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Abstract 
 

 
         Since temperatures and carbon sources are potential conditions that affect gene expression 

and regulation, experiments of vfr expression and regulation in the organism Pseudomonas 

aeruginosa were designed and performed to address the following questions of interest: i) Do 

low or high temperature (30℃/42℃) have an effect on vfr expression? ii) Do low or high 

temperature (30℃/42℃) have an effect on vfr regulations controlled by tmRNA, GacA or GacS, 

which were three potential vfr regulators found in the previous laboratory work? iii) Do carbon 

sources like Glycerol, Glucose or Succinate have an effect on vfr expression? And iv) Do these 

carbon sources have an effect on tmRNA, GacA or GacS controlled vfr regulation individually? 

        As our data (both temperatures and carbon sources) did not satisfy the normality 

assumption, a set of distribution-free nonparametric analyses were applied in this work. For 

studying the effects of the temperatures and carbon sources on vfr expressions, regulations as 

well as their variances, powerful and robust nonparametric analysis for location, Nemenyi test, 

and the Anasari-Bradley test for scale comparison were used to make final conclusions. 

       According to the Nemenyi test, temperatures (30℃ or 42℃) affected vfr expression and but 

not the tmRNA, GacA or GacS controlled vfr regulations in P.aeruginosa. In addition, Ansari-

Bradley test indicated that, the low temperature would not affect the variances until the late-log 

phase, while the high temperature affected the variances of vfr expression in P. aeruginosa from 

mid-log to late-log phase, but not to the end. Furthermore, high temperature affected all of the 

variances of tmRNA, GacA and GacS controlled vfr expression in mid-log, but only GacS 
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regulated vfr expression in late-log, and only tmRNA dependent expression at the stationary 

phase in P. aeruginosa., while low temperature affected the variances of GacA regulated vfr 

expression at the mid-log phase, and affected the variances of tmRNA and GacS regulated 

expression at the late-log phase in P. aeruginosa, and at the stationary phase, none of the 

variances of these vfr regulations were altered by the low temperature.  

         In order to test the effects of carbon sources on vfr expressions and regulations, similar 

analyses were applied to the carbon source study. According to Nemenyi approach, vfr 

expressions in P. aetuginosa were not be affected by any supply of Glycerol, Glucose or 

Succinate in NCE medias when they served as sole carbon sources. Also, since all of the 

tmRNA, GacA and GacS controlled vfr regulations functioned very well, vfr regulations in P. 

aetuginosa were also not affected in Glycerol, Glucose or Succinate supplemented NCE medias. 

Therefore, we conclude that carbon sources would affect neither vfr expressions nor the tmRNA, 

GacA and GacS controlled regulations in P. aetuginosa. According to the Ansari-Bradley test, 

the variances of vfr expressions in P. aetuginosa were not affected by the supply of Glycerol, 

Glucose or Succinate in NCE medias when they were served as sole carbon sources. The 

variances of tmRN, GacA, GacS controlled vfr regulations were not altered too. In conclusion, 

supply of Glycerol, Glucose or Succinate in NCE medias as the sole carbon sources would not 

affect the variances of vfr expressions in P. aetuginosa. Carbon sources also did not affect 

tmRNA, GacA and GacS controlled vfr regulations. 
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Chapter 1: Introduction 

        This is an applied thesis in which novel statistical analysis methods are applied on problems 

from microbiology. In particular, it uses nonparametric analyses to understand how temperature- 

and carbon-source- affect vfr gene expression and regulation. Since gacS, gacA and ssrA were 

previously discovered in my work in microbiology to serve as vfr gene regulators, a series of 

experiments were conducted to further the earlier study and address the following questions of 

interest: i) Does temperature affect the vfr gene regulation? ii) If so, which temperature affects 

gene regulation the most? iii) Does the carbon source have an effect on the vfr gene regulation? 

iv) If so, which sort of the carbon source and concentration has the greatest effect? 

        Similarly, if we switch these biological questions into statistics, the concerned questions 

would be: i) Does each population differ among three different temperatures? ii) How about the 

treatments among three different types of carbon sources with three different concentrations? 

        In order to attain the answers above, a collection of statistical approaches was applied to 

model the data and explore the differences. The multivariate data analysis was not constructed in 

this study. Alternatively, I discuss the effects by temperature and carbon source on vfr gene 

expression and regulation individually. Separating these two effects is the greatest option for the 

response variable, not only because of the perspective on the study of vfr gene regulation in 

Pseudomonas aeruginosa, but also because it is the key for evaluating the effects of temperatures 

and carbon sources on molecular level respectively. 

 

        Since the assumption of normality is not fully satisfied, linear regression analysis is not very 

reliable in this study. Hence, a batch of nonparametric analysis characterized as distribution-free 

tests, were imposed in this study. We primarily roughly viewed the relationship between the 

dependent variable and independent variables via the linear regression. Since the data contains 

outliers, the robust regression method was subsequently utilized to validate the regression model. 

Then I applied a batch of nonparametric tests for further analyses, which are divided by scale 

first, location next, and scale-location last, including the Ansari-Bradley test, Tukey's test, 

Nemenyi test and Lepage test.  
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        This introduction chapter concentrates on the methodology background of nonparametric 

analysis, biological context of vfr gene regulation, as well as the motivation and goals of this 

study.  

 

 

1.1 The linear regression model 

        In statistics, according to various contexts, the term “Linear Model” can be applied to 

different situations. Generally, it is associated with regression models, whose synonymous form is 

Linear Regression Model. However, robust regression was developed, since outliers and effective 

observations were appeared in the dataset. Therefore, Linear Regression model no longer hold the 

efficiency. Thereby, a brief introduction of general linear regression and robust regression models 

were given at the first place.  

 

 

1.1.1 General overview   

        Linear regression analysis is a universal statistical technique that models the functional 

relationship between variables that have independently and identically normally distributed 

errors. Y is referred to as the dependent variable that we are going to predict. X is referred to as the 

independent variable, which the prediction of Y is based on. In other words, least squares linear 

regression is to forecast the score of a dependent variable Y, from scores of one or more 

independent variables X. For a single independent variable, the predicted process is called simple 

linear regression. In the case of more than one variable, it is named multiple linear regression. 

        In simple linear regression, we use the “best-fitting” straight line to describe the practical 

relationship between X and Y. The basic criterion for fitting the best-fitting straight line is to 

minimize the sum of the squared errors of this model via the set of n points. The equation for 

defining the straight line is expressed as Y = A + BX. As mentioned above, Y and X are the 

dependent variable (ordinate) and independent variable (abscissa), respectively; A is the intercept, 

and B is the slope of the straight line. When a random collection of observations is given, the 

population regression line is assessed by the equation ŷ = b0 + b1x, where x is the independent 
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variable, b0 is the constant, b1 is the coefficient between X variable and Y variable.  

        Simple linear regression is recommended when the following conditions are fulfilled: 

        1) The dependent variable Y and the independent variable X have a linear relationship. When 

the condition is satisfied, the scatterplot between Y and X should be linear, and residuals are 

randomly spread in residual plot. 

        2) For any given value of X, distributions of Y are assumed to share the same standard 

deviation σ with X. Under this circumstance, the residuals will have a stable variability across 

each value of X, which can be clearly claimed in a residual plot. 

        3) For each value of X, Y values have an independent and roughly normal distribution. A 

histogram or a dotplot is widely imposed to check the normality. When the sample size is large, a 

little skewness is permitted. 

        Multiple linear regression is a highly flexible technique that estimates the functional 

relationship between a batch of independent variables X and a single dependent variable Y. For p 

independent variables x1, x2, ... , xp, the regression line is expressed as 𝜇!  =  𝛽!  + 𝛽!𝑥!  +

 𝛽!𝑥! + . . .+ 𝛽!𝑥!, which indicates how the mean response μy changes in response to independent 

variables. Each observed value y shifts from their means μy, but has the same standard deviation σ. 

Due to their variations, the model is defined as DATA = FIT + RESIDUAL, where the 

presentation of "FIT" term is 𝛽!  + 𝛽!𝑥!  +  𝛽!𝑥! + . . .+ 𝛽!𝑥!. And the term "RESIDUAL" is the 

deviations of the each observed value y from their means μy having a normal distribution with 

mean 0 and variance σ. Consequently, the basic model for linear regression is expressed as 

𝑌!  =  𝛽!  + 𝛽!𝑥!!  +  𝛽!𝑥!!+ . . .+𝛽!𝑥!"  +  𝜀! , where has p independent variables and n 

observations per variables. Xij presents ith observation of the jth independent variable, Yi presents 

the response of the ith observation of the dependent variable (i = 1, 2, ... n, j = 1, 2, ..., p). 𝛽!  is the 

estimated parameter, 𝜀!  is the errors with the assumption of independent and identically 

distributed normal (Leona S. Aiken et al, 2003). 

        Regression analysis in biological, behavioral and social sciences are broadly applied to 

predict potential relationships between variables, as its important role in these fields. For instance, 
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in Beer's law plots, optical density is imposed against drug concentration; also we could 

characterize the trend or rate via the slope, even the response is unknown (Sanford Bolton et al, 

2009). 

 

1.1.2 Robust linear regression  

        Ordinary least squares are considered as one of the most critical tools in the estimation field 

because of its attractive properties if their underling assumptions are met. Unfortunately, those 

assumptions are not usually satisfied in reality. At this point, people began to seek approaches as the 

remedies of this sort of problem. The concept of robust methods was grown at the early nineteenth 

century, when the electronic technology was developed rapidly. After the 1960s, robust statistics 

started to impress people. Up to date, it is a fairly popular topic in statistics. 

 

        Formally, the outliers, which do not derive from the same data-generation process, are extremely 

sensitive to the least square estimation (LSE) in the sample. Existence of outliers results in the 

inefficiency and bias of the least square estimation, particularly when these outliers are arranged and 

connected with high leverage points. Alternatively, the term Robust Regression came out as a fitting 

criterion to characterize the information in the majority of data (John Fox, 2002). These techniques 

are mostly used to handle the following three categories of problems (Xue Bai, 2012):  

        1) Outliers in response y-direction. 

        2) The data are contaminated with high leverage outliers that both in x-space and y-direction. 

       3) Distributions are presented with a long and heavier tail rather than normal ones.  

        Numerous robust regression methods have been advanced to remedy these problems, including 

M-estimates, which is designed to use function 𝜌(𝜀) to replace residual square 𝜀!!
 so that representing 

the size of the residual in a fewer extreme way. Least median of squares, as well as least trimmed 

squares, where a more robust measure of location (like the median or a trimmed mean), is a substitute 

for the mean parameters (George Seber et al, 2003). 
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        There are two ways to measure robustness. The most general measurement parameter is 

breakdown point (BP), which is the largest fraction of the data that can be moved arbitrarily before 

the estimator fails against extreme outliers. Hence, the higher the breakdown point, the more 

robustness the estimator has. Obviously, a breakdown point of sample mean is 1/n, and ½ is for 

sample median. Apparently, ½ is the maximum value of BP, since if the majority of data are outliers, 

it is impossible to differentiate the "good" and "bad" observations. However, despite the sample 

median attains the highest BP value, its efficiency is still very small.   

        The other popular method is influence function. Let 𝛽 be the estimator of 𝛽 of the original data 

and 𝛽0 be the estimator from the data that excludes all outliers. Then 𝛽−𝛽0 is defined as the 

sensitivity curve of 𝛽. Its asymptotic form is the influence function (IF). When the fraction 𝜀 is small, 

IF is defined by: 

𝐼𝐹!(𝑥!,F) = lim!→!!
!!( !!! !!!!!!)!!!(!)

!
, 

where x0 is the outlier, 𝛿!! is the probability measurement which gives mass 1 to {x}, and 𝛽!(𝐹) 

is the asymptotic value at F. This function indicates how much a single outlier influences the 

estimation. A bounded IF is required as a robust estimator, so that it would not go to infinity when 

x becomes arbitrarily large (Xue Bai, 2012).      

 

1.2   Nonparametric analysis 

        Statistically, traditional tests are based on a specific probability distribution (such as the 

normal distribution) rather than a batch of free parameters. The specific probability distribution is 

involved in parametric tests, which includes estimation of typical parameters, such as the mean, 

variance, etc. However, unlike parametric tests, nonparametric tests are characterized as 

distribution-free and do not request any strict distributional assumptions. Even when the data have 

a normal distribution, nonparametric analysis may be almost as powerful as the parametric 

method. But if the assumption is not satisfied, nonparametric tests are commonly more powerful 

than the parametric method (Marco Marozzi, 2013). 
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        The widespread use of nonparametric analysis is mainly for nominal or ordinal data, or the 

data with a questionable distribution. Because of the property of distribution-free, non-parametric 

methods are more robust and broadly applied than the corresponding parametric methods. On the 

other hand, non-parametric methods have the property of simplicity. Under certain situations, 

non-parametric methods may be simpler to use, even parametric methods are appropriate. Hence, 

as the nature of simplicity and broader applicability, non-parametric analysis is an appealing 

option for this work. 

 

1.2.1 Tests by scale 

        Up to date, different non-parametric approaches have been projected to address either two-

sample location or scale problem, or for both. The following content will illustrate for scale first, 

location second, and scale-location last.  

 

1.2.1.1 �Ansari-Bradley test 

        The Ansari-Bradley two-sample test is a distribution-free rank test, which hypothesizes if 

each scale parameter is equal to each other or not when the two underlying populations are 

assumed to have the same median (A. R. Ansari, R. A. Bradley, 1960). This test is aimed at 

testing whether two populations have the common variability or not.  

 

        Suppose F and G are two distribution functions corresponding to population X and Y, whose 

sample size are m and n respectively. The null hypothesis of interest is that X and Y populations 

hold the same probability distribution even this distribution is unknown. Formally, the null 

hypothesis is expressed as  

H0: [F (t) = G (t), for every t]. 

Apparently, the alternative hypothesis of the two-sample dispersion problem is that population X 

has a larger or less variability than population Y. Thus, let the two-sample scale model be  

F (t) = H (!!!!
!!

) and G (t) = H (!!!!
!!

), −∞ < 𝑡 < ∞, 
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Where H (u) is a continuous distribution function with median 0, and F (𝜃!) = G (𝜃!) = !
!
. 

Therefore, population medians of X and Y are 𝜃!and 𝜃!, respectively. However, in such a case, 

we further restrict that 𝜃! = 𝜃!, which assumes that X population and Y population have the 

identical median 𝜃! and 𝜃!. Under this assumption, this equal distribution can be simplified as  
!!!
!!

 !!  !!!
!!

,    

where 𝜃 is the shared median. Even if median 𝜃! ≠ 𝜃!, but both are known, each sample can be 

shifted as 𝑋! − 𝜃!,…, 𝑋! − 𝜃! and 𝑌! − 𝜃!,…, 𝑌! − 𝜃! to satisfy the assumption of the common 

median 𝜃.    

        With the assumption above, the ratio of scales: γ = (η1/η2) is the parameter of interest. If the 

variance exists for population X and Y, then 

𝛾! = [!"#(!)
!"#(!)

]. 

        In addition, in order to compute the Ansari-Bradley test statistic C, values of merged 

observations N= 𝑚 + 𝑛 is ordered from the smallest to the largest. Assign the score 1 is the 

combination of the least and greatest observation, the score 2 is the combination of the second 

least and second greatest, and so on. Let Rj be score assigned to Yj (j = 1,…,n), and set the test 

statistic to 

𝐶 =  𝑅!!
!!! . 

For One-Sided Upper-Tail Test, the hypotheses are 

H0 : 𝛾!=1 versus Ha : 𝛾! > 1, 

at the significance level of 𝛼, 

Reject H0 if C ≥ 𝑐!; otherwise do not reject. 

For One-Sided Lower-Tail Test, the hypotheses are 

H0 : 𝛾!=1 versus Ha : 𝛾! < 1, 

at the significance level of 𝛼, 

Reject H0 if C ≤  [𝑐!!! − 1]; otherwise do not reject. 

While for Two-sided Test, we test  

H0 : 𝛾! = 1 versus Ha : 𝛾! ≠ 1, 

at the significance level of 𝛼, 

Reject H0 if C ≥ 𝑐!/! or C ≤  [𝑐!!!/! − 1]; otherwise do not reject. 
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        For approximation of large sample sizes, expected values and variances of C are required to 

be known when the null hypothesis is true (Myles Hollander et al, 1999). As the group of scores 

assigned to the jointly ordered population X and Y relies on whether the integer N = m + n is an 

even or odd number, the discussion of the expected value and variance is split into two parts. 

When the null hypothesis H0 is true and integer N is even, the expected value and variance of C 

are 

𝐸!(𝐶)  =  !(!!!)
!

  

and  

𝑉𝑎𝑟!(𝐶)  =  !"(!!!)(!!!)
!"(!!!)

,  

respectively. 

        When the null hypothesis H0 is true and integer N is odd, the expected value and variance of 

C are 

𝐸!(𝐶)  =  !(!!!)
!!

  

and  

𝑉𝑎𝑟!(𝐶)  =  !"(!!!)(!!!
!)

!"!!
, 

respectively. 

        For overall N (even or odd), the standardized C can be defined as 

𝐶⋇  =  ! ! !!(!)
{!"#!(!)}!/!

 , 

where 𝐶⋇ has a standard normal N (0,1) distribution. Accordingly, the theoretical hypothesis for 

One-Sided Upper-Tail Test is 

Reject H0 if 𝐶⋇  ≥ 𝑧!; otherwise do not reject. 

For One-Sided Lower-Tail Test, the hypothesis is 

Reject H0 if 𝐶⋇  ≤  − 𝑧!; otherwise do not reject. 

Plus, for Two-Sided Tail Test, the hypothesis is 

Reject H0 if 𝐶⋇  ≥ 𝑧!/! or 𝐶⋇  ≤  − 𝑧!/!; otherwise do not reject. 

 

 

1.2.2 Tests by location 
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        Next, several nonparametric methods that are used to test two-sample relationship by 

location will be introduced. 

 

 

1.2.2.1 Tukey's test  

        Tukey's test is a one-step procedure for multiple comparisons in statistics. It is also called 

Tukey's honestly significant difference test or Tukey's HSD. This method is used after the 

performance of ANOVA, to determine which groups have a significant difference than others. 

Some other alternative multiple comparison tests, including Sheff𝑒's test and Dunnett's test, which 

are merely applied to two groups of observations. However, when the number of groups is greater 

than two, a one-way analysis of variance (ANOVA) will become the accurate analysis to estimate 

the possible existence of significant difference among means of each population. If the ANOVA 

procedure drives to a conclusion that the group means in the sample significantly differ, Tukey's 

test will come in handy, as it is able to exactly identify which groups of the means are different 

from the other. 

        Tukey's test primarily compares the differences between each pair of means expressed as 

𝜇! −  𝜇!, 

and then investigates whether each pairwise difference of means is greater than the expected 

standard error. However, in this set, the Tukey approach is conserved when all compared groups 

have unequal sample sizes. Since only when all sample sizes are equal, the confidence coefficient 

are exactly 1 − α. Otherwise, the confidence coefficient is greater than 1 − α. 

         The Tukey’s method utilizes the studentized range distribution. Suppose that we pick a 

sample size n from k variables with the identically normal distribution N (µ, σ). First, we calculate 

the absolution value of 𝑦!  −  𝑦!, which is the difference between the means of each population. 

Moreover, the critical difference, also known as half width of confidence interval is computed, 

defined as 

half width = !!;!!!; !
!

 𝑆!
!
!
. 

Afterwards, difference of the absolution value between two means |𝑦!  −  𝑦!| is compared with the 

critical half width. If 
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|𝑦!  −  𝑦!| > half width, i, j = 1,…, k and i ≠ j, 

we say that µi and µj are significantly different, otherwise they are not. Meanwhile, Tukey's 

method can be employed to construct confidence intervals for all pairwise differences between 

sample means so that the familywise confidence level is controlled. The typical formula of 

confidence intervals for differences between pairwise means is 

(𝑦!  −  𝑦!) ±  !!;!!!; !
!

𝑆!
!
!
. 

As mentioned previously, sample sizes have to be equal when the studentized range distribution 

is used (Tukey, John, 1949). 

        Nevertheless, there is another way to deal with unequal sample size. In 1965, Clyde Kramer 

stated that the remedy is to compute the estimated standard deviation for each pairwise 

comparison separately, and this method for unequal sample sizes is also referred as the Tukey–

Kramer method. Unlike equal sample sizes mentioned above, the critical difference in this case is 

!!;!!!; !
!

 𝑆!
!
!!

 +  !
!!

. 

The confidence interval is as follows: 

(𝑦!  −  𝑦!) ±  !!;!!!; !
!

𝑆!
!
!!

 +  !
!!

, 

where 𝑛! and 𝑛! are the sizes from groups i and j respectively (Clyde Young Kramer, 1956). 

        Like all post-hoc tests that are conducted after an ANOVA test, the Tukey’s test is also faint, 

because the test has to be performed after the data collection. Compared with the Tukey’s test, a 

preplanned test yielding significant results after data collection, will be more robust and powerful. 

 

1.2.2.3 Nemenyi test 
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        The Nemenyi test (P. B. Nemenyi, 1963), named after Peter Nemenyi, is another case of post-

hoc test, like Tukey’s test mentioned before (Peter Nemenyi, 1963). It is intended to identify all 

classifiers with each other after the statistical multiple comparisons. Multiple comparisons are 

followed to determine whether the median effect of a single, baseline group is different than that of 

the remaining 𝑘 − 1 treatments individually. The treatment versus control associated multiple 

comparison is upon the average of the joint rank of the whole sample observations N. It results in 

the decisions of the different effects among the control and each 𝑘 − 1 treatments. Hence, the test is 

obviously a one-sided test in practice. 

        Primarily, we regard treatment 1 as the single baseline control. Furthermore, suppose 𝑁∗ is the 

least common multiple of the sample size n1, …, nk, and then all observations N are jointly ranked. 

First, set R1,…, Rk  as the average of each joint rank coupled with treatments 1,…, k separately; then, 

calculate the differences of each k-1 treatments R.u – R.1 (u = 2,…, k). In this manner, 

Decide 𝜏!  >  𝜏! if 𝑁∗(R.u – R.1) > 𝑦!∗; otherwise decide 𝜏!  =  𝜏!, 

Where the experiment-wise error rate is 𝛼, and the experiment-wise error equal to 𝛼 is made by the 

constant 𝑦!∗. To meet this condition, 

𝑃!{𝑁∗ (𝑅.!  −  𝑅.!)  <  𝑦!∗,𝑢 =  2,… , 𝑘}  =  1− 𝛼, 

where the probability P0 (.) is processed under H0.  

        When sample size is large as well as H0 is true, the distribution of the k-1 treatment vectors 

(R.u – R.1, R.u – R.1,…,  R.u – R.1) is asymptotically (𝑘 − 1)-variate normal, which is like min (n1,…, 

nk) tends to infinity. In particular, if  n1 = b and n2 =…= nk =n, both n and b values are large,  the 

critical value 𝑦!∗ is replaced by [𝑁(𝑁 + 1)/12]!/![(1/𝑏)+ (1/𝑛)]!/!𝑁∗𝑚!
∗ . 𝑚!

∗  is the upper 𝛼th 

percentile point, from distribution of (𝑘 − 1)  𝑁 (0,1)  variables at most, where the common 

correlation is 𝜌 = 𝑛/(𝑏 + 𝑛). Hence, for equal treatment sample size n2 =…= nk =n, the large-

sample approximation of The Nemenyi test is 

Decide 𝜏!  >  𝜏! if 𝑁∗(R.u – R.1) >  𝑚!
∗ [!(!!!)

!"
]!/!(!

!
+ !

!
)!/!; 

otherwise decide 𝜏!  =  𝜏!, u = 2,…, k. 

        Unlike equal treatments sample sizes, for arbitrary case of unequal treatments sample sizes, 

Bonferroni’s Inequality is used by Dunn (Dunn, 1964) to process the large-sample approximation 

that 

Decide 𝜏!  >  𝜏! if 𝑁∗(R.u – R.1) >  𝑧!∗ [
!(!!!)
!"

]!/!( !
!!
+ !

!!
)!/!; 
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otherwise decide 𝜏!  =  𝜏!, u = 2,…, k, 

where 𝛼∗ = 𝛼/(𝑘 − 1). 

In conclusion, the Nemenyi test is analogous to Tukey’s test, and is imposed to compare all 

classifiers with each other. Classifiers will have a significant difference if the corresponding 

average ranks differ by the critical values. 

 

1.2.3 Tests by scale and location 

In the last part of this section, a test with a combination of location and scale tests will be 

described. 

 

1.2.3.1 Lepage test 

        As mentioned above, -Mann-Whitney test, raised by Wilcoxon (Mann, Henry B., Whitney, 

Donald R. 1947), is one of the most popular two-sample rank methods for testing equality of 

location parameters of two underlying populations. The Ansari-Bradley test, suggested by (A. R. 

Ansari, R. A. Bradley, 1960), is characterized as the test to identify the equality of the scale 

parameters with the equal medians by means of a rank test. However, when the location remains 

constant, the Wilcoxon-Mann-Whitney test cannot reflect the changes in the scale parameters. 

Alternatively, when the scale remains constant, the Ansari-Bradley test cannot reflect changes in 

the location parameters. The Lepage test, in terms of the combination of Wilcoxon rank-sum and 

the Ansari–Bradley statistics, will be the solution for both problems. The Lepage test is designed 

to test the hypothesis of equality of both location and scale parameters of two populations versus 

the alternative that at least for one of the parameters the equality does not hold (Yves Legape, 

1973). 

        Let X1, …, Xm and Y1, …, Yn be the random samples from population 1 and 2 separately 

with the assumptions of independence within and between each population. The assessment of 

interest is whether either the location parameters 𝜃! and 𝜃! or the scale parameters 𝜂! and 𝜂! of 

each population differ or not. Therefore, according to the statement that both the location and 

scale parameters are equal, the null hypothesis of interest is 



 13 

𝐻!: 𝜃! = 𝜃! 𝑎𝑛𝑑 𝜂! = 𝜂!, 

versus the alternative hypothesis 

𝐻!: 𝜃! ≠ 𝜃! 𝑎𝑛𝑑/𝑜𝑟 𝜂! ≠ 𝜂!. 

In order to calculate the Lepage two-sample location-scale statistic D, firstly, rank all the united 

observations 𝑁 = 𝑚 + 𝑛 X-values Y-values from the smallest to greatest. Let 𝑊 = 𝑆!!
!!!  be the 

Wilcoxon rank sum statistic, where 𝑆!  is the joint rank of 𝑌!  (𝑗 = 1,… , 𝑛). Furthermore, let 

𝐶 = 𝑅!!
!!!  be the Ansari-Bradley scale test statistic, where 𝑅!  is the score assigned to 𝑌! 

(𝑗 = 1,… , 𝑛). Thus, the Lepage rank statistic D is defined as follows, 

𝐷 = [!!!! ! ]!

!"#!(!)
+ [!!!! ! ]!

!"#!(!)
, 

where 𝐸!(𝑊) , 𝐸!(𝐶) , 𝑣𝑎𝑟!(𝑊)  and 𝑣𝑎𝑟!(𝐶)  are expected values and variances of W and C, 

respectively, under H0. When this formula is substituted by the standardized forms of the 

Wilcoxon rank-sum statistic and Ansari-Bradley scale statistic, respectively, the Lepage statistic 

D can be expressed as 

𝐷 = (𝑊∗)! + (𝐶∗)!. 

At the significant level of 𝛼, 

Reject 𝐻! if 𝐷 ≥ 𝑑!; otherwise do not reject， 

where 𝑑! makes the type I error probability equal to 𝛼. 

        When the populations have large sample sizes, the Lepage statistic D has a chi-square 

distribution with two degrees of freedom under 𝐻!. Hence, the large-sample approximation for 

the accurate level 𝛼 is written by 

Reject 𝐻! if 𝐷 ≥ 𝜒!,!! ; otherwise do not reject; 

Where 𝜒!,!!  is the upper percentile of the chi-square distribution whose degrees of freedom is 

two. 

 

1.2.4 Rank Estimation of Linear Models 
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The rank comparison of the two-sample location (Wilcoxon-Mann-Whitney) and multiple 

sample ANOVA are special cases of a general linear hypotheses tests in the linear model 

framework. A general linear model relates a set of p predictors (X) collected on n subjects to 

their response (Y) using a plane. For subject k, this is given by 

𝑌! = 𝛼 + 𝛽!𝑋!! +⋯+ 𝛽!𝑋!" + 𝜀! 

for 𝑘 = 1,… ,𝑛. This is usually written in matrix form as 

𝒀 = 𝛼𝟏! + 𝑿𝜷+ 𝜺, 

where 𝒀 is an 𝑛×1 vector of responses, 𝑿 is an 𝑛×𝑝 matrix of predictors, 𝜺 is an 𝑛×1 vector of 

random errors, and 𝟏! is an 𝑛×1 vector of ones. Once again, our main interest is to estimate and 

test hypotheses about the 𝑝 ×1 vector of slope parameters 𝜷 = (𝛽!,… ,𝛽!)! .𝜷 One way to 

achieve this is by 𝜷determining the asymptotic distribution of the estimator of 𝜷. Classically 𝜷 is 

estimated by the method of least squares (minimizing the Euclidean norm of the residuals). The 

resulting estimator is 

𝜷 = (𝑿!𝑿)!!𝑿!𝒀. 

If the errors 𝜀!,… , 𝜀!  are iid from a distribution 𝐹  that has variance 𝜎!! , then 𝜷 follows an 

approximate 𝑝 -dimensional Gaussian distribution with mean 𝜷  and covariance matrix 

𝜎!!(𝑿!𝑿)!!. One may use this asymptotic distribution to construct a Wald-type test of the 

significance. For instance the two-sample t-test is equivalent to a test of a single slope 

parameter𝑋! 𝐻!:𝛽! = 0 versus 𝐻!:𝛽! ≠ 0 using the statistic 

𝑇! =
𝛽!

𝜎!(𝑿!𝑿)!!!!
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where (𝑿!𝑿)!!!! is the (j,j)th entry of the matrix (𝑿!𝑿)!! and 𝜎! = (𝒀!𝑿𝜷)!(𝒀!𝑿𝜷)
!!!!!

 is the estimate 

of the model variance. T𝑇!𝑛 − 𝑝 − 1he level 𝛾 test of significance is performed by comparing 

|𝑇!| with upper 𝛾/2 percentile of the t distribution with 𝑛 − 𝑝 − 1 degrees of freedom. The 

ANOVA F test may also be constructed as a special case of linear model testing. 

 

Heiler and Willers (1988) have shown that the 𝜷 follows an asymptotic 𝑝 dimensional Gaussian 

distribution given by 𝑁 𝜷, 𝜏!! (𝑿′𝑿)!! , where 𝜏!!  is defined as 

𝜏!! = 𝜑(𝑢) −
𝑓!(𝐹!!(𝑢))
𝑓(𝐹!!(𝑢))

!

!

𝑑𝑢 

and represents a scale parameter that is analogous to the standard deviation in least squares 

estimation. The quantity 𝜏!!  reduces to 𝜏!! defined above for the linear score case given by 

𝜑 𝑢 =  12(𝑢 − 1/2). A consistent estimator of 𝜏!!  is given in Koul, Sievers and McKean 

(1987). We can use this estimator 𝜏! of 𝜏!!  along with the asymptotic distribution to construct 

test statistics for testing various types of hypotheses. For instance, a Wald type t test for the 

significance of the jth individual slope, 1 ≤ 𝑗 ≤ 𝑝, can be as 

𝑊! =
𝛽!

 𝜏!(𝑿′𝑿)!!!!
 

and the null hypothesis 𝐻!:𝛽! = 0 is rejected in favor of 𝐻!:𝛽! ≠ 0 if 𝑇! > 𝑡!!!!!(
𝛾
2), 

𝑡!!!!!(
𝛾
2) is the upper 𝛾 2 percentile of the 𝑡 distribution with 𝑛 − 𝑝 − 1 degrees of freedom.  

This is the asymptotic version of the Wilcoxon-Mann-Whitney test when the problem is a two 

sample comparison problem. Notice that the asymptotic distributions of the least squares 

estimator 𝜷  and the rank estimator 𝜷  differ only in their scale parameters 𝜎!!  and 𝜏!! , 
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respectively. It is, thus, obvious that the ARE of the rank estimator with respect to the least 

squares estimator is  

𝐴𝑅𝐸  𝜷,𝜷 =  
𝜎!!

𝜏!!
. 

The fitting of this is implemented in the R package Rfit (Kloke and McKean, 2012). This setup 

allows us to perform several rank-based post-hoc comparisons, like the Tukey-Kramer based on 

ranks, directly (Kloke and McKean, 2012).   

 

 

Chapter 2: Background, Design, and Methods 

 

2.1 Literature review 

        This section principally introduces the opportunistic human pathogen termed 

Pseudomonas aeruginosa and the regulation of the vfr gene controlling expressions of virulence 

factors. In addition to the vfr gene regulation in Pseudomonas aeruginosa, potential effects of 

temperatures and carbon sources will be demonstrated as well. 

 

2.1.1 vfr gene regulation 

        The gram-negative bacterium Pseudomonas aeruginosa is a human pathogen that can 

trigger infection in immunosuppressed people or colonize in the lungs of patients who suffer 

from a genetic disorder: cystic fibrosis, caused by mutations in the CF-transmembrane 

conductance regulator (Hoiby, 1974, Reynolds, 1975, Hoiby, 1995). The versatility of this 

ubiquitous bacterium depends on a large genome size as well as numerous transcriptional 

regulators (Stover et al., 2000), which enable this organism to live almost everywhere and 

withstand severe environmental challenges. 
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        Vfr (virulence factor regulator), encoded by the vfr gene, is a global transcriptional 

regulator of gene expression that affects expression of over 100 genes in the pathogen 

Pseudomonas aeruginosa, including virulence genes encoding virulence factors (wolfgang et al., 

2003, west et al., 1994).  

        Vfr, the vfr gene product, which belongs to the winged-helix family, is a cAMP binding 

protein that is 67% identical and 91% similar to the cAMP receptor protein (CRP) of 

Escherichia coli (West et al., 1994). In E. coli, the level of cAMP mediates CRP functions that 

characterize as a variety of regulators (Aiba et al., 1982, 11). Primarily, CRP controls some 

genes involved in catabolic repression by glucose (Botsford & Harman, 1992, Kolb et al., 1993, 

Ullmann & Danchin, 1983). Likewise, CRP serves as an activator for lactose and arabinose 

operon, and a repressor in genes for adenylate cyclase (Majerfeld et al., 1981). However, unlike 

CRP, Vfr failed to present catabolic repression control (Suh, 2002). 

        To date, Vfr has been stated to regulate many important factors, including Exotoxin A and 

protease IV (West et al., 1994), two quorum sensing regulators LasR (Albus et al., 1997) and 

RhlR (Medina et al., 2003), twitching motility (Beatson et al., 2002), type III secretion 

(Wolfgang et al., 2003), flagellar (Dasgupta et al., 2002), and RpoS (Bertani et al., 2003). 

Although much study has been conducted to understand the role of Vfr in P. aeruginosa 

pathogenesis, not much is known about the genetic regulation of vfr expression. In our 

laboratory, we have already discovered that tmRNA negatively regulates vfr expression (Wu 

and Suh, unpublished data). We are also interested in exploring any other putative regulators of 

expression of the vfr gene in P. aeruginosa.  

 

2.2 Temperature and carbon source     

        During the exponential phase of the growth, once microorganisms start to consume the 

preferred carbon source, repression of some specific genes, encoding the catabolic enzymes 

required for assimilation of the subsequent carbon source, will be presented, even though the 

substrate of the subsequent carbon source is always available in the culture. This process is 

known as catabolite repression control (CRC), analogous to the exhaustion of the preferred 

carbon source (Magasanik, 1961). This phenomenon definitely controls the synthesis of 
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catabolic enzymes, which could be induced by its substrate and repressed by its product or 

products of catabolic pathways.  

        Some catabolic enzymes are subject to repression by glucose. For instance, the most 

outstanding Gram-negative enteric bacteria Escherichia coil, prefer glucose as the carbon 

source (D.N. Collier et al, 1996). Unlike E. coli, my target organism P. aeruginosa actually 

does not utilize glucose as the preferred carbon source (Wolff, J. A. et. al, 1991). Alternatively, 

succinate is preferentially utilized over other carbon sources in this bacterium (SJ Suh et. al, 

1999). Therefore, effects of various carbon sources on the regulation of my target gene vfr are 

valuable and worthy of study. 

        In addition to different carbon sources, bacteria growth is affected by temperature as well. 

Theoretically, bacteria can be cultured at all temperatures from the freezing point of water to the 

temperature higher than 100 °C at large depths of the ocean. Most bacteria are mesophilic, 

which grow best at 30-37°C. Optimum temperature for growth of common pathogenic bacteria 

including P. aeruginosa is 37°C. The optimum temperature in which the bacterium thrives lies 

somewhere between these maximum and minimum points. When temperatures are below the 

minimum extremity, bacterial growth will be ceased. However, if the temperature is 

approaching above the maximum, bacteria will be killed rapidly. In the view of the critical 

effects of the temperature in bacterium, alerted temperatures are studied in my research.  

 

2.3 Motivation and goal 

        According to the literature view, I hypothesize that there are some putative regulators 

controlling vfr expression. In order to achieve my goals, firstly, I will isolate and characterize 

putative regulators of vfr gene expression. After several rounds of selection and screen, gacS 

was found that served as the potential vfr gene regulator. This gene encodes for the sensor 

kinase in the GacS/GacA two-component regulatory system, while the other gene gacA in this 

system encodes for a response regulator. Theoretically, GacS could not function as the regulator 

of gene expression, since its role is just a sensor kinase. For this reason, we hypothesize that 

instead of gacS, regulation of vfr gene expression is actually depending on gacA. Subsequently, 
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the result that both gacS and gacA mutants that have alerted vfr gene expression, verified that 

our hypothesis is accepted. Thus, either gacS mutant or gacA mutant will be involved in the 

following work, as well as the ssrA mutant. In brief, the experimental subjects of interest are 4 

strains in total. One is the wild type strain, which is the control of the normal vfr gene 

expression, and the remaining three strains are mutants with three mutated vfr regulator genes 

(gacS, gacA and ssrA). In this case, we have four particular target questions we need to address, 

which are i) Does temperature affect the vfr gene regulation? ii) If so, which temperature has the 

most powerful effect? iii) Does carbon source affect the vfr gene regulation? iv) If so, which 

sort of the carbon source and its concentration affects the vfr gene regulation most?  

        In order to remedy the first two questions, vfr gene expression among four strains at three 

different growth levels, were tested at three temperature gradients including 30 ℃, 37 ℃ and 

42 ℃, and 37℃ is the optimal temperature of P. aeruginosa. To address the last two questions, 

vfr gene expression among four strains at three different growth levels were tested when 

bacterium were fed in the L Broth culture supplemented with three different concentration-

gradients of three different types of carbon sources. They are glucose, succinate and glycerol. 

And each observation of three mutants above is compared with the wild type strain at the same 

growth level in the identical temperature or media. Later, several statistical approaches were 

utilized to fit the models of data and clarify the variability.  

       Since the dataset has an unknown distribution probability, a series of nonparametric tests 

will be applied to analyze the prospective effects of temperature and carbon sources on vfr gene 

regulation. When the condition of the applied test is just restricted to two groups rather than 

more groups, the dataset will be split into several subsets. According to the statistical output, 

biological significances will be given to answer these core questions above. 

 

2.4 Exploration of vfr regulators in Pseudomonas aeruginosa 

         In order to discover and isolate putative regulators of vfr gene expression, we took a non-

predictable approach to discover P. aeruginosa mutants with altered vfr::lacZ expression. A mini-

transposon, Tn5-B30 (Lorenzo et al., 1990), was introduced into the PAO1 derivative strain 
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carrying a vfr::lacZ fusion via triparental conjugation (Leong et al., 1982). Transposon insertion 

mutants were selected as tetracycline resistant (Tcr) colonies growing at 37°C on Pseudomonas 

Isolation Agar (PIA) plus tetracycline. These Tcr colonies were subsequently replicated onto PIA 

plates supplemented with the chromogenic substrate 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-gal) and the insertion-mutants with altered vfr::lacZ expression were 

identified as potential regulatory mutants. These replicated colonies displaying altered 

expressions of vfr::lacZ with different degrees of blue color will be picked and patched onto fresh 

PIA with carbenicillin plates as potential candidates to have transposon insertions in genes 

encoding for regulators of vfr expression. After two rounds of screen on plates, putative mutants 

were rescreened in 96-well plate β-galactosidase assays (Kevin et al., 2002) In brief, we cultivated 

cells in 96-well micro titer plates in LB broth supplemented with carbenicillin per well (for 

maintenance of vfr::lacZ) overnight at 37°C. The next day, 96-well plates β-galactosidase assay 

will be executed as described by Miller (Miller et al., 1972) to measure vfr::lacZ expression in the 

putative mutants. For further accuracy, those potential mutants that consistently presented altered 

vfrA::lacZ expression on micro titer plate assays will be selected and analyzed in test tube assays. 

        In order to test vfr::lacZ expression during late stationary phase in test tube β-galactosidase 

assays, putative vfr regulator mutants will be cultivated in LB broth containing carbenicillin 

overnight. In the following days, the β-galactosidase activity of stored cell culture will be assayed 

to determine the expression of vfr::lacZ. Each putative regulatory mutant will be growing at 37 °C 

and assayed at least three independent times to validate the expression of the vfr::lacZ fusion 

phenotype. 

        Arbitrary PCR was executed to classify transposon insertion sites in each mutant. In the first 

round of arbitrary PCR, Tn5Ext and the other arbitrary primer at a random site downstream were 

involved to improve random binding. At the second round, the 100-fold-diluted product of the 

first round will be served as the template, working with Tn5Int and the other nested downstream 

primer to amplify the specific Tn5 insertion-fragment. Later, all of the amplified arbitrary PCR 

products were sequenced for DNA mapping. From the sequence results, we found the transposon 

was inserted in the gacS, so combined with the previous discussion, we would study the 

regulation of three vfr regulators encoded by the three genes gacS, gacA and ssrA. 
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2.5 Growth curve assays to assess vfr expression and regulation 

        For performance of growth curve assays, bacterial cells grew in the applicable medium in 

200ml flasks for 24 hours within a shaker at the assigned temperatures. For instance, for analysis 

of the effects of temperature on vfr regulation, bacterial cells were cultured at 30°C, 37°C and 

42°C, respectively. For the analysis of effects of carbon source on vfr regulation, the growing 

temperature was 37°C consistently. To make the culture thrive, the overnight culture of cells 

cultivated in L broth was diluted 1:100 into the proper medium and the cells were incubated for 

additional 14 hours via shaking at the original temperature. Cell growth was examined as 

absorbance 600.  

2.6 Effects of temperature and carbon source on vfr gene expression and regulation 

        The effect of temperature on vfr gene expression and regulation of a gacA, gacS and ssrA 

mutants were tested by raising P. aeruginosa in L broth with carbenicillin at 30°C, 37°C, or 42°C, 

respectively. The effect of the carbon sources were tested by subculturing the overnight cultures 

in L broth as well as the NCE minimal medium supplemented with 1mM glucose, 2mM glucose, 

10 mM glucose, 2mM succinate, 4mM succinate, 20mM succinate, 1% glycerol, 2% glycerol, or 

10% glycerol, respectively, as the unique carbon source. Each culture growing within various 

media or temperatures was collected at three gradually higher growth levels: middle log phase, 

late log phase and stationary phase. All of collected cultures were tested by tube β-galactosidase 

assays to gain the amount of vfr expression. 

 

2.7 Statistical methods  

        The two datasets, temperature-data and carbon-source-data, were analyzed by several 

methods. The relationships between the dependent variable (the amount of vfr expression) and all 

independent variables were first roughly estimated by the linear regression model after naming all 

dummy variables. In addition, robust regression approach was used to fit the enhanced model 
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when outliers appeared in the data. 

        As the core methods in this study, a set of nonparametric tests was utilized. Tukey’s test for 

multiple comparisons came after performing ANOVA. The Ansari-Bradley test and the Lepage 

test were conducted by R for two-sample scale and scale-location analysis, respectively.  

 

 

 

Chapter 3: Results of effects of temperature on vfr gene expression and regulation 

 

        This chapter provided selective results of several analyses related to effects of temperature 

on vfr gene expression and regulation.  

        The total sample size for temperature set was 144 observations assigned to 4 strains in 3 

temperatures in 3 growth levels, and each group had 4 observations collected from two 

independent times. The total sample size for carbon source set was 288 observations assigned to 

4 strains in 10 medias in 3 growth levels. Since the total amount of compared carbon source 

supplemented NCE medias are too much to collect all data in one time, data collection were 

completed from three times, each time just contained one sort of three concentrated carbon 

source added NCE medias. And L broth, which was the controlled media, was repeated in each 

time’s collection. Hence, for strains grown in NCE media supplemented Glucose, Succinate and 

Glycerol as the sole carbon sources, each group has 6 observations collected from three growth 

levels. For strains grown in L broth, each group has 18 observations collected in three repeated 

times. 
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3.1 Overall description 

        The descriptive statistics were shown in Table 1 as followed, including names of strains, 

temperatures and growth levels, median of the amount of vfr gene expression, mean +/- standard 

error, minimum/maximum by 36 groups. Also, the data plot classified by 

time*temperature*strain treatment was presented in Figure 1 Appendix 1. Apparently, the largest 

median of vfr expression was produced by ssrA mutant in stationary phase at 30℃. The smallest 

median of vfr expression was generated via the wild type strain in middle-log phase at 42℃. In 

addition, the boxplots in Figure 1, 2 and 3 gave more visualized details. When strains were 

inoculated under three different temperatures, vfr expression under 42℃ had the smallest median 

and mean while 30℃ had the largest ones and 37℃ was in the middle. Among three different 

growth levels, the stationary phase had the greatest mean and median and the middle-log phase 

had the least. Among four strains, the order of the means and medians of vfr expression in four 

strains was ssrA mutant > gacA mutant > gacS mutant > wild type, indicating that mutations of 

ssrA, gacS and gacA genes will induce vfr expression in Pseudomonas aeruginosa. 

Corresponding to the previous results, the amplified vfr gene expressions in three mutants in all 

temperatures showed that ssrA, gacS and gacA are three putative repressors of vfr that down-

regulated vfr expression. 

 

Table 1: Descriptive Table for temperature-effect of vfr regulation 
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Time Temp Strain N Median Mean Std Error Minimum Maximum 

Late-log High WT 4 708.35 721.69 15.36 702.48 767.59 

gacA  4 1438.78 1452.32 134.79 1216.06 1715.69 

gacS 4 1217.37 1207.73 19.77 1154.00 1242.16 

ssra 4 2514.30 2521.62 149.46 2176.57 2881.31 

Low WT 4 1111.31 1113.35 5.10 1104.63 1126.14 

gacA 4 1956.68 1950.20 19.77 1896.41 1991.03 

gacS 4 1615.45 1612.72 38.39 1539.20 1680.81 

ssra 4 2348.40 2362.20 103.48 2165.68 2586.31 

Optimal WT 4 1151.97 1165.99 59.39 1037.95 1322.05 

gacA 4 2094.17 2078.57 43.17 1973.91 2152.01 

gacS 4 1580.87 1556.50 47.25 1421.84 1642.39 

ssra 4 2028.96 2053.46 42.66 1984.01 2171.93 

Mid-log High WT 4 311.35 311.25 1.74 307.05 315.28 

gacA 4 721.75 725.11 13.04 697.90 759.04 

gacS 4 446.62 445.91 3.05 439.18 451.20 

ssra 4 1306.35 1290.11 89.34 1071.98 1475.78 

Low WT 4 906.44 891.10 25.25 819.91 931.62 

gacA 4 1469.45 1466.97 6.79 1449.65 1479.34 

gacS 4 1151.23 1153.07 19.91 1112.27 1197.56 

ssra 4 1928.89 1932.94 53.47 1808.29 2065.68 

Optimal WT 4 957.07 949.07 19.72 900.67 981.47 

gacA 4 1610.43 1624.56 26.09 1578.04 1699.36 

gacS 4 1437.49 1413.62 30.72 1322.50 1456.97 
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Time Temp Strain N Median Mean Std Error Minimum Maximum 

ssra 4 1529.11 1534.20 39.04 1451.78 1626.81 

Stationary High WT 4 1048.17 1049.86 22.69 996.84 1106.27 

gacA 4 1993.90 2002.84 100.26 1815.69 2207.88 

gacS 4 1367.40 1365.40 16.46 1332.09 1394.71 

ssra 4 2938.83 2932.61 130.08 2613.13 3239.66 

Low WT 4 1398.31 1399.90 6.89 1386.01 1416.98 

gacA 4 3044.31 2886.51 228.86 2214.94 3242.48 

gacS 4 2118.48 2120.89 56.38 1986.01 2260.60 

ssra 4 3321.81 3295.72 56.16 3148.68 3390.57 

 

 

Optimal 

WT 4 1475.67 1479.41 26.48 1426.61 1539.69 

gacA 4 2570.35 2583.57 25.67 2541.56 2652.01 

gacS 4 1968.79 1981.53 20.81 1947.58 2040.97 

ssra 4 2615.85 2629.39 76.15 2477.06 2808.80 

         

Figure 1: Boxplot for vfr gene expression under 3 temperatures 
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Figure 2: Boxplot for vfr gene expression under 4 strains under all temperatures 

 

 

Figure 3: Boxplot for vfr gene expression under 3 growth levels under all temperatures 
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3.2 Linear regression 

        At the first step, the full linear regression model was fitted by strains, temperature-treatment 

and growth levels, and all of them were coded as indicator variables since they were categorical 

variables. As displayed in Table 2, the ANOVA F test had a significant result, indicating that the 

model was fitted. From Table 3, we noticed that R-Square was 0.872169. From the linear 

regression model estimate in Table 4, we noticed that 1) wild type strain and gacS mutant had the 

least and second least vfr expression, respectively, while ssrA mutant and gacA mutant had the 

most and second most vfr expression, 2) the high-temperature-treatment had decreased vfr 

expression and low-temperature-treatment had increased vfr expression, 3) the lowest growth 

level had the least vfr expression and highest growth level had the most vfr expression, as we 

expected. The P value for low-temperature-treatment was near 0.05 but still not significant. 

 

Table 2: ANOVA table for the temperature effect 

Source DF 

Sum of 

Squares 

Mean 

Square F Value Pr > F 

Model 7 63763898.02 9109128.29 132.56 <.0001 

Error 136 9345702.06 68718.40   

Corrected Total 143 73109600.08    

 

Table 3: R-square of the liner regression for the temperature effect 

R-Square Coeff Var Root MSE data Mean 

0.872169 15.92441 262.1419 1646.164 

 

Table 4: The liner regression for the temperature effect 
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Parameter Estimate 

Standard 

Error t Value Pr > |t| 

Intercept 2889.380729 61.78744815 46.76 <.0001 

Strain    WT -1274.513320 61.78744815 -20.63 <.0001 

Strain    gacA -420.176871 61.78744815 -6.80 <.0001 

Strain    gacS -854.987341 61.78744815 -13.84 <.0001 

Strain    ssra 0.000000 . . . 

Temp    High -418.616711 53.50949974 -7.82 <.0001 

Temp    Low 94.643160 53.50949974 1.77 0.0792 

Temp   Opt 0.000000 . . . 

Time    Late -494.274546 53.50949974 -9.24 <.0001 

Time    Mid -999.142770 53.50949974 -18.67 <.0001 

Time    Stat 0.000000 . . . 

 

        In addition, robust regression model was applied to raise the robustness and power for the 

general regression model as the appearance of outliers. Table 5 verified the superiority of the 

robust regression model because of the advanced R-square value. Table 6 presented the modified 

estimates via robust regression and other related descriptive statistics. Analogous to P value of 

low-temperature-treatment in Table 4, in Table 6 it became larger and kept the insignificant 

difference. Furthermore, Figure 4 and 5 exposed that observation 48 was an apparent outlier. 

From Figure 6, we concluded that the normal assumption was not satisfied because of its heavy 

tail and distinguished curve from that of the normal distribution. Also, the QQ-plot (Figure 7) 

further verified the unsatisfied assumption of normality. 
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Table 5: R-square of the robust regression for the temperature effect 

Statistic Value 

R-Square 0.7247 

AICR 165.3385 

BICR 192.5779 

Deviance 7140040 

 

Table 6: Parameter Estimates of the robust regression for the temperature effect 

Parameter  Estimate 

Standard 

Error 

95% Confidence 

Limits 

Chi-

Square Pr > ChiSq 

Intercept  2767.973 55.5702 2659.05 2876.889 2481.07 <.0001 

Strain WT -1147.73 55.5702 -1256.6 -1038.8 426.57 <.0001 

Strain gacA -318.958 55.5702 -427.87 -210.04 32.94 <.0001 

Strain gacS -733.814 55.5702 -842.72 -624.89 174.38 <.0001 

Strain ssra 0.0000 . . . . . 

Temp High -503.609 48.1252 -597.93 -409.28 109.51 <.0001 

Temp Low 57.2665 48.1252 -37.05 151.59 1.42 0.2341 

Temp Opt 0.0000 . . . . . 

Time Mid -921.295 48.1252 -1015.6 -826.97 366.48 <.0001 

Time Late -463.182 48.1252 -557.50 -368.85 92.63 <.0001 

Time Stat 0.0000 . . . . . 
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Figure 4: Outlier and leverage diagnostics for response variable of the temperature effect 

 

 

Figure 5: Leverage diagnostics for response variable of the temperature effect 
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Figure 6: Distribution of residuals for response variable of the temperature effect 

 

 

Figure 7: QQ-plot of residuals for response variable of the temperature effect 
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3.3 Nonparametric analysis 

        In this section, results are grouped by several nonparametric approaches. Primarily, 

ANOVA were executed to identify the significances of all variables as well as their interactions. 

Primarily, a model without interactions was fitted by ANOVA. As shown in Table 7, the P value 

of the “colonies” variable revealed that there is no difference between different colonies at each 

time measurement. Hence, we eliminated this variable, and started to explore the interaction 

between three variables, which showed that all the interactions were significant and needed to be 

included, as presented in Table 8. In addition, because of the characteristics of high efficiency 

and robustness to outliers in the response space (John Kloke and Joseph McKean, 2012), rank-

based regression models were applied to fit the same model via ranking the residuals. 

Consequently, all of the P values were also presented to be significant in this rank-based model 

in Table 9. Furthermore, we performed the drop in dispersion tests by dropping one factor each 

time, to reconfirm the significance of each variable and their interactions. According to the 

results presented in Table 10 and 11 that all of P values were smaller than 0.05, we concluded 

that temperatures, strains and growth levels mutually affected vfr expression in P. aeruginosa. 

 

Table 7: The model of temperatures without interaction by GLM procedure 

Source DF Type I SS Mean Square F Value Pr > F 

Colonies 1 45.04 45.04 0.00 0.9797 

Strain 3 32642002.05 10880667.35 157.17 <.0001 

Temp 2 7162127.57 3581063.78 51.73 <.0001 

Time 2 23959768.40 11979884.20 173.05 <.0001 
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Table 8: The model of temperatures with interaction by GLM procedure 

Source DF Type I SS Mean Square F Value Pr > F 

Strain 3 32642002.05 10880667.35 566.30 <.0001 

Temp 2 7162127.57 3581063.78 186.38 <.0001 

Time 2 23959768.40 11979884.20 623.51 <.0001 

Temp*Time 4 1261726.32 315431.58 16.42 <.0001 

Strain*Time 6 2344125.70 390687.62 20.33 <.0001 

Strain*Temp 6 3114815.95 519135.99 27.02 <.0001 

strain*temp*time 12 549947.86 45828.99 2.39 0.0090 

Residuals 108 2075086 19214   

 

Table 9: The model of temperature with interaction by rank-based GLM procedure 

Source DF Type I SS Mean Square F Value Pr > F 

Strain 3 121931    40644 708.332 <.0001 

Temp 2 27798 13899 242.227   <.0001 

Time 2 71673    35837 624.552   <.0001 

Temp * Time 4 2243 561 9. 773 <.0001 

Strain* Time 6 4858      810   14.112 <.0001 

Strain* Temp 6 8775     1462   25.487   <.0001 

Strain* Temp* Time 12 5343 445 7. 760 <.0001 

Residuals 108 6197 57   
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Table 10: The full model of temperature in the Drop test 

Source DF Type I SS RSS AIC F Value Pr > F 

Strain 3 6939298 9014384 1656.4 120.3876 <.0001 

Temp 2 875388 2950474 1497.6 22.7802 <.0001 

Time 2 3286000 5361086 1583.6 85.5116 <.0001 

Temp*Time 4 358110 2433196 1465.8 4.6595 .0002 

Strain*Time 6 1207304 3282390 1504.9 10.4726 <.0001 

Strain*Temp 6 1442762 3517849 1514.9 12.5150 <.0001 

Temp*Strain*time 54 549948 2625034 1460.8 2.3852 0.009 

 

Table 11: Drop in Dispersion Test of temperature data 

Model : data = temp + time + strain + temp*time + temp*strain + strain*time 

F-Statistic p-value 

580.94 <.0001 

Model : data = temp + time + strain + temp*time + temp*strain  

F-Statistic p-value 

22.597        0.000 

Model : data = temp + time + strain + temp*time + strain*time 

F-Statistic p-value 

24.901        0.000 

Model : data = temp + time + strain + temp*strain + strain*time 

F-Statistic p-value 

17.084 <.0001 

Model : data = strain*time 

F-Statistic p-value 

      37.12         0.000 
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Model : data = temp*strain 

F-Statistic p-value 

66.519        0.000 

Model : data = temp*time 

F-Statistic p-value 

64.846        0.000 

 

 

3.3.1 Effects of temperatures on vfr gene expression 

        Robust Tukey’s method and rank-based Tukey’s test, both characterized as the analyses 

with the higher power and robustness, were executed for the study of temperatures on vfr gene 

expression. Compared with the output from the general Tukey’s test displayed in Table 12, the 

output from the robust Tukey in Table 13 had the corresponding outcome as the general one, 

revealing that there is no significant difference of vfr expression in P. aeruginosa between 

37℃ versus 30℃ or 42℃. 

        Moreover, in order to explore the more specific effects of temperature on vfr gene 

expression at different growth levels, comparisons of vfr expression in the wild type strain at 

three temperatures was categorized by time. Before Tukey’s test, rank transformation was 

performed to take more robustness. Subsequently, multiple comparisons of 37℃ versus 30℃ / 

42℃ were tested. The rank-based Tukey’s results of each test were unified in Table 14. In mid-

log and late-log phases, significant differences appeared between 42℃ and 37℃, but not between 

30℃ nd 37℃. However, in the highest growth level stationary phase, there were significant 

differences of vfr gene expression between the 42℃/30℃ and 37℃. In the biological angle, the 

results indicated that in P. aeruginosa, culturing at low temperature (30℃) did not affect the vfr 
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expressions until the stationary phase. However, growing at the high temperature (42℃), had 

effects on the vfr expressions through the whole growth. 

 

Table 12: Tukey’s test for 37℃ versus 30℃ / 42℃ comparisons of vfr expression 

 

 

 

 

 

Table 13: Robust Tukey’s test for 37℃ versus 30℃ / 42℃ comparisons of vfr expression 

 

 

 

 

 

Table 14: Rank-based Tukey’s test for 37℃  versus 30℃ / 42℃ comparisons of vfr expression  

Strain Time Temperature 

Comparison 

Difference Between 

Rank Means 

Simultaneous 95% 

Confidence Limits 

 

WT Mid-log Low  - Opt -3.000 -6.318 0.318  

High - Opt -7.500 -10.818 -4.182 *** 

Late-log Low  - Opt -2.000 -5.823 1.823  

High - Opt -7.000 -10.823 -3.177 *** 

Stationary Low  - Opt -4.0000 -6.3862 -1.6138 *** 

High - Opt -8.0000 -10.3862 -5.6138 *** 

 

Strain Temperature 

Comparison 

Estimate St Err t value Pr(>|t|)     

 

WT 

Opt - Low 503.885 195.242 2.581 0.3016 

Opt - High 63.369 195.242 0.325 1.0000 

Strain Temperature 

Comparison 

Estimate St Err Lower 

Bound CI 

Upper 

Bound CI 

 

WT 

Opt - Low  272.19888 180.5028      -328.4387       872.83646 

Opt - High -417.7899 180.5028     -1018.428       182.84767 
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Depending on the principle of the Nemenyi test claimed in the first chapter, rank transformation 

was conducted first before the test. Differences between the ranks of each group were provided 

as the test statistics. The critical value was computed by 𝑧!∗ [
!(!!!)
!"

]!/!( !
!!
+ !

!!
)!/!, where 𝛼∗ = 

𝛼/(𝑘 − 1) =0.5/(3− 1), N =12, 𝑛! = 𝑛! = 𝑛! = 4.Since all the test statistics were greater than 

the critical value in Table 16, we concluded that the vfr expressions at the low and high 

temperatures were significantly different from those at the optimal temperatures through the 

whole growth. 

Table 15: Nemenyi test for 37℃ versus 30℃ / 42℃ comparisons of vfr expression 

Strain Time Temperature 

Comparison 

Difference 

Between 

Rank  

Critical 

Value 

 

 

 

WT 

 

Mid-log Opt - Low 12  

 

 

6.12 

*** 

Opt - High  30 *** 

Late-log Opt - Low 8 *** 

Opt - High 28 *** 

Stationary Opt - Low 16 *** 

Opt - High 32 *** 

 

        The outputs of all multiple comparisons by the Ansari-Bradley test were combined into 

Table 17. As mentioned before, this analysis was applied for testing the scale of each compared 

population. Thus, the results indicated that the variance of vfr expression in P. aeruginosa at 

37℃ was different from the variance at 30℃ since late-log phase. However, at the first growth 

level mid-log phase, vfr expressions had an almost equivalent variance between the two 

temperatures. Meanwhile, vfr expression in P. aeruginosa had different variances between 37℃  
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and 42℃, from mid-log phase to late-log phase, but did not persist at the end, which was the 

stationary phase.  

 

Table 16: Ansari-Bradley test for 37℃ versus 30℃ / 42℃ comparisons of vfr expression 

Strain Time Temperature 

Comparison 

P Value  

 

 

WT 

Mid-log Opt - Low 1  

Opt - High 0.01796048 *** 

Late-log Opt - Low 0.01796048 *** 

Opt - High 0.08188793 *** 

Stationary Opt - Low 0.01796048 *** 

Opt - High 0.5541131    

 

We tested comparisons of vfr expression of different temperatures by location, and we also tested 

the comparisons by scale. Now the next analysis will inspect them by both location and scale.  In 

terms of combination, Lepage method is functioned as identifying if two populations both have 

the same rank mean and the same variance or not. Depending on the outputs of Lepage analysis, 

which is computed by R in Table 19, none of the comparisons were significantly different, 

suggesting that temperature did not simultaneously have an effect on vfr expression and its range 

in P. aeruginosa.                                                                                      

 

Table 17: Lepage test for 37℃ versus 30℃ / 42℃ comparisons of vfr expression 

Strain Time Temperature 

Comparison 

P Value  
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WT 

Mid-log Opt - Low 0.7643343  

Opt - High 0.8464817  

Late-log Opt - Low 0.1985595  

Opt - High 0.8464817  

Stationary Opt - Low 0.8464817  

Opt - High 0.8464817  

 

 

3.3.2 Effects of temperatures on vfr gene regulation 

        According to the high efficiency and robustness, the general Tukey’s method was replaced 

by the Robust and rank-based Tukey’s test, to study the effects of temperatures on vfr gene 

regulation. The output of the general Tukey’s test was revealed in Table 20, and the output of the 

robust Tukey’s approach was reflected in Table 21. Compared with the traditional Tukey’s 

method, the Robust Tukey had greatly different results on most tests. Depending on the Robust 

Tukey’s analysis, three mutants had significantly different vfr expression from those in wild type 

at three temperatures, except for gacA mutant at 30℃ and ssra mutant at 30℃. 

        Subsequently, in order to investigate the more specific effects of temperatures on vfr gene 

regulation in special growth levels, vfr expressions’ comparisons at three temperatures were 

grouped by three growth levels. Consequences of the rank-based Tukey’s test were all integrated 

into Table 22. After rank transformation, each comparison was specified by time and 

temperature first, and then tested by the rank-based Tukey’s methods. The results exposed that 

all comparisons had significant differences since none of their 95% confidence intervals covered 

zero. In the biological viewpoint, the consistent results revealed that gacA, gacS and ssrA genes 

are vfr regulators inhibiting vfr expressions in P. aeruginosa through the whole growth, whether 
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the temperature is 30℃, 37℃ or 42℃. Therefore, temperature did not affect tmRNA, GacA and 

GacS dependent vfr regulation. 

 

Table 18: Tukey’s test for WT versus mutants’ comparisons under three temperatures 

Temperature Strain 

Comparison 

Estimate St Err t value Pr(>|t|)  

 

Low 

 

WT – ssra  -1395.498 195.242 -7.148 <0.01 *** 

WT - gacA -966.442 195.242 -4.950 <0.01 *** 

WT - gacS -494.110 195.242 -2.531 0.3311  

 

Opt 

WT - ssra -874.198 195.242 -4.478 <0.01 *** 

WT - gacA -897.411 195.242 -4.596 <0.01 *** 

WT - gacS -452.394 195.242 -2.317 0.4697  

 

High 

WT - ssra -1553.844 195.242 -7.959 <0.01 *** 

WT - gacA -699.157 195.242 -3.581 0.0235 * 

WT - gacS -312.074 195.242 -1.598 0.9068  

 

Table 19: Robust Tukey’s test for WT versus mutants’ comparisons under three 

temperatures 

Temperature Strain 

Comparison 

Estimate St Err Lower 

Bound CI 

Upper 

Bound CI 

 

 

Low 

 

WT - ssra 620.80519 180.5028 20.16760 1221.44277 *** 

WT - gacA -368.80085 180.5028 -969.43843 231.83674  

WT - gacS 748.82471 180.5028 148.18713 1349.46229 *** 
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Opt 

WT - ssra 9.32777 180.5028 -591.30981 609.96536  

WT - gacA -824.95251 180.5028 -1425.5901 -224.31493 *** 

WT - gacS -702.75752 180.5028 -1303.3951 -102.1199 *** 

 

High 

WT - ssra 1348.14157 180.5028 747.50399 1948.77916 *** 

WT - gacA 883.81219 180.5028 283.17461 1484.44978 *** 

WT - gacS 943.36707 180.5028 342.72948 1544.00465 *** 

 

Table 20: Rank-based Tukey’s test for WT versus mutants’ comparisons under three 

temperatures 

 

Temperature 

 

Time 

Strain 

Comparison 

Difference 

Between 

Rank Means 

Simultaneous 

95% Confidence 

Limits 

 

 

 

 

 

 

Low 

 

Mid-Log 

ssra - WT 12.0000 9.5509 14.4491 *** 

gacA - WT 8.0000 5.5509 10.4491 *** 

gacS - WT 4.0000 1.5509 6.4491 *** 

 

Late-Log 

ssra - WT 12.0000 9.5509 14.4491 *** 

gacA - WT 8.0000 5.5509 10.4491 *** 

gacS - WT 4.0000 1.5509 6.4491 *** 

 

Stationary 

ssra - WT 12.0000 9.5509 14.4491 *** 

gacA - WT 8.0000 5.5509 10.4491 *** 

gacS - WT 4.0000 1.5509 6.4491 *** 

 

 

 

 

 

Optimal 

 

Mid-Log 

ssra - WT 11.250 7.436 15.064 *** 

gacA - WT 8.500 4.686 12.314 *** 

gacS - WT 4.250 0.436 8.064 *** 

 

Late-Log 

ssra - WT 10.000 6.051 13.949 *** 

gacA - WT 10.000 6.051 13.949 *** 

gacS - WT 4.000 0.051 7.949 *** 

 

Stationary 

ssra - WT 10.000 6.051 13.949 *** 

gacA - WT 10.000 6.051 13.949 *** 
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gacS - WT 4.000 0.051 7.949 *** 

 

 

 

 

High 

 

Mid-Log 

ssra - WT 12.0000 9.5509 14.4491 *** 

gacA - WT 8.0000 5.5509 10.4491 *** 

gacS - WT 4.0000 1.5509 6.4491 *** 

 

Late-Log 

ssra - WT 12.000 8.388 15.612 *** 

gacA - WT 7.000 3.388 10.612 *** 

gacS - WT 5.000 1.388 8.612 *** 

 

Stationary 

ssra - WT 12.0000 9.5509 14.4491 *** 

gacA - WT 8.0000 5.5509 10.4491 *** 

gacS - WT 4.0000 1.5509 6.4491 *** 

 

As mentioned above, the Nemenyi test is also a rank-based analysis that required a rank 

transformation primarily. And then differences between entire ranks of each group were 

computed as the test statistics. The critical value of comparisons was computed by 

𝑧!∗ [
!(!!!)
!"

]!/!( !
!!
+ !

!!
)!/! , where 𝛼∗  = 𝛼/(𝑘 − 1)  =0.05/(4− 1) , N = 16, 𝑛! = 𝑛! = 𝑛! =

𝑛! = 4.Outputs of each comparison were present in Table 24. The results revealed that all the 

differences between total ranks of each population were greater than the critical value, so neither 

growing at the low temperature nor at the high temperature would affect tmRNA, GacS and 

GacA dependent vfr regulations in P. aeruginosa.  

 

Table 21: Nemenyi test for WT versus 3 mutants comparisons of vfr expression 

Temperature Time Strain 

Comparison 

Difference 

Between 

Rank 

Critical 

Value 

 

 

 

 

Mid-Log 

ssra - WT 48  

 

*** 

gacA - WT 32 *** 
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Low 

gacS - WT 16  

 

 

 

 

7.17 

*** 

 

Late-Log 

ssra - WT 48 *** 

gacA - WT 32 *** 

gacS - WT 16 *** 

 

Stationary 

ssra - WT 48 *** 

gacA - WT 32 *** 

gacS - WT 16 *** 

 

 

 

 

 

Optimal 

 

Mid-Log 

ssra - WT 45 *** 

gacA - WT 34 *** 

gacS - WT 17 *** 

 

Late-Log 

ssra - WT 40 *** 

gacA - WT 40 *** 

gacS - WT 16 *** 

 

Stationary 

ssra - WT 40 *** 

gacA - WT 40 *** 

gacS - WT 16 *** 

 

 

 

 

High 

 

Mid-Log 

ssra - WT 48 *** 

gacA - WT 32 *** 

gacS - WT 16 *** 

 

Late-Log 

ssra - WT 48 *** 

gacA - WT 28 *** 

gacS - WT 20 *** 

 

Stationary 

ssra - WT 48 *** 

gacA - WT 32 *** 

gacS - WT 16 *** 

 

        All the results of Ansari-Bradley analyses were computed by R and contained within Table 

25. Some comparisons of variances of vfr expression had shifted results at low or high 

temperature, when compared with those at the optimal temperature. Cultivating at 42℃ affected 
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the variances of tmRNA, GacS and GacA controlled vfr regulation of all growth levels, except 

that the variance of the GacA regulated expression at the stationary phase in P. aeruginosa. 

Meanwhile, culturing at 30℃ affacted the variances of the GacS regulated vfr expression at the 

mid-log phase, and both tmRNA, and GacS regulated vfr expressions at the late-log phase in P. 

aeruginosa.  

 

Table 22: Ansari-Bradley test for WT versus mutants’ comparisons of vfr expression 

Temperature Time Strain Comparison P Vaule  

 

 

 

 

 

Low 

 

Mid-Log 

ssra - WT 1  

gacA - WT 0.07592696 *** 

gacS - WT 0.5541131  

 

Late-Log 

ssra - WT 0.01796048 *** 

gacA - WT 1  

gacS - WT 0.01796048 *** 

 

Stationary 

ssra - WT 0.01796048 *** 

gacA - WT 0.01796048 *** 

gacS - WT 0.07592696  

 

 

 

 

 

Optimal 

 

Mid-Log 

ssra - WT 0.07592696  

gacA - WT 0.5541131  

gacS - WT 0.2367236  

 

Late-Log 

ssra - WT 1  

gacA - WT 0.5541131  

gacS - WT 0.5541131  

 

Stationary 

ssra - WT 0.01796048 *** 

gacA - WT 0.03038282 *** 

gacS - WT 0.2367236  

  ssra - WT 0.01796048 *** 
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High 

Mid-Log gacA - WT 0.01796048 *** 

gacS - WT 0.01796048 *** 

 

Late-Log 

ssra - WT 0.08188793  

gacA - WT 0.08188793  

gacS - WT 0.3843454 *** 

 

Stationary 

ssra - WT 0.07592696  

gacA - WT 0.01796048 *** 

gacS - WT 1  

 

Lepage was finally applied to test two populations by both location and scale, whose results were 

shown in Table 27. Since none of the tests had a significantly different output, we concluded that 

temperature did not synchronously affect tmRNA, GacA and GacS controlled vfr regulations as 

well as their variance in P. aeruginosa. 

 

Table 23: Lepage test for WT versus 3 mutants comparisons of vfr expression 

Temperature Time Strain Comparison P Vaule  

 

 

 

 

 

Low 

 

Mid-Log 

ssra - WT 0.8464817  

gacA - WT 0.8464817  

gacS - WT 0.8464817  

 

Late-Log 

ssra - WT 0.8464817  

gacA - WT 0.8464817  

gacS - WT 0.8464817  

 

Stationary 

ssra - WT 0.8464817  

gacA - WT 0.8464817  

gacS - WT 0.8464817  

 

 

 

Mid-Log 

ssra - WT 0.8464817  

gacA - WT 0.8464817  
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Optimal 

gacS - WT 0.8464817  

 

Late-Log 

ssra - WT 0.8464817  

gacA - WT 0.8464817  

gacS - WT 0.8464817  

 

Stationary 

ssra - WT 0.8464817  

gacA - WT 0.8464817  

gacS - WT 0.8464817  

 

 

 

 

High 

 

Mid-Log 

ssra - WT 0.8464817  

gacA - WT 0.8464817  

gacS - WT 0.8464817  

 

Late-Log 

ssra - WT 0.8464817  

gacA - WT 0.8464817  

gacS - WT 0.8464817  

 

Stationary 

ssra - WT 0.8464817  

gacA - WT 0.8464817  

gacS - WT 0.8464817  

 

 

 

Chapter 4: Results of effects of carbon source on vfr gene expression and regulation 

 

        In this section, discussed results were related to effects of carbon sources on vfr gene 

expression and regulation.  

 

4.1 Overall description 

        The descriptive statistics were shown in Table 28 as follows, including names of strains, 

types of carbon sources with concentration gradients and growth levels, median of the amount of 
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vfr gene expression, mean +/- standard error, minimum/maximum in 120 groups. These plots 

classified by each time*strain*carbon treatment were also presented in Figure 2 Appendix 1. 

Obviously, the largest median of vfr expression was produced by ssrA mutant at the stationary 

phase when grown in NCE media supplemented 20mM succinate as the sole carbon source. The 

smallest median of vfr expression was produced by the wild type strain at the middle-log phase 

cultured in NCE media supplemented 1mM glucose. In addition, the boxplot in Figure 8, 9 and 

10 gave more visualized details. When P. aeruginosa were cultivated in ten medias, the largest 

median of vfr expression appeared in the growth of NCE media with 10% glycerol, while 

cultivation in L broth had the smallest median of vfr expression. Among three different growth 

levels, the stationary phase had the greatest mean and median of vfr expression and the middle-

log phase had the least one. Among four strains, the means and medians of vfr expression was 

also arranged as ssrA mutant > gacA mutant > gacS mutant > wild type, which further indicated 

that mutations of ssrA, gacS and gacA genes induced vfr expression in P. aeruginosa. Again, the 

enlarged vfr gene expression in three mutants reconfirmed that ssrA, gacS and gacA are 

repressors that repress vfr gene expression. 

 

Table 24: Descriptive Table for carbon-source-effect on vfr regulation 

Time Strain Carbon N Median Mean Std Error Minim Maximum 

Mid-Log WT 1%-Gly 2 785.01 785.01 1.31 783.70 786.31 

10%-Gly 2 1561.24 1561.24 13.84 1547.40 1575.08 

10mM-Glu 2 975.77 975.77 14.88 960.88 990.65 

1mM-Glu 2 659.15 659.15 10.03 649.12 669.17 

2%-Gly 2 901.04 901.04 0.00 901.04 901.04 
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20mM-Suc 2 1107.59 1107.59 16.05 1091.53 1123.64 

2mM-Glu 2 899.47 899.47 31.75 867.72 931.22 

2mM-Suc 2 1034.40 1034.40 23.64 1010.76 1058.04 

4mM-Suc 2 1058.38 1058.38 27.39 1030.99 1085.77 

Lb 6 907.59 913.54 51.39 768.36 1077.76 

gacA 

Mutant 

1%-Gly 2 1251.43 1251.43 3.05 1248.37 1254.48 

10%-Gly 2 2235.14 2235.14 12.92 2222.22 2248.06 

10mM-Glu 2 1290.05 1290.05 47.16 1242.89 1337.22 

1mM-Glu 2 878.59 878.59 5.60 873.00 884.19 

2%-Gly 2 1418.62 1418.62 0.00 1418.62 1418.62 

20mM-Suc 2 1451.63 1451.63 6.78 1444.85 1458.42 

2mM-Glu 2 1170.70 1170.70 42.06 1128.64 1212.76 

2mM-Suc 2 1355.81 1355.81 0.00 1355.81 1355.81 

4mM-Suc 2 1445.33 1445.33 13.96 1431.36 1459.29 

Lb 6 1176.11 1238.52 55.39 1113.16 1419.84 

gacS 

Mutant 

1%-Gly 2 1118.13 1118.13 20.26 1097.88 1138.39 

10%-Gly 2 2117.84 2117.84 21.57 2096.27 2139.41 

10mM-Glu 2 1180.36 1180.36 3.15 1177.21 1183.51 

1mM-Glu 2 820.88 820.88 10.01 810.87 830.89 

2%-Gly 2 1298.26 1298.26 14.94 1283.33 1313.20 

20mM-Suc 2 1317.34 1317.34 19.60 1297.73 1336.94 

2mM-Glu 2 1097.63 1097.63 3.85 1093.78 1101.48 

2mM-Suc 2 1211.79 1211.79 17.98 1193.82 1229.77 

4mM-Suc 2 1286.60 1286.60 36.97 1249.63 1323.57 
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Lb 6 1104.25 1144.23 42.87 1036.49 1285.29 

ssra 

Mutant 

1%-Gly 2 2516.54 2516.54 36.57 2479.97 2553.12 

10%-Gly 2 4741.80 4741.80 250.86 4490.94 4992.66 

10mM-Glu 2 1473.28 1473.28 10.62 1462.67 1483.90 

1mM-Glu 2 1041.39 1041.39 26.63 1014.76 1068.02 

2%-Gly 2 2804.32 2804.32 7.77 2796.55 2812.09 

20mM-Suc 2 2321.72 2321.72 0.00 2321.72 2321.72 

2mM-Glu 2 1276.79 1276.79 30.61 1246.17 1307.40 

2mM-Suc 2 2152.91 2152.91 12.23 2140.67 2165.14 

4mM-Suc 2 2305.58 2305.58 79.24 2226.35 2384.82 

Lb 6 1882.72 1949.43 158.00 1498.62 2477.99 

Late-Log WT 1%-Gly 2 1314.60 1314.60 1.19 1313.40 1315.79 

10%-Gly 2 1936.97 1936.97 40.62 1896.36 1977.59 

10mM-Glu 2 1740.93 1740.93 58.37 1682.57 1799.30 

1mM-Glu 2 1538.29 1538.29 30.46 1507.83 1568.76 

2%-Gly 2 1685.31 1685.31 4.86 1680.45 1690.18 

20mM-Suc 2 1784.47 1784.47 28.52 1755.95 1813.00 

2mM-Glu 2 1704.08 1704.08 13.61 1690.48 1717.69 

2mM-Suc 2 1406.59 1406.59 26.09 1380.51 1432.68 

4mM-Suc 2 1422.16 1422.16 36.26 1385.89 1458.42 

Lb 6 1335.03 1324.56 77.51 1107.23 1534.10 

gacA 

Mutant 

1%-Gly 2 1993.55 1993.55 19.26 1974.29 2012.81 

10%-Gly 2 2864.12 2864.12 14.94 2849.17 2879.06 

10mM-Glu 2 2306.05 2306.05 19.06 2287.00 2325.11 
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1mM-Glu 2 2021.62 2021.62 36.38 1985.24 2058.00 

2%-Gly 2 2480.78 2480.78 4.99 2475.79 2485.77 

20mM-Suc 2 2452.99 2452.99 30.53 2422.47 2483.52 

2mM-Glu 2 2232.64 2232.64 10.19 2222.45 2242.84 

2mM-Suc 2 1860.46 1860.46 23.35 1837.11 1883.80 

4mM-Suc 2 1901.27 1901.27 35.35 1865.93 1936.62 

Lb 6 1768.35 1806.36 136.21 1436.74 2201.63 

gacS 

Mutant 

1%-Gly 2 1767.70 1767.70 9.99 1757.71 1777.69 

10%-Gly 2 2485.77 2485.77 0.00 2485.77 2485.77 

10mM-Glu 2 2123.53 2123.53 4.51 2119.03 2128.04 

1mM-Glu 2 1848.28 1848.28 9.88 1838.40 1858.17 

2%-Gly 2 2256.16 2256.16 19.97 2236.20 2276.13 

20mM-Suc 2 2150.69 2150.69 41.99 2108.70 2192.68 

2mM-Glu 2 2049.97 2049.97 73.82 1976.15 2123.79 

2mM-Suc 2 1714.94 1714.94 32.63 1682.31 1747.57 

4mM-Suc 2 1736.70 1736.70 2.05 1734.64 1738.75 

Lb 6 1625.77 1657.62 118.02 1336.28 2011.18 

ssra 

Mutant 

1%-Gly 2 5714.29 5714.29 28.57 5685.71 5742.86 

10%-Gly 2 6168.18 6168.18 0.00 6168.18 6168.18 

10mM-Glu 2 3926.33 3926.33 43.12 3883.21 3969.45 

1mM-Glu 2 3706.74 3706.74 95.88 3610.85 3802.62 

2%-Gly 2 5907.28 5907.28 79.47 5827.81 5986.75 

20mM-Suc 2 4392.31 4392.31 64.47 4327.84 4456.78 

2mM-Glu 2 3828.14 3828.14 89.85 3738.29 3917.98 
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2mM-Suc 2 3226.62 3226.62 360.65 2865.96 3587.27 

4mM-Suc 2 3712.36 3712.36 290.72 3421.64 4003.09 

Lb 6 3150.36 3116.29 163.69 2632.83 3570.81 

Stationary WT 1%-Gly 2 2708.33 2708.33 40.06 2668.27 2748.40 

10%-Gly 2 2976.05 2976.05 18.04 2958.01 2994.08 

10mM-Glu 2 2667.05 2667.05 9.09 2657.96 2676.15 

1mM-Glu 2 2209.97 2209.97 0.00 2209.97 2209.97 

2%-Gly 2 2838.01 2838.01 87.34 2750.67 2925.35 

20mM-Suc 2 2502.89 2502.89 64.07 2438.82 2566.96 

2mM-Glu 2 2242.81 2242.81 5.13 2237.68 2247.94 

2mM-Suc 2 1825.62 1825.62 13.89 1811.73 1839.51 

4mM-Suc 2 1837.62 1837.62 5.21 1832.42 1842.83 

Lb 6 1985.14 1966.52 45.07 1822.92 2075.94 

gacA 

Mutant 

1%-Gly 2 4030.03 4030.03 18.80 4011.23 4048.84 

10%-Gly 2 4479.68 4479.68 6.25 4473.43 4485.93 

10mM-Glu 2 3497.62 3497.62 5.51 3492.11 3503.13 

1mM-Glu 2 2880.49 2880.49 24.72 2855.77 2905.21 

2%-Gly 2 4110.04 4110.04 35.03 4075.01 4145.07 

20mM-Suc 2 3217.50 3217.50 34.78 3182.72 3252.29 

2mM-Glu 2 2918.90 2918.90 24.12 2894.77 2943.02 

2mM-Suc 2 2194.74 2194.74 5.34 2189.40 2200.08 

4mM-Suc 2 2388.10 2388.10 14.30 2373.80 2402.40 

Lb 6 2638.89 2649.93 26.44 2575.21 2766.82 

gacS 1%-Gly 2 3673.45 3673.45 12.84 3660.60 3686.29 
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Mutant 10%-Gly 2 4094.89 4094.89 80.06 4014.83 4174.95 

10mM-Glu 2 3397.38 3397.38 1.64 3395.74 3399.02 

1mM-Glu 2 2834.50 2834.50 1.81 2832.69 2836.30 

2%-Gly 2 3965.53 3965.53 67.49 3898.04 4033.02 

20mM-Suc 2 2962.96 2962.96 17.64 2945.33 2980.60 

2mM-Glu 2 2868.17 2868.17 73.54 2794.63 2941.72 

2mM-Suc 2 2132.23 2132.23 80.16 2052.07 2212.39 

4mM-Suc 2 2309.57 2309.57 55.99 2253.58 2365.56 

Lb 6 2528.00 2504.21 27.83 2421.23 2576.74 

ssra 

Mutant 

1%-Gly 2 9048.62 9048.62 109.61 8939.01 9158.22 

10%-Gly 2 11526.25 11526.25 190.52 11335.73 11716.77 

10mM-Glu 2 10671.65 10671.65 123.77 10547.88 10795.42 

1mM-Glu 2 9757.23 9757.23 68.93 9688.30 9826.15 

2%-Gly 2 9790.77 9790.77 357.65 9433.12 10148.43 

20mM-Suc 2 14853.23 14853.23 388.09 14465.14 15241.32 

2mM-Glu 2 10134.20 10134.20 222.86 9911.34 10357.05 

2mM-Suc 2 8735.51 8735.51 60.18 8675.33 8795.68 

4mM-Suc 2 10374.90 10374.90 100.24 10274.66 10475.14 

Lb 6 8185.62 8112.63 486.50 6651.07 9549.23 
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Figure 8: Boxplot for vfr gene expression when fed with 10 carbon sources 

 

Figure 9: Boxplot for vfr gene expression of 4 strains in all medias 
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Figure 10: Boxplot for vfr gene expression under 4 strains in all medias 

 

 

4.2 Linear regression 

        Similar to the last section, the linear regression model was primarily fitted by variables of 

strains, temperature-treatment and growth levels, and each variable was coded as dummy 

variables respectively. As displayed in Table 29, the F test of ANOVA was significant, 

demonstrating that the model was fitted. From Table 30, R-Square was 0.872169. The linear 
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growth level had the least vfr expression and the highest growth level had the most vfr expression 

as expected. Since the P value in all three concentrated glucose supplemented medias as well as 

low and median concentrated succinate supplemented medias were not significantly different 

when compared with the control media L broth, shown in Table 31, it is concluded that the 

inductions of vfr expression were not considerable. 

 

Table 25: ANOVA table for the carbon sources effect 

 

 

 

 

 

 

Table 26: R-square of the liner regression for the carbon sources effect 

R-Square Coeff Var Root MSE Data Mean 

0.717265 47.18574 1332.779 2824.538 

 

Table 27: The liner regression for the carbon sources effect 

Parameter Estimate 

Standard 

Error t Value Pr > |t| 

Intercept 6741.557770 235.6042546 28.61 <.0001 

Strain WT -3825.174646 222.1298214 -17.22 <.0001 

Strain gacA mutant -3228.658049 222.1298214 -14.54 <.0001 

Source DF 

Sum of 

Squares 

      Mean      

Square F Value Pr > F 

Model 14 1230212100 87872293 49.47 <.0001 

Error 273 484929811 1776300   

Corrected Total 287 1715141910    
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Parameter Estimate 

Standard 

Error t Value Pr > |t| 

Strain gacS mutant -3386.238007 222.1298214 -15.24 <.0001 

Strain ssra mutant 0.000000 . . . 

Carbon 1%-glycerol 628.152928 314.1390061 2.00 0.0465 

Carbon 2%-glycerol 922.691764 314.1390061 2.94 0.0036 

Carbon 10%-glycerol 1567.008239 314.1390061 4.99 <.0001 

Carbon 1mM-glucose 151.107948 314.1390061 0.48 0.6309 

Carbon 2mM-glucose 336.638357 314.1390061 1.07 0.2848 

Carbon 10mM-glucose 572.182216 314.1390061 1.82 0.0696 

Carbon 2mM-succinate 38.981007 314.1390061 0.12 0.9013 

Carbon 4mM-succinate 282.894868 314.1390061 0.90 0.3686 

Carbon 20mM-succinate 1010.958310 314.1390061 3.22 0.0014 

Lb 0.000000 . . . 

Time   Late -2151.646112 192.3700683 -11.18 <.0001 

Time  Mid -3147.015020 192.3700683 -16.36 <.0001 

Time  Stat 0.000000 . . . 

 

        In addition, robust regression was applied to provide the robustness and power for the 

regression as the appearance of some outliers. In Table 32, the advanced R-square value given by 

robust regression was smaller, since the correctly treated outlier made the regression model less 

fitted. Table 33 presented the modified estimates of each variable and their related descriptive 

statistics, compared with the estimates in linear regression in Table 31. Unlike P value in Table 

31, some estimates were significant. Only 2mM-succinate, 4mM-succinate and 1mM-glucose 
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added medias had insignificant differences of vfr expression, compared with that of L broth. In 

addition, it was apparent that Figure 11 and 12 exposed that a lot of observations were outliers. 

From Figure 13, it was concluded that the normal assumption was not satisfied because of the 

heavy tail and sharp peak. Also, the QQ-plot (Figure 14) further verified that the distribution was 

far away from the assumption of normality. 

  

Table 28: R-square of the robust regression for the carbon sources effect 

Statistic Value 

R-Square 0.5804 

AICR 480.3470 

BICR 546.6177 

Deviance 50531225 

 

Table 29: Parameter Estimates of the robust regression for the carbon sources effect 

Parameter  Estimate 

Standard 

Error 95% Confidence Limits 

Chi-

Square 

Pr > Ch

iSq 

Intercept  3985.200 58.8995 3869.75 4100.64 4578.02 <.0001 

Strain WT -1842.30 55.5309 -1951.14 -1733.46 1100.65 <.0001 

Strain gacA  -1272.94 55.5309 -1381.78 -1164.10 525.47 <.0001 

Strain gacS -1419.58 55.5309 -1528.42 -1310.74 653.51 <.0001 

Strain ssra 0.0000 . . . . . 

Carbon 1%-

glyerol 

281.1467 78.5326 127.225 435.067 12.82 0.0003 
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Parameter  Estimate 

Standard 

Error 95% Confidence Limits 

Chi-

Square 

Pr > Ch

iSq 

Carbon 2%-

glycerol 

573.9854 78.5326 420.0643 727.9065 53.42 <.0001 

Carbon 10%-

glycero 

1095.566 78.5326 941.6449 1249.487 194.62 <.0001 

Carbon 1mM-

glucose 

131.8655 78.5326 -22.0556 285.7866 2.82 0.0931 

Carbon 2mM-

glucoe 

287.5792 78.5326 133.6581 441.5003 13.41 0.0003 

Carbon 10mM-

glucose 

499.2865 78.5326 345.3654 653.2076 40.42 <.0001 

Carbon 2mM-

succinate 

-27.1858 78.5326 -181.107 126.7353 0.12 0.7292 

Carbon 4mM-

succinate 

78.5399 78.5326 -75.3812 232.4610 1.00 0.3173 

Carbon 20mM-

succinate 

455.2493 78.5326 301.3282 609.1704 33.60 <.0001 

Carbon Lb 0.0000 . . . . . 

Time Mid -1624.52 48.0912 -1718.77 -1530.2 1141.08 <.0001 

Time Late -836.384 48.0912 -930.641 -742.12 302.47 <.0001 

Time Stat 0.0000 . . . . . 
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Figure 11: Outlier and leverage diagnostics for response variable of the carbon sources effect 

 

 

Figure 12: Leverage diagnostics for response variable of the carbon sources effect 
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Figure 13: Distribution of residuals for response variable of the carbon sources effect 

 

 

Figure 14: QQ-plot of residuals for response variable of the carbon sources effect 
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4.3 Nonparametric analysis 

        Corresponding to the last section, outcomes of this section are presented depending on the 

types of nonparametric analyses as well. Primarily, ANOVA were implemented to identify the 

significances of all variables. As shown in Table 34, the P value of the “colonies” variable was 

insignificant, which revealed that this variable should be disregarded. And then we discovered 

the interactions between all variables, and the results revealed that all of them were significant as 

shown in Table 35. In addition, analogous to the last section, the rank-based regression model, 

which was exceedingly efficient and robust when outliers appeared, was also performed to fit the 

same model. As shown in Table 36, all of the P values also were shown to be insignificant. 

Furthermore, we applied the drop in dispersion tests that verified the significance of each 

variable again, by dropping one each time, respectively. As the results presented in Table 37 and 

38 indicate, all P values were also less than 0.05, we concluded that carbon sources, strains and 

growth levels mutually affected the vfr expression in P. aeruginosa. 

 

Table 30: The model of carbon sources without interaction by GLM procedure 

Source DF Type I SS Mean Square F Value Pr > F 

Carbon 9 65712348.1 7301372.0 4.11 <.0001 

Strain 3 667730350.4 222576783.5 125.30 <.0001 

Time 2 496769401.2 248384700.6 139.83 <.0001 

 

Table 31: The model of carbon sources with interaction by GLM procedure 
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Source DF Type I SS Mean Square F Value Pr > F 

Carbon 9 65712348.1 7301372.0 104.37 <.0001 

Strain 3 667730350.4 222576783.5 3181.78 <.0001 

Time 2 496769401.2 248384700.6 3550.71 <.0001 

Carbon* Strain 27 31479034.2 1165890.2 16.67 <.0001 

Strain * Time 6 375341842.5 62556973.8 894.27 <.0001 

Carbon * Time 18 20969517.4 1164973.2 16.65 <.0001 

Carbon * Strain * Time 54 45387230.0 840504.3 12.02 <.0001 

Residuals 168 11752187 69953   

 

Table 32: The model of carbon sources with interaction by rank-based GLM procedure 

Source DF Type I SS Mean Square F Value Pr > F 

Carbon 9 162389 18043 110.024 <.0001 

Strain 3 630756 210252 1282.080 <.0001 

Time 2 1018388 509194 3104.974 <.0001 

Carbon* Strain 27 20185 748 4.559 <.0001 

Strain * Time 6 16692 2782 16.964 <.0001 

Carbon * Time 18 71684 3982 24.284 <.0001 

Carbon * Strain * Time 54 42980 796 4.853 <.0001 

Residuals 168 27551 164   

 

Table 33: The full model of carbon sources in the Drop test 
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Source DF Type I SS RSS AIC F Value Pr > F 

Carbon 9 2554671 14306858 3336.2    4.0577      <.0001 

Strain 3 24746989 36499176 3618.0 117.9212 <.0001 

Time 2 8279125 20031312 3447.2   59.1759 <.0001 

Carbon* Strain 27 15550800 27302986 3486.3 8.2334 <.0001 

Strain * Time 6 13369717 25121903 3504.4 31.8538 <.0001 

Carbon * Time 18 5229362 16981549 3367.6    4.1530 <.0001 

Carbon * Strain * Time 54 45387230 57139416 3645.0   12.0152 <.0001 

 

Table 34: Drop in Dispersion Test of carbon source data 

Model : data = carbon + time + strain + carbon*time + carbon*strain + strain*time 

F-Statistic p-value 

24.542     0.000 

Model : data = carbon + time + strain + carbon*time + carbon*strain  

F-Statistic p-value 

408.93 0.000 

Model : data = carbon + time + strain + carbon*time + strain*time 

F-Statistic p-value 

11.907        0.000 

Model : data = carbon + time + strain + carbon*strain + strain*time 

F-Statistic p-value 

22.955 0.000 

Model : data = strain*time 

F-Statistic p-value 

24.176        0.000 

Model : data = carbon*strain  
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F-Statistic p-value 

190.09         0.000 

Model : data = carbon*time  

F-Statistic p-value 

131.67         0.000 

 

 

4.3.1 Effects of carbon sources on vfr expression 

        For the purpose of studying the effects of carbon sources on vfr expression in wild types, 

the dataset was just filtered with the wild type strain. One reason was that the sample size was 

very limited, and all segments in this section dropped the time group. The other reason was 

because time effects would have the synchronized effect for each strain, like the lowest growth 

level would always have the least vfr expression and the highest growth level would always have 

the most vfr expression. Thus, this carbon source set was not taking the time effects into account.  

        Before Tukey’s test, rank transformation was accomplished first to reconstruct the data. 

And then we tested each comparison of vfr expressions cultivated in carbon sources added NCE 

medias versus L broth. The rank-based Tukey’s tests’ results were fused in Table 39. As given in 

the table, all of the tests’ consequences exposed that vfr expressions of P. aeryginosa did not 

have the significant differences in different medias.  

         To sum up, vfr expression in P. aeruginosa would not be affected when treated with 

glucose, glycerol and succinate as the sole carbon sources. 

 

Table 35: Rank-based Tukey’s test for LB versus carbon sources added medias’ comparisons  
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Strain Carbon  sources 

Comparison 

Difference 

Between 

Rank Means 
Simultaneous 95% 

Confidence Limits 

 

 

WT 

1%-glycerol - LB 23.222 -5.075 51.519  

2%-glycerol   - LB 12.889 -15.408 41.186  

10%-glycerol – LB 9.722 -18.575 38.019  

2mM-succinate - LB 8.722 -19.575 37.019  

4mM-succinate - LB 6.722 -21.575 35.019  

20mM-succinate - LB 2.056 -26.242 30.353  

1mM-glucose - LB 1.722 -26.575 30.019  

2mM-glucose - LB 1.056 -27.242 29.353  

10mM-glucose - LB 0.556 -27.742 28.853  

 

However, depending on the principle of Nemenyi analysis, this method was not applicable in this 

case, since the unequal sample sizes appeared between the L broth and the remaining medias. 

For instance, the L broth group had 18 observations collected from the three repeated growths, 

while the remaining tested medias’ group just had 6 observations. In this circumstance, the 

Nemenyi test was dropped in testing the effects of carbon sources on vfr expression. 

        According to Ansari-Bradley analyses, the growth in all treated medias has similar 

variances of vfr expression when compared with that in L broth, reflected in Table 41. The 

outcomes indicated that the variance of vfr expression in P. aeruginosa was also not affected 

when the glucose, glycerol or succinate were served as the carbon sources during the whole 

growth. In brief, carbon sources like glycerol, glucose or succinate also did not affect the 

variance of vfr expression in P. aeruginosa.  
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Table 36: Ansari-Bradley test for vfr expression in LB versus carbon sources added medias’ 

comparisons  

 

Strain 
Carbon sources 

Comparison 

P Value  

 

 

 

 

WT 

1%-glycerol - LB 0.5038702  

2%-glycerol   - LB 0.2285139  

10%-glycerol – LB 0.6883851  

2mM-succinate - LB 0.1414243  

4mM-succinate - LB 0.1414243  

20mM-succinate - LB 0.4224979  

1mM-glucose - LB 0.6881267  

2mM-glucose - LB 0.8936536  

10mM-glucose - LB 0.1414243  

 

Finally, as the combination of all tests above, Lepage analysis was a joint test to investigate 

whether carbon sources have effects on both vfr expression and its variance in Pseudomonas 

aeruginosa. According to the output shown in Table 43, none of groups had significant 

difference on both aspects, reconfirming the results before. In summary, treatment of glycerol, 

glucose and succinate as the carbon sources would not simultaneously affect vfr expression as 

well as its variance in Pseudomonas. 

 

Table 37: Lepage test for vfr expression in LB versus carbon sources added medias’ comparisons  

 

Strain 
Carbon sources 

Comparison 

P Value  

 

 

1%-glycerol - LB 0.645376  

2%-glycerol   - LB 0.5627974  
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WT 10%-glycerol – LB 0.966435  

2mM-succinate - LB 0.4092001  

4mM-succinate - LB 0.4091665  

20mM-succinate - LB 0.9918033  

1mM-glucose - LB 0.2760861  

2mM-glucose - LB 0.4837118  

10mM-glucose - LB 0.7220136  

 

 

4.3.2 Effects of carbon sources on vfr gene regulation 

        In order to inspect the effects of carbon sources on vfr gene regulation, rank-based Tukey’s 

tests were first performed to analyze the amount of vfr expressions in the wild type versus three 

mutants, and results were revealed in Table 44. After the rank transformation, datasets were 

classified into subgroups, which divided by ten medias for two strains’ comparisons. The vfr 

expressions’ comparisons in the ssrA mutant versus wild type all showed significant differences 

in all succinate and glycerol supplemented medias as well as L broth, except for the glucose 

supplied media. However, in the comparisons of gacA mutant versus wild type, the significant 

differences were not conserved at all in all succinate, glucose and glycerol supplemented medias 

compared with that in L broth. For the vfr expressions between in gacS mutant versus wild type, 

all tests had insignificant results in all medias including L broth.  

       Hence, the results of rank-based Tukey’s methods directed that carbon sources did not alter 

GacS controlled vfr regulation, since the results presented that GacS regulations in P. aeruginosa 

were not greatly induced vfr expression in all medias including the L broth. Moreover, the GacA 

dependent vfr regulations became less effective in all three carbon sources supplemented NCE 

medias compared with that in L broth. Nevertheless, tmRNA (as the product of ssra gene) 
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induced vfr expressions were not affected when grown in succinate and glycerol supplemented 

NCE medias, but would be affected in the glucose supplied one. 

 

Table 38: Rank-based Tukey’s test for WT versus mutant comparisons in ten medias  

 

Carbon sources 

 

Strain 

Comparison 

Difference 

Between 

Rank 

Means 

 

Simultaneous 95% 

Confidence Limits 

 

 

2mM succinate 

ssra - WT 13.500 5.801 21.199 *** 

gacA - WT 5.333 -2.366 13.033  

gacS - WT 3.167 -4.533 10.866  

 

4mM succinate 

ssra - WT 14.333 7.176 21.491 *** 

gacA - WT 6.833 -0.324 13.991  

gacS - WT 3.500 -3.658 10.658  

 

20mM succinate 

ssra - WT 10.833 1.833 19.834 *** 

gacA - WT 5.000 -4.000 14.000  

gacS - WT 2.167 -6.834 11.167  

 

1mM glucose 

ssra - WT 8.667 -1.180 18.514  

gacA - WT 4.000 -5.847 13.847  

gacS - WT 2.000 -7.847 11.847  

 

2mM glucose 

 

ssra - WT 8.833 -0.993 18.659  

gacA - WT 4.167 -5.659 13.993  

gacS - WT 2.333 -7.493 12.159  

 

10mM glucose 

 

ssra - WT 8.667 -1.183 18.516  

gacA - WT 4.000 -5.850 13.850  

gacS - WT 2.000 -7.850 11.850  

 

1% glycerol 

ssra - WT 11.333 2.595 20.072 *** 

gacA - WT 4.000 -4.739 12.739  

gacS - WT 2.000 -6.739 10.739  
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2% glycerol 

ssra - WT 12.000 3.560 20.440 *** 

gacA - WT 4.333 -4.107 12.774  

gacS - WT 2.333 -6.107 10.774  

 

10% glycerol 

ssra - WT 15.333 8.865 21.802 *** 

gacA - WT 6.000 -0.468 12.468  

gacS - WT 4.000 -2.468 10.468  

 

L broth 

ssra - WT 35.556 22.179 48.932 *** 

gacA - WT 15.444 2.068 28.821 *** 

gacS - WT 9.889 -3.488 23.266  

 

The Nemenyi test results to some tests above, shown in Table 46. Differences between the total 

ranks of one group were applied as the test statistics in this test. The critical value of each 

comparison was computed by 𝑧!∗ [
!(!!!)
!"

]!/!( !
!!
+ !

!!
)!/!, where 𝛼∗ = 𝛼/(𝑘 − 1) =0.5/(4− 1), 

N =24, 𝑛! = 𝑛! = 𝑛! = 𝑛! = 6 in 9 treated medias and N =72, 𝑛! = 𝑛! = 𝑛! = 𝑛! = 18 in L 

broth. Since all of test statistics were larger than the critical value, it was suggested that carbon 

sources had no effects on tmRNA-, GacA- and GacS- dependent vfr regulations, as all the three 

regulators (tmRNA, GacA and GacS) consistently regulated vfr expression perfectly during the 

growths. 

 

Table 39: Nemenyi test for WT versus mutant comparisons in ten medias 

Carbon sources Strain 

Comparison 

Difference 

Between Rank 

Critical 

Value 

 

 

2mM succinate 

ssra - WT 81 8.70 *** 

gacA - WT 32 8.70 *** 

gacS - WT 19 8.70 *** 

 ssra - WT 86 8.70 *** 
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4mM succinate gacA - WT 41 8.70 *** 

gacS - WT 21 8.70 *** 

 

20mM succinate 

ssra - WT 54 8.70 *** 

gacA - WT 30 8.70 *** 

gacS - WT 13 8.70 *** 

 

1mM glucose 

ssra - WT 52 8.70 *** 

gacA - WT 24 8.70 *** 

gacS - WT 12 8.70 *** 

 

2mM glucose 

 

ssra - WT 53 8.70 *** 

gacA - WT 25 8.70 *** 

gacS - WT 14 8.70 *** 

 

10mM glucose 

 

ssra - WT 52 8.70 *** 

gacA - WT 24 8.70 *** 

gacS - WT 12 8.70 *** 

 

1% glycerol 

ssra - WT 68 8.70 *** 

gacA - WT 24 8.70 *** 

gacS - WT 12 8.70 *** 

 

2% glycerol 

ssra - WT 72 8.70 *** 

gacA - WT 26 8.70 *** 

gacS - WT 14 8.70 *** 

 

10% glycerol 

ssra - WT 92 8.70 *** 

gacA - WT 36 8.70 *** 

gacS - WT 24 8.70 *** 

 

L broth 

ssra - WT 640 14.86 *** 

gacA - WT 278 14.86 *** 

gacS - WT 178 14.86 *** 

 

        To test the differences of vfr expressions’ variance between wild types versus other mutants 

in ten medias, Ansari-Bradley tests were accomplished by R. However, all the tests consistently 

presented insignificant differences except for the variance of vfr expression between ssra mutant 
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and wild type in 2mM succinate supplied NCE media (P value =0.052). In summary, all the 

variance of GacA and GacS dependent vfr regulations were not affected by carbon sources 

through the whole growth in P. aeruginosa. For the variance of tmRNA dependent vfr 

regulations, they were not affected by carbon sources except for 2mM succinate. 

 

Table 40: Ansari-Bradley test for WT versus mutant comparisons of vfr expression in ten medias 

Carbon sources Strain 

Comparison 

p Value  

 

2mM succinate 

ssra - WT 0.05213509  

gacA - WT 0.7444195  

gacS - WT 0.3315441  

 

4mM succinate 

ssra - WT 0.1055878  

gacA - WT 0.3315441  

gacS - WT 0.3315441  

 

20mM succinate 

ssra - WT 0.1030947  

gacA - WT 0.1954314  

gacS - WT 0.1055878  

 

1mM glucose 

ssra - WT 0.1030947  

gacA - WT 0.1030947  

gacS - WT 0.3280648  

 

2mM glucose 

 

ssra - WT 0.1055878  

gacA - WT 0.3315441  

gacS - WT 0.1055878  

 

10mM glucose 

 

ssra - WT 0.3315441  

gacA - WT 0.3315441  

gacS - WT 0.3315441  

 

1% glycerol 

ssra - WT 0.1055878  

gacA - WT 0.1055878  
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gacS - WT 0.1055878  

 

2% glycerol 

ssra - WT 0.1030947  

gacA - WT 0.1005954  

gacS - WT 0.1030947  

 

10% glycerol 

ssra - WT 0.5784348  

gacA - WT 0.3315441  

gacS - WT 0.7811381  

 

LB 

ssra - WT 0.6501416  

gacA - WT 0.27806925  

gacS - WT 0.65962772  

        

Again, Lepage test was applied to test significant differences between both vfr regulation and 

their regulated range in P. aeruginosa in different medias. As shown in Table 49 as follows, the 

test revealed that none of groups had significant differences from the other, indicating that 

carbon sources did not simultaneously affect vfr regulation and their variances. 

 

Table 41: Lepage test for WT versus mutant comparisons of vfr expression in ten medias 

Carbon sources Strain 

Comparison 

p Value  

 

2mM succinate 

ssra - WT 0 .8910234  

gacA - WT 0.6063641  

gacS - WT 0.9872613  

 

4mM succinate 

ssra - WT 0.8910234  

gacA - WT 0.8935382  

gacS - WT 0.9872613  

 

20mM succinate 

ssra - WT 0.9325798  

gacA - WT 0.9325513  

gacS - WT 0.9872613  
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1mM glucose 

ssra - WT 0.417401  

gacA - WT 0.9872613  

gacS - WT 0.9872613  

 

2mM glucose 

 

ssra - WT 0.417401  

gacA - WT 0.9325513  

gacS - WT 0.9872613  

 

10mM glucose 

 

ssra - WT 0.417401  

gacA - WT 0.9872613  

gacS - WT 0.9872613  

 

1% glycerol 

ssra - WT 0.9325798  

gacA - WT 0.9872613  

gacS - WT 0.9872613  

 

2% glycerol 

ssra - WT 0.8662783  

gacA - WT 0.9872613  

gacS - WT 0.9872613  

 

10% glycerol 

ssra - WT 0.8910234  

gacA - WT 0.417401  

gacS - WT 0.417401  

 

LB 

ssra - WT 0.9083371  

gacA - WT 0.9872613  

gacS - WT 0.9872613  
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Chapter 5: Discussion and Conclusion 

 

5.1 Interpretation  

        This is a comprehensive experimental research combining temperature study and carbon 

source study together. The conclusion will be made by discussing results both from the 

temperature and carbon source study.  

 

5.1.1 Effects of temperature on vfr expression 

        All the outputs of nonparametric analyses for the effects of temperatures on vfr expression 

were integrated in Table 50. Statistically, according to the results of Rank-based Tukey’s test, we 

detected that there were some significant differences in vfr expression in P. aeruginosa  between 

the high (42℃) and the optimal (37℃) temperature, which occurred through the whole growth. 

However, there were not significant differences in vfr expression in P. aeruginosa between the 

low (30℃) and the optimal (37℃) temperature until the stationary phase. Unlike the rank-based 

Tukey analysis, the Nemenyi test presented various results, where vfr expression in P. 

aeruginosa under the low or high temperature both differed from those under the optimal 

temperature through the whole growth.  

        Meanwhile, besides comparing the mean values in each group, we also compared variances 

of each population by using the Ansari-Bradley method. According to the results of Ansari-

Bradley analysis, there were significant differences in the variances of vfr expression in P. 

aeruginosa between the high temperature and optimal temperature until late-log phase, but not 

held until the end, which is stationary phase. However, the significant differences in the 
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variances of vfr expression in P. aeruginosa between the low temperature and optimal 

temperature did not present until the late-log phase.  

        Finally, according the Lepage analysis, which is applied to test two populations both by 

location and by scale, neither vfr expression nor their variances in P. aeruginosa under the low 

temperature or high temperature were significantly different from those under the optimal 

temperature through the whole growth.  

 

Table 42: Summary of all nonparametric analyses for 37℃ versus 30℃ / 42℃ comparisons of vfr 

expression 

 
Strain 

 
Time 

 
Temperature 
Comparison 

Rank-
based 
Tukey’s 

 
Nemenyi 

 
Ansari-
Bradley 

Lepage 

 

 

WT 

Mid-log low  - opt  ***   

high - opt *** *** ***  

Late-log low  - opt  *** ***  

high - opt *** *** ***  

Stationary low  - opt *** *** ***  

high - opt *** ***   

 

        Biologically, depending on the outcomes of Rank-based Tukey’s, the high temperature 

(42℃) affected the vfr expression in P. aeruginosa through the whole growth, and the low 

temperature (30℃) would not have an effect on vfr expression until the stationary phase, when 

compared with that under the optimal temperature (37℃). However, according to the Nemenyi 

analysis, both the high temperature and the low temperature had an effect on vfr expression in P. 

aeruginosa through the whole growth.  
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        In addition, Ansari-Bradley test suggested that the high temperature affected the variances 

of vfr expression in P. aeruginosa from mid-log to late-log phase, but not to the end. For the 

effect of the low temperature on the variances of vfr expression in P. aeruginosa, the Ansari-

Bradley test discovered that the low temperature would not affect the variances until the late-log 

phase. Lastly, the Lepage test exposed that temperature did not simultaneously both affect the 

mean value and the variance of vfr expression in P. aeruginosa at any growth levels. 

 

5.1.2 Effects of temperature on vfr regulation 

        All the outputs of nonparametric analyses for the effects of temperatures on vfr regulation 

were combined into Table 51. Statistically, the two analyses (Rank-based Tukey and Nemenyi), 

which were all applied to test each group by location, consistently recommended all of tmRNA, 

GacA and GacS controlled vfr expressions in P. aeruginosa were different from that in the wild 

type through the whole growth.  

        Moreover, the Ansari-Bradley test discovered that, during the mid-log phase, unlike the 

optimal temperature, high temperature presented the noticeable differences between the 

variances vfr expression in all three mutants and the wild type. In the late-log, the variance of 

GacS controlled vfr expression significantly differed from that in the wild type, which did not 

appear under the optimal temperature. In the stationary phase, the significant difference between 

the variance of vfr expression in the ssra mutant and the wild type disappeared under the high 

temperature, when compared with that under the optimal temperature. For the comparison 

between low and optimal temperature, the variances of GacA regulated vfr expression was 

shifted in the mid-log phase, the variances of tmRNA, and GacS controlled ones were reversed 
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in the late-log phase, while none of these three vfr regulations were switched in the stationary 

phase.  

        According to the Lepage method, neither high nor low temperature had an effect on both vfr 

regulation and their range in P. aeruginosa, since none of the tests presented the significant 

different between two populations. 

      

Table 43: Summary of all nonparametric analyses for WT versus mutants’ comparisons under 3 

temperatures 

 
Tempe
-rature 

Time Strain 
Comparison 

Rank-
based 

Tukey’s 

Nemen
-yi 

Ansari-
Bradley 

Lepage 

 

 

 

 

 

low 

mid-

log 
WT - ssra *** ***   

WT - gacA *** *** ***  

WT - gacS *** ***   

 

late-

log 

WT - ssra *** *** ***  

WT - gacA *** ***   

WT - gacS *** *** ***  

 

Station

-ary 

WT - ssra *** *** ***  

WT - gacA *** *** ***  

WT - gacS *** ***   

 

 

 

 

 

optimal 

 

mid-

log 

WT - ssra *** ***   

WT - gacA *** ***   

WT - gacS *** ***   

 

late-

log 

WT - ssra *** ***   

WT - gacA *** ***   

WT - gacS *** ***   
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Station

-ary 

WT - ssra *** *** ***  

WT - gacA *** *** ***  

WT - gacS *** ***   

 

 

 

 

high 

 

mid-

log 

WT - ssra *** *** ***  

WT - gacA *** *** ***  

WT - gacS *** *** ***  

 

late-

log 

WT - ssra *** ***   

WT - gacA *** ***   

WT - gacS *** *** ***  

 

Station

-ary 

WT - ssra *** ***   

WT - gacA *** *** ***  

WT - gacS *** ***   

 

        Biologically, Rank-based Tukey and Nemenyi analyses suggested that temperature did not 

affect tmRNA, GacA and GacS dependent vfr regulations in P. aeruginos, since all of their 

regulations were impactful. 

        Furthermore, the Ansari-Bradley method showed that high temperature affected all of the 

variances of tmRNA, GacA and GacS controlled vfr expression in mid-log, but only GacS 

regulated vfr expression in late-log, and only tmRNA dependent expression at the stationary 

phase in P. aeruginosa. When cultured at 30℃, the low temperature affected the variances of 

GacA regulated vfr expression at the mid-log phase, and affected the variances of tmRNA and 

GacS regulated expression at the late-log phase in P. aeruginosa, while at the stationary phase, 

none of the variances of these vfr regulations were altered by the low temperature.  
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        Finally, according to the Lepage method, neither high nor low temperature had an effect on 

both vfr regulation and their ranges in P. aeruginosa, since none of the tests presented the 

significant different between each group.  

 

5.1.3 Effects of carbon source on vfr expression 

          All nonparametric analyses for comparisons of LB versus carbon sources added medias 

were presented in Table 52. Statistically, none of Glucose, Glycerol or Succinate added NCE 

medias had significantly different vfr expressions in P. aeruginosa from that in LB through the 

whole growth, nor their variances, due to the consequences of all these five nonparametric 

analyses. Biologically, during the growth of P. aeruginosa, supplements of Glucose, Glycerol or 

Succinate as the sole carbon sources would not affect vfr expressions and their variances, 

compared with those cultured in LB. 

Table 44: Summary of all nonparametric analyses for comparisons of LB versus carbon sources 

added medias 

 
Strain Carbon  sources 

Comparison 

Rank-
based 
Tukey’s 

Neme
-nyi 

Ansari-
Bradley 

Lepage 

 

WT 

1%-glycerol - LB     

2%-glycerol   - LB     

10%-glycerol – LB     

2mM-succinate - LB     

4mM-succinate - LB     

20mM-succinate - LB     

1mM-glucose - LB     



 80 

2mM-glucose - LB     

10mM-glucose - LB     

 

 

5.1.4 Effects of carbon sources on vfr regulation 

        As presented in Table 53, Rank-based Tukey’s test showed that vfr expression in gacS 

mutant were not different from that in wild type in all medias, including LB. It also revealed that 

the differences between vfr expression in gacA mutant and wild type were not significant any 

more in all other Glucose, Glycerol or Succinate added NCE medias, when compared with that 

in LB, excepted for that in 4mM Succinate supplemented media. For the comparisons of the vfr 

expression between ssrA mutant and wild type, all of them were different from each other in 

various medias except for glucose supplied one. 

        Ansari-Bradley analysis specified that none of the variances of vfr expressions in three 

mutants were significantly different from those in wild type in any medias, including LB.  

        According to the results of Lepage test, none of tmRNA, GacA and GacS dependent vfr 

regulation and their variances were noticeable.  

        Biologically speaking, the Rank-based Tukey’s method recommended that 1) Cultivation of 

P. aeruginosa in Glucose, Glycerol or Succinate supplemented medias would not affect the GacS 

controlled vfr expression, compared with that in LB. As all of vfr expressions were not 

significantly induced by GacS in P. aeruginosa. 2) However, GacA dependent vfr regulations 

were not remarkably induced any more in P. aeruginosa, when cultured in Glucose, Glycerol or 

Succinate supplemented medias, except for 4mM Succinate supplemented one, compared with 

LB. 3) The tmRNA controlled vfr expression was not affected by Glycerol or Succinate 
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supplemented medias, but became less impressed in Glucose supplied medias, compared with 

LB. 

  Ansari-Bradley analysis indicated that none of the variances of GacA and tmRNA 

controlled vfr expression were affected by Glycerol, Glucose or Succinate supplied medias.  The 

test also suggested that the variances of GacS dependent vfr expression were not affected by any 

of these three carbon sauces. 

        Finally, the Lepage analysis shown that none of Glycerol, Glucose or Succinate had 

significantly different tmRNA, GacA and GacS dependent vfr regulation from that in LB, as well 

as their variances. 

 

Table 45: Summary of all nonparametric analyses for WT versus mutant comparisons in 10 

medias 

 
Carbon 
sources 

 
Strain 

Comparison 

Rank-
based 

Tukey’s 

Neme-
nyi 

Ansari-
Bradley 

Lepage 

 

2mM 

succinate 

ssra - WT *** ***   

gacA - WT  ***   

gacS - WT  ***   

 

4mM 

succinate 

ssra - WT *** ***   

gacA - WT  ***   

gacS - WT  ***   

 

20mM 

succinate 

ssra - WT *** ***   

gacA - WT  ***   

gacS - WT  ***   

 

1mM 

glucose 

ssra - WT  ***   

gacA - WT  ***   

gacS - WT  ***   
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2mM 

glucose 

ssra - WT  ***   

gacA - WT  ***   

gacS - WT  ***   

 

10mM 

glucose 

ssra - WT  ***   

gacA - WT  ***   

gacS - WT  ***   

 

1% glycerol 

ssra - WT *** ***   

gacA - WT  ***   

gacS - WT  ***   

 

2% glycerol 

ssra - WT *** ***   

gacA - WT  ***   

gacS - WT  ***   

 

10% glycerol 

ssra - WT *** ***   

gacA - WT  ***   

gacS - WT  ***   

 

LB 

ssra - WT *** ***   

gacA - WT *** ***   

gacS - WT  ***   

 

        Among the two location-based multiple comparison methods (Rank-based Tukey’s, and 

Nemenyi), we concluded that Nemenyi test held higher power and robustness than the Tukey 

test. This higher power and robustness led to narrow confidence intervals, because zero was not 

included by the Nemenyi test, while zero was covered by the Tukey method. The Lepage test for 

location-scale comparisons had very low power and weak robustness. As we see, even some of 

the comparisons suggested either significantly different mean values, or a significantly different 

variance by both location-based and scale-based analyses. The Lepage test was not able to detect 

them as the combination of location-based and scale-based methods.  
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        The main results of the study can be summarized as follows: 1) The high (42℃) temperature 

affected vfr expression in P. aeruginosa as well as their variances through the whole growth. The 

low (30℃) temperature also affected vfr expression and their variances in P. aeruginosa, except 

the variances in the stationary phase. 2) The low temperature did not affect the tmRNA, GacA 

and GacS dependent vfr regulations, and their variances, since all of the three regulators 

regulated vfr expressions impressively. Also, the high temperature did not affect the tmRNA, 

GacA and GacS dependent regulations, and their variances excluding the variances of the GacA 

and GacS regulated ones in the mid-log phase. 3) When Glycerol, Glucose or Succinate supplied 

as the sole carbon sources in NCE medias, vfr expressions in P. aeruginosa were not be affected, 

nor their variances. 4) The tmRNA, GacA and GacS controlled vfr expressions in P. aeruginosa 

was not affected by the supply of Glycerol, Glucose or Succinate as the sole carbon sources, as 

all of the regulations functioned well. The variances of GacS dependent regulation was not 

affected by the supply of Glycerol, Glucose or Succinate neither, as none of the vfr expression in 

gacS mutant were different from that in wild type. Conversely, the variances of GacA dependent 

vfr regulations was altered by supplement of all these carbon sources, which was not significant 

any more. The variances of tmRNA dependent vfr regulations were not affected by the supply of 

Glycerol or Succinate, but were affected by Glucose supplied NCE media, which turned out to 

be insignificant. 

 

5.2 limitations of the study 

        Even though this study provided critical insight into the effect of temperature and carbon 

source on vfr gene expression and regulation, there were still several limitations on the 

experimental design and statistical inference approaches. 
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        The first issue, which may result in bias of our study is associated with the experimental 

design. The amount of vfr expression was collected from two independent time periods. In this 

case, there would be some bias generating in the data collection since gene expression level will 

have more or less variety in each incubation, despite controlling for variety. Besides, the 𝛽- 

glucosidase assay, which was used to test the vfr expressions for each strain, has a relatively 

large system error because of the rapid reaction time, which explains why a considerable 

difference occurred between the duplicates. 

        Another problem came from how we define each growth level. For the strain under the 

same growth level, they just had similar rather than consistent cell density, since cell density 

were shifted over the time, and it is hard to ensure each measurement of the grown culture 

exactly had the same cell density. This problem may cause slight fluctuation of the vfr expression 

level for the strains under the same conditions. 

        Moreover, there is a limitation for the limited sample size as well. Although the total 

observation-number was not small, the sample size for each multiple comparisons after segments 

was small. To redeem this problem, more replications need to be conducted to guarantee enough 

measurements after segments.  

 

5.3 Implications of results 

        For answering the first several questions at the beginning of this thesis, I saw the 

temperatures (30℃/42℃) affected vfr expression but not their regulations controlled by tmRNA, 

GacA or GacS in P. aeruginosa. Carbon sources including Glycerol, Glucose or Succinate, 

would not have an effect on neither vfr expression nor tmRNA, GacA or GacS controlled vfr 

regulations in P. aeruginosa. However, for further exploration, the experimental design can be 
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focused on discovering vfr expression and regulation by some more different temperatures or 

supply of some other carbon sources with a gradient concentration. 

 

5.4 Future research 

        According to the limitations and the unaddressed problems of this work, the continuous 

studies need to be investigated in the future. In order to solve the problem of the system errors of 

the 𝛽- glucosidase assay and the limited sample size, more replication need to be accomplished 

to reduce the experiment error. To diminish the fluctuation of the cell density of the collected 

culture at the same growth level, OD values need to be read highly frequently.  

        In addition, the approach that I test the effect of temperatures and carbon sauces on vfr 

regulation can be applied and developed to test the effects of some other factors in response to 

vfr regulation, like nitrogen sources or oxygen concentration. 
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Appendix 1: Figures 

Figure 15: Plot of the temperature dataset classified by time*temperature*strain treatments 
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Figure 16: Plot of the carbon dataset classified by time*strain*carbon treatments 
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Appendix 2: Partial SAS Code   

Temperature SAS Code: 

/***nonparametric analysis***/ 
proc glm data = temp1; 
class strain temp time colonies; 
model data = colonies strain temp time; 
random colonies; 
lsmeans strain temp time; 
run; 
proc glm data = temp1; 
class strain  temp  time; 
model data = strain temp time temp*time time*strain temp*strain 
temp*strain*time; 
lsmeans temp |time| strain /pdiff; 
run; 
proc glm data = temp1; 
class strain  temp  time; 
model data = strain temp time temp*time time*strain temp*strain 
temp*strain*time; 
means temp time strain /tukey; 
run; 
proc sort data =temp1; 
by time; 
run; 
proc glm data = temp1; 
class temp strain; 
model data = temp strain strain*temp; 
lsmeans temp*strain /pdiff adjust=tukey; 
by time; 
run; 
proc sort data =temp1; 
by strain; 
run; 
proc glm data = temp1; 
class temp time; 
model data = temp time temp*time; 
lsmeans temp*time / pdiff adjust=tukey; 
by strain; 
run; 
proc sort data =temp1; 
by temp; 
run; 
proc glm data = temp1; 
class strain time; 
model data = strain time time*strain; 
lsmeans time*strain / pdiff adjust=tukey; 
by temp; 
run; 
/*******WT at 3 temp*******/ 
proc sort data =temp1 out=newtemp2; 
by strain time; 
run; 
proc rank data=newtemp2 out=nt2 ties=mean; 
ranks rankdata2; 
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var data; 
run; 
proc print; 
run; 
proc glm data = nt2; 
class temp; 
model rankdata2 = temp; 
means temp /dunnett ('opt') hovtest = BF; 
by strain time; 
run; 
/****split data  +  Tukey's(strain)****/ 
data highlate; 
set temp1; 
if (temp eq 'high' && time eq 'late'); 
run; 
proc rank data=highlate out=hmrank ties=mean; 
ranks rankdata; 
var data; 
run; 
proc print; 
run; 
proc glm data = hmrank; 
class strain; 
model rankdata = strain; 
means strain / tukey dunnett('WT'); 
run; 
quit; 
/****temp  +  Tukey's****/ 
data highlate; 
set temp1; 
if (strain eq 'WT' && time eq 'late'); 
run; 
proc rank data=highlate out=hmrank ties=mean; 
ranks rankdata; 
var data; 
run; 
proc print; 
run; 
proc glm data = hmrank; 
class temp; 
model rankdata = temp; 
means temp / tukey dunnett('opt'); 
run; 
quit; 
/***PROC MEAN***/ 
proc means data = temp1 maxdec=2 N median mean stderr min max ; 
class  time temp strain;  
var data ; 
output out=means1 n=n median=median mean=mean stderr=stderr min=min max=max; 
run; 

Carbon Source SAS code: 

ata carbon; 
input carbon$ strain$ time$ data; 
logdata = log(data); 
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if strain = 'WT' then WT = 1; else WT = 0; 
if strain = 'ssra' then ssra = 1; else ssra = 0; 
if strain = 'gacS' then gacS = 1; else gacS = 0; 
if time = 'mid' then mid = 1; else mid = 0; 
if time = 'late' then late = 1; else late = 0; 
if carbon eq "1mM-glu" then x1 = 1; else x1 = 0; 
if carbon = '2mM-glu' then x2 = 1; else x2 = 0; 
if carbon = '10mM-glu' then x3 = 1; else x3 = 0; 
if carbon = '2mM-suc' then x4 = 1; else x4 = 0; 
if carbon = '4mM-suc' then x5 = 1; else x5 = 0; 
if carbon = '20mM-suc' then x6 = 1; else x6 = 0; 
if carbon = '1%-gly' then x7 = 1; else x7 = 0; 
if carbon = '2%-gly' then x8 = 1; else x8 = 0; 
if carbon = '10%-gly' then x9 = 1; else x9 = 0; 
datalines; 
………; 
proc print data = carbon; 
run; 
/****regression model***/ 
proc glm data = carbon; 
class strain carbon time; 
model data = strain carbon time/solution; 
run; 
proc robustreg data = carbon 
plots = (rdplot ddplot reshistogram resqqplot); 
class strain carbon time; 
model data = strain carbon time; 
run; 
/**anova**/ 
proc glm data = carbon; 
class carbon strain time; 
model data = carbon strain time; 
lsmeans strain carbon time; 
run; 
proc glm data = carbon; 
class carbon strain time; 
model data = carbon strain time carbon*strain strain*time carbon*time 
carbon*time*strain; 
run; 
/****Tukey's(1)****/ 
data highlate; 
set carbon; 
if (carbon eq '1mM-glu');            
run; 
proc rank data=highlate out=hmrank ties=mean; 
ranks rankdata; 
var data; 
run; 
proc print; 
run; 
proc glm data = hmrank; 
class strain; 
model rankdata = strain; 
means strain / tukey dunnett('WT'); 
run; 
quit; 
/**** Tukey's 2****/ 
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data highlate; 
set carbon; 
if (strain = 'WT'); 
run; 
proc rank data=highlate out=hmrank ties=mean; 
ranks rankdata; 
var data; 
run; 
proc print; 
run; 
proc glm data = hmrank; 
class carbon; 
model rankdata = carbon; 
means carbon / tukey dunnett('lb'); 
run; 
quit; 
 
 

 

 

 
 


