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Abstract

This thesis deals with pedestrian localization by way of multi-sensor fusion. A spe-

cial focus is made on the use of a foot-mounted inertial measurement unit (IMU) and its

incorporation into other pedestrian navigation systems. Mounting to the foot location is

preferred due to the anticipated dynamics of the foot during normal walking motion, but

poses difficulty when fusing with other body-worn sensors. One of the main challenges lies

in the non-rigid relation between navigation sources. This thesis approaches the problem

by characterizing the human gait during walking motion and detecting instances in which

spatial relations can be made. Navigational information of a pedestrian is often provided as

a relative state measurement, such as step length, walking pace, rate of turn, etc. The fusion

of multiple relative state measurements is non-trivial and requires manipulation of standard

sensor fusion frameworks. Therefore, this thesis discusses certain frameworks for processing

multiple relative state measurements in detail.

Two algorithms are presented for fusing a foot-mounted IMU with other body-worn

relative state measurement systems. The first algorithm operates in a cascade architecture,

which allows for easy implementation while still showing promising results. Drawbacks to

the cascade architecture are discussed, and a second, centralized architecture is presented

that addresses these issues. To serve as an example, a particular problem is addressed:

fusing measurements from the foot-mounted IMU with a chest-mounted visual odometry

system. By analyzing the human gait through the raw IMU signals, a relation is made

between the position and orientation of the chest-mounted camera and the foot-mounted

IMU. Using a high precision motion capture system, the human gait is analyzed and motion

profiles of a typical step are calculated. Using these motion profiles as a basis, a simulation

environment is developed to replicate visual odometry and foot-mounted IMU measurements
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and the navigation algorithms are applied to simulated data. Conclusions are drawn from

simulation on the effectiveness of the respective algorithms and experimental data validates

these findings. Experimental data is collected with an open source stereo visual odometry

system and a MEMS grade IMU. In post-process, the experimental data is fed through

the developed algorithms, and the results are compared to those found in simulation. The

work presented in this thesis will inform the reader of the characteristics of a foot-mounted

IMU solution and establish a methodology for fusing with any general pedestrian navigation

device.
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Chapter 1

Introduction and Background

In recent years, much effort has gone into increasing the accuracy and reliability of

navigation solutions. The desire for autonomous navigation has been a large motivator

behind the increase of research in this field, resulting in unmanned aerial vehicles, unmanned

ground vehicles, and more. These autonomous systems require a highly accurate and robust

localization solution for feedback to a control algorithm, which calculates inputs for actuating

the system. Improvements in navigation technology have opened the possibility for increased

accuracy in pedestrian navigation as well. In the case of pedestrian navigation, the control

system is replaced with a human subject who responds to the localization solution. For

most pedestrian navigation tasks, a highly accurate localization solution is not necessary

due to the user’s ability to perceive the environment and navigate accordingly. However,

certain scenarios exist in which the ability to perceive the environment is diminished and

assistance from navigation technology is required. Such scenarios may include assisting in

the navigation of visually impaired or coordinating first responders in searching a smoke

filled building. Stand-alone Global Navigation Satellite System (GNSS) solutions are not

sufficient in most of these cases due to the lack of availability and degraded accuracies in

certain environments. To handle the lack of GNSS coverage, a fused sensor solution is

proposed. Thanks to the increased availability of wearable technology such as smartphones,

smartwatches, and fitness trackers, a large amount of sensors can now be used in this fusion.

Often times, wearable technology provides information of the user’s motion, such as step

count, cadence, step length, etc. By fusing the redundant information of the user’s motion,

an accurate dead reckoning solution can be realized to navigate in times of GNSS outage.
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1.1 Prior Research

The task of ubiquitous pedestrian localization is non-trivial and poses many challenges.

While a great deal of progress has been made in GNSS positioning, even in challenged envi-

ronments, there are many places in which a pedestrian may travel that will not allow for such

a solution. Therefore, the method for navigating pedestrians should not be dependent on

GNSS availability. Several other approaches are used for pedestrian navigation in prior re-

search, each with their own attributes and setbacks. These methods and their characteristics

will be discussed in this section.

1.1.1 Infrastructure-Based Systems

One choice for localization of a pedestrian without depending on GNSS is through

infrastructure-based systems such as Wi-Fi, Bluetooth, Radio-frequency identification (RFID),

etc. Systems such as Wi-Fi and Bluetooth use measurements of time of flight (ToF) or re-

ceived signal strength (RSS) to calculate a distance from a transmitting station located

inside the building [12] [13]. With three or more range signals from fixed stations of known

positions, the position of the user can be calculated through trilateration and multilatera-

tion. Such systems suffer from high noise, multipath, and signal propagation delays from

walls and other mediums. RFID systems are similar to Wi-Fi and Bluetooth positioning

by measuring RSS, but require line of sight to the receiver [14]. Most often, RFID is used

to provide information on the user’s vicinity. By associating a unique radio frequency of

the RFID tags with a specific location, the user can be positioned in the vicinity of this

location when that specific radio frequency is received. Incorporating RFID positioning into

an estimation framework can be difficult due to the probability distribution associated with

such updates. Although the systems mentioned in this section can be very beneficial for

indoor localization, the drawback lies in the inherent need for infrastructure. A dependence

on infrastructure means high costs when scaling the system and the need for a standardized
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communication protocol. The work presented in this thesis does not rely on infrastructure

for these reasons.

1.1.2 Proprioceptive Sensors

Proprioceptive sensors are common for pedestrian navigation and can be found in most

of today’s wearable technologies. These sensors collect information of the user’s motion and

are generally unaffected by environmental conditions. Examples of proprioceptive sensors

include accelerometers, gyroscopes, and step counters. One popular approach using propri-

oceptive sensors is pedestrian dead reckoning (PDR) using step detection [15]. The PDR

algorithm operates by modeling the human gait and calibrating gait parameters with ex-

ternal measurement sources, most commonly GNSS. Step length is then formulated as a

function of the gait parameters and inertial signal attributes, such as amplitude and fre-

quency. Upon detecting a new step, the position solution is propagated using the inertial

signal, calibrated gait parameters, and an external estimate of the user’s heading [5]. These

algorithms are shown to be surprisingly accurate, but suffer from the dependence on external

measurements. The calibration phase requires the user to have high quality GNSS signal

reception or other reliable positioning measurements. Heading information is often provided

from a digital compass, which are known to provide biased measurements at times and are

extremely susceptible to passing metal objects.

Another approach to pedestrian tracking with proprioceptive sensors is through the foot-

mounted inertial measurement unit (IMU) [2] [3] [11]. For this method, a MEMS (Micro

Electro Mechanical Systems) grade IMU is mounted to the shoe of the user. Standard IMU

mechanization is used to propagate a 6 degrees of freedom (DOF) solution from an initial

state. The foot reaches zero velocity during each step when the foot comes in contact with the

ground. Internal errors of the IMU can be estimated to refine the navigation solution during

these zero velocity periods. The output is a tracked 6 DOF pose that has significantly less

drift when compared to stand-alone IMU mechanization. This approach is preferable to PDR
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in that a calibration phase is not required. Additionally, an external heading measurement

is not a strict requirement since the IMU tracks the orientation through the internal 3 axis

gyroscopes.

1.1.3 Exteroceptive Sensors

Exteroceptive sensors are an increasingly common navigation source. These sensors de-

rive the motion of the user through perception of the surrounding environment. Such sensors

include cameras (both monocular and stereo), LiDARs, infrared devices, etc. Cameras rely

on computer vision techniques to extract features from a 2D image, project the features

into the 3D environment, and calculate the motion by comparing consecutive frames [16].

This technique is referred to as visual odometry and is covered in more detail in Chapter 2.

Visual odometry can be computationally expensive, but the use of this technology has ex-

panded in recent years due to increased processing capabilities. Visual odometry approaches

do, however, suffer in poor lighting and other low visibility conditions. Even so, cameras

are still a popular choice for pedestrian navigation due to low size, weight, and power con-

sumption (SWaP). Other exteroceptive sensors, such as the LiDAR, operate similar to visual

odometry, but can measure spatial information of the environment directly. LiDAR sensors

do not depend on lighting conditions, but can be expensive and consume a relatively large

amount of power. Other devices, such as the Microsoft Kinect are capable of measuring the

environment in 3D. These devices are less expensive and popular among hobbyists, but are

less accurate than stereo cameras and LiDARs and suffer from a low maximum range [17].

1.1.4 Relative State Measurement Frameworks

In order to fuse measurements from both proprioceptive and exteroceptive devices, an

estimation algorithm must have the ability to process multiple relative state measurements.

The process of fusing multiple relative state measurements is a non-trivial task, especially

when the inputs are provided at different sampling rates. In 1999, Koifman and Bar-Itzhack
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presented a method for aiding an IMU with an aircraft model [7]. In Koifman and Bar-

Itzhack’s work, the state vector is appended to include copies of the same state. Both

states are allowed to evolve in the time update, one from the IMU and the other from the

aircraft model. The measurement update includes a pseudo-measurement that equates the

states, which aids the IMU navigation. More recently, Crocoll built off the work of Koifman

and Bar-Itzhack by presenting a system that also aids IMU mechanization with an aircraft

model [6]. Crocoll modifies the previous approach to gain computational advantages and the

filter is referred to as the Unified Model.

In 2000, Roumeliotis and Burdick presented a method for processing relative state mea-

surements in a Kalman filter framework [8]. The method was termed the stochastic cloning

Kalman filter (SCKF) and operates by appending the original state vector with a cloned

copy, just as in [7]. The cloned copy is held static through the time update, and the relative

state measurement is processed in the measurement update of the Kalman filter. Later,

Mourikis worked with Roumeliotis and Burdick in a publication that applies the SCKF for

mobile robot localization [9]. Mourikis and his co-authors use the SCKF to fuse proprio-

ceptive and exteroceptive relative state measurements, much like the work presented in this

thesis.

As for applications of such algorithms in pedestrian navigation, Amirhosseini et. al.

presents a stochastic cloning unscented Kalman filter for fusing visual odometry, an IMU, and

magnetometer measurements [10]. The sensor suite used in Amirhosseini’s work is mounted

rigidly together and worn at the chest of the user. Amirhosseini’s results show considerable

improvements when fusing the data as compared to stand-alone visual odometry.

1.1.5 Foot-Mounted IMU Sensor Fusion

The use of a foot-mounted IMU for navigation was presented by Hutchings in 1997 [18],

but it was Foxlin who popularized the method among the research community with his
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publication in 2005 [2]. Since this time, many efforts have been made to fuse the foot-

mounted IMU with other navigational devices for pedestrians. These works have dealt with

the lever arm between the foot-mounted IMU and the other body-worn sensor in different

ways with varying level of success.

In 2011, Chdid et. al. presented a method for fusing a waist-mounted visual odometry

system with a foot-mounted IMU [19]. Chdid’s approach used a constant jerk model for

the time update of the high-level filter. Outputs from the visual odometry system and foot-

mounted IMU were used to update the position, velocity, and acceleration states. While a

constant jerk model is convenient for its simplicity, it does introduce a lag in the system,

resulting in localization errors. In dead reckoning scenarios, the errors introduced by using

such a model compound and lead to significant error drift with increasing distance traveled.

For fusing a foot-mounted IMU with GPS, Hide et. al. used GPS to update the IMU

directly in a closely coupled fashion [20]. By mounting the GPS antenna rigidly to the foot-

mounted IMU, the lever arm between the two sensors can be ignored. However, mounting

a GPS antenna to the foot is problematic for two main reasons. The GPS antenna on the

foot is likely to cause discomfort to the user and could impede the natural walking motion.

Additionally, the GPS signals are likely to be corrupted from interference with the body

when the antenna is mounted to the foot.

In 2014, Gao et. al. approached the same problem as Hide, but with the antenna

mounted to the shoulder of the user [21]. Mounting to the shoulder is less impeding on

the user’s comfort and provides better line-of-sight to GPS signals. To account for the

lever arm, the estimation algorithm was subject to inequality constraints, which limited the

physical distance between the foot and the antenna position based on the user’s height and

leg length. The approach used two inertial sensors mounted to the same foot, and applied

equality constraints relating the distance between the two.

The use of inequality constraints for pedestrian navigation was also used by Skog et. al.

in 2012 to fuse dual foot-mounted IMU’s with one IMU on each foot [22]. A maximum step
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length was calculated based on the user’s physical dimensions and an inequality constraint

was imposed on the relative positions of the foot-mounted sensors. The approach successfully

limited the position error drift compared to the non-constrained navigation solutions of the

individual foot-mounted IMUs.

While the use of inequalities successfully fuses data, it requires the minimization of a

nonlinear cost function, which can be non-trivial and specific to these scenarios. These cases

also assumed prior knowledge of the user’s physical dimensions for the best performance.

The work in this thesis presents a general framework for fusing a foot-mounted IMU with

other body-worn relative state measurements, which is both easy to implement and requires

no a priori knowledge of the user.

1.2 Contributions

This thesis focuses on processing multiple relative state measurements that are not

rigidly attached and periodically related, as is common for pedestrian navigation. The work

presented in [10], [8], and [7] all assume that the two sources of relative state information are

provided in the same coordinate frame and are rigidly attached. Unlike these publications in

which pseudo-measurements are applied at every time step, this thesis applies the pseudo-

measurements only once per human step when a spatial relationship can be made about the

two systems.

Two different frameworks are considered for this fusion: a cascade and a centralized

approach. As an example, the algorithm is applied to fusing a foot-mounted IMU with a

chest-mounted visual odometry system. Preliminary results for the centralized approach

were presented in an earlier publication by the author [1]. A simulation environment is

developed for replicating signals from a foot-mounted IMU and a visual odometry system.

The simulation environment allows for a thorough statistical analysis to be performed. The

results are validated by processing the algorithm using experimental data. In summary, this

thesis provides the following contributions to the field of pedestrian navigation:
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• Development of two separate algorithms for fusing measurements of a foot-mounted

IMU with relative state measurements from other body-worn systems.

• A simulation environment is developed for producing synthetic foot-mounted IMU

signals and chest-mounted visual odometry measurements.

• A thorough analysis is made of the two approaches using Monte Carlo runs of simulated

data.

• Simulations are validated by processing experimental data and comparing results of

the two algorithms.
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Chapter 2

Underlying Algorithms

The work presented in this thesis builds off of the state of the art for pedestrian naviga-

tion and relative state measurement processing. A great deal of research has been performed

that focuses on each of these underlying processes. In order to present the contributions made

in this work, an understanding of these existing methods must be made. The foot-mounted

IMU algorithm in itself is an area of much research in recent years and this thesis utilizes the

most widely adopted approach. Visual odometry is also popular in pedestrian navigation

and a high-level understanding of its operations is presented in this chapter. An understand-

ing of some existing frameworks for processing multiple relative state measurements is also

presented.

2.1 The Foot-Mounted IMU

In recent years, the foot-mounted IMU has been a topic of interest for pedestrian local-

ization. Mounting on the foot is ideal due to the anticipated behavior of the foot, specifically

the periods of zero velocity experienced during a typical walking step. With knowledge of

an inertial sensor having zero velocity, measurements can be made to estimate the internal

errors that are inherent to inertial devices. Errors are estimated by tracking the navigation

states along with their relation to the IMU errors in a Bayesian scheme with zero velocity

updates (ZUPT) and zero angular rate updates (ZARU). The work presented in this thesis

uses an extended Kalman filter (EKF) for estimation due to the filter’s ability to operate

on nonlinear systems. Devices that mechanize IMU readings for calculating a navigation

solution are referred to as inertial navigation systems (INS). The process of updating an INS
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using an EKF with zero velocity measurements will be referred to as INS-EKF-ZUPT (IEZ)

for the remainder of this work.

2.1.1 Modeling the Inertial Measurement Unit

Inertial measurement units contain an array of accelerometers and gyroscopes that mea-

sure the motion of the device through specific force and rotation rate, respectively. All inertial

measurements suffer from imperfections in their raw outputs. Over the years, many studies

have modeled these errors to a high level of success. Some of the main sources of error in IMU

readings include white noise, bias, scale factor, misalignment, and g-sensitivity. Although

the scale factor and misalignment can be detrimental to a navigation solution, these are

assumed to be deterministic errors that are accounted for a priori in a controlled calibration

process. The white noise and bias errors, however, are stochastic in nature and must be han-

dled accordingly. Another error source that exhibits stochastic properties is g-sensitivity,

which acts on the inertial measurements as a function of the acceleration experienced by

the sensor. While the foot location does experience high acceleration when walking (up to

5 g’s), these instances are very brief and result in only about 5◦ of heading error after an

hour of normal walking [23]. The inertial values are also affected by the rotation of the

earth [5]. These effects can be significant when traveling long enough distances and depend

on the user’s location on the earth. While incorporating the earth rotation rate for IMU

mechanization improves the navigation solution, it was not considered in this thesis. By

excluding earth rotation, the algorithm can be developed in a local-level frame, reducing the

complexity of the derivations presented later in this text. Therefore, the model used for the

entirety of this thesis will only consider bias and white noise as error sources.

The gyroscopic readings (ω̃b) are described as a vector containing the true rotation rate

(ωb), the gyroscope bias (bg), and white noise (wg) as shown in Equation (2.1).

ω̃b = ωb + bg + wg (2.1)
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Similarly, the specific force readings from the accelerometers (f̃ b) are modeled as a vector

containing the true specific force (f b), the accelerometer bias (ba), and white noise (wa) as

shown in Equation (2.2).

f̃ b = f b + ba + wa (2.2)

Measurements from the IMU are provided in the body frame (b) of the device and in order

to propagate a navigation solution in global coordinates, a rotation from the body frame to

the navigation frame (n) must be performed. The coordinate frame rotations are explained

in detail in Section A.1 of the Appendix. It is important to note that the specific force

contains both the true accelerations and the acceleration due to gravity [5]. The operations

for removing gravity from the specific force readings will be described in detail later in this

section.

The biases that act on both the accelerometer and gyroscope readings are not static.

For the purpose of this thesis, bias values are modeled as a first order Markov process as

shown in Equations (2.3) and (2.4) [24].

ḃg = − 1

τg
bg + wbg (2.3)

ḃa = − 1

τa
ba + wba (2.4)

The first order Markov process models biases as drifting values with dynamics according to

time constants (τg, τa) and driving noise (wbg , wbg).

Both the noise acting on the inertial readings and the bias variation noise are assumed

to be zero-mean Gaussian as defined by Equation (2.5). The magnitude of the noise sources

are described using the input covariance matrix (Q), which is also defined by Equation (2.5),

E [w] = 0 E
[
wwT

]
= Q (2.5)
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where w is a vector containing all of the noise sources (w =
[
wa, wg, wba , wbg

]
). With three

accelerometers and three gyroscopes, the noise vector is length 12 and the covariance matrix

is a 12× 12 matrix.

2.1.2 Gait Monitoring

As a precursor to the tracking of a foot-mounted IMU, gait monitoring must be per-

formed for automatic detection of zero velocity conditions. Most of the literature on foot-

mounted IMU tracking uses the raw inertial measurements for gait monitoring to allow the

process to be self-contained and independent of any external sources of information. The

automated detection follows a set of logic that acts on a window of past inertial measure-

ments [2] [3]. Two conditions must be met for the detection of zero velocity. To satisfy

the first condition, the magnitude of the latest inertial measurement must be within a pre-

determined threshold. The second condition is met when the variance of the window of

inertial measurements is below a certain threshold. Three parameters must be chosen when

using this approach for gait monitoring: window length, magnitude threshold, and variance

threshold. The parameters used for zero velocity detection in this work can be found in

Table 2.1.

Table 2.1: Zero Velocity Detection Parameters

Window Length 20 samples

Magnitude Threshold
[

9 11
]

m/s2

Variance Threshold .0064 (m/s2)2

Zero velocity is not the only information that is beneficial for the navigation solution,

but also zero angular rate. With knowledge that the device is not rotating, zero angular

rate updates can be applied to the EKF to estimate gyroscope biases. A similar method to

that which detects zero velocity is used for detecting the zero angular rate condition. This
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condition is determined by studying the raw rotation rates provided from the gyroscopes of

the IMU. The values used for the detection of zero angular rate conditions can be found in

Table 2.2.

Table 2.2: Zero Angular Rate Detection Parameters

Window Length 5 samples

Magnitude Threshold
[
−0.05 0.05

]
rad/s

Variance Threshold 1 (rad/s)2

The results of both zero velocity and zero angular rate detection can be seen in Figure

2.1. Notice that zero angular rate is detected much less than the zero velocity conditions.

In a typical step, the zero angular rate conditions are only met for a very small time period,

if they are met at all. However, this is not as critical for navigation since the gyroscopes

experience less drift when compared to the accelerometers [5]. The use of zero angular rate

update is most beneficial for initial stationary periods and other sections of extended still

periods.

2.1.3 Estimation

Using raw inertial measurements and gait monitoring results, the foot is tracked using

an EKF. This section describes the models used for the EKF while a detailed explanation of

the EKF process can be found in Section (A.3) of the Appendix. The IEZ estimator tracks

the 6 DOF navigation states of the foot (designated with f subscript) as well as the bias in

the IMU. The states consist of position (rf ), velocity (vf ), attitude (ϕf ), accelerometer bias

(ba), and gyroscope bias (bg). To estimate a 6 DOF solution, each component of the state

vector is three-dimensional, resulting in a 15 variable system. The full state vector can be

seen in Equation (2.6).
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Figure 2.1: Gait Monitoring Results [11]

xf =

[
rf vf ϕf ba bg

]T
(2.6)

IEZ Initialization

To initialize the system, the position and heading are defined with respect to an arbitrary

reference frame and are generally initialized to zero. It is assumed for this work, and for

most foot-mounted IMU applications, that the foot starts from rest and, therefore, the

velocity is also initialized to zero. In practice, the system can delay initialization until

receiving zero velocity detection from the gait monitoring system. The roll and pitch are

initialized to correspond with the local-level navigation frame. For this, the specific force

readings from the IMU are used in an approach termed accelerometer leveling [5]. In zero

velocity conditions, the accelerometer readings consist of only the accelerometer bias, effects

of gravity (gn =

[
0 0 9.81 m/s2

]T
), and noise. Knowing that the gravity acts only in

the downward direction of the navigation frame, the relation shown in Equation (2.7) can

be made,
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f̃ b = f b + ba + wa = Cb
ng

n + ba + wa (2.7)

where the rotation matrix (Cb
n) rotates the gravity vector from the navigation frame to the

body frame.

By solving for the scalar component of the accelerometer readings and setting the noise

variable to zero, a relation can be made between tilt angles (roll/pitch) and the accelerom-

eter readings. A least squares initialization process is used to account for the correlation

introduced between the accelerometer bias estimates and tilt angle estimates. Using the

nomenclature of Appendix A.2, the inputs to the least squares are shown in Equations (2.8)

and (2.9).

z1:3 = f̃ b (2.8a)

z4:6 =

[
0 0 0

]T
(2.8b)

h1 = g sin(θ) + bax (2.9a)

h2 = −g cos(θ) sin(φ) + bay (2.9b)

h3 = −g cos(θ) cos(φ) + baz (2.9c)

h4:6 = ba (2.9d)

The measurements to the least squares process (z) are specific force readings and an initial

estimate of zero for the accelerometer biases. The measurements are weighted by the ac-

celerometer covariance (Q1:3,1:3) and initial accelerometer bias uncertainty (Pba,i) as shown

in Equation (2.10).
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Figure 2.2: Correlations of Initial IEZ State Covariance

W−1 = Cz =

 Q1:3,1:3/∆t O

O Pba,i

 (2.10)

In Equation (2.10), Q1:3,1:3 represents a submatrix of Q from Equation (2.5), specifically rows

and columns 1 through 3. Note that the accelerometer covariance is discretized by dividing

by the IMU time step (∆t).

The result of the least squares process is an initial estimate for the tilt angles along with a

covariance between the tilt angles and accelerometer bias estimates. The covariance matrix

from least squares is combined with initial state estimate variances for position, velocity,

yaw, and gyroscope bias. Figure 2.2 shows the full initial state estimate covariance and the

correlations by representing the state estimate covariance matrix visually and shading in the

populated sections.

IEZ Time Update

The inertial measurements are used to predict the navigation solution in the time be-

tween measurement updates. This is done by treating the inertial measurements as inputs

(u = [f̃ b, ω̃b]T ) in the time update of the EKF. A nonlinear function (ẋf = f(xf , u, w)) is

used to describe the time rate of change of the 15 states. This is also known as the state
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equations. The state equation for position (f1:3) is simply equal to the velocity as shown in

Equation (2.11).

f1:3 = vf (2.11)

The rate change in velocity is equal to the true acceleration in the navigation frame. The

true navigation frame acceleration is equated to the accelerometer inputs by 1) subtracting

the bias and noise from the accelerometer readings 2) rotating the body frame measurements

into the navigation frame using the rotation matrix and 3) removing the effect of gravity

acting on the accelerometer readings [3]. This process is performed in the state equations

for velocity (f4:6) as shown in Equation (2.12).

f4:6 = Cn
b (f b) + gn = Cn

b (f̃ b − ba − wa) + gn (2.12)

For the function describing the rate of change in the orientation states, the gyroscope

readings are used. First, the equation subtracts the bias and noise terms in the same manner

as for the accelerometer readings. To transform the rotation rates from the body frame to

the navigation frame, the mechanization matrix (M) is used [25]. A detailed description

of the mechanization matrix can be found in Appendix A.1. The state equation for the

orientation states (f7:9) is shown in Equation (2.13).

f7:9 = Mωb = M(ω̃b − bg − wg) (2.13)

The inertial bias states are modeled as a first order Markov process with time constants

as shown in the previous section. For extended periods without measurement updates to the

EKF, the bias estimates will tend towards zero at a rate that depends on the value of the

time constants. Equations (2.14) and (2.15) show the state equations for the accelerometer

and gyroscope biases (f10:12, f13:15).
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f10:12 = − 1

τa
ba + wba (2.14)

f13:15 = − 1

τg
bg + wbg (2.15)

The time update is performed upon receiving a new inertial measurement. Given the

current state estimate (x̂f ) and the system input, and setting noise variables to zero, the

state equations are numerically integrated in order to propagate the states to the next time

step. In addition to predicting the states at the next time step, the state estimate covariance

(P ) must evolve accordingly and, for this, the state transition matrix (Φf ) is used. In order

to calculate the state transition matrix at the current time step, a numerical integration is

performed on the first derivative of the state transition matrix (Φ̇f ). The first derivative

of the state transition matrix is found by taking the Jacobian of the state equations with

respect to the states and evaluated at the current state estimate as shown in Equation (2.16).

Φ̇f =
∂f

∂x

∣∣∣∣
(x̂k,uk,0)

(2.16)

IEZ Measurement Update

The time update is repeated until detection of either zero velocity or zero angular

rate conditions. When zero velocity is detected, an EKF update is performed with the

measurement and measurement matrix as shown in Equation (2.17),

y =

[
0 0 0

]T
H =

[
O I O O O

]
(2.17)

where I is a 3x3 identity matrix and O is a 3x3 matrix of zeros. This zero velocity update

allows for the estimation of the accelerometer biases. In addition, the ZUPT also helps to

estimate the tilt angles (roll and pitch) due to their correlation with the accelerometer bias

states [3].

18



The measurement covariance (R) associated with the zero velocity update must be

chosen, since this information is not provided from an outside source. In [2], Foxlin introduces

a method for choosing the covariance used for this update. Foxlin says that by making the

update covariance no smaller than the current velocity variance, the corrections will occur

gradually over the update period. Equation (2.18) is used to ensure gradual corrections in

this way.

R = I · trace(HPHT ) (2.18)

In addition to estimating the accelerometer biases, it is also beneficial to estimate the

biases of the gyroscope. The use of the IEZ algorithm with only ZUPT measurements

does not allow for full estimation of gyroscope biases. While x and y gyroscope biases can

be estimated quite well due to their relation with the tilt angles, the z gyroscope bias is

highly unobservable in low dynamics (straight paths, slow turns) [4]. For aiding in the

estimation of the z gyroscope bias, a ZARU is used. Implementing a ZARU measurement

is not as straightforward as for ZUPT. Since there are no angular rate states, a direct zero

valued measurement cannot be used. However, a measurement of the gyroscope bias can be

performed by solving Equation (2.1) of the gyroscope model for the bias with values of zero

angular rate. This leads to measurement and measurement matrices according to Equation

(2.19) [3].

y = ω̃b H =

[
O O O O I

]
(2.19)

The covariance for the zero angular rate update is calculated in a similar manner to

that of the zero velocity update, with one addition. The update covariance also accounts for

the noise in the inertial readings by using the gyroscope portion of input covariance matrix

(Q4:6,4:6) as shown in Equation (2.20).
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R = I × trace(HPHT ) +Q4:6,4:6/∆t (2.20)

The input covariance matrix is discretized by dividing by the time step of the IMU. In most

cases, the trace(HPHT ) portion of the summation shown in Equation (2.20) has a rela-

tively small contribution to the total measurement uncertainty. However, the trace(HPHT )

portion’s contribution to the total measurement uncertainty could be significant after long

periods without zero angular rate updates where the z gyroscope bias has grown to a rela-

tively high value.

2.2 Visual Odometry

Visual odometry is a valuable navigation source for many different applications. With

recent advancements in processor capabilities, an increase in research of visual odometry

has followed. The process of visual odometry operates by estimating egomotion of a camera

between consecutive frames. Egomotion is defined as the motion of the observer relative

to its environment. Egomotion estimates are used to propagate pose estimates from some

initial condition, resulting in a dead reckoning navigation solution. Because visual odometry

does not rely on GNSS signal availability, it makes for an ideal candidate for applications in

pedestrian navigation. The following research deals specifically with stereo visual odometry,

a subset of the many visual odometry methods. This section discusses the operation of

stereo visual odometry at a high-level. In addition, a discussion will be made on some of

the benefits and drawbacks to stereo visual odometry, a necessary understanding for the

development of the fusion algorithm of topic.

Stereo visual odometry acts on a stream of images provided by two separate camera

lenses. The two lenses are rigidly attached and related to one another through a rigid body

transformation. Before any processing can take place on the stereo images, an estimate of the

baseline transformation between the lens focal points is made. Assuming that the baseline
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transformation is an unchanging, deterministic relation, a single a priori calibration process

can be performed to estimate these parameters [26].

Each image that is provided by the stereo camera undergoes a detection scheme to

extract distinguishable features in the image. Such features include corners, lines, or any

points of high intensity gradients in the image. A correspondence is then made to relate each

feature from one image of the stereo camera to the next. Due to the separation between the

two stereo camera lenses, depth perception is attained. Using the pinhole camera model, a

point cloud is generated from the features that correspond between the two images. In sum-

mary, each stereo image pair produces a new 3D point cloud of the stereo camera’s perceived

environment. This, of course, relies on a clear view of an environment with distinguishable

features. Some non-ideal scenarios include dark scenery, poor weather conditions, uniform

surfaces, etc. [26].

For each epoch in time, consecutive point clouds are compared to estimate the egomotion

of the camera. Assuming that the environment is static, any change in consecutive point

clouds is due to motion of the camera. An iterative minimization process is used to converge

on the associated translation and rotation of the camera [16]. The assumption of a static

environment is likely to fail in many scenarios, especially for pedestrian navigation. However,

stereo camera point clouds are extremely dense and are usually capable of converging on an

egomotion estimate even in the presence of dynamic features. The effect of dynamic features

on egomotion is just one of the error sources of visual odometry along with erroneous feature

locations and false correspondences between images [26].

This thesis uses the Libviso2 open source implementation of stereo visual odometry [16].

The outputs of visual odometry are 3D body frame translation (∆r̃b) and rotation (∆ϕ̃b)

between epochs in time. The ∆ notation is used to emphasize that the measurements are

a change from one time step to another. To truly model the errors associated with the

visual odometry egomotion would be extremely involved and require delving into the low-

level algorithm. For the purpose of this thesis, an assumption is made that these inputs are
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affected only by white noise. Therefore, the egomotion measurements are modeled as a sum

of the true egomotion (∆rb,∆ϕb) and white noise (εr, εϕ) as shown in Equation (2.21).

∆r̃b = ∆rb + εr (2.21a)

∆ϕ̃b = ∆ϕb + εϕ (2.21b)

The egomotion of the visual odometry system can be used as inputs to a discrete differ-

ence function to propagate navigation states. The states required to model the system (xt)

include the 3D position (rt) and orientation (ϕt) of the camera as shown in Equation (2.22).

xt =

[
rt ϕt

]T
(2.22)

The t subscript is used to designate variables associated with the tracking of the torso. Unlike

with IMU mechanization, the position and orientation are updated directly using egomotion

and, accordingly, no velocity states are required. Also, egomotion from the visual odometry

system is assumed to be unbiased and because of this, no bias states are included in the

state vector.

The discrete difference function (xt,k = g(xt,k−1, zk, εk)) describes the change in states

between time steps (k). The state at the next time step is a function of the previous state,

egomotion inputs (zk =

[
∆r̃b ∆ϕ̃b

]T
), and the egomotion noise. The difference equation

for position (g1:3) subtracts noise from the translation input and transforms the result into

the navigation frame before adding to the previous position as shown in Equation (2.23).

g1:3 = rt,k−1 + Cn
b (∆r̃b − εr) (2.23)

For transforming the egomotion translation into the navigation frame, the rotation matrix

is used, which is a function of attitude.
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The difference equation for attitude (g4:6) is very similar to the difference equation for

position. The noise is subtracted from the input of rotation and the result is transformed

into the navigation frame before adding to the previous attitude as shown in Equation (2.24).

g4:6 = ϕt,k−1 +M(∆ϕb − εϕ) (2.24)

For transforming the egomotion rotation into the navigation frame, the mechanization matrix

is used, which is a function of attitude.

The visual odometry egomotion can be used as the time update for an EKF. For this,

the state transition matrix is found by taking the partial derivative of the discrete difference

equation with respect to the states as shown in Equation (2.25).

Φt =
∂g

∂x

∣∣∣∣
(x̂k,zk,0)

(2.25)

Note that since the state equations are already discrete, the state transition matrix can be

calculated directly without integration [9].

2.3 Relative State Measurements

The previous two sections introduce particular methods for estimating a navigation

solution. Both the foot-mounted IMU and visual odometry provide what will be referred to

as relative state measurements. A relative state measurement describes the change in state

from one point in time to the next and is generally a measurement of the motion of a body.

Therefore, relative state measurements require some initial condition in order to propagate

a navigation solution.

As opposed to the previous two sections that deal with specific systems, this section is

more general and introduces methods for fusing arbitrary relative state measurements. By

introducing general methods for relative state measurement fusion, a better understanding

of these algorithms can be made. Specific applications of the algorithms introduced in
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this chapter can be found in Chapter 3, where the foot-mounted IMU is fused with visual

odometry.

Relative state measurements act as the basis for a navigation Kalman filter. The relative

state measurements are used to predict the state estimate between measurement updates.

For scenarios in which multiple relative state measurements are available, intuition says

that the two can be used to refine the navigation solution, especially while dead reckoning.

The process of fusing multiple relative state measurements into a Kalman filter framework,

however, is not as straightforward as one may think. While the Kalman filter allows for any

number of measurement updates, only a single source can be used for the time update.

The incorporation of multiple relative state measurements into a navigation solution is

desired for multiple reasons. The added redundancy helps to improve the robustness of the

solution. A faulty measurement is less likely to have detrimental effects on the navigation

solution when fused with other redundant information. The redundancy also allows for a

fault detection scheme to be implemented on the relative state information. In addition to

increased robustness, fusion of relative state information theoretically reduces the amount

of drift incurred in dead reckoning [6] [7] [8].

2.3.1 Stochastic Cloning Kalman Filter

One method for handling relative state measurements is by way of the stochastic cloning

Kalman filter (SCKF) [8]. The SCKF processes relative state information in the measure-

ment update of the Kalman filter. On initialization, the original state vector is appended

with a static “cloned” state (xs) to form the full state vector (x̆) as shown in Equation (2.26),

x̆ =

 x

xs

 (2.26)

where the s subscript designates static, unchanging values. These static states are the basis

for the SCKF operation.
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By making an exact clone of the original state vector, the corresponding states are

fully correlated on initialization. The initial state estimate covariance must account for the

correlation between the original and cloned state vectors. The off-diagonals of the full initial

state estimate covariance (P̆ ) are populated as shown in Equation (2.27),

P̆ =

 P P

P P

 (2.27)

where P is the initial state estimate covariance for the original state.

The relative state information that is provided at a higher sample rate is used as the

time update. The cloned states remain static during the time update while the original state

is allowed to evolve according to its state equation. The state transition matrix and input

covariance matrix are appended to correspond with the static states. The state transition

matrix is appended with an identity matrix and the discrete input covariance matrix is

appended with zeros as shown in Equations (2.28) and (2.29).

Φ̆k =

 Φk O

O I

 (2.28)

Q̆k =

 Qk O

O O

 (2.29)

The result of Equations (2.28) and (2.29) is the full state transition matrix (Φ̆k) and full

discrete input covariance matrix (Q̆k).

Upon receiving a measurement from the second relative state source, a Kalman pseudo-

measurement update is performed. The measurement update is performed in the same

fashion as a standard Kalman filter update. The only difference from a typical Kalman

filter update is that the measurement model for the pseudo-measurement is a function of
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both the current state and the cloned state. The measurement model is also a function of

pseudo-measurement errors (vk) as shown in Equation (2.30).

yk = h(x, xs, vk) = h(x̆, vk) (2.30)

After a pseudo-measurement update is performed, the cloned state is then reset to the

original state vector. At this point, the two states are once again fully correlated. The

full state estimate covariance matrix is recorrelated, just as on initialization as shown in

Equation (2.27). The process is repeated for each relative state measurement and the result

is a fused dead reckoning solution that experienced less drift than either of the two individual

odometry sources.

2.3.2 Unified Model

Another method for processing multiple relative state information is by way of the

Unified Model [6]. As opposed to the SCKF, the Unified Model processes relative state

measurements in the time update. Similar to the SCKF, the state vector is appended with

a clone of the original state vector to form the unified state vector (x̆) as shown in Equation

(2.31).

x̆ =

 x1

x2

 (2.31)

Additionally, the state estimate covariance matrix is appended and correlated in the same

manner as for the SCKF, shown previously in Equation (2.27).

In the time update of the Unified Model, both state vectors evolve alongside one another

according their respective state equations. The unified state equation (f̆) is formed using

Equation (2.32),
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f̆ (x̆, u, w) =

 f1 (x1, u1, w1)

f2 (x2, u2, w2)

 (2.32)

where the two state equations (f1, f2) are combined into a single state equation vector. The

unified state equation is a function of the current state, the inputs to the two systems (u1, u2),

and the model disturbances of the two systems (w1, w2).

The unified state estimate covariance matrix is updated in the time update using the

unified state transition matrix (Φ̆k) and the unified discrete input covariance (Q̆k). The

unified state transition matrix is formed as a diagonal of the two state transition matrices

from the different models as shown in Equation (2.33).

Φ̆k =

 Φ1,k O

O Φ2,k

 (2.33)

Similarly, the unified discrete input covariance matrix is formed as a diagonal of the two

discrete input covariance matrices as as shown in Equation (2.34).

Q̆k =

 Q1,k O

O Q2,k

 (2.34)

The measurement update of the Unified Model is a pseudo-update that relates the

two state vectors together. In a simple case, the two state vectors are identical and the

measurement model subtracts the two states from one another. In this simple case, the

measurement used in the update is a vector of zeros. Optionally, the two states may be

related by some baseline separation, which will be used as the measurement vector. The

covariance associated with this update will be the confidence in this baseline separation

itself.

Unlike the SCKF, the state vector does not need to be reset after a pseudo-measurement.

This is beneficial in that it allows for some continuity in the navigation solution, making it
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easier to implement. It is also easier, in most cases, to formulate the measurement models

using the unified approach. The measurement model for the unified approach is often linear

and all of the nonlinearities of the relative state measurements are handled in the time

update. With a linear measurement model, the measurement matrix is constant and does

not require calculation of a Jacobian.
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Chapter 3

Fusion of Foot-Mounted IMU With Visual Odometry

This chapter presents two methods for fusing a foot-mounted IMU with other relative

state measurements for pedestrian navigation. To serve as an example, the algorithm will

be developed for fusion with a chest-mounted visual odometry system. These two systems

provide redundant odometry information, which can be fused for an improved dead reckoning

solution. These systems are complementary for two main reasons. The first complementary

trait is experienced during stationary periods, when the user is not walking and the torso

is relatively motionless. In this time, the foot-mounted IMU position estimate remains

virtually stationary, while the visual odometry error grows with time. A fusion of the two

systems would utilize the stationary behavior for the fused solution. The two systems also

complement each other in the walking phase. While the foot-mounted IMU solution suffers

from z gyro bias drift, and consequentially heading drift, the visual odometry egomotion is

unbiased and can be used to improve heading estimation performance.

The challenge of fusing such information lies in the non-rigid relationship between the

two measurement sources. By making assumptions about the motion of the human body

throughout typical walking gait, the two systems can be related. One assumption is that

the relative position of the camera and foot-mounted IMU returns to the same value once

per step. The assumption that the relative position takes on periodic behavior is reasonable

considering that the foot must support and balance the upper body. The second assumption

is that the change in heading of the chest-mounted camera and foot-mounted IMU from

one step to the next is the same. Although the heading profiles of the two systems differ

significantly throughout a step, the change in heading between the two systems returns

to roughly the same value when the foot is contacting the ground. The instance when
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the relative position and heading returns to the same value is referred to as the alignment

instance. Variations in the relative position and heading at alignment are inevitable, but

the assumption is that these variations are zero-mean. The instance of alignment between

the foot-mounted IMU and chest-mounted camera is detected using information from gait

monitoring when the foot is in the stance phase.

Upon detecting alignment, a pseudo-measurement is used to relate the systems. One

method for relating the two systems is based on the stochastic cloning Kalman filter, which

was presented earlier in Chapter 2. While the SCKF is comparatively easy to implement in

this case, it is shown to have suboptimal performance due to certain characteristics of the

IEZ algorithm. A second method is proposed to combat the suboptimal characteristics of

the SCKF approach, which borrows from both the Unified Model and SCKF.

3.1 Coordinate Frames

Up to this point, two coordinate frames have been used to describe the system: the

body frame and the navigation frame. In Chapter 2, the body frame was referred to as a

coordinate frame attached to the sensor, whether that is the IMU or the stereo camera. In

order to develop algorithms for fusing measurements from the two systems, it is necessary

to distinguish the two frames. For this, the “foot frame” (f) will be a frame attached to

the foot-mounted IMU, while the “torso frame” (t) is attached to the stereo camera. The

two frames are separated by a rotation and a translation that changes throughout the step.

The translation between frames is not important for the sensor fusion for reasons that will

be discussed later in this chapter. It is necessary, however, to introduce the boresight angle

(β), which is the difference between the foot and torso heading. In order to track the frames

in the centralized filter, an estimate of this angle must be made. A visual representation of

the two frames and the boresight angle can be seen in Figure 3.1.
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Figure 3.1: Foot and Torso Coordinate Frames

3.2 Cascade Fusion Approach

First, a method is presented that decentralizes the navigation states of the foot-mounted

IMU and chest-mounted visual odometry system. In this approach, a cascade implementation

is used in which the foot-mounted IMU is processed at the lowest level, which updates the

high-level visual odometry system. The low-level IEZ algorithm is similar to that presented

in Chapter 2 and tracks the foot’s 6 DOF navigation states. At each step, the IEZ algorithm

outputs the associated step length and a change in heading, which are used to update the

high-level system. At the high-level, the visual odometry egomotion is used for the time

update. The measurement update is processed using a stochastic cloning Kalman filter with

relative state measurements from the foot-mounted IMU. External measurements can also

be applied to the system using a standard Kalman filter update. A visual representation of

this process can be seen in Figure 3.2.

3.2.1 Low-Level Foot Tracking

The foot states are tracked in similar fashion to that discussed in Chapter 2. In the

cascade method, not all of the information from the foot-mounted IMU is useful for fusion
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Figure 3.2: Cascade Filter Flowchart

at the higher level. Outputs of the IEZ algorithm can be extracted, providing information

of each step taken. This can be beneficial from a communications standpoint. If measure-

ments are only provided once per step, a much lower amount of data is required to pass to

the integration filter. In this case, Bluetooth (or similar wireless technology) would have

acceptable bandwidth for passing step information, which could eliminate the need for wires

that may obstruct the user’s motion [4]. For the cascade filter presented in this thesis, the

step outputs of the IEZ system are step length and change in heading (delta heading).

Since these outputs will be used to update the torso states, their values should be fed

to the high-level system at consistent times for each step. Ideally, this timing would occur

when the 2D position of the foot-mounted IMU is perfectly aligned with that of the chest-

mounted camera. Although no direct information is available for when this alignment occurs,

the instance can be approximated by studying the raw inertial signals of the IMU. For this,

the results from gait monitoring are used. Alignment is declared when the zero velocity

condition has been satisfied for a specified amount of time. This specified amount of time
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was chosen to be a tenth of a second for all of the results shown in this paper. This value

was determined by studying a portion of the initial IEZ and visual odometry solutions and is

small enough to where error drift is negligible. The alignment detection produces consistent

alignment events at each step; however, its performance is not perfect. Later in this chapter

an approach will be discussed for handling the errors associated with alignment detection.

In addition to calculating the values of step length and delta heading, the associated

covariance in these values must also be provided for fusing with the high-level system. In

order to generate the covariance of IEZ outputs, the state cloning approach is used. This

approach is very similar to a stochastic cloning Kalman filter, but for calculating outputs as

opposed to updating the system. The original 15 variable system is appended with a clone

of the foot position and heading as shown in Equation (3.1).

x =

[
xf | rf,s ψf,s

]T
(3.1)

On initialization, the cloned states are set equal to the original state and their covariance

is fully correlated as explained in Chapter 2 for the SCKF. Throughout a stepping motion,

the original states are allowed to evolve according to Equations (2.11-2.15), while the cloned

states are held static. When propagating the state estimate covariance, the state transition

matrix and discrete input covariance matrix are modified according to Equations (2.28) and

(2.29).

Upon detecting a step, the IEZ outputs are calculated as a function of both the original

state and the cloned state as shown in Equation (3.2).

zstep =

 |rf − rf,s|

ψf − ψf,s

 (3.2)

The covariance associated with this output is calculated using the output Jacobian (H) and

state estimate covariance matrix as shown in Equation (3.3).
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Rstep = HPHT (3.3)

The output Jacobian is calculated using Equation (3.4).

H =
∂zstep
∂x

∣∣∣∣
x̂k

(3.4)

After the step output and associated covariance have been calculated, the cloned state is

reset and covariance is again fully correlated as on initialization. The process is then repeated

for each detected step.

3.2.2 High-Level System

The high-level system for the cascade filter approach tracks the 3D position and orien-

tation of the stereo camera. The navigation solution is propagated in the time update using

egomotion from the visual odometry system according to Equations (2.23) and (2.24). For

the incorporation of the step information from the foot-mounted IMU, a stochastic cloning

Kalman filter framework is used. The original state vector is appended with static copies of

3D position (rt,s) and heading (ψt,s) to allow for a step update at each detected alignment.

The full state vector includes 10 variables and can be seen in Equation (3.5).

x =

[
xt | rt,s ψt,s

]T
(3.5)

The step update includes the step length and delta heading values provided by the low-

level IEZ algorithm. The system is updated according to the measurement and measurement

equation shown in Equation (3.6).

y = zstep h (x, xs) =

 |rt − rt,s|

ψt − ψt,s

 (3.6)
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To deal with the uncertainty that exists in the alignment detection, the covariance reported

from the IEZ output is summed with an expected alignment variance (Ralign) as shown in

Equation (3.7).

R = Rstep +Ralign (3.7)

Intuitive values can be chosen for the alignment variance by considering the motion

involved in a typical step. For the heading alignment variance, it can be assumed that

that the two system’s headings should not vary by more than around 45◦ due to physical

limitations of the human body. Intuition of the human step can also be used to choose the

variance associated with the position alignment. During a typical stepping motion, the entire

body is supported solely through the planted foot. In order to maintain balance, the torso is

positioned above the foot. Therefore, the maximum assumed misalignment error was chosen

to be half that of a typical human step length, or 0.6 meters. Assuming that 99.9% of the

alignment errors fall within these values, 45◦ and 0.6 meters were chosen for the 3σ values of

the delta heading and step length updates, respectively. The alignment covariance (Ralign) is

set accordingly. The values chosen for the alignment variance are rather conservative. Even

with these conservative values, the foot-mounted IMU improves the stand-alone performance

of the visual odometry system, assuming the errors are unbiased. The alignment of the frames

is likely to experience the most errors when the user undergoes maneuvers such as turning

and during the transients of walking. An improvement to the choice of alignment variance

could be made by inflating this variance when detecting such maneuvers. For the work

presented in this thesis, however, a constant alignment variance is used.

In addition to the step updates, the framework is developed to allow for external mea-

surements to be applied with ease. With external measurements, the states would be updated

directly using a standard Kalman filter update. For example, with position measurements

from GPS (r̃t,GPS), the measurement vector and measurement matrix shown in Equation

(3.8) would be applied.
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y = r̃t,GPS H =

[
I O3×7

]
(3.8)

3.2.3 Further Discussion

One reason the cascade approach may be preferred in some cases is due to its segmented

structure. The algorithm does not necessarily depend on both systems to be operational. If

the foot-mounted IMU were to go offline, the high-level system could continue to propagate

without relative state updates from the step information. In the case of lost visual odom-

etry, the outputs of the IEZ system could be treated as the sole source of odometry. The

cascade approach does, however, suffer from certain drawbacks. Since there is no correlation

maintained between the foot states and the high-level states, information from an external

measurement cannot be shared through all states. For example, a GPS position update, as

the one shown in Equation (3.8), would not benefit the low-level IEZ filter. This lack of

correlation between the two systems may be especially problematic due to certain undesir-

able characteristics of the foot-mounted IMU. As discussed in Chapter 2, the IEZ algorithm

suffers from weak observability in the yaw and z gyro bias states under certain dynamics.

This low observability may lead to biased delta heading outputs. If the system were allowed

to share information, however, it could improve the observability of these states.

3.3 Centralized Fusion Approach

To deal with the drawbacks of the cascade approach, a centralized framework is pro-

posed. The centralized algorithm joins both the torso and foot tracking states into one

centralized state vector. By centralizing all involved states, the correlation between state es-

timates can be maintained. Therefore, the benefits of a measurement update will be shared

throughout both systems. The time update of the centralized approach uses both inputs

from the visual odometry and inertial measurements from the IMU. Due to the different

sample rates of the two inputs, the torso states associated with the visual odometry updates
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are held static between egomotion measurements, while the foot states are allowed to prop-

agate. When an egomotion measurement is received, the torso states are updated alongside

the foot states. Upon detecting alignment, a pseudo-measurement update relates the states

of the foot and torso similar to the update used in the Unified Model. Similar to the cascade

approach, external measurements can be applied to the system using the standard Kalman

filter update. The difference here is that an external measurement will share its information

with all states involved. A visual interpretation of the centralized approach can be seen in

Figure 3.3.

Figure 3.3: Centralized Filter Flowchart

The states involved in the centralized approach are torso position (rt), torso orientation

(ϕt), foot position (rf ), foot velocity (vf ), foot orientation (ϕf ), accelerometer bias (ba),

gyroscope bias (bg), and the boresight angle (β) as shown in Equation (3.9).
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x =

[
rt ϕt | rf vf ϕf ba bg | β

]T
(3.9)

Each component of the state vector (position, orientation, velocity, bias) are 3D vectors with

the exception of the boresight angle, which is a scalar value. By combining the torso and

foot states and with the addition of the boresight angle, the result is a 22 variable system.

3.3.1 Initialization

To initialize the centralized states, the application must be taken into consideration. For

pure dead reckoning scenarios, the position and heading can be set to zero. If the navigation

is to occur with respect to some global reference frame, an initial position measurement can

be used for initialization along with a guess of the initial heading. One choice may be to

initialize the position with GPS position and the heading with a magnetometer.

In actuality, the foot frame and the torso frame are separated by some offset, which

depends on the height of the user. However, the offset information is not necessary for the

applications of this thesis. Because the offset is assumed constant, equating the foot frame

and torso frame position on initialization has no adverse effect. One application in which the

positions should be initialized independently is when position measurements are available

for both the foot-mounted IMU and the visual odometry camera. Another example is if

measurements are available on the relative pose of the two frames.

Along with an initial position and heading estimate, an estimate of the foot IMU’s pitch

and roll must be calculated to account for gravity’s effect on the inertial measurements.

For this, the same accelerometer leveling technique is used as described in Section 2.1 [5].

A correlation also exists between the torso positions, foot positions, torso heading, foot

heading, and boresight angle on initialization. Since this relation is linear, an iterative least

squares process is not required. The estimate covariance between the positions, headings,

and boresight angle (Pr,ψ,β) is calculated using Equation (3.10)
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Pr,ψ,β =
(
HTC−1

z H
)−1

(3.10)

with least squares covariance (Cz) and measurement matrix as shown in Equations (3.11)

and (3.12),

Cz =



Prt,i O O O

O Pψt,i O O

O O Pβ,i O

O O O Ralign


(3.11)

H =



I O O O O

O 1 O O O

O O O O 1

I O −I O O

O 1 O −1 1


(3.12)

where Prt,i, Pψt,i, and Pβ,i are the initial uncertainty in the torso position, torso heading,

and boresight angle states, respectively. An alignment uncertainty is also introduced for the

relation of the torso and foot states.

The resulting covariance matrices from both the accelerometer leveling and pose align-

ment initialization processes are used to generate the full initial state estimate covariance. In

addition, an initial uncertainty in foot velocity and gyroscope bias estimates is included. The

resulting full state estimate covariance matrix accounts for the cross correlations introduced

upon initialization. Figure 3.4 shows these correlations by shading the cells in blue of which

are populated in the initial state estimate covariance.
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Figure 3.4: Initial State Estimate Correlations

3.3.2 Time Update

The time update for the centralized approach is very similar to that of the Unified

Model as discussed in Chapter 2. Two models are used for the time update, one for the

foot-mounted IMU and one for the visual odometry. Because the two inputs are provided

at different rates, an adjustment must be made to the time update. For the time between

inputs from visual odometry egomotion, the torso states (rt and ϕt) are held static and the

foot states are allowed to evolve according to the inertial measurement inputs. When the

next visual odometry input is provided, the torso states are then updated alongside the foot

states. In this method, the time update resembles both that from the Unified Model as well

as the stochastic cloning Kalman filter. This process is summarized in Table 3.1.

The boresight angle is modeled as a random walk, which allows the estimate to be

sensitive to updates. During long periods without updates, the boresight angle estimate will

remain stationary, which is ideal for this particular scenario. The random walk model is

preferred over a Markov process model in which the estimate would digress back to zero in

the lack of updates [5].
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Table 3.1: Centralized Time Update

Without VO Inputs With VO Input

Foot States ẋf = f (xf , uk, 0) ẋf = f (xf , uk, 0)

Torso States xt,k = xt,k−1 xt,k = g (xt,k−1, zk, 0)

State Transition
Matrix

Φ̆k =

[
Φf,k O
O I

]
Φ̆k =

[
Φf,k O
O Φt,k

]

Input
Covariance

Matrix
Q̆k =

[
Qf,k O
O O

]
Q̆k =

[
Qf,k O
O Qt,k

]

3.3.3 Measurement Update

Just as with the cascade model, knowledge of torso and foot alignment is used. For this

approach, however, the information is used as a pure pseudo-measurement. This pseudo-

measurement has the effect of bringing the state estimates together while introducing cross

correlation in the full state estimate covariance matrix. The pseudo-measurement equates

the position of the foot frame with the position of the torso frame. The heading estimates

are related such that the heading of the foot frame is equal to the torso frame heading plus

the boresight angle. These pseudo-measurements can be summarized by the measurement

vector and measurement matrix shown in Equation (3.13).

y =

[
0 0 0 0

]T
h (x, xs) =

 rt − rf

ψt − ψf + β

 (3.13)

In addition to the alignment pseudo-measurement, the framework can easily incorporate

external measurements. External measurements update the states directly just as with the
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cascade filter approach. The main difference from the cascade approach is that external

measurements affect all of the involved states. Whether the external measurements are

applied directly to the foot or torso states, the correlation maintained in the state estimate

covariance allows for the information to be shared throughout the entire system.
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Chapter 4

Simulation

In order to assess the performance of the algorithms presented in Chapter 3, a simulation

environment is developed. Using experimental data alone to assess the algorithms would be

tedious, because it would involve repeating data collections multiples times to gauge the

expectation of the performance. Even still, repeated experimental data collections would

inevitably vary run to run. With simulated data, a trajectory can be repeated any number

of times. Each run of the trajectory will have unique noise values of the same statistical

parameters, as defined by the user. From this, an accurate expectation of the performance

can be attained. This process of repeating simulated trajectories a high number of times

with new noise values on each run is referred to as a Monte Carlo simulation.

This chapter will discuss the procedures involved in developing the simulation environ-

ment. As a precursor to developing the simulation, true human motion is analyzed using

a motion capture system. By studying the motion of the foot throughout a typical step,

motion profiles are developed. These profiles are used to simulate the inertial measurements

of a foot-mounted IMU. In addition, a torso motion profile is developed to simulate the

visual odometry egomotion. With these simulated measurements, the algorithms discussed

in Chapter 3 will be used. From the results of the simulated data, an evaluation of the

algorithms can be made.

4.1 Comparison With Motion Capture System

To ensure that the simulated signals are representative of true human motion, a highly

accurate motion capture system is used to analyze the human gait. The motion capture sys-

tem operates using an array of infrared cameras that observe the testing platform, as shown
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in Figure 4.1. The cameras track the position of reflective markers through triangulation

with high precision. The motion capture system used is accurate to millimeter level posi-

tioning and is the gold standard for gait monitoring tasks. A similar system has been used

for tracking a foot-mounted IMU before, but in this case, only the position was tracked [27].

The orientation of the IMU throughout a step has a major impact on the IEZ algorithm’s

performance and therefore is important to track with the motion capture system. By placing

multiple reflective markers on the foot, a calculation of the orientation can be made.

Figure 4.1: Motion Capture System

In order to track the position of the foot-mounted IMU, a reflective marker is placed on

top of an Xsens MTi IMU, which is mounted to the shoe of the test subject. The tracking

of the IMU’s orientation requires additional markers. Due to the small size of the Xsens

with respect to the reflective markers, there is not enough room to attach the additional

markers rigidly to the IMU. Instead, two markers are placed on the user’s ankle: one on

the inside (medial) and one on the outside (lateral). Using this configuration of reflective

markers, an assumption is made that the foot and IMU are rigidly connected and that the
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foot rotates about an axis coinciding with the ankle. With this assumption in place, the

pitch, and yaw are calculated from the 3D positions of the three markers. The relationship

between the ankle and the foot does not allow for calculating an accurate roll measurement

and, therefore, the roll of the foot is assumed constant throughout a step.

The results of the motion capture states of the foot through a single step can be seen

in Figure 4.2. The x axis points in the stepping direction, while the y direction is lateral to

the step, and z direction points downward with gravity. The x trajectory takes on a tangent

hyperbolic shape, which peaks at the step length. The y trajectory rises only slightly and

ends roughly where it began. The z value decreases, indicating a rise in the foot’s height from

the ground, and returns to roughly the same value. The pitch of the foot ends at roughly

the same value at which it starts. The pitch has a non-zero initial value that corresponds

with its orientation to a local level frame. The yaw also begins and ends at roughly the same

value as a result of the straight step taken. The yaw, along with the positions, is initialized

at zero to correspond with the choice of coordinate frame.
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Figure 4.2: Motion Capture System Foot States
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4.2 Simulation of the Foot-Mounted IMU Readings

With knowledge of the true motion of the foot throughout a typical step, a motion

profile can be generated to replicate this motion in simulation. The true motion of the states

seem to take on sinusoidal behavior. This knowledge can be used to generate the profiles

using mathematical functions [28]. First, the x position profile (rx(t)), is formed using the

first quarter of a sinusoid period. The profile is shaped using the step length (`s) and the

step interval time (tu) as shown in Equation (4.1).

rx(t) =

(
`s
2

)(
1− cos

(
πt

tu

))
(4.1)

The motion capture system shows that the lateral motion of the foot throughout a step

is comparatively small. For this reason, the y position profile (ry(t)) is held constant. The

z position profile (rz(t)) is generated in a similar fashion to that of the x. The z profile is

shaped using step height (hs) and the step interval time as shown in Equation (4.2).

rz(t) = −
(
hs
2

)(
1− cos

(
2πt

tu

))
(4.2)

The yaw profile (ψ(t)) is generated using an equation much like that of the z position.

The shape of the yaw profile is determined by the max yaw (ψmax), the interval time, and

the yaw offset (ψ0) as shown in Equation (4.3).

ψ(t) =

(
ψmax

2

)(
1− cos

(
2πt

tu

))
+ ψ0 (4.3)

The yaw offset is the difference between the walking direction and the yaw of the foot. This

yaw offset is equivalent to the boresight angle, which was presented earlier in Chapter 3.

The equation for generating the pitch profile (θ(t)) is slightly more involved. As shown

in Figure 4.2, the pitch profile in a true step does not resemble a typical sinusoidal shape.
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To replicate the more complex shape, a piecewise sinusoid function is used. Three profiles

are defined (θ1, θ2, θ3) as shown in Equation (4.4).

θ1(t) =

(
θmax

2

)(
cos

(
3πt

tu

)
− 1

)
+ θ0 (4.4a)

θ2(t) = (θmax) cos

(
3πt

tu

)
+ θ0 (4.4b)

θ3(t) =

(
θmax

2

)(
cos

(
3πt

tu

)
+ 1

)
+ θ0 (4.4c)

These profiles are shaped by max pitch (θmax), the interval time, and the pitch offset (θ0).

Depending on the current time in the interval, one of the three equations will define the

pitch profile. This piecewise relationship is shown in Equation (4.5).

θ(t) =


θ1 | for 0 < t < tu/3

θ2 | for tu/3 < t < 2tu/3

θ3 | for 2tu/3 < t < tu

(4.5)

Since the roll information cannot be calculated with the configuration of the motion cap-

ture reflectors described earlier, a prediction must be made of the roll of the foot throughout

a step. It is assumed that the changes in roll experienced throughout a single step are small

compared to the amount of pitch variation. With this assumption in place, the roll profile

(φ(t)) is simply held at a constant value of zero throughout a step.

At this point, a motion profile has been generated for the interval phase of a human gait.

Another key aspect is the stance phase when the foot satisfies zero velocity conditions. In

the stance phase, foot states are held static for a set amount of time, which will be referred

to as stance time (ts). The static period is appended to the interval profile to make up a

profile for a single step. From here, the user can define how many steps are present in a

simulation and stack the individual step profiles for a full simulated trajectory.
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Table 4.1: Foot Simulation Variables

Step Interval Time tu 0.8 s
Stance Time ts 0.3 s
Step Length `s 1.3 m
Step Height hs 0.14 m
Max Yaw ψmax 10 ◦

Yaw Offset ψ0 15 ◦

Max Pitch θmax 30 ◦

Pitch Offset θ0 −20 ◦

In order for the profiles to match that of a typical walking step, the step profile param-

eters shown in Table 4.1 are used. The values in Table 4.1 were chosen by examining the

motion capture profiles in addition to experimentally collected IMU data. The generated

profiles match closely to the profiles measured with the motion capture system and can be

seen in Figure 4.3.

The inertial values are then generated from the full motion profile, which contains the

3D position and orientation of the foot with respect to the navigation frame. The initial step

in generating inertial values is to take the first derivative of the orientations, which equates

to the rotation rate in the navigation frame (ωnb ) as shown in Equation (4.6),

ωnb =
dϕ(t)

dt
(4.6)

where ϕ(t) is a vector containing the three attitude profiles (ϕ(t) = [φ(t), θ(t), ψ(t)]T ). The

rotation rates are then transformed into the body frame of the IMU using the mechanization

matrix as discussed in detail in Appendix A.1. The inverse of the mechanization matrix is

used to solve for the rotation rate in the body frame as shown in Equation (4.7).

ωbb = M−1ωnb (4.7)

The result of Equation (4.7) is a vector containing the true rotation rates provided by a

perfect three-axis gyroscope.
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Figure 4.3: Simulated Foot States

Next, the specific force readings must be simulated. The second derivative of the 3D

position is taken, which yields the acceleration of the body in the navigation frame as shown

in Equation (4.8),

anb =
d2r(t)

dt2
(4.8)

where r(t) is a vector containing the three position profiles (r(t) = [rx(t), ry(t), rz(t)]
T ).

Gravity is then accounted for, which acts in the down direction of the navigation frame. The

result of adding gravity, as shown in Equation (4.9), is the specific force in the navigation

frame.

fnb = anb + gn (4.9)

A rotation matrix is formed using the true orientation and is used to rotate specific force

from the navigation frame to the body frame as shown in Equation (4.10).
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f bb = Cn
b f

n
b (4.10)

Now that the values that correspond with a perfect IMU have been calculated, an error

model is used to replicate realistic IMU readings. A bias and white noise are added to the

true inertial values. The white noise is formed using a normal distribution and the bias is

modeled as a first order Markov process, as discussed in Chapter 2.

4.3 Simulation of the Visual Odometry Egomotion

Similar to the IMU simulation, a motion profile is generated for the camera trajectory.

For this, a constant longitudinal velocity is used. Motion is restricted in the lateral and

vertical direction and changes in orientation are also restricted. The profile is generated in

such a way that the camera aligns with the foot once per step, at the point where the step

is in the stance phase. The relationship between the positions of the two frames can be seen

in Figure 4.4.
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Figure 4.4: Simulated Positions

50



The visual odometry egomotion is calculated as the change in pose between consecutive

frames. To simulate these inputs, a sample rate is chosen and the motion profile is differenced

to calculate the true egomotion. Noise is then added to these values, which is chosen to be

zero-mean Gaussian.

4.4 Results

The simulated signals are then processed through the algorithms introduced in Chap-

ter 3. Monte Carlo simulations are performed to gain an expectation of each algorithm’s

performance. From this, a comparison is made of the four different localization solutions,

including:

• Stand-alone IEZ

• Stand-alone visual odometry

• Cascade fusion

• Centralized fusion

In order for the proposed algorithms to be of any benefit, they should be able to outperform

both stand-alone algorithms in terms of a position and orientation solution.

4.4.1 INS-EKF ZUPT

The Monte Carlo simulation results can be used to characterize the IEZ solution men-

tioned earlier in the text. The most impactful characteristic of the IEZ solution is the

unobservable z gyroscope bias state during continuous walking. Figure 4.5 shows the root

mean squared error (RMSE) of the gyroscope bias states and their evolution with time. In

the initial stationary period, the RMS errors of all three gyro bias states decrease. From

here, the x and y gyro bias errors remain bounded while that of the z gyro grows with time.

This reinforces the belief that the x and y gyro bias states are observable and that the z
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gyro bias state is not. The observability of the x and y gyro bias states is due to the tilt

effect introduced by the gravity vector. Similar to the accelerometer leveling process for tilt

angle initialization, the relationship between the tilt angles and gravity is maintained in the

state transition matrix. The result bounds tilt angle errors and, therefore, bounds x and y

gyro bias errors [3].

Figure 4.5: IEZ Gyroscope Bias RMS Errors

While the growth of the z gyro bias RMS error seems slight, the impact on the yaw

state is significant. Any errors in the z gyro bias estimate are compounded in the yaw state

due to integration. Figure 4.6 shows the RMS errors of the attitude state estimates with

time. Here, the unbounded error growth of the yaw state can be seen. Yaw errors are also

undesirable because of their influence on position errors. Figure 4.6 also shows that the roll

and pitch estimate errors remain bounded for reasons discussed in the previous paragraph.

The simulation environment also allows for the analysis of the IEZ output extraction

method. To confirm that the variances calculated for the IEZ outputs are viable, their values

are compared to an empirical mean squared error. Figure 4.7 shows this comparison in terms

of expected standard deviation and RMS error.
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Figure 4.6: IEZ Attitude RMS Errors

Figure 4.7: IEZ Output RMS Errors and Standard Deviation

4.4.2 Fusion Approaches - Dead Reckoning Performance

Now that a characterization has been made on the IEZ solution, the proposed sensor

fusion approaches can be considered. First, an evaluation is made of the algorithms for

pure dead reckoning. In this scenario, the only updates to the system are pseudo-updates
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including 1) zero velocity updates 2) zero angular rate updates and 3) alignment updates

between the foot frame and the torso frame.

One concern may be the ability of the centralized filter to estimate boresight angle in

the dead reckoning scenario. To test this potential limitation, a simulation is performed in

which the initial boresight estimate is set to zero with the true boresight angle as 15◦. The

transients of the boresight estimate exhibit a convergence towards the true boresight angle as

shown in Figure 4.8. Note that for this particular set, it takes nearly 30 seconds to converge.

This lengthy convergence time is due to the initial boresight error being well outside the

initial boresight estimate uncertainty, meant to exaggerate the convergence of the state.

Figure 4.8: Dead Reckoning Boresight Estimation

By utilizing the Monte Carlo simulations, the expectation of the boresight angle esti-

mation can be studied. Figure 4.9 shows the RMS errors of the boresight angle estimate

with time. During the first 20 seconds of the simulation, while the system is stationary,

the boresight estimate errors grow continuously. It is not until the walking motion that

the boresight state can be estimated, at which point on the RMS errors remain bounded

with time. The unobservability of the boresight state during stationary periods suggests

that, in practice, stationary periods should be limited in time. A balance must be made to
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allow for the estimation of gyroscope biases with zero angular rate updates, while limiting

error growth in the boresight estimate. Considering both experimental and simulation data,

stationary periods between 10 to 20 seconds were found to be ideal.

Figure 4.9: Boresight Angle RMS Errors

After confirming that the centralized filter is capable of estimating the boresight angle

in pure dead reckoning, the localization results are compared against the other navigation

solutions. Once again, the RMS errors of the fusion algorithms are analyzed to gain an

expectation of the solution drift vs. time. Figure 4.10 shows the results of the notable states

from the four algorithms (stand-alone IEZ, stand-alone visual odometry, cascade fusion, and

centralized fusion).

In Figure 4.10, it can be seen that both the cascade and the centralized solution out-

perform the stand-alone systems it terms of drift rate. In fact, the two fusion algorithms

have very similar errors, with the centralized only slightly outperforming the cascade. The

centralized approach shows the most improvement over the cascade approach in the heading

estimation. This is because of the heading alignment updates, which actually improve the

estimation of the z gyro bias. The last subplot of Figure 4.10 shows the centralized z gyro

bias RMS error compared to that of the IEZ filter. The z gyro bias error of the IEZ solution

is comparatively higher and grows at a faster rate. This shows that the centralized algorithm
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Figure 4.10: Monte Carlo RMS Error

is more apt to utilizing the complementary aspects of the two systems during the walking

phase.

Another telling portion of this simulation is in the first 20 seconds, when the system is

static. A close up of the RMS errors shown in Figure 4.10 can be seen in Figure 4.11. During

this stationary period, alignment updates are applied to both the cascade and centralized

filter once every second. The alignment updates are successful in significantly reducing

position error growth for both fusion algorithms, while the visual odometry error grows at a

much higher rate. As for the heading estimates, the cascade solution experiences the lowest

amount of drift during the stationary period. While the centralized heading does drift at a

lower rate than the visual odometry, it is outperformed by the cascade solution, likely due

to the growth in boresight uncertainty. Notice that the foot and torso heading RMS error

evolve separately during the stationary period. Once motion occurs, the foot heading RMS
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error drops to meet the torso heading RMS error in roughly three steps, due to the increase

of boresight observability.

Figure 4.11: Stationary Period RMS Pose Error

4.4.3 External Measurements

To characterize the filter’s response to external measurements, GPS position measure-

ments were simulated and used to update the torso states of both the cascade and centralized

systems. The position updates successfully bound the errors of the two fused solutions as

shown in Figure 4.12. A close up of the RMS error can be seen in Figure 4.13, where vertical

lines are drawn to indicate the alignment and GPS measurement epochs. By taking a closer

look at the RMS error of the centralized solution, it can be seen that the position updates

actually reduce the error of the foot states, even though the update is not applied directly to

these states. The reduction in centralized foot state estimate errors is due to the correlation

maintained between the torso and foot states in the state estimate covariance. The GPS

updates even assist in the estimation of the z gyroscope bias. The z gyroscope bias RMS

errors of both the centralized filter and stand-alone IEZ are compared in the last subplot

of Figure 4.12, which shows the benefit of applying position updates. With the cascade ap-

proach lacking the ability to update the low-level IEZ algorithm, a higher steady state error
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results when compared to the centralized solution, even though the same GPS measurements

were used.

Figure 4.12: RMS Error With GPS Updates

Figure 4.13: RMS Error With GPS Updates - Close Up
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Chapter 5

Experimental Validation

In order to validate the findings of Chapter 4, the proposed cascade and centralized

algorithms are tested with experimental data. It is difficult to draw conclusions about dead

reckoning systems using experimental data, but it is beneficial to see how the systems react

with real life disturbances. This chapter shows the results of the centralized and cascade

fusion algorithms both in dead reckoning scenarios and with GPS position updates. The

navigation solutions are compared to a reference in order to make an assessment on the

performance of the two algorithms. For indoor scenarios, a floor plan of the building is used

as a visual reference and for outdoor tests the solutions are compared with GPS.

5.1 Setup

An Xsens MTi is used for the foot-mounted IMU. This sensor provides triaxial spe-

cific force and rotation rate measurements in a compact packaging. The sensor is mounted

to the user’s foot in a secure fashion as shown in Figure 5.2. A Point Grey Bumblebee2

Stereo Camera is used for collecting stereo images for visual odometry. The stereo camera

is mounted to the user by a chest mount, which can be seen in Figure 5.1. The stereo cam-

era provides images to LibViso2 open source visual odometry library, which calculates the

camera egomotion measurements [16].

A GPS unit is used for evaluating the localization performance of outdoor experiments.

The GPS unit is used for comparing the dead reckoning solution to an absolute position. The

drifts in the dead reckoning solutions (with enough distance traveled) will be significantly

higher than the error in the GPS solution. For this reason, a stand-alone GPS solution is

sufficient. The GPS solution is provided from the internal GPS receiver of the Xsens MTi-G.
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Figure 5.1: Stereo Camera Figure 5.2: Foot-mounted IMU

Two main experiments were performed: indoor and outdoor. The indoor test results

are meant to evaluate the algorithm’s performance on a path in which multiple turns are

involved. In this test, a closed-loop path is taken in which the user ends at the start location.

For closed-loop paths, the final position estimate is effectively the position error that was

accumulated throughout the run. The estimated trajectory of the indoor tests is plotted over

a floor plan of the building for making a qualitative assessment. The outdoor experiment

allows for the localization solution to be compared with GPS. In order to calculate an

accurate error as a percent of distance traveled, a straight path was taken with a total

distance of approximately 95 meters. Another outdoor test involved walking the entirety

of a 400 meter athletic track and was used to assess the navigation solution’s long distance

performance. Each experiment starts with an initial stationary period of 20 seconds to

allow for the gyroscope biases to be estimated. After the initial stationary period, the user

maintains a steady walking pace throughout the test, resulting in an absence of zero angular

rate conditions.

5.2 Results

The bird’s eye view of the position solutions of the indoor route along with the floor

plan of the building can be seen in Figure 5.3. The IEZ solution drifts slightly more than the
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visual odometry in this run. The fusion of the IEZ and visual odometry in the centralized

filter seems to follow the floor plan for most of the trajectory until halfway through the

final stretch where it is pulled towards the IEZ solution. The cascade solution relies heavily

on the visual odometry throughout most of the run. The cascade solution’s reliance on

visual odometry results in poor positioning around the second turn, but ultimately leads to

a reasonable final position error. The final position error for all navigation solutions is listed

below.

• IEZ - 3.56 (m)

• Visual Odometry - 1.69 (m)

• Cascade - 1.12 (m)

• Centralized - 1.67 (m)

The position solutions for the first outdoor test can be seen in Figure 5.4 from a bird’s

eye view plotted over a satellite image of the test sight. The positions are plotted along

with GPS, which is used as a reference for truth. This dataset is particularly interesting

because the visual odometry and IEZ solution both drift in the same direction. While the

cascade solution lies between the IEZ and visual odometry, the centralized solution actually

tends towards the true path. With GPS as a reference throughout the run, it is possible to

calculate a position error as a percentage of distance traveled, which is shown in Figure 5.5.

A straight trajectory was chosen for this run because it provides the most accurate results

for calculating the error as a function of distance traveled.

The second outdoor dataset was collected to study a large closed-loop trajectory with

GPS again used only as a truth reference. This set consists of a full lap around a 400 meter

long running track. A bird’s eye view of the navigation solutions can be seen in Figure 5.6.

The 2D position error is plotted versus time in Figure 5.7. From these results, it can be seen

why final position error is not always the best way to assess a dead reckoning solution. While
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Figure 5.3: Bird’s Eye View - Indoor
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Figure 5.4: Bird’s Eye View - Outdoor
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Figure 5.5: Error As Percentage of Distance Traveled

the cascade solution has the lowest error at the end, the centralized filter better estimates

position throughout a majority of the run.

Figure 5.6: Bird’s Eye View - Outdoor Loop
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Figure 5.7: Position Error vs. Time - Outdoor Loop

With GPS position measurements, the algorithm’s abilities to utilize external measure-

ments can be assessed. The cascade and centralized filters were provided position updates

for the first straightaway of the 400 meter track. After the initial phase of position updates,

the systems used dead reckoning for the remainder of the path around the track. The pur-

pose of the initial position update phase is to highlight the centralized filter’s ability to share

information throughout all states. With GPS position updates, the navigation solution of

the centralized filter is not only aided throughout the update phase, but also in the time

following. The results of this test can be seen from bird’s eye view in Figure 5.8. In this fig-

ure, the centralized solution seems to maintain a good heading estimate, even after removing

GPS updates. The 2D positional errors can be seen plotted versus time in Figure 5.9. This

figure shows that the centralized solution experiences less drift throughout the run.
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Figure 5.8: Bird’s Eye View - Partial Trajectory GPS

Figure 5.9: Position Error vs. Time - Partial Trajectory GPS
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Chapter 6

Conclusions and Future Work

The problem of pedestrian navigation is a challenging task for many reasons. The

motion of a human is complex and often difficult to predict. Pedestrians often require

navigation in environments with little to no GNSS coverage. While an absolute position

solution can be estimated using infrastructure-based systems, these methods can be costly

when scaling for widespread usage. One option, presented in this thesis, is to utilize an

array of body-worn devices providing information of the user’s motion. By fusing motion

information into a dead reckoning solution, a user’s position and orientation can be tracked

between absolute position updates. Theoretically, the more motion information used, the

longer a dead reckoning solution will be valid. The fusion of relative state information is

a challenge for any system, especially pedestrians. The additional challenge for localizing

pedestrians comes from the use of body-worn motion devices, which are often located at

different locations throughout the user’s body.

A focus is made in this thesis on a popular technique for dead reckoning of a pedestrian:

the mechanization of a foot-mounted IMU. The process was described in detail and the out-

puts of the system characterized. The foundation of the IEZ algorithm is the detection of

zero velocity and zero angular rate conditions. By studying a window of inertial measure-

ments, these conditions are monitored. With the sensor being mounted at the foot location,

zero velocity conditions are detected at each step and used to update the internal errors of

the IMU. Literature states that a major fallback to the IEZ algorithm is the unobservability

of the z gyro bias while walking [3]. While implementing a zero angular rate update allows

for the estimation of the gyroscope biases, these conditions are rarely met in typical walking
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motion. This trait and its effects on the navigation solution were shown through simulation

and analysis of Monte Carlo results.

While the IEZ algorithm tracks a 6 DOF pose of the foot-mounted IMU, this much

information is not entirely relevant for high-level fusion. A technique was presented for

calculating outputs of the IEZ along with a covariance of these values. By way of Monte

Carlo analysis, this technique for calculating IEZ outputs was validated. The outputs include

step length and delta heading, which alone can act as an odometry source. These outputs

are also affected by poor z gyro bias observability. As the time between zero angular rate

update increases, a bias is introduced to the delta heading values.

By fusing the foot-mounted IMU solution with additional navigation systems, the ad-

verse effects can be reduced. The mounting of an IMU to the foot is ideal for estimating

internal errors of the device, but makes it especially challenging to fuse with other body-worn

systems. Utilizing the gait monitoring results, which act on the raw inertial measurements,

the instance of torso-to-foot alignment can be approximated. Once torso alignment is de-

tected, the information from the foot-mounted IMU can be combined with other body-worn

systems.

Two algorithms for fusing the foot-mounted IMU with other body-worn sensors were

presented: a cascade and a centralized approach. Each of the algorithms has both positive

and negative characteristics, which were discussed in the algorithm’s respective sections and

when describing results. To serve as an example, a fusion of the foot-mounted IMU with a

chest-mounted visual odometry system was considered.

In order to characterize the two methods, a simulation environment was developed.

Studying the motion of the foot sensor with a high accuracy motion capture system allowed

for mathematical formulas of the step motion to be developed, which mimic the position and

orientation of the foot throughout a step. By differentiating these values and incorporating

the effects of gravity, outputs of a perfect IMU are simulated. Outputs of a visual odometry

system are simulated in a similar way, with the true trajectory aligning with the foot once per
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step. After perfect measurements are simulated, error models are incorporated to replicate

the outputs of the actual sensors. The development of a simulation environment allowed for

Monte Carlo runs to be performed in order to make assessments of an algorithm’s error drift

performance.

The cascade approach uses the step length and delta heading outputs of the IEZ to

update a visual odometry system in a high-level EKF. This scheme may be preferred in

application due to its simplified architecture. It does not rely on both systems to be op-

erational to continue providing a navigation solution. With implementation in a Kalman

filter framework, the incorporation of external measurements is very straightforward. One

drawback to the cascade filter approach, however, is that the correlation between the torso

and foot states is not maintained. Monte Carlo simulations showed that this aspect is not

critical for dead reckoning scenarios, but when external measurements are applied to either

the foot or torso states, the cascade approach does not take full advantage of this informa-

tion. In addition, the errors in the low level IEZ heading eventually introduce bias in the

delta heading outputs. As time between ZARU measurements increases, the performance of

the cascade filter degrades.

The second algorithm proposed combines the torso states and foot states into a cen-

tralized state vector for the sake of maintaining a correlation between all states. The Monte

Carlo results show that the centralized approach aids in the estimation of the z gyroscope

bias. As a result, the heading error drift rate is improved when compared to the cascade

solution. The main drawback to the centralized approach is the complex architecture. The

centralized approach is more difficult to implement, primarily due to the differing sample

rates of the IMU and visual odometry system. Another characteristic of the centralized filter

is the lack of boresight angle observability during stationary periods, which was shown us-

ing Monte Carlo analysis. While this trait negatively affected the results of the simulation,

it may actually be a benefit in application. In real life, the user is prone to fidgeting in
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place, causing actual uncertainty in the boresight angle. The centralized filter’s boresight

uncertainty growth might be more accurate in capturing this phenomenon.

To show how external measurements affect the systems, position updates were applied

to both simulated and real data. Simulation showed how the position updates to the torso

states indirectly improved the foot states. The foot state errors were reduced with GPS

position updates, not only in position and heading, but also in the estimation of the z

gyro bias. This assistance in z gyro bias estimation enhances the navigation solution for

the centralized approach even after position measurements are removed. While the cascade

filter also showed benefits from position measurements, the steady state error was higher

than that of the centralized solution. The centralized filter was also the better performer in

the experimental tests by better taking advantage of the GPS position measurements applied

in the first 100 seconds of the run.

So when choosing between fusion techniques, the application must be considered. Be-

cause the centralized approach is more difficult to implement, it may be preferable to use

the cascade approach. The Monte Carlo results show that this may be an acceptable option,

but only if the time between ZARU conditions is limited. Also, when the application calls

for extended stationary periods, it may be preferable to use the cascade approach, which

does not rely on the estimation of a boresight angle.

There are still many improvements that could be made to build off the work presented in

this thesis. For one, future work could be made to enhance some of the low-level operations

involved in both the cascade and centralized algorithms. In this thesis, a focus was not made

on optimizing factors such as the zero velocity/zero angular rate detection, visual odometry

parameters, sensor mounting locations, and so on. Improvements made to any of these

aspects will surely enhance the overall fusion result.

One simple adjustment that can also be made and may show significant overall im-

provements would be in the choice of covariances used in the alignment updates. The values
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chosen for the alignment covariance in this thesis were conservative to account for the un-

certainties in the transients of walking or when turning. A smart approach would be to

detect the user’s walking phase and to scale the alignment covariance values accordingly.

For example, upon noticing a large increase in visual odometry rotation rate, the user could

be assumed to be turning, in which case the alignment variance should be inflated. Also, a

high alignment variance could be assigned on the first step after long stationary periods to

account for uncertainty in the transients of walking.

Another improvement would be the incorporation of a model and/or measurement re-

lating the foot and torso states. This thesis only considered the case in which pseudo-

measurements between the torso and foot states occurred once per step. It has been proven

that the more frequent these pseudo-measurements occur, the more the navigation solution

will be improved [6]. The centralized architecture would be well suited for incorporating

this additional information. As an example, consider the case in which a walking gait model

predicts the relative pose between the foot and the torso throughout a step. In another

example, a downward facing camera could track the foot’s relative orientation and provide

measurements of the boresight angle. It would also be feasible to utilize devices that pro-

vide range between the foot-mounted IMU and the camera. In any of these examples, the

centralized approach could be slightly modified to include an additional measurement that

relates the foot and torso states.

The work presented in this thesis lays a foundation for multi-sensor fusion for pedestrian

navigation to come. The two proposed frameworks for fusion of a foot-mounted IMU are

easy to implement and should therefore encourage future researchers to incorporate into

other pedestrian navigation tasks. The two methods are also flexible enough to allow for

additional measurements, which opens up the potential for continued improvements. The

contribution of this thesis will advance the topic of pedestrian localization and of navigation

in general.
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Appendix

A.1 Rotations and Coordinate Frames

The work presented in this thesis uses a North-East-Down (NED) convention. In order

to track an object within this frame, a rotation must be made from the coordinate frame

attached to the object (body frame) to the NED frame (navigation frame). The body frame

aligns with the navigation frame at zero roll, pitch, and yaw. When the two frames align,

the North, East, Down directions correspond with the body’s X, Y, and Z, respectively. A

rotation matrix is used to rotate vectors from the body frame to the navigation frame (Cn
b ).

This includes accelerations (in the case of the IMU) and delta positions (in the case of visual

odometry) as shown in Equations (A.1) and (A.2).

an = Cn
b a

b (A.1)

∆rn = Cn
b ∆rb (A.2)

To perform this rotation in three dimensions, a series of three individual rotations are

made. These three rotations are performed in the specific order shown in Equation (A.3) to

produce the 3D rotation matrix. The rotation matrix from the navigation frame to the body

frame (Cb
n) is found simply by taking the inverse of the rotation matrix from the body frame

to the navigation frame. Since these matrices are symmetric, the inverse of that matrix is

the same as the transpose [29].

Cn
b =

(
Cb
n

)−1
= (CφCθCψ)−1 (A.3)
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Cψ =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 (A.4)

Cθ =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (A.5)

Cφ =


1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

 (A.6)

Angular rate vectors are transformed from the body frame to the navigation frame using

the mechanization matrix (M). These vectors include the rotation rates (in the case of the

IMU) and delta rotations (in the case of visual odometry) as shown in Equations (A.7) and

(A.8),

ωn = Mωb (A.7)

∆ϕn = M∆ϕb (A.8)

where the mechanization matrix is a function of the body’s roll and pitch as shown in

Equation (A.9) [25].

M =
1

cos(θ)


1 sin(φ) sin(θ) cos(φ) sin(θ)

0 cos(φ) cos(θ) − sin(φ) sin(θ)

0 sin(φ) cos(φ)

 (A.9)
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A.2 Least Squares Estimation

The least squares algorithm is used to fit a set of noisy observations with a model.

In other words, a set of noisy measurements is used to determine the most likely value of

a system’s state. Along with a state estimate, the least squares solution provides the co-

variance associated with that estimate. For a nonlinear system, an iterative process must

be performed, updating the estimate on each iteration. When information of the measure-

ment accuracy is available, a weighting can be assigned to each individual measurement and

accounted for in the weighted least squares approach [5].

Consider the linear equation

δz− = Hδx+ δz+ (A.10)

where δz− is the measurement innovation, defined as

δz− = z − h
(
x̂−
)

(A.11)

δz− is the measurement residual, defined as

δz+ = z − h
(
x̂+
)

(A.12)

and δx is the state vector innovation, defined as

δx = x̂+ − x̂− (A.13)

The matrix H is the measurement matrix, which is defined as

H =
dh

dx
=
dz

dx
(A.14)
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The least squares estimation operates by minimizing the measurement residuals with

respect to the states. From this, the following relation is made:

∂

∂δx

(
δz+

T
δz+
)

= 0 (A.15)

After performing substitutions and additional matrix algebra and simplification, the

result is the following equation:

δx =
(
HTH

)−1
HT δz− (A.16)

By applying the above equation, an optimal estimate of the states is made given the

measurements provided.

A.2.1 Iterated Least Squares

For the derivation above, it is assumed that the measurement matrix is completely

independent of the states. In this case, the solution to Equation (A.16) provides and optimal

estimate. In the case of a nonlinear problem, the measurement matrix will contain the state

values themselves. In this case, a priori estimates of the state are used to approximate the

measurement matrix. By performing least squares in an iterative fashion and setting x̂−

to x̂+ after each iteration, a state estimate can be achieved. The iteration process can be

discontinued when the value of δx converges below some predefined threshold.

A.2.2 Weighted Least Squares

In many cases of state estimation, the measurements provided have varying accuracy.

In this case, it is sensible provide a higher weighting to the more accurate measurements.

Similar to the linear least squares problem, the residuals are to be minimized, but in this

case a weighting matrix (W ) is applied:
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∂

∂δx

(
δz+

T
Wδz+

)
= 0 (A.17)

After performing substitutions and additional matrix algebra and simplification, the

result is the following equation:

δx =
(
HTWH

)−1
HTWδz− (A.18)

For many applications, the accuracy of a measurement is provided as a covariance

matrix (Cz). The covariance matrix is simply the inverse of the weighting matrix. With

this knowledge, the inverse of the covariance matrix can replace the weighting matrix in the

above equation.

A.2.3 Least Squares Residuals and their Covariance

Since the measurements used in least squares are not perfect, there will inevitably be

residuals after the estimation process. The residuals, show in Equation (A.12), have an

associated covariance. The covariance of the residuals is calculated using Equation (A.19).

C+
δz = Cz −H

(
HTC−1

z H
)−1

HT (A.19)

Equation (A.19) is essentially the covariance of the measurement minus the covariance

of the state estimate mapped into the measurement domain. The covariance of the state es-

timate itself is calculated using Equation (A.20). This covariance sheds light to the accuracy

of the estimation and also the correlation between state estimates.

C+
x̂ =

(
HTC−1

z H
)−1

(A.20)
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A.3 The Extended Kalman Filter

The extended Kalman filter is a Bayesian estimation scheme that is very popular for

nonlinear systems. The standard EKF consists of three major steps: initialization, the time

update, and the measurement update. Each process will be discussed in detail in this section.

A.3.1 Initialization

The state vector (x) consists of all the variables needed to describe a system throughout

a dynamic process. For example, a navigation based Kalman filter tracks the position,

velocity, and orientation of a body and these values make up the state vector. To start the

filter process, an initial estimate must be made of the state vector. The initial estimate (x̂)

will differ from the actual initial state value, as shown in Equation (A.21). A successful EKF

will minimize the difference between the state estimate and the true state, also referred to

as the state estimate error (δx).

δx = x− x̂ (A.21)

To initialize the EKF, the covariance (P ) for this initial estimate must be attained. The

state estimate covariance is defined using the expectation operator as shown in Equation

(A.22).

P = E[δxδxT ] (A.22)

The state estimate covariance is a matrix of size n×n, where n is the number of states. The

diagonals of the state estimate covariance matrix contain the variance of the state estimate

for each individual state. The off-diagonals of P represent the correlation between different

state estimates. Often times, the system is initialized using the first received measurement.

In this case, the initial state estimate covariance matrix will be populated with the covariance

of that measurement. However, it is rarely the case that a measurement is available for the
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full state vector and so the remainder of the state estimate covariance must be populated in

another way.

A.3.2 Time Update

The time update is also referred to as the prediction stage because it calculates a pre-

diction of what the state will be at the next measurement epoch. This is made possible by

modeling the system and propagating the states through the model given inputs (u) to the

system. A discrete difference equation (f) is used to calculate the propagated state as a

function of the previous state, the system input (u), and noise (w) as shown in Equation

(A.23). The noise term represents the uncertainties that exist in the model or system input.

xk = f(xk−1, uk−1, wk−1) (A.23)

The state estimate is propagated in the time update using the difference equation and

setting the noise terms to zero as seen in Equation (A.24). The result is an a priori state

estimate, which is denoted by the ‘−’ superscript. The ‘+’ superscript denotes the best

estimate at tk−1 and is referred to as the a posteriori state estimate.

x̂−k = f(x̂+k−1, uk−1, 0) (A.24)

The EKF assumes perfect knowledge of the system inputs and for the disturbances (w)

to be zero-mean Gaussian. The expectation operator is again used to express this assumption

as shown in Equation (A.25). The magnitude of the noise is represented by its covariance

(Qk) as shown in Equation (A.26).

E[wk] = 0 (A.25)

E[wkw
T
k ] = Qk (A.26)
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Also involved in the time update is the prediction of the state estimate covariance. The

a priori state estimate covariance is calculated using the discrete Lyapunov equation as

shown in Equation (A.27)

P−
k = Φk−1P

+
k−1Φ

T
k−1 +Qk−1 (A.27)

where Φk−1 is the state transition matrix, which is calculated by taking the partial derivative

of f with respect to x evaluated at the most recent state estimate as shown in Equation

(A.28).

Φk−1 =
∂f

∂x

∣∣∣∣
(x̂+k−1,uk,0)

(A.28)

A.3.3 Measurement Update

Now that an a priori state estimate has been calculated, this value will be refined using

the measurement update of the EKF. A measurement (y) is provided and a model for this

measurement is available and defined by Equation (A.29). The measurement model (h) is a

function of the state itself and measurement uncertainties (v).

yk = h(xk, vk) (A.29)

The same assumptions are made on the measurement noise to be zero-mean Gaussian as

shown in Equation (A.30). The measurement update also requires a covariance (R) associ-

ated with the measurement, which is defined in Equation (A.31).

E[vk] = 0 (A.30)

E[vkv
T
k ] = R (A.31)
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The correction is made to the state estimate using the Kalman gain (K), which is

calculated as shown in Equation (A.32)

Kk = P−
k H

T
k

(
HkP

−
k H

T
k +R

)−1
(A.32)

where Hk is the measurement matrix. The measurement matrix is calculated by taking the

Jacobian of the measurement model with respect to the state evaluated at the current state

estimate as shown in Equation (A.33).

Hk =
∂h

∂x

∣∣∣∣
(x̂−k ,0)

(A.33)

The Kalman gain is applied to the measurement innovation to correct the state estimate as

shown in Equation (A.34)

x̂+k = x̂−k +Kk

(
yk − h

(
x̂−k , 0

))
(A.34)

and the state estimate covariance is updated accordingly as shown in Equation (A.35).

P+
k = (I −KkHk)P

−
k (A.35)

The process is then repeated, resulting in a continued estimate of the state.
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