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Abstract 

 

Stress effects in semiconductor devices have gained significant attention in 

semiconductor industry nowadays. Stress effect in semiconductor devices is used as a beneficial 

effect in sensor applications and strain engineering and efforts are taken to increase these effects. 

Strain engineering is widely used for MOSFETs.  Performance of SiGe based heterostructure 

bipolar transistors (HBTs) is improved by bandgap and strain engineering. However this 

approach is not fully developed for Si bipolar junction transistors (BJTs). While stress effects are 

useful in some areas there are some unwanted stress effects as well. The unintentional stresses 

developed during fabrication, processing and packaging are harmful in semiconductor devices 

and efforts are taken to mitigate these stress effects.  

In this research work, stress-induced changes were investigated in the perspective of 

improvement for strain engineering in Si BJTs as well as mitigation of stress effects in precision 

analog circuits. npn and pnp BJTs on (100) and (111) planes were studied using experimental 

and modeling approaches. Modeling approach was mainly used for this study in order to 

overcome the practical difficulties associated with fabrication of devices with different 

orientation and sizes and controlled application of stress in various orientations for 

measurements. Measurements were taken for in-plane normal stress and the validity of the model 

was verified. A new one-dimensional numerical model was developed in Matlab in order to 

make the stress analysis easier and more in-depth with short running time. Simulation results of 

the 1-D model and Sentaurus TCAD tool were compared and both results showed very good 
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agreement. While commercial TCAD tools usually takes tens of minutes for 2-D or hours for 3-

D simulations for this type of stress analysis, the newly developed 1-D model gives comparable 

results in seconds and without any loss of information generated. This model can be used for fast 

stress analysis/prediction in vertical or lateral npn/pnp BJTs in any plane and will help in 

developing optimal design for strain engineering in BJTs or stress mitigation in analog circuits. 

The stress induced changes in vertical and lateral bipolar transistors on (100) plane were 

quantitatively analyzed for different stress orientations. Our analysis revealed that for a vertical 

npn transistor substantial enhancement in collector current (IC), dc current gain (), cutoff 

frequency (fT), and maximum oscillation frequency (fmax) can be achieved using an uniaxial in-

plane compressive or an out-of-plane tensile stress. In a vertical pnp considerable improvement 

in IC can be achieved with an in-plane or an out-of-plane compressive stress while the changes in 

, fT and fmax are minimal. Lateral pnp BJTs showed much higher improvement for in-plane 

longitudinal compressive stress. In addition, lateral npn BJTs showed higher improvement for 

out-of-plane compressive stress. These results revealed a promising opportunity for strain 

engineering in both vertical and lateral Si BJTs.  

This study also revealed that the transport limited BJTs are less sensitive to stress than 

injection limited BJTs. In addition, vertical pnp on (100) silicon is less sensitive to stress than the 

vertical npn on (100) plane or vertical npn or pnp on (111) plane. On (111) silicon vertical npn 

BJTs are less sensitive than the vertical pnp BJTs. Finally, stress effects in precision analog 

circuits have been explored with the help of Spice simulations incorporating the 1-D theoretical 

model. Some methods for stress mitigation in precision analog circuits are also suggested 

including usage of less sensitive BJTs whenever possible, keeping the matching BJTs in close 
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proximity to avoid stress gradients, avoiding high stress regions in chips, usage of enclosed 

lateral devices for stress compensation.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Stress effects in semiconductor devices 

 Stress induced mobility improvement in semiconductors have been known since 1950s 

[1]. However, until 1990s the main attention was focused on sensor applications only [2-4]. 

Several research works have reported on two main types of stress sensors, the piezoresistive 

stress sensors and the piezojunction stress sensors [5-10]. The piezoresistive stress sensors are 

based on the stress-induced changes in the majority-carrier mobility of a device and utilize 

majority-carrier devices such as resistors and MOSFETs. However, piezojunction stress sensors 

are based on the mechanical stress-induced changes in the saturation current of a minority-carrier 

device and use bipolar junction transistors or p-n junctions. Initially sensors were fabricated with 

resistors and bipolar transistors. Later in 1960s with the introduction of MOSFETs, 

piezoresistive stress sensors based on MOSFETs were introduced to replace the resistor based 

stress sensors. As stress sensors both MOSFETs and bipolar transistors offer certain advantages 

over the traditional resistor based sensors. Such potential advantages include size reduction, 

better sensitivity, wide temperature range capability and easier integration with circuits [9]. 

Solid-state sensors based on piezoresistive and piezojunction effects are widely used for 

structural stress analysis in microelectronic fabrication in industrial applications [11, 12]. 

 During the past 50 years the semiconductor industry has achieved a massive development 

in areas such as smaller sized devices, low power consumption and cost effective designs. In 

1965, the Intel co-founder Gordon Moore predicted that the number of transistors on a 

microprocessor chip will nearly double every 2 years or so [13]. With technological innovations 
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and scaling down of transistor geometries Moore’s law had prevailed for several decades. This 

has resulted in chips that are significantly faster and have greater complexity in each generation 

while continuously bringing the cost per transistor down. Until 2000 scaling down was the main 

technology for improving the performance of MOSFETs. As the transistors scale down to nm 

technology, due to the practical limitations such as short channel effects, semiconductor industry 

emerged to seek for other alternatives. Several new innovative technologies such as strained-

silicon, high-K gate dielectric, ultrathin body SOI MOSFET, double-gate MOSFETs, double-

gate on Si Fin, multi-gate transistor on multiple fins, and tri-gate MOSFETs were developed to 

keep up with the trend of emerging market demand. The introduction of new technologies, 

materials and advanced processing steps all together increased the complexity of the chips and 

packages. The stress distribution also changed rapidly over small scales and the mechanical 

stress effects become more significant in IC circuits.  

 

 

Figure 1.1 – Sources of mechanical stress generation in integrated circuits 
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 Stresses are produced in integrated circuits (IC) by thermal and mechanical loadings. IC 

chip processing involves several steps with a variety of materials of different thermal and elastic 

properties. Stress develops during thermal cycling of the chips. Formation of many structural 

elements such as chemical vapor deposition (CVD) process of silicon dioxide, silicon nitride, 

polycrystalline silicon, etc. exhibits intrinsic stresses. Large localized stresses are induced in the 

silicon substrate near the corners and edges of such structural elements [14]. Another cause for 

mechanical stress is the lattice mismatch of materials used in different processes. Furthermore, 

shallow trench isolation (STI), back-end-of-line (BEOL) processing, through-silicon-via (TSV), 

wafer bonding, wafer thinning, wafer dicing, and electronic packaging etc. results mechanical 

stresses (Figure 1.1). All these stresses may significantly influence the reliability of the 

semiconductor devices [14-18]. These stresses may collectively lead to failure of the package 

resulting in cracking of the die, breaking of connections, bond failure, solder fatigue, and 

encapsulant cracking [6]. Even without producing these adverse effects, stresses may lead to 

parametric shifts that affect the performance and tolerances of integrated circuits and make them 

to work out of the specifications [6]. 

 Stress effects are more significant in precision analog circuits such as temperature 

sensors, bandgap references, current mirrors, PTAT (proportional to absolute temperature) 

circuits and operational amplifiers. Stress induced parametric shifts affect the reliability of these 

circuits which mainly work upon precise matching of the transistors. In bipolar transistors the 

stress induced changes in the mobility and the bandgap affect various parameters such as 

saturation current, base emitter voltage, dc current gain and make them to work out of 

specification. Hence, it is extremely important to take steps to mitigate these stress effects.  
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 With the advancements in technology, reducing the process and packaging induced stress 

effects has become extremely important. Hence, stress investigation and mitigation has become 

an important area of research. Several researchers have demonstrated the use of silicon stress test 

chips based on piezoresistive and piezojunction stress sensors to investigate die stresses in 

electronic packages [6-10]. Currently, in most of the IC processing, stress sensors are 

incorporated for real-time monitoring of the stress-induced changes during fabrication, 

processing and packaging to ensure high quality and reliability. 

 Stress investigations in semiconductor devices gained special attention in 2000s with the 

introduction of strain engineering. The stress effects in semiconductors differ depending on the 

direction of current flow, orientation of stress and the type of material. This property is used as 

an advantage to enhance the mobility of MOSFETs, which is known as strain engineering. 

Strain-induced mobility enhancement was introduced for MOSFETs at the 90 nm technology 

node and has since been an active area of research [19]. This is an intentional stress induction 

widely used in industry at present. For example, SiGe pockets are introduced into the source and 

drain of PMOS to create the compressive stress in the p-channel area in order to increase the 

mobility. In the case of NMOS, a highly tensile silicon-nitride capping layer is deposited at the 

end of the NMOS process covering the source, drain, and gate stack in order to create tensile 

stresses in the n-channel (Figure 1.2) [19-21]. Currently, strain-induced mobility enhancement is 

used as an efficient and practical aid for downscaling of MOSFETs. 
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Figure 1.2 – Transmission electron micrographs of 45-nm p-type and n-channel transistors [21] 

 

 Similar concept is applicable for bipolar transistors as well. Bandgap and strain 

engineering is used in SiGe based heterostructure bipolar transistors (HBTs) to improve the 

performance [22]. In the base of these heterostructures addition of Ge to Si makes the effective 

base bandgap smaller. Furthermore the compressive stress associated with SiGe alloys produces 

additional bandgap shrinkage. It is estimated that for each 10% of Ge introduced there will be a 

net base bandgap reduction of about 75 meV [23]. The major goal of the above processes is the 

improvement of current gain and frequency by reducing the bandgap of base of BJT. Another 

way for improvement is mechanical stress induced performance enhancement. Though some 

studies reported mechanical strain-induced performance enhancement in Si based BJTs [24-28], 

this approach is not fully developed. Most of these investigations in BJTs or HBTs are focused 

on the influence of biaxial stresses. However, in fabrication processes biaxial stresses are less 

preferred because of their integration challenges, process complexity, and higher cost 

involvement [20]. In contrast uniaxial stresses are more preferred over biaxial stress due to easy 

integration, higher percentage enhancement [29, 30] and cost effectiveness. Uniaxial stress can 
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be introduced using an extrinsic stress layer [24] or post fabrication using a cap layer or with 

packaging [20].  

 As described above stress effect needs to be improved and applied as beneficial effects in 

some instances and needs reduced when deemed undesirable in other instances. Main beneficial 

effects are their usage in sensor applications and strain engineering. However, unintentional 

stress effects generated during fabrication, processing and packaging are more deleterious in 

analog and digital circuits. Overall a comprehensive understanding of stress effects in 

semiconductor devices is necessary to improve the stress effects for sensor applications or strain 

engineering or to reduce the stress effects when deemed harmful.   

 

1.2 Previous research works on stress effects in bipolar transistors and analog circuits 

 The saturation current of the bipolar transistor is modified by mechanical stress through 

the piezojunction effect [31]. Piezojunction effect was first described by Hall, Bardeen, and 

Pearson in 1951 for hydrostatic pressure on p-n junctions [32]. The theory was based on bandgap 

widening caused by isotropic stress. In 1962 Rindner observed that the resistance of shallow p-n 

junction was highly stress-sensitive for anisotropic elastic stresses [33]. During 1960s 

researchers repeated and extended the experiments where they produced the stress by pressing a 

stylus on a point of a p-n junction [34-45]. They often reported impressive results including the 

changes in the current-voltage characteristics, base current, break down voltage, and generation-

recombination currents [46-50]. For several years the researchers used very high compressive 

stress with large stress gradient generated by styli. In 1973 Monteith and Wortman obtained 

much smaller stresses using cantilever beams instead of styli and reported different behavior for 

tensile and compressive stress [51].  
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 In 1964 Wortman, Hauser and Burger extended the piezojunction theory to anisotropic 

high stresses in the range of GPa based upon the stress‐induced variations in energy band 

structure and their effect on minority carrier densities [50]. They developed the equations for the 

current-voltage characteristics of diodes and transistors under stress. Their results showed that at 

stress levels greater than 1 GPa the device currents can change by several orders of magnitude 

when stress levels are changed by a factor of 2. In 1967, the theory was further refined by Kanda 

considering the changes in effective masses for stresses over 1GPa [52]. Kanda calculated the 

current change in p-n junction by considering the stress-induced change in minority carrier 

concentration and mobility. The difference of heavy-hole mass and light-hole mass and their 

stress dependence were taken into account in addition to the stress dependence of band edge 

energies when calculating the change in minority carrier concentration. In 1973, Kanda 

developed a basic framework for the stress dependence of the common-emitter transistor current 

gain and showed that the stress dependence of current gain of the npn and pnp transistors can be 

explained by the combined effects of the stress dependence of the emitter efficiency and the 

stress dependence of the base transport factor [53]. All above research work and models were 

based on hydrostatic pressure and stress-inducing styli, quite successful for high stress levels, 

usually over 1 GPa. However, they were not intended for the moderate stress levels usually occur 

during the fabrication, processing and packaging of semiconductor devices. Until 1980, most 

investigations of the piezojunction effect have been focused on the design of mechanical sensors.  

 In 1980s a research group from Delft University started to focus their research work on 

moderate stress levels (  200 MPa) that usually occur during the semiconductor fabrication 

processes. In 1982, Meijer proposed that the mechanical stress might be a dominant factor 

limiting the accuracy of bandgap references and temperature transducers based on his 
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experimental work [54, 55]. Fruett researched on piezojunction effect in silicon, its consequences 

and its applications for integrated circuits and sensors and it’s temperature dependences [56] and 

proposed a new test structure based on cantilever technique to characterize the devices under 

stress at different temperatures. He used the characterization results of vertical and lateral bipolar 

transistors on (100) silicon wafers to extract the first- and second-order piezojunction 

coefficients and temperature dependence and compared with the piezoresistive coefficients. He 

also investigated about the piezojunction effect related errors caused in temperature-reference 

voltages used in bandgap references and temperature transducers. He suggested methods to 

minimize the piezojunction effect in integrated circuits based on the fact that the transistor stress 

sensitivity depends on the type of the transistor and the stress orientation. He also showed that 

appropriate transistor selection and proper layout design can be used to mitigate the 

piezojunction effect in analog circuits [56]. 

 In 2002 Creemer and French developed an analytical model of the effect of mechanical 

stress on the saturation current of bipolar transistors [31, 57]. They recommended the model for 

circuit and sensor design, which can be used for tensile as well as compressive stress and suitable 

for lower than 200 MPa that generally developed during the semiconductor fabrication 

processes. This model can be used for any orientation with respect to the axis of crystal from 

which the transistor is fabricated. The model was verified by comparing the results with 

experimental results of npn and pnp transistors under different stress levels. They extracted the 

piezojunction and piezoresistive parameters and compared with literature values. Their research 

focused on the transistor saturation current at normal, forward bias, and at low-level injection. 

Fruett, Creemer, French and co-workers of Delft University extensively published their research 
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work on stress effect in saturation current and base emitter voltage of silicon bipolar transistors 

[5, 57].  

 In another study Creemer and French modeled the piezojunction effect as a combination 

of the stress-induced effects in the intrinsic carrier concentration and the carrier mobility. Here 

the stress effects on the saturation current were expressed as an equivalent change in the base-

emitter voltage. Theory was verified with experimental results for npn vertical and pnp lateral 

transistors for a stress range of -155 MPa to 155 MPa. They observed that, while stress-induced 

changes in the mobility strongly depended on the orientation of current flow in the base, the 

changes in intrinsic carrier concentration did not. Based on this observation it was suggested that 

for a given stress orientation the changes in intrinsic concentration is fixed, but the mobility can 

still be influenced by giving the transistor a different orientation with respect to the crystal axes. 

In this way, the mobility change could either amplify or compensate for the intrinsic 

concentration effect [58]. 

 

1.3 Scope of the research 

 Even though several theoretical and experimental studies have been conducted in stress 

induced effects in bipolar transistors, the models were based on traditional “piezojunction effect” 

that characterizes the variation of the saturation current of a pn junction device in terms of a 

second order set of piezojunction coefficients. This approach provides a solid experimental 

characterization of the device and allows very good fitting of the stress dependent changes in 

transistor characteristics. Combined effect of all stress induced variations is straight forwardly 

modeled by the piezojunction approach. Much of the underlying device behavior may however 

be masked by merging of variations in mobility and intrinsic carrier concentration in the 
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piezojunction formulation. This results in the loss of predictive understanding for optimum 

design. Separation of stress dependent mobility variations from the stress dependent intrinsic 

carrier concentration in modelling would avoid this short coming. This approach would provide a 

direct insight regarding transistor design and layout necessary to improve the stress effects for 

strain engineering or to mitigate the impact of process or packaging induced stress effects on 

analog circuits. 

The focus of this research is as follows: 

 To develop a numerical model for rapid stress analysis in bipolar transistors 

 To investigate and include appropriate models to represent the stress effects on bipolar 

transistors 

 To characterize the possibility for potential strain engineering in bipolar transistors 

 To provide techniques to mitigate the stress effects on bipolar transistors and precision 

analog circuits.  

 

1.4 Structure of this dissertation 

 The dissertation is structured as follows: 

In chapter 1 an introduction and an overview of stress effects in semiconductor devices 

especially bipolar transistors, a review of previous research work in this area and the scope of 

this research work are presented.  

Chapter 2 provides a review of the theories on the stress effect on band structure and the carrier 

mobility.  
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Chapter 3 describes the theoretical and experimental work of this study. Improved experimental 

methods used for this work and the characterization results of npn and pnp bipolar transistors in 

(100) plane are also presented.  

Chapter 4 describes the 2-D and 3-D model development with Sentaurus to interpret the stress 

effect in bipolar transistors. It also includes the comparison of 2-D and 3-D simulation results. 

Chapter 5 illustrates a 1-D numerical model development with MATLAB for rapid stress 

analysis in bipolar transistors and comparison of results with the Sentaurus simulation, and 

experimental results. It also presents the application of 1-D model to verify the textbook 

approaches. The early voltage and the current based on Gummel approach are verified in this 

section. Then stress models are included and the simulation results are analyzed and compared 

with the experimental results. The residual stresses in bipolar transistors are successfully 

quantified using this 1-D model. Stress dependent changes in saturation current of npn and pnp 

transistors are analyzed and compared. 

Chapter 6 describes an analysis of opportunities for performance enhancement in vertical and 

lateral npn and pnp bipolar transistors using uniaxial stress on (100) plane. 

Chapter 7 presents a study of stress effects in analog circuits and methods to minimize these 

stress induced unwanted effects. Spice simulation was performed for some simple analog circuits 

by including the theoretical models developed in chapter 3 to include the stress effect and the 

results are presented here. 

Finally, Chapter 8 provides the summary and conclusion.  

 

 

 



 

12 

 

CHAPTER 2 

A REVIEW ON STRESS EFFECTS ON SEMICONDUCTOR BAND STRUCTURE AND 

CARRIER MOBILITY 

 

2.1 Introduction 

Mechanical stress in semiconductor devices influences the band structure and the carrier 

mobility. First the stress generates a mechanical strain, which deforms the band structure. The 

changes in bands modify the parameters of carrier transport such as the bandgap, intrinsic carrier 

concentration and carrier mobility through which they change the electrical characteristics of 

semiconductor devices. This chapter reviews the theories behind the stress effects in 

semiconductor devices such as the deformation potential theory and piezoresistive theory.  

 

2.2 Stress, strain and tensors 

The general state of stress for an infinitesimal unit element (Figure 2.1) can be 

represented by a symmetric 3 x 3 matrix stress tensor as follows [59, 60]: 



















ZZZYZX

YZYYYX

XZXYXX

ij







                                                           (2.1) 

where the diagonal elements σXX, σYY and σZZ are called the normal stresses and, the off-diagonal 

elements are called the shear stresses. Because of the static equilibrium requirements the stress 

tensor is always symmetric and it yields: 

ZYYZZXXZYXXY          and               ,                              (2.2) 
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Hence the stress tensor has only 6 independent stress components: 3 normal stress components 

σXX, σYY, σZZ and 3 shear components σXY, σYZ, σXZ.  

 

Figure 2.1 – Stress states on an infinitesimal unit element (for clarity, stresses on negative faces 

are not depicted) 

 

Mechanical strain represents the state of deformation resulting from mechanical stresses. In a 

similar way, mechanical strain also can be represented by a symmetric second-order tensor as 

follows: 


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
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









ZZZYZX

YZYYYX

XZXYXX

ij







                                                         (2.3) 

where εXX, εYY, εZZ are the normal strain components and 2εXY, 2εYZ, 2εZX are the shear strain 

components. Hook’s law states that, for an isotropic, homogeneous material, stress is linearly 

proportional to the strain [61]. Hence for a solid body within the elastic limit the stress and strain 

tensors are related by Hooke’s law and the following relationships can be obtained between the 

stress and strain tensors: 
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klijklij C                                                                    (2.4) 

where ijklC  are the stiffness constants and  

klijklij S                                                                    (2.5) 

where ijklS are the compliances. 

Since the mechanical stress and strain are symmetric, the compliances and the stiffness constants 

also acquire this property. Hence the 81 components can be reduced to 36 constants. The 

equations (2.4) and (2.5) also can be simplified by using only one index for  and , and two 

indices for S and C. Table 2.1  shows the different notations used in stress analysis. 

 

Table 2.1 – Different notations of stress subscripts and reduced forms 

General notation 1  XX YY ZZ YZ=ZY XZ=ZX XY=YX 

General notation 2  11 22 33 23=32 13=31 12=21 

Contracted form 1 2 3 4 5 6 

 

For silicon number of independent compliance coefficients further reduced because of the cubic 

symmetry. With this reduction (2.4) and (2.5) becomes [59] 

jijSi     and   jijCi       where  i, j =1, 2, 3, ….6.                            (2.6) 
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A similar matrix can be written for C as well. The components of compliance and stiffness 

coefficients are accessible in Table 2.2 [62]. 

 

 Table 2.2 – The compliance and stiffness coefficients of silicon [62] 

11
S  [/TPa] 12

S [/TPa] 44
S [/TPa] 11

C [/TPa] 12
C [/TPa] 44

C [/TPa] 

7.68 -2.14 12.6 16.57 6.39 7.96 

 

2.3 Stress effects on semiconductor band structure 

In solid-state-physics, the conducting electrons of a crystal behave as quantum-

mechanical waves subject to the periodic boundary condition. The electron wave functions adopt 

the symmetry of the lattice. Since the wave description of electrons is more complex it is often 

replaced by energy bands, in which the electrons can be considered as semi-classical particles. 

These bands represent the energy of independent electrons in a material as a function of the wave 

vector. They are also called band structure or band diagram [57]. In band structures the electrons 

are located around the minima of the conduction bands and the holes are located around the 

maxima of the valance bands, which are called the band edges. The band edges are separated by 

a bandgap, EG (Figure 2.2(a)). The band structure is characterized by bandgaps, and band 

curvatures. These curvatures can be interpreted as the inverse effective mass of the carriers [57, 

63]. When there is no stress, the edges of each band type have the same energy. But they have 

different effective masses since they have different curvatures for a given current direction. As 

the valence band edges degenerate in k=0 due to the symmetry of the crystal they strongly 

interact and influence each other’s masses [5, 63].  
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Mechanical stress in crystals results in strains on the interatomic distances. The stress 

shifts the band edges and deforms the curvature. In addition, stress distorts the symmetry of the 

edges and the edges are no longer at the same energy level. Hence the bandgap is no longer 

uniquely defined. This influences on the electronic band structure of the crystal. These effects are 

illustrated in Figure 2.2 (a), in which two edges of the six conduction bands are separated from 

the two edges of the valence bands by the bandgap in a silicon band structure. The forbidden gap 

is modified when stress changes the interatomic distances and shifts the band edges to other 

energies. These shifts are different for each band edge and the forbidden gap splits up as shown 

in Figure 2.2 (b). In addition, the curvatures of the valence band maxima change when stress 

destroys the crystal symmetry. This lifts the degeneracy at k=0. Hence strong coupling changes 

and therefore the effective masses also changes [57]. 

   

(a)                                                 (b) 

Figure 2.2 – Schematic band structure of silicon in the (a) stress-free and the (b) stressed case 

[57]. 

 

2.4 Deformation potential theory 

In semiconductors the band structure determines many properties, mainly the 

conductivity. Initially pk


 method was used to determine the shape of the energy bands around 
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the band edges, which was based on the perturbation theory and the symmetry of the crystals. 

Then it was extended to deformed crystals by the formation of deformation potential theory. 

Deformation potential theory was originally developed by Bardeen and Shockley for the 

conduction bands [64]. Later it was generalized to include different scattering modes (transverse, 

longitudinal acoustic modes) by Herring and Vogt [65]. Their model was well suited for n-type 

silicon but not so for p-type because of its degeneracy and warping of the valence band. 

Deformation potential theory for the more complicated valence band was initiated by Adams 

[66] and supplementary contribution was made by Kleiner and Roth [67]. The deformation 

potential theory was further improved and a comprehensive model was established by Bir and 

Pikus [63].  

Creemer researched on modeling the piezojunction effect of bipolar transistors as a 

function of uniaxial stress [57]. He modeled the bandstructure from the first principle of Bir and 

Pikus deformation potential theory [63]. The saturation currents of npn and pnp transistors were 

determined for different values of stresses in different current-stress orientations. The 

measurement data were identified with model equations and the piezojunction coefficients were 

extracted and compared with the literature values. The following two important factors were also 

reported regarding the stress-induced effects on the conduction band and the valence band of the 

semiconductors [57]: 

(a) Uniaxial strain only shifts the conduction band edges and shear strains has no influence on 

the conduction band edge energies. However, experiments and theory have shown that shear 

strain does have some influence.   

(b) In the case of valence bands the strain shifts the valance band edge. In addition, strain also 

deforms the equi-energy surfaces. The deformation of the valance band surface is much 
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stronger than the deformation of the conduction band surface. This is because in the absence 

of stress the valance bands are very close to each other, enabling them to influence each 

other’s shape. Consequently, the equi-energy surfaces are warped instead of spherical. 

However, in the presence of strain the bands are split. This decouples them partially and 

decreases the warping. Very high strains completely decouple the bands, resulting in 

ellipsoidal equi-energy surfaces, as in the case of conduction bands. In addition, for specific 

orientations, strain presses the light-hole band through the heavy-hole band.  

The changes in intrinsic carrier concentration (ni
2/ni

2) were plotted [57, 68] for a variety of 

stresses from calculations based upon solid-state physics, incorporating full stress/strain 

relationship with deformation potentials from the theory of Bir and Pikus. The plots of ni
2/ni

2 

and the quadratic fit equations to simulation results shown in [69] are presented in Figure 2.3 and 

Table 2.3 respectively.  

 

Figure 2.3 – Stress induced change in ni
2
/ni

2
 from Creemer & French [57, 68] 
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Table 2.3 – Quadratic fits to simulation results of Creemer & French [69] 

 
Stress orientation 𝑛𝑖

2/𝑛𝑖
2 

<100> 1.644x10
-6

σ
2
-2.755x10

-4
σ 

<110> 8.873x10
-7

σ
2
-3.403x10

-4
σ 

<111> 5.285x10
-7

σ
2
-3.387x10

-4
σ 

Shear 6.353x10
-7

σ
2
 

  

  

2.5 Stress effect in mobility 

In semiconductor band structure electrons are populated near the edges of the 6 

equivalence conduction band valleys along <100> direction. The equi-energy surfaces of six 

conduction band edges in k-space are shown in Figure 2.4(a). In an individual conduction band 

valley, the electrons maintain their longitudinal and transverse effective masses (ml, mt) to be 

about 0.91mo and 0.19mo respectively, where mo is the effective mass of the unstrained Si. 

Application of mechanical stress breaks the crystal symmetry and split the previously degenerate 

6 valleys. Stretching (tensile strain) along <100> axis elevate the energy of the 2-fold valleys on 

that axis and reduces the energy of the 4-fold valleys on orthogonal axes. Splitting the energy 

between 2 and 4 valleys results in removal of the degeneracy and suppression of scattering 

between them. As shown in Figure 2.4(b), tensile strain along [001] direction elevates the energy 

of the two longitudinal 2 valleys and reduces the energy of the four transverse 4 valleys Figure 

2.4(c)). Since lower energy states are favorable for electrons, a redistribution of electrons occurs 

and more electrons preferably occupy the four lower energy 4 valleys. This results in more 

electrons with transverse mass and reduction of effective mass in [001] direction. Reductions of 

effective mass and scattering increase the mobility of electron in [001] direction. The 
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compressive stress along [100] direction also removes the degeneracy between the 2 and 4 

valleys. But the energy of 2 valleys reduces with respect to 4 valleys. As a result more 

electrons transfer to 2 valleys and move with longitudinal effective mass reducing the mobility. 

In general, average mobility of electron is increased in the direction of tension (longitudinal 

effect) and lowered transverse to that direction (transverse effect). Compression has the opposite 

effect. For conduction band the strain mainly shifts the band edge while keeping the shape 

unchanged. 

 

Figure 2.4 – Conduction band (a) unstrained (b) uniaxial tensile strain in [001] direction (c) band 

energy splitting 

 

Stress effects in hole mobility is more complex. The application of strain splits the 

normally degenerate light-hole and heavy-hole bands, causing the light-hole band to shift 

upwards to the top of the valence band. Further, the curvature of the bands is modified, changing 

the hole effective mass parallel and perpendicular to the interface. The applied strain changes the 

shape of the valence band also. Due to the complexity of the valence band structure and the band 

warping, stress effects in hole mobility was not well understood for a long time. However, 
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computational advances have aided a better understanding of hole mobility changes with stress. 

This was possible because most research and commercial semiconductor devices are p-type and 

models of this successful technology had been mostly based on empirical results. Theoretical 

studies based on the strain Hamiltonian and on deformation potentials in strained silicon as well 

as cyclotron resonance experimental results have revealed several factors such as band warping 

and band splitting, mass change etc. that affect hole mobilities in semiconductors. Earlier, 

piezoresistive technology drew from mainstream IC research and continues to do so. More 

recently, with the strong interest in ‘‘strain engineering’’ to increase transport speed in ICs, 

mainstream semiconductor technology is drawing on findings of piezoresistive research [60]. 

Figure 2.5 shows hole mobility enhancement factor for uniaxial longitudinal compressive and 

biaxial tensile-stress on (100) wafer and (110) wafer surfaces (channel orientation <110>).  

 

 

Figure 2.5 - Calculated and experimental data for uniaxial longitudinal compressive and biaxial 

tensile-stress-enhanced hole mobility versus stress (biaxial stress = σXX+σYY) [29]. 

 

 

As illustrated, generally experimental piezoresistive coefficients are used as successful 

quantitative predictors for stress-induced changes in carrier mobility in both research and 
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industrial applications. A review on piezoresistive theory and its development are presented in 

detail below. 

2.6 Piezoresistive concept development 

 In 1954 Smith observed that uniaxial tension causes a change of resistivity in both n- and 

p-types Si germanium Ge. He measured the resistance for different electrode configuration 

(longitudinal and transverse) by applying uniaxial tensile stress to several single crystal Si and 

Ge rods. By repeating the measurements for several different crystal orientations, and for 

longitudinal and transverse measurement of resistance, all elements of piezoresistive tensor were 

able to be deduced. The piezoresistive coefficients from his experimental work for lightly doped 

Si are presented in Table 2.4 [1] where 11, 12, are the longitudinal and transverse piezoresistive 

coefficients and 44 is the shear coefficient. He also reported that in these materials the change in 

resistance caused by stress induced dimensional changes is small that allows any remaining 

effect to be expressed as a change in resistivity, . The resistivity may be stress dependent 

through either the mobility or the number of the charge carriers. He reported the effect of stress 

on the mobility of the charge carriers for many so-called “piezoresistive materials” and also 

mentioned that in semiconductors the stress may be expected to change the number of charge 

carriers. Since then, extensive research work has been conducted to study the piezoresistive 

effect and its relation to other parameters like resistivity, mobility, impurity concentration, 

temperature, etc. [1, 70-74].  
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Table 2.4 – Piezoresistive coefficient values for lightly doped silicon (TPa)
-1 

[1] 

Piezoresistive Coefficient n-type silicon p-type silicon 

11 -1022 66 

12 534 -11 

44 -136 1381 

  

 The change in resistance of a piezoresistive conductor can be expressed in terms of the 

applied stress, the piezoresistive coefficients and the temperature coefficient of resistance [6]. 

Piezoresistive coefficients and their dependency on doping and temperature were experimentally 

studied by several researchers [73, 75, 76]. In 1982, Kanda provided a graphical representation 

of the longitudinal and transverse piezoresistive coefficients in silicon as a function of the crystal 

directions for orientations in the (100), (110), and (211) planes [74]. He also presented about the 

dependency of piezoresistive coefficients on temperature and impurity concentration of the 

material. In addition, several experimental and analytical studies for the first and second order 

piezoresistive coefficients in both p- and n-type silicon have also been provided [52, 53, 77, 78]. 

Cho, Jaeger and Suhling presented temperature dependence of piezoresistive coefficients for 

silicon for a wide temperature range from -150
 

C to 125

 C based on their experimental 

characterization results [79].  

2.7 Piezoresistive theory 

Relationship between resistance and mobility in piezoresistive material 

The resistance R of a rectangular conducting material is given by 

wt

l
R                                            (2.7) 
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where ρ is the resistivity, l , w and t are the length, width and thickness of the conducting 

material respectively. When a stress is applied the material will deform and the relative 

dimension changes will be l/l, w/w, t/t, and all of which contribute to the resistance change. 

The resistivity ρ may also change for so-called “piezoresistive materials” such as Si and Ge. For 

the materials like metals the dimensional change dominates since there is no piezoresistive 

effect. But for the materials with piezoresistive effect the change in resistivity dominates and 

dimensional change can be neglected. Therefore, the change in resistance for the piezoresistive 

materials can be given as  








R

R
                                           (2.8) 

The conductivity of a semiconductor material is determined by both majority and minority 

carrier concentration and their mobility as 

pn qpqn                                         (2.9) 

For a doped semiconductor with complete ionization, the majority carrier concentration is very 

much higher than the minority carrier concentration and is almost equal to the doping 

concentration. Hence, neglecting the minority carrier concentration, the conductivity of n-type 

silicon can be rewritten as 

nqn                                                    (2.10) 

It is analogous for p-type material. As per (2.10) the conductivity is proportional to the mobility. 

The resistivity is the reciprocal of the conductivity. All of these relationships yield the following 

associations for the piezoresistivity. 











 










R

R
                                    (2.11) 
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 Piezeresistive effect in an arbitrarily oriented conductor  

 Piezoresistivity is an anisotropic property can be modelled mathematically as 

.... mnklijklmnklijkl
o
ijij                      (2.12) 

where ρij
o
 is the isotropic resistivity of stress free material, and  πijkl, Λijklmn are components of 

fourth, sixth order piezoresistance tensors which characterize the stress-induced resistivity 

change, and σkl, σmn are components of the stress tensor. For sufficiently small stress levels, 

(2.12) can be truncated so that the resistivity components are linearly related to the stress 

components as 

klijkl
o
ijij   .                             (2.13) 

In practice, it is very common to use the off-axis primed coordinate system for mechanical stress 

analysis. Primed coordinate system is a coordinate system rotated with respect to the principal 

crystallographic axis. 

For an arbitrarily rotated orthogonal primed coordinate system (2.13) can be written as  

klijkl
o
ijij   ' .                                   (2.14) 

where π′, σ′ are the fourth order piezoresistance tensor, and the second order stress tensor 

respectively in the rotated coordinate system. Using reduced index notation, (2.14) further 

reduced as 

  'o
                                      (2.15) 











                           (2.16) 

where  is the mean unstressed resistivity, α, β = 1, 2, 3 …,6 ,  and 
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1  '  TT                                                             (2.17) 

and π is the 6x6 piezoresistance coefficients matrix tensor given by [10]:  
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with 11, 12, 44 are the longitudinal, transverse and shear coefficients respectively. T is a 6x6 

transformation matrix related by the direction cosines for the unprimed and primed coordinate 

systems as follows [10]: 
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where l1, l2, l3, m1, m2, m3, n1, n2, n3, are direction cosines for the primed and unprimed 

coordinate systems which can be given as [10]        
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 Let’s consider an arbitrarily oriented filamentary conductor in an orthogonal coordinate 

system (x1,x2, x3), where the unprimed axes x1
 
=[100], x2=[010], and x3=[001] are the principal 

crystallographic directions of a cubic silicon crystal as shown in Figure 2.6.  
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Figure 2.6 - Filamentary conductor arbitrarily oriented with respect to an off-axis coordinate 

system [10]. 

 

The normalized change in the resistivity for the above conductor in terms of the off-axis stress 

components is given as 

mlnmlnnml 

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)1( 



     

(2.21) 

where l´, m´, n´ are the direction cosines of the conductor with respect to the primed coordinate 

system ( 1x , 2x 3, x ). 

 

Piezoresistive effect in (100) wafer plane  

 Figure 2.7 shows a general (100) silicon wafer plane most commonly used in 

semiconductor industry.  
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Figure 2.7 - (100) Wafer plane [10] 

 

The crystallographic (unprimed) coordinate axis x1=[100], x2=[010], x3=[001] and the primed 

axes 1x = [110], 2x ]101[ , and 3x = [001] are shown. The primed coordinate system coincides 

with the wafer coordinate system where the axis 1x , 2x  are parallel and perpendicular to the 

primary wafer flat and the 3x axis is perpendicular to the wafer plane. Using (2.21) the resistance 

change of an arbitrarily oriented conductor may be expressed in terms of the stress components 

derived in this primed coordinate system. For the unprimed and primed coordinate systems 

shown in Figure 2.5, the appropriate direction cosines for the primed axes are shown as follows: 
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For a vertical transistor on this plane the current direction is perpendicular to the wafer plane, 

and the direction cosines of the conductor l´, m´, n´ with respect to the primed coordinate system 

x1 110[ ]

[100]

(100) Plane

x2 110[ ]

x2 010[ ]

x1 100[ ]
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will take the values {l´,m´,n´} = {0,0,1}. Substituting the direction cosines in (2.17) the 

piezoresistance coefficients in primed coordinate system for (100) plane can be calculated as 
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                          (2.23) 

where 1211  S . 

Plugging the above piezoresistance coefficients and direction cosines in (2.21) the resistivity 

equation for vertical transistor on (100) plane reduces to the form   

3311)2211(12 





                                                 (2.24) 

Hence the stress dependent of mobility becomes 

   3311)2211(12
100

100 


















                                (2.25) 

where  is the doping dependence mobility. 

 

Piezeresistive effect in (111) wafer plane  

The next common silicon wafer orientation used in semiconductor fabrication is the (111) plane. 

A general (111) silicon wafer is shown in Figure 2.8. 
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Figure 2.8 - (111) Wafer plane [10] 

 

The surface of the wafer is a (111) plane, and the [111] direction is normal to the wafer plane. 

The principal crystallographic axes x1 = [100], x2 = [010], and x3 = [001] do not lie in this wafer 

plane. The natural wafer coordinate system for this plane is 1x ]101[ , 2x ]211[ , 3x ]111[  

where 1x  and 2x  are parallel and perpendicular to the primary wafer flat respectively, and 3x  is 

normal to the plane. For the primed coordinate system indicated in Figure 2.7, the appropriate 

direction cosines for the primed axes are as follows: 
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Similar to the previous case, for a vertical transistor the current direction is perpendicular to the 

wafer plane and the direction cosines of the conductor l´, m´, n´ with respect to the primed 

coordinate system will take the values {l´,m´,n´} = {0,0,1}. 
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In a similar way, stress dependent of mobility for vertical transistor on (111) plane can be given 

as 

   33)321()2211(3
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where    
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
 BBB  

are a set of linearly independent combined piezoresistive parameters. 

 

2.8 Summary 

 This chapter starts with a basic explanation about the stress, strain, tensor, notations and 

the relationship between the mechanical stress and strain. Then a detailed explanation on the 

theories behind the stress effects in semiconductor materials is given. A review on development 

of two main theoretical concepts, the deformation potential theory and the piezoresistive theory 

are explained. Literature studies indicated that the piezoresistive effect for holes was dominated 

by deformation of the equi-energy surfaces of the valance bands whereas the piezoresistive effect 

for electrons was dominated by the shifts of the conduction band edges. The expressions for the 

stress-induced mobility changes in an arbitrary conductor and the expressions for the stress-

induced changes in mobility for vertical transistor on (100) and (111) silicon planes are also 

given. 
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CHAPTER 3 

STRESS EFFECTS IN BIPOLAR TRANSISTORS-THEORETICAL AND EXPERIMENTAL 

 

3.1  Introduction 

This chapter demonstrates the bipolar transistor structures used in this study, modeling of 

stress effect in bipolar transistor, a one-dimensional theory for the stress effects in bipolar 

transistors, an improved technique developed for the experimental works, the characterization 

procedures, and some characterization results of bipolar transistors on (100) plane.  

 

3.2 Bipolar devices used for characterization and simulation 

Vertical and lateral npn/pnp transistors on (100) and (111) planes were utilized in this 

study.  The experimental characterization was performed on vertical npn and pnp transistors on 

(100) plane and npn transistor on (111) plane. Numerical simulation was performed on both 

vertical and lateral transistors on (100) and (111) silicon planes.  

 

3.2.1 Vertical transistors 

These are the most common transistors used in circuit design. In vertical transistors the 

main current flow in the base is normal to the wafer surface as indicated in Figure 3.1. The 

carriers are commonly collected by a highly doped buried layer. These collected carriers are 

transported to the top surface using sinker structures. The buried layer and sinker structures are 

highly doped to keep the resistivity low. The base is very thin in vertical transistors making them 

to work very faster than lateral transistors. Vertical npn transistors are suitable for high 

performance applications because of their high dc current gains. Another main advantage of 
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vertical transistors over the lateral devices is that they will not be affected by surface non-

idealities since the current does not flow near the surface. Therefore they are suitable for 

temperature sensors. The vertical transistors have better exponential relationship between the 

collector current and the base-emitter voltage and hence they are preferred over the lateral 

transistors in temperature-reference voltage circuits. Vertical pnp transistors are used for voltage 

references and temperature sensors. 

 

(a)                   (b) 

Figure 3.1 – Vertical bipolar devices (a) vertical npn transistor (b) vertical pnp transistor 

(substrate pnp transistor). The main current flow directions are indicated, C is the collector, B is 

the base and E is the emitter 

 

3.2.2 Lateral transistors 

In contrast to the vertical transistors, the dominant current flow is in a direction parallel to 

the wafer surface in lateral bipolar transistors as shown in Figure 3.2. This difference plays an 

important role when considering the mechanical stress effects. Again lateral transistors can be 

categorized into two as unidirectional devices (Figure 3.2(a)) and multidirectional devices 

(Figure 3.2(b)). Lateral transistors are widely used in linear integrated circuits as active load 
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devices, current sources and level shifters. In comparison with vertical npn transistors, the lateral 

pnp transistors have a lower current gain (<50), low maximum transit frequencies (<100MHz), 

and lower collector currents [80]. 

 

 
 

                             (a)                                                                         (b) 

 

Figure 3.2 – Lateral bipolar devices (a) unidirectional pnp transistor (b) multidirectional pnp 

transistor. The main current flow directions are indicated, C is the collector, B is the base and E 

is the emitter 

 

3.3 Modeling the mechanical stress effects in bipolar transistor 

For a bipolar transistor shown in Figure 3.3, the collector current (IC) and the base current 

(IB) are related to the base-emitter voltage (VBE) and the base-collector voltage (VCE) in the 

forward-active region as per the following well-known relationship 


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I
                                (3.1) 

where  is the dc current gain, IS is the saturation current, VA is the Early voltage, q is the 

electron charge, k is the Boltzmann constant, and T is the absolute temperature. Stress induced 

changes in IS, , and VA makes changes in the current-voltage characteristics of bipolar transistor 
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and affect the performance. Based upon (3.1) the fractional changes in the collector current and 

the current gain at a given operating point can be given as 
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Figure 3.3 - A vertical npn transistor (a) simplified cross-section (b) simplified block model 

showing the current components 

 

Experimental results demonstrated that the stress-induced changes in Early voltage are very 

small and negligible [81]. Hence (3.2) can be reduced to the following form: 

S

S

C

C

I

I

I

I 



                                                                  (3.3) 

It shows that the stress act on the relationship in (3.1) through the saturation current. This stress 

dependence is known as the piezojunction effect, which includes the change in the minority-

carrier mobility and the intrinsic carrier concentration. These effects cause variations in the 

saturation current IS of bipolar transistors as follows: 
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  2    inSI  and    



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


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kT

GE
NNin exp V C   2

                                         (3.4)

  

 

where  represents the minority-carrier mobility. The intrinsic carrier concentration is related to 

the densities of states in the conduction and valance bands, NC and NV, respectively. The 

intrinsic carrier concentration is also exponentially dependent upon the bandgap energy EG. NC 

and NV are dependent upon the effective masses of the carriers and hence in turn dependent on 

the energy band curvature. In this work, we separately consider the change in mobility and the 

change in intrinsic carrier concentration as in [56, 68]: 
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                                                            (3.5) 

This approach provides new insight into the coupling of stress with the physics of the bipolar 

transistor. 

 

Figure 3.4 - One dimensional npn transistor 

 

One-dimensional transistor model in Figure 3.4 shows the important currents in an npn 

transistor including collector current IC and the two important base current terms, IBE 

representing the back injection into the emitter, and IBR representing recombination in the base. 

In this work, we are most interested in modeling collector current and current gain, or 
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equivalently collector current and base current, and to a lesser extent the Early voltage. Note that 

this is a vertical npn transistor and hence the “horizontal” currents are all actually directed 

normal to the wafer surface as in the transistor in Figure 3.3. 

 

3.3.1 Vertical npn transistors on (100) silicon 

Using the classical bipolar transistor theory, the stress dependence of different current 

components can be represented as follows in which GB and GE represents the Gummel number in 

the base and emitter and AE and AB are the emitter and base area. 
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Base current due to recombination 
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Using (3.6-3.8), the normalized changes in the collector and base currents can be written in the 

form of     
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The results from (2.25) are also incorporated to get the following forms:  
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The values of niE and niB may differ due to bandgap narrowing in the emitter, and material 

differences in the base and emitter. Hence it is possible that the fractional changes in intrinsic 

carrier concentrations in the base and emitter under stress are not identical.  

 

3.3.2 Vertical pnp transistors on (100) silicon 

Similarly the expressions for the collector and base currents of pnp transistors are 

obtained with appropriate changes in the piezoresistive coefficients for holes and electrons. The 

intrinsic carrier concentration does not depend on the material type; hence it remains the same. 
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Base current due to back injection 
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Base current due to recombination 
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Current gain expressions for both npn and pnp transistors 

The overall current gains for both npn and pnp transistors can now be written as 
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 In another way, the changes in dc current gain can be described as the changes in 

injection limited and recombination limited terms as: 
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where   is the injection limited current gain and T  is the transport limited current gain. 

Parameter  represents the fraction of current gain that is determined by back injection into the 

emitter.  = 1 corresponds to 100% back injection, and  = 0 corresponds to 100 % 

recombination. 

The injection limited current gain and the transport limited current gain for a vertical npn 

transistor on (100) plane can be separately written as 

Injection limited current gain for an npn transistor 
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Transport limited current gain for an npn transistor 
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For a pnp transistor it becomes 

Injection limited current gain for a pnp transistor 
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Transport limited current gain for a pnp transistor 

  3311221112 









 pBpB

T

T
                                              (3.20) 

 

3.3.3 Vertical npn transistors on (111) silicon 

Following similar method and using (2.27) the changes in currents and current gain for an 

npn transistor on (111) plane can be obtained as 
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3.3.4 Vertical pnp transistors on (111) silicon 

Interchanging the doping types the expressions for the currents and current gain for a pnp 

transistor on (111) plane can be obtained as 
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3.4 Characterization  

Electrical characterization was performed to determine the stress-induced changes in the 

current-voltage characteristics of the transistors. The characteristics were measured in forward 

biased, it covers a current domain of several decades for bipolar transistors. For bipolar 

transistors, the main characteristics are determined by the saturation current. 

The I-V characteristics, Gummel plots and collector and base currents for a fixed base-

emitter voltage (one point at Gummel plot) for different stress levels (for both tensile and 

compressive) were obtained.   For the IC-VCE characteristics VCE was swept from 0 to 1.5 V and 
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IB was stepped from 0 A to 10A in steps of 2 A. For Gummel plot IC and IB were measured 

while keeping the VCE constant at 1V and sweeping VBE from 0 to 0.8 V. 

The characterization process employs a four-point-bending fixture (4PB), wafer strips 

containing the bipolar transistors, flexible connector, an interface box and an HP 4155 

semiconductor parameter analyzer or Keithley 4200-SCS. 

 

3.4.1 Conventional experimental set-up 

Figure 3.5(a) shows the conventional stress application arrangement consisting of a four-

point-bending fixture (4PB) with load cell and probe station. In the 4PB method, a rectangular 

strip containing a row of chips (transistors) is cut from a wafer and is loaded in a 4PB fixture to 

generate a uniaxial stress state. By controlling the micrometer, uniaxial stress can be generated. 

For tensile stress measurements the strip side where the transistors are located faces upwards and 

for the compressive stress the transistor side faces downwards as shown in Figure 3.5(b). Figure 

3.5(c) illustrates a 4PB geometry structure. For this set-up, uniaxial tensile state of stress is 

induced at the points on the top surface of the beam that are between the bottom supports is 

given by:  

ht

dLF
2

)(3 
                                                    (3.31) 

where F is the force applied to the strip on the 4PB fixture, L is the distance between the two 

outer points, d is the distance between the two inner supports, t is the thickness of the strip, and h 

is the width of the strip. The direction of the stress application is shown in Figure 3.6. The 

measurements were taken for uniaxial in-plane normal stress only. Due to the practical 

difficulties measurements were not taken for other stresses, instead simulations were used for the 

stress analysis in other directions. 
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(a) 

 

 (b)  

 

(c) 

Figure 3.5 - (a) Four-point bending fixture (b) configurations for tensile and compressive stress 

applications (c) four-point bending geometry 
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Figure 3.6 - Stress application direction 

 

Measurement results 

The load was increased from 0 – 80 MPa in steps of 20 MPa and the measurement was 

taken by probing. Figure 3.7 and 3.8 show the IC-VCE characteristics and the Gummel plots 

resulted from the measurements. During the measurements great care was taken to keep the room 

temperature constant. The room was kept closed and the lights were kept off to maintain the 

stability in measurements. Still the results were not uniform and not very accurate as shown in 

the enlarged plots in Figure 3.7 and 3.8.  
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Figure 3.7 - Changes in IC-VCE Characteristics with stress σ[ 101 ] for an npn BJT with probing 

 

 

Figure 3.8 - Changes in Gummel plot with stress σ[ 101 ] for an npn BJT with probing showing 

non-uniform changes 
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For dc current gain first the dc current gain was calculated from Gummel plot. Since VBE 

is much temperature sensitive, sweeping the VBE for Gummel plots affected the temperature of 

the device and even a small change in room temperature affected the measurements. Hence we 

tried fixed base-emitter voltage (VBE), and fixed base current (IB) methods as well to reduce the 

temperature effects. In addition, the experiments were carried out in sampling mode and the 

average dc current gain was obtained for 10 fixed sample base-emitter voltages for each different 

stress levels (Figure 3.9(a)). Similarly Figure 3.9(b) shows the average dc current gain obtained 

from 10 fixed sample base currents. All above methods considerably reduced the temperature 

effect in the measurements; however it made the probing effect more visible as shown in Figure 

3.9. When making a proper contact with a probe for measurement it usually induce  10 g load 

on the strip. In bipolar transistor measurements we usually use a minimum of 3 probes, and all 

probes together induce  30 g load on the strip. It corresponds to ~ 30 MPa stress in our 

measurement set up. Hence probing effect has a significant influence for smaller stress levels.  

 

 

Figure 3.9 - Fractional change in dc current gain with stress σ[ 101 ] for npn BJT with probing (a) 

using fixed VBE method (b) using fixed IB method 
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As explained above, in this traditional set-up the probing added additional force and gave 

erroneous results and unrepeatable data. In addition it took long time to set up the probes for 

each different stresses and get stable measurement.  

 

3.4.2 Improvement with new flex connector 

To overcome the issues with probing, a new flex connector was developed by S. Hussain 

as in [82] and used for the measurements (Figure 3.10 and 3.11). In this experimental set-up, the 

wafer strip was attached to the polyimide flexible connector at a single point at the center of the 

strip. Gold wirebonds were used to electrically connect the appropriate bond pads on the wafer 

strip to the gold plated copper traces on the flex connector. The far end of the flexible connector 

was configured to connect with a zero insertion force connector attached to an interface board 

within an interface box. Cables from the interface box were connected to the semiconductor 

parameter analyzer to obtain the data. With this method we were able to eliminate the additional 

stiffness associated with traditional manual probing or strip-on-beam method. It also helped 

making good permanent electrical connection and reducing the measurement time [82]. 
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Figure 3.10 - 4 PB set up with new flex connector and a flexible carrier 

 

 

 

Figure 3.11 - Flex connector and interface board 
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Figure 3.12 - Changes in IC-VCE Characteristics with stress σ[ 101 ] for an npn BJT showing 

uniform changes 

 

 

Figure 3.13 - Changes in Gummel plot with stress σ[ 101 ] for an npn BJT showing uniform 

changes 
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Figure 3.14 - Changes in dc current gain with stress σ[ 101 ] for an npn BJT showing uniform 

changes 

 

Figure 3.12-3.14 illustrates the IC-VCE Characteristics, Gummel plots and the dc current 

gain plot obtained for an npn bipolar transistor employing the new flex connector. All figures 

show uniform changes. In IC-VCE characteristics plot the current IC reduces with increasing 

tensile stress. In Gummel plot both collector and base currents reduce with increasing tensile 

stress, and as a result the current gain reduces (Figure 3.14). These are the typical behavior we 

expect for an npn transistor with tensile stress. 
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Figure 3.15 - Changes in Early voltage with stress σ[ 101 ] 

 

  

Figure 3.15 of Early voltage with stress was obtained from the data in Figure 3.13 

(considering for IB = 2 – 8 A). This transistor was having an early voltage of 55.8 V when there 

is no stress applied. The figure also shows that the Early voltage is lightly reduced with stress 

and almost independent of mechanical stress.  

Figure 3.16 depicts the experimental results of fractional changes in currents and current 

gain for uniaxial stress σ[ 101 ] for an npn vertical transistor on (100) plane. The measurements 

have been obtained in the following manner. By changing the stress levels while keeping VBE = 

0.7 V and VCE = 1 V, the base and collector currents have been obtained. The experiments were 

carried out in sampling mode and the average for 10 sample measurements for each different 

stress levels has been used. The collector and base currents reduce; as a result, the current gain 

also reduces. This is the typical behaviour theoretically we expect for the currents and current 

gain of vertical npn bipolar transistors on (100) plane. 
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Figure 3.16 - Changes in currents and current gain with stress (npn # 1). Experimental Data 

provided by S. Hussain. 

 

Figure 3.17 - Changes in currents and current gain with stress (npn # 2) Experimental Data 

provided by S. Hussain.  

 



 

53 

 

The fractional changes in currents and current gain of another npn transistor (npn # 2) is 

shown in Figure 3.17 [83]. In this case, the collector current reduces, the base current increases, 

and the current gain also reduces. The npn # 1 and npn # 2 transistors have same profiles and 

from same or similar strips. Experimental results in Figure 3.16 and 3.17 indicate equal slope for 

the change in dc current gain and slightly different changes for both collector and base currents 

(an anti-clockwise rotation about the origin in current plots). The residual stresses in the 

transistors have been identified as the reason for these differences and are explained in detail in 

chapter 4 and 5.  

Various characterization techniques for stress measurement in bipolar transistors 

minimizing the impact of temperature variations and 1-D theoretical model including the 

temperature effects are available in [83].  

 

3.5 Summary  

The theoretical and the experimental work are presented in this chapter. In the theoretical 

work, the mechanical stress effect in saturation current is modeled as a combination of stress 

induced changes in the minority-carrier mobility and the stress induced changes in the intrinsic 

carrier concentration. 1-D theoretical models for vertical npn and pnp bipolar transistors on (100) 

plane and (111) plane are presented. A detailed explanation on the investigated transistor 

structures, experimental methods, the improvement with the flexible connector and the 

experimental results are also presented. 
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CHAPTER 4 

MODELING OF STRESS EFFECT WITH SENTAURUS TCAD SIMULATOR 

 

4.1 Introduction 

Device modelling was performed for further investigation on stress effect on bipolar 

transistors. BJT structure development and investigation of various vertical npn and pnp bipolar 

structures on (100) plane is described in this chapter. Fabrication of such devices would require 

complex lithographic techniques and sophisticated material growth processes. As a result of this 

high cost and the fabrication challenges, availability of fabricated devices in different types and 

sizes for measurements was limited. In addition controlled stress application in different 

orientation for measurement is also not easy. In our measurements we were able to apply 

uniaxial in-plane tensile and compressive stress using a 4PB structure. There are practical 

difficulties for controlled stress application in any other directions. However, this device 

modeling and simulation study helped us to overcome those problems. Device simulation was 

used for stress analysis in all six stress directions.   

 

4.2 Introduction to Sentaurus TCAD simulator 

Numerical simulations have been performed by TCAD simulator Sentaurus from 

SYNOPSYS Ltd [59]. Sentaurus device is a multidimensional, electro-thermal, mixed-mode 

device and circuit simulator for 1D, 2D and 3D semiconductor devices. It includes advanced 

physical models and robust numeric methods for the simulation of most types of semiconductor 

device ranging from deep submicron devices to large bipolar power structures. It is capable of 

simulating the electrical, thermal, and optical characteristics of silicon and compound 
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semiconductor devices. A set of physical device equations that describe the carrier distribution 

and conduction mechanisms are used to compute terminal voltages, currents, and charges. In 

Sentaurus, a real semiconductor device is represented as a virtual device whose properties are 

discretized onto a non-uniform grid of nodes. Continuous properties such as doping profiles are 

represented on a mesh and, therefore, are only defined at a finite number of discrete points. Each 

virtual device structure is described in the Synopsys TCAD tool suite by a TDR file containing 

the following information [59]: 

(a) The grid (or geometry) of the device contains a description of various regions, such as, 

boundaries, material types, locations of any electrical contacts, and the locations of all the 

discrete nodes and their connectivity. 

(b) The data fields contain the properties of the device, such as the doping profiles, in the form 

of data associated with the discrete nodes.  

 

4.3 Creating and meshing device structures 

In Sentaurus device structures can be created by process simulation (Sentaurus Process), 

process emulation (Sentaurus Structure Editor), or structure editors (Sentaurus Structure Editor). 

For maximum efficiency of a simulation, a mesh must be created with a minimum number of 

vertices to achieve the required level of accuracy. For any given device structure, the optimal 

mesh varies depending on the type of simulation. For a bipolar transistor mesh should be densest 

in base region (high current density) and depletion regions (high electric fields). Generally, a 

total node count of 2000 to 4000 is reasonable for most 2D simulations. Large power devices and 

3D structures require a considerably larger number of elements. 
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4.4 Device equations and physical models 

Sentaurus device uses TDR file along with various transport equations (see chapter 5 

equations 5.1-5.5) and physical models to describe the device electrical characteristics, as well as 

the device internal parameter variation and distributions, such as electrostatic potential, carrier 

densities, bandgap, carrier mobilities, carrier velocities, recombination etc. The device equations 

are solved self-consistently on the discrete mesh in an iterative fashion. Using ‘box 

discretization’ method Sentaurus device integrates the partial differential equations (PDEs) over 

a test volume, applies the Gaussian theorem, and discretizes the resulting terms to a first order 

approximation. The accuracy of simulation strongly depends upon the appropriate selection of 

physical models. In order to attain an accurate representation of stress effect in bipolar transistors 

a large variety of physical models have been tested. In this section the physical models that have 

been selected and used for the simulations in this study are presented. For details about this 

models refer [59]. 

 

4.4.1 Hydrodynamic transport model 

Sentaurus device supports several carrier transport models for semiconductor simulations. 

They all can be written in the form of continuity equations, which describe charge conservation. 

Depending on the device under investigation and the level of accuracy required, user can select 

within four different transport models, the basic drift-diffusion model, thermodynamic model, 

hydrodynamic model and Monte Carlo model. Monte Carlo model provides more accurate 

results by solving Boltzmann equation for full band structure, but require high capacity servers 

and longer run time. Hydrodynamic model accounts for energy transport of the carriers. The 

bipolar transistors used in this research work are sub-micron devices. High field saturation 



 

57 

 

effects have to be accounted for such thin base bipolar devices. Hence the hydrodynamic 

transport model has been selected, which includes the high field saturation effect and is more 

suitable for devices with small active regions.  

 

4.4.2 Recombination model 

Generation–recombination exchanges carriers between the conduction band and the 

valence band. It plays an important role in bipolar transistors in determining the base current. 

Shockley–Read–Hall (SRH) recombination and Auger recombination are important for bipolar 

transistors. 

SRH recombination  

SRH recombination is the recombination through deep defect levels in the gap. The SRH 

recombination can be given by:   
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where n and p are electron and hole carrier lifetime, and nt is the trap concentration at or near 

the center of the forbidden gap. The doping dependence of the carrier lifetimes can be modeled 

with the Scharfetter relation[59]:  
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where dop is the doping dependence carrier lifetime for electron or hole. The standard parameter 

values for max,min, Nref  and  are available in Table 4.1.  
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Table 4.1 – SRH doping and temperature dependent parameters 

 
Parameter Electrons Holes Unit 

min 0 0 s 

max 1 x 10
-5

 3 x 10
-6

 s 

Nref 1 x 10
16

 1 x 10
16

 cm
-3

 

 1 1 1 

 

Auger recombination 

Auger recombination is also important in high doping concentrations, as the case in 

emitter. In Auger recombination an electron recombines with a hole and the excess energy is 

transferred to another carrier as kinetic energy, which can be expressed as: 

)22 ()2 2( p
i

npn
p

C
i

nnpn
n

C
Auger

R                                             (4.3) 

The coefficients Cn and Cp can be given as Cn ≈ Cp ≈1.5 x 10
-31

 cm
6
sec

-1
.  

 

4.4.3 Mobility model 

The mobility of electron and holes in semiconductors is influenced by different scattering 

mechanism.  The main scattering mechanisms are lattice or photon scattering and impurity 

scattering. Each scattering mechanism is associated with a mobility component. If more than one 

mobility contributions (1, 2,….) have to be included, they can be combined by Mathiessen’s 

rule. The net mobility   depends on various mobilities as  

......

2

1

1

11



                                                         (4.4) 

and the lowest mobility dominates. In our study we assumed that the total mobility is caused by 

lattice scattering (L) and impurity scattering (dop) and the resultant mobility is given by [84]: 
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Ldop 

111
                                                                   (4.5) 

 

Doping dependent mobility degradation 

 In doped semiconductors, scattering of the carriers by charged impurity ions leads to 

degradation of the carrier mobility. In our simulations the Masetti model has been used to 

describe the mobility dependence on the impurity concentration. The Masetti model reads: 
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where 
















K

T
Lconst

300
, 

where  DNN
total

N -
A   , min1, min2, and 1 are the reference mobilities, Pc, Cr, and Cs are 

the reference doping concentrations, and ,  are the exponents. Sentaurus default parameters for 

silicon has been used for this model. These parameter values are presented in Table 4.2 [59]. 

   

Table 4.2 – Mobility model parameters at T=300 K 

parameters 

 

Symbol Electrons Holes Unit 

min1 52.2 44.9 cm
2
/Vs 

min2 52.2 0 cm
2
/Vs 

1 43.4 29 cm
2
/Vs 

Pc 0 9.23x10
16

 cm
-3

 

Cr 9.68x10
16

 2.23x10
17

 cm
-3

 

Cs 3.43x10
20

 6.10x10
20

 cm
-3

 

 0.68 0.719 1 

β 2 2 1 
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(a) High field saturation 

 In strong electric fields, the carrier drift velocity is no longer proportional to the electric 

field, rather, the velocity saturates to a finite speed. Canali model is used to model the high field 

saturation effect: 
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where low denotes the low field mobility and the exponent  is temperature dependent according 

to: 

exp

0
300
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
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                                                               (4.8) 

Saturation velocity vsat and driving field Fhfs are obtained from the velocity saturation model and 

the driving force model respectively. Model parameters are given in Table 4.3 [59] 

 

Table 4.3 – Canali model parameters for Si at T=300 K [85] 

Symbol Electrons Holes Unit 

β0 1.109 1.213 1 

βexp 0.66 0.17 1 

sat,0 1.07 x 10
7
 8.37 x 10

6
 cm/s 

sat,exp 0.87 0.52 1 

 

(b) Velocity saturation model 

For silicon the velocity saturation model is given by: 

exp,
300

0,

Vsat

T

K
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
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(c) Driving force model 

The driving force model requires hydrodynamic simulation. The driving field for electrons is 

given as 

nne

n
nhfs

q

ww
F

 ,

0
,

)0,max( 
                                                          (4.10) 

where wn = 3kTn/2 is the average electron thermal energy, w0 = 3kT/2  is the equilibrium thermal 

energy, and e,n is the energy relaxation time. The driving fields for holes are analogous. 

 

Mobility due to lattice scattering 

The lattice scattering accounts only for phonon scattering and, therefore, it is dependent only 

on the lattice temperature as follows:  
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where L is the mobility due to bulk phonon scattering. The parameter values for L and the 

exponent  are listed in Table 4.4.   

 

Table 4.4 – Lattice scattering model parameters for silicon at T=300K 

Parameter Electrons Holes Unit 

L 1417 470.5 cm
2
/Vs 

 2.5 2.2 1 
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4.4.4 Bandgap model 

Band structure is the most fundamental property for a semiconductor device simulation. 

Realistic band structures are more complex and can be fully accounted for only in Monte Carlo 

simulations. But Monte Carlo simulations need high capacity servers and long time. For any 

general simulations we consider the most important features such as the temperature and the 

doping dependencies of the energy bandgap. 

Temperature dependence of the energy bandgap 

The energy bandgap of semiconductors decreases as the temperature increases. This can 

be explained as follows: When temperature increases the amplitude of the atomic vibrations 

increases due to the increase in thermal energy. As a result, interatomic spacing also increases 

and the average potential seen by the electrons in the material decreases, which in turn reduces 

the energy bandgap. The lattice temperature dependence of the energy bandgap can be 

represented as: 








T

T
gETgE

2
)0()(                                                             (4.12) 

where Eg(0) is the bandgap energy at 0 K, and  and  are material parameters accessible in 

Table 4.5. A plot of the resulting bandgap versus temperature for silicon is shown in Figure 4.1. 
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Figure 4.1 - Temperature dependence of the energy bandgap of silicon 

 

Doping dependence of energy bandgap 

 Bandgap narrowing is one of the important heavy-doping effects to be considered for 

bipolar devices. At high doping concentrations, the density of states no longer retains a parabolic 

energy distribution and it becomes dependent on impurity concentrations. It causes a reduction of 

the bandgap due to broadening of the impurity band along with the formation of bandtails on the 

conduction band and the valance band. Various bandgap models such as BennettWilson, 

delAlamo, OldSlotboom, and Slotboom have been tested and the Slotboom bandgap model has 

been selected for our simulations. The details of different bandgap models and relevant 

parameters are available in [59]. Slotboom bandgap model [86] is widely used to represent the 

bandgap narrowing in silicon bipolar transistors. According to Slotboom model, bandgap 

narrowing is given by 
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where Eref, Nref are material parameters accessible in Table 4.5. 

Accounting for bangap narrowing, the effective bandgap, Eg,eff (T), is given as: 

0
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E                                                          (4.14) 

A plot of the change in bandgap energy with doping density is shown in Figure 4.2. As a result 

of bandgap narrowing, the effective intrinsic carrier density increases as expressed by 
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where ni,eff is the effective intrinsic carrier density.  

 

 
 

Figure 4.2 - Doping dependence of the energy bandgap of silicon 
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Table 4.5 – Bangap model parameters for silicon 

Parameter Value Unit 

Eg(0) 1.1648 eV 

 4.73x10
-4

 eV/K 

 636 K 

Eref 6.92 mV 

Nref 1.3x10
17

 cm
-3

 

ni 1.48x10
10

 cm
-3

 

 

 

4.4.5 Modelling the mechanical stress effect 

Mechanical distortion of semiconductor microstructures results in a change in the band 

structure and carrier mobility. In this work the changes in intrinsic carrier concentration and 

mobility are modeled separately and described in detail below (equation 3.5). The stress has been 

assumed constant throughout the transistor in simulations however this is not true in the real 

case. However considering the smaller size of the transistors this assumption was included. 

Stress effects in intrinsic carrier concentration 

The basic deformation potential model (default) given in Sentaurus was used to represent 

the stress effect in bangap/intrinsic carrier concentration. In this model, three two-fold 

conduction bands sub valleys for electrons and 2 valence bands sub valleys for holes (heavy-hole 

and light-hole bands) are considered. The shear strain effect for electrons is ignored and the shear 

strain effect is considered nonlinear for holes. In silicon, strain-induced change for 3 sub valleys 

in conduction band, and 2 sub valleys in valence bands can be given by [59]: 



 

66 

 






 











 












2
23

2
13

2
12

2
2

6
2)3311(2)3322(2)2211(

2

2
2

52
4

33
2

322
2

211
2

1,









B
i

B
iB

i

B
i

B
i

B
iiBE

    (4.16)                                   

where 
2B

ij are deformation potentials that correspond to the Bir and Pikus model, and 
2

4
B
i
 is a 

unit less constant that defines mainly a sign. i = 1, 2, 3 are for 3 sub valleys in conduction band 

and i = 4, 5 are for 2 sub valleys in valence band and  is the strain component. The constants are 

given in Table 4.6 [59].  

 

Table 4.6- Deformation potential parameters 

ij
B2

 j=1 j=2 j=3 j=4 j=5 j=6 

i=1 0.9 -8.6 -8.6 0 0 0 

i=2 -8.6 0.9 -8.6 0 0 0 

i=3 -8.6 -8.6 0.9 0 0 0 

i=4 -2.1 -2.1 -2.1 -1 0.5 4 

i=5 -2.1 -2.1 -2.1  1 0.5 4 

 

The strain-induced conduction and valence band-edge shifts are computed using an averaged 

value of the individual band-edge shifts as follows [59]: 
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where nc=3 is the number of sub valleys considered in the conduction band and nv=2 is the 

number of sub valleys considered in the valence band. Hence the stress-induced change in the 

bandgap is given by [59], 

V
E

C
EgE  )(                         (4.19) 

and stress induced change in intrinsic carrier concentration is given by [59], 
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where ni,eff  is the intrinsic carrier concentration (doping dependent). The change in ni
2
/ni

2
 

calculated using the above model is plotted in Figure 4.3. 

 

Figure 4.3 - Stress induced change in ni
2
/ni

2
 with stress using deformation potential model 

(default) in Sentaurus 
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Piezoresistance mobility model 

We have seen in Chapter 2 that the presence of mechanical stress in device structures 

results in anisotropic carrier mobility that must be described by a mobility tensor. The electron 

and hole current densities under such conditions are given by: 
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where   is the mean average doping dependence mobility without applying any stress and 








 can be obtained by piezoresistance mobility model. In this study we used moderate stress 

levels < 200 MPa. For moderate stress levels stress-induced change in mobility is linear. Hence 

we used the first-order piezoresistance mobility model to represent the stress effect in mobility.  

 

The complete selection of physical models used in Sentaurus simulation is given in Table 4.7. 

 

Table 4.7 – Models selected for Sentaurus simulations 

Physical effects Model selected 

Transport Hydrodynamic transport model 

Recombination SRH (Doping dependence) 

Mobility Doping dependent mobility model 

Velocity saturation High field saturation model 

Bandgap Slotboom model 

Mechanical stress effect in bandgap 

 

Deformation potential model (default) 

 
Mechanical stress effect in mobility 

 

Piezoresistance mobility model (first order) 
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4.5 Stress simulation with 2-D bipolar transistor model 

Accurate doping profile is necessary for detailed analysis of semiconductor devices. 

Unfortunately it is very difficult to determine the actual profile. The two most common methods 

of measuring doping profiles in semiconductor devices are the spreading resistance profiling 

(SRP) and secondary ion mass spectrometry (SIMS).  Both methods have limitations on accuracy 

and it is important to consider them carefully while interpreting the results.  

An indirect way is to approximate the doping profile by a set of analytical equations [84]. 

Usually Gaussian equations are used for this purpose. The parameters in these equations can be 

selected according to the required sheet resistance, epitaxial layer thickness, junction depths etc. 

It can be further tuned by comparing the electrical characterizations results of the device under 

test.  

 

4.5.1 npn transistor 

Simulation with default parameters in stress models in Sentaurus 

 

Figure 4.4 - 2-D mesh structure of a vertical npn transistor developed in Sentaurus 
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A typical 2-D finite element mesh created for vertical npn bipolar transistor using 

Sentaurus structure editor is shown in Figure 4.4. A high performance vertical npn bipolar 

transistor on (100) silicon, having a base width of around 75 nm and a heavily doped polysilicon 

emitter is considered. The doping in the emitter is constant, whereas Gaussian distributions have 

been assumed for the base and collector as shown in Figure 4.5. Non-uniform mesh was used to 

increase the efficiency of the simulation. The mesh is fine in the base and the depletion regions 

to improve the accuracy of the simulation.  

 

Figure 4.5 - Doping profile along the centerline 

 

The simulations were used to predict how the carrier mobility and the bandgap thereby 

the intrinsic carrier concentration change with stress and influence the device performance. The 

piezoresistance mobility model and the deformation potential model (Sentaurus default model) 

are used together to represent the stress-induced changes in mobility, and the stress induced 
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changes in the bandgap respectively. The experimental results are used as a guide to decide the 

most suitable model to predict the stress effects in bipolar transistors. 

 

Figure 4.6 - Illustration of transistor arrangement and stress application 

 

Stress simulation was performed for tensile stress  [ 101 ] for stress levels from 0-150 

MPa in step of 30 MPa. Figure 4.6 shows the transistor arrangement and the stress directions. 

The Gummel plots and the dc current gain plots for different stress levels are shown in Figure 4.7 

and 4.8 respectively. It has been observed that the collector current reduces and the base current 

increases with increasing stress. The simulations have been performed with the default 

piezoresistive coefficients in Sentaurus (Table 2.3).  

Stress induced change in currents (ΔIC/IC, ΔIB/IB) and current gain (Δβ/β) have been 

calculated from the plots in Figures 4.7 and 4.8 at a base-emitter voltage which gives the 

maximum current gain (VBE =0.71 V), and plotted as in Figure 4.9. The current gain variation 

with stress is almost linear, similar to the experimental results in Figure 3.17.  The slope of the 

Δβ/β vs stress curve is about -600 (1/TPa), correlates with the experimentally obtained value of -
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456 (1/TPa) in Figure 3.17. In addition, the simulated collector current and base current 

variations are slightly nonlinear at higher stress levels, which again correlate with the 

experimental results shown in Figure 3.17. Qualitatively the results are in agreement with the 

experimental results. The accurate simulations with matching profile and estimated values of 

piezoresistamce coefficients are presented in the next section. 

 

Figure 4.7 - Stress induced change in Gummel plot for an npn vertical transistor in (100) plane

 

Figure 4.8 - Stress induced change in dc current gain for an npn vertical transistor in (100) plane 
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 (a)    

 

    (b) 

Figure 4.9 - Stress inducted changes of an npn vertical transistor in (100) plane (a) change in 

currents (b) change in dc current gain 
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Simulation with matching profile and estimated parameters 

In order to further explore the stress effects on transistors, different vertical bipolar 

structures (different profiles, base and emitter widths, carrier lifetime etc.) were developed and 

simulations were carried out. The estimated piezoresistance coefficients based on the doping 

concentration were used for the simulations. All these simulations produced very similar results 

with a slope ranging from -300 (1/TPa) to -500 (1/TPa) for dc current gain depending on the 

transport and carrier injection effects in transistors.  

 

                                                                          (a) 

 

(b) 

Figure 4.10 - Another 2-D vertical npn transistor developed in Sentaurus (a) mesh of bipolar 

structure 2 (b) doping profile along AA 



 

75 

 

Figure 4.10 shows a vertical npn bipolar transistor (structure 2) with closely matching 

profile to the tested transistors. The current gain of this transistor is about 200 at VBE = 0.71 V. 

Doping and temperature dependence of piezoresistance coefficients are given in [77, 79]. 

Considering the tested transistors are having an average base doping of 2x10
17 

cm
-3

 and emitter 

doping of 3x10
19

 cm
-3

, the piezoresistance coefficients have been estimated and presented in 

Table 4.8. Piezoresistive coefficients for minority carriers were assumed to be equal to the 

piezoresistive coefficients of majority carriers [87-89]. 

 

Table 4.8 - Piezoresistive coefficient estimates for vertical BJTs on (100) and (111) planes 

NBavg = 2 x 10
17

/cm
3
     NEavg = 3 x 10

19
/cm

3
 

 npn Transistors pnp transistors 

Coefficient nB 

(x 10
-12

 Pa
-1

) 

pE 

(x 10
-12

 Pa
-1

) 

nE 

(x 10
-12

 Pa
-1

) 

pE 

(x 10
-12

 Pa
-1

) 

11 -900 +25 -400 +30 

12 +455 -8 +200 -15 

44 -150 +700 -70 +1100 

B1 -300 +358 -135 +558 

B2 +250 

 

-119 +112 -191 

B3 +50 -230 +23 -367 

 
 

 Literature studies shows that there will be residual stress developing during the 

fabrication processes and remains in the devices [90]. Hence residual stresses also added with the 

applied stress in simulation to get match with the experimental results. Simulation has been 

performed with two different sets of models. First set consists of the piezoresistance mobility 

model and the deformation potential model from Sentaurus. For this set the simulation results of 

current curves and dc current gain showed a good match with the experimental results for a 
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residual stress of -310 MPa. Next set consists of the piezoresistance mobility model and the 

deformation potential model from Creemer and French’s work (Table 2.3). The later model 

showed a good match with experimental results for a residual stress of +160 MPa. Figures 

4.11(a), (b) and (c) show the experimental results and the matching simulation results with the 

above models. The current plots are very closely matching and the dc current gain plots are 

exactly same with both models. 

  

Figure 4.11- Stress induced change in currents and current gain of an npn vertical transistor to 

match the experimental results (a) experimental results [83] (b) simulated results with estimated 

piezoresistance values and deformation potential model of Sentaurus with a residual stress of -

320 MPa (c) simulated results with estimated piezoresistance values and (𝐧𝐢
𝟐/𝐧𝐢

𝟐) from 

Creemer and French’s model with a residual stress of +160 MPa.   
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 There can be two possible reasons for these differences. One of the reasons could be that 

the parameters used in these two deformation potential models may be from two different 

experimental results with different residual stresses. The other possibility is an error in one of 

these models. A built-in stress of +480 MPa to the Sentaurus model gives the same results as the 

Creemer and French model. The original source of the parameters used in Sentaurus deformation 

potential model are not available. But the model we used from Creemer and French’s theoretical 

model has been verified with their experimental results as well. In addition, our experimental 

results are also close to the results with this model. Hence, we selected to use the model fits from 

Creemer and French’s research work to represent the change in intrinsic carrier concentration.  

 

 

Figure 4.12 - Stress induced change in current and dc current gain for structure 2 (a) accounts for 

stress induced change in mobility only (b) accounts for change in mobility as well as intrinsic 

carrier concentration from Creemer and French’s model (residual stress = +160 MPa) 

 

 In order to separately analyze the changes in characteristics due to the change in mobility 

and intrinsic carrier concentration the simulation has been performed with the piezoresistance 

mobility model only and the results were plotted [Figure 4.12 (a)] along with the original results 
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from Figure 4.11(c) which included both mobility and intrinsic carrier concentration together. It 

is clearly visible that the stress induced mobility changes cause a linear variation in currents and 

current gains, while the stress-induced bandgap changes cause a nonlinear variation of much 

smaller magnitude in all these parameters (for the considered stress range). For in-plane tensile 

stresses in npn transistors on (100) plane, change in mobility reduces the collector current 

(corresponding to π12
n ) and thereby reduces the dc current gain. The change in base current is 

much less (corresponding to π12
p

) and the change is almost by the change in the bandgap. The 

change in dc current gain is linear with slight nonlinearity at higher stress levels depending on 

the differences in compliance coefficients of the emitter and base materials. Bandgap narrowing 

in the emitter also may cause some differences. In this simulation same compliance values have 

been assumed for emitter and collector. In practical most of the high performance transistors are 

fabricated with polysilicon emitter. Polysilicon is an isotropic material whereas the silicon is an 

anisotropic material. The compliance value of the polysilicon strongly depends on the fabrication 

facilities and the processing steps. Hence proper compliance values have to be used for the 

simulations. In addition small temperature variations between the applications of stress levels 

also may cause variations in the collector and base currents in experiments. However equal 

temperature terms in base and collector currents will be cancel out in dc current gain.  

 In Sentaurus, the piezoresistance mobility model gives the expected changes in currents 

and current gain correctly. But the deformation potential model gives the results for currents 

shifted along the x-axis/rotated anticlockwise about the origin. However, since the changes in 

intrinsic carrier concentration cancels out in the dc current gain plot, it comes correct.  
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4.6 Stress simulation results for all 6 directions for npn and pnp transistors 

 
  

 

       (a) 

      

         (b) 

Figure 4.13 – Stress induced change in dc current gain of a pnp transistor for all 6 stress 

components 
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A main advantage of simulation is that it is very easy to apply stress in any direction and 

get the results. Simulated dc current gain results of a vertical npn transistor along with a vertical 

pnp transistor for all six stress directions are shown in Figure 4.13(a) and 4.13(b) respectively. A 

pnp vertical mesh structure was created by changing the doping type for the same profile of npn 

structure (structure 2). The simulation has been performed for both tensile and compressive 

stresses and the results of both npn and pnp transistors have been compared. In simulations 

piezoresistance mobility model only included to represent the stress effects. Since the changes in 

currents due to the stress effects in intrinsic carrier concentration cancels out in the dc current 

gains, this approach is expected to give reasonably accurate results.   

As depicted in Figure 4.13(a) and (b), the stress induced changes in dc current gain are 

totally opposite to vertical npn and pnp transistors, but sensitivity for normal stress is much less 

for pnp transistors depending on the corresponding piezoresistive coefficients. The effect of out-

of-plane normal stress 33   is high for vertical transistors comparing to other stresses. For npn 

transistors, the out-of-plane normal stress 33   showed high sensitivity of about 897 (1/TPa) 

corresponding to π11
n . The in-plane normal stresses 11   and 22   showed almost equal negative 

slope of -451 (1/TPa) and -457 (1/TPa) similar to the experimental results corresponding to π12
n . 

For pnp transistors, the slope is -158 (1/TPa) for out-of-plane normal stress corresponding to π11
p

, 

and +52 (1/TPa) and +98 (1/TPa) corresponding to π12
p

 for in-plane normal stresses. The 

sensitivity to shear stresses is almost zero for both pnp and npn transistors as we expected from 

the one dimensional theory.   

 However in two dimensional simulations the device equations are not solved in the 3
rd

 

direction (direction X in these simulations) and the changes in the 3
rd

 direction are not accounted. 

Hence the stress analysis is not very accurate for shear stresses 12   and 13  . In addition, the 
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current crowding effects and other small amount of lateral current flows in the 3
rd

 direction will 

not be accounted.  

 

4.7 Stress simulation with 3-D bipolar transistor model 

In order to get more accurate results for normal stresses and to simulate the shear stress 

effect the three dimensional model shown in Figure 4.14 has been developed. This is a thin base 

vertical npn transistor with a base width of 0.1 m. The doping profile along the centerline AA is 

shown in Figure 4.15.  The emitter doping is about 2x10
19

 cm
-3

 and the average base doping is 

about 1x10
17

 cm
-3

. Only piezoresistance mobility model was included to represent the stress 

effects. 

 

 

Figure 4.14 - 3-D mesh (structure 3) of a vertical npn transistor developed in Sentaurus 
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Figure 4.15 - Doping profile of 3-D model (structure 3) along AA 

  

 The changes in dc current gain for all six stress components from the 3-D and 2-D 

simulations are shown in Figure 4.16(a) and (b), respectively. The results are comparable to the 

results from 2-D simulations. The out-of-plane normal stress 33   showed high sensitivity of 

about 974 (1/TPa) and the in-plane normal stresses 11   and 22   showed almost equal negative 

slope of -474 (1/TPa) and -504 (1/TPa). This 3-D model is more injection limited structure with 

a thin base compared to the 2-D structure we used for the simulations. Hence the slopes of the 

normal stress plots for this 3-D structure are higher than the results from the 2-D structure as we 

expected from the theory. In 3-D simulations the shear stresses are also showing some sensitivity 

for positive shear stresses. This appeared to be due to the current components in other than the 

normal direction to the wafer surface due to the current crowding effects. 

 

  



 

83 

 

 

(a) 

 

(b) 

Figure 4.16 - Stress induced change in dc current gain of an npn transistor for all 6 stress 

components (a) with 3-D model (b) with 2-D model  
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 Since this is a vertical bipolar transistor, theoretically we expect the stress sensitivity to 

’11 and ’22 to be the same and the sensitivity to ’13 and ’23 to be the same. But there are 

differences observed in simulation results. These are also due to the slight changes in current 

distribution directions due to the current crowding effects. The current crowding caused by the 

lateral voltage drop in the base region has been verified for 2-D and 3-D simulations using Spice 

simulations (Appendix B). 

   

4.8 Summary 

 Sentaurus 2-D and 3-D models were developed for stress analysis in vertical bipolar 

transistors. Simulation results were compared with experimental results. Stress effects were 

modeled as a combination of piezoresistance mobility model and a deformation potential model. 

In Sentaurus, the piezoresistance mobility model gives the expected linear changes in currents 

and current gain correctly. But the deformation potential model gives the results for currents 

shifted along the x-axis (or rotated anticlockwise about the origin). However, since the changes 

in intrinsic carrier concentration cancels out in the dc current gain plot, the dc current gain plot 

comes correct. The changes in dc current gain was obtained for all 6 directions from 2-D and 3-D 

simulations and compared. The results are comparable. For each stress levels, while 2-D 

simulation took tens of minutes (depending on the size), 3-D simulations took hours. For high 

level of accuracy a 3-D analysis is necessary. However 2-D analysis gave reasonably good and 

comparable results in much lesser time. Since BJTs are highly one dimensional it is possible to 

get accurate results close to 2-D and 3-D simulations with a 1-D model as well. In order to 

facilitate fast stress analysis in bipolar transistors a 1-D numerical model was developed and 

explained in the next chapter.  
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CHAPTER 5 

1-D NUMERICAL MODELLING FOR RAPID STRESS ANALYSIS IN BIPOLAR 

TRANSISTORS 

 

5.1 Introduction 

 In this chapter, the development of a new 1-D numerical bipolar transistor model, 

validating the model and some application of the model for stress analysis are described. Model 

was developed in Matlab. 

 Numerical modeling is used as a powerful tool to solve challenging engineering problems 

in semiconductor devices [91-93] and various new approaches are investigated to speed up the 

numerical process since high accuracy within a reasonable run time is highly desired [94]. In the 

case of mechanical stress analysis, numerical modeling and simulation avoid a multitude of 

practical challenges associated with fabrication, complex lithographic and material growth 

processes, and application of controlled stress in different orientations for measurement. 

Modeling may vary depending on the type of semiconductor devices. Since MOSFETs are 2-

D/3-D devices either 2-D or 3-D numerical simulation is required for stress analysis. Several 

commercial TCAD tools such as Sentaurus and Victory are available to analyze the stress effects 

of semiconductor devices with 2-D or 3-D simulations. However these TCAD tools require high 

capacity servers to run and the stress simulation process may take hours if high accuracy is 

required. Since BJTs are highly 1-D devices, a 1-D model can provide comparable results in a 

very short time and make device analyses much easier. In this work we present a simple and fast 

1-D numerical algorithm for stress analysis in BJTs. This algorithm is capable of solving device 

equations efficiently and accurately and thereby optimizes the run time. 
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 In the commonly used 1-D simulators 5 differential highly nonlinear equations (Poisson 

equation, transport equations and continuity equations) have to be solved simultaneously for 

each node [95, 96]. In order to obtain high accuracy in a 1-D model over N = 1000 nodes are 

needed. Therefore, over 5000 highly coupled nonlinear equations have to be solved. With 

traditional approach these equations are linearized and solved iteratively [96]. Despite the 

sparsity of these equations, solution of over 5000 equations is very time consuming. In our 

approach such complex processing is avoided. Each of the five equations is solved independently 

and analytical solutions are used to make the process even faster. In this model, first we 

numerically solve the Poisson equation at the junctions to find the depletion regions, electric 

field, and the electrostatic potential in the depletion regions. Then we iteratively solve the 

transport equations in the quasi-neutral regions. A new integrated approach is presented to solve 

the transport equation efficiently. Further reduction in run time was obtained by using a 

fractional starting point at the junctions when solving the Poisson equation. Furthermore, the 

transport equations are iteratively solved in the quasi-neutral region for the particular minority-

carrier type only. All the above approaches considerably reduce the CPU runtime in our model.  

 The 1-D simulation results of this model were compared with 2-D simulation results of 

Sentaurus TCAD tool. This assessment revealed that this 1-D model is much faster and yields 

comparable results. Then stress models were included in the 1-D BJT model and the validity of 

the model was verified with experimental results and theoretical expectations for npn and pnp 

vertical transistors on the (100) plane. Some applications of this model are also illustrated with 

appropriate parameter selections. Such applications includes predicting the stress induced 

changes in the saturation current of npn/pnp vertical and lateral bipolar transistors on (100) plane 
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for various stress orientations, quantifying the residual stress in bipolar transistors and analyzing 

the stress effects in npn BJTs on (111) plane.  

 

5.2 Device equations 

The five basic differential equations describing semiconductor device behavior as a 

function of doping concentrations, carrier parameters, and applied voltages are as follows [97].  

Poisson’s Equation           )(
2

2
npANDN

q

dx

d




                                          (5.1) 

where  is the electrostatic potential (EP), x is the distance, q is the electric charge,  is the 

permittivity of the semiconductor, NA, ND are the concentration of acceptors and donors, and p, n 

are the concentration of holes and electrons respectively. 

Continuity equation for electrons     R
dx

ndJ

qdt

dn


1
                                                    (5.2) 

Continuity equation for holes      R
dx

pdJ

qdt

dp


1                                                      (5.3) 

where t is the time, and R is the generation-recombination rate and the electron and hole current 

densities Jn, Jp are given by the following transport equations: 

   
dx

d
nq

dx

dn
qDJ nnn


                                                            (5.4) 

   
dx

d
pq

dx

dp
qDJ ppp


                                                         (5.5) 

where Dn and Dp are electron and hole diffusion constants, and n, p are electron and hole 

mobilities. The electron and hole concentrations are related to , the electrostatic potential (EP) 

and n, and p, the electron and hole quasi-Fermi potentials (EQFP, HQFP) as follows: 
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where k is the Boltzmann constant, T is the temperature, and ni is the intrinsic carrier 

concentration. The above two equations represents the Boltzmann approximation to Fermi statics 

and can be taken as the definitions of the quasi-Fermi potentials. They are valid only as long as 

(p-) and (-n) do not approach half the bandgap. 

 

5.3 Modeling of an npn transistor with MATLAB 

 The known quantities in these equations are the concentration of acceptors and donors 

(NA, ND), electron and hole mobilities (n, p), electron and hole diffusion constants (Dn, Dp), 

electron and hole carrier lifetimes (n,p), and applied emitter and collector voltages (VEB, VCB). 

The parameters nt, p and n strongly depend on the processing and vary throughout the device. 

In this work, the trap concentration in the forbidden gap (nt) is assumed equal to the intrinsic 

carrier concentration (ni) and estimated values based on the doping concentration are used for 

lifetimes. The five unknown quantities in the equations are the carrier concentrations (n, p), the 

current densities (Jn, Jp), and the electrostatic potential (). All are functions of position (x) and 

doping profiles as well as applied voltages. 

 In this proposed model the computation can be further accelerated using the following 

assumptions: 

1) Normal-mode transistor operation was assumed, i.e: the base-emitter (BE) junction is 

forward-biased and base-collector (BC) junction is reverse-biased. 
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2) In order to be able to use an iterative process, it was assumed that the minority carrier current 

in the base is almost constant so that the current change can be computed as a correction.  

 The next step is to develop the numerical model, which can accurately predict the 

unknown quantities. This will be done at discrete points in the one-dimensional model of the 

semiconductor. The discretization is made using standard finite-difference techniques. The entire 

1-D BJT is divided into N (N = 1500) equal sections where i is the node number, the emitter 

contact is at i = 0 and the collector contact is at i = N. 

 

5.3.1 Initialization 

 Doping concentration, effective intrinsic carrier concentration, Fermi potential, junction 

locations and equilibrium carrier concentrations are computed in this step. The acceptor and 

donor concentrations were obtained from Sentaurus since we wanted to compare the simulation 

results of 1-D model with the Sentaurus 2-D model for the same profiles (Figure 5.1). Obviously, 

the acceptor and donor concentrations could also be obtained from analytical expressions [84] 

(see APPENDIX A). The net effective doping concentration (or normalized charge where the 

normalized quantity is the electric charge q) for the entire region, QN, was calculated as QN = ND 

- NA.    
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Figure 5.1 - Doping profile of an npn transistor 

 

 At high doping concentrations, such as in the case of an emitter, bandgap narrowing and 

the resultant increase in intrinsic carrier concentration cannot be neglected. According to the 

widely used Slotboom bandgap model [86], the bandgap narrowing (Eg
0) is given by: 
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where Ntotal = NA
- 
+ ND

+
,
 
Eref  = 6.92 mV and Nref  = 1.3x10

17
 cm

-3
. Hence the effective intrinsic 

carrier concentration, ni, is given by: 


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where ni0=1.48x10
10

 cm
-3

, is the intrinsic carrier concentration at 300 K. 

 The Fermi-potential (Vf) was calculated as: 
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where VT = kT/q, is the thermal voltage and s is the sign of the net effective doping 

concentration. The Fermi potential for the entire region is shown in Figure 5.2. 

 

Figure 5.2- Fermi potential of an npn transistor 

 

The built-in potential between a p-n junction can be given by [97]: 

)()(n

(B)N(A)QNQ
logTV   

BinAi
bi
                                                         (5.11) 

where A and B are two points in p and n type regions, respectively.  

 For an npn transistor the net charges in the emitter and the collector are positive, and the 

net charge in the base is negative. Hence the points at which the sign of the charge changes 

represent the junctions. Based on this, the metallurgical junctions ijBE and ijBC are calculated, 

where ijBE is the BE junction and ijBC is the BC junction (Figure 5.3).  
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Figure 5.3 - 1-D representation of a BJT illustrating terms and symbols. ijBE, ijBC - metallurgical 

junctions; i4, i3 - start, end points of BC depletion region calculations (used in Figure 5.4, 5.5); i2, 

i1 - start, end points of BE depletion region calculations; i3, i2 - start, end points for base transport 

calculations (used in Figure 5.12). 

 

 The equilibrium carrier concentrations for the emitter and collector, where electrons are 

the majority carriers, are calculated as [97]:                                                  

0

2

0

22

0       ,
2

4

n

n
p

QnQ
n iNiN




                                                  (5.12) 

where n0 and p0 are the equilibrium electron and hole concentrations respectively. For the base, 

holes are the majority carriers and the calculations of carrier concentrations are analogous.  

 

5.3.2 Solving Poisson equation for base-collector and base-emitter junctions 

 Integrating the Poisson equation provides the following equations for electric field and 

electrostatic potential: 

Electric field                                               dxQ
q

E N


                                         (5.13) 

Electrostatic potential                                 dxE                                                   (5.14) 
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where dx is the distance between adjacent nodes. By iteratively solving Poisson’s equation for 

the BE and BC junctions, the depletion-region edges, electrostatic potential distribution and 

electric field in the depletion region were calculated.  

 Traditional numerical solution of Poisson’s equation increases computation time as it 

requires many small sections and iterations for accurate results. Here we have reduced number of 

sections below 400 (1/4
th

 of the original) and number of iterations below 10 by using fractional 

sections on junction edges. This way we obtained high accuracy with short time. Further 

reduction in computation time was also found to be possible by using the analytical model 

described below to find the initial charge distribution. In the case of the BC junction, the step 

model was assumed, whereas for the BE junction the linear model was assumed.  

 For the BC junction, the initial value for the depletion-region starting at a point in the 

collector was calculated using the following equation [97]. 

 

Col

biCB

qN

V
w

 


2
                                                          (5.15) 

where bi is the built-in potential and NCol is the collector doping concentration. The depletion 

width (w) varies as the square root of the total electrostatic potential difference across the 

junction. Figure 5.4 presents pseudocode describing the method of solving the Poisson equation 

in detail. Figure 5.5 is used to explain the accurate starting point calculations (lines 3-6 in Figure 

5.5(b)), where i4f is the fractional starting point, i4 is the whole number and 1 is the decimal part. 

In Figure 5.5(b), lines 13 and 14 explain the accurate end point calculations. The changes in 

potential distribution and the electric field with iteration for the BC junction are shown in Figure 

5.6. The solutions with required accuracy were obtained in about 5 iterations. 
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Figure 5.4 - Pseudocodes for BC depletion-region calculations (a) Subroutine A - calculating the 

depletion start point, built-in potential between the depletion start and end points, desired voltage 

drop across the junction, and checking whether the accuracy is reached (b) Subroutine B - 

calculating the potentials, charges and field at and between the fractional start and end points, 

and returning the end point and the potential at the fractional end point to (a), and also returning 

the potential between the start and end points to the main program.  
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Figure 5.5 - BC depletion-region fractional start and end point illustrations (a) showing the 

fractional and whole number start points (i4f, i4), decimal part (1) and the charges (QN, Qf, Qff) (b) 

showing the fractional and whole number end points (i3f, i3), decimal part (2), potentials (Vn,Vp) 

and electric fields (En, Estop, Ep). 
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       (a) 

 

(b) 

Figure 5.6 - Base-collector depletion region (a) potential with iteration (b) electric field with 

iteration 
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(a) 

     

(b) 

Figure 5.7 - Base-emitter depletion region (a) potential with iteration (b) electric field with 

iteration 
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 A similar procedure is followed for solving the Poisson equation in the BE junction. The 

BE junction is forward biased and for a linearly-graded forward-biased junction the depletion 

width can be written as [97] 

 
3/1

12







 


qa

V
w BEbi

                                                      (5.16) 

where a is the impurity gradient, and the depletion layer width varies as (bi-VBE)
1/3

. The changes 

in potential distribution and the electric field with iteration are shown in Figure 5.7.  

 

5.3.3 Electrostatic potential and electric field calculations for the entire region 

 In this 1-D modeling the entire structure is considered as a two-port network between the 

emitter (node i = 0) and collector contacts (node i = N). Boundary conditions are set similar to 

Gummel [95] and presented as follows: Carrier equilibrium and charge neutrality are assumed at 

the end points. According to carrier equilibrium, n = p at the emitter and collector contacts, 

where n is the electron quasi-Fermi potential (EQFP) and p is the hole quasi-Fermi potential 

(HQFP). We set n(0) = p(0) = VEB at the emitter contact and n(N) = p(N) = VCB at the 

collector contact. In the base n ≠ p and an ohmic contact cannot be assumed. In addition, the 

majority-carrier Fermi-level is nearly constant in the base but the minority-carrier Fermi-level is 

not. Hence we specify that the quasi-Fermi potential for the majority carriers in the base at a 

point M, p(M) = VB = 0 and take it as the reference level for potential. Since the base is very 

thin and the majority Fermi-level is nearly constant in the base, the point M can be anywhere in 

the base quasi-neutral region. As per charge neutrality, the total charge is zero at the emitter and 

collector contacts (QN = ND - NA + p - n = 0). With the above assumptions and settings the 

following equations can be obtained for electrostatic potential (EP) at contacts: 
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Emitter contact                                         )0()0( fEB VV                                                 (5.17) 

Collector contact                                      )()( NVVN fCB                                              (5.18) 

Base contact                                              )()( MVVM fB                                             (5.19) 

Assuming there is no voltage drop due to resistance and all voltage drops will be in the BE and 

BC depletion regions, a general form of the electrostatic potential equation for emitter, collector 

and base quasi-neutral regions (including contacts) can be written as: 

    )()( iVVi fContact                                               (5.20) 

where Vcontact is VEB (for emitter) or VCB (for collector) or VB (for base) according to the region 

considered. By combining with the electrostatic potential calculated in the depletion regions, the 

electrostatic potential for the entire region is obtained as in the example in Figure 5.8. Spline 

approximation is used at the connection points. The electric field for the entire region is obtained 

from  

  
dx

d
E


                                                               (5.21) 

as shown in Figure 5.9. 

 

Figure 5.8 - Electrostatic potential for the entire region 
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Figure 5.9 - Electric field for the entire region 

 

5.3.4 Field dependent mobility and velocity calculations 

 The mobility of electrons and holes in semiconductors depends on several scattering 

mechanisms including doping and temperature. In this work, we adopt the doping dependent 

mobility model described in [98], which is a slightly modified form of [89] to include phonon 

scattering. The doping dependent mobility (dop) is given by:  
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L is the mobility due to bulk phonon scattering, min1, min2, I, and const are the reference 

mobilities, Pc, Cr, and Cs are the reference doping concentrations and ,  and  are the 

exponents. These parameter values are presented in Table 4.2.  
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 In high electric fields, the carrier drift velocity is no longer proportional to the electric 

field, instead the velocity saturates at a finite value. In bipolar transistors, velocity saturation 

occurs in the BC depletion region. To represent the high field saturation effects we used the 

Canali model [85], an improved form of Caughey–Thomas formula [99], with the addition of 

temperature-dependent parameters. The Canali model represents the saturation effects in 

mobility (Field) and velocity (Field) as follows [59, 85]: 
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and Vsat is the saturation velocity and E is the electric field (Figure 5.9). By substituting 

parameters from Table 4.3 in (5.23), the carrier mobilities and velocities can be calculated. 

 

5.3.5  Novel Integrated approach for calculating carrier concentration in base 

 A novel integrated approach was developed in order to speed up the process. This 

approach gives high accuracy with a much smaller number of sections. First electron 

concentrations are calculated at the BC and BE junction edges. Then by solving the electron 

transport equation with an integrated approach, the electron concentration distribution and the 

currents in the base are computed. Details of this computation process are described as follows: 

 Assuming the transport is due to drift in the BC depletion region, the electron 

concentration at the BC depletion region edge can be calculated as: 
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where n is the field dependent velocity calculated in (5.23). Electron concentration at the BE 

depletion region edge can be calculated as:  
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The following process is performed to calculate the carrier concentration in the base.  

 

Figure 5.0.10 - Illustration of nodes 1 and 2, positions (x1, x2), hole, electron densities (p1, p2, n1, 

n2), potentials (1, 2), current densities (Jp, Jn) and electric field (E). 

 

Consider a segment in the base between two adjacent nodes as shown in Figure 5.10. Starting 

from the transport equation for electrons 

dx

d
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Now replace  dd   and rearrange, 

 




























T

n

T

Tn

T

n
V

n
dx

d
q

Vdx

dn
Vq

V
J








expexpexp                             (5.28) 

 



 

103 

 












































T
V

n
dx

d
T

Vnq

T
V

nJ





expexp                                           (5.29) 

 

Performing integration 
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by substituting 1 = 2 +  we obtain 
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Replacing  dd  , substituting E = -/dx, and rearranging, the formula becomes 
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Therefore, the electron density between two adjacent nodes can be related as: 

 diffninin  )1()(                                                       (5.37) 

where )1()(  ii  , 
TV

dV
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 , )exp(dV , 
 
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 , and 
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n
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Viq

xiJ
n

)1(

 )1(







. 

 The electron current in the BC depletion region is considered as constant with an 

assumption that there is no recombination in the BC depletion region. Starting from Jn = 0 at the 

BC depletion edge (i3), and increasing by steps, the transport equation is iteratively solved in the 

base until attaining the calculated electron concentration at the BE depletion edge (i2). 

Recombination is also included in the base, and recombination current density (J r) is calculated 

from                         

xRqJ r                                                                            (5.38) 

where R is the recombination rate between the adjacent nodes i and i+1. R is calculated with a 

lifetime of n = p = 10
-7

s as follows:                                 
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                                   (5.39) 

With the inclusion of recombination current density, the electron current density is found as:  

rnn JiJiJ  )1()(                                                           (5.40)               

By adding recombination current density along the base (from the BC depletion edge to the BE 

depletion edge) the total recombination current density (JBR) can be computed as follows: 

 
2

3

i

i

rBR JJ                                                          (5.41) 

The pseudo code for these calculations is presented in Figure 5.11. 
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Figure 5.11 - Subroutine C - new iterative approach for calculating carrier concentration in base. 

Starting from electron current density Jn=0 at the BC depletion edge (i3), and increasing by steps 

for each iteration, the electron concentration distribution in the base is computed until achieving 

the required accuracy at the BE depletion edge (i2). 

 

 The electron concentration in the BC depletion-region was also computed using the same 

integrated approach using (5.39). But an iterative process is not required in this case. Now the 

current is known at the BC depletion edge (i3). Assuming no recombination in the BC depletion 

region the collector current is taken as constant. The electron concentrations in the collector and 
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emitter quasi-neural regions are already known (5.12). Spline approximation is used to generate 

the complete electron concentration plot (Figure 5.13).  

 

5.3.6 Calculation of carrier concentrations in emitter and collector 

 In the next step, carrier concentrations in emitter and collector are calculated to complete 

our model. We utilized the integrated approach as described in the previous section, however 

hole transport is considered instead of electron transport, and the hole concentration between two 

adjacent nodes (Figure 5.11) can be derived as follows: 

Transport equation for holes 
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multiplying by exp( /VT)  
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performing integration 

2

1

expexp
2

1

x

xT
V

pdx

T
V

x

x T
qVp

pJ
















































                                (5.45) 
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And after some arrangements 
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by substituting 1=2+  we obtain 
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Hence hole concentration between two adjacent nodes can be related as  

 

 diffppp  12                                                            (5.51) 
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Calculations of hole concentration for the emitter quasi-neutral region and collector quasi-neutral 

region are described in detail below. The same equation (5.52) is used for both cases. 

Recombination in the emitter cannot be neglected for the modern transistors with highly-doped 
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polysilicon emitters. Therefore, recombination is included for the emitter but not the collector.  

  

5.2.6.1 For emitter quasi-neutral region 

 Hole concentration at the BE junction edge can be written as:  

                        
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
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


kT

qV
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iedgeBE exp)( 10__ 1
                                                (5.53) 

The hole concentration at the emitter contact is calculated by the equation below assuming that 

charge neutrality and equilibrium prevail at the contact, which is assumed to be an ohmic.   

)1()1( 0pp                              (5.54) 

Starting from Jp = 0 at the emitter contact, and increasing by steps, the transport equation is 

iteratively solved until it equals the calculated hole concentration at the BE depletion edge. 

Recombination is also included as 
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with a lifetime of n=p=10
-8

s. Lower values were assumed for lifetimes since the emitter is 

highly doped. The electron and hole current densities in emitter are written as:  

rpp JiJiJ  )()1(                                                      (5.56) 

rnn JiJiJ  )()1(                                           (5.57) 

 

5.2.6.2 For collector quasi-neutral region 

 Assuming charge neutrality and equilibrium exist at the collector contact (which is 

ohmic), the hole concentration at the collector edge can be represented as:                                

)()( 0 NpNp                                                                  (5.58) 



 

109 

 

The hole concentration in the quasi-neutral base region and at the BC depletion edge (i3) are 

already known (analogous to (5.12)). Starting from Jp = 0 at BC depletion edge (i3), and 

increasing by steps, the transport equation is iteratively solved until reaching the calculated hole 

concentration at the collector contact. As discussed above, a method similar to the one used for 

emitter quasi-neutral region is utilized. We assumed that there is no recombination in the BC 

depletion region or collector region. This makes the algorithm simpler. Spline approximation is 

used to generate complete hole density plot (Figure 5.12).   

 

5.3.7 EQFP, HQFP calculations 

 Since we have calculated the electron and hole concentrations, the EP, the EQFP and 

HQFP for the entire region can be computed as follows: 

)(
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ln)( i
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ip
Vi
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Tp                                                          (5.59) 
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Vii
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Tn                                                          (5.60) 

The 1-D simulation results for the EQFP, HQFP and electron velocity along with 2-D Sentaurus 

simulation results are illustrated in Figures 5.13 and 5.14. The minute differences between the 1-

D and 2-D curve data may be due to the assumption that the current density is uniform across the 

width of the transistor in the 1-D model, whereas, the current density is not uniform across the 

width of the transistor in the 2-D Sentaurus model. Furthermore, in our 1-D model, drift-

diffusion equation with velocity saturation is used for carrier transport whereas in Sentaurus the 

hydrodynamic model was used which is necessary to apply velocity saturation in Sentaurus. 

Regardless of these minor differences, the data presented in these two figures affirm that these 

simulation results are in very close agreement with each other.   
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Figure 5.12 - Impurity profiles, electron density and hole density of an npn transistor  

 

 

 

 

 

Figure 5.13 - EP, EQFP and HQFP of an npn transistor 

 



 

111 

 

 

Figure 5.14 - Electron velocity of an npn transistor 

  

5.4  Modeling of a pnp transistor with MATLAB 

 The pnp BJT model was developed by interchanging the doping type for the same profile 

and making appropriate sign changes. As shown in the profile in Figure 5.15, for a pnp transistor 

the emitter and the collector are p-type and the base is n-type. In pnp transistors the collector and 

the base voltages are negative with respect to the emitter for the normal operation mode (VBE and 

VCE are negative). Appropriate changes have to be included when solving the Poissons’s 

equations for the junctions. With these changes the electrostatic potential and the electric field 

were calculated and plotted as shown in Figure 5.16 and 5.17 respectively. The electrostatic 

potential and the electric field from Sentaurus simulation are also shown in the same figures for 

comparison. All are showing very good matching. 
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Figure 5.15 - Doping profile of the pnp transistor 

  

 

Figure 5.16 - Electrostatic potential of a pnp transistor 
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Figure 5.17 - Electric field of a pnp transistor 

 

In the pnp transistor the minority-carriers in the base are holes and the minority-carriers in the 

emitter and the collector are electrons. Hence, in contrast to the npn transistor, hole transport 

equations should be solved in the base and the electron transport equations should be solved in 

the emitter and collector. Calculated minority carrier concentrations from 1-D model along with 

the minority carrier concentrations from Sentaurus simulation are shown in Figure 5.18.  

 The mobility of the hole is less than the mobility of electron for the same doping 

concentration. The saturation velocity is also slightly less for holes. Due to these reasons the 

carrier velocity is less for pnp transistors than the npn transistors in the base as shown in Figure 

5.19.  
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Figure 5.18 - Impurity profiles, electron density and hole density of a pnp transistor 

 
 

 

    

Figure 5.19 - Hole velocity of a pnp transistor 
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Figure 5.20 - EP, EQFP and HQFP of a pnp transistor 

 

 The 1-D simulation results of EP, EQFP and HQFP along with 2-D Sentaurus simulation 

results are shown in Figure 5.20. Again these are closely matching. 

 The 1-D model simulations were very fast compared to Sentaurus 2-D and 3-D 

simulations. It also showed comparable results with Sentaurus 2-D model simulations for both 

npn and pnp transistors. In the next section this model was used to verify some text book 

approaches.  

 

5.5 Application of 1-D model to verify text book approaches 

I-V Characteristics and Early voltage 

 Figure 5.21 illustrates the IC-VCE characteristics of an npn bipolar transistor obtained 

from the 1-D model developed. An Early voltage of 50.4 V was obtained from the IC-VCE 

characteristics, which is very close to the Early voltage obtained from the experiments.  
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Figure 5.21 - I-V characteristics of an npn transistor 

 

Gummel plot and dc current gain 

 

Figure 5.22 - Gummel plot and dc current gain of an npn transistor 
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Figure 5.22 shows the Gummel plot and current gain plots obtained using the 1-D model. The dc 

current gain is about 250 for a base-emitter voltage of 0.7 V, again this is close to the value of 

200 from experiments. 

 

Verification of drift/diffusion at integration point vs integral formulation 

 Usually two different methods are used in textbooks to calculate the collector currents in 

bipolar transistors. One is calculating the drift/diffusion components at the integration point 

(base-emitter depletion edge in base) and the other one is using the Gummel integral formulation 

at the same point. The two approaches are verified here using this model. 

(a) Collector current calculation by drift/diffusion method 

The collector current is given by drift and diffusion current components as 

(drift)
n
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JnJ                                                  (5.61) 
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The total collector current density (drift/diffusion components together) at base-emitter injection 

point can be directly obtained from the numerical model as: 

                Jn (i2)  = 322.58 A/cm
2 

In another way, the drift/diffusion components can be separately calculated as follows: 
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= -6425.7 A/cm
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As indicated by the different signs the drift and diffusion current components are in opposite 

directions. The resultant collector current is obtained by adding them together as:  

  Jn = 323.94 A/cm
2
 

 

(b) Collector current by Gummel integral formulation 
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where GB is the base Gummel number given by 

dx

B
D

B
N

B
G 

w
o

n2
iB

n2
i0                                                          (5.66) 

The base Gummel number has been calculated by integrating from base-emitter depletion edge 

to base-collector depletion edge as follows in Figure 5.23.  

 

1: Initialize Gummel number GB0 

2: i2 is the BE depletion point in the base, and i3 is the BC depletion point in the 

base(Figure 5.3) 

3: for i  i2 to i3 do 

4:      GB  GB +
Tni

i

Vi

dxip

in

n
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)(
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2

0


 

5: end for 
 

Figure 5.23 - Gummel plot and dc current gain of an npn transistor 

 

By plugging the value of GB into (5.65) the collector current density has been calculated as 

Jn = 269.28 A/cm
2
 

 The difference between the drift/diffusion method and the Gummel integral formulation 

is 16.5%. The reason for the difference is the Gummel integral method is an approximation of 

finding the collector current.  
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5.6 Modeling the mechanical stress effect 

 In 1-D modeling also we separately modeled the stress effects in mobility and the 

intrinsic carrier concentration using the piezoresistance mobility model and the deformation 

potential model from Creemer and French’s work (Table 2.3) respectively. Addition of these 

stress models are described below. 

 

Modeling the stress-induced changes in mobility 

 On the wafer planes, the transistor axes are aligned with the wafer axes. Hence, it is 

common to use the primed wafer coordinate system in which the stress dependent of mobility 

(´) can be expressed as: 








 





 1)(                                                        (5.67) 

where  is the doping and field dependent mobility calculated by (5.22). Using (2.21), the stress 

dependent mobility for an arbitrarily oriented conductor was estimated as  



















  Tp

T
T    -  1                                                 (5.68) 

where                                  654321          and     

 mlnmnlnmlp  2 2 2222  

 

Modeling the stress-induced changes in intrinsic carrier concentration 

 The formulas in Table 2.3 were used to model the stress induced change in intrinsic 

carrier concentration and included to the 1-D BJT model as follows: 
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











 


ni

ni
niin

2

2

12)(                                                           (5.69) 

 

where ni is the doping dependent effective intrinsic carrier concentration calculated by (5.9). The 

developed 1-D numerical model was used to analyze the stress-induced changes in bipolar 

transistors.  

 

5.7 Verifying the validity of the model with experimental results and theoretical expectations 

 In this section, the 1-D model was validated by comparing its simulation results with 

experimental results and theoretical expectations. Stress induced changes in IC-VCE 

characteristics, Early voltage, barrier height, collector and base currents, and dc current gain for 

σ22
′ [1̅10] were analyzed. 

 

5.7.1 Changes in IC-VCE Characteristics  

 The simulated and experimental I-V characteristics of a vertical npn transistor on a (100) 

plane for tensile normal stress 22  are compared in Figure 5.24(a) and (b). Both plots closely 

match and clearly show that the collector current (IC) reduces with increasing stress 22  for an 

npn vertical transistor in (100) plane. The rates of change in both plots are almost equal. 
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Figure 5.24 - Stress-induced change in IC-VCE characteristics of an npn bipolar transistor for 22  

(a) 1-D Simulation results (b) Experimental results  

 

5.7.2 Changes in Early voltage 

 The Early voltages were obtained from the I-V characteristics and plotted as in Figure 

5.25(a) and 5.25(b). As per experiments the early voltage is 55.7 V and it slightly reduced with 

stress (~1.1 V/100MPa). As per simulations the early voltage is 50.4 V and it is also slightly 

reduced with stress (~0.7V/100 MPa).  

  

Figure 5.25 - Stress-Induced change in Early voltage of an npn bipolar transistor for 22  (a) 1-D 

Simulation results (b) Experimental results   
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5.7.3 Changes in barrier height at BE junction for npn and pnp BJTs 

 

Figure 5.26 - Stress-induced changes for σ22
′ [1̅10] (a) Fractional changes 𝐧𝐢

𝟐/𝐧𝐢
𝟐 (b) Changes 

in bandgap (Eg), barrier height of npn BJT (bi - npn) and barrier height of pnp BJT (bi - 

pnp). 

 

 Figure 5.26(a) illustrates the stress induced changes in intrinsic carrier concentration 

(ni
2/ni

2). The stress induced changes in Eg can be obtained as Eg = -kT (ni
2/ni

2) from 

equation (3.4). Figure 5.26(b) represents the simulated, stress induced changes in barrier heights 

of an npn and a pnp transistors (for VBE = 0.7 V) along with the changes in bandgap, Eg. For 

tensile stress, the reduction in intrinsic carrier concentration causes an increase in Eg. For 

compressive stress increase in intrinsic carrier concentration reduces the barrier height. The 

changes in barrier heights are equal for both npn and pnp BJTs and are equal to the changes in Eg 

as depicted in Figure 5.26(b). Hence, the stress induced changes in intrinsic carrier concentration 

affect both npn and pnp BJTs equally. 

 

5.7.4  Changes in currents and dc current gain 
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 The changes in currents and dc current gain (for VBE = 0.7 V) for an in-plane normal 

stress 𝜎22
′  were obtained from experiments and compared with simulation results for both npn 

and pnp transistors. The stress induced changes in barrier heights are same for npn and pnp 

transistors as explained in previous section. Tensile stress increases the barrier height and hence 

makes corresponding reduction in base and collector currents. Compressive stress reduces the 

barrier height and makes corresponding increase in base and collector currents. But the stress 

affects the mobility differently for npn and pnp transistors depending on the carrier type and the 

carrier concentration. Hence the overall changes in currents and current gain are different for npn 

and pnp BJTs. These changes are discussed in detail below.  

 

npn BJT 

 

Figure 5.27 - Fractional changes in collector, base currents and current gain of an npn BJT for 

σ22
′ [1̅10] (a) 1-D simulation results (Simulation was performed without the addition of residual 

stress, Piezoresistance coefficients are available in Table 4.8) (b) Experimental results (Data 

provided by S. Hussain). 

 

 As illustrated in Figure 5.27(a) and (b), the simulation and the experimental results 

exhibit a good match in npn transistors. For compressive stress both collector and base currents 
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as well as the current gain increase with stress. An 8% increase in collector current and a 5% 

increase in dc current gain were observed for a compressive stress of 100 MPa. As expected the 

changes are opposite for tensile stress. 

 Simulation results were compared with the expectations from the theoretical equations. 

As shown in Figure 5.27(a) and (b) the collector current exhibits a quadratic change in which the 

slope and the curvature are mainly decided by the changes in electron mobility (π12
nB) and base 

intrinsic carrier concentration (niB
2 /niB

2 ) respectively (see equation (3.10)). Base current 

component IBE depends on the change in hole mobility (π12
pE

) and the change in intrinsic carrier 

concentration (niE
2 /niE

2 ) in the emitter as in equation (3.10). The piezoresistive coefficient π12
pE

 

is very small. In addition, for the modern BJTs with a highly doped polysilicon emitter, a 

considerable portion of the holes injected into the emitter recombine in the emitter itself. Change 

in IBR depends on the change in intrinsic carrier concentrations in the base (niB
2 /niB

2 ). As a 

combination of all these effects, the change in base current, which is the weighted average of the 

change in different base current components, is negative even though the hole mobility increases 

with tensile stress. The ni
2/ni

2 terms in both collector and base currents cancel out in dc current 

gain plot, and hence almost a linear plot with a slope of -452.6/TPa is obtained in simulation 

results. A slight curvature observed in the experimental results (Figure 5.27(b)) may be due to a 

small difference between the base and emitter intrinsic carrier concentration changes under stress 

and/or the second-order piezoresistive correlations. Overall, these results illustrate that for the dc 

current gain, simulation results, experimental data and theoretical expectations show excellent 

match among themselves. 
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pnp BJT 

 

Figure 5.28 - Fractional changes in collector, base currents and current gain of a pnp BJT for 

σ22
′ [1̅10] (a) 1-D simulation results (Simulation was performed without the addition of residual 

stress, Piezoresistance coefficients are available in Table 4.8) (b) Experimental results [83]. 

 

 A similar verification was performed for pnp BJT as well. As illustrated in Figure 5.28(a) 

and (b), simulation and the experimental results exhibit a good match in pnp transistors. The 

collector current shows a good match for both tensile and compressive stresses. In addition, for 

tensile stress, both collector and base currents and dc current gain show matching within 

themselves. A slight mismatch appears in base current and current gain plots for compressive 

stress. This could be due to the differences in estimated parameters used in simulations and/or 

slight temperature changes during experiment. For transport limited pnp transistors the currents 

and current gain are mainly decided by the ni
2/ni

2 terms and corresponding curvature appears in 

the plots (Figure 5.28(b)). Our simulation result of dc current gain is comparable to that of the 

experimental results in [56]. These simulation results are compared to theoretical expectations, 

which are analogous to the theory of npn transistors. For pnp BJT the current gain showed 

changes for tensile stress, but the stress sensitivity of current gain is much less compared to 
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vertical npn transistors on (100) plane due to the corresponding low piezoresistive coefficient 

π12
pB

 (Table 4.8). Only a 0.5% increase in current gain is achieved for a tensile stress of 100 MPa. 

In contrast, the base and collector currents were increased with compressive stress and showed 

higher sensitivity of about 4-4.5% for a compressive stress of 100 MPa.  

 

5.8 Residual stresses in bipolar transistors 

 Residual stress normally develops during the fabrication process and remains in 

semiconductor devices [90]. Hence addition of residual stress may be essential for accurate 

modeling of the experimental results [100]. In order to accommodate the residual stress effects, 

we replaced stress σ in the equations in Table 2.3 with the sum of applied stress σ and residual 

stress σ0 and used in our modeling (Table 5.1). Residual stress may vary depending on the details 

of the fabrication process. In order to study the residual stress in transistors, experimental results 

of npn and pnp transistors were tested with matching simulation results.   

 

Table 5.1 – Stress induced changes in ni
2/ni

2 (including residual stress) 

Stress Orientation ni
2/ni

2 

<100> 1.644x10
-6

(σ+σ0)
2
-2.755x10

-4
(σ+σ0) 

<110> 8.873x10
-7

(σ+σ0)
2
-3.403x10

-4
(σ+σ0) 
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Figure 5.29 - Comparison of experimental and simulation results for different npn BJTs with 

same profile in similar/same strips (𝟏𝟐
𝐧  = 455/TPa, 𝟏𝟐

𝐩
 = -8/TPa) (a) residual = +70 MPa (b) 

residual stress = +160 MPa (c) residual stress = +180 MPa. Residual stresses were added in 

simulation to match the experimental results. Experimental data were provided by S. Hussain 

[83]. 
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Figure 5.30 - Comparison of experimental and simulation results for pnp BJT in similar/same 

strips (𝟏𝟐
𝐧  = 200/TPa, 𝟏𝟐

𝐩
 = -15/TPa). Simulation and experimental results matched without 

adding any residual stress. Experimental data were provided by S. Hussain [83]. 

 

 The vertical npn and pnp transistors used in this study are from a complementary bipolar 

technology fabricated using a 0.5 μm BiCMOS process with shallow trench isolation. All 

transistors are from similar or same wafer strips. The npn transistors incorporate polysilicon 

emitters while pnp transistors do not. All npn transistors are with same profiles. But the locations 

of the transistors in the wafer strip are different. Same estimated piezoresistance coefficients 

were used in simulation (Table 4.8). Figures 5.29 and 5.30 depict the experimental results of 

three npn transistors and a pnp transistor, respectively, with matching simulation results. As 

shown in Figure 5.29 the experimental results of 3 different npn transistors (npn #1, npn #2 and 

npn #3) were matched for different residual stresses of +70 MPa, +160 MPa and +180 MPa, 

respectively. This indicates the presence of residual stress in the npn transistors. The magnitudes 

of the residual stresses in different transistors were successfully quantified with this 1 -D model. 

Experiment result of pnp transistor matched with the simulation result without the addition of 

any residual stress.  
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 Residual stresses observed in the base and emitter regions of the npn transistors may be 

possibly due to the polysilicon emitter structures. In contrast, zero built-in stress has been found 

in both emitter and base regions of the pnp transistor. The estimated stress levels correspond to 

the sum of the two normal stresses (11 + 22) on the (100) surface. It appears that the 

deformation potentials of silicon may be affected by high levels of doping in the emitters of the 

transistors. Another possibility for the residual stress is due to the shallow trench isolation. 

Residual stress due to shallow trench isolation is location dependent. Since slightly different 

residual stresses were observed for the transistors with same profiles in same or similar strips this 

is also a possibility.  

 

5.9 Stress effects in saturation current for vertical and lateral transistors in (100) plane 

 The saturation current of a bipolar transistor changes when a mechanical stress is applied. 

The change can be positive or negative, depending on the minority carrier type, current 

orientation, stress orientation, type of the stress and the sign of the stress [57]. The simulated 

results of change in saturation current for npn and pnp transistors for various current and stress 

orientations are presented in Figure 5.31. The figures shows a strong anisotropic behavior 

depending on the current and stress orientations. In addition, the responses are much different for 

npn and pnp transistors. The results are very similar to the change in resistor current where the 

resistor length is replaced by the base width and the majority carrier concentration is replaced by 

the minority carrier concentration [57]. In addition a curvature is added to all these plots due to 

the change in intrinsic carrier concentration. The changes can be fitted with second-order least 

square fits as shown in the figures. The changes in current are in the same order of magnitude as 

the piezoresistive effect in the stress range considered.  
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Figure 5.31 - Simulated changes in saturation current for npn and pnp transistors as a function of 

uniaxial normal stress for various current and stress orientations 
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Vertical transistors  

 Figure 5.31(a)-(c) are the stress responses for npn and pnp vertical transistors on (100) 

plane. Figure 5.31 (a) and (b) are the response for in-plane normal stresses and Figure 5.31(c) is 

the response for the out-of plane normal stress. It has been reported that the stress sensitivity to 

vertical transistors is unique when they are fabricated in (100) or (111) planes [57]. That is the 

first-order stress sensitivity to in-plane normal stress is isotropic for the vertical transistors in 

these planes. This implies that the sensitivity is independent of the angle of the uniaxial stress in 

the plane. Our simulation results also confirmed this nature. However there is some anisotropic 

behavior appears in figures because of the second-order terms due to the change in intrinsic 

carrier concentration which is slightly anisotropic depending on the stress orientation with 

respect to the crystal orientation. Vertical pnp transistors are showing much less stress sensitivity 

compared to vertical npn transistors for in-plane normal stresses and out-of-plane tensile stress 

for the considered stress range. For pnp transistors, the change in current for both in-plane and 

out-of-plane normal stresses are much similar for this stress range. 

 

Lateral transistors 

 The stress sensitivity of lateral transistors on (100) is very anisotropic. This property can 

be used to select the transistor orientation for specific needs. The graphical representation of 

piezoresistive coefficients by Kanda [74] is a very good reference for deciding the transistor 

orientation for lateral transistors. Figures 5.31(d) and (e) show the longitudinal and transverse 

stress sensitivity of npn and pnp lateral transistors on (100) plane. The stress sensitivities to in-

plane longitudinal and transverse stresses are less for npn transistor as shown in figures 

corresponding to the lateral and transverse piezoresistive coefficients for the transistors in <110> 
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directions in (100) plane (Appendix D Figure D.1). For pnp transistors, longitudinal stress 

sensitivity is very high for <110> directions (Figure 5.31(d)), whereas the transverse sensitivity 

is also considerably high (Figure 5.31(e)) and having opposite polarities of changes 

corresponding to the longitudinal and transverse piezoresistive coefficients. However, the stress 

sensitivity is zero near the <100> directions (Appendix D Figure D.2). These are similar to the 

case of p-type resistors.  

 

5.10 Stress effects in bipolar transistors on (111) plane 

 

 Fractional changes in currents and dc currents gain for an npn transistor on (111) plane 

for an in-plane normal stress are illustrated in Figure 5.32(a). Same npn transistor model used for 

(100) plane in previous section was used changing the current orientation in (111) direction. 

Simulation was carried out with the piezoresistance mobility model only. (More appropriate 

simulation should include the changes in intrinsic carrier concentration as well. It is expected to 

give slight curvature in the current plots while keeping the dc current gain plot same). The 

simulation results for in-plane normal stress in different orientation gave the same results 

indicated the isotropic nature for in-plane stresses for vertical transistor in (111) plane. The 

experimental results of [83] also validating this simulation results presented here for comparison 

(Figure 5.32(b)). The change rates of collector current (-53.01/TPa) and dc current gain (-

80.03/TPa) are much less compared to npn transistor on (100) plane where the corresponding 

changes were about -450/TPa for both collector current and dc current gain. This indicate that the 

sensitivity of npn transistors on (111) plane are much less compared to the sensitivity of npn 

transistors on (100) plane for in-plane normal stress. 
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Figure 5.32 - Fractional changes in currents and current gain of a vertical npn transistor on (111) 

plane for an in-plane normal stress [1̅10] (a) simulation results (b) experimental results 

(Experimental data were provided by S. Hussain [83].  

 

5.11 Summary 

 A 1-D numerical model was developed for rapid stress analysis in bipolar transistors. The 

simulation is very fast and results for a given stress orientation are obtained in less than a minute. 

Importantly, these simulation results are comparable to the results of a 2-D model with Sentaurus 

TCAD tool, which usually takes hours on a similar CPU when similar accuracy is needed. The 
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validity of the model was verified for npn and pnp transistors and found to be consistent with the 

experimental results and the theoretical expectations. With the use of appropriate parameters this 

model can be used for any npn/pnp vertical or lateral transistor irrespective of the transistor plane 

or orientation. This model was successfully used to quantify the residual stress in bipolar 

transistors. The sensitivity of transistors on (100) plane for different current-stress orientations 

were obtained from simulation and analyzed. Transistors showed different sensitivity for 

different current-stress orientations. The vertical transistors on (100) and (111) planes showed 

almost isotropic changes for in-plane normal stress. In vertical transistors, npn transistor on (100) 

plane showed much higher stress sensitivity than the pnp transistors on (100) plane or npn 

transistor on (111) plane. Lateral pnp transistors on (100) plane showed much higher anisotropic 

stress sensitivity with opposite polarities for longitudinal and transverse stresses. Overall, this 

study indicates an opportunity for performance enhancement or stress mitigation by selecting 

appropriate combination of current-stress orientation in various transistor structures. A detail 

analysis on the performance enhancement in vertical and lateral transistors is given the next 

section. 

 

 

 

 

 

 

 

 



 

135 

 

CHAPTER 6 

PERFORMANCE ENHANCEMENT IN BIPOLAR TRANSISTORS ON (100) PLANE USING 

UNIAXIAL STRESS 

 

6.1 Introduction 

 In this study the performance enhancement in npn and pnp BJTs on (100) silicon was 

investigated using uniaxial stress. Experimental results of in-plane normal stress for vertical npn 

and pnp transistors on (100) plane were analyzed with the help of the 1-D numerical model. 

Numerical modeling was used to predict and analyze the stress effects for various current-stress 

orientations in vertical and lateral transistors. By studying the stress induced effects in various 

parameters of bipolar transistors for different stress-current orientations potential opportunities 

for strain engineering in npn and pnp bipolar transistors were explored.  

 

 

6.2 Vertical transistors on (100) plane   

 

 
Figure 6.1 - Doping profiles used for simulations (a) profile 1 and (b) profile 2. 
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 Stress induced changes in dc and rf (radio-frequency) characteristics were analyzed. dc 

analysis was performed on profile 1 using the 1-D numerical model developed in previous 

chapter and the rf analysis was performed on profiles 1 and 2 with the 2-D Sentaurus model 

developed in Chapter 4 (Figure 6.1).  The piezoresistance coefficients of profiles were calculated 

based on the average base and emitter doping concentrations of the profiles and provided in 

Table 6.1. 

 

Table 6.1 - Piezoresistive coefficient estimates for vertical BJTs on (100) plane 

Coefficient 

(10
-12

 Pa
-1

) 

npn profile 1 (NB = 2x10
17

/cm
3
,  

NE = 3x10
19

/cm
3
) 

npn profile 2 (NB = 8x10
17

/cm
3
,  

NE = 5x10
19

/cm
3
) 

 
nB

 
pE

 
nB

 
pE

 

11 -900 25 -850 +20 

12 455 -8 420 -8 

44 -150 700 -140 690 

 

 

6.2.1 dc characteristics  

6.2.1.1 Modeling for dc analysis (with Matlab) 

 Doping profile shown in Figure 6.1(a) was used for dc analysis for which doping types 

were interchanged for npn and pnp BJTs. Standard models were included to represent the 

different device physics phenomena such as the carrier transport, doping-dependent mobility, 

velocity saturation, bandgap narrowing and Shockley–Read–Hall (SRH) recombination. For both 
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carriers, minority-carrier lifetimes of 10
-7

s and 10
-8

s were assumed for the base and emitter 

respectively. 

6.2.1.2 Theoretical expectations (extended theory) 

 

Figure 6.2 - Simplified block model of a vertical npn BJT showing the current components. E-

emitter, B-base, C-collector 

 

 The theory given in Chapter 3 is slightly extended by dividing the base current 

component in emitter IBE into two parts to have a more detailed analysis. The 1-D transistor 

model shown in Figure 6.2 illustrates the main current components in an npn transistor. These 

include collector current IC and the two important base current terms: IBE representing the back 

injection into the emitter, and IBR representing recombination in the base. For modern BJTs with 

a highly-doped polysilicon emitter, a considerable portion of the holes injected into the emitter 

recombine in the emitter itself. Hence, the base current component IBE is divided into two parts: 

the back injected base current component that does not recombine in the emitter IBEI and the back 

injected base current component that recombines in the emitter IBER. 

 



 

138 

 

Changes in current components 

 Using traditional bipolar transistor theory, the important current components of an npn 

BJT can be represented as follows:  

2
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where q is the electric charge, VT is the thermal voltage, nB is the minority-carrier lifetime of 

electrons in the base and pE is the minority-carrier lifetime of holes in the emitter. GB and GE 

represent the Gummel numbers in the base and emitter, AE and AB are the emitter and base areas, 

nB and pE are the effective minority-carrier mobility in the base and emitter and niB and niE are 

the intrinsic carrier concentrations in the base and emitter respectively. Based on equations (6.1-

6.4), the normalized changes in the collector current IC and base current components IBEI, IBER 

and IBR for an npn BJT on (100) plane can be written as:   
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in which the lifetimes are assumed independent of stress. Total base current (IB) is the sum of 

above three base current components and given as: 

BRBERBEIB IIII                                                          (6.11) 

The change in base current is the weighted sum of the changes in different base current 

components:  
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where 1, 2, 3 are the fraction of contributions from different base current components given as:                                    
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Changes in dc current gain 

 The stress-induced change in the dc current gain ( = IC/IB) in terms of back injection 

limited component   and transport limited component T for both npn and pnp BJTs can be 

expressed as: 
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                                               (6.16) 

Parameter  = 1 + 2 represents the fraction of current gain that is determined by back injection 

into the emitter.  = 1 and  = 0 represent 100% back injection and 100% base recombination, 

respectively.  

  

6.2.1.3 Understanding the impact of in-plane normal stress on vertical transistors on (100) plane 

 Figure 6.3 illustrates portions of Gummel plots for an npn and a pnp BJT for tensile 

stress, σ22
′ . The tested npn and pnp BJTs had current gains of approximately 200 and 80, 

respectively. In addition the ideality factors (n) of 1.04 (npn) and 1.07 (pnp) for collector current 

in the normal operation range of base-emitter voltage (0.65  VBE  0.8) indicate that the tested 

BJTs are injection limited structures. As indicated in Figure 6.3, both IC and IB are reduced with 

in-plane normal tensile stress for both npn and pnp BJTs, whereas  is reduced for the npn BJT 

but increased for the pnp. These experimental results are discussed in detail in terms of the 1-D 

model below.  
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Figure 6.3 - Experimental results of Gummel plots for in-plane tensile stress, 𝛔𝟐𝟐
′  [𝟏̅𝟏𝟎], (a) for 

an npn BJT and (b) a pnp BJT. The ideality factor (n) of collector current for the plotted VBE 

range is indicated. npn  200, pnp  80 corresponding well with the ratio of estimated mobility 

in the npn and pnp base regions. 
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npn transistor 

 

 

Figure 6.4 - Comparison of experimental and simulated fractional changes in IC, IB and  of an 

npn BJT for  [1̅10]. Simulation was performed without adding any residual stress (σ0 = 0).  

Piezoresistance coefficients are in Table 6.1. Experimental data were provided by S. Hussain. 

 

 Figure 6.4 presents experimental results and simulations for changes in IC, IB and  

without the presence of residual stress (0 = 0). The agreement for  is excellent whereas clear 

mismatches exist for the individual current plots. The differences in these plots are attributed to 

the presence of residual stress. 
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Figure 6.5 - Fractional changes in IC, IB and  for an npn BJT for σ22
′  [1̅10]. Residual stress of 

+70 MPa was added in simulations to match the experimental results (a) comparison with the 

experimental results (both piezoresistance mobility model and the deformation potential models 

are included for simulation) (b) simulation with piezoresistance mobility model only (plots of IC 

and β overlap) (c) simulation with deformation potential model only (plots of IC and IB overlap). 

Piezoresistance coefficients are in Table 6.1. Experimental data were provided by S. Hussain. 
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Figure 6.6 - Simulated fractional changes in base current components of an npn BJT for tensile 

stress. (a) with piezoresistance mobility model only; (b) with deformation potential model only; 

(c) with both  models together.  1 = 0.08, 2 = 0.82 and 3 = 0.10 in simulations. 

 



 

145 

 

 Figure 6.5(a) presents experimental results and simulations for changes in IC, IB and  

without the presence of residual stress (0 = 0 in simulation) of an npn BJT. Both piezoresistance 

mobility model and the deformation potential models are included for simulation. The agreement 

for  is excellent whereas clear mismatches exist for the individual current plots. The differences 

in these plots are attributed to the presence of residual stress. Figure 6.5(a) exhibits the best
1
 

match obtained by adding a +70 MPa (0 = +70 MPa) built-in stress to the simulation model 

including both stress models together. To distinguish the individual contributions of changes in 

mobility and intrinsic carrier concentration, simulation results were obtained by separately 

applying the piezoresistance mobility model and the deformation potential model (shown in 

Figure 6.5(b) and 6.5(c) respectively). As illustrated in Figure 6.5(a), IC, IB and  showed the 

largest changes for compressive stress. A 12.5% increase in IC and a 7% increase in  were 

observed for a compressive stress of 150 MPa. As expected the changes were opposite for tensile 

stress. Figs. 6.5(b) and 4(c) show that IC is significantly influenced by the change in electron 

mobility (π12
nB) as well as the change in the intrinsic carrier concentration (niB

2 /niB
2 ). For 

compressive stress a strong increase in IC occurs since the effects of mobility changes and the 

intrinsic carrier concentration changes are almost the same.  

 Figures 6.6(a) and (b) show the detailed changes in different base current components 

due to the stress-induced changes in mobility and changes in intrinsic carrier concentration, 

respectively. Figures 6.6(c) is the simulation results with both models together. In Figure 6.6(a), 

IBEI shows a linear increase corresponding to the change in hole mobility (π12
pE

). IBER partially 

depends on the hole mobility. However, the change in hole mobility is very low. Hence the 

change in IBER is almost zero in Figure 6.6(a). IBR depends on the change in electron mobility to a 

 
1
 in the least-square sense 
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lesser extent. Since the electron mobility decreases with stress the base recombination was also 

slightly reduced (as the electron supply rate is reduced) as shown by the negative slope for IBR 

(Figure 6.6(a)). Even though this is a back injection limited structure ( = 0.9,  = 306, T = 

2589 and  = 274 in simulation) most of the injected holes recombine in the emitter (1 = 0.08, 

2 = 0.82). Hence, the resultant slope of IB is mainly decided by the change in IBER and the slope 

is almost zero as depicted in Figure 6.6(a). Change in intrinsic carrier concentration affects all 

base current components equally as shown in Figure 6.6(b) and this effect is much higher 

compared to the changes due to mobility. Thus the total change in base current is mainly 

determined by the changes in intrinsic carrier concentration as shown in Figure 6.6. 

 In simulations, the ni
2/ni

2 term in both the IC/IC and IB/IB cancel out in the / plot, 

and hence almost a linear relationship (Figure 6.5(a)) with a slope of -451.5/TPa was obtained. A 

slight curvature observed in the experimental results (red triangles in Figure 6.5(a)) may be due 

to the difference between the base and emitter intrinsic carrier concentrations, slight temperature 

drift and/or second-order piezoresistive correlations.  

 

pnp transistor 

 Similar analyses were performed for the pnp BJT. As depicted in Figure 6.7(a) the 

experimental results and the simulated results (with both models) showed good matches without 

adding any residual stress. The IC shows a good match for both tensile and compressive stresses. 

A slight mismatch appears for compressive stress. This could arise from slight differences in the 

deformation potentials in the base and emitter or due to a small temperature drift during 

experiments. Simulation results for  are comparable to that of the experimental results in [56].  
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Figure 6.7 - Fractional changes in IC, IB and  for a pnp BJT for σ22
′  [1̅10]. No residual stress 

added (a) comparison with the experimental results (both stress models are included for 

simulation) (b) simulation with piezoresistance mobility model only (c) simulation with 

deformation potential model only (plots of IC and IB overlap). Piezoresistance coefficients are in 

Table 6.1. Experimental data were provide by S. Hussain [83]. 
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Figure 6.8 - Simulated fractional changes in base current components of a pnp BJT for tensile 

stress (a) with piezoresistance mobility model only (b) with deformation potential model only 

(all plots overlap) (c) with both models together. Simulations yields 1 = 0.15, 2 = 0.74 and 3 = 

0.11. 
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Separate simulations were performed with piezoresistance mobility model and with deformation 

potential model and the results are shown in Figure 6.7(b) and 6.7(c), respectively. In Figure 

6.7(b) the collector current shows a slope of +14.9/TPa corresponding to π12
pB

. However, the 

change in intrinsic carrier concentration highly influences the changes in collector current as 

shown in Figure 6.7(c). As a result quadratic change with a negative slope was obtained as 

depicted in Figure 6.7(a). As mentioned earlier, base current is the weighted average of the 

injection limited and recombination limited components (1 = 0.15, 2 = 0.74 and 3 = 0.11 in 

simulation). For base current, a resultant slope of -33.5/TPa was observed due to the changes in 

mobility (Figure 6.8(a)). Base current is also greatly influenced by changes in intrinsic carrier 

concentrations (Figure 6.8(b)). When change in base current is subtracted from the change in 

collector current a slope with a value of 48.6/TPa is obtained for dc current gain (Figure 6.7(b),  

= 0.89,  = 149, T = 1168 and  = 132 in simulation). The changes in currents are mainly due 

to the changes in intrinsic carrier concentrations. Conversely, the ni
2/ni

2 terms in both IC and IB 

cancel out in the  plot and give almost a linear variation in simulation (Figure 6.7(a)).  

However, experimental results showed a slight curvature for . In transistors, ni
2/ni

2 values of 

emitter and base may vary due to band gap narrowing and deformation potential differences in 

the emitter. These variations may result in considerable curvature in dc current gain plot as 

shown in experimental results (Figure 6.7(a)). In addition, small temperature drift or base 

resistance changes also may be the reason for the curvature in the experimental results.   
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Differences in stress sensitivity for injection limited and recombination limited structures 

 

 
Figure 6.9 - Simulated fractional changes in injection limited and transport limited current gain 

components of an npn and a pnp BJTs. 

 
 

 Our analysis for different npn and pnp BJT structures indicates that the injection limited 

BJTs are more sensitive to stress than the transport limited structures. This notion is supported by 

the larger slope for change in injection limited current gain for both npn and pnp BJTs (Figure 

6.9). Further affirmation is provided by the higher slope of IBEI compared to IBER or IBR for both 

npn and pnp BJTs (Figure 6.6(a) and Figure 6.8(a)). However, since a major portion of minority-

carriers injected into the emitter recombines in the emitter itself, the favorable mobility 

increment using injection limited structures can only be partially achieved. 

 

6.2.1.4 Analysis of impact of in-plane and out-of-plane normal stresses 

 The stress sensitivity of collector and base currents and dc current gain of vertical 

transistors are illustrated in Figure 6.10.  Response of an npn transistor for in-plane normal 

stresses in two different orientations are shown in Figure 6.10(a) and 6.10(b). The response for 

the out-of-plane normal stress is illustrated in Figure 6.10(c). Similarly responses of a pnp 
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transistor for in-plane normal stresses are shown in Figure 6.10(d) and 6.10(e) and the response 

of out-of-plane normal stress is illustrated in Figure 6.10(f).  

 

Figure 6.10 - Simulated fractional changes in collector current, base current and dc current gain 

of vertical transistors on (100) plane as a function of uniaxial stress (a), (b), (c) for npn 

transistors (d), (e), (f) for pnp transistors 
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Table 6.2 – Increase in collector current and current gain of a vertical bipolar transistor for 

150 MPa 

Stress type 
npn transistor pnp transistor 

Compressive Tensile Compressive Tensile 

In-plane <100> 
IC (15.0%) - IC (7.5%) - 

(7.0%) - - (1.0%) 

In-plane <110> 
IC (14.5%) - IC (7.0%) - 

(7.0%) - - (1.0%) 

Out-of-plane 
- IC (12.5%) IC (8.0%) - 

- (13.0%) (1.5%) - 

 

 

 For npn transistor the responses for in-plane normal stresses in two different directions 

are similar (Figure 6.10(a) and (b)). Likewise for pnp transistor the responses for in-plane normal 

stresses are similar (Figure 6.10(d) and (e)). This similarity is because the current flow direction 

is perpendicular to the wafer surface in vertical transistors and the sensitivity to in-plane normal 

stresses is coupled through the piezoresistance coefficients, π12
n  and π12

p
 for npn and pnp BJTs 

respectively. Hence the first-order sensitivity to in-plane normal stresses is the same irrespective 

of the stress orientation in the plane, since (σ11
′ +σ22

′ ) is invariant under planar stress 

transformations. However, slight differences can be observed in the second-order sensitivity due 

to the changes in intrinsic carrier concentration (ni
2/ni

2). This second-order term comes in both 

IC and IB and it ideally cancels out in the  plot. The plots show that the vertical npn transistors 

are more sensitive to stress-induced changes compared to pnp transistors. Additionally, the 

changes in dc current gain are opposite for npn and pnp transistors. The dc current gain of both 

npn and pnp transistors shows higher sensitivity for out-of-plane normal stress compared to in-
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plane normal stress. The major differences in the npn plots occur because 11 ≅ -212 in Table 

6.1. The percentage increases in collector current and current gain at 150 MPa stress are 

tabulated in Table 6.2. Out-of-plane tensile normal stress increased both the current and current 

gain of npn vertical transistors on (100) plane. In addition, in-plane normal compressive stress 

also increased the IC, which gave a strong increase of ~15.0% since both the mobility and the 

intrinsic carrier concentrations terms are added up. In the case of out-of-plane normal stress the 

changes due to intrinsic carrier concentration is negative in the considered stress levels and 

reduces the total effect. As a result, the change in IC is only 12.5% even though the change in 

mobility is almost double. For pnp transistors, the out-of-plane compressive stress gave some 

improvement, however the improvement is much less compared to the npn BJT.   

 

6.2.2 rf characteristics 

6.2.2.1 Modeling for ac analysis (with Sentaurus) 

 2-D Sentaurus TCAD simulation was used for rf analysis. Simulations were carried out 

for two profiles, a lightly doped wide base transistor (Figure 6.1(a)) and a highly doped thin base 

transistor (Figure 6.1(b)). The hydrodynamic transport model, Philips unified mobility model, 

piezoresistance mobility model (first order with the piezoresistance coefficients in Table 6.1) and 

the deformation potential model (default) were selected with all other standard models and 

parameters.  

 

6.2.2.2 Theoretical expectations 

 The transit time () cutoff frequency (fT) and maximum oscillation frequency (fmax) of 

bipolar transistor are related by the following equations [23]: 
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2

1
Tf                                                                  (6.17) 

bbcb

T

rC

f
f

 8
max


                                                            (6.18) 

where ccb is the base-collector depletion capacitance and rbb is the base resistance. An increase of 

mobility from stress is expected to decrease transit time, which increases cutoff frequency fT. The 

fT increase and the base resistance rbb decrease from mobility increase both increase fmax, 

maximum oscillation frequency. 

 

6.2.2.3 Analysis of impact of in-plane and out-of-plane normal stresses  

 Figures 6.11(a) and (b) illustrate the simulated changes in fT, fmax and rbb as a function of 

IC for a 1 GHz peak fT npn BJT (profile 1) and a 34 GHz peak fT npn BJT (profile 2). The emitter 

widths are 4.0 m and 0.18 m respectively. 

 

Figure 6.11 - Simulation results of stress induced changes in fT, fmax and rbb of npn BJT for 

σ22
′ [1̅10] (a) for profile 1 and (b) for profile 2. 
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Figure 6.12 - 1/2fT vs 1/IC plots of profile 1 and profile 2 showing the transit time extraction at 

zero stress. 

 

 

 

Figure 6.13 - Fractional changes in fT, fmax, 1/, and rbb along with changes in  at peak fT point. 

(a) & (b) are the results of npn profile 1. (c) & (d) are the results of npn profile 2. Stress 

directions and the slopes are indicated 
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 Simulations were carried out for both σ22
′  and σ33

′  and the changes in fT, fmax and rbb at 

peak fT points were calculated. The results are plotted in Figure 6.13 (stress directions are 

indicated). Transit times for different stress levels were extracted from 1/2fT vs 1/IC plots as 

described in [23] and changes in (1/) also included. The transit times (at no stress) were 

obtained as 137 ps for the 1 GHz transistor and 4 ps for 34 GHz transistor respectively (Figure 

6.11). Changes in mobility (as per piezoresistance coefficient) are also included for easy 

comparison. As in Figure 6.12(a), with a 150 MPa in-plane compressive stress, peak fT and fmax 

increased 7.3% and 6.2%, respectively. These changes are due to enhancement of electron 

mobility with in-plane compressive stress. The base resistance rbb is reduced due to the 

enhancement in lateral hole mobility. Changes are opposite for tensile stress. As illustrated in 

Figure 6.12(b), for an out-of-plane tensile stress, fT and fmax increased and rbb decreased. A 

14.1% improvement in peak fT, and a 7.4% improvement on peak fmax were observed.  

 In all cases the changes in 1/ and fT follow the changes in mobility and changes in fmax 

follow the changes in √fT/rbb. However, the changes (magnitude) are less for highly doped low 

dimensional transistors as depicted in Figures 6.12(c) and (d). In the first transistor, base transit 

time dominates the total transit time, and therefore mobility has a more direct impact on fT. In the 

second transistor, collector transit time is a larger fraction of the total transit time, and velocity 

saturation plays a bigger role leading to less stress sensitivity of fT due to the assumption that 

saturation velocity is unaffected by stress. This assumption however is conservative, as part of 

the mobility increase from stress is due to effective mass reduction, which should increase 

saturation velocity [101].  
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Figure 6.14 - Simulated stress induced changes in fT, fmax and rbb (a) combined effects; (b) with 

piezoresistance mobility model only; (c) with deformation potential model only.   

 

 Simulation results by separately applying each stress model also revealed that the 

changes were totally due to the variations in mobility and the alterations in ni produced only 

minor or no changes in fT, fmax and rbb (Figure 6.14). Hence the rf performance enhancement in 
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silicon BJT is attributed to mobility improvement and the consequent reductions in transit times 

in emitter, base and collector regions.  

 Experimental results for comparable in-plane uniaxial stress (150 MPa) effects in the 

peak fT was found to be <1% in SiGe HBT heterostructures while the polarities of changes were 

similar to the results presented here for silicon BJTs [27]. This less remarkable improvement in 

SiGe HBTs is probably due to the existing huge strain in the base [24]. 

 

6.3 Lateral Transistors on (100) plane  

 The 1-D model used for dc analysis of vertical transistors was used changing the current 

in lateral direction.  

6.3.1 Theoretical Expectations 

Lateral pnp BJT on (100) plane 

 
 

Figure 6.15 - A simplified cross-section of a lateral pnp transistor showing main current direction 

and notation of the transistor  

 

 In lateral transistors the main current direction is parallel to the wafer plane. Usually 

transistor axes are aligned with the wafer axes and lateral transistors have the current flow 

direction parallel or perpendicular to the wafer flat.   Hence the current direction can be [110] or 

[ 101 ] and both are equivalent. Figure 6.15 shows a lateral pnp BJT on (100) plane, in which the 

main current flow is in [110] direction.  Similar to the vertical transistors, for lateral transistors 

also the stress-induced changes in different current components can be written as a combination 
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of changes due to the changes in mobility and the changes in intrinsic carrier concentration. For a 

lateral BJT, the perpendicular components will be split into two parts: the in-plane components 

(in, in) and the out-of-plane components (out, out). Hence the expressions for normalized 

fractional changes in current components will be as follows:  
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Normalized change in injection limited base current component  
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Normalized change in transport limited base current component  
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Normalized change in base current  
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The in, out and || can be expressed in terms of the fundamental piezoresistance coefficients, 

, , and . The estimated piezoresistance coefficients are in Table 6.3 where in = 

(++)/2, in = (+-)/2. The expressions for lateral npn BJTs are analogous. 
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Table 6.3 - Piezoresistive coefficient estimates for vertical and lateral BJTs on (100) plane 

Current orientation 
Coefficient 

 (10
-12

 Pa
-1

) 

npn transistors pnp transistors 


nB

 
pE

 
pB

 
nE

 

 
 -150 700 1100 -70 

Vertical 

<001> 

 =  -900 25 30 -400 

 =  455 -8 -15 200 

Lateral 

<110> 

in -297.5 358.5 557.5 -135 

in -147.5 -341.5 -542.5 -65 

out =  455 -8 -15 200 

 

 

6.3.2 Analysis of impact of in-plane and out-of-plane normal stresses 

 The 1-D model used for dc analysis of vertical transistors was used changing the current 

in lateral direction. A similar analysis was carried out for lateral transistors as well. In contrast to 

the vertical transistors, the stress sensitivity varies for in-plane stresses also in lateral transistors 

depending on the current and stress orientations. Hence, the stress sensitivity to longitudinal 

(current and the stress are in same direction) and transverse (stress direction is perpendicular to 

the current direction) stresses were also analyzed. For npn transistors the simulation results for 

the in-plane longitudinal normal stress, in-plane transverse normal stresses and out-of-plane 

normal stress are shown in Figure 6.16(a-c), respectively. Likewise simulation results for pnp 

transistors are illustrated in the same order in Figure 6.16(d-f). As evident in the plots, the stress 

sensitivity of npn lateral transistors are much less for in-plane normal stresses. However, for an 

out-of-plane compressive stress of 150 MPa, npn lateral transistors showed an increase of 15.0% 

in collector current and an increase of 7% in dc current gain. The stress sensitivity of lateral pnp 

transistors for in-plane normal stress vary widely depending on the current and stress orientations 

(Figure 6.16(d) and (e)).  
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Figure 6.16 - Simulated fractional changes in collector current, base current and dc current gain 

of lateral transistors on (100) plane as a function of uniaxial stress (a), (b), (c) for npn transistors 

(d), (e), (f) for pnp transistors 
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Table 6.4 - Increase in collector current and current gain of a lateral transistor for 

150 MPa 

Stress type 

npn transistor pnp transistor 

Compressive Tensile Compressive Tensile 

In-plane 

longitudinal 

Ic (2.0%) Ic (1.5%) Ic (20.0%) - 

- β (5.0%) β (8.5%) - 

In-plane transverse 

Ic (5.0%) - - Ic (5.0%) 

- β (2.0%) - β (8.0%) 

Out-of-plane 

Ic (15.0%) - Ic (7.5%) - 

β (7.0%) - - β (1.0%) 

 

The highest increase of about 20% in the collector current and about 8.5% increase in the dc 

current gain were achieved for longitudinal in-plane compressive stress. Changes in dc current 

gain for out-of-plane normal stress is very small. However, change in collector current is 

moderately high for compressive stresses (Table 6.4).  

 In the previous section we found that fT and fmax improve with mobility. Hence the same 

stresses whichever give improvement in dc current gain also give improvement in fT and fmax as 

well. Based on these analyses we suggest that out-of-plane compressive stress can be utilized to 

maximize the IC, , fT and fmax for npn lateral transistors on (100) plane. In addition, the 

longitudinal in-plane compressive stress can be utilized to maximize the IC, , fT and fmax for pnp 

lateral transistors on (100) plane.  
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6.3 Summary   

 In this work the analysis of stress induced effects in vertical and lateral bipolar transistors 

on (100) plane is presented with a combined mobility-deformation potential model approach. For 

the considered stress range (< 200 MPa), the collector and base currents of npn and pnp 

transistors showed a non-linear change which consists of a linear portion due to the mobility 

variations and a non-linear portion due to the variations in intrinsic carrier concentration. The 

variation due to the changes in intrinsic carrier concentration nearly cancels out and the changes 

are almost linear in dc current gain. However, a small nonlinearity is also possible in the dc 

current gains when there is a mismatch in the intrinsic carrier concentrations of the base and 

emitter. Vertical pnp transistors exhibits low stress sensitivity over vertical npn and lateral npn 

and pnp transistors on (100) plane. 

 The possibility for potential strain engineering was explored. Analyses revealed that in 

vertical transistors significantly higher enhancement in IC, , fT and fmax can be achieved for npn 

BJTs compared to pnp BJTs. Out-of-plane normal stress showed higher increments compared to 

in-plane normal stresses for both npn and pnp BJTs. Also the injection limited structures were 

found to be more sensitive to stress in both npn and pnp BJTs. Similar results were observed for 

various transistor geometries. In lateral transistors, pnp transistors showed higher enhancement 

compared to npn transistors. In-plane longitudinal compressive stress give higher improvement 

in pnp transistors and out-of-plane compressive stress gives higher improvement in npn 

transistors. This model can be extended for stress analysis in transistors in any plane. Such 

analysis, when performed for different current and stress orientations, is likely to identify the 

current-stress orientation combinations in which the stress-induced changes in important bipolar 

parameters will be optimized.  
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CHAPTER 7 

MITIGATION OF STRESS EFFECTS IN PRECISION ANALOG CIRCUITS 

 

7.1 Introduction 

 In previous chapters the stress effects in various npn and pnp bipolar transistor structures 

were studied. In the last chapter it has been shown that by selecting appropriate stress orientation 

with respect to the current orientation the performance of bipolar transistors can be improved. 

This chapter presents methods to minimize the inaccuracy caused by the stress effects in 

precision analog circuits. With the outcome of previous chapters the stress induced changes in 

some basic analog building blocks on (100) plane were predicted and methods were suggested to 

minimize these effects. Spice simulation was used to demonstrate these effects for number of 

important analog circuits including differential pairs, PTAT (Proportional To Absolute 

Temperature) circuits, operational amplifiers (op-amps) and bandgap references.  

 

7.2 Magnitudes of stress and stress gradients in integrated circuits 

 The more complete expressions for the transistor current variations include the sum of the 

in‐plane normal stresses (σ11
′ +σ22

′ ), which is invariant under planar stress transformations. This 

sum can be very large in the center of large die in certain packaging configurations. Stress 

gradients across a small die was reported from measurements using a CMOS sensor array chip 

containing 256 sensor cells in each of the PMOS and NMOS sensor arrays. The measured stress 

variations for 𝜎11,
′  𝜎22

′  and 𝜎12
′  across sample rows in the array showed the significant stress 

gradients that occur across these die (2.2 mm x 2.2 mm), 65 MPa/mm and 12 MPa/mm 

respectively [102]. Such variations of stress in individual stress terms across the die surface may 
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cause issues in precision analog circuits which work upon the precise matching of the transistors. 

Typical values of the shear stress as well as the out‐of‐plane normal stress are expected to be 

much smaller (in the 10’s of MPa) and less important to BJT current variations. In-plane normal 

stress effects in some analog circuits are investigated in the next section. 

 

7.3 Impact of stress on analog integrated circuit building blocks 

 In this section the Spice simulation results are presented for some basic analog building 

blocks on (100) plane such as differential pairs, PTAT circuits, op-amps and voltage reference 

circuits and compared with the theoretical expectations. In Spice simulation the stress effect in 

transistors was included by incorporating the 1-D theoretical model illustrated in chapter 3 for 

stress effects in IS and . When resistors are in the circuits, stress effects in resistors are also 

modeled by the piezoresistance model. Spice Netlists are included in Appendix E. Refer [103] 

for details about adding models for various parameters. 

 

Stress response of offset voltage of differential pairs 

 

Figure 7.1 - A differential pair circuit (a); and simulated offset voltage versus uniaxial [110] 

Stress (b). 
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 Figure 7.1 presents a differential pair circuit and the simulated offset voltage of the 

circuit for a uniaxial stress [110].  Q1 and Q2 are matching npn transistors with base-emitter 

voltages and saturation currents of (VBE1, VBE2) and (IS1, IS2), respectively. An initial mismatch is 

assumed in saturation currents. The offset voltage (VOS) expression for this simple differential 

pair can be derived as follows: 
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Similarly, for Q2 
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Substituting (7.2) and (7.3) in (7.1) yields: 
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Applying IC1=IC2 
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Including stress effects in saturation current the theoretical expression for VOS becomes 
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If stress is maintained as a common-mode effect VOS will be independent of stress and the 

expression becomes 
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The simulated results agree with this theoretical expectation. However, the output will change if 

there are stress gradients across the transistor causing different rate of changes in IS1 and IS2. 

  

Stress response of PTAT Circuit  

 In a similar way the PTAT voltage can be derived for the circuit in Figure 7.2. VPTAT is 

equal to the difference in the two base-emitter voltages of the transistors can be given as 

12 BEBEPTAT VVV                                                                   (7.9) 
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where 1 and 2 are the stresses experienced by the transistors Q1 and Q2, respectively. 

Assuming IS1 = IS2,  for   I2 = 5 I1   and  1 = 2   

VPTAT = VT ln(5) = 0.0259 V (1.609) = 41.7 mV 

This theoretical calculation indicates the output voltage should be independent of stress as long 

as the stress state is the same in both transistors. But the output voltage may change if any stress 

gradient appears across these two transistors. The simulation results with the common-mode 

stress effect and with different mode stress effect are also shown in Figure 7.2. Both agree well 

with the theoretical calculations. Stress induced changes in IS and  were included in the spice 

simulation (Appendix B) 
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Figure 7.2 - Simulated output voltage of a PTAT circuit versus uniaxial [110] Stress (a) circuit 

(b) output when both transistors experience equal stress (1 = 2)  (c) output when transistors 

experience different stress (2 = 0.9 1).     

 

Stress response of op-amp offset voltage 

 

Figure 7.3 - A simple op-amp circuit (a); and simulated offset voltage versus uniaxial [110] 

stress (b). 
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The offset voltage of the op-amp in Figure 7.3 can be given by 
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From the above theoretical expression change in offset voltage can be calculated as  
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Equation (7.12) indicates that the stress-induced changes in the dc current gain of the pnp 

transistors make changes in the offset voltage while the changes in the current gain of npn 

transistors do not affect the offset voltage in this op-amp circuit.  

As per spice simulation results in Figure 7.3, the change in offset voltage is calculated as  

MPanV
VOS /  29.6





                                                           (7.14) 

This also agrees with the theoretical expectations. 

 

Stress response of bandgap reference circuit 

 Bandgap reference circuits are used to generate a very stable voltage reference with 

respect to both temperature and the power supply variations in analog circuits. The basic idea of 

the bandgap voltage reference is to balance the negative temperature efficient of a pn junction 

with the positive temperature coefficient of the thermal voltage. The circuit components are 

precisely designed to balance any unintentional effects of temperature variations and power 

changes. However if mechanical stresses make any variations in the circuit parameters, it may 
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cause the reference circuits to work out of specifications. Hence, it is very important to mitigate 

these stress effects.  

 Figure 7.4(a) and 7(b) presents a bandgap reference circuit and the simulation results of 

the circuit for the stress-induced changes in the output reference voltage (for R and  in [110] 

direction). In the simulation stress induced changes in the transistors and the resistors are 

included. In addition common‐mode stress effect is assumed for all transistors and resistors. The 

op-amp element is assumed ideal. 

 

 

Figure 7.4 - Simulated output voltage of a bandgap reference circuit versus uniaxial [110] Stress 

(a) circuit diagram (b) SPICE simulation output for resistors in [110] and stress in [110] 

directions. 

 

Considering the circuit in Figure 7.4, the theoretical expression for the stress-induced changes in 

VREF can be derived as follows: 

The voltage across the resistances R1 and R2 are equal since the voltages at two input points are 

equal in an ideal op-amp.  

2211 IRIR                                                                     (7.15) 
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Since voltages at two inputs of the op-amp are equal the following expressions also can be 

written. 
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In equation (7.25) stress dependent quantities are IS, R1, R2 and R3. Stress induced changes 

associated with 
2

1

R

R
 and 

3

1

R

R
terms will be cancelled out if R1, R2 and R3 are in same orientation. 

However, still the stress effects in R3 and IS affect the resultant VREF.  The transistors are vertical 
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npn on (100) plane. The stress sensitivity is isotropic for in-plane normal stress irrespective to 

the stress direction in the plane. For resistors, selecting p-type resistors and keeping at ±45
o 

or 

using 0
o
/90

o
 compensation (making the resistances into two equal parts and keeping them at right 

angle along [110] and [1̅10] directions) is expected to reduce the changes in VREF due to resistor 

changes. Some simulation results and analysis verifying the theoretical expectations for in-plane 

normal stress in different orientation are presented below. 

 In this analysis we keep the resistances R1, R2 and R3 at the same orientations. Hence 

the second term in (7.25) is cancelled out and the expression for stress-induced changes in VREF 

reduces as: 
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In this analysis, the sress effects in saturation current is modeled using piezoresistance mobility 

model (assuming linear variation for small stress levels). 
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Figure 7.5 - Resistor (R) and stress () orientations in a (100) plane [56] 
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Stress effects in each resistor in the voltage reference circuit is modeled by the following 

equation (Figure 7.5) in [56]: 
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where R is replaced by R1, R2 or R3. Simulation results and the results from the analytical 

calculations for some different configurations are presented in Table 7.1. As illustrated both 

theoretical and simulation results agree well. Stress effects in transistor alone give a variation of 

11.8 V/MPa in VREF, which is independent of in-plane stress orientation. The resistor-stress 

orientation combination in the plane increase or reduce this change depending on the 

orientations.  

Table 7.1 – 


 REFV
for an in-plane stress in  different orientations with respect to R 

Elements considered theoretical simulation Unit 

BJT, no stress in R 61.11 12 nB
TV   11.8 V/MPa 
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In the wafer resistors are normally aligned with wafer axis [110] or [1̅10]. However, in some 

cases they aligned with [100], [010] axes as well. Hence resistors are fixed aligned with one of 

these axes. But the stress orientation changes. Figure 7.6 demonstrates the changes in Vref with 

different stress orientations. Simulation was performed keeping the resistors R1, R2 and R3 

aligned with these axes and changing the stress orientation and the results are presented in Figure 

7.6.  

 

Figure 7.6 - Relative stress induced change VREF for different resistor orientations 

 

 For this circuit, change in saturation current and the changes in resistances due to stress 

highly influence the resultant VREF. The change in resistance depends on the resistance type and 

the orientation. The changes due to resistance variation can be reduced by keeping the resistor at 

[100] or [010] orientations. 0
o
/90

o
 compensation also minimized the changes in resistances and 

hence the changes in VREF as indicated in Table 7.1. However, for in-plane stresses the changes 
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in saturation current of a vertical transistor on (100) plane is isotropic. Employing npn transistors 

on (111) plane could help in keeping the changes in saturation current small.    

 

7.4 Approaches for minimizing the impact of stress on bipolar integrated circuits 

The following methods are suggested for minimizing the stress effects in bipolar analog circuits.  

 Using ±45
o
 p-type resistors or 0

o
/90

o
 p-type resistor compensation whenever possible for 

resistors in precision analog circuits. 

 Replacing resistors with transistors whenever possible to reduce the area and thereby the 

stress gradient.  

 Using standard differential circuit techniques to make the stress a common-mode effect. This 

includes  

 - Match transistors as closely as possible 

 - Differential circuits minimize impact of IS/Is 

 - Place matched devices close together to avoid stress gradients 

 - Avoid chip regions of high stress and high gradient using finite element method (FEM) 

simulations  

 Enclosed lateral devices provide stress compensation. 

 Using pnp transistors than npn transistors reduce the stress dependence effects in current 

mirrors on (100) plane. 

 Circuits on (100) plane sensitive to current gain values should employ pnp transistors than 

npn transistors whenever possible. 

 Circuits on (111) plane sensitive to current gain values should employ npn transistors than 

pnp transistors whenever possible. 
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7.5 Summary 

 In this chapter, methods are provided to mitigate the unfavorable stress effects is bipolar 

transistors and analog circuits. Spice simulations were carried out in some basic precision analog 

circuits. With incorporating the 1-D theoretical models developed in chapter 3 the stress induced 

changes in analog circuits were successfully predicted. The predicted results match well with the 

theoretical expectations. Some methods for stress mitigation also provided. 
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CHAPTER 8 

CONCLUSION 

  

 In this dissertation a comprehensive study on mechanical stress effects on bipolar 

transistor characteristics is presented using experimental and numerical modeling approaches. A 

new 1-D numerical model was developed for stress analysis in which stress-induced changes in 

bipolar transistors were modeled with a combined mobility-deformation potential modeling 

approach. This approach provided clear insight into the dominant effects of stress on different 

bipolar transistor parameters. The validity of the model was verified for npn and pnp transistors 

on (100) plane and found to be consistent with the experimental results and the theoretical 

expectations. With the 1-D numerical model the simulation was very fast and results for a given 

stress orientation were obtained in less than a minute. Importantly, these 1-D simulation results 

are comparable to the results of a 2-D model with Sentaurus TCAD tool, which usually takes 

about an hour on a similar CPU when similar accuracy is needed. With the use of appropriate 

parameters this model can be extended for any npn/pnp vertical or lateral transistor irrespective 

of the transistor plane or orientation. 

 The stress induced changes in various parameters of vertical and lateral npn/pnp BJTs on 

(100) plane were analyzed to determine the best stress orientation with the overall goal of 

improving/maximizing the mobility and/or intrinsic carrier concentration. Analyses for vertical 

BJTs on (100) plane revealed that significantly higher enhancement in IC, , fT and fmax can be 

achieved for npn BJTs compared to pnp BJTs. Out-of-plane normal stress showed higher 

increments compared to in-plane normal stresses for both npn and pnp vertical BJTs. In lateral 

pnp transistors, in-plane longitudinal compressive stress and in lateral npn transistors out-of-
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plane compressive stress showed significant improvement in Ic, , fT and fmax. Overall results 

indicated a promising opportunity for strain engineering in both vertical and lateral Si BJTs.  

 This study facilitated ideas for stress mitigation as well. The bipolar transistors showed 

different stress sensitivity for different stress-current orientations. The injection limited 

structures were found to be more sensitive to stress in both npn and pnp BJTs. Vertical npn 

transistors on (100) plane showed high stress sensitivity over vertical npn on (111) plane. The 

stress sensitivity of vertical pnp transistors on (100) planes were much less than the stress 

sensitivity of the vertical npn transistors on (100) planes or (111) planes. However, the lateral 

pnp transistors on (100) plane also showed high stress sensitivity for in-plane longitudinal and 

transverse stresses. Using the less stress sensitive BJTs is one method for stress mitigation in 

precision analog circuits. Spice simulation was used to model the stress effects in analog circuits. 

With the use of the theoretical 1-D models we were able to successfully model the stress effects 

in analog circuits and provided some stress mitigation techniques. These information will help in 

mitigating the unfavorable stress effects in analog circuits. 

 

 

 

 

 

 

 

 

 



 

179 

 

References 

 

[1] C. Smith, "Piezoresistance effect in silicon and germanium," Phys. Rev, vol. 94, pp. 42-49, 

1954. 

[2] B. Puers, L. Reynaert, W. Snoeys, and W. Sansen, "A new uniaxial accelerometer in silicon 

based on the piezojunction effect," Electron Devices, IEEE Transactions on, vol. 35, pp. 

764-770, 1988. 

[3] W. Sansen, P. Vandeloo, and B. Puers, "A force transducer based on stress effects in bipolar 

transistors," Sensors and Actuators, vol. 3, pp. 343-354, 1982. 

[4] J. Wortman and L. K. Monteith, "Semiconductor mechanical sensors," Electron Devices, 

IEEE Transactions on, vol. 16, pp. 855-860, 1969. 

[5] J. F. Creemer, F. Fruett, G. Meijer, and P. J. French, "The piezojunction effect in silicon 

sensors and circuits and its relation to piezoresistance," IEEE sensors journal, vol. 1, pp. 98-

108, 2001. 

[6] J. C. Suhling and R. C. Jaeger, "Silicon piezoresistive stress sensors and their application in 

electronic packaging," IEEE sensors journal, vol. 1, pp. 14-30, 2001. 

[7] R. C. Jaeger, J. C. Suhling, R. Ramani, A. T. Bradley, and J. Xu, "CMOS stress sensors on 

[100] silicon," Solid-State Circuits, IEEE Journal of, vol. 35, pp. 85-95, 2000. 

[8] R. C. Jaeger, R. Ramani, J. C. Suhling, and Y. Kang, "CMOS stress sensor circuits using 

piezoresistive field-effect transistors (PIFETs)," in VLSI Circuits, 1995. Digest of Technical 

Papers., 1995 Symposium on, 1995, pp. 43-44. 

[9] R. Jaeger, J. Suhling, A. Bradley, and J. Xu, "Silicon piezoresistive stress sensors using 

MOS and bipolar transistors," Advances in Electronic Packaging-ASME, EEP, vol. 26, p. 1, 

1999. 

[10] D. Bittle, J. Suhling, R. Beaty, R. Jaeger, and R. Johnson, "Piezoresistive stress sensors for 

structural analysis of electronic packages," Journal of Electronic Packaging, vol. 113, pp. 

203-215, 1991. 

[11] D. R. Edwards, G. Heinen, G. A. Bednarz, and W. H. Schroen, "Test structure methodology 

of IC package material characterization," Components, Hybrids, and Manufacturing 

Technology, IEEE Transactions on, vol. 6, pp. 560-567, 1983. 

[12] J. L. Spencer, W. H. Schroen, G. A. Bednarz, J. A. Bryan, T. D. Metzgar, R. D. Cleveland, 

and D. R. Edwards, "New quantitative measurements of IC stress introduced by plastic 

packages," in Reliability Physics Symposium, 1981. 19th Annual, 1981, pp. 74-80. 

[13] S. E. Thompson and S. Parthasarathy, "Moore's law: the future of Si microelectronics," 

Materials Today, vol. 9, pp. 20-25, 2006. 

[14] S. Hu, "Stress‐related problems in silicon technology," Journal of applied physics, vol. 70, 

pp. R53-R80, 1991. 

[15] S. Hu, "Stress from isolation trenches in silicon substrates," Journal of applied physics, vol. 

67, pp. 1092-1101, 1990. 

[16] L. Yu, W.-Y. Chang, K. Zuo, J. Wang, D. Yu, and D. Boning, "Methodology for analysis of 

TSV stress induced transistor variation and circuit performance," in Quality Electronic 

Design (ISQED), 2012 13th International Symposium on, 2012, pp. 216-222. 



 

180 

 

[17] M. Jung, J. Mitra, D. Z. Pan, and S. K. Lim, "TSV stress-aware full-chip mechanical 

reliability analysis and optimization for 3D IC," Communications of the ACM, vol. 57, pp. 

107-115, 2014. 

[18] K.-W. Su, Y.-M. Sheu, C.-K. Lin, S.-J. Yang, W.-J. Liang, X. Xi, C.-S. Chiang, J.-K. Her, 

Y.-T. Chia, and C. H. Diaz, "A scaleable model for STI mechanical stress effect on layout 

dependence of MOS electrical characteristics," in Custom Integrated Circuits Conference, 

2003. Proceedings of the IEEE 2003, 2003, pp. 245-248. 

[19] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, 

C. Kenyon, and J. Klaus, "A 90nm high volume manufacturing logic technology featuring 

novel 45nm gate length strained silicon CMOS transistors," in Electron Devices Meeting, 

2003. IEDM'03 Technical Digest. IEEE International, 2003, pp. 11.6. 1-11.6. 3. 

[20] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, 

G. Glass, and T. Hoffman, "A 90-nm logic technology featuring strained-silicon," Electron 

Devices, IEEE Transactions on, vol. 51, pp. 1790-1797, 2004. 

[21] S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, 

Z. Ma, and B. Mcintyre, "A logic nanotechnology featuring strained-silicon," Electron 

Device Letters, IEEE, vol. 25, pp. 191-193, 2004. 

[22] S. Persson, M. Fjer, E. Escobedo-Cousin, S. H. Olsen, B. G. Malm, Y.-B. Wang, P.-E. 
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Appendix A - Doping profile 

 

 Following is an example of the profile of a bipolar transistor used in this research study. 

The impurity distribution in the emitter (NE), base (NB) and the sub-collector (NSC) are 

approximately given by Gaussian distribution and the collector impurity profile (NCol) is taken as 

constant as follows: 

Emitter profile                                    
2
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Figure A.1 – Impurity profile of a bipolar transistor using analytical equations 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10
-4

10
13

10
14

10
15

10
16

10
17

10
18

10
19

10
20

 

 

Resultant Doping Profile

Base Profile

Emitter Profile

Subcollector Profile

Collector Profile



 

186 

 

 

where the entire 1-D bipolar transistor is divided into N sections and i is the node. Ne, Nb, Nsc, Nc 

are the doping profile of emitter, base, collector and sub-collector respectively. The resultant 

doping profile have been calculated using the equation N= Ne-Nb+Nc+Nbc. Figure A.1 shows the 

impurity profiles obtained from above equations. 
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Appendix B -  Current crowding effects in 2-D and 3-D simulations 

 

The sheet resistance of the base underneath the emitter RS is given by: 

tpqp
Ndxpq

RS




1
               

cx

ex

1
   




                                                  (B.1) 

Refer the front view of a 2-D bipolar transistor used for simulations is shown in Figure B.1. The 

following approximate values have been assumed for the calculation of sheet resistance. 

 base width                     t  =  75 nm 

 average base doping       N  =  1e17 

 hole mobility                   p  = 250 cm
2
/(V.s) 

Plugging these values in the sheet resistance equation the approximate sheet resistance of the 

transistor has been calculated as 33.33 k. This is considerably high value for sheet resistance as 

what we would expect in modern submicron transistors since the base width is very thin. Due to 

high sheet resistance, lateral voltage drop and the resultant current crowding effect cannot be 

neglected. It can be modeled as follows: 

 

Current crowding effects in 2-D analysis 

 In 2D analysis current crowding can be approximated by putting number of 1-D 

transistors in parallel coupled through bias-dependent base resistances. In this study the 2-D 

transistor was modelled with 10 bipolar transistors in parallel as shown in Figure B.1. R is the 

resistance between the base of two adjacent transistors and R1 is the resistance between the 

contact and the first transistor. The resistance R and R1 have been calculated using  
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W

L
RR   

S
                                                                (B.2) 

 where L=0.2 m and w=1 m. The resistance R and R1 have been obtained as R = 666.67, R1 

= 333.33. 

 

 

Figure B.1 – Modeling the 2-D npn transistor with 10 parallel 1-D transistors 
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Figure B.2 – IB, IC Vs. VBE showing current crowding effect of 2-D analysis 

  

The spice simulation results in Figure B.2 show the current crowding effect for higher voltages. 

At high base-emitter voltages the base current increases in transistors Q5 to Q1 and Q6 to Q10 

(from center to the edge in both sides). This is also illustrated with the contour plots in Figure 

B.3. The figures clearly show the internal lateral distribution of current in the base. At high 

voltages the current is flowing close to the contact and the effective base resistance is reduced. It 

also shows that there is no change in current along Y direction. These differences in current 

distribution are the reason for the slight difference in stress response for ’11 and ’22 for the 

vertical transistors in npn (100) plane.   
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Figure B.3 – Contour plots of IB showing the current crowding effect at high current (Top view) 

(a) at VBE= 0.6 V current is distributed to all transistors and current crowding effect is slightly 

observed (b) at VBE= 0.7 V current distribution is moving towards the contacts (c) at VBE= 0.8 V 

current distribution is further moving towards the contacts, and (d) at VBE= 0.9 V almost all the 

current is distributed to the transistors close to the contact.  

 

 

Current crowding effects in 3D analysis 

 For 3-D analysis assuming L = 0.2 m and w = 0.5 m (half), an array of 50x10 

transistors have been used to approximate the current crowding effect as shown in Figure B.4 

where R = 33.33 k, R1 = 16.67 k.  
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Figure B.4 – Modeling the 3-D npn transistor with several parallel 1-D transistors 

 

As shown in the spice simulation results in Figure B.5 the current crowding is even more in 3-D 

analysis since the non-uniform distribution occurs in X, Y both directions. The current crowding 

is visible from 0.7 V in Figure B.2 (2-D analysis) whereas it is visible from 0.6 V in Figure B.5 

(3-D analysis).   
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Figure B.5 – IB, IC Vs. VBE showing current crowding effect of 3D analysis 

 

 

 

The contour plot (Figure B.6) and the mesh plots (Figure B.7) show the non-uniform current 

distribution under the emitter. High current flow observed at the corner of the emitter-base 

junction around the emitter. Effective internal lateral current distribution in X, Y direction is also 

slightly different due to the current crowding effect.   
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Figure B.6 – Contour Plot of IB for VBE = 0.8 V showing the current crowding effect (not to 

scale) 

 

Figure B.7 – Mesh plot of IB for VBE = 0.8 V showing current crowding effect (not to scale) 
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Appendix C -  MATLAB Code of 1-D npn bipolar transistor model 

         

clear all; format compact;format short g; warning off; 

ni0 = 1.48e10; VT = 0.0258; q = 1.59e-19; eps = 1.04e-12;  %eo*eSi F/cm 

q_eps=q/eps; N=1500; %L=5.5e-4; %[54] Sentaurus profile 

L=1.4e-4; %[54] 

x=linspace(0,L,N); % 

dx=L/N; maxite=1000; 

betae=1.109;  betap=1.213; vsate=1.07e7; vsatp=8.37e6;    % velocity model 

mumaxn=1417; zeta_n=2.5; T=300; mumaxp=470.5; zeta_p=2.2;   %mobility model 

   

settingImpurityProfiles; %from analytical equations 

% if input profile is from other source 

% BJT=xlsread('profile_gain180.xlsx'); 

% x=BJT(:,1); ND=BJT(:,2); QQ=BJT(:,3); Ntotal=BJT(:,4);  

  

V=zeros(1,N); VV=zeros(1,N);   %potential 
EE=zeros(1,N); 

Ne=zeros(1,N); Nb=zeros(1,N); Nc=zeros(1,N);  % impurity profiles 

nvel=zeros(1,N); pvel=zeros(1,N);  % velocity 

veff=zeros(1,N); veffp=zeros(1,N); veffp2=zeros(1,N); 

Jn=0; 

Jn=Jn*ones(1,N); %electron current density 

Jp=zeros(1,N);   %hole current density 

%Jrr=zeros(1,N); 

RR=zeros(1,N); 

%tt=zeros(1,N); dtt=zeros(1,N); %lifetime 

nn=zeros(1,N); dnn=zeros(1,N); 

znn=zeros(1,N); zpp=zeros(1,N); zpp1=zeros(1,N); zn=zeros(1,N); zp=zeros(1,N); 

HQFP=zeros(1,N); EQFP=zeros(1,N);  

%mobility model parameters 

mumin1_n=52.2; mumin2_n=52.2; mu1_n=43.4; Pc_n=0; Cr_n=9.68e16; Cs_n=3.43e20; alpha_n=0.68; beta_n=2;  

mumin1_p=44.9; mumin2_p=0; mu1_p=29.0; Pc_p=9.23e16; Cr_p=2.23e17; Cs_p=6.10e20; alpha_p=0.719; 

beta_p=2;  
muconst_n=mumaxn*(T/300)^zeta_n; 

muconst_p=mumaxp*(T/300)^zeta_p;  

%piezoconductance values 

pi11_n=900e-12; pi12_n=-455e-12; pi44_n=150e-12; pi11_p=-25e-12; pi12_p=8e-12; pi44_p=-700e-12; 

  

f1=figure(1); clf; f2=figure(2); clf; f5=figure(5); clf; f8=figure(8); clf; f10=figure(10); clf;  

f14=figure(14); clf; f19=figure(19); clf; f21=figure(21); f22=figure(22); clf;  

  

VBC=0.80; VB=0; Vbe=0.695;  

Stress=11; nos=6; ss=30e6; plane=100; sdir=110; % nos-no of steps ss-step size 

  

for a=1:nos 

    nth=a;  

    %stress dependant mobility 

    [mu_n] = mobility(plane,nth,Stress,nos,ss,pi11_n,pi12_n,pi44_n); 

    [mu_p] = mobility(plane,nth,Stress,nos,ss,pi11_p,pi12_p,pi44_p);    

     % mu_n=1 
     % mu_p=1 

     %stress dependant intrinsic carrier concentration 
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    [ni] = bandgap1(plane,nth,Stress,nos,ss,ni0);     

    %ni=ni0; 

     

    %bandgap narrowing 

    i=1:N; 

    Eref=6.92e-3; Nref=1.3e17; DEgFermi=0; 

    DEg0(i)=Eref*(log(Ntotal(i)./Nref)+sqrt((log(Ntotal(i)./Nref)).^2+0.5)); 

    Ebgn(i)=DEg0(i)+DEgFermi; 

    ni(i)=ni*exp(Ebgn(i)./(2*VT));     
     

    %canali model & stress dependant 

    for i=1:N 

        munn(i)=mumin1_n*exp(-Pc_n./Ntotal(i))+(muconst_n-mumin2_n)./(1+(Ntotal(i)/Cr_n).^alpha_n)+ 

mu1_n./(1+(Cs_n./Ntotal(i)).^beta_n); 

        mun1(i)=munn(i)*mu_n; 

        mupp(i)=mumin1_p*exp(-Pc_p./Ntotal(i))+(muconst_p-mumin2_p)./(1+(Ntotal(i)/Cr_p).^alpha_p)+ 

mu1_p./(1+(Cs_p./Ntotal(i)).^beta_p); 

        mup1(i)=mupp(i)*mu_p; 

    end;     

     

    aQQ=abs(QQ); sQQ=sign(QQ); 

    %fermi potential calculations 

    for i=1:N 

        Vf(i)=sQQ(i)*VT*log(aQQ(i)/ni(i)); 

        Vdf(i)=Vf(i);  if sQQ(i)<0,  Vdf(i)=-Vf(i); end; 

    end; 
    V=Vf;     

    figure(f1); semilogy(x,aQQ, 'b'); hold on; axis([0 L 1e14 1e20]); 

    figure(f2); plot(x,Vf,'g'); hold on; plot(x,Vdf,'r'); hold on; title('Fermi potential');axis([0 L -0.6 0.6]); 

legend('Fermi Potential', 'Absolute Value of Fermi Potential'); grid on;  

     

    %junction location calculation 

    JunLoc = LocJunction(QQ); 

    JunLocx1=x(round(JunLoc(1))); JunLocx2=x(round(JunLoc(2))); 

  

    % equilibrium carrier concentration calculations 

    for i=1:N 

        sr=sqrt(aQQ(i).^2+4*ni(i)^2); 

        znn(i)=0.5*(sr+aQQ(i)); zpp(i)=ni(i)^2/znn(i); 

        if i> JunLoc(1)  && i< JunLoc(2), zpp(i)=0.5*(sr+aQQ(i)); znn(i)=ni(i)^2/zpp(i); end; 

    end;     

    figure(f8); axis([0 L 1e0 1e20]); semilogy(x,znn, 'b'); hold on; semilogy(x,zpp, 'r'); hold on;  

    
    %Poisson eqn for BC junction 

    i_junct2=JunLoc(2); 

    junction_bc=round(i_junct2); 

    Vbi_bc=0.80; 

    w_junct2=sqrt(2*eps*(VBC+Vbi_bc)/(q*1e16))/dx;  

    Estart=0; Estop=0; Vstart=0; Vdesired=VBC; maxiter=10; 

    [Vn,i_end2,En] = VoltIter2(maxiter, Vdesired, q_eps,dx,Vdf, QQ, w_junct2, i_junct2, Estart,  Vstart, Estop, ni, 

VT); 

             

    %Poisson eqn for BE junction 

    i_junct1=JunLoc(1); 

    Vbi_be=0.80; 

    w_junct1=sqrt(2*eps*(Vbi_be-Vbe)/(q*1e16))/dx;     
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    Estart=0; Estop=0; Vstart=0; Vdesired=-Vbe; maxiter=50; 

   [Vexternal,i_start1,i_end1, Vbi] = VoltIter3(maxiter, Vdesired, q_eps,dx, Vdf, QQ, w_junct1, i_junct1, Estart,  

Vstart, Estop, ni,VT); 

     

   %load calculated potential & electric field 

    load vvee 

    v2 = v2 + Vf(idx2(length(idx2))); 

    VV(idx2)=v2;  

    i_start2=idx2(1); i_end2=idx2(length(idx2));     
    v3 = v3 + Vf(idx3(1)); 

    VV(idx3)=v3;  

    i_start1=idx3(1); i_end1=idx3(length(idx3)); 

     

    %calculate entire Electrostatic potential 

    id1=1:i_end1; id2=i_start1:i_end2; id3=i_start2:N;         

    VE=VB-Vbe; 

    for i=1:i_end1-1 

        VV(i)=Vf(i)+VE; 

    end;     

    ii=i_start1:i_end2; 

    VV(ii)=Vf(ii); 

    for i=i_start2:N,           

        VV(i)=Vf(i)+VBC; 

    end; 

    r=5; 

    xx1=linspace(1,N,N); 
    ii1=(1:i_end1-r*2); ii2=(i_end1+r*2:i_start1-r); ii3=(i_start1+r:i_end2-r*2); ii4=i_end2+r*4:i_start2-r*7; 

ii5=i_start2+r*3:N; 

    C2=reshape([ii1 ii2 ii3 ii4 ii5],1,[]); 

    VVV=VV(C2); 

    VVV=spline(C2,VVV,xx1);     

        

    %calculate entire E field 

    for i=1:N-1 

        EE(i)=(VVV(i)-VVV(i+1))/dx; 

    end;     

    figure(13); plot(x(1:end),EE,'b'); hold on; title('Electric Field'); grid on; legend('1D model'); %axis([0 L -5e4 

3e4]); 

     

    %calculate field dependant velocity 

    for j=1:N 

        v1=abs(-mun1(j)*EE(j)); 

        v2=vsate;   
        mun(j)=mun1(j)/(1+(v1/v2)^betae)^(1/betae); 

        veff(j)=abs(-mun(j)*EE(j)); 

         

        v1p=abs(mup1(j)*EE(j)); 

        v2p=vsatp;   

        mup(j)=mup1(j)/(1+(v1p/v2p)^betap)^(1/betap);          

    end;        

      

    % solving e transport for base 

    no=znn(i_start1); 

    znn(i_start1)=no*exp(Vbe/VT); 

    znn_o=znn(i_start1);      

    istart=i_end2; A=1;  step = 10; Jn(istart:i_start2)=0; 
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    tpb=1e-7; tnb=tpb;  

    %vol=dx*A; 

     

    for ite5=1:maxite 

        Jn(istart:i_start2) = Jn(istart:i_start2)+step; 

        znn(i_end2:i_start2)=(1/q)*(Jn(istart)./veff(i_end2:i_start2)); 

        Jrr=0; 

        for i=istart:-1:i_start1 

            dV=-(VVV(i+1)-VVV(i))/VT; 
            vdifn= mun(i+1)*VT/dx; 

            ndif=Jn(i+1)/(q*vdifn); 

            R=((znn(i+1)*zpp(i+1)-ni(i+1)^2)/(tpb*(znn(i+1)+ni(i+1))+tnb*(zpp(i+1)+ni(i+1)))); 

            Jr=q*R*A*dx; 

            %fprintf('znn=%10e, zpp=%10e, R=%10e \n',znn(i+1),zpp(i+1),R); 

            Jn(i)=Jn(i+1)+Jr; 

            Jp(i)=Jr; 

            Jrr=Jrr+Jr; 

            %fprintf('i=%4d R=%10e, Jr=%15.8f Jn=%15.8f\n',i,R,Jr,Jn(i+1)); 

            dVmin=1e-10; 

            if abs(dV)<dVmin,  if dV>=0, dV=dVmin;  else dV=-dVmin; end; end; 

            gamma=exp(dV); 

            delta=(gamma-1)/dV; 

            nn2= znn(i+1); 

            nn1=nn2*gamma+ndif*delta; 

            %fprintf('gamma=%8.4f, delta=%8.4f, ndif=%9e, nn2=%9e, nn1=%9e\n',gamma,delta,ndif, nn2, nn1); 

            znn(i)= nn1;   
            RR(i)=R; 

        end; 

        if abs(znn(i_start1)-znn_o)<1e2 

            break; 

        elseif znn(i_start1)>znn_o 

            Jn(istart:i_start2) = Jn(istart:i_start2) - step; 

            step = step/10; 

        elseif znn(i_start1)<znn_o 

            continue 

        end;           

    end; 

         

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   % e transport for BC depletion         

    Jnn=Jn(i_end2);    

        for i=i_start2:-1:i_end2 

            dV=-(VVV(i+1)-VVV(i))/VT; 
            vdifn= mun(i)*VT/dx;             

            ndif=Jnn/(q*vdifn); 

            dVmin=1e-10; 

            if abs(dV)<dVmin,  if dV>=0, dV=dVmin;  else dV=-dVmin; end; end; 

            gamma=exp(dV); 

            delta=(gamma-1)/dV; 

            nn2= znn(i+1); 

            nn1=nn2*gamma+ndif*delta; 

            znn(i)= nn1;                     

        end;         

         

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

    Irb(a)=Jrr; 
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    % h transport for emitter  

    Jn(i_end1:i_start1)=Jn(i_start1);   

    Jn(i_end2:N)=Jn(i_end2);     

    Jn(1:i_end1-1)= Jn(i_end1);     

    for i=i_start1:i_start2 

        nvel(i)=Jn(i)/(q*znn(i)); 

    end;     

       

    po=ni(i_end1).^2/aQQ(i_end1); 
    zpp_o=po*exp(Vbe/VT); 

    zpp(1)=ni(1).^2/aQQ(1); 

     

    Jp(1)=0; step = 0.1; tne=1e-8; tpe=tne;     

    for ite3=1:maxite 

        Jp(1) = Jp(1)+step;         

        for i=1:i_end1 

            dV=(-VVV(i+1)+VVV(i))/VT; 

            R1=((znn(i)*zpp(i)-ni(i)^2)/(tpe*(znn(i)+ni(i))+tne*(zpp(i)+ni(i)))); 

            Jr=q*R1*A*dx; 

            Jp(i+1)=Jp(i)+Jr; 

            %Jr(i)=Jr; 

            Jn(i+1)=Jn(i)-Jr; 

            %fprintf('i=%4d R1=%10e, Jr=%15.8f Jp=%15.8f\n',i,R1,Jr,Jp(i+1)); 

            dVmin=1e-10; 

            if abs(dV)<dVmin,  if dV>=0, dV=dVmin;  else dV=-dVmin; end; end; 

            gamma=exp(dV); 
            delta=(gamma-1)/dV; 

            pp1= zpp(i); 

            vdifp= ((mup(i)+mup(i+1))/2)*VT/dx; 

            pdif=((Jp(i)+Jp(i+1))/2)/(q*vdifp); 

            pp2=pp1*gamma+pdif*delta; 

            %fprintf('gamma=%8.4f, delta=%8.4f, pdif=%9e, pp2=%9e, pp1=%9e\n',gamma,delta,pdif, pp2, pp1); 

            zpp(i+1)= pp2; 

        end; 

        err=zpp(i_end1)-zpp_o; 

         

        if abs(err)<1e2              

            break; 

        elseif zpp(i_end1)-zpp_o>0; 

            Jp(1) = Jp(1) - step; 

            step = step/10; 

        elseif zpp(i_end1)-zpp_o<0; 

            continue; 
        end; 

        ite3; 

    end; 

     

    for i=1:i_end1; 

        Jn(i)=Jn(i)+Jp(i_end1)-Jp(1); 

    end; 

     

    Jpemitter=Jp(i_end1); 

    Ipe(a)=Jp(i_end1); 

    Ipei(a)=Jp(1); 

    Iper(a)=Jp(i_end1)-Jp(1); 
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    % h transport for collector  

    zpp_N=zpp(N);           

    Jpend2=0; Jp(i_end2:N)=Jpend2; step = 0.1;     

       

    for ite6=1:maxite 

        Jp(i_end2:N) = Jp(i_end2:N)+step;                 

        for i=i_end2:N-1 

            dV=(-VVV(i+1)+VVV(i))/VT; 

            dVmin=1e-10; 
            if abs(dV)<dVmin,  if dV>=0, dV=dVmin;  else dV=-dVmin; end; end; 

            gamma=exp(dV); 

            delta=(gamma-1)/dV; 

            pp1= zpp(i); 

            vdifp= mup(i+1)*VT/dx; 

            pdif=Jp(i+1)/(q*vdifp); 

            pp2=pp1*gamma+pdif*delta; 

            %fprintf('gamma=%8.4f, delta=%8.4f, pdif=%9e, pp2=%9e, pp1=%9e\n',gamma,delta,pdif, pp2, pp1); 

            zpp(i+1)= pp2; 

        end; 

        if abs(zpp(N)-zpp_N)<1e2   %2 

            break; 

        elseif zpp(N)>zpp_N 

            Jp(i_end2:N) = Jp(i_end2:N) - step; 

            step = step/10; 

        elseif zpp(N)<zpp_N 

            Jp(i_end2:N) = Jp(i_end2:N) + step; 
            continue; 

        end; 

        ite6; 

    end;     

       

    i1=(1:i_end1-5); i2=(i_start1+5:i_end2-5); i3=(i_end2+5:N); i4=(round(JunLoc(2))+5:N); i5=i_start1+5:N;             

    C1=reshape([i1 i5],1,[]); 

    znn1=znn(C1); 

    znn=spline(C1,znn1,xx1);     

    zpp1=zpp(C1); 

    zpp=spline(C1,zpp1,xx1); 

     

    figure(f14); plot(x,Jn,'b'); hold on; plot(x,Jp,'r'); hold on; title('Electron Current Density, Hole Current Density') 

    legend('electron current density','hole current density');     

             

    for i=1:N 

        HQFP(i)=VT*log(zpp(i)/ni(i))+VVV(i); 
        EQFP(i)=VVV(i)-VT*log(znn(i)/ni(i));         

    end; 

     

    C3=reshape([i1 i2 i4],1,[]); 

    AP=HQFP(C3); 

    AE=EQFP(C1); 

    yp=spline(C3,AP,xx1); 

    ye=spline(C1,AE,xx1);     

  

    figure(f10); axis([0 L -1 1.5]); plot(x,VVV,'b'); hold on;  

    plot(x,ye,'m'); hold on; plot(x,yp,'r'); hold on;  

    axis([0 L -1 1.5]);  

    legend('EP 1D model', 'EQFP 1D model', 'HQFP 1D model'); 
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    xlabel('Distance from emitter contact (cm)'); 

    ylabel('EP, EQFP, HQFP (V)'); 

         

    for i=1:N 

        p(i)=ni(i)*exp((yp(i)-VVV(i))/VT); 

        n(i)=ni(i)*exp((VVV(i)-ye(i))/VT); 

    end;     

    for i=1:N 

        peff(i)=Jp(i)/(q*zpp(i)); 
        if peff(i)>1e7 peff(i)=vsatp; end; 

    end;     

    for i=1:N 

        neff(i)=Jn(i)/(q*n(i)); 

    end;     

    figure(f5); axis([0 L 0 1.1e7]); plot(x,neff, 'b'); hold on; axis tight;      

    figure(f19); axis([0 L 0 1.1e7]); plot(x, peff,'b'); hold on;  

    title('Hole Velocity'); legend('emitter', 'base', 'collector','h velocity 1D Model');     

    figure(f8); axis([0 L 1e0 1e20]); semilogy(x, zpp, 'k'); hold on; semilogy(x, znn, 'g'); hold on; 

    legend('n-type impurity profile','p-type impurity profile','h concen 1D model', 'e concen 1D model'); 

    xlabel('Distance from emitter contact (cm)'); 

    ylabel('Concentration (cm^-^3)'); 

     

    Jpe=Jp(i_end1); 

    Jrr;   

    JB=Jrr+Jpe; 

    JC=Jn(i_end2); 
    Ib(a)=JB; 

    Ic(a)=JC; 

    beta(a)=JC/JB     

    dIper_o_Iper(a)=(Iper(a)-Iper(1))/Iper(1); 

    dIpei_o_Ipei(a)=(Ipei(a)-Ipei(1))/Ipei(1); 

    dIpe_o_Ipe(a)=(Ipe(a)-Ipe(1))/Ipe(1); 

    dIrb_o_Irb(a)=(Irb(a)-Irb(1))/Irb(1); 

    db_o_b(a)=(beta(a)-beta(1))/beta(1); 

    dIb_o_Ib(a)=(Ib(a)-Ib(1))/Ib(1); 

    dIc_o_Ic(a)=(Ic(a)-Ic(1))/Ic(1); 

end; 

  

j=1:nos; 

xx=((j-1)*ss); 

n1=2; 

n2=2; 

  
pIper=polyfit(xx/1e6,dIper_o_Iper,n2); 

pIpei=polyfit(xx/1e6,dIpei_o_Ipei,n2); 

pIpe=polyfit(xx/1e6,dIpe_o_Ipe,n2); 

pIrb=polyfit(xx/1e6,dIrb_o_Irb,n2); 

p=polyfit(xx/1e6,db_o_b,n2); 

pIb=polyfit(xx/1e6,dIb_o_Ib,n2); 

pIc=polyfit(xx/1e6,dIc_o_Ic,n2); 

xfit=xx/1e6; 

  

yIperfit=polyval(pIper,xfit); 

yIpeifit=polyval(pIpei,xfit); 

yIpefit=polyval(pIpe,xfit); 

yIrbfit=polyval(pIrb,xfit); 
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yfit=polyval(p,xfit); 

yIbfit=polyval(pIb,xfit); 

yIcfit=polyval(pIc,xfit); 

  

figure(f21);  

plot(xfit,yIbfit,'-g'); hold on; plot(xfit,yIcfit,'-b'); hold on; plot(xfit,yfit,'-r'); grid on; hold on;  

axis([-200 200 -0.15 0.15]);  

legend('I_B Simulation','I_C Simulation','\beta Simulation'); 

xlabel('Applied Stress, \sigma[110](MPa)');  
ylabel('\Delta\beta/\beta, \DeltaI_C/I_C, \DeltaI_B/I_B'); 

  

figure(f22); plot(xfit,yIbfit,'*-g'); hold on; plot(xfit,yIrbfit,'.-m'); hold on; plot(xfit,yIpefit,'.-k'); hold on;  

plot(xfit,yIpeifit,'*-c'); hold on; plot(xfit,yIperfit,'-r'); hold on; 

xlabel('Stress, \sigma (MPa)'); 

ylabel('Change in Base Current Components'); 

legend('\DeltaI_B/I_B','\DeltaI_B_R_/I_B_R','\DeltaI_B_E_I/I_B_E_I','\DeltaI_B_E_R/I_B_E_R'); 

axis([0 150 -0.020 0.005]); grid on;  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% settingImpurityProfiles; 

scale=N/3000; 

for i=1:N    % setting imputity profile and initial conditions 

    ix=i/scale;     

                Ne(i)= 3e19* exp(- ((ix-320)/320)^2);     %gaussian profile 

                Nb(i)= 5e17* exp(- ((ix-1000)/300)^2);    %gaussian profile                

                Nbc(i)= 5e19* exp(- ((ix-3000)/100)^2);    %gaussian profile 

                Nc=1e16;             
    QQ=Nc+Ne+Nbc-Nb; 

    Ntotal=Nc+Ne+Nb+Nbc; 

    aQQ=abs(QQ); sQQ=sign(QQ); 

    Vf(i)=sQQ(i)*VT*log(aQQ(i)/ni0); 

    Vdf(i)=Vf(i);  if sQQ(i)<0,  Vdf(i)=-Vf(i); end;     

end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%functions 

function JunLoc = LocJunction(QQ) 

% locate the junctions 

[m,n]=size(QQ); 

j=0; 

for i=1:n-1, 

    if sign(QQ(i))*sign(QQ(i+1)) <=0, 

        j=j+1; 

        Q1=QQ(i); 

        Q2=QQ(i+1); 
        JunLoc(j)=i+abs(Q1/(Q1-Q2)); 

    end 

end; 

return; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [26] = mobility(plane,nth,Stress,nos,ss,pi11,pi12,pi44) 

switch(plane) 

    case 100 

        l1=cosd(45); m1=cosd(45); n1=cosd(90); l2=cosd(135); m2=cosd(45); n2=cosd(90); l3=cosd(90); 

m3=cosd(90); n3=cosd(0); 

    case 111 

        l1=-1/sqrt(2); m1=1/sqrt(2); n1=0; l2=-1/sqrt(6); m2=-1/sqrt(6); n2=2/sqrt(6); l3=1/sqrt(3); m3=1/sqrt(3); 

n3=1/sqrt(3); 
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end; 

pi=[pi11 pi12 pi12 0 0 0; 

    pi12 pi11 pi12 0 0 0; 

    pi12 pi12 pi11 0 0 0; 

    0 0 0 pi44 0 0; 

    0 0 0 0 pi44 0; 

    0 0 0 0 0 pi44]; 

sigma11b=zeros(1,nos)'; sigma22b=zeros(1,nos)'; sigma33b=zeros(1,nos)'; sigma12b=zeros(1,nos)'; 

sigma23b=zeros(1,nos)'; sigma13b=zeros(1,nos)'; 
j=1:nos; 

d=((j-1)*ss)'; 

if Stress==11 

    sigma11b=d; 

    elseif Stress==22 

    sigma22b=d; 

    elseif Stress==33 

    sigma33b=d; 

    elseif Stress==13 

    sigma12b=d; 

    elseif Stress==23 

    sigma23b=d; 

    elseif Stress==12 

    sigma13b=d;     

end;     

sigmab=[sigma11b sigma22b sigma33b sigma12b sigma23b sigma13b]; 

T=[l1^2 m1^2 n1^2 2*l1*n1 2*m1*n1 2*l1*m1; 
    l2^2 m2^2 n2^2 2*l2*n2 2*m2*n2 2*l2*m2; 

    l3^2 m3^2 n3^2 2*l3*n3 2*m3*n3 2*l3*m3; 

    l1*l3 m1*m3 n1*n3 (l1*n3+l3*n1) (m1*n3+m3*n1) (l1*m3+l3*m1); 

    l2*l3 m2*m3 n2*n3 (l2*n3+l3*n2) (m2*n3+m3*n2) (l2*m3+l3*m2); 

    l1*l2 m1*m2 n1*n2 (l1*n2+l2*n1) (m1*n2+m2*n1) (l1*m2+l2*m1)]; 

Tinv=inv(T); 

pi_b=T*pi*Tinv; 

l=0; m=0; n=1;   %plane 100 ok 

%l=1; m=0; n=0; 

%l=0; m=1; n=0;   

%l=cosd(0); m=cosd(90); n=0; %plane 100 ok 

%l=0; m=0; n=1;   %plane 111 ok 

%l=0; m=0; n=1;   %plane 111 ok 

p=[l^2 m^2 n^2 l*n m*n l*m]; 

a=nth; 

    b=sigmab(a,:)'; 

    mu(a)=(1+(pi_b*b)'*p'); 
mu=mu(a); 

return; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [nis] = bandgap1(plane,nth,Stress,nos,ss,ni) 

ss=((nth-1)*ss/1e6); 

b=70; % 180 npn 1  % 60 npn 2  

nis=sqrt(ni*ni*(1-3.403e-4*(ss+b)+8.873e-7*(ss+b)^2));  % 110 

%     nib=sqrt(ni*ni*(1-3.403e-4*(b)+8.873e-7*(b)^2));  

%     nis=sqrt(nib*nib*(1-3.403e-4*(ss+b)+8.873e-7*(ss+b)^2 -(-3.403e-4*(b)+8.873e-7*(b)^2 ) ));  % 110    

%nis=sqrt(ni*ni*(1-2.755e-4*(ss+b)+1.644e-6*(ss+b)^2));  % 010 

%nis=sqrt(ni*ni*(1-3.387e-4*(ss+b)+5.285e-7*(ss+b)^2));  % 111 

return; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function [Vn,i_start, iend,En] = VoltIter2(maxiter, Vdesired, q_eps,dx,Vdf, QQ, w_junct, i_junct, Estart,  Vstart, 

Estop,ni, VT); 

i_start=i_junct+w_junct; 

Vbif=2*Vdf(round(i_start)); 

Vdes=-Vdesired-Vbif; 

[Vn,iend,En] = poissBMW2(q_eps,dx,QQ, i_start, Estart,  Vstart, Estop); 

for iter=1:maxiter 

    if sign(Vdes)~=sign(Vn), disp('ERROR Voltiter ==> voltages have different signs'); end; 

    scal= sqrt(Vdes/Vn); 
    w_junct=scal*w_junct; 

    i_start=i_junct+w_junct; 

    Vp=Vn;    

    Vbif=VT*log(abs(QQ(round(i_start))*QQ(iend))/(ni(iend)*ni(round(i_start))));  

    Vdes=-Vdesired-Vbif; 

    [Vn,iend,En] = poissBMW2(q_eps,dx,QQ, i_start, Estart,  Vstart, Estop);     

    dV=Vn-Vp; 

    Vn; 

    iter; 

    Vexternal=Vn+Vbif; 

    if abs(dV)< 0.0001, 

%         iter, dV,  

        break;  

    end; 

end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Vexternal,i_start,iend, Vbif] = VoltIter3(maxiter, Vdesired, q_eps,dx,Vdf, QQ, w_junct, i_junct, Estart,  
Vstart, Estop, ni, VT); 

i_start=i_junct+w_junct; 

Vbif=2*Vdf(round(i_start)); 

Vdes=Vdesired+Vbif; 

[Vn,iend] = poissBMW3(q_eps,dx,QQ, i_start, Estart,  Vstart, Estop); 

for iter=1:maxiter 

    if sign(Vdes)~=sign(Vn), disp('ERROR Voltiter ==> voltages have different signs');end; 

    %scal= sqrt(Vdes/Vn); 

    scal= (Vdes/Vn)^(1/3); 

    w_junct=scal*w_junct; 

    i_start=i_junct+w_junct; 

    Vp=Vn; 

    Qstart=QQ(round(i_start)); 

    Vbif=VT*log(abs(QQ(round(i_start))*QQ(iend))/ (ni(iend)*ni(round(i_start))));       

    test1=ni(iend); 

    test2=ni(round(i_start));     

    Vdes=Vdesired+Vbif; 
    [Vn,iend] = poissBMW3(q_eps,dx,QQ, i_start, Estart,  Vstart, Estop);     

    dV=Vn-Vp; 

    Vn; 

    iter; 

    Vexternal=-Vn+Vbif; 

    Vbif;     

    if abs(dV)< 1e-4, 

    %fprintf('iter=%8.0f, Vexternal=%8.4f, dV=%8.4f\n',iter,Vexternal, dV); 

        break;  

    end;     

end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Vn,iend,En] = poissBMW2(q_eps,dx,QQ, istart, Estart,  Vstart, Estop) 
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%fast without storing values 

% allowes for fractional ivalues of istart and iend 

Vp=Vstart; 

iround=floor(istart); del = istart - iround; 

Qf=QQ(iround)*(1-del)+QQ(iround+1)*del; 

En1=Estart-q_eps*0.5*(QQ(iround)+Qf)*del*dx;  % trapezoid 

Qff=0.75*QQ(iround)+0.25*QQ(iround-1); 

Ep=En1-q_eps*Qff*dx*0.5; %En = Enext  Ep = Eprevious 

sigE=sign(Ep);vv=[];ee=[]; 
for i=iround-1:-1:1     %poisson equation for depletion region  from right to lelt 

    En=Ep-q_eps*QQ(i)*dx;    %   En=Ei  Ep=Ei-1     Vn=Vi  Vp=Vi-1 

    Vn=Vp+ En*dx; 

   if sigE*En<=Estop,  %this is correct 

%        if En>Estop,  

       del2=(Ep-Estop)/(Ep-En); 

       Vn=Vp+ 0.5*(Ep+Estop)*del2*dx; 

%        res=[istart, Vstart, Estart,Ep, En, Estop,Vn, Vp, del2]; 

       break;  

    end; 

    Ep=En; Vp=Vn; 

    ee(i)=Ep; 

    vv(i)=Vp; 

end; 

iend=i; 

vv = vv - vv(iend+1); 

%ee=ee+ee(iround-1); 
%figure(6); plot(iround-1:-1:iend+1,vv(iround-1:-1:iend+1),'b');  title('Potential'); 

%figure(7);  plot(ee,'r');  title('Electric Field');hold on; 

 load vvee 

 idx2 = iround-1:-1:iend+1; 

 v2 = vv(iround-1:-1:iend+1); 

 e2 = ee(iround-1:-1:iend+1); 

 save('vvee','idx2','v2','e2'); 

return; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Vn,iend] = poissBMW3(q_eps,dx,QQ, istart, Estart,  Vstart, Estop) 

%fast without storing values 

% allowes for fractional ivalues of istart and iend 

Vp=Vstart;  

iround=floor(istart); del = istart - iround; 

Qf=QQ(iround)*(1-del)+QQ(iround+1)*del; 

En1=Estart-q_eps*0.5*(QQ(iround)+Qf)*del*dx;  % trapezoid 

Qff=0.75*QQ(iround)+0.25*QQ(iround-1); 
Ep=En1-q_eps*Qff*dx*0.5; %En = Enext  Ep = Eprevious 

sigE=sign(Ep);vv=[];ee=[]; 

for i=iround-1:-1:1     %poisson equation for depletion region  from right to lelt 

    En=Ep-q_eps*QQ(i)*dx;    %   En=Ei  Ep=Ei-1     Vn=Vi  Vp=Vi-1 

    Vn=Vp+ En*dx; 

    if sigE*En<=Estop,  

%        if En>Estop,  

       del2=(Ep-Estop)/(Ep-En); 

       Vn=Vp+ 0.5*(Ep+Estop)*del2*dx; 

%        res=[istart, Vstart, Estart,Ep, En, Estop,Vn, Vp, del2]; 

       break;  

    end; 

    Ep=En; Vp=Vn; 
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    ee(i)=Ep; 

    vv(i)=Vp; 

end; 

iend=i; 

%vv = vv - vv(iround-1) 

%ee=ee+Ef(iround); 

%figure(6); plot(iround-1:-1:iend+1,vv(iround-1:-1:iend+1),'b');  title('Potential'); 

%figure(7);   plot(ee,'r');  hold on; title('Electric Field'); 

 load vvee 
 %idx3 = (iround-1:-1:iend+1); % original 

 idx3 = (iround-1:-1:iend+3);  

 v3 = vv(idx3); 

 e3 = ee(idx3); 

 save('vvee','idx2','v2','e2','idx3','v3','e3'); 

return; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix D -  Piezoresistive coefficients in Si 

 

 

Figure D.1 – Room temperature piezoresistance coefficients in the (001) plane of n-Si (10
-12

 

cm
2
/dyne) [D.1]. 

 

 

Figure D.2 – Room temperature piezoresistance coefficients in the (001) plane of p-Si (10
-12

 

cm
2
/dyne). [D.1] 
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Appendix E - Spice Netlists for simulation of stress effects in analog circuits 

 

1. Differential pairs 

* I:\spice models\differential pair\differential pair.asc 

.param BF=200 sxx=0 syy=0 szz=0 syz=0 sxz=0 sxy=0 pi_11nb=-900e-12 pi_12nb=450e-12 pi_11pe=20e-12 

pi_12pe=-10e-12 npnb=200 

Q1 0 N001 N002 [NC_01] NPN 

Q2 0 0 N002 [NC_02] NPN 

I1 N002 0 50uA 

V1 N001 0 0 

.model NPN NPN(IS={1e-14*(1-pi_12nb*sxx*1E6)} BF={npnb*(1-(pi_12nb-pi_12pe)*sxx*1E6)}) 

.model PNP PNP 

.step param sxx 0 100 30 

.op 

.lib C:\PROGRA~2\LTC\LTSPIC~1\lib\cmp\standard.bjt 

.backanno 

.probe 

.end 

 

2. PTAT circuit 

* I:\spice models\PTAT\PTAT.asc 

.param N=0.9 pi_11nb=-900e-12 pi_12nb=450e-12 pi_11pe=20e-12 pi_12pe=-10e-12 npn_BF0=200 

Q1 V1 V1 0 0 NPN1 

Q2 V2 V2 0 0 NPN2 

I1 0 V1 10µA 

I2 0 V2 50µA 

.model NPN1 NPN(IS={1e-14*(1-pi_12nb*sxx*1E6)} BF={npn_BF0*(1-(pi_12nb-pi_12pe)*sxx*1E6)}) 

.model NPN2 NPN(IS={1e-14*(1-pi_12nb*N*sxx*1E6)} BF={npn_BF0*(1-(pi_12nb-pi_12pe)*N*sxx*1E6)}) 

.model PNP PNP 

.step param sxx 0 100 20 

.op 

.lib C:\PROGRA~2\LTC\LTSPIC~1\lib\cmp\standard.bjt 

.backanno 

.probe 

.end 

 

 

3. Op-amp circuit 

 

* F:\bjt\spice models\simple oppamp.asc 

.param BF=60 sxx=0 syy=0 szz=0 syz=0 sxz=0 sxy=0 x=1 pi_11nb=-1022e-12 pi_12nb=534e-12 pi_11pe=66e-12 

pi_12pe=-11e-12 npnb=200 pi_11pb=66e-12 pi_12pb=-11e-12 pi_11ne=-1022e-12 pi_12ne=534e-12 pnpb=80 

I1 q12E 0 100µA 
V1 Q53E 0 15V 

*XU1 q15C Q23C N001 0 Vout LT1001 

XOP1 q15C Q23C vout OPAMP1 

 

Q4 q15C 0 q12E 0 QNOMN 

Q1 Q23C Vout q12E 0 QNOMN 

Q2 q15C q15C Q53E 0 QNOMP 

Q3 Q23C q15C Q53E 0 QNOMP 
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.model QNOMN NPN(BF={npnb*(1-(pi_12nb-pi_12pe)*(sxx+syy)*1E6-(pi_11nb-pi_11pe)*szz*1E6)}) 

.model QNOMP PNP(BF={pnpb*(1-(pi_12pb-pi_12ne)*(sxx+syy)*1E6-(pi_11pb-pi_11ne)*szz*1E6)} IS=1e-8) 

.SUBCKT OPAMP1      1   2   6 

* INPUT IMPEDANCE 

RIN 1 2 10MEG 

* GAIN BANDWIDTH PRODUCT = 10MHZ 

* DC GAIN (100K) AND POLE 1 (100HZ) 

EGAIN 3 0 1 2 100K 

RP1 3 4 1K 
CP1 4 0 1.5915UF 

* OUTPUT BUFFER AND RESISTANCE 

EBUFFER 5 0 4 0 1 

ROUT 5 6 10 

.ENDS 

 

.step param sxx 0 120 30 

.op 

.lib LTC.lib 

.backanno 

.probe 

.end 

 

 

4. Bangap reference circuit 

* I:\spice models\bandgap_ref_type_C.asc 

.param BF=200 szz=0 syz=0 sxz=0 sxy=0 x=0.5 pi_11nb=-900e-12 pi_12nb=450e-12 pi_11pe=20e-12 pi_12pe=-

10e-12 npnb=200 

.param pi11_p=20e-12 pi12_p=-10e-12 pi44_p=500e-12 pi=3.14159 fi=pi/4 lamda=1*pi/4 

 

Q1 q1bc q1bc 0 0 NPN 

Q2 q2bc q2bc 0 0 NPN 

*R1 Vref r13 21.5k 

*R2 Vref q2bc 4.3k 

*R3 r13 q1bc 2.3k 

R1 Vref r13 {21.5k*(1+s*1e6*(pi11_p*(0.5+0.5*cos(2*fi)*cos(2*lamda))+pi12_p*(0.5-

0.5*cos(2*fi)*cos(2*lamda))+pi44_p*(0.5*sin(2*fi)*sin(2*lamda))))} 
R2 Vref q2bc {4.3k*(1+s*1e6*(pi11_p*(0.5+0.5*cos(2*fi)*cos(2*lamda))+pi12_p*(0.5-

0.5*cos(2*fi)*cos(2*lamda))+pi44_p*(0.5*sin(2*fi)*sin(2*lamda))))} 

R3 r13 q1bc {2.3k*(1+s*1e6*(pi11_p*(0.5+0.5*cos(2*fi)*cos(2*lamda))+pi12_p*(0.5-

0.5*cos(2*fi)*cos(2*lamda))+pi44_p*(0.5*sin(2*fi)*sin(2*lamda))))} 

XU1 q2bc r13 op_po 0 Vref level.2 Avol=1Meg GBW=10Meg Slew=10Meg ilimit=25m rail=0 Vos=0 

phimargin=45 en=0 enk=0 in=0 ink=0 Rin=500Meg 

V1 op_po 0 3 

.model NPN NPN(IS={1e-16*(1-pi_12nb*s*1E6-pi_11nb*szz*1E6)} BF={npnb*(1-x*((pi_12nb-pi_12pe)*s*1E6-

(pi_11nb-pi_11pe)*szz*1E6) -(1-x)*(pi_12nb*s*1e6-pi_11nb*szz*1e6))}) 

.model PNP PNP 

 

.lib C:\PROGRA~2\LTC\LTSPIC~1\lib\cmp\standard.bjt 

.step param s 0  100 30 

.op 

.lib UniversalOpamps2.sub 

.backanno 

.probe 

.end 
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