

and that most of the ArrayList instances that we found were performing end-insertions and

iterations anyways. In the future, we want to focus on developing a more sophisticated

heuristic to handle other Collections.
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Chapter 7

Conclusions

Our results provide a guideline about the scenarios in which the energy consumptions

of alternative Collections classes become an issue. For insertion operations, the energy

di↵erences are significant, but not that much for other list operations. For lists of small size,

the energy consumption does not vary much between the lists. Furthermore, many of the

di↵erences in energy consumption can be explained by expensive bytecode operations.

A number of issues a↵ect the validity of our work. First of all, measurements of physical

systems, in particular phones, inherently are a↵ected by noise and nondeterminism. Our test-

bed was designed to minimize such noise and to control for nondeterministic di↵erences in

measurements by repeating measurements 20 times. Section 3.3.2 discusses how we have

addressed other measurement-related issues.

How generalizable are our results? The GreenMiner infrastructure uses Android devices

to perform the energy profiling. We ran our tests on a single phone that had a specific

version of the Android OS installed. Our results reflect the energy performance of the

Android implementation and the Dalvik VM execution of the Collections API. We expect

these energy trends to be similar across Android devices. For example, we found similar

trends when we ran the tests on the other three devices on GreenMiner.

A more subtle issue may arise due to the range of the measurements that we achieved.

As we saw in the profiles, the energy measurements are quite small, especially for small

collections. This is expected, since a single API usage corresponds to a maximum of three

lines of code performing an operation and there is a significant overhead introduced by setup

and teardown methods of each test. To validate whether this large noise could overshadow

the otherwise small energy consumption of a single API invocation, we ran a separate baseline

41



test running only the setup and teardown methods, i.e., the noise. We found that each of our

actual tests consumed substantially more energy than this baseline, i.e., our measurements

reflect the energy contribution from the API usage.

Our work can be improved in a number of ways. Other API methods, such as contains()

and remove() from the Collections interface, can be studied to better cover the usage sce-

narios in real applications. Our bytecode analyzer can be enhanced with more sophisticated

libraries to trace bytecode traces for Map and Set implementations. The WALA analyzer

that we used to discover how Collections instances are used is yet to implement one of the

four cases of inter-procedural analysis. Future versions of the work can add this into the

library.

Overall, our results will be especially useful for developers of large scale software who

commonly work with large Collections instances. They can guide the developers and make

them aware of the consequences of their programming decisions. Our approach can also

be used in making smarter autotuning tools. This study should motivate future work on

creating better guidelines for many other alternative programming choices.
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