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Abstract

Techniques are presented for finding homeomorphisms between generalized inverse lim-
its, including a generalization of techniques introduced by Smith and Varagona, and a char-

acterization in terms of category theory.
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Chapter 0

Introduction

Mahavier introduced what later became known as generalized inverse limits in [10], in
which several results that hold for traditional inverse limits of compact metric spaces using
continuous bonding maps are extended to the case where each factor space is the unit interval
and each “bonding map” is not a map at all, but a closed subset of [0, 1] x [0, 1]. Subsequent
work by Mahavier with Ingram (see [4], [5]) allowed the factor spaces to be arbitrary compact
metric spaces and reframed the bonding relations as upper semi-continuous set-valued maps.
The work presented here shows there is value in Mahavier’s original idea of viewing the
“bonding maps” as relations.

In [13], Smith and Varagona showed that traditional inverse limits with factor spaces the
unit interval and “N-type” bonding maps are homeomorphic to a certain class of generalized
inverse limits. They showed this by modifying a technique Baldwin used in [I], showing two
spaces are homeomorphic by constructing an auxiliary space with all but the initial factor
space finite (and not Hausdorff in general), to which each of the two spaces can be shown
to be homeomorphic. The work presented here extends the work of Smith and Varagona
by giving a general set of conditions under which the technique can be applied, worked out
jointly between B and Smith. Additionally, the solenoid is an example where an inverse
limit is has a group structure compatible with the topology. It is shown that the techniques
of S and V can be applied to topological groups under certain circumstances to establish a
topological group isomorphism. This is demonstrated in the case of the solenoid.

Finally, there has been interest (see for example [2]) in characterizing generalized inverse
limits in terms of category theory in such a way that generalized inverse limits are limits

in the category theoretical sense. We give such a characterization in terms of well-known



categories, which has the property that taking generalized inverse limits is functorial, and
has a nice adjoint functor. This characterization relies on viewing the bonding relations in
a generalized inverse limit as a topological space in its own right, similar to how Mahavier

originally viewed them as noted above.



Chapter 1

Background

The following are well known theorems in general topology and continuum theory.

Proofs can be found in [7], [§], [12], and [3].

Theorem 1.1. If X s compact and Y is Hausdorff and p : X — 'Y is a continuous bijection,

then ¢ is a homeomorphism.

Definition Let I be a set, and for each i € I, let X; be a topological space. Define ], ., X;
to be the space having underlying set all functions x such that x(i) € X; for each i € I, and
topology generated by basis [[,.; Ui, where U; is an open subset of X; for each i € I, and

U; = X; for all but finitely many i € I. x(4) is typically written x;.

Definition For each i € w, let X; be a topological space and f; : X;,1 — X, be a continuous

function. Define limf to be the subspace of [],., X; with underlying set {x € [[,, Xi |
(_

S

fi(zi1) = x; for all i € w}.

Definition For each i € w, let X; be a topological space and r; be a subset of X; x X;.

Define limr to be the subspace of [],., X; with underlying set {x € [[,c, Xi | (zi,7i41) €
—

r; for all i € w}. We will occasionally also use the notation lim{r;};c, for limr.
— —

Theorem 1.2. For each i € w let X; be a compact space. Then [[,., Xi is compact. More-

1EW

over, if for each i € w f; : X;11 — X, is a continuous function, then limf is compact.
pa—

Theorem 1.3. For each i@ € w let X; be a compact space and r; be a closed subset of

X; X X;y1. Then limr s compact.
(—



Theorem 1.4. Let each of X and Y be a topological space, f : X — Y be a continuous
function, U be a subset of X, and V' be a subset of Y such that f[U] C V. Then fly is a

continuous function with respect to U and V with the subspace topologies.

Theorem 1.5. For each it € w let each of X; and Y; be a topological space, and p; : X; = Y;

be a continuous function. Then ¢ : [, Xi — [L,c., Yi defined by p(x); = ¢i(x;) for each

1Ew €W

1 € w, 1s continuous. Moreover, if for each © € w, r; is a subset of X; x X;11 and s; is a

subset of Y; X Yii1 such that for each x € limr, p(x) € lims, then ¢ restricted to imr is
— — —

continuous into lims.
“—

Definition Suppose each of X and Y is a topological space and r is a subset of X x Y. The
statement that r is upper semi-continuous means for each x € X, {b | (z,b) € r} is closed,
and if V' is an open subset of Y such that {b | (z,b) € r} C V then there is an open subset

U of X containing z such that {b | Ju € U such that (u,b) € r} C V.

Theorem 1.6. Let r be a subset of X XY such that Y is compact and reqular. Then r is

upper semi-continuous if and only if r is closed under the product topology.

Theorem 1.7. For eachi € w let X; be a group. Then []..., X; is a group under the induced

1EW

operation (Xy); = x;y; for each i € w.



Chapter 2

Finite Domain Spaces
2.1 Definitions

Definition For each i € w let X; be a topological space and r; be a subset of X; x X; 11 (r;

X, to which an

thus can be viewed as a relation). Define limr to be the subspace of [],_
H

element x of [[.. X; belongs only in the case that for each i € w, (x;,x;41) € ;. We will

€W

view an element x of the product as a function from w into the corresponding factor space,

but will denote x(7) by x;.

Remark This is equivalent to the definition of a generalized inverse limit space. Here we
have chosen to view each bonding map r; as a subset of X; X X;.; (note the indexing by the
domain factor space) rather than a set valued function, which allows us to view the bonding
map as a topological space in its own right. This is in the spirit of how Mahavier defined
generalized inverse limits originally in [I0]. We have a choice of viewing r; as a subset of
X; x X,;11 or as a subset of X;,; x X;. We have chosen to go counter to the previous sec-
tion since it seems more natural to proceed forwards then backwards, all else being equal.
Additionally, we will be concerned with the case when a certain subset of r; is a function,
whereas if r; were viewed as a subset of X;;; x X;, then a certain subset of r; ! would be

required to be a function.

Before continuing, we establish some notation for use with relations. For a relation r and a
set A, define r[A] = {b | Ja € A such that (a,b) € r}. The square bracket notation is used

to differentiate the image of sets from the operation on an element denoted by parentheses



(in the case of functions). If the set A is a singleton, for example {z}, we will omit the

square brackets and write r{z}.

2.2 Conditions Which Ensure Limits are Homeomorphic

We intend to examine non-Hausdorff spaces that induce a Hausdorff limit. The following

condition is sufficient to ensure a limit is Hausdorff.

Definition For each 7 € w let X; be a topological space and r; be a subset of X; x X; 1. We
say (X,r) is subsequently separable if for each i € w, each p € X;, and each pair a,b € r;{p}

such that a # b, there are disjoint open subsets of X, separating a and b.

Lemma 2.2.1. For each i € w, let X; be a topological space such that Xo is Hausdorff, and r;

be a subset of X; X X;11 such that (X,r) is subsequently separable. Then limr is Hausdorff.
—

Proof. Let each of u and v be an element of l(iinr, such that there do not exist disjoint open
sets separating them. X is a Hausdorff space, so if uy # vy, basic open subsets of l(iinr
can be constructed separating u and v. Thus uy = vy. Proceeding by induction, let ¢ be
in w such that ¢ > 0 and suppose that for all j < i, u; = v;. Note that u; € r;{w;_1} and
v; € ri{vi1} = ri{u;_1}. If u; and v; are distinct, then since both are in r;{u;_1} and (X,r)
is subsequently separable, there are basic open subsets U and V of X; separating u; and v;.
So basic open subsets of liinr can be constructed separating u and v. This contradicts our
assumption, so u; = v;. So by induction, for all 7 € w, u; = v;, and thus u = v. So l{iinr is

Hausdorfl. u

Remark We will adopt the habit of defining functions between limit spaces induced by
functions between the factor spaces. Henceforth if we have a limit space limr and indexed
—

functions {p; : X; — Y;}icw, we will define ¢ to be the function with domain lim r such that
H

for each x € limr, ¢(x) is the element of [, Y; such that for each i € w, ¢(x); = @;(x;).
(_

S

Our typical situation can be visualized as below:



. _ .
S X X s

LLP'L Pit+1

Sit1
Y;‘ Y;-H

Si—1 S

Where the arrows between the r;’s and s;’s point from the first coordinate space to the

second coordinate space in each case.We will call such a system a generalized limit system.

Definition For each ¢ € w let each of X; and Y, be a topological space, r; be a subset of
X; x X411, s; be a subset of Y; X Y;11, and ¢; : X; — Y, be a continuous function. We say

(X,Y,r,s,p) is a generalized limit system.

It will become clear that if we desire limr and lim s to be homeomorphic, we want the above
— —

diagram to commute. In other words, we will desire that for each i € w, ;11 0r; = s5; 0 @;

using the natural definition of composition of relations.

Definition A generalized limit system (X, Y, r,s, ¢) is said to be commutative if p; 1 0r; =

s; o ; for each 7 € w.

Lemma 2.2.2. Let (X,Y,r,s,¢) be a generalized limit system such that for each i € w,

wir101; C s;0@;. Then for each x € limr, p(x) € lims.
— —

Proof. Let x be in limr and ¢ be in w. Then:
H

(x;,xi11) € r; and by the definition of ;1 1, (zi41, Yir1(Tiz1)) € Vi1
= (5, it1(Ti41)) € Pir1 073 C 500
= Jq such that (2;,9) € ¢; and (g, pi+1(zit1)) € s
= q = i(z;) and (¢, pir1(Tir1)) € 55
= (pi(zi), Pir1(Tiy1)) € i

= (¢(x)i, P(X)iy1) € 54



So for each x € limr, ¢(x) € lims. O
— —

Another condition that will be important is that when we consider only those pairs in r;

whose second coordinate lies in a certain range delineated by ;. 1, we have a function.

Notationally, for a relation 7 and a set B, we denote by r|? the set {(a,b) € r | b € B},

which mirrors the notation for restriction of the domain of a function.

Definition Let r be a subset of X x Y and ¢ : Y — Z be a function. The statement that

r s function decomposable relative to ¢ means for each z € Z, 7“]“0_1{2} is a function.

Lemma 2.2.3. Let (X,Y,r,s,¢) be a generalized limit system such that po is an injection

and for each v € w, r; 1s function decomposable relative to @;11. Then ¢ is an injection.
Proof. Let each of u and v be in limr such that p(u) = p(v).
<—

wolug) = p(u)o =p(v)o = @o(vo)

— Ug =19.
Proceeding by induction, suppose that 7 € w, ¢ > 0, and for all j <4, u; = v;.

w; =riq ]P0 @Y () = g e ()

:ri_1|¢;1{w(v)i}(vi_1) _ ri_1|90;1{50i(vi)}(vi_1) — ;.

So by induction, u; = v; for all i € w and thus u = v. So ¢ is an injection. O

Lemma 2.2.4. Let (X,Y,r,s,p) be generalized limit system such that @y is a surjection
and for each i € w, r; 1s function decomposable relative to p; 1 and s;o p; C ;1 0r;. Then

p 15 a surjection.



Proof. Let y be in lims. Define x inductively as follows. Since ¢y is a surjection, g {yo}
(—

is nonempty, so there is an 5 € ¢y {yo}. Let i be in w such that i > 0 and suppose that

for all j <, pj(x;) = y;. Note that:

(Yi—1,yi) € $i—1 and (T4-1,Yi—1) € ©i—1

= (i—1,Yi) € Si—1 0 pi1 C ;01

= b such that (z;_1,b0) € r;_1 and (b,y;) € ¢;

<= 3b such that (2;,_1,b) € r;_; and b € ¢; {y;}

<= 3b such that (x;_1,b) € ri_1|¢fl{yz‘}

< z,_1 € dom(r;_y ”fl{yi}).

goi_l{yi}<xi_1)‘ Then:

So define x; = r;_;

p(x)i = pi(z:) = @i(ria

fl{yi}(iﬂi—l)) C giler Hyitl = {ui}-

So ¢(x); = y;. Since this is true for all i € w, p(x) =y. So ¢ is surjection. O

Theorem 2.1. Let (X,Y,r,s,p) be a commutative generalized limit system such that limr
H

is compact, Yy is Hausdorff, (Y,s) is subsequently separable, @q is a bijection, and r; is

function decomposable relative to p;1. Then @ is a homeomorphism.

Proof. Since Yy is Hausdorff and (Y,s) is subsequently separable, lims is Hausdorff by
H

Lemma [2.2.1] Since (X,Y,r,s,p) is commutative, we have that for each i € w, ¢;41 0

ri € 8; 0, so by Lemma [2.2.2] for each x € limr, ¢(x) € lims. Since for each i € w,
— —

@; is continuous, ¢ is continuous. Since ¢ is an injection and r; is function decomposable

relative to ¢; for each ¢ € w, by Lemma [2.2.3] ¢ is an injection. Since ¢ is a surjection and

(X,Y,r,s,p) is commutative, we have that for each ¢ € w, s; 0 p; C @;41 0 7;. 7; is function

decomposable relative to ¢; 1 for each ¢+ € w, so by Lemma

2.2.4

 is a surjection. Since limr
p

is compact, lims is Hausdorff, and ¢ is a continuous bijection, ¢ is a homeomorphism. [J
H

9



2.3 An Induced Limit Space

For the following, let X; be a topological space for each 7 € w and r; be a subset of
X; X X;11, from which we form the limit space limr. There is a natural homeomorphism
%

between this space and another limit space whose factor spaces are the r;’s.

For each i € w, define ¢; to be the subset of r; x ;.1 to which ((a,b), (¢,d)) belongs only in

case b = c.

When a graph is available for each r;, we can use the following method to visualize the

relation t;.
We depict the graph of r; horizontally next to the graph of T,L-jrll. An ordered pair (a,b)
from r; is related to an ordered pair (c,d) from r;; if and only if a horizontal line can be

drawn connecting (a, b) and (d, ¢) in the depiction.

This is shown below for a situation where all the r;’s are the same.

1 1+

Tl Tl

8 T 8

3 3

4 4

51 (22 5.1

3 647 16 3

il 1T

2 2

51 5

8 8

il il

4 4

1l 1

8 8

T
Osis2s51s51 053152575l

The horizontal line indicates that (27, &) € r; and (35, 2) € riy are related by ;.

For each i € w, let ¢; : 7; — X; be the function so that for each (a,b) € r;, ¢i(a,b) = a.

10



Define ¢ : limt — limr to be the function defined so that for each w € limt and each i € w,
— — —

d(w); = ¢i(w;).

Theorem 2.2. ¢ is a homeomorphism.

Proof. For each i € w, ¢; is continuous since it is a projection. So ¢ is continuous.

Claim. Let w be in limt. Then ¢(w) € limr.
— —
Proof. For each i € w, p(w); = ¢;(w;) € X;. For each i € w, let w; = (a,b) and w; 1 = (¢, d).

((a,b),(c,d)) = (w;, wit1) € t;, so b = c. We have that

(@(W)i, 9(W)is1) = (¢i(wi), i1 (wisa)) = (¢i(a, b), pi(c, d)) = (a,¢) = (a,b) = w; € 74

So ¢(w) € limr.
H
Claim. ¢ s a surjection.

Proof. Let y be in limr. Define w so that for each i € w, w; = (y;,y;1+1). Since y € limr,
— —

wi = (Y Yirr) € 7o Wi = (Y3 Yirr) and Wiy = (Yira, Yiya), 50 (Wi, wign) € ti. Thus w € lim ¢.

For each i € w, we have that ¢(w); = ¢;(w;) = ¢i(yi, Yir1) = yi- So ¢(w) =y. So ¢ is a

surjection.
Claim. ¢ s an injection.

Proof. Let each of w and y be in lim t so that ¢(w) = ¢(y). Let i be in w and let w; = (a, b),
—

wiy1 = (b,¢), y; = (t,u), and y;11 = (u,v). Then
a = ¢i(a,b) = ¢i(wi) = (W) = ¢(y)i = dilys) = ¢ilt,u) =1
and

b= 0it1(b,¢) = dir1(Wit1) = O(W)it1 = O(¥)it1 = Gi1(Yir1) = div1(u,v) = u.

11



So w; = (a,b) = (t,u) = y;. Since this is true for all i € w, w =y. So ¢ in an injection.
Claim. ¢ s open.

Proof. Let U = []...,(U; X Viy1) be a basic open subset of [[,.. 7i, so UNlimt is an open
«—

1€W 1Ew

subset of lim t. Note for cofinitely many ¢, U; x V; 11 = X; x X;11,s0U; = X; and Vi1 = Xy,
%

Let w be in U Nlimt. Then for each i € w, w; = (a,b) for some (a,b) € U; x Viiq
—
and w; 11 = (¢, d) for some (¢,d) € Uiy X Viyo, and since ((a,b), (¢, d)) = (wi, wi1) € b, it

must be the case that b = ¢. So U, intersects V;,; for all 1 € w.
Note there is no Vj, so for convenient notation define V = U,.

Let y be in ([ [, (U:NV;)) ﬂl(inr (an open subset of l(iinr since U; N'V; = X; for cofinitely
many ¢). ¢ is a surjection, so there is a z € {iint such that ¢(z) = y. For each i € w,
zi = (a,b) for some (a,b) € 14, so a = ¢i(a,b) = ¢i(z1) = ¢(z); = v € UyNV; C U,
ziy1 = (¢, d) for some (c,d) € 7141, with b = ¢ since ((a,b), (¢,d)) € t;. So b = ¢ =

¢i+1(C, d) = ¢i+1(2’i+1) = ¢(Z)z’+1 = Yi+1 € Ui+1 N Vi+1 C Vz‘+1-

So the open set (J[;c,(Us N V;))limr is a subset of ¢(U N limt) containing y. Since
we can find such an open set for each y € ¢(UNlimt), (U Nlimt) is open. So ¢ is an open
— —

function.
So ¢ is a continuous open bijection, and is thus a homeomorphism. O]

We will also need the following lemma in the next section:

Lemma 2.3.1. For eachi € w, suppose X; is a compact Hausdorff space and r; is a reversibly

upper semi-continuous subset of X; X X;11. Then limt is compact.
«—

(By reversibly upper semi-continuous, we mean that r;” ! is upper semi-continuous.)

12



Proof. Since each X; is compact Hausdorff, it is regular, so since r; is reversibly upper semi-
continuous, r; is closed. Being a closed subset of the compact space X; x X;.1, r; is compact.

So [[;e, 7i is compact.
Claim. limt is closed in ], i under the product topology.
<7

Proof. Let w be in [ [, r:\limt. Since w ¢ limt, there is a j € w such that (w;, w;;1) € ;.
— —

We can write w; = (a,b) and w;41 = (¢, d) for some a € X;, b,c € X411, and d € X0, It

must be the case that b # c. Now b, c are in X, a Hausdorff space, so there are disjoint

open sets S and T separating b from c.

For each i € w such that i # j and 7 # j + 1, define s; = 5, and define s; = (X; x ) N1y,
sit1 = (T'x Xj19) Nrj41, open subsets of r; and r;j4q respectively. Each s; is an open subset
of r;, and for cofinitely many i € w, s; = r;, so HiEw s; is an open subset of []

1Ew .

Let y be in [[.., si with ; = (p,q) and y;11 = (u,v); (p,q) = y; € 55 = (X; x S)Nrj, so
g€ S; (u,v) =yjs1 € Sj41 = (T'x Xj42) N7j1, 80 u € T. Since S and T are disjoint, ¢ # u,

so (i, yir1) = ((p,q), (u,v)) ¢ t;. Soy ¢ limt. So for each element w of [[,__ r;\ limt, there
— —

1EW

is an open subset of [],. 7 containing w that is a subset of [],. r\limt. So [],. 7\ limt
— —

is open. So limt is closed.
<—

r;, and so it is compact. O

Thus limt is a closed subset of the compact set [,
(_

2.4 Constructing a Finite Domain Space
Given a limit space limr our objective is to construct a homeomorphic space to which
H

other “similar enough” spaces can also be shown to be homeomorphic.

For each ¢ € w such that ¢ > 0, let Y; be a partition of r; and m; be the function that

maps each element of r; to the partition element containing it.

13



Since our intent is to construct bonding maps s; that are subsets of Y; x Y;,; chosen

so that lims = limt (and hence lims is homeomorphic to limr) it is natural to define
— — — —

si = {(mia, b), (e, d)) | ((a,0), (¢, d)) € i}

ti—1 t; tit1
T Tit1
l/ﬂ-i lﬂ-iJrl
Si—1 s Si+1

..._>yl._i>yi+1_>...

In fact, this guarantees that one inclusion of the commutivity condition for the generalized

limit system is satisfied: Let ((a,b), P) be in m;41 o t;. Then:

((a,b),P) € mip1 0,
= (¢, d) € riyq such that ((a,b), (c,d)) € t; and ((¢,d), P) € w44
= (¢, d) € riyq such that (m;(a,b), mip1(c,d)) € s; and ((¢,d), P) € mi1q
= (mi(a,b), P) € s; and ((a,b), m;(a,b)) € m;

= ((a,b), P) € s;om;.

So Tiy1 © tz g S; O T0;.

From this point forward, since Y; is a quotient of r; with the projection m; serving as the

TP} ig equal to ¢;|F since T {P} = P.

map between factor spaces, the key function t;

This simplifies our notation.

Definition Let r be a subset of W x X and Y be a quotient of X with quotient map
m : X — Y. The statement that r s compatible with Y means for each P € Y and

r € dom(r|?), we have m(z) C dom(r|").

14



Lemma 2.4.1. For each © € w suppose t; is function decomposable relative to w1 and

compatible with Y; 1. Then (r,Y,t,s,m) is a commutative generalized limit system.

Proof. Let ((a,b), P) be in s; o m;. Then (m;(a,b), P) € s;. So there is a ((p,q), (u,v)) € t;
such that m;(p, q) = m;(a,b) and m;y1(u,v) = P. So (u,v) € P, and thus ((p,q), (u,v)) € t;|7,
s0 (p,q) € dom(t;|"). So ;i (p, q) € dom(t;|”). So (a,b) € mi(a,b) = 7;(p,q) C dom(t;|”). So
there is a (f, g) € riy1 such that ((a,b), (f,9)) € t:|¥, so (f,g) € P. Thus m1(f,g) = P. So
((a,b),(f,9)) € t; and m;11(f,9) = P. Thus ((a,b),P) € miy10t;, s0 s;0m; C mpq ot;. We

have from above that m; ;1 0t; C s; 07, 80 §; 07 = 741 O t;. O

For each 7 € w, let X; be a compact Hausdorff space, r; be a reversibly upper semi-continuous

subset of X; x X;;.

Let Y, be the partition of ry where each element of 7y is in a singleton equivalence class.

Define 7y : 79 — Yy by mo(a,b) = {(a,b)}.

For each ¢ € w where ¢ > 0, let Y; be a partition of r;, with m; the function that as-
signs each element of r; to the partition element containing it in Y;. Giving r; the subspace

topology from the product X; x X;,1, assign Y; the quotient topology inherited from r; via ;.

Finally, for each i € w let s; be {(m;(a,b), mi11(c,d)) | ((a,b), (¢, d)) € t;}.

Theorem 2.3. Suppose for each i € w, t; is function decomposable relative to m; 1 and

compatible with Y; .1, and (Y,s) is subsequently separable. Then lims = limr.
— —

Proof. limr = lim t by Theorem so we intend to show that lims = lim t.
— — — —

Define 7 : limt — lims to be the function so that for each x € limt and each ¢ € w,
— — —

m(x); = m(x;). Since Y} is the discrete partition of rq with topology induced by g, m is a

homeomorphism and thus Y, is Hausdorff. By Lemma [2.3.1} limt is compact. Since each
—
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m; is a projection, it is continuous. By Lemma m, (r,t,Y,s, ) is commutative. So by
Theorem , h;nr = hint. H

Definition For each 7 € w let X; be a topological space and r; be a subset of X; x X, .
The statement that (X,r) satisfies condition 6’ means there is a sequence of partitions Y
with each Y, a partition of X; with quotient map m; : X; — Y; and for each i € w if

s; = {(mi(a), m+1(D)) | (a,b) € r;} then:
1. Yy is the discrete partition of Xj.
2. (Y,s) is subsequently separable.
3. For each i € w, r; is function decomposable relative to ;1.

4. For each 7 € w, r; is compatible with Y.

Condition #" allows that the factor spaces Y; under the quotient topology may not be Haus-
dorff, while the resulting space l}Lns is Hausdorff. We now ask the question, given a limit
space {iinr that induces {iint, how does one produce partitions Y; that demonstrate that
(r,t) satisfies condition 6’7 Consider the case where each bonding map r; (viewed as the
subspace of X; x X;,1) is an arc. This is true, for example, when each X; is the closed
interval [0,1] and ;' is a continuous function (as in a traditional inverse limit), but it is

also true for many instances of generalized inverse limits.
We suggest the following technique: Y{ shall be the discrete partition of r.

For ¢ > 0, the arc r; shall be partitioned into sets that are either singletons or open in-
tervals of the arc. In choosing how to partition the arc, the goal is to partition r; into as few
parts as possible while ensuring that no open interval can be intersected twice by a vertical
line in the graph of r;, and that every element of Y; related by s; to a singleton in Y, is

a singleton (i.e., if the graphs of r; and r;rll are lined up horizontally and a horizontal line
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passes through a point of 7’1-;11 that is a singleton in Y;,; (after swapping coordinates) then

any point of r; intersected by the horizontal line is a singleton in Yj).

Consider the example where each X; is the interval [0, 1] and each r; has the following

graph:

We can achieve the desired result by “breaking” the graph at the points where the graph

changes direction:

T %
B

1]

2 D

};“U C A
o————
0 1 2 1 1

Each solid dot and open line segment represents a distinct element in the partition. Note

each element passes the vertical line test when considered individually.

A partition with the above properties will have a quotient topology characterized by the
following basis: Since each r; is an arc and each element of the partition is a connected
subset of the arc, there is a natural ordering of the partition, and the set of all subsets of Y;

of the form {Q | A< Q < B} {Q|U<Q<B},or{Q|A<Q <V} where A and B are
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singletons and U and V are the partition elements containing the left and right endpoints

of the arc, respectively, is a basis for the topology of Y;.

1__

3 L

1

5= A basic open set of Y;
14

gy C

o —
0 1 2 1 1

Such a partition sequence will demonstrate condition €'
1. Yy is the discrete partition of ry: By construction.

2. (Y,s) is subsequently separable: Let P be in Y; and each of A and B be in s;{ P} such
that A < B. Suppose there is no singleton 7" of Y;,; with A < T < B. Then A and B
are singletons and are the endpoints of an open interval G of Y;,,. Since A and B are

singletons, and A, B € s;{ P}, P is a singleton.

We can write A = {(s,t)}, B={(y,2)}, and P = {(u,v)}.

Since (P, A) and (P, B) are in s;, which is {(m;(a,b), m11(c,d)) | ((a,b), (c,d)) € t;},
((p,q), (u,v)) € t; and ((p,q), (w,2)) € t;, so ¢ = u and ¢ = w. So A = {(¢q,v)} and
B ={(g,2)}. Since A, G, and B when unioned form an arc in r;;; and the points asso-
ciated with A and B lie on the same vertical line, G is an open line segment joining A
to B. Thus there must be a vertical line intersecting G twice. This is a contradiction,
so there must be a singleton T" of Y1 with A < T < B. The sets {Q | U < Q < T}
and {Q | T < @ < V} where U and V are the parts containing the left and right

endpoints of the arc r;;1, respectively, are disjoint open sets separating A and B.
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3. For each ¢ € w, t; is function decomposable relative to m;.1: Let P be in Y;;1, and
consider ¢;|¥: a point (u,v) in r; is related by ¢;|¥ to a point (p,q) in P if and only if
when 7; is aligned horizontally with r..}, (u,v) and (p, ¢) belong to the same horizontal
line. Thus ¢;|¥ is a function when no point (u,v) of r; belongs to the same horizontal

line as two points of P in the inverse graph of r;.;.

A horizontal line in the inverse graph of r;,; corresponds to a vertical line in the
graph of r;,1, and it was stipulated that no two points of P may belong to the same

vertical line. Thus ¢;|” is a function.

4. For each i € w, t; is compatible with Y;;1: Let (p, ¢) be in dom(¢;|”).Suppose m;(p, q) is
not a subset of dom(#;|), and (u, v) is an element of 7;(p, ¢) that is not in dom(t;|?).

So no pair of P has first element v.

Without loss of generality suppose v > ¢. Let F' be the set of all numbers that
are the first number in a pair in P. Then F' is connected since it is the continuous
image of the connected set P. Let [ be the least upper bound of F; ¢ < [ < v since
(p,q) € dom(t;|*) and (u,v) ¢ dom(t;|¥). Let G be the set of all numbers that are the
second number in a pair in m;(p, ¢). G is connected since it the the continuous image
of the connected set m;(p,q). v and g are in G, so [q,v] C G. Thus there is a pair in
mi(p, q) with second number [. Let (w,l) be such an element.An endpoint of P must
have first coordinate [. Let (I, z) be such an endpoint of P. {(l, z)} must be an element

of Yi1. So m;i(w,!) is a singleton.
This is a contradiction, since g # v, so (p,q) # (u,v) and (p,q), (u,v) € m(p,q) =

7;(w,1).So there can be no element (u,v) of m;(p,q) that is not in dom(t;|”), so

mi(p, q) C dom(t;|7).
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This completes the demonstration of the four sub-conditions of condition ¢, so condition ¢’

is satisfied.

2.5 Application to Topological Groups

In the case where each X is a group, [[.., X; is a group under the induced operation

€W

of coordinate-wise multiplication. Under certain conditions, lim r may be a subgroup of the
<—

product. One sufficient condition is as follows:

Lemma 2.5.1. For each i € w let X; be a group and r; be a subgroup of X; X X;yv1. Then

l}inr is a subgroup of T],c.. Xi.

X, so we must show that the identity e of [],. X;

1EW

Proof. limr is a subset of the group []
(_
is in limr, and limr is closed under inversion and the group operation.
— —

The identity element e of []..., X; is defined so that for each i € w, e; is the identity

=)

element of X;. For each i € w, r; is a subgroup of X; x X, 1, so (e;,€;11) € r;. So e € limr.
H

Let x be in limr. The inverse x~' of x is defined in [],., X; so that for each i € w,
—
(x71); =2;'. Let i beinw. x € limr, so (;,7;41) € ry. 7; is a subgroup of X; x X;,1, so
H
(x )i (x V1) = (@7 254) = (v, 2041) "L € 140 So {iLnr is closed under inversion.
Let each of x and y be in limr. Let ¢ be in w. Since x € limr, (z;,2;41) € 7;. Since
— —
y € limr, (y;,yi+1) € 7. Since each of (z;,x;41) and (y;, y;+1) is in 7, and 7; is a subgroup
—

of Xz X XZ'+1I

((Xy)i, (X}’)z‘—H) = (xiyz',xiﬂyiﬂ) = (xia$i+1)(yi7yz’+l> SR
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So xy € limr.
H

So l<£nr is a subgroup of [[,., Xi. O

Corollary. For each i € w let X; be a topological group and r; be a subgroup of X; x X;i1.

Then limr s a topological group.
«—

Proof. We need only show that the group operation is continuous on limr, and this follows
—

directly from the fact that the group operation is continuous on [, X;. O

We are interested in examining the conditions under which a limit space limr that is a
(—
topological group and a homeomorphic finite domain space lims with an induced group
(—
structure are isomorphic as topological groups. Of particular interest are instances where

the factors Y; are not even groups, while lim s is a topological group.
<—

Definition Let X be a group and Y be a quotient of X. The statement that Y is a semi-

congruent quotient means that if F,G, H are in Y with H N F'G nonempty, then H C FG.

Definition Let (X,Y,r,s,7) be a generalized limit system such that for each i € w, X is

a group and Y; is a partition of X; with quotient map ;. The statement that (X,Y,r,s, )

s operation inducing means for each F,G € lims, ¢« € w, and H € Y; with H C F,G;,
«—

Ti1[Fir1Giv1] N (w1 o 1) [H] is a singleton.

Lemma 2.5.2. For each i € w let X; be a topological group, r; be a subgroup of X; x X;i1,
and Y; be a semi-congruent quotient of X; with quotient map m; and Yy the discrete quotient
(ro(x) = {x} for all x € Xy), s;i = {(mi(x),m1(v)) | (x,y) € r;}, so that (X,Y,r,s, )
1s operation inducing. Then for each F,G € h;ns there is a unique H € {iins such that

H; C F,G; for alli € w.
Proof. Let F, G be in lims.
(_
Claim. There is an H € lims such that H; C F;G; for all i € w.
H
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Proof. We define such an H inductively:

FO = {fo} and GO = {90} fOI‘ some fo,go - X(). Deﬁne H() = {ngO} H(] = {ngO} Q
{foH o} = FoGo.

Let 7 be in w such that for each j € w with 7 < ¢, H; is defined so that H; C F;G,
and (H,;_1,H;) € sj_y. We have that H, ;1 C F,_1G;_; so m[F;G;] N (m; 0 ri_q)[H;—1] is
a singleton {H;}. Also H; € m[F;G;], so there is an f; € F; and a g; € G; such that
mi(figi) = H;, ie., figi € H;. Since f;9; € H; N F;G;, it must be the case that H; C F;G;.
Furthermore, H; € (m;or;_1)[H;—1] C (si_10mi—1)[Hi—1] = si—1[mi—1[Hi—1]] = sic1{Hi_1}. So
(Hi—1, H;) € si-1.

By induction H € lims and for all « € w, H; C F;G;.
«—

The uniqueness of this H comes from the fact that there is only one partition element
satisfying Hy C FyGo, and given an H; 1, there is only one partition element satisfying

Hi Q EGZ and (H'i—17Hi) € S;. ]

Definition For each i € w let X; be a topological group, r; be a subgroup of X; x X,
and Y; be a semi-congruent quotient of X; with quotient map m; and Yj the discrete quotient
(mo(z) = {x} for all z € Xy), s; = {(mi(x), mi11(v)) | (z,y) € ri}, so that (X,Y,r,s,m) is
operation inducing. Then for each F, G € liins, define F ¢ G to be the unique H € liins

satisfying H; C F;G; for all i € w.

Corollary. For each 1 € w let X; be a topological group, r; be a subgroup of X; x X;i1,

and Y; be a semi-congruent quotient of X; with s; = {(m;(z), mi11(vy)) | (z,y) € 13}, so that

(X,Y,r,s,m) is operation inducing. Then ¢ : limr — lims induced by the m;’s has the
— —

property that for each £, g € limr, ¢(fg) = ¢(f) ¢ ¢(g).
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Proof. Let each of f,g be in limr and j be in w. Then:
—

o(fg); = m;((fg);) = m;(fi9;) € m;(f;)mi(g;) = ¢(f);0(8);-

So ¢(fg) € lims and ¢(fg); C ¢(f);¢(g); for all i € w. Since ¢(f)op(g) is the unique element
‘—
of lim s; with this property, ¢(fg) = ¢(f) ¢ ¢(g). ]

Lemma 2.5.3. For each i € w let X; be a topological group, r; be a subgroup of X; X X;i1,

and Y; be a semi-congruent quotient of X; with s; = {(mj(x),m11(y)) | (x,y) € 1}, ¢ be a

homeomorphism, and (X,Y,r,s,m) be operation inducing. Then lims is a topological group
%

under the ¢ operation.

Proof. Let e be the identity element of limr and each of F', G, and H be an element of lim s,
— —

and f = ¢ 1(F), g = 671(G), h = ¢~ (H).

ple)oF = ¢(e) o o(f) = ¢p(ef) = ¢(f) = F. (Also F ¢ ¢(e) = F is proved similarly.)

Foo((f)™h) = o¢(f) o o((f)™) = o(f(f)™") = d(e). (Also ¢((f)™") o F = ¢(e) is proved
similarly.) Finally,

Fo(GoH)=Fo(4(g)o¢(h)) = ¢(f) op(gh) = o(f(gh))
=¢((fg)h) = o(fg) o o(h) = (6(f) 0 ¢(g)) oH = (F o G) o H.

This establishes that lim s is a group under the operation ©.
«—

Let each of F and G be in lims and 7' be an open set containing FoG. Let f = ¢~ *(F) and
%
g = ¢ '(G). Consider ¢~ ![T], an open subset of limr. Since ¢(fg) = ¢(f)op(g) = FoG € T,
—
we have that fg € ¢}[T]. limr is a topological group, so there are open sets U and V' con-
<_

taining f and g respectively so that UV C ¢~ ![T]. The sets ¢[U] and ¢[V] are open subsets
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of lims containing F and G respectively.
H

Let H be in ¢[U] and K be in ¢[V], and h = ¢ '(H), k = ¢ (K) (so h € U and k € V).
Then:
HoK = ¢(h) o ¢(k) = ¢(hk) € ¢[UV] C plo~'[T]) = T.

So ¢ is a continuous operation. Thus lim s is a topological group. O]
H

Theorem 2.4. For each i € w let X; be a topological group, r; be a subgroup of X; x X1,
Y; be a semi-congruent quotient of X; with s; = {(mi(x),m41(y)) | (z,y) € 1}, ¢ be a
homeomorphism, and (X,Y,r,s, ) be operation inducing. Then ¢ is a topological group

1somorphism.

Proof. We know that lim s is a group with operation ¢ so by the corollary to Lemma|2.5.3] ¢ is
—

a group homomorphism. Since ¢ is a homeomorphism, it is a bijection, and being a bijective

homomorphism, ¢ is a group isomorphism.Thus ¢ is a topological group isomorphism. [J

Example For the following, we use the realization of the topological group S! with S =

[0,1] with 0 and 1 identified, and group operation addition mod 1.

For each i € w, let X; be S, n; be a positive integer greater than 1, 79 be the identity
function on S, and for each i > 0 let r; = {(z,y) | z + m = ngy for some m € n;} (shown

below for n; = 2).

=}
N
N | ———
= | Co——
—_ =
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It is easy to verify that lim r is homeomorphic to the solenoid with winding sequence {n;};c..
<—

Let Y, be the discrete partition of S!, kg be 2, and for each ¢ € w let k;; be the greater of

lem(ng, ki) and 2n;, Y; = {{£ }}jen, U {(E 55) }jens-

Note that since kg = 2, each k; is a multiple of 2 and thus k; 1 | n;k; in both the case

where k; 11 = lem(k;, n;) and where ki1 = 2n;.
Since for all i € w, r; ' is a function, for any singleton {p}, r;|¥"} is a singleton and thus a
function. As can be seen below, for i > 0 and any of the open intervals S in Y;, ;| is a

function as well.

The diagram below shows the situation for n; = 2 and k; = 4.

1_

3 |

4

R

iT njod

=}
[ m——
N | ———
= | Co——
—_

g i+l o

Each ri](’gz"]’“z‘) = {(z,y) | x + m = nyforsomem € n;,y € (L, L2)} is a function:
FRFESY o

Suppose (z,a), (z,b) € 7’,-|(’“Ji’]’“i ) s0 a,b € (&, Jl;:l) and x + m, = n;a for some m, € n;,

x + my = n;b — my, for some my, € n;. So,

n;a — Mg = = n;b — my,

ni(a —b) =m, — my.
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It must be the case that n; > |m, — m;|, which is a contradiction unless a —b =0, so a = b.

j+1
"5 ) is a function. So for each i € w, 1; is function decomposable relative to ;.

S

al

Thus r; |(

i gt
Now we show compatibility. Let x be in the domain of ri|(’ci+1”“i+1). Then there is an

m € n;, y € (2, L) so that z +m = njy. So z +m € (&L MUty and 7 €

ki+17 ki+1 ki+17 ki+1
ik ks ) . . .
e N 14 et ¢ be in () = (£, qkil) Since k;11 | nik;, there is a ¢; such that
i+1 i+1 7 7
o cinij—mcikip1 cingj—mekiiteing\  _ reingi—mngk;  cingj—mmnikiteing\
ki+1ci — nlkz Then T € ( U nikiz i , i1 nlzkz i z) — ( i zniki i z’ i1 nikj,it 4 z) —

ij—mki  cij—mki+c; ; ; ij—mk;  cij—mkitc;
(Cjkim , i ’Z *e) Then ¢ > ¢;j—mk; and g+1 < ¢;j—mk;+c;, sot € (”kim , &l ’l:‘ tay C

dom(ri|(kiil”gi+l)) and thus m(z) C dom(ri\(’“iil”giﬂ)). So r; is compatible with Y; for each

1€ w.
So if we define s; = {(m;(x), mix1(y)) | (z,y) € r;}, then m;y or; = s; 0.

The diagram below show s; for k; = 4, and partitions as described.

(%,1)—— e o o

ot

(%,%)—— o o o

{%}—o— S;

(}1’%)—— e o o

oL

(0”—11)—— e o o

{0} +——F—4+—1+—1+—+-
oy {7+ {3+ {3}
CRCRTERTCRY

For 2 > 0, giving Y; the quotient topology yields a topology with basis consisting of singletons

{(£,2E)} for j € n;, and triples

|\>

{5 5 A5 (550}

)
7

=
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for j € m; which consist of singleton sets along with their adjacent open intervals. Since
k; > 2n;_q, this implies that while Y; is not Hausdorff, elements of Y; containing elements of

X; that are distance 1/n;_; apart can be separated by open sets.

Since for any P € Y; and A, B € s;{P} with A # B, A and B contain elements that
are distance 1/n; apart, so A and B can be separated by open sets, and thus (Y, s) is sub-

sequently separable. So limr = lim s as topological spaces.
— —

Note that in each Y; with ¢+ > 0, we cannot define a group operation on Y; that is com-

patible with the group operation on X;. For example for elements (0, ki) and (%,F),

N

(ki, ki) = (0, ki) + (kl, ,%) contains elements of (ki, kz), {kl}, and (,%, ki) (There is an alge-

k3 K3

braic notion of a set with a multivalued binary operation that is grouplike called a multigroup
[T1]. Y; for i > 0 is a multigroup in this case. We don’t define a multigroup here since none

of the properties are needed except what has already been demonstrated here.)

For i = 0, s9 = {(mo(a), (D)) | (a,b) € 1o} = {({a},7mi(a)) | (a,a) € 1s1}. This is a

function.

Let F,G be in lims. Fy = {u} and Gy = {v} for some u,v € S'. So if H C Fy +
‘—

Go ={u} + {v} = {u+ v}, then H = {u+v}. m(u+v) Cm(u)+ m(v) so:

m[F1 + G1] N (w1 0 ro)[H] =mi[so(Fp) + s0(Go)] N (1 0 1g1){u + v}
=m[so({u}) + so({foh)] N m{u+ v}
:7Tl[7T1(U) + 7Tl<?))] N {m(u —+ U)}

={m(u+0v)}.
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Clearly {m (u + v)} is a singleton.

For + > 0, for any pair A,;B € 1<iins the set A;;1 + B;y1 is a singleton in the case that
A;y1 and By, are singletons, an open interval of length 1/k; 1 < 1/n; in the case that
A;yq is a singleton and B;,; is an open interval or vice versa, or an open interval of length
2/kiy1 < 2/2n; = 1/n; in the case that A; 1 and B,y are open intervals. In each of these
cases, mi+1[A;+1 + Biy1] cannot contain a pair of elements distance 1/n;; apart. Thus if it
can be shown that for each F, G € {iins, each 7 € w, and each H € Y] such that H C F;+ G,

Tiv1[Fig1 + Gipa] N (w41 o 1) [H] is nonempty, then it is a singleton.

An element {ki} of Y; is s;-related to an element {ktT} if and only if ki is r;-related to

—L_in other words, there is an integer u such that £ 4+ v = n;——, or £ — L Note
k1+1 ki k1+1 nik; k1+1

that since k;y1 is a multiple of n;, there is an integer p; such that n;p; = k;11. Then:

fHuk; t
nik; B Kiv1

fHuk; 1
Cikiv1 B Kit1

¢ | f+uk;

<~ ¢ny | fng + unik;
< cing | fri + ucikip
< cng | fr + ucingp;
<~ cmn; | fny

=l f

Case 1: F; = {£}, Gi = {£} for f,g € k. Then F, + G; = {{t2}. Let H be in F; + G;.

H = {59}, so ry[H] = {FE0h ), e

nik;
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Subcase la.: ¢; | f and ¢; | g. Then:

k.
E+1:{f+u Z} for some u € w,
n;K;
Gi-l-l:{

_.|_
Fivi+ G = {f

G

ki

7

s
+
<

G

3

} for some v € w,
i

+(u—|—v)k:,-}.

niki

NS

Since f + g is divisible by ¢;, (w1 0 ry)[H] = {{{ZE™5Y | m € k1) which intersects

Fipr +Giga.

Subcase 1b.: ¢; | f and ¢; t g. Then:

ki
E+1:{f+u } for some u € w,

nik;

(g—g mod ¢; +vk; g—g modcﬂ—vkrl—ci)
Git1 = for some v € w,

nik; ’ nik;
f+uki+9g—9g modc,+vk; f+uk;+g—g modc+ vk +c¢
Fign +Gipr = )
(fH+g—g modc+ (utv)k f+g—g modc+ (utv)k+¢

Since C; 1’ f—|-g7 (7Ti+1o7ni)[H] = {(f—l—g_(f-‘rg) mod Cﬁ-mki’ f+9—(f+g) mod ci—&-mki—&-ci) | m e ki+1} _

niki nik;

{(f+g_g ;nzd citmhi f+9-g mg(_ik?ﬁmk”“ci) | m € ki11} which intersects Fjyq + Giyq.

Subcase lc.: m;i1 1 f and ;1 | g. Similar to above.
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Subcase 1d.: ¢; t f, ¢; 1 g, and ¢; | f + g, then f mod (¢;) + g mod ¢; = ¢; and:

, for some u € w,

g—¢g modc +vk; g—g mod ¢+ vk; + ¢
Gi_g.l - )

G _ ( f—f mod c;+uk;+g9g—g mod c;+vk; f f mod c;+uk;+c;+9—g mod c;+vk;+c;
i+1 + i+1 — nik; nik;

(f—f mod ¢; +uk; f— f mod ¢; +uk; + ¢
Fi+1:

) for some v € w,

_<f—|—g—ci+(u—|—v)ki f+g—ci+(u+v)ki—|—20i>

frg+w+oki—c f+g+w+oki+a
nzkz 7 nzkz '
Since ¢; | f+ g, (mip10m)[H] = {{f+g+mk } | m € ki1 } which intersects Fiyq + Gi1 when

m=u-+v+ 1.

Subcase le.: ¢;1 f, ¢;tg, and ¢; 1 f + g. Then:

<f—f mod ¢; +uk; f— f mod ¢; +uk; + ¢
Fiy1 =

, for some u € w,

g—¢g mod ¢ +vk; g—g mod ¢ + vk; + ¢
Git1 = , for some v € w,
) + G. _( f—f mod ¢;+uk;+g9g—g mod c;+vk; f f mod c;+uk;+c,+9g—g mod c;+vk;+c;
i+1 i+1 — nik; nik;

nik; ) nik;

_ (f+g—f mod ¢;—g mod ¢;+(u+v)k; f+g—f mod c;—g mod ci+(u+v)ki+2q>

{<f+g—(f+g) mod c;+mk; f+g (f+g) mod c;+mki+c;

nik; n;k; ) ’ m €

Since ¢; { f + g, (miy1 0o 1y)[H] =

+ mod ¢ mod c;+mk; + mod ¢ mod c¢;+mk;+c : :
ki) = {(F=L o itmhi f4g=] e 1) | m € k;y1} which inter-

sects Fii 1+ Gy

Case 2. F; = (L, L), G, = {£}. F+ Gy = (L2, 25 Let H be in F; + G;. Then

ki’ ki ki

H = (f;_g’f+l§i+1)
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Subcase 2a.: ¢; | g. Then:

Fiq =(L ‘2?3 cituk J=f m(f]:ﬁ“k#ci) for some u € w,
k;
Gii :{g—i-v } for some v € w,
Nir;
f—f modc¢;+uk;+g+vk; f—f modc;+uk;+c;+ g+ vk;
Fipn+Gia = )
_(f+g—[f mod i+ (w+vk f+g—f modce+ (u+tv)k+c¢

We have that r;[H] = U{(LHe=Ute) mod citmhs | [+g=(f+g) mod cotmbtes

n;k; ’ nk;

)| m e ¢} and (m4q 0

ri)[H] = {(f+9—(f+g) mod ¢;+mk; f+g—(f+g) mod Ci+mki+0i) |m e ¢} = {<f+g—f mod ci+mk; f4g—f mod citmkitc;

n;k; ’ nik; nk; ’ nik;

m € ¢;} which intersects Fj 1 + Giyq.

Subcase 2b. ¢; 1 g. Then:

] _ (f—f mod c;+uk; f—f mod c;+uki+c;
Fiyr =( ik , ok ) for some u € w,

g—g¢g mod ¢ +vk; g—g mod ¢+ vk; + ¢
Gipr =

, for some v € w,

F. + G _ ( f—f mod ¢;+uk;+g9g—g mod c;+vk; f—f mod c;H+uk;+c;+g—g mod c;+vk;+c;
i+1 i+1 — nik; ) nik;

_ | f+9—f modc;—g mod c;+(utv)k; f4+g—f mod c;—g mod c;+(utv)ki+2¢;
- n;k; ’ n;k; :

We have that r;[H] = U{<f+g—(f+g7)“£;od Ci+mm7 I+9—(f+9) nnin];d Ci+mki+0i) | m € ¢;} and

R e T

) | m € ¢}

_ ((f+9g—f modc;—g mod c;+mk; f+g—f mod c;—g mod c;+mk;+c;
_{( 7;]‘:1 i z’ zniki i i z) | m € Ci}

which intersects Fj 1 + G;1.

Case 3: F; = {ki}, G; = (i, gljil). Similar to above.
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Case 4 F; = (L, LX), G, = (£,2)). F, + G, = (L2, 222). Let H be in F; + G;.

i? ki kit ki ki * ki
Then H = (522, B H = {0 or 1 = (£25 [20E2) | Then:

_(f- mod c;+uk; — mod c;+uk;+c;
Finn =(=! = )

nik; ’ nik;
) _(9—g mod c;+vk; g—g mod c;+vk;+c;
Giti _( nik; ’ nik; )’

_(f- mod c¢;+uk;+9g—g mod c;+vk; — mod c¢;+uk;+c;+g9g—g mod c;+vk;+c;
Fip1 + Gipq =(HL T ctoky [ ¥ v )

:(f+g—f mod ¢;—g

mod ¢;+(u+v)k; f+g—f mod c;—g mod ci+(u+v)ki+2ci)
nlki :

! nik;

Subcase 4a.: H = (f;g, f+,fi+1). Then:

rilH) = U {(Lanlt ot oty [to-(fho) modecombites) |y € ),

(mi41 0 1) [H] :{(f—l—g—(f-i-g) mod ¢;+mk; f4+g—(f+g) mod Ci+mki+ci) | m € ¢}

nik; ’ nik;

_(f+9—f modci—g mod c;+mk; f4+g—f modc;—g mod c;+mk;+c; )
_{( niki ’ n,-ki ) | m E Cl}

which intersects Fj 1 + G-

Subcase 4b.: H = {{*} and ¢; | f + g + 1. Then:

zH: i f
) =TT
g+ 1+mk
(s ] ={ (LT e )
i o) bime )
n;Rq
f+9—(f+g) modc+mk +¢
i ) Flmee)
f+g—f modc —g modc +mk;+ ¢
={{ — Flmece}
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which intersects Fj 1 + G;y1.

Subcase 4c.: H = {%} and ¢; {1 f + g+ 1. Then:

o fHg+1—(f+g+1) mod ¢;+mk; f+g+1—(f+g+1) mod ¢;+mk;+c;
lH] = U {( , ) |me el

(i1 0 i) [H] ={(Lrer=tltetl) modebmbs  Jhotl(fgtl) mod ectmbiter) |y ¢ ¢;}

_y(f+g9—f modc;—g mod c;,+mk; f4+g—f modc,—g mod ¢;+mk;+c; )
_{( nik; ’ n;k; ) | m e Cl}

which intersects Fj11 + Giy1.

Subcase 4d.: H = (f+k—‘?1,f+k—gi”). Then:

TZ[H] =U {(f+g+1—(f+g-7i1-i1]2i mod ci-i-mki’ f+g+1—(f+g+1l)ikimod ci+mkzi+ci) ‘ m e Ci},
(Risa o o)[H] =((L22t1=lUtatl) modstmbs feotlo(frott) mod echmbste) | ¢ ;)

_ ((f+9—f modc;—g mod c;+mk; f4+g—f modc;—g mod c;+mk;+c;
_{( ;blk;l . “ lniki : . l)|m€ci}

which intersects Fj 1 + G;1.
By exhaustion, m;1[Fij11 + Gip1] N (w41 0 15) is a singleton for each F, G € lims, each
H

1 € w, and each subset H of F;.1 + G,;1. So lims equipped with the induced operation ¢ is
H

a topological group isomorphic to the solenoid with winding sequence {n; }ic.. O
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Chapter 3

Categorical Characterization

3.1 Definitions

Definitions from category theory follow [6] and [9].
Definition A category C consists of the following:

e A class called the objects of C.

e For each pair z,y of objects, a set C(z,y), the elements of which are called morphisms
from x to y. For a morphism « € C(z,y), x and y are called the source and target of
«, respectively. Notationally morphisms are treated like functions, although in general
they may not be. So a : x — y means a € C(x,y) for objects x,y of C. (In the
literature some authors permit C(z,y) to be a proper class. In this understanding, a

category for which C(x,y) is a set for each pair x,y of objects is called locally small.)

e For each triple z,y, z of objects, a map C(y, z) x C(z,y) — C(xz, 2) called composition

and denoted («, ) — « o § with the following properties:

1. (awof)oy = ao(for) for all trios of morphisms «, 3,y such that the compositions
exist.

2. For each object x of C, there is a morphism 1, : x — x called the identity on
x such that « o1, = a and 1, o f = [ for all morphisms «, 8 for which the

compositions exist.

Definition Let each of C and D be a category. The statement that F': C — D is a functor
means that F' is a class function with domain all the objects and morphisms of C, mapping

objects of C to objects of D and morphisms of C to morphisms of D, having the properties:
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1. For each morphism « :  — y of C, F'(«) has source F'(x) and target F'(y). Sometimes

subscript notation is used, e.g. F,, : I, — F}.
2. For each object z of C, F'(1;) = 1p() (or Fi, = 1g,).

3. For each pair «, 5 of morphisms of C for which ao 3 is defined, F(ao 8) = F(a)o F(f)
(or Fpop = F, 0 Fp).

Definition Let each of I and C be a category, and I’ : I — C be a functor. The statement
that (z, ) is a cone to F means for each object ¢ of I, «v; : x — Fj is a morphism of C and

if 7:4 — j is a morphism of I then F; o o; = a;.

Definition Let each of I and C be a category (I can be thought of as an index category),
and [ be an object of C. The statement that (I, 7) is a limit of F means ([, 7) is a cone to
F, and if (x,«) is a cone to F, then there is a unique morphism 7 : x — [ of C such that for

each object 7 of I, m; 0o v = . In this case (I, 7) is also said to be a terminal cone to F.

x___ab/_jl
F;

Definition Define I to be the category with objects n and (n,n + 1) for each n € w, and
morphisms the symbols n, : (n,n+1) > nand (n+1)*: (n,n+1) > n+1 for each n € w,

as well as the identity morphism on each object.

: \ (n,n+1) p
/ N
n* 2 (n+1)* (n+1)«
N / i K s
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Definition The category Top is the category having topological spaces as objects, and
continuous functions as morphisms. Identity and composition are defined as the terminology

suggests.

Definition Let each of C and D be a category and each of F' and G be a functor from C
to D. n: F — G is called a natural transformation from F to G if for each object x of C,
N : F(x) — G(z) is a morphism, such that for each morphism « : z — y of C the following

square commutes:

That is, G(a) o n, = 1, 0 F(a).

Definition Define a category Top' having objects functors from I to Top and morphisms
natural transformations between functors. In this case a natural transformation n: X — Y

will make the diagram below commute.

X(nn+1)
N / N /
n*\ Xy X(n+1)* K(nt1)s
X, Mant) Xt
.. Mn }/(n7n+1) Mn+1 .« e
AN yd > e
Y, /Yn* Y(n+1<\ §n+1)*
Yn Yn+1

For each object X of Top', the identity 1x on X is defined by (1x); = 1 x, for each object
i of I. The composition 6 o n is defined by (0 o n); = 6; o n; for each object i of I. Note
that each functor in Top® can in a certain sense be thought of as a structural copy of the

category I that lies within Top.
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Definition Let C be a category with object class O, morphism class M, and composition
operator o, and let O" be a subset of O and M’ be a subset of M, such that every morphism
of M’ has source and target in O'. Then O', M’, o' (where o’ is o restricted to M’) is said to

be a subcategory of C if it is a category.
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3.2 Main Results

Theorem 3.1.

1. For each functor X from I to Top, a limit (U, 7) of X exists and is unique up to

homeomorphism.

2. If each of X and Y is a functor from 1 to Top, (L(X),7%) is a limit of X, and
(L(Y),nY) is a limit of Y, then each morphism 1 : X — Y of Top" induces a continu-
ous function L(n) : L(X) — L(Y') unique in having the property that w} o L(n) = n;om:

for each object i of 1.

3. Let D be a subcategory of Top', (L(X),nX) be a limit of X for each functor X of D,
and L(n) be as in @ for each morphism 1 of Top' in D. Then L : D — Top is a

functor.

Proof.

To prove , we note that I is what is known as a small category, meaning its object
and morphism classes are sets. It is well known that a limit of X exists in Top for every
functor X from a small category (see [9], p. 133) (when a category has this property we say

it is small complete or complete). The canonical construction of such a limit is

U={pe H X; | Xa(py) = p. for every morphism « : y — z of I}
i€O(1)
(Where O(I) is the object class of I). The topology for this space is the subspace topology
inherited from the product topology. (We will later be using a different, homeomorphic con-
struction of the limit of a functor X.) The construction for 7 is given by defining m;(p) = p;

for each object 7 of I and each p € U.

Category theoretical limits are well known to be unique up to isomorphism (homeomor-

phism in this case) in all contexts (see [9], p. 69).
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is well known (9], p. 114 exercise 3). The outline of the proof is that for each morphism
n:X =Y of Top', (L(X),n0r¥)is a cone to Y, and since (L(Y),7Y) is a terminal cone

to Y, there is a unique morphism L(n) : L(X) — L(Y) having the desired property.

(3) is a slight generalization of a special case of a well known theorem of category the-
ory ([9], p. 114 exercise 3) that says that if a category C is small complete and I is small
then L : C' — C is a functor (our modification is to extend this notion to the case where
the map is defined on a subcategory of CI). We give the proof here although it is essentially
the proof for the non-generalized version.

X _ 1 s b's

Let X be an object of D, i be an object of I. ¥ o lyxy=m =1x,0om = (1x);om; and

L(1x) is the unique morphism such that 7;* o L(1x) = (1x); o 7%, so L(1x) = 1p.x). Let
eachof n: X - Y and 0 : Y — Z be a morphism of D. Then L(0) is the unique morphism
from L(Y) — L(Z) such that for each object i of I, 77 o L() = §; o7} . Furthermore L(n) is
the unique morphism from L(X) — L(Y) such that for each object i of I, ¥ o L(n) = n;om;~.
Let 7 be an object of I. Then:

70 L(0)o L(n)=0;om o L(n) =0;0on;om = (Gon)om

i

L(0 o n) is the unique morphism from L(X) — L(Z) such that for each object x of I,
nZoL(0on) = (fon),omX. We have that L(#)oL(n) has this property, so L(#)oL(n) = L(fon).

So L is a functor. O]

Definition Define GLim to be the subcategory of Top' of which a functor X : I — Top

is an object only in case for each n € w:
1. X(nn+1) is a subspace of X, X X, ;1.

2. Xy, : Xtnng1) — X, is the restriction of the projection map onto the left coordinate.

39



3. Xtnt1)s + X@mnt1) — Xpi1 is the restriction of the projection map onto the right

coordinate.

A natural transformation 7 is a morphism of GLim if 7 is a morphism of Top® with source

and target belonging to GLim.

Note that if X is an object of GLim and for each n € w we define r, = X, ,41), then
{ X new, {7 tnew is a generalized inverse sequence. Then lim{ X, 41 }new = Iim{ry }rew =
— —

limr.
«—

Theorem 3.2. Let X be an object of GLim. Define ©~ such that for each n € w,

X Hm{ X ni1)fnew — X is defined by X (p) = pn for each p € Em{ X 41 Frew,
— —

X
(n,n+1

X

and w ) I}LH{X(n,nJrl)}nEw — X(nnt1) @5 defined by W(n’nﬂ)(p) = (Pn,Pns1) for each

p € Im{ X ni1) bnew- Then (Um{Xpmni1) new, 7X) is a limit of X.
— —
Proof.
Claim. (im{X(,nt1)}new, 7" ) is a cone to X.
<—

Proof. We want to show the following diagram commutes for each n € w:

lim{ X 1
p, { (n,n+ )}nau

X X 7rX
™ lw("’"+1) n+1

X(n,nJrl)
Xn*/ >('rH»l

- ~

Xn Xn+1

Let p be in im{ X, n41) }new. We have that
%

=p, = T (p).

40



So X, o W(); 1) = mX. Also,

(X(n+1)* © W();,n+l)>(p) :X(n+1)*(7()fl,n+1)(p)) = X(n+1)*(pn;pn+1)
=Pnt1 = Ty (P).
80 Xnt1y- © Ty i1y = Tipr- 50 (M {X(nn11) bnew, 7%) s a cone to X O
, —

Claim. (Um{X(,;11) }new, ™) s a terminal cone to X, that is, if W is space with family o
<—

such that for each object i of I, a; : W — X; is a continuous map, such that

commutes for each n € w, then there is a unique v : W — lim{X(n’nH)}new such that
(—

X oy = q; for each object i of 1.

Proof. Let W be such a space with « such a family. Define v : W — lim{X, (n,nﬂ)}new such
—

that for each w € W, n € w, y(w),, = a,(w).

v is well defined: For all n € w,

(V(W)ns Y(W)nt1) =(an(w), atngr(w))
=((Xn. © ¥(nn+1)) (W), (X(nt1)* © Anpt1)) (W)
=(Xn, (a(n,n-H) (w)), X(n+1)* (O‘(n,n-I-l) (w)))

=(n,n+1) (U)) € X(n,n+1) .
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So y(w) € Im{ X nt1) }new-
H
v is continuous: By the fact that it is the product of continuous maps.

v has the desired commutative property: Let w be in W. Then:

3
O
=2
&
I
3
=)
&
I
—~
)
—~
&
S—/
I
o
2
£

(M
So X oy = a,. Furthermore:

X (T ey © (W) =X (7 iy (Y(W))) = Ko (3 (W) Y(W)i41)
=Xo. (o (W), ang1 (w)) = o (w)
=(Xo. 0 i) (w)
=X (@(nnt1) (W),
X1y (T nin) © N (W) =X 1y (1) (VW) = Xy (VW) Y(w)n1)
=X+ (0 (W), Onp1(w)) = o (w)
=Xty © Q) (w)

:X(n+1)* (O‘(n,n—I—l) (w))

Since X,,, and X(,41)- are the projections onto the first and second coordinates respec-
tively for a subspace of X, x X, .1, and Xn*((ﬂ@%l) oY)(w)) = Xy, (@mnir)(w)) and

X(n+1)*((ﬂ-€r(1,n+l) oy)(w)) = X(n+1)*(a(n,n+1)<w>> we have that (ﬂ-()?(l,n—‘,-l) oy)(w) = a(n,n+1)(w)

for each w € W, and hence W()fl’nﬂ) 0 = Qnnt1)-

v has this property uniquely: Let 7' : W — lIm{X, ni1)}new have the property that
H

42



X onf — b's
mr oy =, and Tinnt1) © Y

"= anny1) for each n € w. Then for all w e W, n € w,

(V(W))n = (y(w)) = (7 07) (W) = (W) = (w07 )(w) = m (' (w)) = (7 (w))n
So y(w) = v'(w) and thus v = +'. Thus (Um{ X, nt1)fnew, ™) is a terminal cone. O
‘—
Thus (Um{ X n+1) }new, 7 ) is a limit of X. O
—

Corollary 3.2.1. L(X) = li;n{X(an)}new and L(n) as in part of Theorem defines a

functor L from GLim to Top.

Proof. From Theorem (Em{ X (nn+1) frews %) is a limit.
«—

Each morphism 7 : X — Y of GLim is a morphism of Top', so part [2| of Theorem
allows us to define a continuous function L(n) : L(X) — L(Y) uniquely having the property

that ) o L(n) = n; o m;* for each object 7 in L.

So by part [3] of Theorem [B.1], L is a functor. O

Note that in our construction of Top' and GLim, we have imposed none of the stan-
dard conditions, such as requiring that each factor space be a compact metric space or that
each bonding map be upper semi-continuous. Because of the general nature of Theorem
part [3, we may replace GLim with any subcategory of Top® we desire and achieve the same
result. For example, if we define GLim¢ et vsc to be the subcategory of GLim where each
functor maps each object n of I to a compact metric space and each object (n,n+ 1) of I to
a closed subset of X, x X1 (which is a graph corresponding to an upper semi-continuous
set-valued bonding map) then we can similarly construct a functor from this category of

inverse sequences to Top.

Theorem leads to a characterization of generalized inverse limits as “category theo-

retical” limits of functors in GLim, which can be thought of as inverse sequences of the
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form

N Xnnr1) Y
e N
Xpx Xy X(7L+1)* X(n+l)*
G
Xn Xn+1

with each X, ;1) the graph of a set valued map bonding X,, and X, 1, and X, , X(;41)-

the projections of this graph into the factor spaces.

Corollary 3.2.2. A space U is representable as a generalized inverse limit on factor spaces
{ X new if and only if for each n € w, there is a subset X(n i1y of Xy x Xpy1 so that if
X, Xnng1) = Xy and Xp1ys - Xung1) — Xpy1 are as defined earlier, X is a functor of

GLim having U as (the object part of ) a category theoretical limit.

Proof. Let U be a topological space.

( = ): Suppose U is representable as an inverse limit on factor spaces {X,}nen. Then
U is homeomorphic to liﬁl{X(n,n—Fl)}new where X(,, 41 is a subset of X,, x X,,;1. Define X,
and X(,41)- to be the projections onto the left and right coordinates, respectively. Then X
is a functor belonging to GLim having I(El{X (nn+1) fnew as a limit by Theorem . Since

U is homeomorphic to Bm{ X, n41) }new, U is a also a limit.
(—

( <= ): Suppose for each n € w, there is a subset X(,,41) of X, x X, 41 so that if
Xn, t Xongy) — Xy and X(pq1y« © Xnpt1) — Xpq1 are as defined earlier, X is a func-
tor of GLim having U as (the object part of) a category theoretical limit. By Theorem
, l{iﬁl{X(n,nH)}new is also a limit, and since limits are unique up to homeomorphism,
U and li%m{X(n,nH)}new are homeomorphic. So U is representable as the generalized limit

Em{ X (;n41) frew on factor spaces { X, }new. O
H

Another characterization arises as follows. (For the following, for a function «, im(«) is

the image of )
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Theorem 3.3. A topological space U is representable as a generalized inverse limit on factor
spaces { Xy, tnew if and only if there are continuous functions {@D();HH) U — X X Xt frew
such that 7 o w()wa) = m, 0 ¢()fl+17n+2) for each n € w (where m,, 7 are the projections
onto the left and right coordinates respectively), having the property that if W is a space with
continuous functions {amni1) : W — im(l/)()fwﬂ))}new such that T 0Q(nn41) = MO (n41n+2)

for each n € w, then there is a continuous function v : W — U uniquely having the property

that wé,n+1) 0 = Qnnt1) for each n € w.

v N
w()fmwrl) w()§L+1,n+2)
N
Xn X XnJrl XnJrl X Xn+2
~. -
N ~
Xn+1

Proof. Let U be a topological space and X; be a topological space for each i € w.

( = ): Suppose U is representable as a generalized inverse limit on factor spaces {X;}icw-
Then by Corollary for each n € w, there is a subset X, ,41) of X, x X, so that
if X, @ Xpny) = X and X1y 0 Xung1) — Xyq1 are as defined earlier, X is a

functor of GLim having U as (the object part of) a category theoretical limit. So there

X

are continuous functions ¢ : U — X, and @Z)(n ntl

) U — X@uns) for each n € w so
that (U,¢%) is a category theoretical limit. Let W be a space with continuous functions
{omngry : W — im(w()f;’nﬂ))}new such that 7 o a(yni1) = T © Qug1,n42) for each n € w.
Note that for each n € w since im(@b()g’nﬂ)) C X(nn+1)s Qnn+1) 1s also a continuous func-
tion into X, n41). For each n € w define a,, = 7, 0 1. Then for each n € w, note
that X, = mx,...

) and Xq1)- = 7 50 Xy, © Q(npt1) = T O Q(npi1) = Qo and

"]
1 X(n,n+1)7

Xnt1)* © Annt1) = T O Qnnt1) = Ta O Ang1n42) = Ung1. SO (W, ) is a cone to X, and thus

since (U, ¢™X) is a category theoretical limit of X, there is a continuous function v : W — U
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uniquely having the property that ¢ oy = «a,, and w()r(wwl) 0 = Qnn+1) for each n € w.

So the family {@D()fmﬂ) : U — X, X Xyi41 bnew has the desired properties.

( <= ): Suppose there are continuous functions {w()fL nt1) U — X, X Xni1}new such
that 7* o @/J()fwﬂ) =T, 0 ¢()fl+1,n+2) for each n € w (where m,, 7 are the projections onto the
left and right coordinates respectively), having the property that if W is a space with con-

tinuous functions {o @ ni1) 1 W — im(zﬁ(X

1)) ncw Such that ™ o Q. pi1) = i © Ana1n+2)

for each n € w, then there is a continuous function v : W — U uniquely having the prop-

erty that w()fmﬂ) 0y = Qun41) for each n € w. For each n € w, define X U = X,

X

by v = 7 0y define Xueny = (64

), define X,,, = m|x, ., and define

Xns1) = T|xnsny- Note that X is a functor of GLim. The pair (U,4*) is a cone to

X since Xy, o wgfz,n—l-l) = T 0 ¢()a(q,,n+1) = ¢y and Xup1)- 0 w()i,m-l) =7o w(}fz,nﬂ) =7 o
¢()7(z+1,n+2) = 77Z}’f)l(+1'

Claim. (U,¢™) is a terminal cone to X.

Proof. Let W be a topological space and « be a family such that for each n € w, a,, :

W — X, and apps) 0 W — X(nn41) 18 each a continuous function, X,,, o apmni1y) = an
and X(,11)« © Qnnt1) = Qni1. Since X pp1) = im(¢é7n+1)), we have a family {a g, 41
W — im(w()fw 1)) }new of continuous functions with the desired domain and codomain, and

for each n € w:

*
T O C&(pnt1) = X(n+1)* O U(nnt1) = COny1 = X(n—i—l)* O O(n+1,n+2) = Tx © A(nt1n+2)-

So by assumption there is a continuous function v : W — U uniquely having the property

that ¢é7n+1) 0y = Q(nnt1) for each n € w. Thus,

X X
wn O = Ty 0 ¢(n,n+1) O = Tx O O(nn+1) = Xn. © X(n,n+1) = .-
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So (U, %) is a terminal cone to X. O

So (U, %) is a category theoretical limit of X, so by Corollary U is representable

as a generalized inverse limit on factor spaces { X, }rew- O
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3.3 Adjoint Pairs

It is well known that every topological space U can be realized as a traditional inverse
limit where all the factor spaces are U, by letting each bonding map be the identity. We
intend to show that this idea induces a functor from Top to GLim, which together with the

functor L forms what is called an adjoint pair.

Definition Let each of C and D be a category and each of F': C — D and G: C — D be
a functor. (F, @) is said to be an adjoint pair if for each object x of D and object y of C,
there is a bijection 7, : D(F(z),y) — C(z, G(y)) such that for each morphism « : x — 2’

of C and each morphism 3 : y — ¢’ of D, the following diagram commutes:

nz/y

D(F(a'),y) % C(a', G(y))
por

D(F(z),y) — C(z,G(y))
LB* lG(ﬁ)*

D(F(z),y) —*~ C(z,G(y))

Where for each morphism v : x — y of a category A, 7. : A(z,2) — A(z,y) is left
composition by 7, and v* : A(y,z) — A(x,z) is right composition by «. Adjoint pairs
describe a relationship between functors which is similar to but weaker than the relationship
functors have which map between isomorphic or equivalent categories. If (£ G) is an adjoint

pair then F'is said to be left adjoint to GG, and G is said to be right adjoint to F.
We begin by defining a functor from Top! to its subcategory GLim.

Theorem 3.4. Let I : GLim — Top' be the inclusion functor. For each functor X in Top!,

define ¢ so that for each n € w, ¢X = 1y, and ¢€§L,n+1) 1s defined so that qbffwﬂ)(p) =

(X (), X(ns1)-(p)) for each p € Xuni1y. For each functor X in Top' define P(X) so

that for each n € w, P(X), = X,, and P(X)(nnt1) is the space im(¢7

(n,n+1)) endowed with
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the subspace topology inherited from X, X X,y1, and for each n € w define P(X),, and

*

P(X)n41)+ to be the projection maps onto the left and right coordinates. Then:

1. For each morphism n: X — Y of Top" there is a morphism P(n) : P(X) — P(Y) of

GLim uniquely having the property that I(P(n)) o ¢ = ¢¥ on.
2. P is a functor from Top' to GLim.

3. ¢ is a natural transformation from the identity functor on Top! to I o P.

4. For any functor X or morphism n of GLim, ¢!X) = lixy, PI(X)) = X, and
P(I(n)) =n.
Proof.

To prove , let n : X — Y be a morphism of Top', and define P(n) so that for each

n € w, PN)y, =n, and P(N)mnt1) = (M X Nnt1) )
P(X)(n,n+1)

P(n) is well defined: We want to show that (n,(a),nn41(b)) is in P(Y)(n41) for each

((I, b) € P(X)(n,n+1)- Since (aa b) S P(X)(n,n+1)a (CL, b) € im((bg;,nJrl)% 50 ((I, b) = éi,n+1)(p) =

(Xn. (P), X(ni1)+(p)) for some p € Xy n11). S0 a = X, (p) and b = X(;,11)«(p). So we have:

(M (@), M1 (D)) = (10 (X, (P))s M1 (X 1)+ ()
=((mn © X0, )(P); (M1 © Xnp1)+) (p))
=((Yn. © Nn,n41)) (P); (Yins1)» © Nnms1)) ()
=(Yo. 1) (P)): Yint1) (nnt1)(P)))

:¢5L,n+1)(77(n,n+1)(p)) € im(gbzz,n—&-l)) = P(Y)(n,n+1)-

P(n)nn+1) 1s continuous since it is constructed from continuous functions using continuity-

preserving operations. So P(n) is well defined.
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Let n be in w and p be in X, ;,41). Then:

(I(P(n)) © &™)ty (0) =(L(P(0))nn41) © Prins1)) (P)
=I1(P(1) 1) (Dnnin)(P))
=I(P(1)nn+1) (Xn. (), X(n11)+ (D))
=10 (Xn. (9)); M1 (X 1) ()
=((11n © X )(P); (1 © X(ns1)-) (p))
=((Ya, ©1nns1)(P); (Yint1) © Mnint1)) (P))
=Y. (1) (P)): Yoty (nnt1) (1))
=0 (nne1) Nnms1)(P) = (Dnns1) © Mnnt1)) (P)

=(¢" oM mns1)(P).
So (I(P(n)) © X)mnt1) = (¥ ©N)mmn+1)- Let p be in X,,. Then:

(I(P(n)) 0 ¢™)n(p) =(L(P(n))n o ¢ )(p) = (0 1x,)(P) = 1 (p)

=(1y, o) (p) = (¢, 0 m)(p) = (¢" 0 N)u(p).

So (I(P(n)) 0 ¢*)n = (6" o n)y. Thus I(P(n)) 0 ¢ = ¢" on. Let v: P(X) — P(Y) be a

morphism of GLim such that I() o ¢ = ¢¥ on. Let n be in w. Then:

IV)n =I(Y)nolx, =I(V)nod; =)0 ¢™)n = (8" on),
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Let (a,b) be in P(X) 4, 11). Then (a,b) = ¢

(n,n+1)<p) for some p € X(n,n+1). So:

I(V) 1) (@, 8) =I (V) 1) (S 1) (P) = (V) 1) © Brm1)) (P)
=(1(7) © &™) mn+1)(P) = (8" © M) nns1) (1)
=(I(P()) © 6™ )1y () = (L(P(1) rn1) © Dns1) (P)
=1(P(1))(n,0+1)((nns1)(P) = L(P(1) 1y (@, b)

= 1)ty =1(P(0) (mn+1)

= Ynnt1) =P M) (nnt1)-

So 7 = P(n) and P(n) has the desired property uniquely.

For , let n be in w, each of X,Y,Z be a functor of Top" and each of n : X — YV

and 0 : Y — Z be a morphism of Top!. Then:

(P(1x))n =1x, = Lp(x), = (Lp(x))n;

(P(1x))tmm1y =(1x, X 1x,.,)

= 1P msny = (LP(X))(nt1)

(P(X)) (n,n41)
(PO on)n =(00n)y =0non,=P(0),oPn),=(PO)oPn)

P(fo n)(n,n+1) =((0 on)n x (0 0n)nt1)

(P(X))(n,n+1)

= eno n) X en O M ’
((On 0 1n) X (Ong1 © 1ns1)) PO

=(0n X Opy1) 0 (Mn o
( +1) © (71 © 1) (P(X)) (nont1)

:(971 X gn-&-l)‘ © (nn © 77n+1)‘

(P(Y))(n,n+1) (P(X))(n,n+1)

E D) = & F Dwnin)

:(Pw))(n,mi—l) © (P<77>>(nan+1) = (Pw) °© P(n))(n,n+1)-

(Since im((n, © Mn41)
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So P(1x) = 1p(x) and P(§ on) = P(f) o P(n). So P is a functor.
follows directly from |1| and .

For , let X be an object of GLim and n : X — Y be a morphism of GLim. Then
Xnnt1) © Xy X Xpq1, X, is projection onto the left coordinate, and X, 1)+ is projection

onto the right coordinate for all n € w (and thus /(X)) has those same properties). We have

that ¢n") = 1((xy), for each n € w and ¢\, 1) (a,0) = ((I(X))n. (a, ), I(X)(s1)-(a,0)) =

1(X)

a,b) for all n € w. So Dinns1)

= LX)y a0d thus ¢’ = 15 (P(I(X)))n =

[(X)), = X, for all n € w while (P(I(X)))gnsn) = (o)1) = (L)) =

(

(L(

(I(X))nnt1) = X@mnsr) for all n € w. So P(I(X)) = X. We have that (P(/(n))), =
(£(

I(n))n = ny for all n € w, and for all n € w:

(PUM))mnt1(@,0) = (L)) x (L(1))n+1) (P(I(X)))(nM)(a’ b)
=((I(m)nla), (1(1))n+1(b))
=(((I(m)n o (1(X))n.)(a;b), (L(1)n+1 © (I(X))n41))(a, D))
=(((L(Y ). o L(M) 1)) (@, 0), (1Y) nr1y © (L)) 1)) (@, b))
=(I(1)mn+1)(@,b) = Nnni1)(a,b).
So P(I(n)) =n. O
Theorem 3.5. (P, 1) is an adjoint pair.

Proof. For each p € GLim(P(X),Y) — Top (X, I(Y)) define xy(p) = I(p) o ¢*.

Oxy is an injection: Let each of o, p be in GLim(P(X),Y’) (that is, each of o, p is a mor-

phism between generalized inverse sequences P(X) and Y of GLim) with 0xy (0) = 0xy (p).
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For each n € w, ¢ = 1y, so:

0, =0,01x, =0,0¢, =(00¢"), = (Oxy(0))n

=(Oxy(P))n = (po ¢ )n = pno @y = puolx, = pn.
Let (a,b) be in P(X)@n41). Then (a,b) = gb(n nt1)(p) fOr some p € X pni1). So:

Tnnt1) (@ 0) =0(n11) (D00n51) () = (Ommt1) © Glnin)) (D)
=(00 ™) unn)(p) = (Oxv(9)) (unt1) (D)
=(Oxy (0) () = (00 ™) rni1y (1)

=(Pnint1) © Donns 1) (P) = Plint1)(inmsny (D))

:p(n,nJrl) ((I, b)

SO O(nnt1) = Pnn+1) and thus o = p. So Oxy is an injection.

fxy is a surjection: Let ¢ be in Top'(X, I(Y)). Note ¢!¥) = 1,y since Y is an object

of GLim. Then:
Oxy(P(€) =1(P(§) o ¢ = ¢ ot =1;y)0& =¢.

So Oxy is a surjection.

Having shown that fxy is a bijection for each object X of Top' and object Y of GLim, it

remains to be shown that for a morphism a : X — X’ of Top! and a morphism 3:Y — Y’
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of GLim, the following diagram commutes:

GLim(P(X"),Y) X Top! (X', I(Y))

L

GLim(P(X),Y) 22 Top!(X, I(Y))

lﬁ* Lf(ﬁ)*

GLim(P(X),Y") 2 Top!(X, I(Y"))

Let o be in GLim(P(X’),Y). Then:

(0" 0 bxy)(0) =a* (B (0)) = " (I(0) 0 ¢¥') = I(0) 0 6¥ 01
—I(0) 0 I(P(a)) 0 X = I( 0 P(a)) 0 6 = I(P(a)" (7)) 0 6"

=0xy(P(a")(0)) = (Oxy o P(@)")(0).

So a*ofxy = Oxy o P(a)* and thus the top square commutes. Let p be in GLim(P(X),Y).
Then:

(1(B)+ 0 Oxy)(p) =I(B)«(Oxv(p)) = I1(B):(I(p) 0 &™) = 1(B) 0 I(p) 0 ¢
=I(Bop)o¢™ =0Oxy(Bop)=0xy(B(p)) = (Oxy 0 B)(p)-

So I(B)« 0 0xy = Oxy: o B, and thus the bottom square commutes. So (P, ) is an adjoint

pair. ]

Define a functor A from Top to Top' so that for each topological space U, (A(U)), =
(AU)np+1y = U and (AU))n, = (AU))m+1)+ = 1y for each n € w. It is easy to verify

that this is a functor, known as the diagonal functor. Then the following is well known ([9],

p. 88 table):

Lemma. Any limit functor from Top" to Top as described in Theorem is right adjoint
to A.

o4



We may then define a functor L/ from Top' to Top so that L'(X) = L(X) for every
object X of GLim, and L(Y') is the canonical limit described in the proof of Theorem
part [Il Note then that L = L' o I.

Theorem 3.6. (Po A, L) is an adjoint pair.

Proof. 1t is easy to verify that since (A, L’) is an adjoint pair and (P, ) is an adjoint pair,
then (Po A, L' ol) = (PoA,L) is an adjoint pair. Indeed this is true in general for two

adjoint pairs that share a category in common. O]

Note what P o A does to a topological space U. The object A(U) represents the inverse

sequence below:
e U e
NN
e U U e
This is of course not a generalized inverse sequence, so
(PAW)))nneny () = (L (1), L:(w)) = () for all n € w,u € U.

So P(A(U)) is the generalized inverse sequence where each factor space is U and the graph
of each bonding map is the diagonal graph, which corresponds to the identity bonding map.
This inverse sequence is known to have inverse limit homeomorphic to U. So P o A can be
thought of as the functor which sends each topological space U to this generalized inverse
sequence and each continuous function a : U — V to (P o A)(a) where for each n € w,
(PoA)(a), = aand (PoA)(a)mmny) is defined by (P o A)(a)mnt1)(u) = (a(u), a(u)) for
all w e U.
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