
Exploring Index and Query Optimization Techniques for Database Applications

by

Liang Tang

A dissertation submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama

May 7, 2016

Keywords: Database Query Optimization, Spatial Database, Social Network Analysis,

MapReduce

Copyright 2016 by Liang Tang

Approved by

Wei-Shinn Ku, Chair, Associate Professor of Computer Science and Software Engineering

Xiao Qin, Co-Chair, Professor of Computer Science and Software Engineering

Saad Biaz, Professor of Computer Science and Software Engineering

Hari Narayanan, Professor of Computer Science and Software Engineering

Abstract

Database index can be regarded as a data structure that speed up the data retrieval operations

on a database table. The cost of indexing in database is additional writes and storage space to

maintain the data structure. The created data structures in database are used to quickly query

data without having to search every row of table in most relational database management system

(RDBMS). The read and write performance of database is elevated by bringing in appropriate

indexing technique, given the specific data type. As a result, indexing technique plays a significant

role in database applications.

After index is built completely, database will be able to answer the query. Generally, a query

is a request for information from a database. It can be as simple as “finding the address of the head-

quater of company ZZ,” or more complex like “finding the average total amount of penalties for

football players who live in Auburn or Opelika, incur more than 3 penalties, and captain less than 2

teams.” In order to quickly resolve the query result, we raise the definition of query optimization.

The query optimization techniques try to determine the most efficient way to execute a specific

query by considering all the possible query strategies. The goal of the query optimization is to find

the way to process a given query in minimum time. The main contribution of this dissertation is to

explore and study out efficient indexing and query optimization techniques regarding the specific

problem. Three concrete database applications will be analyzed and explored, and indexing and

querying techniques will be proposed respectively in order to enhance the database performance.

First, two watchtower-based parameter-tunable indexing methods are introduced for efficient

spatial processing with sparse distributions of Points of Interest (POIs) by exploiting mobile users’

check-in data collected from the location-aware social networks. In the proposed frameworks, the

network traversal can terminate earlier by retrieving the distance information. More important,

by observing that people’s movement often exhibit a strong spatial pattern, we employ Bayesian

ii

Information Criterion-based cluster analysis to model mobile users’ check-in data as a mixture of

2-dimensional Gaussian distributions, where each cluster corresponds to a geographical hot zone.

Afterwards, POI watchtowers are established in the hot zones and non-hot zones discriminatorily.

Moreover, the optimal watchtower deployment mechanism is discussed in order to achieve a de-

sired balance between the off-line pre-computation cost and the on-line query efficiency. Finally,

the superiority of our solutions over the state-of-the-art approaches is demonstrated using the real

data collected from Gowalla with large-scale road networks.

Next, a novel probabilistic inference query machine is introduced to do the statistical inference

on social network. Social network analysis will be carried out, because it attracted more and

more interest from researchers due to the rapidly increasing availability of massive social network

data. The link prediction problem is one of the most fundamental problems in social network

analysis, and therefore has been extensively studied. In this dissertation, LinkProbe, a framework

to quantitatively predict the existence of links in large-scale social networks based on Markov

Logic Networks (MLNs) is designed and implemented. Differing from other probabilistic graph

models, such as Bayesian Networks (BNs) or Conditional Random Fields (CRFs), MLNs allow

undirected relationship with cycles and long-range (more than one hop) dependency, which are

essential and abound in social networks. The extensive experiments with real social datasets verify

the effectiveness and efficiency of our proposed framework.

Finally, a method to resolve the probabilistic skyline query problem is proposed by using

MapReduce programming model in a distributed machine environment. The method is able to

filter unqualified objects (not needed by users) during the early MapReduce cycle. Only qualified

objects is passed to compute the real probabilistic skyline probabilities. In order to let multiple ma-

chines filter objects simultaneously, high dimensional data is fetched by hyper-angular partitioning.

Several efficient filtering strategies are proposed based on the feature of the angular partitioning.

Comparisons against other State-of-the-art approaches are demonstrated in the experiments.

iii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor, Prof. Wei-

Shinn Ku. I have been fortunate to have an advisor who gave me the freedom to explore on my

own, and at the same time the guidance to recover when my steps faltered. I appreciate all his

contributions of time, ideas, and funding to make my PH.D. experience fun and productive. I

could not have had a better supervisor.

Besides, my co-advisor, Dr. Xiao Qin, has been always there to give me insightful comments

and encouragements for my research. I want to thank him for the weekly discussions that helped

me clarify tons of research issues and problems.

In addition, I must thank Dr. Haiquan Chen, who is a recent graduate in our research group.

He is one of the best teachers that I have had in my PH.D. life. He sets high standards for research

work and and guides me to meet those standards. My research manuscripts can not be accepted

without his constructive criticism, warm encouragement, and countless idea sparkles in our discus-

sions. Also, he carefully read endless revisions of my papers, correcting the grammar and verbal

problems. I am alway able to learn from him at every discussion.

My sincere thanks also goes to Dr. Ji Zhang, Dr. Min-Te Sun,who gave me a lot of supervision

and instructions. Dr. Zhang eagerly taught me much when I began touching the MapReduce

problem. At the very beginning of my PH.D. semester, Dr. Sun carefully helped me resolve

algorithm problems regarding spatial indexing.

Next, I am grateful to two amazing software engineering managers, Vijay Swamidass and

Ranjith Prubu, who recruited me to two awesome companies (Salesforce and Linkedin) respec-

tively as a software engineer intern, for their trust in my programming abilities.

My heartful thanks to my fellow lab mates, Jeff Wang, Jiao Yu, Zhitao Gong, Yusheng Ding,

Ting Shen, Wenlu Wang, Ya Chi Kuo for always being there during my wonderful days of PH.D.

iv

life. I also thank people who were not part of my lab but helped me out, including Song Gao,

Yuanqi Chen, Cong Xu, Zhuo Liu, Kang Sun, Ming Fang for all your support, and relevant aca-

demic discussions. I want to also thank my friends (Li Lin, Junchao Wei, Jue Wang, Hao Wu,

Matthew Golson, Madeline Arnall, Josh, etc. too many to list here but you know who you are!) for

providing support and friendship that I needed.

The best stuff throughout the past five years is finding my girl. Jiayi, who always loved and

supported me, made me understand what true love could be. She has selflessly give more to me

than I every could have asked for.

Lastly, I thank my mom, dad for all their love, dedication, support, and encouragement in

helping me achieve today of my own. They are always supportive with unconditional love when-

ever times are rough.

v

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . x

List of Tables . xii

1 Parameterized Spatial Query Processing based on Social Probabilistic Clustering . . . 1

1.1 Introduction . 1

1.1.1 The Motivating Problem . 1

1.1.2 Our Contributions . 2

1.2 Related Work . 4

1.3 The Uniform Watchtower Framework . 7

1.3.1 Anchor Point Deployment . 7

1.3.2 Watchtowers Construction . 8

1.4 The Hot Zone-based Watchtower Framework . 10

1.4.1 Probabilistic Clustering on Social Data 10

1.4.2 Hot Zone-based Watchtower Construction 12

1.5 Spatial Query Processing . 13

1.5.1 kNN query . 13

1.5.2 Range Query . 16

1.6 Performance Comparison of UW and HW . 17

1.7 Pre-Computation Overhead versus Query Efficiency 18

1.8 Index Maintenance . 20

1.8.1 Network Update . 20

1.8.2 POI Update . 22

vi

1.9 Experimental Validation . 22

1.9.1 Index Construction Overhead . 23

1.9.2 Query Efficiency of ROAD, UW, and HW 25

1.9.3 The Impact of λ and l on UW and HW 26

1.9.4 The Impact of Distance Bound bd . 26

1.9.5 The Impact of K+ and rd on HW . 28

1.9.6 Index Maintenance . 29

1.10 Conclusion . 30

2 LinkProbe: A Probabilistic Inference query machine on Large-Scale Social Networks . 31

2.1 Introduction . 31

2.1.1 Challenges . 31

2.1.2 Observations . 33

2.1.3 Our Approach . 35

2.1.4 Our Contributions . 35

2.1.5 Chapter Organization . 36

2.2 Problem Formulation . 36

2.2.1 Probabilistic Social Graphs . 36

2.2.2 Link Prediction . 37

2.3 The k-backbone Graphs . 37

2.4 Random Walk . 38

2.4.1 d-local Graphs . 39

2.4.2 Markov Chain Monte Carlo . 39

2.4.3 Connecting Local Graphs with the Backbone Graphs 40

2.4.4 Properties of the RWM Sampler . 42

2.5 Markov Logic Networks . 43

2.5.1 Markov Networks . 43

2.5.2 Markov Blankets . 43

vii

2.5.3 Markov Logic Networks . 44

2.5.4 Inference in Markov Logic Networks . 44

2.6 Inference . 46

2.6.1 MC-SAT+ . 46

2.6.2 Probabilistic Inference in LinkProbe . 48

2.6.3 Algorithm Description . 50

2.7 Error Analysis . 50

2.7.1 Error Analysis . 52

2.7.2 Error Upper Bound . 53

2.8 Experimental Validation . 54

2.8.1 k-backbone Graphs . 55

2.8.2 Memory Consumption . 56

2.8.3 Inference Accuracy . 56

2.8.4 Inference Efficiency . 57

2.9 Related Work . 59

2.9.1 Sampling in Probabilistic Databases . 59

2.9.2 Statistical Relational Learning . 60

2.9.3 Link Prediction on Social Networks . 61

2.10 Conclusion and Future Work . 61

3 An Efficient MapReduce Framework for Probabilistic Skylines over Uncertain Data . . 63

3.1 Introduction . 63

3.1.1 Our Motivating Problem . 64

3.1.2 Our Goal and Faced Challenges . 65

3.1.3 Our Contributions . 66

3.1.4 Organization of this paper . 67

3.2 Related Work . 67

3.3 Preliminaries . 68

viii

3.3.1 Probabilistic Skyline over Uncertain Data 68

3.3.2 MapReduce Framework . 70

3.3.3 Angular Partitioning . 71

3.4 The Naive Approaches . 71

3.5 Hybrid MapReduce Framework . 73

3.5.1 Overview of Our Approach . 73

3.5.2 Pruning Rules . 74

3.5.3 The First MapReduce Phase . 74

3.5.4 The Second MapReduce Phase . 80

3.6 PIVOT POINTS-BASED OPTIMIZATION . 82

3.6.1 Optimization Capability of One Pivot Point 82

3.6.2 Optimization Capability of Multiple Pivot Points 83

3.7 Experimental Validation . 85

3.7.1 Experimental Setup . 85

3.7.2 The effect of Number of machines . 87

3.7.3 Varying dimensions . 87

3.7.4 Varying Cardinality . 87

3.7.5 The Effects of Pivot Point . 88

3.7.6 Real Dataset Evaluation . 89

Bibliography . 91

ix

List of Figures

1.1 Anchor point deployment and watchtower construction on example road networks. . . 9

1.2 Mclust with various K+ values. 11

1.3 Network update example. 21

1.4 Index construction time and index size. 23

1.5 kNN Query efficiency comparison. 25

1.6 Range Query efficiency comparison. 25

1.7 Effects of λ and l. 27

1.8 Effects of bd. 27

1.9 Hit Rate Comparison. 28

1.10 Query efficiency comparison. 28

1.11 Index maintenance performance. 29

2.1 An example social graph. 32

2.2 Statistics on the Billion Triple Challenge (BTC) 2009 data set. 32

2.3 An example of a probabilistic social graph. 36

2.4 1-backbone. 37

2.5 2-backbone. 38

2.6 An illustration of the random walk Metropolis on a social graph. 39

2.7 An illustration of the sampling procedure in the MC-SAT+ method. 48

2.8 The k-backbone graphs of LJ. 55

2.9 The k-backbone graphs of HEP. 55

x

2.10 The impact of number of samples on inference accuracy for LJ. 58

2.11 The impact of number of samples on inference accuracy for HEP. 58

2.12 The impact of number of samples on inference efficiency for LJ. 59

2.13 The impact of number of samples on inference efficiency for HEP. 59

3.1 Example query 1 (uncertainty from different sources) 63

3.2 Example query 2 (uncertainty from different voters) 64

3.3 An overview of parallel skyline processing using MapReduce. 73

3.4 The visual exhibition of Optimization Capability. (a) A example shows how pivot

points speed up processing. (b) Optimization Capability derivation of one pivot point.

(c) Optimization Capability of multiple pivot point. 77

3.5 The visualization of data shape after the first MapReduce Phase based on the original

input data distribution. (a) Independent distribution. (b) Anti-correlated distribution.

(c) Correlated distribution. 80

3.6 The visual exhibition of Grid-based partitioning. 81

3.7 A synthetic experiment to show Optimization capability. (a) Optimization capability

given one random pivot point. (b) Optimization capability of multiple pivot points. . . 84

3.8 Vary No. of Machines . 85

3.9 Vary Dimension. 88

3.10 Vary Cardinality. 88

3.11 Pivot Point Experiment. 89

3.12 Real Data Experiment. 90

xi

List of Tables

1.1 The overheads of the ROAD and Islands approaches on the North America Road Net-

work (NA) (179,178 edges and 175,812 nodes) with 100,000 random synthetic POIs. . 2

1.2 Symbolic notations. 6

1.3 Experimental parameter values. 22

2.1 Data sets used in the experiments. 55

2.2 Number of people in the corresponding k-backbone graphs. 56

2.3 Memory consumption by LinkProbe. 56

2.4 Memory consumption by the MLN naive implementation. 56

3.1 Symbolic notations. 69

3.2 Experimental parameter values. 85

xii

Chapter 1

Parameterized Spatial Query Processing based on Social Probabilistic Clustering

1.1 Introduction

Due to the recent advances in wireless communication technology, mobile devices (e.g., smart

phones, tablets, etc.) with Internet access and positioning chips are significantly increasing in pop-

ularity. On the other hand, many vendors are providing various map and navigation services (e.g.,

MapQuest and Google Maps). As a result, we are witnessing the fast growth of location-based ser-

vices (LBS), which allow mobile users to issue spatial queries from their mobile devices based on

user-specified locations in a ubiquitous manner. Among all spatial queries, the k nearest neighbor

(kNN) query [71, 12, 46] and range query [65] are the important building blocks used to realize

LBS with more complex queries [51, 10, 27]. Therefore, the question of how to evaluate kNN

queries and range queries has received considerable attention from both industry and academia in

the past decade. One of the major challenges in the above problem is how to provide efficient

evaluation of the queries for large road networks with massive Points of Interest (POIs), especially

when the desired POIs are far away from the query point. Two of the well-known solutions that at-

tempt to address this challenge are ROAD [45] and Islands [36]. However, the significant overhead

limits their applications in practice, as listed in Table 1.1. For the North America Road Network,

ROAD requires about one hour for index setup while Islands needs more than 30 GB for index

storage (see Section 2.8 for details). Consequently, neither of them scale well towards large road

networks with massive POI data.

1.1.1 The Motivating Problem

Our motivating problem is twofold.

1

Approach Setup time Storage cost

ROAD ≈ 60 mins ≈ 35 MB

Islands ≈ 243 mins > 30 GB

Table 1.1: The overheads of the ROAD and Islands approaches on the North America Road Net-

work (NA) (179,178 edges and 175,812 nodes) with 100,000 random synthetic POIs.

• How can we efficiently process spatial queries on large road networks with massive POIs?

The inspiration of our solution is the road sign utilized in transportation systems. Such

signs are erected on the sides of roads, providing users the distance information from the

current location to a certain destination. Inspired by the above idea, we deploy watchtowers

(serving as distance signature) on road networks. As a result, without the need to expand

the network search to distant POIs or traversing any tree-based structure [32, 71] (e.g., the

R-tree), the network search can terminate earlier by utilizing the distance information stored

in the watchtowers in the proximity of the query point, which leads to a significant reduction

in search time. Unlike what Islands [36] does, we store distance information only on selected

anchor points in a parameter-tunable way for scalability.

• How can we take full advantage of the mobile users’ check-in data acquired from the popular

location-aware social networks to accelerate spatial query processing? By observing that

people’s movement often exhibits a strong spatial pattern, we use the probabilistic clustering

algorithm to model the mobile user check-in data as a mixture of 2-dimensional Gaussian

distributions where each cluster corresponds to a hot zone. Afterwards, watchtowers are

established in the hot zones and non-hot zones discriminatorily.

1.1.2 Our Contributions

In this chapter, we propose two watchtower-based, parameter-tunable frameworks (the uni-

form watchtower framework and the hot zone-based watchtower framework) to speed up spatial

query processing on large road networks. What distinguishes our work from other research efforts

is that in our proposed frameworks (1) watchtowers are deployed on road networks as distance

2

signatures in a tunable granularity without the need to maintain any tree-based structure for net-

work traversal, (2) we incorporate mobile users’ movement information (i.e., geo-social data) into

the construction of watchtowers by using probabilistic clustering, and (3) we derive the optimal

distance bound for setting up watchtowers to achieve a desirable balance between pre-computation

cost and on-line query efficiency. The major contributions of this research are as follows:

• We propose the Uniform Watchtower (UW) framework to deploy watchtowers in a parameter-

tunable manner for efficient evaluation of spatial queries.

• We provide the Hot zone-based Watchtower (HW) framework by incorporating mobile users’

movement information into the construction of watchtowers. To be more specific, We em-

ploy Bayesian Information Criterion (BIC)-based hierarchical clustering to model the mo-

bile users’ check-in data as a mixture of 2-dimensional Gaussian distributions without prior

knowledge on the number of geographic clusters. Based on the derived clusters (each cor-

responding to a hot zone), we deploy POI watchtowers in hot zones more densely than in

non-hot zones in a discriminatory manner.

• We derive the optimal distance bounds for watchtower distribution with regard to kNN and

range queries, respectively, so that (1) the POI watchtowers are deployed only in their spatial

proximity instead of throughout the entire road network and (2) a desirable balance between

pre-computation cost and on-line query efficiency can be achieved.

• We study the maintenance of our watchtower-based index structures and propose efficient

strategies regarding both network update and POI update. The experiment section verifies

the maintenance efficiency.

• We evaluate the performance of our proposed watchtower-based frameworks with ROAD

[45] and Islands [36] by extensive experiments using geo-social data and various real road

networks. The experiments show the superiority of our solutions over the state-of-the-art

approaches.

3

The rest of this chapter is organized as follows. Section 2 surveys related works. The uniform

watchtower framework is detailed in Section 3. In Section 4, we introduce the hot zone-based

watchtower framework. The on-line query algorithms under our proposed frameworks are pre-

sented in Sections 5. In Section 6, we discuss the performance difference between the two pro-

posed frameworks. In Section 7, we derive the optimal deployment of watchtowers to achieve a

desirable balance between pre-computation and on-line query performance. In Section 8, we elab-

orate on index maintenance. The experimental validation of our design is presented in Section 9.

Section 10 concludes this chapter.

1.2 Related Work

During the past decade, kNN query has been extensively studied and applied in various

location-based service applications. Jensen et al. [38] proposed a data model with definitions

of abstract functionality needed for moving kNN queries in road networks. For answering spa-

tial queries on road networks, Papadias et al. [65] developed an Euclidean restriction framework

and a network expansion framework to efficiently prune the search space. Based on the proposed

frameworks, solutions for nearest neighbor queries are designed in the context of spatial network

databases. In addition, because, for most users, the final goal of performing a kNN search is often

to travel to one of the POIs of the search result, Ku et al. [43] introduced a solution for finding

nearest neighbors in terms of travel time. They designed a novel travel time network, which in-

tegrates both spatial networks and real-time traffic event information. Based on the travel time

network, algorithms were developed to provide adaptive nearest neighbor search results.

However, many of the existing kNN solutions [46, 12, 71, 38, 65] have been shown to be

unscalable to large networks. Consequently, several approaches which pre-computed query results

for potential searches in the future were proposed to improve kNN query efficiency. For example,

a network Voronoi diagram-based approach, named Voronoi-based Network Nearest Neighbor

(VN3), was presented in [41], which partitions a large network into small Voronoi regions and pre-

computes distances both within and across the regions. VN3 can tackle sparse datasets; however, it

4

cannot handle medium and dense datasets efficiently due to its high pre-computation and storage

overhead. A kNN query solution named SPIE was presented in [34], which indexes the network

topology based on a novel network reduction technique. The approach simplifies the network by

replacing the graph topology with a set of interconnected tree-based structures with pre-computed

NN results stored in tree nodes. kNN queries can be answered by accessing pre-computed results

maintained at some of the nodes in the tree hierarchy. Hu et al. [33] proposed an efficient in-

dex (distance signature) for distance computation and query processing over long distances. Their

technique discretizes the distances between POIs and network nodes into categories and then en-

codes these categories to accelerate the kNN search process. However, the index construction and

index storage costs of the approach are very high because every network node needs to create and

store abundant information. Therefore, the technique is not scalable. Sankaranarayanan et al. [72]

presented a framework, termed SILC, for resolving the shortest path and the distance between

every pair of vertices on a spatial network. SILC employs path coherence between the shortest

path and the locations of vertices on the spatial network, resulting in an encoding that is compact

in representation and fast in path and distance retrievals. Furthermore, in order to speed up kNN

search, Samet et al. [71] designed an algorithm to explore the entire network by pre-computing the

shortest paths between all the vertices in the network and employing a shortest path quadtree [30]

to capture spatial coherence. With the algorithm, the shortest paths between all possible vertices

can be computed only once to answer various kNN queries on a given spatial network. However,

similar to [33], the solution in [71] incurs high I/O and computation costs and does not scale to

large road networks. To overcome the shortcomings of solution-based approaches, Lee et al. [46]

proposed a query framework named ROAD, which organizes a large road network as a hierarchy of

interconnected regional subnetworks (called Rnet). ROAD maintains POIs separately from a given

network and adopts an effective search space pruning technique to enhance search performance.

Nevertheless, ROAD still needs to expand Rnets blindly towards all directions before retrieving all

the kNN results, which deteriorates its search performance.

5

Huang et al. [36] proposed the Islands framework which pre-computes the distance between

POIs and vertices with a given radius and stores the distance information on every vertex. How-

ever, the paper does not discuss how to select an optimal radius in practice. The main differ-

ences between our work and the work in [36] are listed as follows: (1) our frameworks provide a

parameter-tunable tradeoff between pre-computation overhead and on-line query efficiency based

on our watchtower deployment scheme and the setup of anchor points on road networks, (2) a

maximum distance bound for creating watchtowers can be derived to achieve an optimal bal-

ance between pre-computation and query efficiency, and (3) we take into account mobile users’

movement information during the construction of watchtowers. Our previous work [79] focuses

only on kNN query precessing. However, in this dissertation, we extend our frameworks in sup-

port of range queries with the detailed algorithm, derive the optimal distance bounds for practical

watchtower deployment, discuss the efficient strategies on index maintenance, and compare the

performance of our proposed query frameworks with that of the-state-of-the-art approaches using

extensive experiments.

Symbol Meaning

p An anchor point

t A watchtower

P A set of anchor points

λ The maximum distance between two adjacent anchor

points

SP (., .) The shortest path between two points

|SP (., .)| The distance of a shortest path

PSP (., .) The possible shortest path between two points

|PSP (., .)| The distance of SP(., .)
l The number of anchor points between two adjacent watch-

towers (the selecting parameter)

rd The network distance threshold defined for all hot zones

Table 1.2: Symbolic notations.

6

1.3 The Uniform Watchtower Framework

The fundamental idea of using watchtowers for spatial query processing is to distribute and

store the distance information (distance signature) of each POI on road networks so that the POI

lookup can terminate once it encounters enough watchtowers to answer the query. For any POI oi,

we use its watchtowers to store the distance information from this current watchtower to oi. With

watchtowers, a query can be answered efficiently by checking only a few watchtowers close to the

query point. In this section, we elaborate on how to distribute watchtowers to road networks in

an approximately uniform fashion, which involves two steps, (1) anchor point deployment and (2)

watchtower setup. Table 1.2 summarizes the notations in this chapter.

1.3.1 Anchor Point Deployment

A road network can be modeled as an undirected weighted graph G = (V,E), where V

denotes the set of nodes (road intersections or end points) and E signifies the set of edges. The

weight of an edge (w(v1, v2)) indicates its length, and O is the set of POIs in G. Given two locations

p and q, we use SP (p, q) to denote the shortest path between them and |SP (p, q)| to represent its

distance.

Given a road network G, we distribute anchor points over G based on the following two rules.

(1) For any node with a degree greater than 2 or equal to 1, we create an anchor point on it. (2)

For two adjacent anchor points i and j obtained in (1), if their network distance is greater than λ,

we add an anchor point every λ distance starting from i (or j) along the adjacent road segments so

that there are no two anchor points with a distance greater than λ. Therefore, in G, any query point

is able to find at least one anchor point within the distance of λ/2, where λ is a tunable parameter

set by applications or users.

Algorithm 1 describes how anchor points are constructed on a graph. First of all, every edge

is marked unvisited in the graph G. Then, a set P is initialized as empty. In addition, a set Vs is

created for all the nodes with a degree unequal to two. The deployment process starts from any

node vr in Vs. Then, an anchor point is deployed at vr and added to P. Afterward, we check all the

7

neighboring edges of vr to see if any of them has not been visited yet. If there is any unvisited edge,

exploration is executed from vr along the edge, until a node in Vs is reached. We split the explored

edge into several segments of length λ (the last segment could be shorter than λ), deploy an anchor

point every λ distance, add the anchor points into P, and mark the edge as visited. For other nodes

in Vs, the process repeats for exploring unvisited edges. Take Figure 1.1(a) as an example. We

first establish anchor points at n1, n2, n3, and n6, since their degree is greater than 2. Suppose λ

is 14. For any segment longer than λ, anchor points are deployed every λ distance along the road

segment.

1.3.2 Watchtowers Construction

The naive way to set up watchtowers is to treat each anchor point, which we obtained in the

above subsection, as a watchtower to store distance information of POIs. However, this design

is neither practical nor efficient because it requires a prohibitively huge amount of storage space.

Algorithm 1: Anchor point deployment

Input: A graph G = (V,E), a distance parameter λ
Output: The anchor point set P for G

1.1 foreach e ∈ E do e.visited← FALSE ;

1.2 P← ∅, Vs ← ∅ ;

1.3 foreach v with a degree unequal to 2 do Vs ← v;

1.4 foreach vr ∈ Vs do

1.5 P← vr ;

1.6 foreach edge (vr, ve) do

1.7 if (vr, ve).visited == TRUE then continue;

1.8 e← (vr, ve) ;

/* set up one anchor point p every λ distance along e

*/

1.9 repeat

1.10 deploy an anchor point p every λ on e, P← p ;

1.11 e.visited← TRUE ;

1.12 e← (ve, vj) ;

1.13 ve ← vj ;

1.14 until ve ∈ Vs;

8

13

n3

n2

n1

n4

n5

n6

Anchor Point

(a) Anchor point deployment.

POI

Anchor Point

Watchtowern1

n2
n4

n3

o1

o2

o3

1

t3 t6

t1 t2

t5t4

t9

t8

t7

3333

(O3 , 6) (O1 , 3)

(O2, 5.5)

(O1 , 3)

(O2 , 5.5)

(O3 , 9)

(O2, 2.5)

(O1 , 6)

(O3 , 6)

(O1 , 9)

(O1 ,6)

(O3 , 3)

(O2, 2.5)

(O3, 3)

(b) Watchtower construction.

Figure 1.1: Anchor point deployment and watchtower construction on example road networks.

Here, we propose a parameter-tunable approach to establish watchtowers. Specifically, for every l

adjacent anchor points, we set up a watchtower.

The following describes in detail how we distribute watchtowers. Given a POI oi, a Dijkstra-

based expansion from u is launched. The expansion searches the whole graph and sets up a watch-

tower for every l anchor points. When an anchor point is selected as watchtower tj for oi, a distance

tuple (oi, |SP (oi, tj)|) is added to this watchtower, where oi is the POI’s ID and |SP (oi, tj)| is the

shortest distance from oi to watchtower tj . We repeat the above expansion process for every POI

until we set up watchtowers for all POIs over the entire graph. Note that there could be many such

distance tuples inserted into a watchtower because an anchor point might be selected as a watch-

tower by more than one POI. If more than one tuple is added to a watchtower (i.e., this watchtower

9

is shared by more than one POI), we sort all the distance tuples by their distance |SP (oi, tj)| in

ascending order. Take Figure 1.1(b) as an example. The distance between two adjacent anchor

points is 1 and l is set to 3, i.e., only one anchor point serves as the watchtower for every three

adjacent anchor points. As a result, the distance information for o1, o2, and o3 are distributed along

the network. In watchtower t2, three distance tuples are stored, indicating that the distances from

t2 to o1, o2, and o3 are 6, 2.5, and 6, respectively.

To save the storage cost, we actually do not need to store all distance tuples because there

usually exists an upper bound of k, for example bk, for kNN queries. If bk = 10, only the top-10

distance tuples are necessary for storage in each watchtower because those tuples are sufficient

to answer the query. Therefore, the storage complexity of our watchtower-based approach can

be estimated as O(bk
∑

we

λ
), where

∑

we is the sum of the distances of all the edges in the road

network.

1.4 The Hot Zone-based Watchtower Framework

Many papers on social networks, such as [14, 54], reveal the fact of “Location Sparsity",

which means that most users who subscribe location-based services move only within limited

areas, i.e., people’s movement often exhibit a strong spatial pattern. This idea inspires us to refine

the Uniform Watchtower (UW) framework into the Hot zone-based Watchtower (HW) framework.

In this design, we first collect users’ movement data from a popular geo-social service, Gowalla,

and then cluster those data to derive hot zones of people’s movements (i.e., the geographic areas

where people are most likely to appear and launch spatial queries). The clustering process yields a

number of hot zones. Afterwards, based on the hot zones, we build watchtowers discriminatorily

for hot zones and non-hot zones over road networks.

1.4.1 Probabilistic Clustering on Social Data

People’s movement information can be obtained from popular geo-social services, e.g., Gowalla

and FourSquare. Here, we elaborate on how to apply Model-based Clustering (Mclust) [29, 28]

10

(a) Check-ins

−123 −122 −121 −120 −119 −118 −117 −116

3
4

3
6

3
8

4
0

t2

Classification

●●●●●●●●
●

●
● ●●

●

●
●●

●

●
●●●

●

●

●

●

●
●●

●●
●

●

●

●●

●

●

●●
●●●●

● ●

●●

●

●

●

●●●●●●
●●

●

●
●

●●

●●

●

●

●●●

●●
●

●

● ●●●●●●
● ●

●

●

● ●●
●

●● ●●
●

●

●
●

●

●●
●●●●
●●●●● ●

●

●●●
●

●●

●

●●● ●

●

●●

●●●

●●
●●●

●
●●

●

●

●
●

●●

●
●

●

●●●●●●●

●

●
●●

●

●

●●●
●●●

●●
●
● ●●
●

●

●●●

●●●●
●●

●

●
●

●

●

●

●
●

●●●●●●

●

●●

●

●

●
●

●
●
●

● ●
●

●

●
●

●
●

●

●

●●●●
●●●

●
●●

●●

●
●

●● ● ● ●●●●

●

●

●
●

●
●●

●●●●
●●

●

●●●

●

●

●
●●

●●

●

●
●
●●

●●
●

●
●●●●
●

●

●
●

●

●

●●●●● ●

●

●
●●

●
● ●●
●

● ●
●
●

●
●●

●

●●●
●
●●

●

●

●
●

●

●

●

●●●

●

●

●
●

●●●

●

●● ●

●●

●

●

●
●●● ●●●● ●

●●

●●

●●

●

●

●

● ●

●●

●

●●
●●●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●● ●
●●

●

●●

●

●● ●

●

●

●●●

●

●

●

●
●●●●

●
●●●

●

●

●●●●●●
●● ●●●

●●●
●

●
●

●
●

●●

●●

●

●●● ●
●●●

●
●

●●●●

●

●

●
●●

●●●
●

●●

●●
●

●●

●
●●●

●

●

●

●

●●

●

●

●

●●●

●

●
●

●●●

●

●

●

●

●● ●●●
●●●●●●

●

●●●
●
●

●
●
●●

● ●

●

●

●●

●

●●
●●

● ●●●●

●●

●

●

●
●●
●

●
●●

●
●

●

●

●●●
●●

●

●
●

●
●

●

●

●●

●
●

●●

●
●

●●●
●

●

●●●

●●
●

●

●●●
●

●

●●

●

●
●

●● ●
●

●●
●
●
●

●●●
●●●●

●

●

●●

●

●

●

●

●●

●

●

●●●

●●

●●●

●

●

●

● ●●●●
●
●
●●

● ●●● ●●
●
●

●

●
●

●

●●

●

●●●●

●

●● ●

●●●●
●

●●

●

●

●

●●●

●

●
●●●●●

●

●

●

●●●●●●

●●●●
●●

●
●

●

●

● ●

●
●● ● ●

●

●●●●
●●

●

●

●●●●
●

●

● ●

●●

●

●
●

●

●

● ●●

●

●
●
●●

●

●

●●

●●
●

●●

●●●
●
●

●●
●

●●
●●

●●

●

●●
●
●

●●●●

● ●
●

●●●

●

●
●
● ●●●

●●●
●●

●●●
●

● ●●●●
●●
●

●

●●

●
●

●

●
●
●●●●

●
●●
●●

●●

●

●

●

●
●

●

●
●●

●● ●●
●

●
●●

●

●

●

●

●●

● ●

●

●

●

●●

●

●
●

●
●

●●
●

●
●●

●

●●

●

●

●

●

●●

●

●●●

●

● ●●
●

●
●

●
●

●

●

●

●

●
●●●●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●●

●●●●
●●

●

●
●

●

●

●
●

●●●●●

●

●●
●●●
●

●
●●●●●

●● ●●●

●●

●●●

●

●●
●●

●

●●
●●

●

●
●

●●

●
●

●

●●

●

●

●

●
● ●●

●

● ●
●

●

●

●
●

●●● ●

●
●
●●

●

●●
●

●●
●●

●

●

●

●

●●●
●●●●

● ●
●●●●

●

●●
●●

●

●

●●●

●

● ● ●●

●

●
●●
●

●

●●●

●

●●●
●●●●●●●●

●
●●

●

●●

●●

●
●

●
●●

●
●

●●
●

●

● ●●● ●
●●

●

●● ●

●

●

●

●●●

●
●

●

●

●

●

●●

●
●

●
● ●●●

●●

●

●●
●

●

●
●

●

●
●●●●
●

●●

●●●

●

●●

●●

●

●

●
●
●
●●

●
●

●

●●

●●●●●●

●

●

●

●●●●●●

●●

●●●●

●

●

●●
●●

●

●●

● ●

●

● ●
●

●

●

●

●

●

●● ●●
●

●●

●

●

●

●

● ●●●●
●

●●

●

●
●

●

●

●

●

● ●

●
●

●●● ●

●

●●●●
●

●

● ●
●●

●

●

●●

●
●

● ●●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●●
●

●
● ●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

● ●●●

●
●

●

●

●

●

●

●●●●
●

●

●
●●●●●

●
●

●●●●●
● ●
●

●

●

●

●
●●●

●
●

●
●
●●
●

●
● ●

●● ●

●

●

●● ●

●●

●●

●

●

●

●

●
●●

●●

●
●

●
● ●

●●●
●

●

●●

●

●●●●●
●

●

●
●●●●●●

●●●●

●●●●●

●●●●

●●●

●

●●
●
●● ●●

●●
●

●●

●

●●
●

●
●●

●●

●●
●

●

●
●

●●

●●●

● ●
●
●

●●

●

●●●
●●

●

● ●
● ●

●●
●

●
●

●●●●
●●●
●●

●●

●●●
●

●

●

●
●●
●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●●●

●

●●●

●

●

●●●

●

●
●
●

●●
● ●●

●
● ● ●

●●● ●●

●

●●

●●●●
●

●●

●

● ●

●●

●
●

●

●

●
●

●

●

● ●●

●

●

●
●

●

●
●

●

●●●
●

●

●

●

●

●

●
●●

●

●
●

●●●●●●
●

●●

●

●●●

●

●

●●

●

●

●
●●
●
●●

●

●●●●●

● ●

●

●

●
●

●

●●

●●
●●

●

●

●

●
●

●

●

●

●
●●

●
●
●

●

●
●

●

●
●

●●●
●

●

●

●

●●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●●
●

●
●
●●

●
●
●

●

●

●

●

●

●●●
●

●●
●●

●●

●●●●

●

●
●●●

●

●●
●●●
●
●

●
●●

●

●

●●●●●●●●

●

●

●
●

●●
●

●

●
●

● ●
●

●●

●●

●
●

●

●

●●

●

●●●

●

●
●

●
●

●

●
●

●

●

●●
●●●●

● ●●●

●
●
●●

●

●●
●
●●

●

●

●

● ●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●
●

●●●

●

●
●●●●

●

●●

●

●●●
●

●●●
●

●●●
●

●

●

●

●
●

●

● ●
●

●
●

●

●●

●
●

●

●●●
●

●●●

●●● ●●

●●
● ●

●

●

●●

●

●
●●

●●

●

●●
●

●

●

●

●

●

●

●●●●

●

●●

●●
●

●
●

●●

●

●●

●●

●

●

●

●

●

●
●●●
●
●●●●●●
●●●

●● ●●●●●
●

●

●

●

●● ●●●●●● ●

●
●

●●

●
●
●●● ● ●●●● ●●

●●

●
●

●
●

●●
●●
● ●

●●●●
●

●

●

●
●

●● ●●

●

●●●

●●●●●
●●

●● ●
●

●
●

●● ●●
●

●●● ●
●●●●

●

●●
●

●

●

●
●●

●
●

●

● ● ● ●● ●●

●●●●

● ●

●

●
●

●

●●

●

●●

●

●●
●●

●
●●

●

●

●

●●

●

●

●

●●●

●●●●

●

●●
●

●

●

●●
●

●● ●●
●●●

● ●

●

●

●

●
●
●

●●● ●
● ●●

●
●

●●

●

●

●
●

●

● ●●
●

●
●
●

●
●

● ●●

●●●●

●

●

●
●●●

●

●●

●●●●

●

●

●

●●
●●

●

●

●●●
●

●

●●

●

● ●

●

●

●

● ●
●●●

●

●

●

●
●

●

●
●

●

●
●●● ●●●
●●

●●●

●

●
●●● ●●

●
●

●

●

●

●

●
●

●

●
●

●● ●●

●
●

●●● ●
●
●

●●
●
●

●

●

●

●

●●

●●

●
●

●●●

●●●

●●●●●
●

●●
●

●●

●

●

●

●●
●
●●●●

●
●●

●
●

●

●●●●●●●
●

● ●
●●

●

●
●

●

●

●
●

●

●
●●●

●●●●●●

●●

●

●
●

●●
●
●●

●

●
● ●

●

●

●

●

● ●
●●

●●
●●

● ●●● ●

●●

●

●

(b) K+ = 5

−123 −122 −121 −120 −119 −118 −117 −116

3
4

3
6

3
8

4
0

t2

Classification

●●●●●●●●
●

●
● ●●●
●●

●●●
●

●

●●

●

●

●●
●●●●

● ●

●●●

●

●●●●●●
●●●

●
●●

●●
●●

●
● ●●●●●●

● ●●

●
●● ●●
●
●●●●
●●●●● ●●●●
●

●●●●●●● ●●●

●
● ●

●

●

●●●●●●●●
●●
●

●●●
●●●

●●
●
● ●●
●

●

●●●
●
●●●●

●

●

●●●●●●

●●

●

●

●
●

●
●

● ●
●●
●●
●●●

●●●
●

●●
●●

●
●

●
●●

●●●●
●●●●●

●

●

●
●●

●●

●

●
●
●●
●●●●
●

●
●

●
●

●●
●●

● ●
●
●

●
●●
●●●

●
●●●

●

●●● ●●● ●

●●

●

●

●
●●● ●●●●

●●●

●●

●●

●

●

●

●●●

●

●
●●●●

●
●●●

●●●●●●●
●●●●
●

●
●

●
●●●●● ●
●●●●
●

●
●●

●●

●●
●●
●●●

●

●

●
●

●● ●●●
●●●●●●

●●●
●
●●
●●

● ●●

●●
●●

●●●●●

●
●●
●

●
●●

●
●

●

●

●●●
●●

●
●

●

●●

●
●

●●
●●●
●
●●●

●

●●●
●

●

●●●●●●

●
● ●●
●●●
●●● ● ●●●●
●
●
●●

● ●●● ●●
●
●

●
●

●●

●

●●●●

●

●● ●

●●●●
●

●
●●●
●
●●●●●

●

●●●●●●

●●●●
●●

●

●
●

●
● ●
●

●●●●
●●

●

●●●●
●● ●

●

●
●

●
● ●●

●

●
●
●●

●

●●●

●●

●●●
●
●

●●
●

●●
●●●

●●●●

● ●
●

●

●
●
● ●●●

●●●
●●

●●●
●

● ●●●●
●●
●

●

●
●
●●●●

●
●●
●● ●

●

●

●●●●
●
●

●

● ●●
●

●
●

●●
● ●

●●●

●

●●●● ●●
●

●
●

●
●

●

●

●
●

●

●
●
●

●

●

●●
●

●●●●●●●
●●●
●
●
●●●●

●●

●

●

● ●
●

● ●●

●

●

●
●●

●
●
●●

●

●●
●

●●
●●

●

●●●
●●●●

●
●●●●

●

●

●

●●●

●

● ●●
●●
●

●

●●●●●
●
●●●●●●●●

●
●●

●

●●

●●

●
●

●●
●

● ●●● ●
●●●●

●

●●

●

●

●●●●
●

●
●●
●●●●
●●●●●●

●
●
●●

●

●●●●●●
●

●●●●●●●

●●

●

●●

● ●

●

●
●

●

●

●

●

●
●●

●
●●●

●

●

● ●●●●●●●●
●

●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●●
●● ●●●

●

●●
●
●

●

●●●

●
●

●

●●
●●●●

●●
●●●●●
●●●●●

● ●
●●●

●
●
●●
●

●
● ●

●● ●

●
●●

●●

●●

● ●
●●

●
●

● ●
●●
●●●●●

●
●

●●●●●●

●●●●
●●●●

●●●

●

●●
●
●● ●●

●●

● ●●

● ●●● ●
●
●

●

●

●●●
●●

● ●
●

●●●
●●

●●
●

●

●

●
●

●

●
●

●●●

●●●

●

●

●●
●
●
●

●●
●

●
●

●

●

●●

●●●
●●

●●

●

●

●
●●

●

●●●●●●●
●

●●

●●

●
●
●●●●●

●●

●

●
●●

●
●

●
●

●
●●●
● ●●

●

●●
●

●

●

●

●

●●

●
●

●●
●●

●
●
●

●

●

●

●

●
●

●●
●●

●●●●

●

●●●

●

●●●
●
●

●
●●

●

●

●●●●●●●●
●
●

●●
●

●
● ●
●

●●

●●

●
●●●●●

●
●

●

●●
●●

●
●

●
●
●●

●

●●
●
●●

●

●

● ●●●●

●
●●

●

●

●●●

●●
●●●●
●●●●

●
●

●●●
●

●●●
●

●●●
●

●

●

●

●

●

●
●

●
●●

●●
●

●●● ●●

●

●

●

●

●

●●
●●

●

●

●

●●●
●● ●●●

●

●
●
●

●●

●

●● ●●●●●●●
●
●●● ● ●●●● ●●●
●
●●
●●
● ●

●●●
●

●

●
●●

●●

●

●●

●●
●

● ● ●
●

● ●●

●

●●
●

●

●●

●●●●
●
●●●●

●●●
● ●

●

●
●
●

●●● ●
● ●●●●●
●

● ●●
●

●
●
●

●

● ●●

●●

●

●

●

●●

●●●
●
●●

●

●
●

●

●
●●●

●

●

●
●

●
●●● ●●●
●●

●
●●●●

●

●

●

●

●● ●●●●●●
●
●

●

●●

●●

●
●

●●●

●●●●

●

●
●

●● ●●●●●●●
●

● ●
●●

●
●

●
●

●

●●●●●●●
●
●●

●

●
●●
●
●● ●●

●

●

(c) K+ = 10

−123 −122 −121 −120 −119 −118 −117 −116

3
4

3
6

3
8

4
0

t2

Classification

AAAAAAAAAAAAAAAA
AAAA
A
AAAAAAAA
A A
AAA
AAAAAAAAAAAAAAA
AAA AAAAAA

AAA
A
AA AAAA
AAAAAAAA AAAA
AAAAAAAA AA
A

AA
AAAAAAAAAAAAA

AAAAAAAA
A
A AA AAAAA
AAAA A
A
AAAAAA

AA

A

A

AAA
A
A

AAAA
AAA
AAA

A
AA

AA
A

AA AAAAAAAAAA
A
A
AAA

AA
AAAAAA

A AAAAA
A AAAAAAAAAAAAA

A

AAAAAAA

A

AA AAAAAAAAAA
AA

AA
A
A
AAA

A

AAAAA
AAAA AAAAAAAAAAAAA A
AAAAA AAAAA
A
A
AA
AA

AA
AAAA
A

A
AAAAAAAAAAAAAAA AAA

AAA AA
AAA
AAAAAA
A
AAAAAAA
AA
A
AAAA
AAAAAAA
AAAAAA
AAAA

A
A
AA
A
AAA
AAAAAA AAAAA
AAAAAAAAAAA
AA
AA

A

AAAA

A

AAAAA
AAAAAAAAAA

A

AAAAAA
A
A
A
AA
AA
AAAAAAAAAAAAA A

A
AA AAAAAAAAAAAAAAAAAAAAA AAAA
AAAAA AAAA

AA
AAAAAAAAAAA
AAA
A
AA
AAAA
A
AA
AAAA AAAAAA
A
A AAA
A AAAA AAAAAAAA AA
A
A
A
A
A A
A

A AAAA A
AAA

AAAAAAAAAAA
AAAAA
AA
A
A
A AAA AAA

A AAAAAA
A
AAA

AAAA A
AAAAAAAA
AA

A AAA

A

A AAA
A
A
A
AAAAAAAAAAAAAA

A
AAA
AA
AA

A AAA
A
A AAA AAAAAA
AA

A
AAAA A

A AAAAAA AAAAAA
AA
AAAAAAAAAAAAAAA
AA

A

AA

A
A
AAA
A

AA
AAA

A
A AAAAAAAAA
A

AAAA
AA
AA
AA

A
A
AAAA AAAAA AA
A

AAA
AA A
AAAAAA
AAAAAAAAAA

AAA AAAA
AAAAA
AA A
AA A
AA
AA

AA
A AAAAA AAA
AAAAAA

A AAAAAA
AAAAAAA
A
AAAAAAA
A AA

A AAAAAA
A

AAAAAA AA
AAAAAA

AA
A

A

AA
AAA

A
A

A

AAAAAAAAAA
A
A

AA
AAAAAAAA

A
A

AAAAAAAAAA
A
AAAAA
A
A
A

A
AA

A AA
AA AAAA
A
AAAA
A
AAA
AAAA

A

A

AAA
AA AAAA

A
AAA
A
AAAAAAA
A
A
A

AAAAAAAA A
AAAAAA A

A AA

AA

AAAAAA
A
A
AAAAA A
AA
AA
A
AAAAAA

A AAA
AA

AAAAAAAA
AAAA

A
A
AAAA

AAAA
AAAA
A

AA A A
AAA
A

A

A
A
A AAAAAAAAA

A

A AA
A
AA AAAAAAAAAAAAAAAA AAA

AA
AAA
AA
AAA
AAAA

AA
A
AA

AAA
A AAAA
A
AAAA

AA
AAAAAAAAAAAA
A

AA
AAAA AAAAAA

AA AAAA
AA

A

AA
AAAA
AA
A
AA

A

AAAAA AA AAAAAA AA
A
AAAA

A
A

A

AAAAAAAAAAAAA
AA

AAAA
AAAA

A

AAA AAAAAAAA
AAA

AA
A A
A
AAAAAAAA
AAA

AAAAAA
A
A

BBBBBBBBBBBBBB BBBB

B

BBBBBBBBBBB
BBBBBBB BBBBBBBB
B BB

B

BBBBBBBBB B

C CCC CC CCC
C

CC CCCCCCCC CC CCCCCCCCCC
CCCC CCC CCCC CCC CCCCCCCCCC CCC C
CC

D
DDD
DD

DDDD DDD DDD
DDD D

D

DD
DDD
DDDDDDD
DD
DDDD
DDD

D
DD
DDDDDD
D

DD
DDD
DDDD D
DDDDDDDDDDDDD
D

DD

D

DD DDD
DDDD
DDD
DD DD D
DDDDD
DD DD DDDD
D

D

DDDD
D DD
DD
DDD
DDDDD DDD

DD
D
DD DD
D

D
D DDDD
DDDDDD

DDDD DDDDDD DDDDDDDDDD DDDDDDD

D

DDDDDDDDDDDD
D

DDD
D
DD

D

D

DDDDD DDD
D

DDDDDDDDD
DDDD
D

D
D DD D

EEE

EE
E

E
E

E

E
EE

E

E
EEE
E
E
E
E

EE
E

E

EE
E

F

F

F

FFFFFFFFFFFF F

F
FF

FF

FFFFFFFFF
FFFFFFF

F
F

FF

GGGGG
G

GG

G
G

GG

G

GG

G

G

GGGG

G

G

G
G

GGGG
G

G

GGGGGGGGG

GG

GG

GGG
GG

G

G

GGGGGGGGGGGGG

G

G

GG

G

GG

HH

H

HHH
H

H

II
I

I

II I
III
II I

II

III

I

IIII
I I

II I
II I
I I

I I
II

JJJJ
J

JJJJ J
J

J JJ
J

JJ JJJJ
J

JJ
J

J
J

JJJJJJJ
JJ

K K
K

K KK

K

L L
LLLLLLLLLLL LLLL
L

L
LLLLLLL
LLLLLLLLLLLLLLLL
L
LLLLLLLLLLLLLLLLLL LLLLLLLLLLLLLLLLLLLL
LLLLLL
LLLLLLLL
L
LLLLLLLLLLL LLLLLL
LLLLLLLLLLLLLLLLLLLL
LL
L
L
LLLLLLLLLLLLLLLL
L
LLLLLL

L
LLLLLLL
L
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
LLL
L
LLLL
L
LL
LL
LLL
L
LLLLLL

L
L
L
L LL
LLLLLLLLLLL
L

L
L
LLL
L
LLL
L
LL
L
LLLLLLLL
L
LLL
L
LLLLL
L
LLLLLLLLLLL

L
L
L
L

L
LLLL

L
L
LLLLL LLLL
LLLL
LLLLLLLLL
L
LLLLLLL
LLL
LLLLLLLLL
L L
LLLL
L
LLLLL
L
LLL

LLL
LLLLLLLL
L
LLLLLLLLLLLLLLLLLL LL
L L

L
LLLL LLL L
LLLL

L
L

LL

L

L

L

L
LLL

L
L
LLL LLLLLLLL

L
LL
L
LLLLLLLLLLLLL LLLLLLLLLLLLL
LLLLLLLLLLLLL

LLLLLLLLLLLLL
L
LLLLL L
L
LL
LL
L
L
LL LL L

L
LLL
L
LLL
L
LLL L
L
LLLLLLLLL
L
LLLLLLLLLLLLLLLLLLLL
LLLLLLLLL
L
LLLL

LL
L
LLLLLLLLLLL
L
LLL
L

LLLLL
L
L

L
LLLL
LLL LLLLLLLLLL LLLLLLL
L
LLLLLLLLLLLLLL

LL
LLLLLLL LLLL

LLLLL LLLL LLLLLL
LLLLLL LLLLLL
L
LLLLLLLLLLLLL L
LLLLLLLLLLLL
LL
LL LLLLL LLLLLLLLLLL

L

L L
LLLLLLLLL
L
LLLLLLLLLLLLLLLLL
L
LLL
LLL
L
L

L
LL
L
LLLLLLLLLLLLLLL
L
LLLLLLLLLLLLLLLLLLLLLLLL LLLLLL
L
L
LLL
LLLLLL
L
LL
LL

LLLLL
LLLL
LL
L

L L
LLLLLLLLLLLL LLLLLLLLLLLLLLLLL
LLLLLLLLLLLLL
LLLLLLLLLL LLLLLL
L
LLLL
L
LLLLL
L
LLLLLLL
L
LLLLLLLL
L
LLLLLLLLLLLLLLLL
L
LL
LL
LLLL
L
L
LLL
L
LLLL
LLLLLLLL
L
L LLL
L
LLLLLLLL
LL
L
L
LLLL
L
LLLL
LL
LLLLLLLLLLLLLL
L
LLLLLLLLLLLLLLLLL
LLLLLLLLL
L
LLLL

LLLL
L
LLLLLLLL
L
LLLLLLL LLLLL
LLLLLLLLLL
LLLLL
L
LLLLLL

LLL
LL
L

LLLLLLLLLLLLL
L
LLLLL
L
LLLLLLLLLLLLLLLLLL
LLLLLLLLLL LLLLLLLLLL
LLLLLLLLL
LLL

L
LLLLLLLL LLLLLLLLLLLLLLLLLLL LL LLLLL LLLLLLLLL
LLLLL
L
LLLLLL
L
LL
L
LLLLLL
L
LLLLLLLLLLLLLLLLLLLLL
LL
LLL
LLLLLLLLLLLLLLLL LL
LL
LLLLLLLLLLLLL
LLLLLLLL

L
LLLLLLLL L
LLLL
LLLLL
LL
LL
L
LLL LL LLL

L
L
L
LLLL
L
LLLLLL LL

LLLLLLLL
L
LLLLLL
L
LLLL
LLLLLLLLLLLLLL
L
LLLLLLLLL
LL
L
L
LLLLLLLLLL
L
LL
L
LL
L
LLLLL LLLLLL
L
LLLLL

LLLL
LLLLLLL

LLL
L
LLLLL
L
L
L
LLLLL LLLLLL
L

LLLL
L
L
LLLL
LLL
LLL LL
LLLL
LL
L
LLLLL
L
L

L LL LLLLLLL
L
LL
LL
LLLLLLLLLLLL LL
LL
LL

L
L
LLL
L
LLLLLLLLLLLLLL LLLL
LLL
L
LL LLLL
L LL LLLL
L
LLLL
LL
LL LLL
L
L LL L
L
L
LL LL LLL

L
LLLL
LLL
LLLLLLLLL
LLLLLL
L
LLLL L

L
LLL
LL L

L
LLLLL
L
LLLLL
LL
LLLLLLLL
L
LL

L
LLLLLLLLLLLL

L
LLLLL LLLLLLLLLLLLLL
L

L LL
L
LLLLL
LL
L
LLL
LL
LLLLLLLLLLLL LL
L
L

L
LLL
LL
LLLLLL
LL
L
LL
L LLLLLLLLL L
L LLLLLL

L
LLLLLL
LL
LL
L
LLLLL LLLLLLLLLLLLLLLLLL
L
LLLL
L

L
LLLLL LLLLLLLL

L
LL
LL
LLLLLL
L
LLLLL
L
LLLLLL
LLLLLLL
L
LLL

LLL
L

LLLLLLLLLLL
L
LLLLLLL
L
LLLLLLL
L
LLLLLLLLLLL
LLLLLLLL LLLLL LLLL LL
LLL
L
LLLL
L
L
L
LLLLLL
LL

LL
L
LLL
L

LLL L
L
LLL
LLL

LL
L
L

L

L
L
LLLLLLLL LLL

L LLL

LL
LLLL
L
LLL
LL
LLL
LL
LL LLLLLLLLLL
L
L
LLLLLLLL
LL

L
LL
L

LL LL LLLL
L
LLL
L
LLL

LLLL
L
L LLLL
LL
L
L L
L
LLL
LLLLLLLL
L
L
L
LLLLLL LLLLL
LL
LL
LL LLLLLLLL
L

LLLLL LLL
LLL
LL
LL
L
LL LLLLL
LL
L
LLL
LL
LL

L LLL LL
LLLLLLL
L
LLLLL
LLLLLLLLL
LLLL L
L

L LLLLLLL
LLLLL LL
L
L

L
LL
LL
LLLLLLLLLL

L
LLLL

L

LLLLL
L

LLL
LLLL

M

M

MM

M

M

M
M

M

MM
M

M

M

MMM
M

M

M

NNNNN

NNNN
NNNN
N
N NNNN
N
N
N
NNNN
N
NN
N
NNNNNNNNNN

N
NN
N
NNN
N

NNN

NNNNN

N
N

NNNN
N
N NNNNNN
N
N
N
NN
NN
N

NNNNN
NNNNNNNN
N
NNNN NNNNNN
NN

N

NNNNNNNNNN
NN
NNNN
N
NNNNNN

NNNN

N

NNNN

N

NNNNNNNN
N
N

N

NNNN
NNNN
NNN
N
NN

N
N
NNNNNNNNNNNNN N

NNN
N

NN
N
N

N

NN
N
NN

N
N
NN
NNN
N
NN
NNN
NNNNNN
N
NNNNNNNN
NNNN

NNN
N
N
NN

N
NNNNNNNNN
N

N

NNNNN
N
NNNNNNNN
NNNN
NNNN

NN

NNNNN
N
N
N
N

N

N

NNN

NNN

N

NN
NNNNN
N
NNN
N
N
NN
N
NNN

N

N

NN

N

N
NNNNNNNNNNNN

NN

NNNNNNNNNNNNNNNNNNNN

NN
NN

N
N
N
NNNN

N

NN
NN
N

N

NNNNNNNNNNNN

N N
NNNNN

N
N

N
NNNNNN
NNNNNNN

N

NNN
NNN
N
N
N
N
N
N

NN
NN

NN

N
N
NN NNNN
N

O
OOOOO
OO
OO

OO
O

OOOOOO
OOO
OOO
OO
O
O

OOO

OOOOOOOOO OOO
OOOO

O
OOOOOO
OOO
OOO
OO
OOOOOOO OO

OOO OO

OOOO

OOOOOOOO
OO
O

O

O

O
O

OO
OOOOOOO
OOOOOO
O

O
O

OOOOO
OOO

O
OOOOO
O

OOOO
OOOO
O
OOOOOOOOOOOOOO
O
O

O OOO OOOOOOO
O
OO

O
OOOO

OOOO
OOOOOO
OOOOOOOOO OOO
O
O
O
O

O
OOO
O
O

O
OO
O

OOOOOOO
OOO
O
OOOOO

OOOOOOO OO
OOOOO

OO
OO
OO
O
OOO
OO
O
OOOO OOO

O
OO

OOOOOOO
O
OOOOO
O
OOOOOO

OO
O

OO
O

OO
O
OO

O
O

OO
O

OOOO
O

OO
O

OOOO O
OO

O
OO
O

O
OO

O
OOO

OOO
O

O

OOOO

OO

O
OO
O
OO OOO
O
OOOOOOO
O
OOOOOOO
OO

OOOO

OOO
O

O
O

OO

OOOO

O
OO
O

O
OO

O

O

O
OO

O
OOOOOOO
OOOOO
OOOOOO

O

O
OO O
OOOO
OO

OOOO

O

OOO
O
O

OOO
OO
OO

O
OOO
O
O
OO

OOO
OOOOOOOOOOOO

OOO
OOOOOO
OO

OOOO
OOOOOO
O
O

OO
O
O
O
O
O

OOOO O
OOOOO
O
OOOOOOOOOO
OOOO

OO
O
OO
OO
OO
OO

O
OO
O

OO
O

O
O
OOOO
OO
O

O
O OO

O

O
O
OO
O
OOOO

OO
OO
O
OO
O
OO
O
O
O
O
O OO
O OO

O
O
O O
OOO
O

O
O
OOO

OO OO

O
O
OOOOOO
O
OO

O
OO

O

O
OOOO
O

O OOOOOOOOOOOOO
OOOOOO

O
O

O

OO OOO
OO
OO
O
O
OO
OOOO

O

OOO

OOOO
OO

O
OO O
O
OOOO
OOOOO
O
OO

O
OO

OO OOOOO
O
OOO
O

OO
O
OO
O
O

O
O
O

OOO
OO OOOOO

O
O
OOOOO
OOOO

O
OOO
O

OOO
O
OO

OO
O
OOOO

OOOO

O
O
OOOOOO

OOO

O
OOOOOOO
OO O
OO
OOOOO

OOOOOOOO
O

O
OOOO

OO

O

PPPPPPPPPP

P

PPPP PP
PP

PPPPPPP PPPPPPPPP PPPPPPP PPPPPPPPPPPPPPPPP
PPPPPPPPPP PPPPPPPP
PPPPPPPPPPPPPPPP

P

PPPPPPPPPPP
PP
P

PPPPP
P
P

PPP

P

P
P
P

P

PPPPP
PPPPPP
P
PPPPP

PPPPP
P
P
PP

PPP

PPPPPPPPP
P
P
P

PPP
PPPPPPPPPPPPPPP
P

P PP

P

P
P

PPP PPPPPPPPPPPP PPPPPPPPPP
PPPPPPPPPP
P

P
PP

PP
P
PPPPPPPPPPPPPPPPP P
P
PPPPPPP PPPPPPPPPPPPP

PPPPP PPPPPPPPPPPPP PP

P
PP

P

PPPPPPPPPPPPPPPP P
PPPPP PPPP

PPPPP P
P

P
P
PPPPPPPPP
PP
P

P
PP

P

PP PPPPPPPPPPP

P

PPP
PP

P

PP
PPPPPP
P
P
P

PPPPPPPPPPPP PPPPP

PP
PPPP
P

PPPPPPP
PP

PPPPPPPPPPPPPPPPP P
PPP

P

PPPPPPPP PPP
PP PPPPP PPPPPP
PPP PPPPPPPPPP

P

PP

P
P
P PPP P

P
P
P
PPPPP PPPP

PP

P
PPPPP
P

PPPPP
P PPPPPPP

PP
PPP PPP
P
P

PPPP
PPP
PPPPPP

PPP

PPPPPP
P

PPPPP
P
P
PPPP
PPP
PPP
PPPP

P

PPPPPPP
PPPPPPPPP PPP

P
PP

PP

P

PPP P
P PP

P

PPP
P

PP
PPPPP
PPPPPP

PP

P
PPPP PPPPPPPPPPPP
PPP P
P
PP P
P
PP

P

PPPPPP
P

P

P

PP
PPPPPPPPPPPPPP
P PPPPP

P
PPPPP PPPP

PP

PPPP
P P

PPPPPPPPPPPP
P
PPP
PPPPP
PPPPP
PPPP
P
P
P PPPPP

P

PP
PPPPPP PPP
P PPPP PPPPPPP
P
PPPPP
P
PPPPPP PPPPPP

P
PPP
PP

PP P
P
PPPPPPPP

PP

P

P
P

PP
P

P

P
P
PP

P PPP
P

PP
P

P
PPPPPPP

PP
PP

PP
PPPP

PP PPP

P
PP
P

PP
P

PPPPP
PPPPPPPPPP

P

PPP PPP

PP
P

P
P
PP PPPPPPP

PPPPPPP
P

P
PPPPP
PP
PPPP
P
PP

P

PP
PPPPPPP

P
P PP P
P
P
PP
PPP

P

P
P
PPPPP

P

P
PPPPPPP
PPPPPPPPP

P
P
PPP

P
PPP
P
P
PP PP
PPPPPPPPP P
P

PP
PPPPP PPPPPPP
P
P

P
PPPPPPPPPP
P

P PPP

P

P
PP

P
P

PP PP
PPPPPPPPP P
PPPPPPPPPPPPPP PP
P

P

PPPP

P

PP PPP
P

PP
P PPPPPP
P PPPP
P

QQQ
Q
QQQQQ QQQQ
QQQQ

QQQ

Q

Q

QQQ

Q

QQQQQ
Q
Q
QQQQQQQQQQQQQ

Q

Q

Q
QQQ
Q

Q

QQ QQQ
Q
Q

R

R
R
R

RRR
R
R

RRRR

R

R
R

R RRR
RR

R

R

R

R RR

R
R
R

R

R

R
R

R

RRRRRRR

R

RRRR

R
R

RRR

R

S SSS
S
SSS

SSSSSS SS
S SSSSS SSSSSS
SS
S

S
S S SSS
S
S

SSS
SSS SS

S

SSSS
SS S

S

S

S

SS SS

S

SS
S
S

S

SSSSSS
SSSS
S SSS

S
SSSS S SSS SSSSSSS SSSSSSS

S

S

S
S

SSS SS
SSS

TTTTT
TTT
TTTT

TT TT

TTT

T TTTTTTTT TTTT TTTT
T
TT TTTTTTT

T

TTT

T

TT

T

TTTT

T
TTT

TTTTTTTTT

TTTTT
TT

T

T TTTTT

TTT
T

T

T

TTT TTTT

T

T T
TTT

TTTTTT

TTT
TTTT

T TT TT TT

TT

T

T T
TT
TT TT
TT

TT

T

T TTT TTTTT
TTT
T
T
TTT

T

TT

TTTT

T

T
T T

TT
T

(d) K+ = 20

Figure 1.2: Mclust with various K+ values.

to analyze the structure of user check-in data to identify hot zones. We do not adopt the k-means

(where k stands for the number of clusters) algorithm because we have no prior knowledge of the

number of clusters. We employ Mclust, where clustering models are compared using an approx-

imation to the Bayes factor based on the Bayesian Information Criterion [73] for selection while

expectation-maximization (EM) algorithm [21] is used to maximize likelihood in the presence of

incomplete data. Mclust can also be considered as an efficient algorithm to estimate k, the number

of clusters. Given the upper bound of the number of the clusters, denoted as K+, Mclust iteratively

decides whether a cluster should be split further into smaller clusters by calculating the Bayesian

Information Criterion. The details of this splitting process are illustrated in [29]. When Mclust

runs, k increases gradually until it is steady. The steady k value is then returned and reported as

the number of clusters found by Mclust.

In our approach, the check-in information is modeled as a mixture of 2-dimensional Gaussian

distributions N (µi,
∑

i), where µi = (µi.x, µi.y) is the center of the Gaussian distribution and

∑

i is the covariance matrix. Since there is no clear evidence for “non-symmetric” distributions

on X and Y dimensions in geo-social networks [54],
∑

i can be assumed to be diagonal and

isotropic. The probabilistic density function of a cluster Ci(µi, σi), returned by Mclust, for a

particular location L can be represented by Equation 1.1.

f(L.x, L.y) =
1

2πσ2
i

e
(µi.x−L.x)2

−2σ2
i

+
(µi.y−L.y)2

−2σ2
i (1.1)

11

We cluster users’ check-in locations using Mclust to determine the hot zones for a road net-

work. We treat each cluster as a hot zone. Specifically, a hot zone is the region centering at the

point µi for the cluster Ci with a fixed population density parameter pd, which is able to compute

a radius for different cluster Ci regarding different σi.

Figure 1.2 displays the clustering results of the check-ins for California road networks (where

8,523 check-ins were sampled from Gowalla1). In Figure 1.2, we varied K+ from 5, 10, to 20,

leading to distinct numbers of resulting clusters. Each cluster, highlighted with a distinct color,

corresponds to a hot zone.

1.4.2 Hot Zone-based Watchtower Construction

To build a hot zone-based watchtower framework, we deploy all watchtowers in such a manner

that watchtowers in hot zones are constructed densely to speed up the query processing while

watchtowers in non-hot zones are distributed sparsely to save storage space. This design leads to a

significantly higher query performance without the need of more storage space. Here, we illustrate

the difference between the uniform watchtower framework and the hot zone-based watchtower

framework. In the former, for each POI, we deploy watchtowers uniformly on the road network.

In the latter, we analyze and leverage social data with the objective of allocating watchtowers to

more important (i.e., populated) areas where queries are more likely to be launched.

The index construction process is as follows. For each cluster Ci, we obtain the node subset

Vci (Vci ⊂ V), where for any node v in Vci, the network distance between µi and v must be less

than or equal to rd. As a result, we obtain a graph G
′

= (V
′

, E
′

), where V
′

is the union of Vci for

all clusters, and E
′

is the subset of E consisting of all edges whose two end points are both in V
′

.

Next, we launch a Dijkstra-based expansion from each POI and check if the currently visited edge

e is in G
′

. If e is in G
′

, we set up watchtowers on e with higher density (by using a relatively small

l). In addition, if e is not in G
′

, we deploy watchtowers on e sparsely (by applying a relatively

large l).

1http://snap.stanford.edu/data/loc-gowalla.html

12

The boundary of each cluster is determined by the population density parameter pd. Given a

pd and a cluster Ci, we check whether a location v, (v.x, v.y), is in Ci by applying the equation

PCi
(v.x, v.y) =

1

2πσ2
i

e
(v.x−µi.x)

2

−2σ2
i

+
(v.y−µi.y)

2

−2σ2
i ≥ pd (1.2)

v is in cluster Ci, centered at (µi.x, µi.y), if and only if PCi
(v.x, v.y) ≥ pd. In other words, the

population density value of a location for a cluster Ci must be greater than or equal to pd for that

location to be in Ci. An alternative way to determine the boundary of each cluster is to use a

pre-defined network distance threshold rd.

1.5 Spatial Query Processing

In this section, we elaborate on how spatial queries can be processed in our watchtower-based

frameworks. To facilitate our discussion, we define a search operator, Dijkstra(u, we), which

represents all the watchtowers encountered by the Dijkstra search [22] in the range of distance we

from the node u on a road network.

1.5.1 kNN query

Evaluation of kNN queries on road networks has drawn a lot of interest [46, 12, 71] during the

past decade. However, most of the approaches are not scalable to large-scale road networks. In this

subsection, we focus on how kNN queries can be processed in our watchtower-based frameworks.

Given a query point q, the search Dijkstra(q, lλ) will return one watchtower for every POI

oi that must be in the shortest path from q to oi, represented as SP (oi, q). The proof is as follows.

Because the distance between two adjacent anchor points is at most λ, the distance of two adjacent

watchtowers must be smaller than or equal to lλ (recall that we set up watchtowers every l anchor

points). For any POI oi, Dijkstra(q, lλ) is able to return at least one distance tuple for oi, which

must be in the shortest path from q to oi, denoted as SP (oi, q).

13

The evaluation of kNN queries is based on the bidirectional Dijkstra’s algorithm. At each

watchtower, backward search results (POI distance information) are stored. A priority queue Qo of

size k is maintained as well. Because Dijkstra(q, lλ) will return at least two watchtowers for any

POI, we calculate the top k tuples for each watchtower and decide if Qo needs to be updated. The

updating rule is based on computing the shortest distance from q to oi, which can be represented

by:

|SP (oi, q)| = min{|PSP (oi, q)|}

= min{|SP (oi, t)|+ |SP (t, q)||t ∈ Dijkstra(q, lλ)}
(1.3)

In Equation 1.3, |SP (oi, t)| denotes the distance between oi and t stored for the oi tuple in t,

and |SP (t, q)| represents the distance from the query point q to watchtower t. The sum of the two

items corresponds to a possible path PSP (oi, q) between the POI oi and q while |PSP (oi, q)| is

their network distance. Assume that from some watchtower t, we retrieve the top k POI tuples and

one of them is oi. Now we need to decide if the tuple of oi needs to be inserted into Qo. First, we

check to see if |PSP (oi, q)| is less than the maximum distance in Qo. If it is true, we add oi into

Qo in the case that oi is not in Qo, and update the shortest distance accordingly. We update Qo for

every POI tuples in t until the search is expanded to lλ distance. Since the search Dijkstra(q, lλ)

is able to encounter at least two watchtowers for any POI from any query point, and one of them

must be in SP (oi, q), we can calculate the distance |SP (oi, q)| for all POIs. In other words, once

the search expands to the distance of lλ, it terminates. The top k POIs in Qo are the result of the

kNN query.

It is worth noting that some POIs might be within the distance of lλ from the query point q.

In this case, the Dijkstra search actually might not have to expand as far as lλ to answer a kNN

query. Therefore, for those POIs, we also insert their distance information into the priority queue

Qo during the search. The search stops once there is enough POI distance information to answer

the query. This leads to the early termination of the search.

14

Algorithm 2: kNN Query Processing

Input: Graph G = (V,E), watchtower set WT , k, q, l, λ
Output: k POIs

2.1 foreach vertex u ∈ V do

2.2 dist[u]← infinity ;

2.3 visited[u]← false ;

2.4 previous[u]← undefined ;

2.5 A priority queue Qv ← ∅ ;

2.6 A priority queue of size k, Qo ← ∅ ;

2.7 dist[q]← 0 ;

2.8 Qv ← Qv ∪ (q, dist[q]) ;

2.9 numObj ← 0 ;

2.10 while Qv is not empty do

2.11 u← Qv.remove() ;

2.12 if visited[u] == TRUE then continue;

2.13 if dist[u] > lλ then break;

2.14 DijkstraExpansion(G,u,visited,dist,previous,Qv) ;

2.15 if u == q then continue;

2.16 foreach watchtower t in (u, previous[u]) do

2.17 for top k objects oi in t do

2.18 |PSP (oi, q)| ← |SP (oi, t)|+ |SP (t, q)| ;
2.19 if |PSP (oi, q)| < the largest distance in Qo then

2.20 Qo ← Qo ∪ (oi, |PSP (oi, q)|) ;

2.21 foreach object oi in (u, previous[u]) do

2.22 |PSP (oi, q)| ← dist[previous[u]]+ w(oi, previous[u]) ;

2.23 Qo ← Qo ∪ (oi, |PSP (oi, q)|) ;

2.24 numObj ++ ;

2.25 if numObj ≥ k then break;

2.26 return Qo;

The kNN query evaluation is implemented based on the Dijkstra search, as shown in Algo-

rithm 2. The input of the algorithm is the watchtower set WT , query point q, k, and distance

threshold lλ. Lines 2.1 to 2.9 are the initialization for query process. Dijkstra search finds the

shortest path by exploring the nodes in ascending order of distance away from the source. Here

dist[u] denotes the network distance from q to u. At any time, u is chosen from a priority queue

Qv. visited[u] tracks if u has been visited or not while previous[u] stores u’s adjacent node. Lines

2.10 to 2.25 correspond to the Dijkstra-based search. When the search is expanded, we update

15

dist[], visited[], and previous[]. For an edge (u, previous[u]), we fetch all watchtowers in the

edge and two end points u and previous[u]. For every watchtower t on the edge (u, previous[u]),

top-k POI distance tuples are retrieved. For every found POI oi , the possible shortest path distance

|PSP (oi, q)| is computed. If |PSP (oi, q)| is shorter than the largest distance in Qo, oi is inserted

to Qo. The search stops once (1) k POIs have been found (early termination) or (2) the Dijkstra

search has expanded to the distance of lλ from the query point (the worst case).

To answer a kNN query, in the worst case, Dijkstra(q, lλ) is needed. The time complexity

includes the Dijkstra search cost and the priority queue update cost. O(V logV) is the complexity of

the Dijkstra search while the maximum number of watchtowers encountered by Dijkstra(q, lλ)

can be estimated as
∑

w′

λ
, where

∑

w′ is the sum of the distances of all the edges traversed by

Dijkstra(q, lλ). If we keep only the top bk POI distance tuples in each watchtower, O(bk
∑

w′

λ
) is

the cost of the priority queue update. Therefore, the time complexity of our proposed algorithm is

O(V ′logV ′+
∑

w′

λ
bk), where V ′ is the number of the vertices traversed by Dijkstra(q, lλ). Notice

that thanks to the employment of watchtowers, any kNN query can be answered by searching a

distance of lλ in the worse case.

1.5.2 Range Query

Given a distance e and query point q, a range query retrieves all the POIs that are within

network distance e from q. For any encountered watchtower t, we compute the network distance

of each POI oi and query point q, |PSP (oi, q)|. If the distance is not larger than e, we insert oi

into a priority queue Qo. If the search expands to a POI, the POI is also inserted into Qo. This

process is repeated until a distance of min(e, lλ) has been searched from q. The POIs in the final

Qo constitute the result for the range query. The details are as shown in Algorithm 3.

1.6 Performance Comparison of UW and HW

In this section, we discuss the superiority of HW over UW in terms of query performance.

Without loss of generality, we assume the road network G is a 2D Manhattan network in a square

16

Algorithm 3: Range Query Processing

Input: Graph G = (V,E), watchtower set WT , q, distance range e
Output: POI set O

3.1 foreach vertex u ∈ V do

3.2 dist[u]← infinity ;

3.3 visited[u]← false ;

3.4 previous[u]← undefined ;

3.5 A priority queue Qv ← ∅ ;

3.6 A priority queue Qo ← ∅ ;

3.7 dist[q]← 0 ;

3.8 Qv ← Qv ∪ (q, dist[q]) ;

3.9 while Qv is not empty do

3.10 u← Qv.remove() ;

3.11 if visited[u] == TRUE then continue;

3.12 if dist[u] > min(e, lλ) then break;

3.13 DijkstraExpansion(G,u,visited,dist,previous,Qv) ;

3.14 if u == q then continue;

3.15 foreach watchtower t in (u, previous[u]) do

3.16 foreach object oi in t do

3.17 |PSP (oi, q)| ← |SP (oi, t)|+ |SP (t, q)| ;
3.18 if |PSP (oi, q)| ≤ e then

3.19 Qo ← Qo ∪ (oi, |PSP (oi, q)|) ;

3.20 foreach object oi in (u, previous[u]) do

3.21 |PSP (oi, q)| ← dist[previous[u]] + w(oi, previous[u]) ;

3.22 if |PSP (oi, q)| ≤ e then Qo ← Qo ∪ (oi, |PSP (oi, q)|) ;

3.23 return Qo;

area consisting of only horizontal and vertical edges. The same assumption is also made in

[33] [46].

Suppose that l∗ is the selecting parameter in the UW framework while lh and lnh (lh < lnh)

represent the selecting parameters in hot zones and non-hot zones in the HW framework. For a

kNN query, if the query point is in a hot zone, in the worst case, we have to search lhλ to answer

the query. On the contrary, if the query point is outside any hot zone, in the worst case, the search

for lnhλ distance is needed to get the result. Let WG be the sum of the weights of all the edges in

G. Assuming that α is the ratio of WG to the sum of the weights of edges in all hot zones, WG

α

is the sum of the weights of edges in all hot zones while WG −
WG

α
is the sum of the weights of

17

edges in all non-hot zones. Because the index size is proportional to the number of watchtowers,

assuming that UW and HW occupy the same amount of storage space, we can obtain Equation 1.4

WG

l∗
=

WG

α

lh
+

WG −
WG

α

lnh

lnh = βlh

(1.4)

where β is the ratio of lnh to lh. Based on Equation 1.4, the ratio of l∗ to lh, denoted as H , can

be calculated as Equation 1.5.

H =
l∗

lh
=

αβ

α+ β − 1
(1.5)

Recall that the time complexity of our watchtower-based query processing algorithm is O(V ′logV ′+
∑

w′

λ
bk), where V ′ is the number of the vertices traversed by Dijkstra(q, lλ). Therefore, to an-

swer a query launched at point q, in the worst case UW requires Dijkstra(q, l∗λ) while HW needs

Dijkstra(q, lhλ). Therefore, if the query point is inside a hot zone, HW is able to reduce the

query response time by a factor of H2, compared with UW. According to Equation 1.5, we can

approximate H2 using Equation 1.6.

speedup = (
αβ

α+ β − 1
)2 > (

αβ

α+ β − 1 + |β − α|+ 1
)2

=
(αβ)2

4(MAX{α, β})2
=

(MIN{α, β})2

4

(1.6)

1.7 Pre-Computation Overhead versus Query Efficiency

In this section, we are investigating a problem: can we deploy the watchtowers of a POI

only in its spatial proximity without much sacrifice of the query efficiency? If the answer is yes,

how should we deploy watchtowers so that an optimal or near-optimal tradeoff between the pre-

computation cost (index setup time or the storage cost) and the query efficiency is achieved?

We observed that in most cases, the POIs, which are significantly far away from the query

point, are quite unlikely to be queried because users are more likely to exhibit interest in POIs

closer to their current locations. For example, a user living in Los Angeles may show much less

18

interest in a new cafeteria which opened in New York than the ones in Los Angeles. This fact

inspires us to extend both our UW and HW indices by introducing another tuning parameter, the

distance bound bd. The distance bound bd restricts the distribution of watchtowers for a POI oi to

only those anchor points within a network distance of bd to oi (here bd should be no less than lλ

so that at least one watchtower can be established for oi). The use of this distance bound aims to

achieve a more desirable balance between storage cost (index size) and query efficiency. Another

advantage of using the distance bound is that it can reduce the index construction time significantly.

Assume the road network G is a 2D Manhattan network in a square area consisting of only

horizontal and vertical edges. If POIs are uniformly distributed on the road networks, to answer a

kNN query, the Dijkstra search terminates once the following condition is met:

Wr/WA = k/|O| (1.7)

where Wr is the total weights of all edges in the searched area, WA is the total weights of all

edges in G, k is the number of POIs queried, and |O| is total number of POIs. However, with

the deployment of the watchtowers, if we assume that the POI is at a certain anchor point, with

a network expansion of distance s from the query point q, we can discover all the POIs whose

shortest distances to the query point are less than or equal to s + ⌊ bd
lλ
⌋ ∗ lλ. Given the search

distance le, the weight sum of all the searched edges can be represented as 4l2e . Therefore, based

on Equation 1.7, if bd is divisible by lλ, we can derive Equation 1.8.

4(s+ bd)
2/WA = k/|O| (1.8)

When s is 0, we can derive the optimal value of bd for kNN queries, OPT n(bd), as represented

in Equation 1.9.

OPT n(bd) =

√

kWA

4|O|
(1.9)

19

Similarly, to answer a range query with query distance e specified, the network expansion

from the query point can stop when s+ bd = e+ lλ is met by using watchtowers. When s is 0, we

can compute the optimal value of bd for range queries, OPT r(bd), using Equation 1.10.

OPT r(bd) = e + lλ (1.10)

Notice that according to Section 5, when we deploy watchtowers along the entire road net-

work, we need to search the distance of lλ from the query point to answer a kNN or a range query

in the worst case. However, when we establish watchtowers only in the area within the distance bd

from each POI, the search should stop once the priority queue Qo has k POIs for a kNN query or

terminate once Equation 1.11 is met for a range query.

s =

MIN{e, e− bd + lλ}, if e > bd.

MIN{e, lλ}, if e ≤ bd.

(1.11)

1.8 Index Maintenance

In this section, we focus on the maintenance of the our proposed frameworks with regard to

(1) network update and (2) POI update.

1.8.1 Network Update

The addition/removal of an edge causes the network topology to be changed. For each affected

POI, we update its watchtowers. The affected POIs can be efficiently discovered by launching two

shortest-path tree searches.

Addition of a new edge. If an edge (v, v′) is added, We first retrieve two shortest-path trees

(SPTs), Tv and Tv
′ from v and v′, respectively. For a POI o which is affected by the addition of

edge (v, v′), its shortest path to v must cover (v, v′) or its shortest path to v′ must cover (v, v′).

Take Figure 1.3 as an instance where black squares denote POIs and dashed line represents the

newly added edge. According to the shortest path trees from F and D, the addition of edge (D,F)

20

3

B

POI

A

C

E

D

F

3

24

O1

O2

O3

O4

(a) Graph G

D

F

B

C

A

E

(b) SPT from D

F

D

B

A

C

E

(c) SPT from F

Figure 1.3: Network update example.

affects only POIs o1 at node A and o3 at node C while POIs o2 at node B and o4 at node E will not

be affected. Notice that the shortest-path trees are expanded only up to the distance of bd because

the watchtowers are deployed only within the range of bd from each POI. Next we set up anchor

points on edge (v, v′) if v or v′ does not have anchor points and re-distribute watchtowers for each

affected POI.

Removal of an edge. If an edge (v, v′) is removed, we initialize two shortest-path tree

searches from v and v′ up to the distance of bd to identify affected POIs. For each affected POI, we

re-distribute its watchtowers to reflect the network topology change.

21

Parameters Default Values

λ 1 mile

k (kNN) 10

e (query range) 500 miles for NA, 60 miles

for CA, and 20 miles for SF

Number of POIs (|O|) 1000

l 266 for CA, 358 for NA, and

107 for SF

lh/lnh 21/420 for CA, 44/594 for

NA, and 15/298 for SF

K+ (cluster) 50 for NA, 10 for CA, and 5

for SF

rd (hot zone) 50 miles for NA, 10 miles for

CA, and 3 miles for SF

bd (Islands, UW, and HW) 1252 miles for NA, 105 miles

for CA, and 9.2 miles for SF

Table 1.3: Experimental parameter values.

1.8.2 POI Update

For a new POI o, we establish its watchtowers in the range of bd based on our discussion in

Sections 3 and 4 (initialize a shortest path expansion from o and set up its watchtowers based on

the selecting parameter l). On the other hand, to delete a POI, we also remove all its distance tuples

in according watchtowers.

1.9 Experimental Validation

In this section, we compared the performance of UW and HW with that of ROAD [45] and

Islands [36] using real road networks and geo-social data. We implemented UW and HW in C++,

and all the experiments were conducted on an Ubuntu Linux server with an Intel Xeon 2.67GHz

processor and 24GB memory, with a disk of 4KB page size. Three real road networks2, namely

CA, NA, and SF, were used [51], including road networks in the state of California (21,692 edges

and 21,047 nodes), in North America (179,178 edges and 175,812 nodes), and in San Francisco

(223,001 edges and 174,956 nodes), respectively. In addition, we collected the geo-social data

2http://www.cs.utah.edu/ lifeifei/SpatialDataset.htm

22

from Gowalla [15], consisting of 196,591 users and 6,442,890 check-ins around the world. We as-

sumed that POIs were distributed uniformly on the networks and the query points were randomly

generated from people’s check-in locations. Each experimental result was averaged over 100 ran-

dom queries. Table 1.3 lists important experimental parameters and their default values, where

unless otherwise specified, their default values were used.

As listed in Table 1.3, the default for λ is 1 mile and the number of POIs |O| is 1000. The

default of the selecting parameter l for UW is 266 on CA, 358 on NA, and 107 on SF. We set the

distance bound bd as one fifth of Dmax, where Dmax denotes the maximum distance of two nodes

in each referred network. The defaults of the selecting parameters lh and lnh for HW are 21 and

420 on CA, 44 and 594 on NA, and 15 and 298 on SF. The default of K+ for HW is 5 on CA, 20

on NA, and 5 on SF, respectively.

1.9.1 Index Construction Overhead

The first experiment evaluates the index setup time and size. In ROAD [45], the number of

levels of Rnet is set to 4 for CA and 8 for NA and SF while the partition factor is 4. Besides, the

radius (bd) in the Islands approach took the same value as in UW and HW. We first measured the

index setup time on various networks. As Figure 1.4(a) shows, for large (or dense) road networks

(like NA and SF), ROAD required a much longer construction time than HW, UW, and Islands. The

reason is that the Rnet structure is based on the hierarchy computation over the entire network while

our watchtower-based designs only store distance information in spatial proximity. Figure 1.4(b)

shows the impact of the number of POIs (|O|) on index construction time on NA. The construction

 0.1

 1

 10

 100

CA NA SF

In
de

x
co

ns
tr

uc
tio

n
tim

e
(m

in
s)

 Networks

ROAD
Islands

UW
HW

(a) Various networks

 0.1

 1

 10

 100

100 1000 10000 100000

In
de

x
co

ns
tr

uc
tio

n
tim

e
(m

in
s)

 |O|

ROAD
Islands

UW
HW

(b) Various |O| on NA

 1

 10

 100

CA NA SF

In
de

x
si

ze
 (

M
B

)

 Networks

ROAD
Islands

UW
HW

(c) Various networks

 1

 10

 100

 1000

10 100 1000 10000

In
de

x
si

ze
 (

M
B

)

 |O|

ROAD
Islands

UW
HW

(d) Various |O| on NA

Figure 1.4: Index construction time and index size.

23

time required by ROAD was constant while that of UW, HW, and Islands expanded almost linearly

with the increase of |O|. This is because the creation of the ROAD index is purely based on the

network topology while UW, HW, and Islands establish distance information for each distinct POI.

Specifically, when |O| was 10,000, the construction time for ROAD was about 60 minutes while

either UW or HW had a quicker setup time (about 23 minutes).

Figure 1.4(c) reveals that, for large (or dense) networks, like NA or SF, UW and HW re-

quired much less storage space than ROAD and Islands (the Islands approach is the most storage-

expensive one). For example, the index size of UW and HW for NA were 10.99 MB and 10.67

MB, which are much smaller than that of ROAD (> 35 MB) and that of Islands (> 300 MB).

Figure 1.4(d) shows the impact of |O| on index size on NA. As depicted in Figure 1.4(d), the index

size jumped dramatically in the Islands approach when |O| increased. When |O| is 10,000, the

index size of Islands is 3.5 GB. On the other hand, the index size of ROAD, UW and, HW is 35.0

MB, 42.0 MB, and 35.3 MB, respectively. This is because Islands establishes distance information

at every intersection while our approaches are parameter-tunable, with watchtowers set up only ev-

ery l anchor points. Therefore, our approaches provide a higher scalability than Islands. Because

Islands does not work well for large road networks, in the following experiments, we use ROAD

as the only baseline.

Notice that according to this experiment, ROAD is sensitive to the number of network edges

while Islands is sensitive to the number of POIs. However, our UW and HW approaches are able

to achieve a higher scalability towards large road networks with an affordable cost on the index

setup time and size.

1.9.2 Query Efficiency of ROAD, UW, and HW

In this subsection, we evaluated the query efficiency of our proposed frameworks. First, we

examined the performance of UW, HW, and ROAD in terms of kNN queries. In Figure 1.5(a),

we varied the k value from 1, 5, 25 to 125. As shown in Figure 1.5(a), UW and HW were much

faster than ROAD in query response time. When k is 50, the query time of UW was less than

24

1

10

100

1 5 25 125

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
se

c)

 k

ROAD
UW
HW

(a) Various k on NA

1

10

100

1k

10k

10 100 1k 10k

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
se

c)

 |O|

ROAD
UW
HW

(b) Various |O| on NA

 0.1

 1

 10

 100

 1000

CA NA SF

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
se

c)

 Networks

ROAD
UW
HW

(c) Various networks

Figure 1.5: kNN Query efficiency comparison.

14 ms, more than 6 times quicker than that of ROAD. In addition, HW had a quicker query time

than UW because HW allocates more watchtowers in hot zones (populated areas). Figure 1.5(b)

exhibits the impact of |O| on query response time. With the increase of |O|, the query time of all

the three approaches dropped accordingly. Besides, UW and HW always required a much shorter

query time than ROAD. In Figure 1.5(c), we evaluated their query time on various road networks.

The query time of HW was always the fastest among the three approaches, while that of ROAD

was always the slowest.

Second, we investigate the performance of UW, HW, and ROAD in terms of range queries.

As depicted in Figure 1.6(a), the query time increased gradually with the increase of the query

distance e. However, UW and HW always required a much shorter query time than ROAD. In

Figure 1.6(b), when |O| increased, the query time extended accordingly for all the approaches.

Figure 1.6(c) shows that the query time of UW and HW for range queries is consistently quicker

than that of ROAD on various road networks.

1

10

100

100 200 400 800

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
se

c)

 e(miles)

ROAD
UW
HW

(a) Various e on NA

1

10

100

10 100 1k 10k

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
se

c)

 |O|

ROAD
UW
HW

(b) Various |O| on NA

 0.1

 1

 10

 100

CA NA SF

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
se

c)

 Networks

ROAD
UW
HW

(c) Various networks

Figure 1.6: Range Query efficiency comparison.

25

1.9.3 The Impact of λ and l on UW and HW

This experiment studies the impact of λ and l on the performance of UW and HW on NA.

By varying λ from 0.05, 0.1, 1 to 5 miles, as shown in Figure 1.7(a), the number of anchor points

dropped accordingly. This is because a larger λ represents a longer distance between most adja-

cent anchor points, leading to a sparser distribution. Specifically, the number of anchor points on

NA decreased from 7.1 million to 3.6 million when λ increased from 0.05 miles to 1 mile. One

interesting observation is that the number of anchor points in SF is greater than that in NA when

λ = 5. This is because the majority of nodes in SF have a degree greater than 2.

Next, we varied l (the selecting parameter) to observe its impact on index construction time,

index size, and the query time for UW and HW on NA. In Figure 1.7(b), with the increase of

l, the index construction time decreased gradually. This is because the increase of l leads to a

smaller number of watchtowers to be built. In Figure 1.7(c), when l increased from 3 to 3,000,

the size of UW index dropped dramatically from 240 MB to 9 MB. In Figure 1.7(d), the query

time of UW and HW increased significantly with the enlargement of l because a larger l results in

a sparser distribution of watchtowers. It can be also observed that HW is always faster than UW

with respect to query response time. For example, when l = 3000, the query time for UW and HW

was 122 ms and 25.3 ms, respectively. This is because HW deploys more watchtowers in the hot

zones than UW.

 1000

 10000

 100000

 1e+06

0.05 0.1 1 5

N
um

 o
f a

nc
ho

r
po

in
ts

 λ (miles)

CA
NA
SF

(a) The impact of λ on NA

 1

 2

 3

 4

 5

 6

3 30 300 3000

In
de

x
co

ns
tr

uc
tio

n
tim

e
(m

in
s)

 Selecting Parameter (l)

UW
HW

(b) The impact of l on index

construction time

 1

 10

 100

3 30 300 3000

In
de

x
si

ze
 (

M
B

)

 Selecting Parameter (l)

UW
HW

(c) The impact of l on index

size

 0.1

 1

 10

 100

3 30 300 3000

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
se

c)

 Selecting Parameter (l)

UW
HW

(d) The impact of l on query

time

Figure 1.7: Effects of λ and l.

26

1.9.4 The Impact of Distance Bound bd

This experimental set studied the impact of bd on the performance of UW and HW on NA.

bd increased from 25, 50, 75, 125, 250, 500, to 1000 miles. In Figure 1.8(a), with the increase

of bd, the index construction time extended. This is because the indices needed to cover more

area. In Figure 1.8(b), the index size was elevated while bd increased. In Figure 1.8(c), when we

gradually raised bd, the kNN query time dropped accordingly. However, It is worth mentioning

that in Figure 1.8(c), when we increased bd to more than 50 miles, the improvement on query time

was very limited. This fact was consistent with our analysis on the optimal distance bound for

kNN queries as represented in Equation 1.9. Based on Equation 1.9, the optimal distance bound

can be derived as 41.89 miles, which means that setting bd as around 40 will provide the optimal

balance between index construction cost and the online query efficiency. Figure 1.8(d) shows that

the query time for range queries decreased when we raised bd. Similarly, when bd was increased to

more than 200 miles, the resulting improvement on query time was very limited, which accorded

with our analysis on the optimal distance bound for range queries as represented in Equation 1.10.

 1

 10

 100

 1000

25 50 100 200 400 800

In
de

x
co

ns
tr

uc
tio

n
tim

e
(s

)

 bd(miles)

UW
HW

(a) The impact of bd on in-

dex construction time

 0
 2
 4
 6
 8

 10
 12
 14

25 50 100 200 400 800

In
de

x
si

ze
 (

M
B

)

 bd(miles)

UW
HW

(b) The impact of bd on in-

dex size

 10
 20
 30
 40
 50
 60
 70

25 50 100 200 400 800

kN
N

 Q
ue

ry
 ti

m
e

(m
se

c)

 bd(miles)

UW
HW

(c) The impact of bd on

query time for kNN

queries

 10
 20
 30
 40
 50
 60
 70

50 100 200 400 800 1600

R
an

ge
 Q

ue
ry

 ti
m

e
(m

se
c)

 bd(miles)

UW
HW

(d) The impact of bd on

query time for range

queries

Figure 1.8: Effects of bd.

1.9.5 The Impact of K+ and rd on HW

Next we evaluated the performance of HW on CA and NA in terms of the kNN query time and

the hit rate by varying K+ and rd. The hit rate is defined as the probability that a user-generated

query is launched from any hot zone. In Figure 1.9(a) and Figure 1.10(a), we fixed rd as 10 miles

27

 0

 20

 40

 60

 80

 100

2 5 10 20

H
it

ra
te

 (
%

)

 K+

(a) The Hit Rate of K+

change on CA

 0

 20

 40

 60

 80

 100

5 10 15 20

H
it

ra
te

 (
%

)

 rd (miles)

(b) The Hit Rate of rd
change on CA

 0

 20

 40

 60

 80

 100

10 20 50 100

H
it

ra
te

 (
%

)

 K+

(c) The Hit Rate of K+

change on NA

 0

 20

 40

 60

 80

 100

25 50 75 100

H
it

ra
te

 (
%

)

 rd (miles)

(d) The Hit Rate of rd
change on NA

Figure 1.9: Hit Rate Comparison.

and varied K+ from 2 to 20. Figure 1.9(a) shows that the hit rate increased accordingly with the

increment of K+ while Figure 1.10(a) revealed that the query time decreases accordingly with the

elevation of K+. This is because the increase of K+ will lead to more hot zones. In Figure 1.9(b)

and Figure 1.10(b), K+ was set to 10 and we varied rd from 5 to 20 miles. It was observed that

raising rd resulted in an increase in hit rate and a quicker query time. This is because when rd

expands, each hot zone has a larger size and therefore more query points actually fell into the hot

zones.

In Figure 1.9(c) and Figure 1.10(c), we fixed rd as 50 miles and changed K+ from 10 to 100.

The hit rate was at its peak when K+ was 100 and the corresponding query time was the fastest.

In Figure 1.9(d) and Figure 1.10(d), K+ was fixed to 50 and rd varied from 25 to 100 miles. In

Figure 1.9(d), the hit rate jumped when rd increased. When rd was raised to 100 miles, the hit

rate reached almost 95%. On the other hand, as shown in Figure 1.10(d), the query response time

dropped gradually from 15.1 ms to 7.0 ms when we raised rd from 25 miles to 100 miles. The

 0

 0.5

 1

 1.5

 2

2 5 10 20

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
se

c)

 K+

(a) The impact of K+ on

CA

 0

 0.5

 1

 1.5

 2

5 10 15 20

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
se

c)

 rd (miles)

(b) The impact of rd on CA

 0

 5

 10

 15

 20

 25

 30

10 20 50 100

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
se

c)

 K+

(c) The impact of K+ on

NA

 0

 5

 10

 15

 20

 25

25 50 75 100

Q
ue

ry
 r

es
po

ns
e

tim
e

(m
se

c)

 rd (miles)

(d) The impact of rd on NA

Figure 1.10: Query efficiency comparison.

28

reason is that with a smaller size of all hot zones, the query required a longer response time to be

answered.

1.9.6 Index Maintenance

In this section, we measured the page access of HW and UW regarding the index update due

to the addition and removal of POIs and edges in NA. The page size was set to be 4 KB and

all road nodes and segments and watchtowers were stored continuously in pages. We use SP to

represent our proposed algorithm. In Figure 1.11(a), the number of required page accesses was

recorded. When the distance bound bd decreases from 800 to 100 miles, the number of required

page accesses dropped down. The same trend can also be observed in Figure 1.11(b). Also,

the number of required page accesses in SP was always fewer than that in the corresponding

naive updating strategy which does not employ the shortest-path tree based searches proposed in

Section 8. In Figures 1.11(c) and 1.11(d), we measured the number of required page accesses for

adding or removing a POI. As shown in Figures 1.11(c) and 1.11(d), the decrease of bd resulted in

the fewer number of required page accesses for POI addition or removal.

 10

 100

 1000

 10000

50 100 200 400

T
he

 n
um

be
r

of
 P

ag
e

A
cc

es
s

 bd (miles)

Naive
SP

(a) Edge addition on NA

 10

 100

 1000

 10000

50 100 200 400

T
he

 n
um

be
r

of
 P

ag
e

A
cc

es
s

 bd (miles)

Naive
SP

(b) Edge removal on NA

 10

 100

 1000

 10000

50 100 200 400

T
he

 n
um

be
r

of
 P

ag
e

A
cc

es
s

 bd (miles)

Naive
SP

(c) POI addition on NA

 10

 100

 1000

 10000

50 100 200 400

T
he

 n
um

be
r

of
 P

ag
e

A
cc

es
s

 bd (miles)

Naive
SP

(d) POI removal on NA

Figure 1.11: Index maintenance performance.

1.10 Conclusion

In this chapter, we introduce two novel parameter-tunable frameworks for efficient spatial

query processing by exploiting the user check-in data collected from location-aware social net-

works. We first propose the uniform watchtower framework for efficient query evaluation with an

affordable storage cost. Next, in order to further elevate the query efficiency, we provide the hot

29

zone-based watchtower framework by incorporating mobile users’ movement information (geo-

social data) into the construction of watchtowers. Moreover, we derive optimal watchtower de-

ployment distance in order to achieve a desired balance between the off-line pre-computation cost

and the on-line query efficiency. Our experiments using various real-world road networks and geo-

social data demonstrate that both of our solutions outperform the state-of-the-art approach in terms

of the query efficiency. For future work, we intend to extend our frameworks to support more com-

plex spatial query types, such as continuous kNN and continuous range queries, and investigate

how other social data, such as social relationships between mobile users, can be utilized to speed

up spatial query processing.

30

Chapter 2

LinkProbe: A Probabilistic Inference query machine on Large-Scale Social Networks

2.1 Introduction

As one of the most important Sematic Web applications, social network analysis [56, 86,

44, 78, 76] has attracted more and more interest from researchers due to the rapidly increasing

availability of massive social network data for various Web 2.0 applications such as Facebook,

YouTube, Flickr, and Wikipedia. In these applications, users are not only data consumers but

also data producers. Friend-Of-A-Friend (FOAF) [23, 31] is an RDF/XML ontology especially

designed to describe basic attributes of people and relationships among them, including name,

mailbox, homepage URL, friends, interests, affiliations, etc. The friend relationships described in

a FOAF data set can be depicted as a social graph, where each person is represented by a node and

each friendship is denoted as an edge between two nodes as demonstrated in Figure 2.1. In this

chapter, we are interested in answering the following query: given two arbitrary nodes, x and y,

what is the possible probability that a specific relationship (link) exists between x and y given G

as evidence? In social network analysis, evaluating the existence of links is crucial for predicting

relationships among people, inferring profiles, clustering people for community discovery, criminal

network detection, etc.

2.1.1 Challenges

However, to answer the aforementioned query is difficult.

• First, the desired solution should support partially correct inference rules. This is because

most inference rules existing in social network analysis do not always hold in reality. For

example, the transitive propriety in a friendship can be captured by the following rule:

31

MmeMagloire

MlleBaptistine

OldMan

Count

Cravatte

MmeBurgon

Jondrette

Scaufflaire

Champtercier

Child2

Child1

LtGillenormand

Gervais

Gribier

Toussaint

Zephine

Geborand

Grantaire

Joly

BaronessT

Magnon

Gillenormand

MmePontmercy

Pontmercy

MlleVaubois

MlleGillenormand

Isabeau

MmeHucheloup

MotherPlutarch

Brujon

MotherInnocent
Fauchelevent

Woman2

Cochepaille

Chenildieu

Listolier

Tholomyes

DahliaFavourite

Blacheville
Fameuil

CountessDeLo

Marius
Gavroche

MmeDeR

Courfeyrac

Feuilly

BossuetBahorel

Prouvaire

Combeferre
Enjolras

Mabeuf

Anzelma

Eponine

Woman1

Brevet

Champmathieu

Judge

Bamatabois

Montparnasse

Claquesous

Babet

Gueulemer

Boulatruelle

Napoleon

Myriel

Valjean
Labarre

Javert

Cosette

Thenardier

MmeThenardier

Simplice

Perpetue Fantine

Marguerite

Figure 2.1: An example social graph.

0 20 40 60 80 100 120 140

0

200

400

600

800

1000

N
u

m
b

e
r

o
f

p
e

o
p

le

Number of friends a person has

 Number of people

21%

69%

6%

2%
1% 1%

0% 0%
0% 0%

0%

0%

0 1 2 3 4 5 6 7 8 9 [10-20] >20

(a) Power law curve.
(b) Distribution of the number of

friends.

Figure 2.2: Statistics on the Billion Triple Challenge (BTC) 2009 data set.

∀x, y, z ∈ P : knows(x, y) ∧ knows(y, z) −→ knows(x, z), where P means the set of

people. However, this rule is not always true, i.e., it can be violated in some cases. Al-

though many inference mechanisms have been proposed in the literature, most of them fail

32

to support inference on partially correct rules, i.e., they require that underlying rules must be

satisfied all the time and cannot be violated during the entire inference procedure.

• Second, the ideal solution should scale well towards very large data volume, i.e., the infer-

ence cost should be affordable and tractable when coping with massive data sets. This is

because most social networks in practice often consist of a tremendous number of nodes and

edges, featuring a huge amount of semi-structured data.

• Third, the desirable solution should be able to handle uncertain social data as evidence,

where links between nodes are described probabilistically. In most real applications, social

data (i.e., user profile and friend information) are often uploaded voluntarily by users them-

selves or obtained from various prediction techniques. As a consequence, impreciseness and

uncertainty may arise in social data. Therefore, the desired method should support inference

on such uncertain social data as well.

2.1.2 Observations

MLNs Support Partially Correct Inference Rules

As a unified inference method to combine probabilistic graph models and first-order logics,

Markov Logic Networks (MLNs) [25, 26, 83] have shown their theoretical potentials in reasoning

over partially correct rules [63] and modeling multi-variate structured dependency [94]. The in-

ference on MLN is based on the inference over the resulting grounded Markov network (Markov

random field) [93].

Social Graphs Tend to Be Sparse Globally and Dense Locally

Although MLNs are commonly employed to deal with partially correct inference rules, the

major obstacle in applying MLNs in practice is that their grounded Markov network would be

prohibitively huge. In other words, Markov logic networks become extremely inefficient in coping

with large-scale data due to their highly demanding nature in terms of inference time and memory

33

consumption [74]. This is because Markov logic networks require a complete grounding of rules

in order to count the number of grounded rules (i.e., formula groundings) that are true given a

particular possible world. Such counting becomes impractical when dealing with large-scale data

because the number of formula groundings grows exponentially as the number of individuals in the

investigated domain increases. However, unfortunately, social networks in reality usually contain a

massive number of social relations, leading to the infeasibility of applying MLN directly on social

networks in practice.

To tackle this issue, we observed that most social networks exhibit typical characteristics of

scale-free networks. First, vertex degrees follow power law distributions. Second, vertices tend

to cluster together. Third, the average length of all shortest paths between any two vertices is

logarithmically small. We calculated statistics over a 1 % random sample on the Billion Triple

Challenge (BTC) 2009 data set1 with up to more than 13 million people and 35 million friend

relations. Figure 2.2(a) illustrates the relationship between the number of friends (i.e., it can be

interpreted as the degree of a vertex) and the number of people who have the number of friends in

the BTC data set. The corresponding pie chart is demonstrated in Figure 2.2(b). Figures 2.2(a) and

2.2(b) reveal a fact that an overwhelming majority of people have a very limited number of friends

while only a few number of people have a considerable number of friends (i.e., they are highly

connected and can be considered as hubs in a given social graph). As depicted in Figure 2.2(b),

21% of the people do not have any friends, 69% of the people have exactly one friend, and 6% of

the people have two friends, according to our sampled BTC data set.

In this dissertation, we attempt to take advantage of such characteristics to devise an MLN-

driven inference engine with an affordable cost for searching massive social networks. We employ

a k-backbone graph to discover the global topology of a given social network and conduct inference

on both the most globally influencing nodes and the most locally related nodes.

1http://vmlion25.deri.ie/

34

2.1.3 Our Approach

This chapter presents LinkProbe, a prototype to estimate link existence in uncertain social

networks based on probabilistic reasoning. LinkProbe is empowered by MLN inference but man-

ages to provide a tunable balance between MLN inference accuracy and inference efficiency. First,

in order to maintain the infrastructure of social graphs, we sort all the nodes by their degrees and

construct the corresponding k-backbone graph. Then, we issue two independent runs of the ran-

dom walk Metropolis sampling to explore local social graphs. Subsequently, LinkProbe applies

MLN inference on the union of all the nodes in the k-backbone graph and all nodes discovered

locally. In addition, in order to support uncertain/probabilistic evidence data, LinkProbe adopts

MC-SAT+, a probabilistic extension of the well-known MLN inference method MC-SAT.

2.1.4 Our Contributions

We summarize our contributions as follows:

• We define probabilistic social graphs by injecting uncertainty into social graphs and formal-

izing the link queries on them. Afterwards, LinkProbe, a prototype for predicting probabilis-

tic links, is proposed to answer such queries.

• We propose LinkProbe, which is driven by Markov logic networks and is often utilized in

handling partially correct inference rules which appear commonly in social networks.

• In order to handle large data volumes, LinkProbe takes full advantage of the fact that most

social graphs tend to be sparse globally and dense locally. LinkProbe conducts the MLN

inference on both the most globally influencing nodes and the most locally related nodes.

Compared to the “entire graph" based naive implementation, LinkProbe reduces the time

and space costs by several orders of magnitude and, in the meanwhile, maintains the infer-

ence accuracy in an acceptable level. With a much higher scalability than the naive MLN

implementation, LinkProbe is applicable to large social networks for probabilistic reasoning.

35

foaf:know
s (1)

foaf:knows (0.9)

fo
a
f:

k
n

o
w

s
 (

1
)

fo
a
f:

k
n
o
w

s
 (
0
.8

)

foaf:knows (0.7)

foaf:k
nows (0

.9) fo
a
f:k

n
o
w

s
 (1

)Alice

Bob

Charles

David

Eric

Richard

Linda

Emily

Figure 2.3: An example of a probabilistic social graph.

2.1.5 Chapter Organization

The rest of this chapter is organized as follows. The research problem is formally defined

in Section 2.2. In Section 2.3 we focus on the methods for constructing the k-backbone graphs.

We explain how to explore d-local graphs and random walk in Section 2.4. The basics of Markov

logic networks are introduced in Section 2.5 and the inference method in LinkProbe is discussed

in Section 2.6. We illustrate the error analysis in Section 2.7. The experimental validation of our

system is presented in Section 2.8. Section 2.9 surveys related works. Section 2.10 concludes the

chapter with future work.

2.2 Problem Formulation

2.2.1 Probabilistic Social Graphs

Definition 2.1 A Probabilistic Social Graph (PSG) is a social graph where each edge is associated

with a probabilistic value to reflect the likelihood that a specified relation (e.g., friendship) exists

among the two linked people.

Probabilistic social graphs can be stored in a database, denoted as DB. DB may have the

following schema: < from, to, prob >. Specifically, each pair of from and to contains the two

IDs of the vertices (i.e., involved people) associated to an edge (i.e., a friendship between two

people). In addition, prob denotes the weight of an edge, reflecting the probability of a friendship.

36

foaf:know
s (1)

fo
a
f:

k
n

o
w

s
 (

1
)

foaf:k
nows (0

.9) fo
a
f:k

n
o
w

s
 (1

)Alice

Charles

Richard

Linda

Emily

Figure 2.4: 1-backbone.

Throughout this chapter, without loss of generality, we consider such relation as a mutual friend-

ship between people. For example, a record < 11, 32, 0.8 > means that the person with ID 11

knows another person with ID 32 with a probability of 0.8.

2.2.2 Link Prediction

Definition 2.2 Given a probabilistic social graph G, the purpose of link prediction is to predict

the probability that a specific link exists between two nodes in G. Take Figure 2.3 as an example.

Query(Bob, Emily, knows) may be launched to investigate how well Bob knows Emily, i.e., from

the probabilistic view, to estimate the likelihood that a potential friendship edge exists from Bob

to Emily.

2.3 The k-backbone Graphs

Definition 3.1 The weighted degree (WD) of a vertex u in a probabilistic social graph G, denoted

as WDG(u), is defined to be the sum of the weights of all the edges incident to u. In other words,

WDG(u) can be calculated as WDG(u) =
∑

e∈E(u)W (e), where E(u) denotes the set of edges

incident to u and W (e) means the associated weight of edge e in G.

37

Algorithm 4: Retrieval of vertices in k-backbone graphs

Input: A probabilistic social graph G stored in database DB
Output: All the vertices in the k-backbone graph, output as B

4.1 B = ∅ ;

4.2 foreach < from, to, prob > in DB do

4.3 DB = DB
⋃

< to, from, prob > ;

/* We assume that relations are undirected here */

4.4 foreach each vertex vi in DB do

4.5 Compute the weighted degree of vi, WDG(vi) ;

4.6 Compute the weighted out-degree of vi, WDG
out(vi), by accessing the DB using the

B+-tree index with < friend_s, friend_t > as the composite key ;

4.7 if WDG(vi) ≥ k then

4.8 B = B
⋃

vi ;

Definition 3.2 A k-backbone graph of a probabilistic social graph G is a subgraph of G which

can be acquired by deleting from G all the vertices with the weighted degree less than k and all the

associated edges.

Figures 4 and 5 demonstrate examples of 1-backbone and 2-backbone graphs. The detailed

steps of k-backbone graph construction are formalized in Algorithm 4. For each vertex vi, we add

vi to the k-backbone graph if WDG(vi) is no less than k.

2.4 Random Walk

In the previous section, we illustrate how to explore the skeleton of a given social graph by

discovering its k-backbones. In this section, we elaborate on how to focus our exploration on a

relatively small part of the graph by retrieving d-local graphs and then employing a MCMC-based

fo
a
f:

k
n

o
w

s
 (

1
)

Charles

Richard

Figure 2.5: 2-backbone.

38

 D

L

B
 K

 …

 …

Random Walk Metropolis

 F

G

M

 I

JH
E

 N

 A

 C

 …

D
B

A

L

KG

M

N

Figure 2.6: An illustration of the random walk Metropolis on a social graph.

sampler, the Random Walk Metropolis (RWM), in order to connect d-local graphs with the derived

k-backbone graph.

2.4.1 d-local Graphs

Definition A d-local graph of a node X in a probabilistic social graph G is a subgraph of G

which can be acquired by deleting from G all the neighboring nodes connected with an edge with

a probability less than d and all the associated edges. In a social graph, a vertex in the d-local

graph of a node X means that a person knows X with a probability of no less than d.

2.4.2 Markov Chain Monte Carlo

A Markov chain is a stochastic process which consists of possible states of random variables.

It can be denoted as a sequence states of X1, X2, X3, ..., Xn, which satisfy

p(Xn+1 = x|Xn = xn, Xn−1 = xn−1, ..., X1 = x1) =

p(Xn+1 = x|Xn = xn)

where p(x|y) is the transition probability from state y to state x. Markov Chain Monte Carlo

(MCMC) is a technique to generate samples from the state space by simulating a Markov chain [69,

3]. The formed Markov chain is constructed in such a way that the chain spends more time in the

regions with higher importance, i.e., the stationary distribution of the Markov chain is the same

as the target distribution. That is, the Markov chain can converge to the target distribution (the

posterior) as its equilibrium distribution. From the perspective of Monte Carlo sampling, as the

39

number of samples are sufficiently large, all the samples can become the fair samples from the

posterior. Consequently, we are able to approximate the sophisticated target posterior based on

deliberately constructing a Markov Chain of all the Monte Carlo samples.

2.4.3 Connecting Local Graphs with the Backbone Graphs

The Random Walk Metropolis (RWM) sampler is one of the most used MCMC-based sam-

plers, which generates a sequence of random walks utilizing a proposal density and decides on

whether to reject the proposed moves by employing the rejection sampling.

The random walk Metropolis algorithm simulates a Markov chain in which each state Xt+1

only depends on the immediately previous state Xt. A new sample X ′ is proposed depending on

the current state Xt. X ′ is accepted as the next state Xt+1 with the probability of an acceptance

rate α, which can be formalized as Equation 2.1. P (X) is the probability of state X .

α = P (Xt+1 = X ′|Xt) = min

{

1,
P (X ′)

P (Xt)

}

(2.1)

P (u −→ w) = min

{

1,
WDG(w)

WDG(u)

}

(2.2)

In our research problem, let u be an arbitrary vertex in a probabilistic graph G and V(u)

denote the set of all the vertices adjacent to u in G. w is a random sample from V(u). If we

use WDG(i) to represent the weighted degree of vertex i in G, Equation 2.1 can be rewritten as

Equation 2.2, where P (u −→ w) represents the probability that random walk moves from u to w.

In addition, at each trial, the proposed state w for the current state u is uniformly drawn from V(u).

By doing this, our random walk Metropolis algorithm starts from an initial vertex (usually a person

whose friend relation is of interest), then moves along edges in G, and terminates once it reach a

node in a k-backbone graph. Therefore, by launching the random walk Metropolis sampler, we

obtain a Markov chain of random samples of nodes in G.

Here we illustrate our random walk Metropolis (RWM) algorithm by taking the graph in

Figure 2.6 as an example. In Figure 2.6, grey nodes indicate the vertices in the k-backbone and

40

dashed arrows represent a random walk by the RWM. Without loss of generality, assume that

all the edges hold a weight of 1. Suppose we aim to investigate the probability that A knows

N given the topology specified in Figure 2.6. We run the random walk Metropolis for A and

N , respectively, to identify the set of their respective local closely related vertices, denoted as

local(A) and local(N). At first, the RWM initiates a Markov chain with A as its starting point

by adding A into local(A). Afterwards, the RWM proposes a new state by sampling uniformly

over all the vertices adjacent to A. Because B is the only vertex directly connected to A, B will

be suggested as the next state of the Markov chain. Then RWM accepts B with a probability of

min{1, WDG(B)
WDG(A)

} = min{1, 3
1
} = 1. Thus we insert B into local(A). Subsequently, the RWM

verifies that the termination condition is met, i.e., the RWM terminates if the current state is a k-

backbone vertex. Because B is not a k-backbone vertex, the RWM continues and a new proposal

state for B will be selected from {A,C,D}. Supposing D is chosen, the RWM accepts D with a

probability of min{1, WDG(D
WDG(B)

} = min{1, 4
3
} = 1. As a result, D is added into local(A). Since D

is a k-backbone vertex, the RWM for A terminates with D as the ending point. Similarly, we run

the RWM for N and the resulting Markov chain is local(N) = {N,M,L,M,K,G}

The detailed steps of the RWM sampling method are summarized in Algorithm 5. In Algo-

rithm 5, we initiate a Markov chain with u as the starting point. Afterwards, the RWM proposes a

new state (vertex) to move to by sampling uniformly over all the adjacent vertices. Then, the RWM

accepts the proposed state with a probability of the ratio of the weighted degree. After each move,

the RWM verifies that the termination condition is met. The resulting Markov chain terminates

when it moves to a vertex which belongs to the k-backbone graph.

By launching the RWM sampler from a particular vertex, for instance U , we can obtain a chain

of vertices (nodes) locally related to U . As far as the prediction of a specific link is concerned, for

example, Query(X , Y , knows), LinkProbe launches two independent runs of the RWM sampler

for X and Y in order to connect their respective d-local graphs with the k-backbone graph.

41

Algorithm 5: The RWM sampling method (k, u, G)

Output: A Markov chain of vertices in G: X = X0, X1, ... , Xi, ...

5.1 X0 = u ;

5.2 L = ∅ ;

5.3 L= L
⋃

X0 ;

5.4 for i = 0 to max_tries do

5.5 if Xi is a node in the k-backbone graph then

5.6 Return ;

5.7 else

5.8 Obtain a random node X ′
i+1 from the adjacent list of Xi, V(Xi) ;

5.9 Generate a random number between 0 and 1, jitter ;

5.10 if jitter ≤ min

{

1,
WDG(X′

i+1)

WDG(Xi)

}

then

5.11 Xi+1 = X ′
i+1 ;

5.12 else

5.13 Xi+1 = Xi ;

5.14 L= L
⋃

Xi+1 ;

5.15 i++ ;

2.4.4 Properties of the RWM Sampler

• The RWM sampler explores a probabilistic social graph locally by favoring the people who

are more “influential" to the query results. First, the resulting Markov chain is ergodic so

that each vertex has a certain probability to be visited. Second, the constructed Markov chain

satisfies the detailed balance property. Therefore, a local vertex with a higher probabilistic

degree holds a higher probability to be selected by the RWM sampler.

• The RWM algorithm is efficient in reaching the k-backbone graphs.The average length of

all shortest paths between any two vertices is logarithmically small. On the other hand, the

RWM algorithm tends to generate vertices with a higher probabilistic degree. Therefore, the

RWM sampler can efficiently reach a k-backbone node which has a probabilistic degree of

at least k.

42

2.5 Markov Logic Networks

2.5.1 Markov Networks

As one of the probabilistic graphical models, Markov networks (also called Markov random

fields) can represent the full joint probability distribution D over a set of random variables X =

X1, ...Xn, as shown in Equation 2.3. In Equation 2.3, Φk and x{k} represent the potential function

and the state of the kth clique, respectively. Furthermore, Z is the normalizing constant and can be

computed using Equation 2.4. Each variable can be represented as a node in the Markov network

and the correlation among variables are reflected by the edges between nodes.

D = P (X = x) =
1

Z

∏

k

Φk(x{k}) (2.3)

Z =
∑

x∈X

∏

k

Φk(x{k}) (2.4)

Based on the full joint distribution D, we are able to answer any conditional probability query

by summing the corresponding entries in D. To be specific, if we use E = E1, ..., Em to denote the

set of evidence variables and Y = Y1, ..., Yk to represent the set of query variables, a conditional

probability query of Y given the fact E = e can be calculated as

∑

H

P (Y,H|E = e), (2.5)

where H = X − Y − E is a set of hidden variables.

2.5.2 Markov Blankets

In a Markov network, the Markov Blanket (MB) for node X , denoted as MB(X), is the set of

all the neighboring (i.e., directly connected) nodes of node X . The Markov blanket for an arbitrary

node X maintains the following property: node X is conditionally independent of all other nodes

in the network, given the Markov blanket for node X . This property can be represented using

43

Equation 2.6. In Equation 2.6, MB(X) represents the Markov blanket for node X and MB(X)

denotes all the nodes in the network which do not belong to the Markov blanket for node X .

P (X|MB(X),MB(X)) = P (X|MB(X)) (2.6)

2.5.3 Markov Logic Networks

Markov logic networks (MLN) are a powerful modeling tool which can provide the full ex-

pressiveness of probabilistic graphical models and first-order logic in a unifying representation. An

MLN can be represented using a set of pairs (Fi, wi), where Fi is a formula (a rule) in first-order

logic and wi is a real value representing the weight of the corresponding formula. The weight

indicates how strong a formula is. The main idea behind MLN is that a possible world that violates

a formula is not impossible but less probable.

The inference in an MLN is based on the inference in its resulting grounded Markov network.

In other words, an MLN needs to be converted to a Markov network for inference by the means

of creating a node for each grounded predicate and generating an edge between two nodes if the

corresponding two grounded predicates appear in the same rule grounding.

In such a Markov network derived from an MLN, each node can be treated as a binary variable

and each assignment of truth values to all the binary variables constitutes a possible world pw. The

probability distribution of possible worlds (PW) in a ground Markov network can be defined as

P (PW = pw) =
1

Z
exp(

∑

i=1

F
wini(pw)), (2.7)

where F is the number of formulas in the MLN, ni(pw) is the number of true groundings of Fi in

the possible world pw, wi is the weight of Fi, and Z is the normalizing constant.

2.5.4 Inference in Markov Logic Networks

As mentioned in the previous subsection, inference in an MLN is based on the inference in its

derived Markov network. However, in many cases, generating an exact full joint distribution in a

Markov network is NP-Hard and computationally intractable. In the worst case, the complexity of

44

the algorithm in the case of n random variables is O(n2n), requiring exponential time and space

to construct the corresponding Markov network representation. Therefore, several approximate

algorithms were developed to overcome this restriction.

MC-SAT

MC-SAT [25, 26] is a state-of-the-art approach to conduct approximate inference over Markov

logic networks by combining slice sampling with satisfiability testing. Specifically, MC-SAT em-

ploys WalkSAT2 as a procedure to sample from each slice, i.e., to sample a new state given the

auxiliary variables. Furthermore, detailed balance among all the generated samples is preserved

in MC-SAT so that inference calculations can be made only on the generated samples. MC-SAT

has been proven to be orders of magnitude faster than standard MCMC methods, such as Gibbs

sampling and simulated tempering, and is applicable to any model that can be expressed in Markov

logic.

WalkSAT

Here we briefly introduce the WalkSAT solver, which is used in MC-SAT as a procedure to

find a satisfying solution. Satisfiability is the problem of finding an assignment of truth values to

all the variables that can satisfy all formulas in a knowledge base. Because Satisfiability is an NP-

complete problem, WalkSAT serves as one of the most efficient approaches to satisfiability prob-

lems based on stochastic local search. Starting from a random initial state, WalkSAT repeatedly

changes (flips) the truth value of a binary variable in a random unsatisfied formula. Specifically,

with probability p, WalkSAT chooses the variable that maximizes the number of satisfied formula,

and with probability 1 − p, WalkSAT selects a random variable. WalkSAT has been proven to be

able to solve satisfiability problems with thousands of random variables in a fraction of a second.

The complete algorithm of a WalkSAT solver is formalized in Algorithm 6.

2Strictly speaking, a variant of WalkSAT, namely SampleSAT, is used in MC-SAT.

45

Algorithm 6: WalkSAT(C, max_tries)

Input: A set of logic formulas, C, and the maximum number of tries, max_tries
Output: An assignment of all binary predicates satisfying each formula in C

6.1 Randomly assign TRUE/FALSE to each binary predicate.

6.2 k = 0

6.3 for k ≤ max_tries do

6.4 Randomly select a unsatisfied formula, Fi, in C

6.5 With probability p, select a binary predicate in Fi and flip (change) the value of that

predicate.

6.6 if all the formulas in C are satisfied then

6.7 Return the current assignment of predicates as the solution.

6.8 k ++

2.6 Inference

2.6.1 MC-SAT+

The inference in LinkProbe is based on the MC-SAT+ method, which is a probabilistic ex-

tension of the well-known MC-SAT algorithm. In this section, we elaborate on how LinkProbe

employs MC-SAT+ to conduct the inference.

Notice that a possible world (a ground Markov network) is comprised of an assignment of

truth values to all the nodes in an inference graph. Therefore, in order to instantiate a sample

(a valid possible world), we need to assign truth values to all the involved nodes. Specifically,

in each sampling cycle, MC-SAT+ employs the WalkSAT solver and a biased sampling method

to find values for hidden nodes and probabilistic evidence nodes, respectively. On the contrary,

throughout all the sampling cycles, MC-SAT+ keeps the values of deterministic evidence nodes

fixed.

Searching for Values for Hidden Nodes

MC-SAT+ launches the WalkSAT solver to find the truth values for all hidden nodes. Starting

from a random initial state, WalkSAT repeatedly flips the truth value of a hidden node (can be

treated as a binary random variable) in a random unsatisfied rule grounding. At each iteration in a

46

sampling cycle of MC-SAT+, WalkSAT selects a hidden variable v in a randomly chosen unsatis-

fied rule grounding to flip the value of v. The selection criterion is as follows. With probability p,

WalkSAT chooses the hidden node that can minimize the number of unsatisfied rule groundings.

With probability 1− p, WalkSAT chooses a random hidden node in the referred rule grounding.

Generating Values for Probabilistic Evidence Nodes

We utilize inverse transform sampling to randomly generate values for probabilistic evidence

triples based on their probability information specified in DB. Inverse transform sampling is a

basic method to draw random samples from any probability distribution given its cumulative dis-

tribution function [37]. Suppose we have a record < from, to, prob > in DB. When we need

to assign values to the node representing this record, we randomly generate its value as TRUE

with a probability of prob and as FALSE with a probability of 1 − prob. Afterwards, we keep

this randomly generated value unchanged during each sampling cycle of MC-SAT+. The complete

assignment operation of all the probabilistic evidence triples can be done by calling the procedure

biased_sample().

Determining Values for Deterministic Evidence Nodes

For deterministic evidence nodes, i.e., a record < from, to, prob > where prob = 1, we set

their values as TRUE and keep such values unchanged during the entire inference procedure.

Algorithm Description of MC-SAT+

The complete algorithm of the MC-SAT+ method is formalized in Algorithm 7. In Algo-

rithm 7, each sample x(i) consists of deterministic evidence nodes, xde
(i), probabilistic evidence

nodes, xpe
(i), and hidden nodes, xh

(i), i.e., x(i) = xde
(i) ∪ xpe

(i) ∪ xh
(i). In particular, since we

keep the truth values of the deterministic evidence nodes unchanged during the entire sampling

procedure, we rewrite xde
(i) as xde. An illustration of the sampling in MC-SAT+ is shown in Fig-

ure 2.7. As demonstrated in Figure 2.7, similar to MC-SAT [25, 26], MC-SAT+ utilizes WalkSAT

47

n

n+1

n+2

n+2

n+1

n

n+1

n

n+2

Figure 2.7: An illustration of the sampling procedure in the MC-SAT+ method.

as a procedure to identify each valid solution Xn to each slice (constraint set) Cn from a random

assignment Sn. The weight wj for formula fj can be approximated as wj = log
pj

1−pj
, where pj is

the probability that formula fj holds. If pj is 1, then fj is a hard formula.

2.6.2 Probabilistic Inference in LinkProbe

Here we elaborate on the four steps of the inference procedure of LinkProbe for each submit-

ted link query.

Deriving the k-backbone Graph

As discussed in Section 2.3, we retrieve the k-backbone graph for a given social network G.

Retrieving the d-local Graphs

As discussed in Section 2.4, we retrieve the d-local graphs for a link query.

48

Algorithm 7: The MC-SAT+ Inference Method

Input: The k-depth inference subgraph for pQuery(P , DB)

Output: We report counter
num_samples

as the probability that the triple {s, p, o} is true

7.1 Assign truth values to xde ;

7.2 xpe
(0) = biased_sample() ;

/* Generate the truth values of the probabilistic evidence

node */

7.3 xh
(0) = WalkSAT (hard_formulas) ;

/* Find the truth values for the hidden nodes by applying

WalkSAT with all hard rules as the constraints */

7.4 counter = 0 ;

7.5 for i = 1 to num_samples do

7.6 xpe
(i) = biased_sample() ;

7.7 C = ∅ ;

7.8 for All fj ∈ formulas satisfied by x(i−1) do

7.9 With probability 1− e−wj , add fj to C ;

/* wj is the weight of fj */

/* Slice sampling */

7.10 xh
(i) = WalkSAT (C, max_tries) ;

/* Search for the valid truth values for hidden nodes by

calling WalkSAT with C as the constraints.

Consequently, we obtain x(i) as xde ∪ xpe
(i) ∪ xh

(i)
*/

7.11 if The value of the query node in x(i) is TRUE then

7.12 counter ++ ;

/* counteri represents the counter for qi. Here we count

the frequency of each grounded VP predicate being

true in the samples */

Connecting the d-local Graphs with the k-backbone Graph

For a link query, in particular Query(X , Y , knows), we issue two runs of the RWM sam-

pler from X and Y , respectively. LinkProbe collects all the discovered nodes during the RWM

sampling.

Inferencing over Inference Subgraph

For a link query, Query(X , Y , knows), its inference subgraph is comprised of the k-backbone

graph, the respective d-local graphs of X and Y , and all the discovered nodes during the RWM

49

Algorithm 8: Inference Method in LinkProbe (d, k, X , Y)

Output: The probability p that X holds a certain relationship with Y , for example,

knows(X,Y).

8.1 Retrieve all the vertices in the k-backbone graph of G as K
8.2 Identify the set of the vertices in the d-local graph of X as X.

8.3 Identify the set of the vertices in the d-local graph of Y as Y.

8.4 Generate a set of vertices X′ by launching a RWM sampler from vertex X .

8.5 Generate a set of vertices Y′ by launching a RWM sampler from vertex Y .

8.6 Construct the inference subgraph I = K
⋃

X
⋃

X′
⋃

Y
⋃

Y′

8.7 p = MC-SAT+ (I , G)

sampling. As for each query, LinkProbe applies MC-SAT+ over its inference subgraph instead of

on the original graph.

2.6.3 Algorithm Description

Algorithm 8 shows how LinkProbe builds the inference subgraph for a given link query and

then conducts joint inference over it. First, LinkProbe retrieves the k-backbone graph. Afterwards,

LinkProbe identifies the d-local graphs. Next, LinkProbe launches random walk Metropolis sam-

plers to connect the d-local graphs with the k-backbone graph in order to form the final inference

subgraph. Subsequently, LinkProbe conducts MC-SAT+ on the inference subgraph.

2.7 Error Analysis

{

knows(X,Z) ∧ knows(Z, Y) −→ knows(X,Y)

knows(X,T) ∧ knows(T, Y) −→ knows(X,Y)

knows(X,U) ∧ knows(U, Y) −→ knows(X,Y)

knows(X,V) ∧ knows(V, Y) −→ knows(X,Y)

knows(X,W) ∧ knows(W,Y) −→ knows(X,Y)

... −→ ...

... −→ ...

(2.8)

50

{ knows(X,Z) ∧ knows(Z, Y) −→ knows(X,Y)

knows(X,T) ∧ knows(T, Y) −→ knows(X,Y)
(2.9)

In this section, we elaborate on the error induced by inferencing over the inference subgraph

rather than over the original graph. We use error to describe the error between our proposed

inference graph-based MLN implementation, represented as LinkProbe(), and the original graph

based MLN implementation, represented as Naive(), with the same number of samples drawn.

Without loss of generality, suppose we adopt the transitive property of friendship for infer-

ence. For simplicity of presentation, we focus the MLN inference on the Markov blanket of the

grounding Markov network (the Markov blanket of a node contains all the variables that shield

the node from the rest of the network). Our objective is to predict the acquaintance between two

people, X and Y . In the naive “original graph" implementation, the constraint set for a certain slice

can be represented as Equation 2.8, where X , Y , Z, T , U , V and W denote different people. If we

have 106 people in the social graph, then the total number of formula groundings in Equation 2.8

could be very close to 106, which will lead to extreme inefficiency in terms of inference time and

memory usage.

We aim to compare the inference result generated by the entire graph implementationNaive()

with that returned by the inference subgraph implementation LinkProbe(), with respect to the

value of knows(X, Y). Suppose X , Y , Z and T are the only nodes in the inference subgraph

while others are not. Then, we can obtain Equation 2.9, which is only comprised of the nodes

appearing in the inference subgraphs. For the referred slice during MC-SAT+ inference, Naive()

implementation employs the constraint set Equation 2.8 while LinkProbe() implementation uti-

lizes the constraint set Equation 2.9. In addition, we use N to denote the set of the formula

groundings in Equation 2.8 and L to represent the set of the formula groundings in Equation 2.9.

Each predicate in Equation 2.8 and Equation 2.9 has three candidate values TRUE, FALSE and

UNKNOWN.

51

2.7.1 Error Analysis

Case 1

All the left sides of the formula groundings in N are FALSE. In this case all the formula

groundings in N are trivially satisfied. According to the LazySAT implementation of WalkSAT,

any formula grounding trivially satisfied by evidence can be removed without affecting the final

solution found by WalkSAT. Therefore, it is safe for us to delete all the formula groundings in

N −L. Therefore, in this case Equation 2.8 and Equation 2.9 are equivalent with respect to the run

of WalkSAT. As a result, Naive() and LinkProbe() will yield the same value of knows(X, Y).

Case 2

At least one left side of the formula groundings in N is TRUE or UNKNOWN.

• Case 2-A: TRUE or UNKNOWN only appears in the left side(s) of the formula groundings

in L . In this case the left sides of all the formula groundings in N − L are FALSE. As a

result, it is safe to delete all the formula groundings in N − L because they are all trivially

satisfied. Naive() and LinkProbe() will return the same value of knows(X, Y) in this case.

• Case 2-B: TRUE or UNKNOWN only appears in the left side(s) of the formula groundings

inN −L. In this case all the left sides of all the formula groundings in L are FALSE. There

could be an error between Naive() and LinkProbe() because some formula groundings

in N − L that need to be satisfied are dropped and all the formula groundings in L are

trivially satisfied. However, because any person who knows X or Y with a probability no

less than d on the probabilistic social graph G should be included in the inference subgraph

(according to the definition of d-local graph), the probability that case 2-B occurs is less than

(1 − d)(n+m), where n and m are the numbers of friends on the inference subgraph. If we

take d as 1, then case 2-B never happens.

• Case 2-C: TRUE or UNKNOWN appears in the left side(s) of the formula groundings in L

and inN −L.

52

– Case 2-C-1: At least one left side of the formula groundings in L is TRUE. In this case,

because the formula groundings in L are able to determine the value of knows(X, Y)

as TRUE, it is safe to remove all the formula groundings in N − L from N . Naive()

and LinkProbe() will return the same value of knows(X, Y) as TRUE. Since L is

comprised of predicates involving the most globally influencing people and most lo-

cally connected people, this case happens with a very high probability.

– Case 2-C-2: All left sides of the formula groundings in L are FALSE or UNKNOWN.

In this case, the removal of all the formula groundings inN−Lmay lead to a WalkSAT

solution with a different value of knows(X, Y), resulting in an error between Naive()

and LinkProbe() for the current slice sampling cycle. However, since the predicates in

L describe the relationship between the persons of interest and their most locally related

people and the most globally influencing people, each predicate in L is expected to be

TRUE with a very high probability. Therefore, case 2-C-2 occurs only with a very low

probability.

By reducing Equation 2.8 (corresponds to the entire graph) to Equation 2.9 (corresponds to

the inference subgraph), LinkProbe decreases the number of formula groundings which need to be

taken into account in each sampling cycle by several orders of magnitude, which leads to much

higher inference efficiency and scalability without significant sacrifice in accuracy compared to the

naive MLN implementation.

2.7.2 Error Upper Bound

During MC-SAT+, LinkProbe first draws samples based on slice sampling, then calculates the

frequency of TRUE and FALSE over all the samples to report the final inference result. Suppose N

samples are drawn in total, then each incorrect count will induce the inference error of 1
N

. The error

between LinkProbe() and Naive() can be described using Equation 2.10. In Equation 2.10, P (k)

is the probability that k incorrect counts occur during the inference. Because the incorrect count

during the MC-SAT inference follows the Poisson Binomial distribution, the probability of having

53

exactly k incorrect counts during N samples, P (k), can be calculated as Equation 2.11, where pi

is the probability that case 2-C-2 occurs in the ith sampling cycle, Fk is the set of all subsets of k

integers that can be selected from {1,2,3,...,N}, and SC is the complement of S. Because the mean

of the Poisson Binomial distribution is
∑N

i=1 pi, the error between LinkProbe() and Naive() can

be bounded as shown in Equation 2.12. Notice that in Equation 2.12, N is very large and ∀i, pi is

very small.

If we assume that the probability that case 2-C-2 occurs in each sampling cycle is identical, say

P , then the incorrect count follows the Binomial distribution B(N,P). In this case, Equation 2.10

can be rewritten as Equation 2.13.

error ≤
N
∑

k=1

1

N
× k × P (k) (2.10)

P (k) =
∑

S∈Fk

×
∏

i∈S

pi ×
∏

j∈SC

(1− pj) (2.11)

error ≤
1

N
×

N
∑

i=1

pi (2.12)

error ≤
N
∑

k=1

1

N
× k ×

(

N

k

)

× P k × (1− P)N−k (2.13)

2.8 Experimental Validation

In order to validate the superiority of LinkProbe, we implemented LinkProbe and investigated

its performance with two real-world data sets, LiveJournal (LJ) [50] and High Energy Physics

(HEP) [49]. Table 2.1 shows the basic statistics of the above two data sets. We used the relation

transitive property as the inference rule and the probability that the rule is true was approximated

as the fraction of closed triangles. Each result on inference accuracy and efficiency is obtained by

averaging 100 randomly generated link queries against the referred data set.

54

Table 2.1: Data sets used in the experiments.

Name Description Number

of nodes

Number

of edges

Average clus-

tering coeffi-

cient

Fraction

of closed

triangles

LJ social network 4,847,571 68,993,7730.3123 28.820%

HEP collaboration net-

work

12,008 237,010 0.6115 65.950%

(a) k = 1500. (b) k = 3000. (c) k = 4500.

Figure 2.8: The k-backbone graphs of LJ.

(a) k = 200. (b) k = 400. (c) k = 600.

Figure 2.9: The k-backbone graphs of HEP.

2.8.1 k-backbone Graphs

We retrieved 1500-backbone, 3000-backbone and 4500-backbone graphs for LJ and 200-

backbone, 400-backbone and 600-backbone graphs for HEP. Table 2.2 lists the number of people

involved in the above backbone graphs. Their respective social graphs are shown in Figure 2.8 and

Figure 2.9, respectively. As illustrated in Figures 2.8 and 2.9, a higher k value leads to a sparser

social graph, filtering out more nodes (more people) from the original data set.

55

Table 2.2: Number of people in the corresponding k-backbone graphs.

LJ,

k=1500

LJ,

k=3000

LJ,

k=4500

HEP,

k=200

HEP,

k=400

HEP,

k=600

Number of

people

652 124 46 425 252 95

2.8.2 Memory Consumption

LinkProbe is capable of inferencing over large-scale social graphs. Table 2.3 shows the ap-

proximate memory requirement of LinkProbe with data sets and k values specified. In addition,

Table 2.4 illustrates the approximate memory consumption by the MLN naive implementation.

Table 2.3: Memory consumption by LinkProbe.

LJ,

k=1500

LJ,

k=3000

LJ,

k=4500

HEP,

k=200

HEP,

k=400

HEP,

k=600

Required memory

(GB)

3.4638 0.3638 0.28813 2.51 0.485 0.1206

2.8.3 Inference Accuracy

Definition The Absolute Error (AE): The Absolute Error is defined to be the difference between

the predicted probability and the true probability regarding the existence of a particular link (i.e., a

link query).

Definition The Mean Absolute Error (MAE): The Mean Absolute Error is defined to be the aver-

age value of the the absolute error over the involved link queries.

Table 2.4: Memory consumption by the MLN naive implementation.

LJ HEP

Required memory

(GB)

4.76 ∗
1011

1.28 ∗ 107

56

Social Networks

In this subsection, we investigate the performance of LinkProbe on the LiveJournal (LJ) data

set in terms of inference accuracy. We retrieved the 1500-backbone graph, 3000-backbone graph

and 4500-backbone graph of the LiveJournal data set. i.e., we set k as 1500, 3000, and 4500,

respectively. We increased the number of samples drawn in LinkProbe to investigate its impact

on inference accuracy. Figure 2.10 shows the results. In Figure 2.10, when we gradually raised

the number of samples, the mean absolute error dropped accordingly. The reason is that when we

draw more samples using MC-SAT+, the distribution of samples (possible worlds) provided an

approximation more close to the reality. On the other hand, when we adopted a larger k value,

the corresponding mean absolute error increased because the inference subgraph filtered out more

nodes and contained a smaller fraction of the original graph.

Collaboration Networks

In this subsection, we investigate the performance of LinkProbe on the High Energy Physics

(HEP) data set in terms of inference accuracy. We varied k from 200 to 400 to 600 and gradually

increased the number of samples drawn in the inference to study their impact on inference accuracy.

The experimental results are shown in Figure 2.11. In Figure 2.11, with the enlargement of the

number of samples drawn, the mean absolute error is reduced accordingly. On the other hand,

when we took a larger k value, the mean absolute error rose.

2.8.4 Inference Efficiency

Here we measure the end-to-end execution time (running time) counted from the time of query

submission to the time returning the final inference results.

Social Networks

In this subsection, we investigate the performance of LinkProbe on the LiveJournal (LJ) data

set in terms of inference efficiency. We varied k from 1500 to 3000 to 4500 and changed the

57

0 200 400 600 800 1000 1200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
A

bs
ol

ut
e

E
rr

or

Number of Samples Drawn in LinkProbe

 k = 1500
 k = 3000
 k = 4500

Figure 2.10: The impact of number of samples on inference accuracy for LJ.

number of samples. Figure 2.12 shows the results. In Figure 2.12, when we gradually increased

the number of samples, the mean running time extended accordingly. The reason is that LinkProbe

requires more time to come up with samples using MC-SAT+. With a larger k value, the mean

running time dropped because a smaller fraction of the original graph was included in the inference

subgraph.

Collaboration Networks

In this subsection, we investigate the performance of LinkProbe on the High Energy Physics

(HEP) data set in terms of inference accuracy. We increased k from 200 to 400 to 600 and varied

the number of samples. The results are shown in Figure 2.13. In Figure 2.13, with the enlargement

of the number of samples drawn in the inference, the mean running time extended. On the contrary,

when we raised the k value, the mean running time dropped accordingly.

0 200 400 600 800 1000 1200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
A

bs
ol

ut
e

E
rr

or

Number of Samples Drawn in LinkProbe

 k = 200
 k = 400
 k = 600

Figure 2.11: The impact of number of samples on inference accuracy for HEP.

58

0 200 400 600 800 1000 1200

100

1000

10000

E
nd

-to
-e

nd
 E

xe
cu

tio
n

Ti
m

e
(s

ec
on

d)

Number of Samples Drawn in LinkProbe

 k = 1500
 k = 3000
 k = 4500

Figure 2.12: The impact of number of samples on inference efficiency for LJ.

2.9 Related Work

2.9.1 Sampling in Probabilistic Databases

Sampling-based approaches [37, 88, 11, 89] are proposed for managing incomplete and uncer-

tain data in probabilistic databases [2, 4, 5, 13, 19]. The idea is simple and intuitive: we construct

random samples while observing the prior statistical knowledge and constraints about the data.

Thus, each sample is one possible realization (possible world) in the space of uncertainty, and the

entire set of samples reveals the distribution of the uncertain data which we want to model. Queries

and inferences are then conducted against this distribution. MCDB [37], for example, allows a user

to define arbitrary variable generation functions that embody the database uncertainty. MCDB em-

ploys these functions to pseudorandomly generate realized values for the uncertain attributes, and

evaluates queries over the realized values. However, compared to the statistical relational learning

0 200 400 600 800 1000 1200

100

1000

10000

E
nd

-to
-e

nd
 E

xe
cu

tio
n

Ti
m

e
(s

ec
on

d)

Number of Samples Drawn in LinkProbe

 k = 200
 k = 400
 k = 600

Figure 2.13: The impact of number of samples on inference efficiency for HEP.

59

approaches, most of the above works are only focused on simpler probabilistic models for query

processing.

2.9.2 Statistical Relational Learning

Techniques of utilizing statistical relational learning have attracted more and more interests

from researchers due to the rapidly increasing applications on large-scale uncertain data (i.e., on-

line data produced by users), for example, natural language processing, entity resolution, infor-

mation extraction and social network analysis. Statistical relational learning is an emerging area

that combines statistics, artificial intelligence and machine learning for addressing uncertainty with

complex inherent structural constraints. In statistical relational learning, uncertainty is dealt with

using statistical methods. Structural constraints can be represented using first-order logic. The in-

ference in statistical relational learning is typically driven by using probabilistic graphical models,

e.g., Bayesian networks and Markov networks. Bayesian networks represent a joint distribution of

random variables as a directed acyclic graph. Its nodes are the random variables while the edges

correspond to direct influence from one node to another. The BayesStore project [82] is one recent

work based on Bayesian networks for probabilistic inference. Compared to Bayesian networks,

Markov networks represent a joint probability distribution of random variables as an undirected

graph, where the nodes represent the variables and the edges correspond to the direct probabilistic

interaction between neighboring variables. Oliveira and Gomes [63] employed Markov logic net-

works for web reasoning over partially correct rules. However, one key issue of applying Markov

Logic Networks in practice is its low efficiency, especially in domains involving many objects, due

to the combinatorics. Some approaches were proposed to alleviate this problem. For example,

Singla and Domingos [75] proposed a lazy implementation of Markov logic networks, named as

LazySAT. Mihalkova and Richardson [59] presented a meta-inference algorithm that can speed

up the inference by avoiding redundant computation. Shavlik and Natarajan [74] provided a pre-

processing technique to reduce the effective size of inference networks. However, all the above

60

approaches experimented only with very small-scale data sets, involving only a very limited num-

ber of objects. Our work aims at this challenge: how to apply statistical relational reasoning in

large-scale problems, i.e., in a social graph which involves millions of people?

2.9.3 Link Prediction on Social Networks

As one of the core tasks in social networks, link prediction has been extensively studied.

Liben-Nowell et al. [55] formalized the link prediction problem and developed approaches to link

prediction based on measures for analyzing the proximity of nodes in a network. Unfortunately,

they considered only the features that are based on the link structure of the network itself. Leroy

et al. [48] introduced a framework to predict the structure of a social network when the network

itself is totally missing while some other information regarding the nodes is available. They first

generated a bootstrap probabilistic graph using any available feature and then applied the link

prediction algorithms in [55] to the probabilistic graph. Backstrom et al. [7] proposed a supervised

random walks based method for link prediction that performs a PageRank-like random walk on a

social network so that it is more likely to visit the nodes to which new links will be created in the

future. What distinguishes our effort from existing works in this trend is that our approach treats

link prediction as a knowledge-based inference problem and utilizes Markov Logic Networks to

capture complex and structural relation and interaction among social entities. Our system can be

considered as an attempt of enabling statistical relational learning over large scale data for link

prediction.

2.10 Conclusion and Future Work

LinkProbe is a novel prototype to predict link existence in large-scale social networks based

on Markov Logic Networks. It aims to handle soft inference rules which are common in reality and

was proven to scale well towards large social networks. Compared to the naive MLN implemen-

tation, LinkProbe decreases the number of formula groundings by several orders of magnitude,

61

leading to a much higher inference efficiency and scalability without significant sacrifice in accu-

racy. Our extensive experiments with realistic data sets showed that LinkProbe manages to provide

a tunable balance between MLN inference efficiency and inference accuracy.

62

Chapter 3

An Efficient MapReduce Framework for Probabilistic Skylines over Uncertain Data

3.1 Introduction

Recently, skyline queries [16] [9] [42] [47] have been widely used in various systems includ-

ing multi-criteria decision making, search punning, and personalized recommendation systems.

Given more than one criterion, the skyline queries prune the search space of a large collection of

multi-dimensional objects to a small set by returning objects that are not dominated by, or to say,

superior to, others. Due to the rapid increase in the amount of uncertain data, the past decade also

witnesses an extensive study on uncertain database management in a variety of applications in the

real-world, such as probabilistic ranking queries [35], probabilistic k-NN query [53], and proba-

bilistic top-k query [52]. As an extension of the traditional skyline queries, the probabilistic skyline

queries were proposed in [68] to cope with uncertain datasets. The probabilistic skyline queries

Price

Low fuel cost0

0

p1
p2

W1

q1

q2

q3

p3
w2

w3

1

2

333

2

333

Obj. Ins. Prob.

h1

(10, 4) 0.5

(10, 2) 0.2

(10, 3) 0.3

h2

(20, 4) 0.3

(20, 5) 0.4

(20, 5) 0.3

h3

(15, 4) 0.6

(20, 5) 0.2

(15, 3) 0.2

Figure 3.1: Example query 1 (uncertainty from different sources)

63

find the probability of each object to be in the skyline set, where each object is a set of instances

(tuples) and associated with a probabilistic distribution. The exact p-skyline queries return a set

of uncertain objects whose skyline probabilities are not less than p and their corresponding exact

skyline probabilities. Because the computation of such probabilistic skylines on uncertain data is

algorithmically expensive, a few solutions [68] [6] [8] [39] have been proposed. However, there

is a lack of study in the literatures on how to take full advantage of MapReduce, a popular parallel

programming model, to boost the probabilistic skylines computation. In this paper, we focus on

how to leverage the MapReduce model to process the exact p-skyline queries on uncertain data for

the high efficiency and scalability in a high dimensional space.

3.1.1 Our Motivating Problem

The exact p-skyline queries on uncertain data can be used in numerous application scenarios

in the real world. The following are two examples of the p-skyline queries on uncertain data.

Example1: Alice is looking for a car by searching multiple agent website with low price and

low-fuel cost. Different travel agent websites (e.g., Cars.com, Edmunds.com) may return different

results. In Figure 3.1, the y−dimension captures the price of a car, and the x−dimension represents

Obj. Ins. Prob.

r1

(4, 5) 0.5

(4, 4) 0.3

(4, 1) 0.2

r2

(3, 4) 0.6

(3, 2) 0.2

(3, 1) 0.2

Figure 3.2: Example query 2 (uncertainty from different voters)

64

the car’s estimated fuel cost every year. A car dominates another when it has lower price and lower

annul fuel cost. Eric inquires the car from different websites. An exact p-skyline query returns (1)

all the cars whose skyline probability is at least p and (2) the exact skyline probability of each

returned car.

In the above example, each car can be treated as an object while each instance of this object

corresponds to the car’s information from different website, associated with a probability (confi-

dence value) reflecting the importance of the website.

Example2: Eric is inquiring a rice cooker at Ebay.com. All rice cookers are listed by different

Merchandising shops. Every rice cooker has three evaluation metrics: (a). price; (b). The shipping

time; (c). shipping charges. For the same rice cooker (The same model), the evaluations shown

may vary much. An exact p-skyline query returns (1) all the rice cookers where the probability that

there does not exist another restaurant with a lower price, shipping time and shipping charges is

at least p and (2) the exact skyline probability for each returned rice cooker.

In the above example, each rice cooker can be treated as an object while each instance of this

object corresponds to different merchandise shop, associated with a probability (confidence value)

reflecting the usefulness of the merchandise shop.

3.1.2 Our Goal and Faced Challenges

Parallel computation has drawn a lot of interests recently [1] [66] [87] [18] and MapRe-

duce [20] was introduced as an easy-to-use parallel computing paradigm with high scalability and

reliability. One advantage of the MapReduce model is that users only need to write the Map and

Reduce functions without much concern about the details of the parallelization. Today MapReduce

has been incorporated into various data processing systems [57] [90] [80] [62]. However, there is

little work on how to take full advantage of the MapReduce model to make the probabilistic skyline

computation scale up to high volume data.

65

In this paper, we aim to use the MapReduce model for the efficient and scalable processing

of the exact p-skyline queries on the high dimensional uncertain data. However, this task is not

trivial. The following are the major challenges:

• How to avoid unnecessary dominance tests based on the characteristics of data distribution

to reduce the computation cost?

• How to divide the workload among all machines to maximize the parallelism?

• How to re-use the intermediate results to boost the efficiency of skyline computation?

3.1.3 Our Contributions

To the best of our knowledge, our work is the first to investigate how to evaluate exact p-

skyline queries on uncertain data based on the MapReduce parallel computing paradigm for high

efficiency and scalability.

• In order to avoid unnecessary dominance tests, we apply three pruning rules to our uncertain

data for preprocessing to reduce the computation overhead. The experimental results show

the superiority of our solutions over the other approaches.

• For achieving the maximized parallelism, we proposed a two-phase MapReduce framework

and both the angle-based partitioning and the grid-based partitioning are used in our pro-

posed framework.

• We propose a random pivot points-based approach in order to re-use the intermediate result

to further boost the efficiency of skyline computation. In this approach, we distribute pivot

points by using random sampling for the high dimensional data.

• Our experimental results with both realistic and synthetic datasets verify the efficiency and

scalability of our proposed framework.

66

3.1.4 Organization of this paper

The rest of this paper is organized as follows. Section 2 surveys related work. The probabilis-

tic skyline query and relevant techniques utilized in our solutions are formally defined in Section

3. Our advanced two phase MapReduce-based solution is illustrated in Section 4 and 5. Section 6

introduces how to optimize the local probabilistic skyline query in MapReduce. The experimental

validation of our design is presented in Section 7. Section 8 concludes the paper.

3.2 Related Work

During the past decade, skyline queries [9] have been extensively studied and applied in var-

ious decision making applications. Varieties of methods [77, 64, 60, 17, 92, 47, 42] are proposed

to efficiently solve this problem. Compared to the traditional skyline, the probabilistic skyline is a

popular and powerful paradigm for extracting decisive information from uncertain databases. The

problem of evaluating probabilistic skyline query is firstly raised by Pei et al. [68]. They also

developed bottom-up and top-down methods using R-tree to efficiently prune the search space.

Atallah et al. [6] proposed a sub-quadratic complexity algorithm, relying on space partitioning

techniques combined with the dominance counting algorithm [58]. A probabilistic skyline solu-

tion using Z-tree is presented in [39], which find as many incomparable groups of instances as

possible. However, all the above mentioned approaches are all serial algorithms, which are in-

evitable involved in performance issues like memory and efficiency, especially when input data is

persistently growing. Our study reduces the overhead of serial algorithm running on only single

machine by offering a parallel computing strategy.

A wide collection of parallel or distributed techniques are incorporated to deal with skyline

or probabilistic skyline query. Grid-based partitioning method is popularly adopted by many stud-

ies [1, 84, 87, 85], since it is able to divide the original dataset into smaller subsets. Similarly,

Angle-based separation over multi-dimensional space for skyline query was firstly investigated in

[81], and attracted a variety of methods [40, 91].To the best of our knowledge, this paper is the first

to apply the angle-based techniques to the probabilistic skyline issue.

67

In the recent years, the MapReduce framework [20] has been incorporated into probabilis-

tic skyline computation [24, 67, 91, 61]. Ding et al. [24] proposed probabilistic skyline query in

MapReduce (PSMR), a MapReduce strategy using filter-refine two phases approach. However,

they assume that every tuple in the distributed uncertain database is attached with a probability,

which could be regraded as a bivariate distribution, rather than multivariate distribution in state-

of-the-art studies [68, 6, 39, 8]. Park et al. [67] also concentrated on probabilistic skyline queries

in MapReduce framework, and follow the same data assumption with research mainstream. They

initially indexed the data space by using a quadtree [70], which is created by randomly select-

ing samples from the dataset. Then, unqualified objects are filtered out when processing local

probabilistic skyline, and global probabilistic skyline is evaluated afterward. There are two main

approached, PS-QPF-MR and PS-BRF-MR [67], introduced in their study. PS-QPF-MR assumes

that instances in one object must be integrated together, which is not applicable in real case, since

instances of one object can be easily collected from multiple machines separately. In our study,

we assume that instances of one object are distributed across individual nodes in the distributed

environment, and emphasize the performance comparisons against PS-BRF-MR.

3.3 Preliminaries

3.3.1 Probabilistic Skyline over Uncertain Data

Given a data space with d dimensions (D1, . . . , Dd) and a dataset, a skyline point is a data

point that is not dominated by any other points. A point p dominating a point q is denoted as p ≺ p

if ∀k ∈ [1, d], p.Dk ≤ q.Dk; conversely, p ⊀ p represents that p is not able to dominate q. Skyline

query returns all skyline points meeting this condition. Besides, the domination relationship be-

tween points can be extended to group relationships. For example, p ≺ D denotes that p dominates

all points in D. Similarly, D ≺ p represents that all points in D dominates p.

Let OS = {O1, O2, . . . , On} denotes an uncertain object set, and its cardinality is n. We

assume that an certain object has several instances, each of which is a d-dimensional attribute

vector and has a probability to exist. Formally, Oi is an instance set Oi = {p1, p2, . . . , pm}, where

68

every element is an d-dimensional instances following discrete probability density distribution

(PDF) of Oi. Any instance p’s occurrence probability Pr(p) only depends on the object’s PDF, i.e.,

every object is independent of each other. For any object O, we assume that
∑

p∈O Pr(p) = 1. This

is a realistic assumption adopted in many literatures such as [68] [8] [39] for analyzing uncertain

data.

Here we introduce the definition of probabilistic skylines, which are quite different from tradi-

tional skylines. The goal of probabilistic skyline is to obtain the skyline probability SKY Prob(Oi)

of one object Oi, i.e., the likelihood that Oi becomes a skyline object. Given two objects U and V ,

the probability that one instance p in V is dominated by U is:

Pr(U ≺ p) =
∑

q∈U, q≺p

Pr(q) (3.1)

The probability that p is a skyline instance with respect to U is equal to the probability that p

is not dominate by U, which can be represented by:

Pr(U ⊀ p) = 1−
∑

q∈U, q≺p

Pr(q) (3.2)

Then we obtain the probability that p is not dominated for all objects in OS except V , which

is regarded as the likelihood of p to be a global skyline instance. As objects are independent of

each other, SKY Prob(p) (p ∈ V) can be computed as follows:

Symbol Meaning

OS object set

SKY Prob(.) the skyline probability of an instance or

an object.

p an instance

U, V an object

Pr(p) probability of an instance

t probability threshold t in t−skyline set

TSKY object set with skyline probability

larger than t

V A an angle partition

P pivot point set

Table 3.1: Symbolic notations.

69

SKY Prob(p) =
∏

U∈OS, U 6=V

(1−
∑

q∈U, q≺p

Pr(q)) (3.3)

Finally, for object Ov, we are able to obtain the probability that Ov is a skyline object using:

SKY Prob(V) =
∑

p∈V

Pr(p)SKY Prob(p) (3.4)

Given a threshold t, a p-skyline query, denoted as TSKY (OS), retrieves all the objects whose

SKY Prob(o) is larger than p.

TSKY (OS) = {o ∈ OS|SKY Prob(o) > p} (3.5)

Take figure 3.1 as an example. We assume that all instances of an object are assigned the

same weight. The instance skyline probabilities are firstly computed based on Equation 3.3. For

p1, no instance dominates it, so SkyProb(p1) = 1; for p2, SkyProb(p2) = 1 × 2
3
× 2

3
= 4

9
,

since w1 and q3 dominates it; as q3 dominates p3, SkyProb(p3) = 2
3
. Then SkyProb(P) =

1 ∗ 0.5 + 4
9
∗ 0.2 + 2

3
∗ 0.3 = 0.789. Similarly, SkyProb(Q) = 0.833, SkyProb(W) = 0.844.

Given the threshold t = 0.8, SKYProb returns the objects set consisting of Q and W .

3.3.2 MapReduce Framework

A typical MapReduce framework consists of two user-defined functions: map and reduce. For

every record in the input data sets, the map function will partition it into a sorted set of intermediate

results. Worker nodes redistribute data based on the output keys (outputted from the map function),

such that all data belonging to one key is able to be accessed locally in the reduce step. This is

called the shuffle step. The reduce function fetches the data, from individual partition. Provided

by the map function, Reduce process produces the final output data. The map and reduce function

could be formally defined: map(k1, v1) → list(k2, v2) and reduce(k2, list(v2)) → list(k3, v3).

70

The MapReduce infrastructure automatically renders the data split, storage and replication without

manual intervention.

3.3.3 Angular Partitioning

Angle-based space partitioning scheme [81] transforms data point from Cartesian coordinate

to hyper-spherical coordinate. In the first map phase, we use angle-based partitioning strategy

to map data points into N partitions. The main advantage of angular transformation is that this

strategy being able to filter data points as many is possible since the left bottom corner data points

dominate most other data points in an angle.

Given a d-dimensional data point p = [p1, p2, . . . , pd], the hyperspherical coordinates of p

include a radial coordinate r and d − 1 angular coordinates ϕ1, ϕ2, . . . , ϕd−1 [81], denoted by

{r, ϕ1, ϕ2, . . . , ϕd−1}, where r is the distance to the origin, and ϕi represents an angular coordinate

0 ≤ ϕi ≤
π
2
. Similarly, an angle-based space partition is represented by V A = {ΦA

1 ,Φ
A
2 , . . . ,Φ

A
d−1},

where ΦA
i is an angle range [ϕj

i , ϕ
k
i] in the ith dimension.

3.4 The Naive Approaches

In this section, we introduce a baseline approach of using MapReduce framework to process

probabilistic skyline queries. The most straightforward solution is to partition objects in a pair-

wise way. Then the dominance check runs between every pair of two objects (see Equation 3.2).

After that, each instance p’s skyline probability SKY Prob(p) (see Equation 3.3) is obtained by

the product of output from previous results. Finally we merge all instances’ intermediate skyline

probability into the final object skyline probability in Equation 3.4. In this section, we elaborate

on an intuitive solution to probabilistic skyline queries in a three-phase MapReduce framework.

Assume that the number of objects is m, and the number of instances is n. In the first phase,

we create pair-wise comparisons between any two objects. Every pair of two distinct objects is

assigned one key, and the number of pairs is C2
m. The replication of oi is performed m − 1 times

in order to let oi forms pairs with all other objects. The map stage collects all objects and assigns a

71

key considering every pair, and transmits all pairs to the reduce phase. The reduce function fetches

every object pair (one of C2
m pairs), and two block nested loop comparisons are performed. Say

the objects are U and V . For every q in V, Pr(U ⊀ q) is computed (Equation 3.2). Reversely, we

compute Pr(V ⊀ p)for every p in U. The results from all reducers are written into HDFS.

In the second phase, the target is to obtain instance skyline probability. we read the output

from the first phase and use the instance ID key as the partitioning key at the end of Map phase.

Then every reducer groups all intermediate results for each instance and do an product of them

(Equation 3.3). The output from the second phase reducers is outputted into n (n is the number of

instances of all objects) files in HDFS.

Similarly, in the third phase, output generated by the second phase is read by map function

and every object ID is assigned as a new partitioning key for reduce phase. In the Reduce function,

We sum all instances’ skyline probability for one object (Equation 3.4) as the final result, that is,

the final object skyline probability. Then t−skyline set is obtained easily by filtering out object

with skyline probability larger than t.

It is obvious that many operations in the second and third phases are similar and therefore this

approach suffers much from high I/O cost. One possible way to alleviate the I/O cost is that we

combine the second and third phases. In the second phase, we let the object ID is assigned as the

partitioning key for the reduce phase. In the reduce phase, all intermediate skyline results (from

Equation 3.2) are grouped for each instance. Then we compute instance skyline probabilities using

Equation 3.3. Afterwards, we calculate the skyline probabilities for objects.

There are several restrictions of the aforementioned naive approaches. First, how to partition

objects evenly is a challenging problem, because the number of the instances in different objects

might vary significantly. Second, we don’t know the distribution of instances of one object in

advance. If all the instance of one object always appear in the right-corner of coordinate axis, and

the object is certain to be a non-skyline object. A desired approach should prune object as early

as possible. Third, the duplication overhead heavily degrade the performance, since objects are

compared in a pair-wise way, which leads to a very high I/O cost.

72

First Map Reduce Phase Second Map Reduce Phase

Random

Partitioning

Inst_ID value
0 ...
1 ...
.. ...

ReduceMap

...

Angle based

Partitioning

Angle based

Partitioning

Rectangle

Pruning

Rectangle

Pruning

...

ReduceMap

Rectangle

Splitting

...

Rectangle

Splitting

0
1
2
...

Inst_ID SkyProb

Inst_ID Attrs
0 ...
1 ...
... ...

Inst_ID Attrs
0 ...
1 ...
2 ...

Partition ID
0
0
1

Key Value

Infl_ID Attrs
0 ...
1 ...
... ...

...

SKYProb

computing

SKYProb

computing

...

Candidate set Dominator set

Figure 3.3: An overview of parallel skyline processing using MapReduce.

3.5 Hybrid MapReduce Framework

3.5.1 Overview of Our Approach

To overcome the aforementioned shortcomings, we propose the two-phase MapReduce al-

gorithms, namely MR-SkyProb, as shown in Figure 3.3. MR-SkyProb contains two MapReduce

phases. In the first phase, it contains two steps:

(1) filtering out unqualified objects: After instances of objects are mapped to N reducers

through angle-based partition scheme, unqualified objects (i.e., objects that is not returned in query

results) are filtered out based on proposed pruning rules.

(2) collecting candidates objects: Objects which are not filtered out in this phase come to

be candidate objects, the set of which is named as Oc. Instances dominating candidate objects are

collected, and its set is named by Ip.

In the second MapReduce phase, all candidate objects are distributed to separate machines

and object skyline probability is computed locally. Afterwards, t−skyline object set is derived.

73

3.5.2 Pruning Rules

Filtering objects which will not be returned in the query result set is an efficient way to reduce

computation complexity. In this section, we investigate three pruning rules to filter out unqualified

objects.

Given an object U = {p1, p2, . . . , pm}, an d-dimensional region R(U) can be created to in-

clude all instances of U . The minimum corner Umin of R(U) is represented by a d−dimensional

virtual point (min
pi∈U

pi[1],min
pi∈U

pi[2], . . . ,min
pi∈U

pi[d]), where pi is an instance in U . Similarly, we use

Umax to denote the maximum corner point of U , that is, (max
pi∈U

pi[1],max
pi∈U

pi[2], . . . ,max
pi∈U

pi[d])

Lemma 3.5.1 Given U, V ∈ O, if Umax ≺ Vmin, then SKY Prob(V) = 0, V /∈ TSKY (OS).

Lemma 3.5.2 Given U ∈ O, an instance p /∈ U , if Umax ≺ p, SKY Prob(p) = 0.

Lemma 3.5.3 Given U ∈ O, U = {p1, p2, . . . , pm}, |U | = m, U is an unqualified object and can

be filtered out from the result if 1 −
n
∑

i=1

Pr(pi)(SKY Prob+(pi) − 1) < p. Here we assume one

partition V A has n instances out of m (n <= m) for U , containing instances {p1, p2, . . . , pn}. We

let SKY Prob+(pi) represent the local skyline probability of instance pi computed in a particular

partition.

3.5.3 The First MapReduce Phase

Here we discuss the details of the first MapReduce phase.

Angular Partitioning

Algorithm 9 displays the working procedure of the first MapReduce phase. The map phase

projects data points (instances) to N machines based on angular partition scheme. The defined

map function determines every instance’s hyper-spherical coordinate, and maps it to the designated

74

Algorithm 9: First Phase Procedure

8.1 Algorithm map()
Input: object set OS, angle partition array a

8.2 foreach object u ∈ OS do

8.3 foreach instance p ∈ u do

/* S3 Decide the angle partition which have p */

8.4 aj ← S3(p) ;

/* send request to Distributed Memory Server */

8.5 request(p, u.id) ❀ maintain MAX(u) and MIN(u) ;

8.6 output(j, p) ;

8.1 Algorithm Reduce()
Input: instance Array Arri, object Maximum and Minimum corner point Array

Arrmax, Arrmin,

8.2 Oc ← ∅ ;

8.3 In ← ∅ ;

/* Pruning Rule 1 */

8.4 foreach object u ∈ Arrmin do

8.5 Oc ← u ;

8.6 foreach object v ∈ Arrmax && v ≺ u do

8.7 Oc.remove(u) ;

8.8 break ;

/* Pruning Rule 2 */

8.9 foreach object U ∈ Oc do

8.10 foreach instance p ∈ U do

8.11 In ← p ;

8.12 foreach object v ∈ Arrmax && v ≺ p do

8.13 In.remove(p) ;

8.14 break ;

/* Compute the local Probabilistic Skyline (Pruning Rule

3) */

8.15 Oc = localProbSkyline(Oc) ;

8.16 return Oc, In;

reducer, which is representative of a hyper-spherical space partition. Another crucial job must be

done in the map phase is to collect Umin and Umax given any object U . Since data is distributed

across separate machines, it can not aggregate instances iteratively to find one object’s maximum

or minimum point. To resolve this issue, we build an independent server to compute the maximum

75

and minimum of every object across separate map processes. The data structure maintained in

the server follows key-value pattern, where key is the object ID, and value consists of two virtual

points representing maximum and minimum corner of this object. When the map function iterates

to an instance of object U , it initiates a request to the server maintaining corner coordinates of U .

After the map phase completes, the maximum and minimum points of every object are acquired in

the server, and will be utilized in the reduce phase. This technique is denoted as uncertainty-aware

allocation.

At the beginning of the reduce phase, maximum and minimum corner points of object U is

retrieved if some instance of U is transmitted in this partition. Objects are firstly examined if they

are able to be pruned under the Lemma 3.5.1 and Lemma 3.5.2. The procedure works as follows.

A list Lmin contains all Umin of all objects in this partition; similarly, a list Lmax contains all Umax

in this partition. Using SFS [17], an approach to speed up traditional skyline query by presorting

instances, data points with the sum of all dimensions of each point is presorted in ascending order.

Our algorithm begins with retrieving the starting element from Lmax, and compares it against all

minimum corner points in Lmin to check the dominance relationship. Any object U whose Umin is

dominated by any Umax is pruned, as it can not be in the t−skyline set. Remained objects which

can not be pruned out from Lmin are collected. Based on Lemma 3.5.2, for every instance in these

remained objects, we check if an instance p is dominated by some objects’ Umax. If the dominance

relationship occurs (Umax ≺ p), SKY Prob(p) is marked to 0.

Filter Optimization by Pre-computation using Pivot Points

Next, we propose an efficient pruning strategy to further filter unqualified objects. Recall that

Lemma 3.5.3 introduces a filtering strategy by computing the partial skyline probabilitySKY Prob+(U)

of object U . In order to obtain SKY Prob+(U), SKY Prob+(p) of every instance p from U con-

tained in this partition must be gained. Therefore, the challenge comes from how to efficiently

collect the probability of every instance p being a skyline instance. The straightforward method

76

x

y

0 1

0

1

q1

q2

q3

p3
w2

q22

w222

q333

q11

pp333

q33

ppp3

b1

b2

1

1

 ϕ1
ϕ2

O

g

y

x

A1

A2

ϕ1

ϕϕϕϕϕ2

A1

A2

S

T

x

y

0 1

0

1

q2

q3

q2

b1

b2

q3b11111111

b3

b2

q3

Figure 3.4: The visual exhibition of Optimization Capability. (a) A example shows how pivot

points speed up processing. (b) Optimization Capability derivation of one pivot point. (c) Opti-

mization Capability of multiple pivot point.

of computing SKY Prob+(p) is to iterate every instance in this partition, and compare the domi-

nance relationship between p and other local instances in this partition. Obviously this approach

performs inefficiently.

Given a rectangle area containing instances, one interesting observation is that data points

close to maximum boundary of the area are often easily dominated by data points close to mini-

mum boundary. The intuitive thought is to associate data points close together into a group, and

information is collected in every group before actual probabilistic skyline processing is launched.

Pivot point set P is defined as a set of d-dimensional data points whose cardinality is m, P = {bi :

1 ≤ i ≤ m}. Ai is denoted as the d-dimensional hyper-rectangle, the minimum corner of which is

the origin, and the maximum corner of which is bi. Let each area Ai consists of an n-dimensional

vector Vi = [pr1, pr2, . . . , prn], where n is the number of objects in this partition (reducer), and pri

gathers the sum of instance (from) existing probability in Ai. After built, these vectors will be able

to repeatedly contribute to the skyline probability computation. If some point is dominated by bi,

it is dominated by all instances in Ai. It is able to speed up processing by not comparing instance

domination relationship for all instances in Ai, but applying the pre-computed information directly.

77

Algorithm 10: Local Skyline Computation

Input: object set OS
Output: candidate object Oc

10.1 Oc ← ∅ ;

10.2 build pivot point set P from OS ;

10.3 foreach pivot point pi ∈ P do

10.4 construct Vi from instances in Ai ;

10.5 foreach object u ∈ OS do

10.6 foreach instance p ∈ u do

10.7 pi ← the most dominating pivot point from P ;

10.8 Vp ← Vi ;

10.9 SA ← instances partially dominates p ;

10.10 foreach instance q ∈ SA do

10.11 if q ≺ p then

10.12 Vp ← q ;

10.13 SkyProb+(p) =
∏

w∈Vp
(1− w)

10.14 SkyProb+(U) =
∑

p∈U Pr(p)SKYProb+(p);

10.15 if SkyProb+(U) ≥ p then

10.16 Oc ← U ;

10.17 return Oc;

Take Figure 3.4(a) as an example, following the hotel data introduced in Section ??. Assume

that the angle of partition V A is between φ1 and φ2. Two virtual data points b1, b2 separate V A

into three areas, denoted by 3 colors, blue, green and red in order. It is observed that q2 is located

at red area and q2 is always dominated by any instance in blue and green areas since b2 dominates

q2, and q2 is also affected by partial instances in red area (w2 in Figure 3.4(a)). According to this

observation, we are able to precompute the sum of existing instance probabilities in blue and green

areas, and use the intermediate result for computing SKYProb+(q2).

The placement and choice of P will be discussed in the later section. After P is deployed well,

the detailed computing procedure is as follows. Recall that Ai consists of an n-dimensional vector

Vi = [pr1, pr2, . . . , prn], where n is the number of objects in this partition. Let Vi is initialized to

0. Assume an instance p from object Ow is in Ai. p’s instance probability is added to prw in Vi.

Similarly, every instance in Ai is iterated and Vi is maintained.

78

After maintenance of Vi (1 ≤ i ≤ |P |) is completed, every instance q in the partition is

iterated to compute SkyProb+(q). Assume an instance q lies in area Am. It is necessary to locate

a pivot point bi which overwhelmingly dominates q, which will incur the most domination power.

In our implementation, we let Ai with the most instances as area having the most domination

power. Since we already have information for each area Ai, the pivot point bj domination q with

the largest instance number is extracted from pivot point candidates. That is, Aj fully dominates q.

In addition, we look for area set SA which partially dominates q: SA = {Ai|∃p ∈ Ai, p ≺ q, i 6= j}.

An aggregating vector [pr1, pr2, . . . , prn] is maintained for comparing domination interrelation in

SA. If any instance in SA dominate q, the instance’s existing probability is added to the vector.

After that, aggregated by the vector Vj retrieved before, the product of every element in the object

vector is the final SkyProb+(q). Given object U , we are able to compute SkyProb+(U) easily. If

SkyProb+(U) is smaller than t, we safely prune U out according to Lemma 3.5.3.

Definition 1 Probability skyline object candidates set Oc is an object set Oc = {U ∈ OS|SKY Prob+(U)

≥ t}, where OS is the global object set.

Definition 2 Influential instance set Ip is an instance set Ip = {p ∈ If |∃p
′

∈ Co, p ≺ p
′

}, where

If is the instance set, which .

Another job during the reduce phase is to return the probability skyline object candidates and

affecting instance, both of which is required in the next MapReduce phase. Definition 1 and 2 give

the definition of Oc and Ip. During the reduce phase, Co is collected when comparing maximum

and minimum corner points, and objects filtered by pivot point are removed from Co. Line 4-10 of

Algorithm 9 and Line 19-21 of Algorithm 10 describe the process. Ip is obtained when applying

Lemma2, and we illustrates the procedure in Line 11-18 of Algorithm 9. After that, it moves

forward to the second MapReduce phase.

79

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.5: The visualization of data shape after the first MapReduce Phase based on the original

input data distribution. (a) Independent distribution. (b) Anti-correlated distribution. (c) Correlated

distribution.

3.5.4 The Second MapReduce Phase

Naive approach and an study on data pattern

After the first MapReduce phase is completed, the skyline candidate object set Oc and Influ-

ential instance set Ip is collected. The next step is to compute the real instance skyline probability.

The most straightforward parallel algorithm is to broadcast Ip to all machines, and distribute ob-

jects in Oc evenly to machines and compute locally. This baseline method will be evaluated in the

later section.

Before illustrating our optimized algorithm, we study the distribution shape of remained can-

didate objects after the first MapReduce phase, since the remained data decides the final step

of merging. An experiment is conducted to visually investigate the data shape. Under the two-

dimensional space, objects are distributed between [0, 1] in domain of each dimension. Three

types of object distribution (independent distribution, correlated distribution, and anti-correlated

distribution) are tested respectively. The cardinality of objects is 5000. Figure 3.5 shows the result.

It is observed fewer data is left in the second MapReduce phase, and data from right top corner is

all filtered out in independent and Anti-correlated data.

Optimization by Grid-based Partitioning

Inspired by Figure 3.5, we propose an approach to efficiently evaluate global skyline proba-

bilities of remained candidate objects. Recall that we have two remained sets of data, object set Co

80

and instance set Ip. Each candidate object in Co may be dominated by some instances from Ip. In

order to let parallel partitions execute probabilistic skyline query, we propose a dynamic mapping

strategy to allocate data to target machine.

We firstly introduce how to distribute Co. We let instances in Co is sorted by ascending value

in one dimension, x axis in default. Given the number of reducers nr, instances are distributed to

nr equal-sized buckets along x values. As a result, one bucket of instances constitute a grid. Take

Figure 3.6 as an example. S3 is a grid denoted by green color, and contains a quarter number of all

instances.

Besides Co, instances from Ip is disseminated to the target reducer. Given one grid collecting

Co data, the instances affecting candidate instances in the reducer lie in a region from the origin

to maximum boundary of the grid. In Figure 3.6, M3 is the maximum boundary point of grid

S3. Then instances in the area from the origin to M3 are sent to the target reducer. We repeat the

operation given every grid of Co data.

After data is mapped to the target reducer, in the reduce phase, the skyline probability com-

putation starts with the iteration of every instance from Co. Each instance computes its skyline

probability by comparing against instances from If . After that, instance skyline probability for all

instances is outputted to Distributed File System.

10

1

S1 S2 S3 S4

M1

M2

M3

M4

Figure 3.6: The visual exhibition of Grid-based partitioning.

81

After every instance in Co obtains its instance skyline probability, the second phase is com-

pleted. object skyline probability is grouped by iterating all instance skyline probability by Equa-

tion 3.4. t−skyline object set is easily obtained by retrieving objects U whose skyline probability

SkyProb(U) is larger than or equal to t.

3.6 PIVOT POINTS-BASED OPTIMIZATION

Next we elaborate on the optimization capacity of pivot points and study how to select and

place pivot points.

3.6.1 Optimization Capability of One Pivot Point

In order to visualize the capability power, assuming that data points are uniformly distributed,

we initially study a simple case when only one pivot point exists in 2-dimensional space. Higher

dimensional cases can be easily extended. Given a 2-dimensional angle, the pivot point divides the

angle area into two parts denoted as A1 and A2. A1 lies in the left bottom to g, and A2 lies in the

right top to g. Figure 3.4(b) depicts the scenario. The optimization capability could be represented

by how many data points in A2 is able to repeatedly use A1 directly without comparing one by one,

since intermediate sum of instance probability in A1 has been computed in advance. Therefore,

given a pivot point g, the optimization capability of g can be represented as:

OC(g) =
∑

p∈A2

SA1(px, py, φ1, φ2) (3.6)

where SA1 represents the volume of A1, px and py denote p’s coordinates, as depicted in Fig-

ure 3.4(b). Given that the pivot point g is fixed, an instance p is able to repeatedly use A1’s

pre-computed results if p is in A2.

SA1 , the area of dominance region to g, is defined by 0 ≤ x ≤ gx, and xtan(φ1) ≤ y ≤

min(xtan(φ2), yg). Therefore, SA1 is represented by

82

SA1 =

∫ xg

0

∫ min(xtan(φ2),yg)

xtan(φ1)

dydx (3.7)

In order to find the optimal placement of pivot point g, we propose a strategy applying ran-

dom selection. One arbitrary pivot point g located φ1 and φ2 is randomly selected. SA1 of g is

easily obtained from Equation 3.7 given the location of g. To compute the optimization capability

OC(g), we sample quantities of random points evenly between φ1 and φ2, and compute the sum

of optimization capability of all sampled points. Because the points are sampled uniformly in the

partition, the number of sampled points falling in A2 is in accord with the area of A2. Then OC(g)

is regarded as SA1 and the product of number of sampled points falling in A2. Figure 3.7(a) shows

the graph of optimization capability density for pivot point located at angle range of [π/8, π/4].

The darker areas indicate a higher optimization capability. It is found that the pivot points in

(0.4 ≤ x ≤ 0.6, 0.4 ≤ y ≤ 0.6) area have the highest optimization capability.

3.6.2 Optimization Capability of Multiple Pivot Points

In this subsection, we investigate the impact of multiple pivot points on the optimization capa-

bility. As introduced in the previous sections, pivot point set P is defined as a set of d-dimensional

data points. Under the multiple pivot points environment, every instance must nominate one pivot

point to utilize precomputed information, and therefore have multiple options. Take Figure 3.4(c)

as an example. Three pivot points b1, b2, b3, and three instances q1, q2, and q3 are in the parti-

tion. Both b1 and b2 dominates q2. Then either b1 or b2 can be q2’s pivot point. However, given

multiple pivot points, we let each instance x’s optimization capability is determined by the largest

dominance region of a pivot points. In the above example, q2 selects b2 as the pivot point since

Sb2 is larger than Sb1 and produces more optimization capability. Then, given multiple pivot points

scenario, the optimization capability of an instance p is represented by Ai which dominates p and

has the largest area.

It is obvious that the Optimization Capability of P , OC(P) is dependent on the cardinality

of P and the placement of P in the partition. To find the optimal OC(P), we randomly compose

83

Pruning Power Distribution

 0 0.2 0.4 0.6 0.8 1

X

 0

 0.2

 0.4

 0.6

 0.8

 1

Y

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0

 100

 200

 300

 400

 500

5 10 15 20 25

O
pt

im
iz

at
io

n
C

ap
ab

ili
ty

 Num of Pivot Points

Optimization Capability

Figure 3.7: A synthetic experiment to show Optimization capability. (a) Optimization capability

given one random pivot point. (b) Optimization capability of multiple pivot points.

the number of |P |, and randomly generate combinations of P , and assign P with a combination

having the largest OC(P). Let D is a angle partition area. Pivot point number |P | is randomly

chosen from 1 to fixed value m. Given the number of pivot points |P |, We generate a number

of random combination of pivot points in arbitrary fashion. For a fixed combination of P , we

compute the Optimization Capability of every instances in D based on the rule introduced above.

We sum all of them as the optimization capability of this combination. Then P is designated as

the combination with the largest optimization Capability. The above introduces the algorithms to

obtain the optimal combination of P . If the number of instances in D is too high, it is highly

inefficient to compute OC(p) for every instance p. Instead, we randomly selected p from instance

pool in D.

84

Parameters Default

Values

d (dimensions) 4

t (No. of machines) 10

|O| (object number) 221

|P | (No. of pivot points in P) 10

numAngle (No. of Angles in the first Phase) 27

numPartition (No. of partitions in the second Phase) 5

Table 3.2: Experimental parameter values.

To evaluate the effects of the number of pivot points in optimal capability, we experiment the

optimal capability in the 2-dimensional space. We partition the 2-dimensional space into into 4

partitions evenly, and optimization capability is evaluated in each partition follows . The optimiza-

tion capability computation of each partition part follows the above approach. Given the number

of P m, after the combination of P in every partition part, OC(part) is obtained, the OC(m) is

regarded as the mean of OC(part). Figure 3.4(a) shows the OC trend with |P | from 1 to 25. It is

found that, OC increases when |P | is elevated, but the slope is gradually dropped.

3.7 Experimental Validation

In this section, we present an experimental evaluation of the proposed algorithm MR-SkyProb

and MR-SkyProb+ against other approaches on several synthetic and real-world large datasets.

3.7.1 Experimental Setup

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 5 10 15 20 25 30 35 40 45 50

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 machines |O| = 107 CORR

MR-BRF
MR-SkyProb+

MR-SkyProb
baseline

(a) Correlated

 0

 2000

 4000

 6000

 8000

 10000

 12000

 5 10 15 20 25 30 35 40 45 50

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 machines |O| = 224 IND

MR-BRF
MR-SkyProb+

MR-SkyProb
baseline

(b) Independent

 0

 2000

 4000

 6000

 8000

 10000

 12000

 5 10 15 20 25 30 35 40 45 50

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 machines |O| = 224 ANT

MR-BRF
MR-SkyProb+

MR-SkyProb
baseline

(c) Anti-Correlated

Figure 3.8: Vary No. of Machines

85

We implemented MR-SkyProb using java on top of Apache Hadoop 2.2.0. The experiments

were conducted on a 50-node shared-nothing cluster. Each node was equipped with one Intel Xeon

2.4 GHz processor, 2 GBytes of memory, running 64bit Ubuntu Linux Server 14.04LTS with Linux

3.13 kernel. All nodes were connected by 1 GigaBit Ethernet network.

Real dataset: TripAdvisor Dataset1 is employed in our experimentation. Consisting of re-

views and ratings for hotels from different authors, it has 7 attributes (e.g. room rating, location

rating, and etc) in total. The dataset includes 9129 hotels and around 700K reviews, which can be

regarded as 9129 objects and 700k instances.

Synthetic dataset: A group of synthetic datasets is generated to conduct extensive evaluation.

The dimensionality of datasets is varied from 2 to 64. Objects are distributed between [0, 1] in

domain of each dimension. We build three varieties of object distribution (independent distribution,

correlated distribution, and anti-correlated distribution), which are typically used to evaluate the

performance of probabilistic skyline algorithms [68] [68]. The default cardinality of objects is 221.

For each object, instances are created under a rectangle region, the edge size of which follows a

normal distribution in range [0, 0.02] with an expectation of 0.1 and a standard deviation of 0.025.

The number of instances in each object follows uniform distribution in range [1, 200]. The sizes

of resulting synthetic datasets are varied from 88MB to 86GB depending on the number of object

(|O|), the number of dimensions (d) and the number of instances of each object (l).

We denote our proposed algorithms as MR-SkyProb and MR-SkyProb+, which is an extension

of MR-SkyProb with second MapReduce phase optimization. PSMR [24], and PS-BRF-MR [67]

are also evaluated. Our assumption is based on the fact that the instances are disordered along

several machines. PS-QPF-MR [67] is not applicable in this situation since it requires that the

instances from one object are placed in one machine prior to the query process. In addition, we

have one baseline method, that is a MR-SkyProb approach without the first MapReduce phase

filtering.

1http://times.cs.uiuc.edu/ wang296/Data/LARA/TripAdvisor/

86

3.7.2 The effect of Number of machines

Firstly, we investigate the effect of Number of machines. In order to explore the scalability

of the proposed methods, the number of objects is set to 224 in this experiment set. In Figure 3.8,

since the baseline approach performs too slowly (the measured time is always larger than 5,000s in

Correlated data, 12,000s in Independent and Anti-Correlated data), we can’t observe the baseline

trend. With the number of machines growing, the query time of all approaches decreased overally.

It is observed that MR-SkyProb+ always outperforms against the other three approaches, espe-

cially in Correlated and Independent distribution. There is no large difference of query efficiency

between MR-SkyProb and MR-SkyProb+ when data shape is Correlated or independent, but the

obvious gap can be found easily in anti Correlated test.

3.7.3 Varying dimensions

In this set, we investigate the effect of data dimensionality. The number of dimension is varied

from 2 to 64 under the three different distributions. The overall trend is that the query response time

is increased when the number of dimension is growing. Figure 3.9(a) shows that MR-SkyProb+

always outperforms against the baseline approach and MR-BRF under the Correlated Distribu-

tion dataset. When the number of dimensions keeps growing, the gap between MR-SkyProb and

MR-BRF increases. Baseline is always the slowest, and MR-SkyProb+ is always quicker than

MR-SkyProb in different distributions. In Figure 3.9(c), MR-BRF outperforms against the two

MR-SkyProb approaches when the number of dimension is below 16, but MR-SkyProb+ become

quicker when number of dimensions grows after 32.

3.7.4 Varying Cardinality

In the third set of experiment, we evaluated the performance of baseline and MR-Skyline

upon different cardinality. In Figure 3.10, it is observed that the elapsed query time is elevated

when number of objects increases, and baseline is extremely slowest compare to the other two

methods. The gap between the baseline and MR-SkyProb enlarges with the increments of object

87

 2000

 4000

 6000

 8000

 10000

 12000

2 4 8 16 32 64

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 dimension |O| = 221 COR

MR-BRF
MR-SkyProb+

MR-SkyProb
baseline

(a) Correlated

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 4 8 16 32 64

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 dimensions |O| = 221 IND

MR-BRF
MR-SkyProb+

MR-SkyProb
baseline

(b) Independent

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 4 8 16 32 64

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 dimension |O| = 221 ANT

MR-BRF
MR-SkyProb+

MR-SkyProb
baseline

(c) Anti-Correlated

Figure 3.9: Vary Dimension.

cardinality in Figure 3.10(a). Similar results occur for data following Anti-correlated distribution

and Independent distribution. One interesting observation is that MR-SkyProb+ is slower than

MR-SkyProb when the cardinality is low (215 and 218). The reason is that the second phase does

not perform much work, because large amount of data is filtered during the first MapReduce phase

and fewer objects are left during the second MapReduce phase.

 0

 2000

 4000

 6000

 8000

 10000

 12000

215 218 221 224

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 Num of Objects COR

MR-SkyProb+

MR-SkyProb
baseline

(a) Correlated

 0

 2000

 4000

 6000

 8000

 10000

 12000

215 218 221 224

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 Num of Objects IND

MR-SkyProb+

MR-SkyProb
baseline

(b) Independent

 0

 2000

 4000

 6000

 8000

 10000

 12000

215 218 221 224

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 Num of Objects ANT

MR-SkyProb+

MR-SkyProb
baseline

(c) Anti-Correlated

Figure 3.10: Vary Cardinality.

3.7.5 The Effects of Pivot Point

In this experiment set, we study the the effects of Pivot-Points-Based Optimization power, by

adjusting the number of pivot point to observe the performance change. We measure the perfor-

mance of data of three shape distributions under 4, 8 and 16 dimensions. Dark blue line, red line

and light blue line represent the correlated distribution, independent distribution and ANTI corre-

lated distribution respectively. Figure 3.11(a) shows that the red line decreases until 9 pivot points,

and rises afterward. Dark Blue line meets the optimized concave point when number of pivot point

88

is around 11. In Figure 3.11(b), three lines’ pit points are all at around 15 for 8-dimensional data.

The optimized pivot point number increases when the dimension rises after 15. In Figure 3.11(c),

all three lines keep dropping when the number of dimensions grows. The reason behind this is that

data with 16 dimensions needs large number of pivot point to achieve the optimized placement for

ease of querying.

 0

 100

 200

 300

 400

 500

 4 6 8 10 12 14

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 Num of Pivot Points |O| = 218

COR
IND

ANTI

(a) Pivot Point Num Variation

Dim4

 0

 200

 400

 600

 800

 1000

 5 10 15 20

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 Num of Pivot Points |O| = 218

COR
IND

ANTI

(b) Pivot Point Num Variation

Dim8

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 10 20 30 40 50 60

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 Num of Pivot Points |O| = 218

COR
IND

ANTI

(c) Pivot Point Num Variation

Dim16

Figure 3.11: Pivot Point Experiment.

3.7.6 Real Dataset Evaluation

In this experiment set, we evaluate the performance of TripAdvisor dataset under two settings.

Figure 3.12(a) shows the elapsed time trend due to the changes in the number of machines. It is

observed that the query response time dropped when the number of machines is increasing. Base-

line always performs the slowest, and MR-SkyProb and MR-SkyProb+ are quicker than MR-BRF.

One interesting observation is that the gap between MR-BRF and MR-SkyProb is decreasing. The

reason behind is that |O| of the dataset is not large enough, and dimension number is low. Fig-

ure 3.12(b) depicts the performance comparisons due to changes of probability threshold tp. The

query response time of all methods is decreasing when probability threshold is increasing, since

the filter component is able to filter more objects in the first step when the probability threshold is

increasing. The interesting observation is that MR-BRF outperforms against the others when prob-

ability threshold is large. The reason behind these results are the way the dataset is distributed.

89

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 2 3 4 5 6 7 8 9 10

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 machines((9K |O|, 700K |I|))

MR-BRF
MR-SkyProb+

MR-SkyProb
baseline

(a) Various number of machines

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

 Threshold((9K |O|, 700K |I|))

MR-BRF
MR-SkyProb+

MR-SkyProb
baseline

(b) Various threshold

Figure 3.12: Real Data Experiment.

90

Bibliography

[1] Foto N. Afrati, Paraschos Koutris, Dan Suciu, and Jeffrey D. Ullman. Parallel skyline queries.

In ICDT, pages 274–284, 2012.

[2] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha Nabar, Tomoe

Sugihara, and Jennifer Widom. Trio: A System for Data, Uncertainty, and Lineage. In VLDB,

pages 1151–1154, 2006.

[3] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An Introduc-

tion to MCMC for Machine Learning. Machine Learning, 50(1-2):5–43, 2003.

[4] Periklis Andritsos, Ariel Fuxman, and Renee J. Miller. Clean Answers over Dirty Databases:

A Probabilistic Approach. In ICDE, page 30, 2006.

[5] Lyublena Antova, Christoph Koch, and Dan Olteanu. Query Language Support for Incom-

plete Information in the MayBMS System. In VLDB, pages 1422–1425, 2007.

[6] Mikhail J Atallah and Yinian Qi. Computing all skyline probabilities for uncertain data. In

Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems, pages 279–287. ACM, 2009.

[7] Lars Backstrom and Jure Leskovec. Supervised random walks: predicting and recommending

links in social networks. In WSDM, pages 635–644, 2011.

[8] Christian Böhm, Frank Fiedler, Annahita Oswald, Claudia Plant, and Bianca Wackersreuther.

Probabilistic skyline queries. In Proceedings of the 18th ACM conference on Information and

knowledge management, pages 651–660. ACM, 2009.

[9] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The Skyline Operator. In ICDE,

pages 421–430, 2001.

[10] Haiquan Chen, Wei-Shinn Ku, Min-Te Sun, and Roger Zimmermann. The partial sequenced

route query with traveling rules in road networks. GeoInformatica, 15(3):541–569, 2011.

[11] Haiquan Chen, Wei-Shinn Ku, Haixun Wang, and Min-Te Sun. Leveraging Spatio-temporal

Redundancy for RFID Data Cleansing. In SIGMOD Conference, pages 51–62, 2010.

[12] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, and Jeffrey Xu Yu. Monitoring path nearest

neighbor in road networks. In SIGMOD Conference, pages 591–602, 2009.

[13] Reynold Cheng, Sarvjeet Singh, and Sunil Prabhakar. U-DBMS: A Database System for

Managing Constantly-evolving Data. In VLDB, pages 1271–1274, 2005.

91

[14] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You are where you tweet: a content-based

approach to geo-locating twitter users. In CIKM, pages 759–768, 2010.

[15] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. Friendship and mobility: user movement

in location-based social networks. In KDD, pages 1082–1090, 2011.

[16] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline with presorting. In

ICDE, pages 717–719, 2003.

[17] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline with Presorting. In

ICDE, pages 717–719, 2003.

[18] Adan Cosgaya-Lozano, Andrew Rau-Chaplin, and Norbert Zeh. Parallel Computation of

Skyline Queries. In HPCS, page 12, 2007.

[19] Nilesh Dalvi and Dan Suciu. Efficient Query Evaluation on Probabilistic Databases. The

VLDB Journal, 16(4):523–544, 2007.

[20] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clus-

ters. Commun. ACM, 51(1):107–113, January 2008.

[21] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incom-

plete data via the EM algorithm. Journal of the Royal Statistical Society, pages 1–38, 1977.

[22] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,

1:269–271, 1959.

[23] Li Ding, Lina Zhou, Timothy W. Finin, and Anupam Joshi. How the Semantic Web is Being

Used: An Analysis of FOAF Documents. In HICSS, 2005.

[24] LinLin Ding, Guoren Wang, Junchang Xin, and Ye Yuan. Efficient probabilistic skyline query

processing in mapreduce. In IEEE International Congress on Big Data, BigData Congress

2013, June 27 2013-July 2, 2013, pages 203–210, 2013.

[25] Pedro Domingos. Markov logic: a unifying language for knowledge and information man-

agement. In CIKM, page 519, 2008.

[26] Pedro Domingos, Daniel Lowd, Stanley Kok, Hoifung Poon, Matthew Richardson, and Parag

Singla. Just Add Weights: Markov Logic for the Semantic Web. In URSW, pages 1–25, 2008.

[27] Tobias Emrich, Hans-Peter Kriegel, Nikos Mamoulis, Johannes Niedermayer, Matthias Renz,

and Andreas Züfle. Reverse-nearest neighbor queries on uncertain moving object trajectories.

In DASFAA, pages 92–107, 2014.

[28] Chris Fraley and Adrian E. Raftery. How many clusters? Which clustering method? Answers

via model-based cluster analysis. Comput. J., 41(8):578–588, 1998.

[29] Chris Fraley and Adrian E Raftery. Model-based clustering, discriminant analysis, and den-

sity estimation. Journal of the American Statistical Association, 97(458):611–631, 2002.

92

[30] Irene Gargantini. An effective way to represent quadtrees. Commun. ACM, 25(12):905–910,

1982.

[31] Jennifer Golbeck and Matthew Rothstein. Linking Social Networks on the Web with FOAF:

A Semantic Web Case Study. In AAAI, pages 1138–1143, 2008.

[32] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD

Conference, pages 47–57, 1984.

[33] Haibo Hu, Dik Lun Lee, and Victor C. S. Lee. Distance indexing on road networks. In VLDB,

pages 894–905, 2006.

[34] Haibo Hu, Dik Lun Lee, and Jianliang Xu. Fast nearest neighbor search on road networks.

In EDBT, pages 186–203, 2006.

[35] Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. Ranking queries on uncertain data: a

probabilistic threshold approach. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008,

pages 673–686, 2008.

[36] Xuegang Huang, Christian S. Jensen, and Simonas Saltenis. The Islands Approach to Nearest

Neighbor Querying in Spatial Networks. In SSTD, pages 73–90, 2005.

[37] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher Jermaine, and Peter J.

Haas. MCDB: A Monte Carlo Approach to Managing Uncertain Data. In SIGMOD, pages

687–700, 2008.

[38] Christian S. Jensen, Jan Kolárvr, Torben Bach Pedersen, and Igor Timko. Nearest neighbor

queries in road networks. In GIS, pages 1–8, 2003.

[39] Dongwon Kim, Hyeonseung Im, and Sungwoo Park. Computing exact skyline probabilities

for uncertain databases. 2011.

[40] Henning Köhler, Jing Yang, and Xiaofang Zhou. Efficient parallel skyline processing using

hyperplane projections. In SIGMOD Conference, pages 85–96, 2011.

[41] Mohammad R. Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neighbor search

for spatial network databases. In VLDB, pages 840–851, 2004.

[42] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting Stars in the Sky: An Online

Algorithm for Skyline Queries. In VLDB, pages 275–286, 2002.

[43] Wei-Shinn Ku, Roger Zimmermann, Haojun Wang, and Chi-Ngai Wan. Adaptive nearest

neighbor queries in travel time networks. In GIS, pages 210–219, 2005.

[44] Ugur Kuter and Jennifer Golbeck. Using probabilistic confidence models for trust inference

in web-based social networks. ACM Trans. Internet Techn., 10(2), 2010.

[45] Ken C. K. Lee, Wang-Chien Lee, and Baihua Zheng. Fast object search on road networks. In

EDBT, pages 1018–1029, 2009.

93

[46] Ken C. K. Lee, Wang-Chien Lee, Baihua Zheng, and Yuan Tian. ROAD: A new spatial object

search framework for road networks. IEEE Trans. Knowl. Data Eng., 24(3):547–560, 2012.

[47] Ken C. K. Lee, Baihua Zheng, Huajing Li, and Wang-Chien Lee. Approaching the Skyline

in Z Order. In VLDB, pages 279–290, 2007.

[48] Vincent Leroy, Berkant Barla Cambazoglu, and Francesco Bonchi. Cold start link prediction.

In KDD, pages 393–402, 2010.

[49] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution: Densification

and shrinking diameters. TKDD, 1(1), 2007.

[50] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Community

structure in large networks: Natural cluster sizes and the absence of large well-defined clus-

ters. Internet Mathematics, 6(1):29–123, 2009.

[51] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua Teng. On

Trip Planning Queries in Spatial Databases. In SSTD, pages 273–290, 2005.

[52] Feifei Li, Ke Yi, and Wangchao Le. Top-k queries on temporal data. VLDB J., 19(5):715–733,

2010.

[53] Jiajia Li, Botao Wang, and Guoren Wang. Efficient probabilistic reverse k-nearest neighbors

query processing on uncertain data. In Database Systems for Advanced Applications, 18th

International Conference, DASFAA 2013, Wuhan, China, April 22-25, 2013. Proceedings,

Part I, pages 456–471, 2013.

[54] Rui Li, Shengjie Wang, Hongbo Deng, Rui Wang, and Kevin Chen-Chuan Chang. Towards

social user profiling: unified and discriminative influence model for inferring home locations.

In KDD, pages 1023–1031, 2012.

[55] David Liben-Nowell and Jon M. Kleinberg. The link prediction problem for social networks.

In CIKM, pages 556–559, 2003.

[56] Ching-Yung Lin, Nan Cao, Shixia Liu, Spiros Papadimitriou, Jimeng Sun, and Xifeng Yan.

SmallBlue: Social Network Analysis for Expertise Search and Collective Intelligence. In

ICDE, pages 1483–1486, 2009.

[57] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient Processing of k Nearest

Neighbor Joins using MapReduce. PVLDB, 5(10):1016–1027, 2012.

[58] Kurt Mehlhorn. Data structures and algorithms 3: Multi-dimensional searching and compu-

tational geometry, volume 3 of eatcs monographs on theoretical computer science, 1984.

[59] Lilyana Mihalkova and Matthew Richardson. Speeding up inference in statistical relational

learning by clustering similar query literals. In ILP, pages 110–122, 2009.

[60] Michael D. Morse, Jignesh M. Patel, and H. V. Jagadish. Efficient Skyline Computation over

Low-Cardinality Domains. In VLDB, pages 267–278, 2007.

94

[61] Kasper Mullesgaard, Jens Laurits Pedersen, Hua Lu, and Yongluan Zhou. Efficient skyline

computation in mapreduce. In 17th International Conference on Extending Database Tech-

nology (EDBT), pages 37–48, 2014.

[62] Alper Okcan and Mirek Riedewald. Processing theta-joins using MapReduce. In SIGMOD

Conference, pages 949–960, 2011.

[63] Pedro Oliveira and Paulo Gomes. Instance-based probabilistic reasoning in the semantic web.

In WWW, pages 1067–1068, 2009.

[64] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progressive skyline computa-

tion in database systems. ACM Trans. Database Syst., 30(1):41–82, 2005.

[65] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query Processing in Spatial

Network Databases. In VLDB, pages 802–813, 2003.

[66] Sungwoo Park, Taekyung Kim, Jonghyun Park, Jinha Kim, and Hyeonseung Im. Parallel

Skyline Computation on Multicore Architectures. In ICDE, pages 760–771, 2009.

[67] Yoonjae Park, Jun-Ki Min, and Kyuseok Shim. Processing of probabilistic skyline queries

using mapreduce. Proceedings of the VLDB Endowment, 8(12):1406–1417, 2015.

[68] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. Probabilistic skylines on uncertain data.

In Proceedings of the 33rd international conference on Very large data bases, pages 15–26.

VLDB Endowment, 2007.

[69] Sheldon M. Ross. Introduction to Probability Models, Ninth Edition. Academic Press, 2006.

[70] Hanan Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys

(CSUR), 16(2):187–260, 1984.

[71] Hanan Samet, Jagan Sankaranarayanan, and Houman Alborzi. Scalable network distance

browsing in spatial databases. In SIGMOD Conference, pages 43–54, 2008.

[72] Jagan Sankaranarayanan, Houman Alborzi, and Hanan Samet. Efficient query processing on

spatial networks. In GIS, pages 200–209, 2005.

[73] Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–

464, 1978.

[74] Jude W. Shavlik and Sriraam Natarajan. Speeding Up Inference in Markov Logic Networks

by Preprocessing to Reduce the Size of the Resulting Grounded Network. In IJCAI, pages

1951–1956, 2009.

[75] Parag Singla and Pedro Domingos. Memory-efficient inference in relational domains. In

AAAI, pages 488–493, 2006.

[76] Xiaodan Song, Ching-Yung Lin, Belle L. Tseng, and Ming-Ting Sun. Modeling and predict-

ing personal information dissemination behavior. In KDD, pages 479–488, 2005.

95

[77] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient Progressive Skyline Computa-

tion. In VLDB, pages 301–310, 2001.

[78] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale net-

works. In KDD, pages 807–816, 2009.

[79] Liang Tang, Haiquan Chen, Wei-Shinn Ku, and Min-Te Sun. Parameterized spatial query

processing based on social probabilistic clustering. In ACM SIGSPATIAL GIS, pages 410–

413, 2014.

[80] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins using

MapReduce. In SIGMOD Conference, pages 495–506, 2010.

[81] Akrivi Vlachou, Christos Doulkeridis, and Yannis Kotidis. Angle-based space partitioning

for efficient parallel skyline computation. In SIGMOD Conference, pages 227–238, 2008.

[82] Daisy Zhe Wang, Eirinaios Michelakis, Minos N. Garofalakis, and Joseph M. Hellerstein.

Bayesstore: managing large, uncertain data repositories with probabilistic graphical models.

PVLDB, 1(1):340–351, 2008.

[83] Jue Wang and Pedro Domingos. Hybrid Markov Logic Networks. In AAAI, pages 1106–1111,

2008.

[84] Shiyuan Wang, Beng Chin Ooi, Anthony K. H. Tung, and Lizhen Xu. Efficient Skyline Query

Processing on Peer-to-Peer Networks. In ICDE, pages 1126–1135, 2007.

[85] Xiaowei Wang and Yan Jia. Grid-based probabilistic skyline retrieval on distributed uncertain

data. In Database Systems for Adanced Applications, pages 538–547. Springer, 2011.

[86] Zhen Wen and Ching-Yung Lin. How accurately can one’s interests be inferred from friends.

In WWW, pages 1203–1204, 2010.

[87] Ping Wu, Caijie Zhang, Ying Feng, Ben Y. Zhao, Divyakant Agrawal, and Amr El Abbadi.

Parallelizing Skyline Queries for Scalable Distribution. In EDBT, pages 112–130, 2006.

[88] Junyi Xie, Jun Yang, Yuguo Chen, Haixun Wang, and Philip S. Yu. A Sampling-Based

Approach to Information Recovery. In ICDE, pages 476–485, 2008.

[89] Mohan Yang, Haixun Wang, Haiquan Chen, and Wei-Shinn Ku. Querying uncertain data

with aggregate constraints. In SIGMOD Conference, pages 817–828, 2011.

[90] Chi Zhang, Feifei Li, and Jeffrey Jestes. Efficient parallel kNN joins for large data in MapRe-

duce. In EDBT, pages 38–49, 2012.

[91] Ji Zhang, Xunfei Jiang, Wei-Shinn Ku, and Xiao Qin. Efficient parallel skyline evaluation

using mapreduce.

[92] Shiming Zhang, Nikos Mamoulis, and David W. Cheung. Scalable skyline computation using

object-based space partitioning. In SIGMOD Conference, pages 483–494, 2009.

96

[93] Jun Zhu, Ni Lao, and Eric P. Xing. Grafting-light: fast, incremental feature selection and

structure learning of markov random fields. In KDD, pages 303–312, 2010.

[94] Jun Zhu, Zaiqing Nie, Xiaojiang Liu, Bo Zhang, and Ji-Rong Wen. Statsnowball: a statistical

approach to extracting entity relationships. In WWW, pages 101–110, 2009.

97

