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Abstract

This dissertation is focused on thermal and resource management of data centers. Rec-

ognizing that there is the lack of comprehensive benchmarks for thermal management in the

context of cluster computing in data centers, we propose a thermal e�ciency benchmark -

ThermoBench - for clusters. ThermoBench evaluates the thermal e�ciency of computing

and storage clusters deployed in data centers. We shed light on the criteria, metrics and

challenges of developing a thermal e�ciency benchmark. We also pay particular attention

to clusters running scalable client-server enterprise applications in data centers. We apply

ThermoBench to evaluate the thermal e�ciency of a real-world cluster by running TPC-W

benchmark with changing transactional arrival rate and mix percentage. ThermalBench

provides a simple yet powerful benchmark solution for assessing thermal behaviours of com-

puting clusters in data centers.

In the second part of this dissertation research, we build a self-adjusting model called

TERN to predict thermal behaviours of hardware resources for client sessions. Our TERN

contains two major components: (1) a resource utilization model being responsible for es-

timating hardware usage based on the number of running client transactions, and (2) a

thermal model that discovers correlation between resource utilization and their tempera-

tures. TERN is conducive to predicting thermal trends of diverse workload conditions with

a changing transaction mix. TERN judiciously adjusts the models to maintain prediction

accuracy for dynamically changing request patterns. The experimental results show that

TERN provides a simple yet powerful solution for resource provisioning in thermal-aware

data centers where exist rapidly changing workload conditions.

In the last part of this dissertation, we propose an erasure-coded data archival system

called aHDFS for Hadoop clusters, where RS(k+r, k) Codes are employed to archive rarely
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accessed replicas in the Hadoop distributed �le system or HDFS to achieve storage e�ciency

in data centers. We develop two archival strategies (i.e., aHDFS−Grouping and aHDFS−

Pipeline) in aHDFS to speed up the data archival process. aHDFS−Grouping keeps each

mapper's intermediate output key−value pairs in a local key−value store. With the local

store in place, aHDFS−Grouping merges all the intermediate key−value pairs with the

same key into one single key−value pair, followed by shu�ing the single key−value pair to

reducers to generate �nal parity blocks. aHDFS−Pipeline forms a data archival pipeline

using multiple data node in a Hadoop cluster. Unlike aHDFS−Grouping's shu�e and reduce

phases, aHDFS−Pipeline delivers the merged single key−value pair to a subsequent node's

local key-value store. Last node in the pipeline is responsible for outputting parity blocks.

The experimental results show that aHDFS can signi�cantly improve the overall archival

performance of the Baseline system.
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Chapter 1

Introduction

With the growth of repaid energy, power and cooling cost in current data centers, numer-

ous of methods on energy, power and thermal e�ciency have been proposed in past years. In

order to tackling those challenges, various of energy, power and thermal e�ciency techniques

and models have been introduced to achieve conserving energy consumption and reducing

cooling cost. [29][91][47] focus on achieving network energy e�ciency in data. JouleSort, an

external benchmark for evaluating the energy e�ciency of wide range computer systems [73].

Additionally, lots of models have been build as guidance to achieve energy e�ciency and en-

ergy optimization [20]. [75][62]. In contrast to energy e�ciency, cooling cost make another

big contribution in nowdays data center which accounts for almost half of total cost. There

are a large bodies of study have been paid on, such as Cool Job Allocation obtains cost sav-

ing by placing jobs at cooling-e�ciency locations in data centers [9]. Most of researches emit

cooling cost conservation idea from smart workload scheduling, dynamic resource allocation

and management and thermal aware models perspectives [89][82][46][45][34].

In addition to thermal and energy e�ciency, investigating resource usage e�ciency in

data center is also another focused �led of this dissertation. For example, how to make

the best use of front-end and back-end servers in a large e-commercial website such as

Amazon Web Service to achieve low latency. [43][53][23] paid attention to provide resource

for coming requests dynamically. However, another group of researchers obtained resource

e�ciency by taking advantage of erasure coding mechanism to minimize storage capacity

consumption [92][58][67][59].

This dissertation consists of three parts. The �rst part presents a thermal benchmark-

ThermoBench to evaluate thermal e�ciency of computing and storage clusters; the second

1



part develops a self-adjusting resource and thermal models; at the last part, a erasure-

coding archival system aHDFS is introduced to boost the archival performance in Hadoop

clusters. This chapter is organized as follows. Section 1.1 elaborates motivations of our

ThermoBench. The illustrate motivation of incorporated resource and thermal models in

section 1.2. Section 1.3 reveals our intention of aHDFS. Finally, section 1.4 illustrates the

organization of this dissertation.

1.1 Motivation of ThermoBench

There has been no focus on a comprehensive benchmark for thermal management in

the context of cluster computing. Thermal e�ciency benchmarks for clusters providing

services to client-server computing applications become critical. In this chapter, we propose

ThermoBench aiming to evaluate the thermal e�ciency of clusters running in data centers.

In data center environments, energy cost is one of the signi�cant components of oper-

ational costs [48]. For example, a data center containing 1000 racks consumes 10MW total

power per year [63]. Much attention has been paid to the development of high performance

and high energy e�cient clusters in data centers, because designing energy-e�cient and en-

vironmental friendly clusters is greatly desirable [96]. Unfortunately, previous research on

clusters has been primarily focused on energy e�ciency improvement. There is a growing

demand for thermal management techniques tailored for clusters.

The purpose of optimizing thermal e�ciency in data centers is two-fold. First, energy

cost in data centers can be signi�cantly reduced by improving thermal e�ciency of the cen-

ters, which includes a highly e�cient cooling infrastructure coupled with advanced thermal

management techniques for cluster computing systems. Second, as the number of comput-

ing nodes housed in data centers grows, minimizing cooling cost of the data centers becomes

increasingly di�cult [64][37]. Evidence demonstrates that high cooling cost in data cen-

ters could be reduced by minimizing the energy dissipation in cooling systems [51][88][35].
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Reducing outlet temperatures or optimizing air recirculation is a practical way of improv-

ing energy e�ciency [84]. In addition to direct temperature control, thermal-aware load

balancing strategies lead to good temperature distribution [51] [88].

To optimize thermal e�ciency of data centers, we have to develop benchmarks to assess

the e�ectiveness of thermal management schemes deployed in clusters. Although in a hand-

ful of prior studies, benchmarks have been developed for energy e�ciency in data centers

(see, for example, [44][64]), the exiting benchmarks are focused on energy e�ciency rather

than thermal e�ciency. Furthermore, growing attention has been paid to the improvement

of computer thermal e�ciency [65][90]; there has been little focus on the thermal e�ciency of

clusters in the context of client-server computing, which is quite popular in modern data cen-

ters. In this study, ThermoBench pays particular attention to thermal e�ciency of clusters

running scalable client-server enterprise applications in data centers.

ThermoBench applies various types of transactional requests in the TPC-W [3] bench-

mark (see section 3.3.1) to investigate thermal behaviors of multiple hardware components

such as CPU and disk. Each transactional request has its own hardware-resource-demanding

characteristics, which exhibits unique thermal behaviors. For example, CPU-intensive trans-

actional requests stressing CPUs boosts up CPU temperatures; in contrast, I/O-intensive

transactional requests can lift up disk temperatures. In addition, one unit resource usage

of CPUs and disks respectively leads to di�erent temperature increases in CPUs and disks.

ThermoBench aims to uncover internal relationships of each request type's CPU and disk

thermal behaviors in both front-end and back-end servers under changing arrival rates. With

the thermal behaviors information measured by ThermoBench, one may adopt thermal-aware

resource management strategies to improve thermal e�ciency during the course of transac-

tional request dispatching.

We start this study by investigating the criteria, metrics as well as challenges of de-

veloping thermal e�ciency benchmarks. We focus on workload scenarios, thermal pro�ling

and performance metrics, which help in investigating thermal e�cacy optimizations. We
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characterize workload conditions in cluster computing environments in forms of client ses-

sions of multiple requests. In the development of ThermoBench, we incorporate the TPC-W

benchmark to change transactional requests mix and load over time. In doing so, we are able

to resemble real-world applications running in data centers. Then, we apply ThermoBench

to evaluate the thermal e�ciency of a real-world cluster running various client-server en-

terprise applications. Our experimental results show that ThermalBench provides a simple

yet e�cient benchmark solution for assessing thermal e�ciency of modern clusters in data

centers.

1.2 Motivation of TERN

Thermal management plays a vital role in modern data centers. Traditional thermal

models are mainly focused on static and non-changing workloads. To address this issue,

we propose a self-adjusting thermal model called TERN to predict thermal behaviors of

hardware resources provided for client sessions. We characterize the resource usage and

thermal behaviors for various transaction types. We show how to apply TERN to predict

thermal trends for three real-world scenarios under changing workload conditions.

Our thermal model is motivated by the following four factors in the context of data

centers:

� The growing importance of thermal management in modern data centers.

� The pressing needs of prediction models to guide dynamic resource provisioning.

� Fine granularity modeling for resource provisioning and thermal optimization.

� Self-adjustment for rapidly changing transaction mixes.

Data centers house computing clusters that consist of thousands or even ten thousands

of servers. A current trend shows that computing and storage capacity demands of data

centers exponentially increase due to big data explosion [6]. Gartner predicted that a big data
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center's hardware expense will take up 71 percent (almost $126.2 billion) of the worldwide

data centers hardware expense [83]. Such a huge infrastructure brings a surge of supplying

energy cost, which is in the order of millions of dollars (see also recent reports in [66]).

Two major contributing factors of energy cost in data centers: energy consumed by data

nodes (e.g., CPU, disk, memory, fans, network) and energy caused by cooling systems (e.g.,

Computer Room Air Conditioners (CRACS)). Cooling cost can be as high as half of the total

energy costs depending on data centers' power usage e�ectiveness (PUE). There is a large

body of studies on run-time reduction of cooling and energy cost through thermal-aware task

dispatch and migration strategies [10][52].

It is not uncommon for a 1000-rack data center to consume 10MW total power per

year [48]. A handful of studies have been focused on modeling energy e�ciency of data

centers. For example, Allalouf et al. introduced an energy model to estimate power con-

sumption of storage cluster in data center [7]. Pan et al. simulated data centers using their

developed energy models [61]. Increasing attention has been paid to the development of high

performance and energy-e�cient clusters in data centers [96]. Apart from these energy e�-

ciency studies, there is a large body of thermal management techniques tailored for clusters

in data centers.

There are two factors driving us to optimize thermal e�ciency in data centers. First,

cooling cost can be reduced by minimizing energy consumed by cooling infrastructures cou-

pled with advanced thermal management techniques [14][42]. Second, maintaining low cool-

ing cost for large-scale data centers with an increasing number of nodes becomes a grand

challenge [64][37]. Bringing down energy consumption of cooling systems largely depends on

thermal behaviors of data centers. Several approaches have been investigated to avoid high

temperatures in data centers. For example, preventing server temperatures from moving

above a red-line (i.e., hot spots) reduces hot air recirculated from outlets into inlets of nodes.

Thermal management not only decreases cooling cost, but also improves server reliability.

The thermal model developed in our study can be adopted for building thermal management
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modules. In addition, our model provides a guideline for resource provisioning of applications

like web searching and e-commercial under rapidly changing workload conditions.

Internet services have become an indispensable part of people's everyday life. These

services are expected to instantly respond to requests while guaranteeing performance re-

quirements. Any delay in request response may cause thousands of dollar losing. Typical

internet services tend to exhibit dynamical regular long-term (e.g., weekly or daily) varia-

tions as well as short-term �uctuations due to �ash crowds (e.g., holiday season sales) [87].

There are numerous documented examples of Internet applications that faced an outage

due to an unexpected overload. These outage problems reveal that well predicting patterns

of services (e.g., its peak workload) and real-time monitoring are extremely important for

dynamic resource provisioning to deal with unexpected overload. For instance, Amazon's

website su�ered a forty-minute downtime due to an overload during the popular holiday

season in November 2000 [1]. Most internet services consist of an assortment of transactions;

analyzing each type of transaction request in terms of resource demands will be of help for

real-time resource provisioning. Pro�ling internet services at the request level not only o�ers

�ne-granularity resource allocations to requests, but also provides thermal information to

improve energy e�ciency of data centers.

It is challenging to construct a thermal model for dynamic resource provisioning in the

context of internet applications in data centers because of the following three reasons.

� Each workload has its own resource-requirement characteristics (e.g., some are com-

puting intensive whereas others are data-intensive).

� A wide range of hardware settings have various thermal behaviors.

� Integrating multiple models to predict thermal trend may worsen prediction errors.

In this study, we adopt the divide and conquer approach to seamlessly integrate two

models into TERN to overcome the aforementioned challenges. The �rst model is a resource
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utilization model, which is responsible for building up correlation between hardware utiliza-

tion and request patterns (e.g., arrival rate). The second one is a thermal model to predict

thermal behaviors of processors and disks. We integrate these two models into TERN, which

can adjust modeling parameters to achieve low prediction errors for dynamically changing

request patterns.

1.3 Motivation of aHDFS

Existing disk-based archival storage systems are inadequate for Hadoop clusters due

to the ignorance of data replicas and the map-reduce programming model. To tackle this

problem, we develop an erasure-coded data archival system called aHDFS, which archives

rare accessed data in large-scale data centers to minimize storage cost. aHDFS exploits

parallel and pipelined encoding processes to speed up data archival performance in Hadoop

distributed �le system (HDFS) on Hadoop clusters. In particular, aHDFS leverages the three-

way data replicas and the map-reduce programming models in Hadoop cluster to boost the

archival performance in HDFS. We show how to accelerate the encoding process in aHDFS

by the virtue of data locality of three replicas of blocks in HDFS.

The following three factors motivate us to develop the erasure-code-based archival sys-

tem for Hadoop clusters:

� a pressing need to lower storage cost of large-scale data centers,

� high cost-e�ectiveness of erasure-code storage and,

� the popularity of Hadoop computing platforms.

Reducing Storage Cost. Petabytes of data are nowdays stored in large distributed

storage systems like the Google File System (GFS) [27], the Hadoop Distributed File System

(HDFS) [12], the Windows Azure Storage [16]. In 2012, two millions of search queries received

per minute; by 2014, that number has more than double. Every minute, 2.5 millions pieces

of content shared in Facebook, 50 thousand applications downloaded by Apple users, 200
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million messages sent via Emails [50]. Such a massive amount of data demands large-scale

storage systems maintained in data centers. With an increasing number of storage nodes

installed, the data storage cost goes up dramatically.

A large number of nodes leads to a high possibility of failures caused by unreliable

components, software glitches, machine reboots, maintenance operations and the like. To

guarantee high reliability and availability in the presence of various types of failures, data

redundancy are commonly used in cluster storage systems. Two widely adopted fault-tolerant

solutions are replicating additional data blocks (i.e., 3X-replica redundancy) and storing

additional information as parity blocks (i.e., erasure-coded storage). For example, the 3X-

replica redundancy is employed in Google's GFS [27], HDFS [12], Amazon S3 [76] to achieve

fault tolerance. Also, erasure-coded storage is widely used in cloud storage platforms (e.g.,

Windows Azure and Facebook HDFS [16] [40] [30]) and data centers [86] [26] [56].

Applying Erasure-Coded Storage. Although 3X-replica redundancy (a.k.a., three-

way replication) achieves high performance than erasure-coded schemes, 3X-replica redun-

dancy inevitably leads to low storage utilization. Cost-e�ective erasure-coded storage sys-

tems are deployed in large data centers to achieve high reliability at low storage cost [30] [86].

Reed-Solomon code [71] is a popular family of erasure codes used in Google's ColossusFS [2],

Facebook's HDFS [86] [78], and several other storage systems [70] [80].

The Reed-Solomon code (RS) has a general 1.5x storage overhead in ColossusFS [2]; the

Facebook's HDFS reduces the storage overhead down to 1.4x by adopting RS(k+r,k) (e.g.,

(10+4,10)), the overhead of which is half less than that of 3X-replica redundancy schemes.

In addition, most of data are accessed within a short duration of the data's lifetime. For

example, over 90% of accesses in a Yahoo! M45 Hadoop cluster occur within the �rst day

after data creation [39]. We are motivated to devleop an economically friendly aHDFS to

archive data replicas in Hadoop clusters using erasure codes.

Archiving Data in Hadoop. Hadoop is a MapReduce implementation running on

clusters, where HDFS stores data to o�er high aggregate I/O bandwidth. Hadoop is a
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simple yet e�cient parallel and distributed computing framework providing high scalability

and fault tolerance [21]. In past few years, Hadoop has been widely applied to support

the development of from both commercial and scienti�c applications [72]. The popularity of

Hadoop inspires us to develop data achival schemes for HDFS to maintain a low data storage

cost for Hadoop clusters deployed in large-scale data centers.

Salient Features of aHDFS. We make use of 3X-replica redundancy in HDFS to

boost archival performance in clusters by the virtue of the MapReduce programming model

in addition to reducing network tra�c. We develop aHDFS - a parallel data archival system

- for Hadoop clusters. aHDFS has the following �ve salient features.

� aHDFS manages multiple Map tasks across the data nodes that are archiving their

local data in parallel.

� Two archival schemes (i.e., parallel archiving and pipeline archiving) are seamlessly

integrated into aHDFS, which switches between the two techniques based on the size

and locality of archived �les.

� Intermediate parity blocks generated in the Map phrase substantially lower the I/O

and computing load during the data reconstruction process.

� aHDFS reduces network tra�c among nodes during the course of data archiving, be-

cause aHDF takes the advantage of the good data locality of the 3X-replica technique,

where there is a high possibility that each �le's di�erent blocks are residing in one

node.

� We develop aHDFS on the top of Hadoop system, allowing a system administrator to

easily and quickly deploy our aHDFS without having to modify and rebuild HDFS in

Hadoop clusters.

Contributions. The contributions of this study are summarized as follows:
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� We propose two e�cient archival techniques - parallel archiving and pipeline archiv-

ing. These two schemes make use of the 3X-replica data layout to speed up archival

performance.

� We apply the MapReduce programming model to develop the aHDFS system, where

the two data archival techniques are implemented for Hadoop clusters.

� we develop a analytical model incorporating of several parameters(e.g., block size, the

number of Mapper task, block numbers and so on) to evaluate the two techniques'

archival performance.

� We conduct extensive experiment to investigate the impacts of the block size, �le size,

the number of blocks, and block location on the performance of aHDFS.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, related work reported in the

literature is brie�y reviewed. We introduce our ThermoBench in chapter 3. Then, in Chap-

ter 4.2, we build a self-adjusting thermal model for dynamic resource provisioning in order

to achieve thermal and resource e�ciency. The last study presented in this dissertation is an

erasure-coded data archival system for Hadoop clusters in chapter 5. Finally, we summarize

the contributions of this dissertation and comments for future research in chapter 6.

10



Chapter 2

Related Work

As Chapter 1 mentioned, numerous researches has been extensively paid on thermal

e�ciency and resource e�ciency during past decades. This chapter brie�y reviews existing

approaches that related to energy e�ciency, thermal e�ciency, dynamic resource provision-

ing, erasure-coding data archiving.

2.1 ThermonBench

There is a large body of prior studies on optimizing energy e�ciency of clusters in

data centers. For example, Ramapantulu et al. analyzed the energy e�ciency of mixing

high-performance and low-power nodes in a cluster [69]. Their �ndings suggest that mixing

high-performance and low-power nodes improves energy-e�ciency of traditional homoge-

neous datacenter clusters. Feller et al. evaluated the performance of Hadoop clusters in the

traditional model of collocated data and compute services as well as the impact of separating

out the services [25]. They conducted an energy e�ciency evaluation of Hadoop on physical

and virtual clusters in various con�gurations.

A few studies have been devoted to power management solutions for energy-e�cient

storage clusters. Huang et al. developed an energy saving technique for erasure-coded

storage clusters [33]. Chai et al. designed an energy-e�cient method to signi�cantly reduce

data migration overhead in storage clusters [17]. Manzanares et al. proposed an energy-aware

prefetching strategy called PRE-BUD for storage clusters [48].

In clusters and data centers, increasing attention has been paid to evaluating the energy

e�ciency of computing systems. For example, Rivoire et al. developed a benchmark system

called JouleSort to evaluate the energy e�ciency of a wide range of computer systems from
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clusters to handhelds [74]. Very recently, Schall et al. recommended extensions, re�nements,

and variations for the TPC benchmarks; they proposed a new benchmarking paradigm that

includes realistic power measures [79].

Several novel solutions have been proposed to optimize the thermal e�ciency of clusters.

In 2012, El-Sayed et al. conducted a multi-faceted study of temperature management in

data centers [24]. They made use of a large collection of �eld data from various production

computing environments to investigate the impact of temperature on the reliability of storage

and memory subsystems and server reliability as a whole. Liu et al. predicted renewable

energy as well as computing resource demand; their predictions are used to guide a workload

management plan that schedules workload and allocates computing resources within a data

center to improve cooling e�ciency [46]. Very recently, Jiang et al. investigated the thermal

pro�le of storage servers and developed a thermal model to estimate the outlet temperature

of a storage server [37]. Since these existing thermal management systems and models

are designed for optimizing thermal e�ciency, they are not focused on the development of

thermal-e�ciency benchmarks. Unlike the prior studies, our ThermoBench aims to o�er

benchmarking workloads for the purpose of thermal-e�ciency evaluations.

2.2 TERN

2.2.1 Resource Management and Provisioning

There are a handful of studies focusing on resource management and provisioning. For

instance, Doyle et al. proposed a model-based approach to utility resource management

for coordinated provisioning of memory and storage resources [22]. This approach enables

systems to achieve e�cient resource management, including di�erentiated service quality,

performance isolation, storage-aware caching, and proactive allocation of surplus resources.

Zhang et al. applied a regression-based approximation of the CPU demand of client transac-

tions on a given hardware [95]. Their experimental results con�rm that the regression-based
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approach provides an e�cient capacity planning and resource provisioning of multi-tier ap-

plications under changing workload conditions. Nae et al. developed a dynamic resource

provisioning method for massively multiplayer online games or MMOG operation in data

centers [54].

2.2.2 Energy E�ciency in Data center

There is a large body of prior studies on optimizing energy e�ciency of clusters because

of rapidly increasing energy consumption of data centers [8][13]. Total energy used in global

data centers in 2010 accounted for approximate 1.5% of total electricity use, for the US that

number became 2.2% [41]. Various energy-e�cient techniques have been proposed to lower

the energy consumption of data centers. For example, Chase et al. improved the energy

e�ciency of server clusters by dynamically resizing active server sets [19]. They provided

a solution to respond to power supply disruptions or thermal events by degrading service

in accordance with negotiated service level agreements. Rajkumar et al. designed energy-

e�cient resource allocation policies coupled with the scheduling algorithms for managing

data center resources for cloud computing [15]. They conducted a set of rigorous performance

evaluation; their results reveal that the cloud computing model has immense potential of

o�ering signi�cant cost saving under dynamic workload scenarios. Feller et al. evaluated the

performance of Hadoop clusters in the traditional model of collocated data and computing

services as well as the impact of separating out the services [25]. They conducted an energy

e�ciency evaluation of Hadoop on physical and virtual clusters in various con�gurations.

2.2.3 Energy-e�cient storage clusters

Some important studies have been devoted to the development of energy-e�cient stor-

age clusters. For example, Chavan et al. proposed a thermal-aware �le assignment technique

called TIGER aiming to reduce cooling cost of storage clusters. Huang et al. developed an

energy-saving technique for erasure-coded storage clusters [33]. Ruan et al. designed an
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energy-e�cient cluster storage system - ECOS - to improve energy e�ciency and perfom-

rance of storage clusters [77]. Jiang et al. built an energy prediction model that estimates the

total energy cost of data migrations [38]. In light of the model, they implemented a predic-

tive energy-aware management system, which automatically selects the most energy-e�cient

method for data transfers. Chai et al. designed an energy-e�cient method to signi�cantly

reduce data migration overhead in storage clusters [17].

2.2.4 Thermal e�ciency in data centers

A few novel solutions have been proposed to optimize the thermal e�ciency of clusters.

In 2012, El-Sayed et al. conducted a multi-faceted study of temperature management in

data centers [24]. A large amount of �eld data were collected from various production com-

puting environments to investigate the impact of temperatures on the reliability of storage

and memory subsystems and server reliability as a whole. Liu et al. investigated a prediction

scheme to guide a workload management plan for renewable energy as well as computing

resources in a data center [46]. Their solution schedules workload and allocates computing

resources to improve cooling e�ciency [46]. Very recently, Jiang et al. conducted thermal

pro�ling of storage servers and developed a thermal model to estimate the outlet tempera-

tures of storage servers [37].In 2010, Pakbaznia developed a power and thermal management

engine or PTM, which is employed to determine the number and placement of active servers

while simultaneously adjusting supplied cold air temperatures in order to minimize total

power consumption for servers and air conditioning units) [57].

Although thermal management and provisioning schemes have been proposed for data

centers, little attention has been paid to thermal-aware resource provisioning in data centers.

The lack of thermal-aware resource provisioning techniques motivates us to focus on resource

provisioning strategies to improve thermal e�ciency of data centers where there are changing

workload conditions. We aim to develop thermal prediction models to meet the needs of

resource provisioning in data centers with a dynamic nature.
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2.3 aHDFS

This section outlines the prior studies related to data archiving schemes in clusters.

General Data Archival Techniques. There are a handful of studies focusing on data

archival techniques to save data storage space. For example, You et al. proposed the Deep

Store - a large-scale archival storage system - to store immutable data e�ciently and reliably

for long periods of time [94]. Venti [68] is a network storage system intended for archival data.

Venti enforces a write-once policy, preventing accidental or malicious destruction of data,

coalescing duplicate copies of block, and reducing storage cost. Schwarz et al. investigated a

disk-scrubbing process in a large archival storage system where disks are periodically accessed

to detect disk failures [81].

Erasure-Coded Data Archival. Apart from the above traditionally techniques used

for data archival, erasure codes are widely adopted in cloud storage platforms [18][40] and

large-scale data centers [26][56]. Erasure-coded storage systems o�er high data reliability

and storage e�ciency for data centers to achieve important data.

Huang et al. proposed an e�cient scaling scheme called Scale-RS for Reed-Solomon-

coded storage clusters [31]. Scale-RS has three outstanding features, namely, uniform data

distribution, data movement minimization, and I/O performance improvement. Very re-

cently, Huang et al. exploited pipelined encoding process by incorporating two data layouts

(i.e., [D+P]cd and[3X]) to boost erasure-coded data archival performance on storage clus-

ters [32]. The experimental results reveal that their archival schemes outperform the other

solutions by at least a factor of 3.41 in a 9-node storage cluster. Pamies-Juarez et al. de-

veloped two solutions - a decentralized erasure coding process [60] and RapidRAID [58].

The former one reduces network tra�c by up to 56% in the data archival process; whereas

the latter one shortens coding times by up to 90% and 20% for archiving single object and

multiple objects, respectively.
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Unlike aforementioned Scale-RS and RapidRAID that were designed for clusters and

RAID storage, our aHDFS aims to improve data archival performance for Hadoop storage

clusters.

Archiving Data in the Hadoop Distributed File System. Although there are

a large body of studies aims at data archival in data centers, little attention has been

paid to speed up archival process in HDFS. A few pilot projects were kicked o� to address

this problem. For example, Gupta et al. developed an active data archival scheme for

data warehouses incorporating HDFS to e�ciently store data [28]. While Gupta's approach

is focused on the performance optimization of querying archived data, our aHDFS pays

attention to improving archiving performance through parallel computing and pipelining. In

particular, our aHDFS incorporates parallel archiving and pipeline archiving that take full

advantage of the MapReduce programming model and the 3X-replica data layout to boost

data archival performance on Hadoop clusters.

Xia et al. presented a new erasure-coded storage system called HACFS as an extension

to HDFS. Adapting to dynamically changing workloads, HACFS switches on the �y between

two di�erent erasure codes, namely, (1) fast code optimizing recovery performance and (2)

compact code reducing storage overhead [93]. From the perspective of implementation,

aHDFS di�ers from HACFS in that aHDFS implements the data archival functionality on

top of HDFS at the application level rather than at the system level.
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Chapter 3

ThermoBench: A Thermal E�ciency Benchmark for Clusters in Data Centers

This chapter proposes a thermal e�ciency benchmark for clusters-ThermoBench, which

evaluate the thermal e�ciency of computing and storage clusters deployed in data centers.

We shed light on the criteria, metrics and challenges of developing a thermal e�ciency bench-

mark, and also pay particular attention to clusters running scalable client-server enterprise

applications in data centers. Because these applications are quite popular in modern data

centers, thermal e�ciency benchmarks for clusters providing services to these applications

become critical. We characterize workload conditions in such a cluster computing environ-

ment in forms of client sessions of multiple transactional requests. To resemble real-world

applications, ThermoBench makes use of the TPC-W benchmark to change transactional

requests mix and load over time. We apply ThermoBench to evaluate the thermal e�ciency

of a real-world cluster. Experimental results show that ThermalBench provides a simple yet

powerful benchmark solution for assessing thermal behaviours of computing clusters in data

centers as well as o�ers thermal-aware scheduling strategies during the course of requests

dispatching.

The rest of this chapter is organized as follows. In Section 3.1, we discuss the cri-

teria, metrics and challenges in the development of ThermoBench - our thermal e�ciency

benchmark. The design of ThermoBench as well as implementation issues can be found

in Section 3.2. Section 3.3 provides an in-depth thermal measurement study and analysis,

where ThermoBench is applied to evaluate thermal behavior of a real-world system.
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3.1 Criteria, Metrics and Challenges

Recognizing that there is the lack of comprehensive benchmarks for thermal-e�ciency

evaluation in the context of cluster computing, we start this study by focusing on the crite-

ria, metrics and challenges of the development of thermal-e�ciency benchmark tools. The

criteria outlined in this Section lay the preliminary foundation for the development of our

ThermoBench.

The existing thermal management studies (e.g., [24][46][37]) summarized in Section 2.1

paid attention to the thermal-e�ciency evaluation and comparison of novel techniques that

aim at reducing cooling cost of data centers. In contrast, this study is focused on thermal-

aware benchmark tools that address issues related to thermal pro�ling, energy e�ciency,

metrics, cooling cost, and continuously changing workload conditions.

Thermal Pro�ling. Ideally, a thermal benchmark tool provides an intuitive approach

to pro�ling the temperatures of processors and disks as well as inlet and outlet temperatures

of storage nodes. Thermal pro�ling plays a vital role in our ThermoBench, because tem-

peratures of processors, disks, and storage nodes can signi�cantly a�ect the cooling costs of

data centers.

The thermal pro�ling feature of ThermoBench exhibits two immediate bene�ts. First,

thermal pro�ling makes it possible to develop thermal models of processors, disks, and

storage servers, which are building blocks of clusters in a data center. Second, thermal

pro�ling allows developers to quantitatively evaluate the thermal behaviors of their newly

implemented thermal management systems.

Generally speaking, thermal-aware benchmark tools allow researchers and developers to

e�ciently investigate thermal impacts of speci�c computing components (e.g., processors and

hard disks) inside a cluster. For example, in this study we show how to use ThermoBench to

assess outlet temperatures of storage servers based on both processor and disk utilizations.

Thermal E�ciency. A thermal-aware benchmark should be capable of measuring a

computing system's performance in terms of thermal e�ciency. To drive practical reductions
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in cooling cost, one has to pay attention to both system performance and thermal impacts.

A computing cluster that has no adverse thermal impact and little cooling cost but takes

forever to complete a task is unacceptable for any data center. Hence, the best performance

metric should incorporate both performance and cooling cost. For example, one may use a

product of execution time and cooling cost as a way to evaluate thermal e�ciency. Existing

CPU-centric benchmarks (see, for example, [13]) is performance oriented. In this study, we

chose to incorporate temperature measures and cooling cost into the performance evaluation.

Metrics. Metrics are of a great importance for a thermal-ware benchmark to evaluate

thermal e�ciency of clusters. Three major metrics introduced in ThermoBench include

the ratio of resource utilization to throughput (i.e., U/Th), the ratio of increased resource

temperatures to throughput (i.e., Te/Th), and the ratio of increased resource temperature to

its utilization (i.e., Te/U). Instead of adopting power as a metric like some other benchmarks

(see, for example, the SPEC Power benchmark), ThermoBench concentrates on thermal

perspective benchmarking, where temperatures directly reveal thermal behaviors of CPUs,

disks, and various transactional requests, which in turn can o�er a guideline in to achieving

high thermal e�ciency and reducing thermal recirculation.

We are motivated to incorporate the aforementioned three metrics in ThermoBench, be-

cause evidence shows that these is no directly relationship between power and temperature.

Jiang et al. and Bellosa et al. discovered that CPU and disk temperatures are not only in�u-

enced by utilization and power, but also impacted by time [36][11]. Keeping track of instant

and accurate thermal data rather than power is a practical approach to studying thermal

e�ciency. U/Th can be used to evaluate a clusterâ��s ability of processing transactional

requests; Te/Th and Te/U represent hardware resource's thermal characteristics regarding

throughput and utilization, respectively. The Te/Th metric is adequate to evaluate system

thermal e�ciency under speci�c transactional requests. Te/U reveals a cluster's thermal

capability without considering any speci�c request type; rather, Te/U pays attention to re-

source utilization. With these three metrics in place, ThermoBench is able to evaluate a
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cluster's thermal e�ciency from the perspective of thermal characteristics of hardware com-

ponents supporting transactional requests. ThermoBench adopts the three new metrics to

enable thermal management mechanisms to reduce cooling cost and to achieve high thermal

e�ciency.

Client-Server Applications. The goal of our benchmark is to resemble real-world

client-server applications running on clusters in modern data centers. Therefore, workload

conditions created by our ThermoBench should exhibit the following three features. First,

the workload must be characterized in forms of client sessions of interdependent requests.

Second, transaction mix and load of the workloads are changing over time. Last but not least,

the workload should have an emphasis on both front nodes and service end nodes. These two

types of nodes must be equally stressed by ThermoBench. The benchmark metrics should

incorporate thermal e�ciency of front nodes as well as server nodes in a cluster.

Multi-Class Behaviors. A thermal-e�ciency benchmark should o�er a contained

abstraction of a cluster computing system by considering �ows of requests in a queueing

network. Keeping this goal in mind, we design ThermoBench in a way to capture multi-class

behaviors, in which computing resource demands of various request classes are di�erent. In

doing so, we address the drawback of existing benchmarks of customers provide single-class

workloads (i.e., multiple user behaviors are integrated into a single one).

A Combined Usage. A benchmark tool may measure thermal e�ciency of a system

when it is idle, busy, or anywhere between. Energy-saving techniques aim to minimize idle-

mode power to reduce both energy and cooling cost. We design ThermoBench by considering

real-world scenarios, where there is a realistic combination of the idle and busy modes. Ther-

moBench assesses the average thermal e�ciency when a wide range of transactions submitted

to servers are completed. This type of measurement allows researchers and developers to

reduce cooling cost by designing and con�guring constraints for data centers.

Simple and E�ective. The ThermoBench tools must be representative of a broad

range of workloads in the context of client-server applications running on clusters. Moreover,
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it should be easy to con�gure and run ThermoBench. For most existing (unoptimized)

thermal pro�les of the integrated cluster, a common approach to delineate the thermal

map of data center is to deploy temperature sensors at inlet and outlet of servers. On

one hand, this boosts up the expense of data center, on the other hand, it is extremely

complicated and bothersome to dispose thousands of temperature sensors to all the nodes in

a large data center. However, ThermoBench simpli�es this situation by making use of inner

deployed temperature sensors of CPUs and disks to outline the thermal map of data center.

Additionally, ThermoBench also uncovers the relation of transactional requests' arrival rate

and hardware temperatures. Therefore, with these relations, ThermoBench can directly

obtain thermal map of data center from transactional requests arrival rate perspective instead

of using sensors to measure.

3.2 The Design of ThermoBench

In this section, we delineate the design of the ThermoBench tool. We start addressing

the design issues by proposing a three-tier architecture. The three-tier design enables us

to support multiple users and scale up clusters without wiping out existing data. Next, we

describe the thermal managers residing in front-end and back-end nodes. We also show how

to manage temperatures and power in a way to improve energy e�ciency of clusters.

3.2.1 Three-Tier Architecture

The framework of ThermoBench (see Figure 3.1) seamlessly integrates three tiers of

nodes, namely, the pre-end, front-end, and back-end tiers. The three-tier architecture o�ers

ample opportunities to expand the benchmark system size to a large scale, because it is

�exible to link each front-end node to multiple back-end servers.

The pre-end tier, which is also referred to as the user tier, is responsible for resembling

the behaviours of online users sending requests to be processed by clusters in a data center.
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Figure 3.1: The Framework of ThermoBench.

Servers in the back-end tier are in charge of data processing as well as the database

management. To maximize system throughput, the servers are independently responding

requests in parallel.

The front-end tier becomes an interface between the pre-end and back-end tiers. The

front-end tier of ThermoBench simpli�es the underlying software components by providing a

user-friendly interface for the user-end tier. More importantly, the front-end tier maintains a

database containing application objects and links to the databases in the back-end database.

We adopt this three-tier framework in ThermoBench, because a wide range of client-

server enterprise applications in data centers separate software components into front and

back ends to simplify system development and maintenance. The most popular adoption of

the three-tier architecture is the Amazon Web Service (a.k.a, AWS) [85]. Most of current

e-Commercial websites apply a similar three-tier architecture as the computing infrastruc-

ture, because the three-tier design is �exible to scale up the number of back-end servers

connecting to any speci�c front-end service. From the architecture perspective, one may

22



straightforwardly extend three tiers to multiple tiers. For example, a scheduling tier can be

seamlessly injected between user-end and front-end servers for the purpose of dispatching

transactional requests. When it comes to workload characteristics in terms of resource de-

mands, the three-tier architecture allows ThermoBench to categorize whether a transactional

request is front-end-intensive or back-end-intensive, thereby o�ering ample opportunities to

optimize thermal e�ciency in front-end or back-end servers. In addition to the three-tier-

based systems, ThermoBench is applicable to a wide range of transactional-requests-based

systems (e.g., database system). The current version of ThermoBench is unable to evaluate

non-transactional-request-based systems such as Hadoop clusters. As a future research direc-

tion, we plan to replace the TPC-W benchmark with a Hadoop benchmark in ThermoBench.

The future version of ThermoBench is expected to handle the Hadoop cluster case. In our

ThermoBench, the user-end and front-end tiers contain software modules manipulated by

users, whereas data processing modules are running on servers in the back-end tiers.

In ThermoBench, we implement the front-end and back-end tiers using an o�-the-shelf

commodity cluster. It is worth noting that the number of nodes residing in the front-end tier

is much smaller than that in the back-end tier. A load balancing module is incorporated in the

front-end and back-end tiers, respectively. The load balancer in the front-end cluster evenly

distributed requests submitted to the system to all the front-end nodes; the load balancer in

the back-end tier aims to balance data processing workload among all the servers.

All requests issued by clients in the user-end tier are handled by a small cluster of

front-end nodes. The front-end nodes rely on meta-data information along with request

information to determine which server in the back-end tier should process the requests.

One of the most salient features of the user-end tier is controlling workload conditions.

The important meta-data of each workload scenario managed by the user-end tier include

arrival rate, transaction types (i.e., type-combination percentage), and requested computing

resources. The request generator creates a list of requests according to the workload meta-

data information.
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ThermoBench is transparent to users, who are unaware of ThermoBench collects CPU

and disk utilization and temperature information. ThermoBench makes of the deployed

sensors to automatically collect performance and thermal data. A scheduling mechanism co-

ordinates with ThermoBench to dispatch requests to front-end servers and back-end servers

in a thermal-friendly fashion. Speci�cally, the scheduler relies on the thermal information

(e.g., resource usage and temperatures) captured by ThermoBench to make resource man-

agement decisions.

3.2.2 Thermal Management

In addition to the workload control, thermal monitoring is made possible in the user-

end tier, which relies on the thermal model, resource model, and the CPU/disk utilization

to estimate thermal e�ciency of each workload condition.

The CPU/disk utilization of servers are monitored by the front-end and back-end tiers.

The resource monitoring module residing in the front-end and back-end nodes keep track of

both CPU and disk resource utilization driven by requests issued from the user-end nodes.

The thermal management module is designed in a distributed fashion. In other words,

there is one thermal manager implemented in each node of the cluster forming both the front-

end and the back-end tiers. The thermal manager measures the CPU and disk temperatures

as well as the node's inlet and outlet temperatures. The measured temperature information

is locally stored in each server. The thermal managers transfer logged thermal information

(e.g., CPU/Disk, inlet and outlet temperatures) back to the user-end tier in a batch manner

for the purpose of thermal-e�ciency analysis.

In addition to keeping track of temperature information, cooling down database servers

in the back-end tier is a second goal achieved by the thermal management module. More

speci�cally, when loads of CPUs and disks in a server have been very heavy (e.g., higher

than 90%) for a long period of time (e.g., 10 minutes), the thermal managers in the database

server immediately notify such a high load condition to the front-end cluster, which will stop
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issuing more requests to the hot database server. The thermal managers in the front-end

cluster can manipulate temperatures of the back-end cluster, because the CPU and disk

temperatures in a database server in the back-end tier can be brought down by decreasing

the server's CPU and disk utilization.

Under light workload conditions in which CPUs and disks of some nodes have been

sitting idle for a long period of time (e.g., 5 minutes), the thermal managers place these

idle nodes into the sleep mode to o�er energy savings. The front-end cluster stops issuing

requests to any back-end server, which is transitioned into the sleep mode. Similarly, a front-

end node in the sleep mode does not handle any requests issued from the user-end tier. In

the back-end cluster nodes put into sleep mode will notice requests assigner not forwarding

requests to this node if current nodes can satisfy all coming requests in safe situations. The

sleeping nodes will be calling back again when there exists shortage of current working nodes.

3.3 Experimental Results

In this section, we �rst give a brief introduction of TPC-W, then we describe our con-

�guration of the testbed on which ThermoBench is installed. At last, we apply ThermBench

to evaluate the performance and thermal e�ciency of the tested cluster.

3.3.1 TPC-W Benchmark

TPC-W is a transactional web e-Commerce benchmark simulating activities of a retail

store website. An emulated user can browse and order books from the website using a remote

browser emulator. There are total 14 types of activities accessing web pages of the website in

TPC-W. For example, "Home" page resembles browsing home page of a website, "Product

Page" represents viewing detail information for a book, and "Order Page" is an activity that

orders books. The 14 transactional requests (a.k.a, accessing di�erent web pages) can be

grouped into two pro�les, namely, WIPSb, WIPSo based on the ratio of load imposed to
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front-end and back-end servers (see Table 3.1 for two pro�les combination percentage). The

two pro�les are of help in analyzing thermal behaviors in front-end and back-end servers.

Request Browsing mix Shopping mix Ordering mix

WIPSb 95.00% 80.00% 50.00%

Home 29.00% 16.00% 9.12%

New Product 11.00% 5.00% 0.46%

Best Seller 11.00% 5.00% 0.46%

Product Detail 21.00% 17.00% 12.35%

Search Request 12.00% 20.00% 14.53%

Search Results 11.00% 17.00% 13.08%

WIPSo 5.00% 20.00% 50.00%

Shopping Cart 2.00% 11.60% 13.53%

Customer Reg. 0.82% 3.00% 12.86%

Buy Request 0.75% 2.60% 12.73%

Buy Con�rm 0.69% 1.20% 10.18%

Order Inquiry 0.30% 0.75% 0.25%

Order Display 0.25% 0.66% 0.22%

Admin Request 0.10% 0.10% 0.12%

Admin Con�rm 0.09% 0.09% 0.11%

Table 3.1: TPC-W benchmark combination percentage.

3.3.2 Node Con�guration

The tested cluster consists of 19 nodes, among which there are two types of Linux servers

connected through the fast Ethernet. We con�gure two nodes in the front-end tier and 16

nodes in the back-end tier; one node serves as the user-end tier.
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Table 3.2 Testbed Con�gurations

Node Type 1 Node Type 2

CPU Intel(R) Celeron(R) 450@2.2GHz

Network 1 GigaBit Ethernet network card

Disk WD-500GB Sata disk( [5]) WD-160GB Sata disk( [4])

Operating Ubuntu 10.04(lucid) Ubuntu 10.04(lucid)

System Linux kernel 2.6.32-43 Linux kernel 2.6.32-38

Table 3.2 summarizes the con�guration details of these two types of servers performing

as nodes of our testbed. In our experiments, CPU and disk temperatures are collected by

ThermoBench using embedded device sensors. Inlet and outlet temperatures of the database

nodes are monitored by four sensors attached to the nodes.

3.3.3 Hardware Resource Thermal Pro�ling

CPU Thermal Pro�ling

In the �rst experiment, we apply ThermoBench to conduct a CPU thermal pro�ling

test. Fig. 3.2(a) shows average CPU temperature as a function of CPU utilization in the

tested cluster.

The ThermoBench tool issues an multi-thread matrix process, which has CPU-intensive

workload, to the server nodes of the cluster. ThermoBench manipulates CPU utilization

of the nodes by tuning the request idle time period. Fig. 3.2(a) reveals that the average

CPU temperature is 28 � when CPUs are idle. This temperature equals to the ambient

temperature. Fig. 3.2(a) also shows that the CPU temperature goes up when the CPU

utilization increases from 1% to 65%. The preliminary results o�ered by ThermoBench

suggest that the CPU temperature is very sensitive to CPU utilization. The thermal manager

of a node is capable of reducing the node's CPU temperature by reducing CPU utilization.
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Figure 3.2: CPU and Disk Thermal Pro�ling.

Disk Thermal Pro�ling

Now we employ ThermoBench to conduct a thermal pro�ling test on disks in the nodes.

In this experiment, ThermoBench creates the disk-intensive workload using IOzone - a �lesys-

tem benchmark. ThermoBench gradually stresses disks by increasing disk utilization and

measuring disk temperatures. Fig. 3.2(b) shows the impact of disk utilization on the average

temperature of disks in the cluster.

Comparing Fig. 3.2(b) with Fig. 3.2(a), we observe that disks are less thermal sensitive

than CPUs. When disks are sitting idle, disk temperatures are 28 �, which is the ambient

temperature. The disk temperature increases from 28� to 29� when the disk utilization is

anywhere between 15% and 21%. After the disk utilization is above the 21% mark, the disk

temperature quickly goes up to 30�. Interestingly, the disk temperature stays at the level

of 30� when the disk utilization is ranging from 22% to 65%.

CPU and Disk Thermal Pro�le Analysis.

By comparing CPU and disk thermal pro�les, we observe that CPUs have more signif-

icant impacts to temperature than disks. For example, with utilization increasing from 0

to 70%, CPU's temperature increases by 11� to 39 � (see Fig. 3.2(a)); in contrast, disk
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Figure 3.3: Comparison of Te/U of CPU and Disk

temperature only increases by 2 � to 30 � (see Fig. 3.2(b)). From the Te/U metric per-

spective, with one unit of utilization, CPUs have �ve fold thermal impact on clusters than

disks (see Fig. 3.3). These results obtained from ThermoBench suggest that CPU-intensive

transactional requests should be dispatched to multiple servers to avoid heating up a single

server. Additionally, I/O-intensive requests can be dispatched to these servers that fully

use hardware resources without substantially increasing server temperatures. The results

from ThermoBench also suggest that servers handling CPU-intensive transactional requests

should be located in a rack that makes the least contribution to heat recirculation in a data

center.
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Figure 3.4: Resource Utilization and Thermal Pro�ling of Home Requests. FE: Front-End,
BE: Back-End.

3.3.4 Thermal Pro�ling of Individual Transactional Requests

Thermal Pro�ling of Home Requests

Now we make use of ThermoBench to investigate the thermal behaviours of home re-

quests, which access homepages of websites. Each home request issued to a front-end web

server seeks to access a homepage.

In ThermoBench, a homepage is the �rst webpage of the online book store in the TPC-W

benchmark. The homepage contains the TPC (a.k.a., Transaction Processing Performance

Council) logo, promotional books, and navigation options to the best-selling books and new

books, search pages, a shopping cart, and an order status. A user may send a request to

the web server to browse pages, which is comprised of a list of new or best sellers grouped

by subject. A user may also search books using a title, an author name, or a subject.

To process a home request, ThermoBench has to retrieve book information data from the

back-end database server.

Fig. 3.4 plots the resource utilization and thermal behaviors of the front-end and back-

end nodes processing home requests in the tested cluster. To investigate the impact of load
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on CPU and disk utilization, we increase the request arrival rate in ThermoBench from 5

No./Sec. to 270 No./Sec. with an increment of 5 No./Sec.

We observe from Fig. 3.4(a) that the front-end nodes are more sensitive to the arrival

rate than the back-end nodes from the perspective of CPU utilization. One way to lower the

CPU utilization of the front nodes under heavy load conditions is to wake up more front-end

nodes in the cluster. Fig. 3.4(a) illustrates that the disk utilization of the back-end database

servers is very high (e.g., 45%) when the arrival rate is anywhere between 10 No./Sec. and

50 No./Sec. The high disk utilization under a low arrival rate is attributed to the thermal

manager that places a number of database servers into the sleep mode to conserve the energy,

which in turn pushes up the resource utilization of the limited number of active servers. After

an increasing number of servers are waked up, the servers' disk utilization stays at the low

level of 5% when the arrival rate is in the range between 50 to 200 No./Sec. When the

request arrival rate is as high as 200 to 270 No./Sec., the disk utilization of the database

servers goes up to 22%. This is because after all the servers are in the active mode, the disk

utilization of the database servers proportionally increases with the increasing arrival rate.

Fig. 3.4(b) shows the thermal behaviors of front-end and back-end nodes in the cluster

when the arrival rate increases from 5 to 270 No./Sec. in ThermoBench. We observe that

disk temperature is insensitive to the arrival rate, because in most cases the disk utilization

in the back-end servers is very low (see also Fig. 3.4(a)). When the arrival rate is a small

value (e.g., 50 No./Sec.), the CPUs in both front-end and back-end nodes share similar

thermal behaviors. In contrast, the CPU temperature of the front-end nodes becomes much

higher than that of the back-end nodes due to front-end nodes' high CPU utilization. This

result suggests that one should pay particular attention to reducing the temperatures of the

front-end nodes under heavy load conditions.
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Figure 3.5: Resource Utilization and Thermal Pro�ling of Customer-Registration Requests.

Thermal Pro�ling of Customer-Registration Requests

In this group of experiments, we focus on applying ThermoBench to investigate the

thermal behaviors of Customer-Registration requests. This type of request allows users to

submit registration information to register for website visits.

Each Customer-Registration request issued to a front-end web server seeks to access a

homepage. In ThermoBench, we maintain a customer registration webpage, where a cus-

tomer may login with an existing account or register with the user's birth date, name, address,

phone number, email address, username, and passowrd. This registration webpage also of-

fers search and back to home options. To respond customer register requests, ThermoBench

records customer information to database servers in the back-end nodes.

Fig. 3.5 illustrates the resource utilization and thermal pro�les of the front-end and back-

end nodes processing customer register requests in the tested cluster. We set the arrival rate

from 2 No./Sec. to 28 No./Sec.

We observe from Fig. 3.5(a) that the CPU utilization of both the front-end and back-end

nodes are insensitive to the arrival rate. For example, when the arrival rate increases from 5

to 25 No./Sec., the CPU utilization only varies in a range between 2% and 12%. In contrast,

the arrival rate has a signi�cant impact on the disk utilization of the back-end nodes. For
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(b) Thermal Pro�ling

Figure 3.6: Resource Utilization and Thermal Pro�ling of Buy-Con�rm Requests.

instance, when the arrival rate is 20 No./Sec., the back-end nodes' disk utilization is at a high

level of 68-84%. These results from ThermoBench indicate that the customer registration

requests form disk-intensive workload scenarios.

Fig. 3.5(b) shows the cluster's thermal pro�les in terms of front-end and back-end nodes

when the arrival rate increases from 2 to 28 No./Sec. The experimental results reveal that

CPU temperatures of the front-end and back-end nodes increase when the arrival rate goes

up. Interestingly, the arrival rate has a marginal impact on the disk temperatures of the back-

end nodes. The results suggest that under workload conditions where Customer-Registration

requests are a dominating factor, thermal management should be focused on CPU temper-

atures of clusters.

Thermal Pro�ling of Buy-Con�rm Requests

Now we are in a position to study the thermal behaviours of Buy-Con�rm requests. A

Buy-Con�rm request contains order information entered from the Buy-Con�rm webpage,

which shows what items a customer bought, total price, and an order number. This Buy-

Con�rm webpage provides the search and back-to-homepage options.
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(a) Comparison of U/Th (b) Comparison of Te/Th

Figure 3.7: CPU's U/Th, CPU's Te/Th Comparision of Three Types Individual Requests

Fig. 3.6 plots the resource utilization and thermal pro�les of the front-end and back-end

nodes handling Buy-Con�rm requests when the arrival rate is set from 5 to 290 No./Sec. The

experimental results plotted in Fig. 3.6(a) indicate that the CPU utilization of the front-end

nodes is signi�cantly a�ected by the arrival rate. For example, the CPU utilization increases

from 2% to 24% when the arrival rate goes up to 290 No./Sec. from 5 No./Sec. Unlike

the front-end nodes, the back-end nodes' CPU utilization is relatively independent of the

arrival rate. Similarly, the disk utilization of the back-end nodes remains at a low level even

when the arrival rate is increasing to as high as 290 No./Sec. These �ndings o�ered by

ThermoBench imply that the Buy-Con�rm requests are likely to make the CPU resources

in front-end nodes busy.

Fig. 3.6(b) illustrates the cluster's thermal pro�les when the arrival rate increases from

5 to 290 No./Sec. The experimental results show that the front-end nodes' CPU tempera-

tures are noticeably a�ected by the arrival rate. In contrast, the arrival rate has very little

impact on the back-end nodes' CPU and disk temperatures. We conclude from this group

of experiments that when it comes to Buy-Con�rm requests, one should pay attention to

reducing CPU temperatures of front-end nodes in a cluster.
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Individual Transactional Requests Thermal Pro�ling Analysis

Comparing the thermal pro�les of the three request types, we observe that both the

Home request and Buy-Con�rm request have bigger thermal impacts to the front-end server

than the Customer-Registration request. From the Te/Th perspective, the thermal con-

tributions on CPU of these three types of transactional requests are 0.02, 0.06, and 0.014

with one request per second in the front end. We conclude that from the Te/Th metric

perspective (see Fig. 3.7(b)), each Customer-Registration transactional request makes more

contribution to CPU temperature increase than the other two requests no matter on front-

end servers or back-end servers; in the back end, the Buy-Con�rm requests have the least

impact to CPU temperature among the three transactional requests. Fig. 3.7(a) illustrates

that the CPU U/Th values of the Home, Customer-Registration, Buy-Con�rm requests are

0.16, 0.2, 0.1 in the front-end server; the three requestsâ�� U/Th values in the back-end

servers are 0.04, 0.2, 0.008 respectively. Home and Buy-Con�rm requests more CPU load

on the front-end servers than the back-end servers. The experimental results obtained from

ThermoBench indicate that it is thermal friendly to dispatch these three types of requests

to front-end servers that make little thermal impact to data centers. On the other hand,

only the Customer-Registration requests make high disk load in the back-end servers (see

Fig. 3.5(a)); whereas the other two requests have little thermal impact on disks in the back-

end servers. We believe that grouping Customer-Registration with the other two types of

requests can optimize disk usage while achieving thermal balance.

3.3.5 Thermal pro�ling of Three Type of Workload Mix

Thermal Pro�ling of the Web Browsing Workload

In this group of experiments, we use ThermoBench to investigate the thermal pro�les

of the cluster in mixed workload scenarios. The Web browsing load in ThermoBench aims

to simulate a website access tra�c where the majority (i.e., 95%) of online customers are
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(b) Thermal Characteristics

Figure 3.8: Resource Utilization and Thermal Characteristics of the Browsing Mixed Work-
load. FE: Front-End Nodes, BE: Back-End Nodes.

browsing the website. This type of mixed workload is a stress test on front-end nodes of a

cluster.

Fig. 3.8 shows the resource utilization and thermal characteristics of the test cluster

under the browsing mixed workload. We observe from Fig. 3.8(a) that the arrival rate has

more noticeable impacts on the front-end nodes' CPU utilization than the back-end nodes'

CPU and disk utilization. This result is expected because the browsing mixed workload

imposes a stress test on the front-end nodes rather than the back-end ones. Consequently,

Fig. 3.8(b) reveals that the temperatures of CPUs in the front-end nodes noticeably increase

with the increasing value of the arrival rate. Fig. 3.8(b) also shows that the disk temperatures

of the back-end nodes change very little with the increasing arrival rate; the CPU utilization

of the back-end nodes rises from 25� to 30.2� when the arrival rate increases from 10 to

135 No./Sec. The results plotted in Fig. 3.8(b) suggest that the thermal management should

be focused on CPU resources of clusters running the browsing workload.
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Figure 3.9: Resource Utilization and Thermal Characteristics of the Shopping Mixed Work-
load. FE: Front-End Nodes, BE: Back-End Nodes.

Thermal Pro�ling of the Shopping Workload

Now we run ThermoBench to simulate the shopping workload, where 80% of web re-

quests are browsing and 20% of web requests are ordering items. The resource utilization

and CPU/disk temperatures in the cluster are collected by the ThermoBench tool when the

request arrival rate is set from 5 to 250 No./Sec.

The resource utilization values plotted in Fig. 3.9(a) are very close to those shown in

Fig. 3.8(a), except that disk load in Fig. 3.9(a) is heavier than that in Fig. 3.8(a). More inter-

estingly, the heavy disk load imposed by the shopping workload does not cause any noticeable

increases in disk temperatures (see Fig. 3.9(b)). The temperature trends of Fig. 3.9(b) are

similar to those of Fig. 3.8(b). Again, the results shown in Fig. 3.9(b) imply that the clus-

ter's CPU resources should be the focus of the thermal management under the shopping

workload.

Thermal Pro�ling of the Ordering Workload

In this set of experiments, ThermoBench simulates the ordering workload, where 50%

of the requests are browsing the webpages and 20% of the requests are ordering items from

37



0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

arrival rate (#/s)

U
tl
iz

a
ti
o

n
 (

%
)

 

 

FE CPU Utilization

BE CPU Utilization

BE Disk Utilization

(a) Resource Utilization

0 20 40 60 80 100 120 140 160 180 200
24

26

28

30

32

34

36

38

arrival rate (#/s)

T
e

m
p

e
ra

tu
re

 (°
 C

)

 

 

FE CPU Temp

BE CPU Temp

BE Disk Temp

(b) Thermal Characteristics

Figure 3.10: Resource Utilization and Thermal Characteristics of the Ordering Mixed Work-
load. FE: Front-End Nodes, BE: Back-End Nodes.

the website managed by the cluster. ThermoBench measures the resource utilization and

CPU/disk temperatures when the arrival rate is con�gured in a range between 5 to 190

No./Sec.

Unlike Figs. 3.8(a) and 3.9(a), Fig. 3.10(a) clearly indicates that the disk load of the

back-end nodes is heavy when the arrival rate is larger than 100 No./Sec. For example, when

the arrival rate equals to 120 No./Sec., the average disk utilization is 90%. Consequently,

Fig. 3.10(b) shows that when the arrival rate becomes higher than 60 No./Sec., the average

disk temperatures of the back-end nodes jump from 30� to 31�. We conclude from Fig. 3.10

that when it comes to the ordering workload, cooling cost can be reduced by minimizing disk

load in back-end nodes in addition to keeping down CPU load in both front-end and back-end

nodes.
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Chapter 4

TERN: A Self-Adjusting Thermal Model for Dynamic Resource Provisioning in Data

Centers

In this chapter, we propose a self-adjusting model called TERN to predict thermal

behaviors of hardware resources for client sessions. Our TERN contains two major com-

ponents: (1) a resource utilization model being responsible for estimating hardware usage

based on the number of running client transactions, and (2) a thermal model that discov-

ers correlation between resource utilization and their temperatures. TERN is conducive to

predicting thermal trends of diverse workload conditions with a changing transaction mix.

We apply the TPC-W benchmark to characterize the resource demands of each type of

transactions. Then, we conduct a thermal pro�ling study of the benchmark with various

transaction mixes. TERN judiciously adjusts the models to maintain prediction accuracy

for dynamically changing request patterns. Experimental results show that TERN provides

a simple yet powerful solution for resource provisioning in thermal-aware data centers where

exist rapidly changing workload conditions.

The rest of this chapter is organized as follows. Experimental testbed is described in

Section 4.1. In Section 4.2, we delineate the design of TERN in a three-tier architecture.

Then, we discuss the development details of TERN in Section 4.3. Section 4.4 shows how

to make TERN adjust modeling parameters to minimize prediction errors. The models

integrated in TERN are validated with the three workload mixes in Section 4.5.

4.1 Experimental Setup

In this section, we �rst outline our three-tier testbed; then, we discuss the con�guration

parameters of the testbed as well as the TPC-W benchmark.
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Figure 4.1: In the three-tier architecture, the presentation tier allows users to access web
pages; the application tier is a logic tier o�ering services; and the data tier provides data
management.

Hardware

Computer HP Proliant ML110 G6
CPU Intel(R) Celeron(R) 450@2.2GHz
Memory 2 GB
Network 1 GigaBit Ethernet network card
Disk WD-500GB Sata disk( [2])

Software

Operating System Ubuntu 13.10 Linux Kernel 3.11.0-26
Web Server Jboss 4.0.2
Database MySQL 5.1.72

Table 4.1: Hardware and software con�gurations of the testbed

The three-tier application architecture shown in Fig. 4.1 is widely adopted in the in-

dustry for the implementation of scalable client-server applications. Such an architecture

supports multiple users and can be scaled up under di�erent settings. The presentation tier

(a.k.a., tier 1 or client end) is the topmost level of applications, from which users directly

access web pages. The application tier (a.k.a., tier 2 or front-end web server) is a logic tier,

which is responsible for performing processes of a service. The data tier (a.k.a., tier 3 or

back-end database server) is used to house and manage data. We built a three-tier testbed,

the hardware and software con�guration of which are summarized in Table 5.1.

TPC Benchmark W or TPC-W is a web server and database performance benchmark.

TPC-W emulates e-commerce transactions where users browse and place orders on a book-

store web site [3][49]. In the TPC-W benchmark, there are 14 types of transaction requests
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Tables Fields Default Size Modi�ed Size

I_TITLE 60 1200
ITEM I_PUBLISHER 60 2000

I_DESC 500 5500

A_FNAME 20 200
AUTHOUR A_LNAME 20 200

A_MNANE 20 200

C_UNAME 20 400
CUSTOMER C_UPASSWD 20 400

C_LNAME 20 400

ADDR_STREET1 40 400
ADDRESS ADDR_STREET2 40 400

ADDR_CITY 30 300

COUNTRY � � �

ORDERS � � �

ORDER_LINE � � �

CC_XACTS � � �

Table 4.2: Orignal and modi�ed data tables. We manipulate the data tables to study
the impacts of memory and disk activities on the thermal and performance impacts of the
testbed.

(see table 3.1) and 8 data tables (see table 4.2). These requests are categorized into two

camps, namely, (1) WIPSb - stress tests for web servers and (2) WIPSo - stress tests for

database servers. The WIPSb workload is composed of a few database operations and a

majority of web page browsing operations. On the other hand, a signi�cant portion of

operations in the WIPSo workload are database operations. TPC-W relies on a set of prob-

abilities to simulate the changing behaviors of users. Using the weight of each activity type,

TPC-W de�nes three web workload mixes including web Browsing, web Shopping, and web

Ordering.

Table 3.1 outlines the detailed composition of each workload mix. For each experiment

representing a workload mix, we run three hours, in which the �rst 15 minutes and the
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last 15 minutes are the warm-up and cool-down phases. The measures collected during the

warm-up and cool-down phases are omitted in our evaluation.

Given the eight data tables, we modi�ed the �eld size of table ITEM, AUTHOR, AD-

DRESS and CUSTOMER in order to study the impacts of memory and disk activities on the

thermal and performance impacts of the testbed. Table 4.2 summarizes the characteristics

of the modi�ed datasets.

4.2 The Design of TERN

We start addressing the design issues by delineating the three-tier architecture, which

supports multiple users in e-commerce applications. The three-tier TERN makes it possible

to scale up the testbed without wiping out existing data. We also discuss the resource and

thermal models used in TERN.

4.2.1 The TERN Framework

The TERN framework (see �g. 4.2) seamlessly integrates three tiers (i.e., the user-end,

front-end and back-end tiers) of servers to resemble the behaviors of real-world client-server

applications. The three-tier architecture o�ers ample opportunities to scale up systems,

because it is �exible to deploy multiple nodes into the three tiers and to connect servers

residing in di�erent tiers.

In the design of TERN, we deploy a pre-end layer sitting between the user-end and

front-end tiers. The pre-end layer incorporates the resource and thermal models (see Sec-

tion 4.2.2) o�ering thermal and performance prediction services in the TERN framework.

The important meta-data of each workload scenario managed in the resource and thermal

models of the pre-end layer includes arrival rate, transaction types (i.e., type-combination

percentage), and requested computing resources. One of the most salient features of the

pre-end layer is the dynamic control of workload conditions. This feature is achieved by the
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Figure 4.2: The TERN Framework Integrates the User-end, Front-end and Back-end Tiers to
Resembling the Behaviors of Client-Server Applications. A Pre-end Layer is Connecting the
User-end and Front-end Tiers. The Pre-end Layer Incorporates the Resource and Thermal
Models (see Section 4.2.2) O�ering Thermal and Performance Prediction Services.

virtue of a request generator resemble user behaviors by creating a list of requests according

to the workload meta-data information.

We adopt the three-tier framework in TERN, because software components of a wide

range of client-server applications running in data centers are partitioned into the front-end

and back-end portions to simplify system development and maintenance. The user-end tier

contains software modules manipulated by users, whereas the front-end and back-end tiers

are comprised of data processing modules running on servers in data centers.

The user-end tier in TERN is mainly responsible for emulating the behaviours of online

users, who are sending requests in client-server applications running on clusters in a data

center. Before user requests are forwarded to the front-end web servers in TERN, these

requests are processed by the thermal and resource modelling modules residing in the pre-

end layer. The goal of the pre-end layer is to manage access patterns like requests arrival

rate and request types. In addition, the pre-end layer predicts the amount of resources for
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the coming requests and the thermal behaviours of the testbed. The prediction information

regarding resources and thermal pro�les will provide guidelines for request dispatchers to

manage workload among servers in the back-end tier in a thermally-e�cient way.

The front-end tier of TERN facilitates a user-friendly interface for the user-end tier.

More importantly, the front-end tier maintains links to the databases managed by servers

in the back-end tier. The servers in the back-end tier are in charge of data processing as

well as the database management. All the servers are independently responding requests in

parallel to maximize system throughput.

Each server or computing node in the front-end and back-end tiers is equipped with

a resource manager and a thermal manager, which are responsible for keeping track of

available computing resources (e.g., processors and disks) and thermal pro�les (e.g., CPU

and disk temperatures). The resource and thermal information are transmitted to a request

dispatcher, which manages system workload in the back-end tier by assigning requests to

the back-end servers. It is worth mentioning that the resource managers may place a set of

under utilized servers into the low-power mode to achieve energy savings.

We implement the front-end and back-end tiers in TERN using an o�-the-shelf com-

modity cluster. It is noteworthy that the number of nodes residing in the front-end tier is

much smaller than that in the back-end tier. We incorporate in TERN a load balancing

module in the front-end and back-end tiers, respectively. The load balancer in the front-end

tier evenly distributes requests submitted to the TERN system to all available front-end

nodes; the load balancer in the back-end tier aims at balancing data processing workload

among all the active servers.

All requests issued by clients in the user-end tier are handled by a small cluster of front-

end nodes, which make use of meta-data information coupled with request information to

assign the requests to the most appropriate servers in the back-end tier for further processing.
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Figure 4.3: The Resource and Thermal Models Make Use of Access Patterns of A Web
Service to O�er An Approximation of Resource Demands and Thermal Pro�les of Various
Transaction Types.

4.2.2 Resource and Thermal Models

Given access patterns of a web service (i.e., request metadata information), the resource

and thermal models residing in the pre-end layer are applied to o�er an approximation of

resource demands and thermal pro�les of various transaction types.

Fig. 4.3 illustrates the correlation between the resource model and the thermal model.

More speci�cally, the resource model relies on access patterns to estimate CPU and disk

resource demands for incoming web requests issued to the front-end and back-end servers.

Access patterns of any transaction mix are characterized by two factors: request arrival rate

λ and the transaction types. Intuitively, resource demands are proportional to arrival rates;

a high arrival rate leads to heavily utilized CPU and disk resources. Each transaction type

exhibits unique characteristics in terms of resource demands for web and database servers

(see also Section 4.3.1). We build a resource usage pro�le for each transaction type. After
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individually pro�ling all the candidate transaction types, we construct a resource model by

composing the resource pro�les of modi�ed transaction mixes.

With the knowledge of CPU and disk demands o�ered by the aforementioned resource

model, the thermal model yields an approximation of CPU and disk temperatures. Com-

bining the resource model and the thermal model, one can directly derive thermal trends

from access patterns. We seamlessly integrate the resource model and the thermal model

in a way that we can easily investigate the prediction accuracy of each model. Our prelim-

inary �ndings show that prediction errors introduced by the resource model can be further

magni�ed in the thermal model. In this study, we address this challenge by making TERN

adjust model parameters to mitigate prediction errors under dynamically changing workload

conditions.

The two models outlined in Fig. 4.3 have the following three strengths. First, the

resource model characterizes CPU and disk usages from the arrival rate of each transaction

type. Second, the thermal model can speculate the temperature trends of front-end and

back-end servers. Third, the models can be integrated to o�er thermal pro�les of servers in

a data center.

4.3 Modelling

4.3.1 Transaction Resource Pro�ling

We conduct experiments to characterize resource usages as a function of the arrival rate

of a transaction type. Resource usages demonstrates resources demands of a transaction mix

in front-end and back-end servers.

Table 4.3 reveals that all the types of transactions have CPU activities on both the

front-end and back-end servers except the Buy Con�rm transaction type, which exhibits no

CPU activity on the back-end server. In addition, the Buy Con�rm transaction issues no

request to disks in the front-end and back-end servers. Among the evaluated transaction

types, only the Customer Reg. and Buy Request transaction types impose disk-intensive
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Request FE CPU FE IO BE CPU BE IO

Home 3 7 3 X
New Product 3 7 3 X
Best Seller 3 7 3 X
Product Detail 3 7 3 X
Search Request 3 7 3 X
Search Results 3 7 3 X
Shopping Cart 3 7 3 X

Customer Reg. 3 7 3 3

Buy Request 3 7 3 3

Buy Con�rm 3 7 7 7

Table 4.3: Resource Demands of Transaction Types.

workload to the back-end servers. Regardless of arrival rates, no transaction type issues disk

requests to the front-end servers.

We observe from Figs. 4.4(a) and 4.4(b) that the front-end nodes are more sensitive

to the arrival rate than the back-end nodes from the perspective of CPU utilization. For

example, the Buy Con�rm requests impose no CPU activity on the back-end nodes regardless

of the arrival rate. When the arrival rate of Home requests increases from 10 to 320 No./Sec,

the CPU utilization goes up from 5% to 55% on the front-end node, whereas the CPU

utilization of the back-end counterparts only changes from 5% to 12%. Fig. 4.4(c) reveals

that the CPU utilization of the front-end and back-end nodes all approximately increase by

8% when the arrival rate reaches 30 No./Sec; in contrast, the disk utilization climbs up to

95% in this case. We conclude that disks in the back-end nodes are a performance bottleneck

that prevents CPUs from being busy on the front-end and back-end nodes even under heavy

load (see, for example, Fig. 4.4(c) when the arrival rate is 33 No./Sec, Figs. 4.4(a) and �g.

4.4(b) when the arrival rate is 230 No./Sec and 320 No./Sec, receptively).

Interestingly, Fig. 4.4(b) shows that the disk utilization of the back-end nodes is initially

as high as 15%, then it drops to 5% when the arrival rate increased to 50 No./Sec. After

that point, the disk utilization gradually and slightly decreases even when arrival rate keeps

going up to 320 No./Sec. This intriguing trend can be attributed to contents and operations
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included in Home requests. A Home request is issued to retrieve a homepage, which is the

�rst webpage of the online bookstore in the TPC-W benchmark. The homepage contains

information of promotional books that triggers database query operations. At an early stage,

the disk utilization is high because of retrieving all promotional book information from disks;

gradually, the book information loaded from the disks are cached in main memory, thereby

making a substantial drop in disk utilization. In order to keep our model simple yet practical,

we ignore the impact of this type of transactions on the back-end nodes' disks.

Each type of transactions shows various resource-demanding characteristics on front-end

and back-end nodes; therefore, we individually construct a model for each transaction type.

By investigating the relation of resource utilization and arrival rate of the three representative

transactions (see Fig. 4.4), we observe that such a relationship follows linear or quadratic

polynomial functions.
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Figure 4.4: Request Arrival Rate and Resource Utilization in the Front-end and Back-end
Nodes

4.3.2 Resource Usage Pro�lings

Recall that the linear and quadratic polynomial functions are two candidates to model

resource demanding characteristics (see also the previous section). Before incorporating an

appropriate function into our models, let us brie�y introduce a statistic concept Residual

sum of squares (RSS) [55].
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RSS - the sum of squares of residuals - is a measure of discrepancy between real data

and an estimation model. A small RSS value indicates that a model can well �t real data.

In (4.1), U r
i represents measured CPU or disk utilization when arrival rate is i, Um

i is CPU

or disk utilization estimated at arrival rate i. RSS, which describes the sum of discrepancy

square, is not a straightforward way of showing each modeled point's deviation from real

measured data. To address this problem, we derive the square root of average of RSS

(sraRSS)
√
RSSutilization

average (see (4.2)) to quantify the average discrepancy of our model to

each measured data at a speci�c arrival rate.

RSS =
n∑

i=1

(Um
i −U r

i )
2 (4.1)

sraRSS =
√
RSSutilization

average =

√∑n
i=1(U

m
i −U r

i )
2

n
(4.2)

RsraRSS =
sraRSS

(
∑n

i=1 U
r
i )/n

(4.3)

We apply the curve �tting method to obtain the linear and quadratic polynomial func-

tion models of all the ten types of transactions. Then, we calculate the sraRSS and RsraRSS

of these models in terms of front-end CPU utilization. The sraRSS values listed in the

second column of Table 4.4 show that both the linear and quadratic polynomial functions

well �t front-end CPU utilization, the discrepancy of which oscillates only within 3%. The

quadratic polynomial models are slightly better than the linear ones; the maximum di�er-

ence between the two types of models is 0.203% (see New Product). For Home requests,

the di�erence of the linear model and the quadratic polynomial model is as little as 0.074%,

which accounts for about 0.264% to the average of its front-end CPU utilization (see Fig.

4.4(b)).

We observe from the third column of Table 4.4 that RsraRSS values of the seven trans-

action requests are below 15% percent except for the Search Result, Customer Reg., and Buy
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requests. This is because the CPU utilization of these transaction requests in the front-end

nodes are relatively low. For example, Fig. 4.4(c) shows that the front-end node's CPU uti-

lization is under 8%. Comparing the RsraRSS values of the Home and Buy Con�rm requests

in Table 4.4 and front-end CPU utilization in Fig. 4.4, we discover that high CPU utilization

leads to improved model accuracy.

Unfortunately, the above trends are not applicable for disks. Back-end CPU utilization

in the case of Customer Reg. and Buy Request transactions climbs as high as 100%; the

RsraRSS values for both models are larger than 20% (see Table 4.6).

After comparing absolute and relative discrepancies of the linear and quadratic polyno-

mial models for all the ten transaction requests, we decide to apply the linear polynomial

functions as our resource usage models, because in this approach estimated CPU and disk

utilizations are extremely close to the quadratic functions. In addition, the linear models are

less expensive in computing time than the quadratic models. A modern data center normally

has to process thousands of or even millions of requests per second; a computing resource

usage model has to predict resource usage for a large number of requests in a timely manner.

Low computation overhead of usage models play becomes indispensable for real-time and

dynamic resource provisioning.

Our linear models are expressed as (4.4), where λri is arrival rate of transaction request

ri, U
ri
cpu/io is CPU or disk utilization of request ri when arrival rate is λri . ari and bri are

two coe�cients of corresponding transaction request's linear polynomial model. We use the

Matlab curve �tting tool to obtain these important coe�cients listed in Table 4.5.

U ri
cpu/io = ari×λri +bri (4.4)

4.3.3 Thermal Pro�ling

In this section, we �rst investigate CPU and disk thermal behaviors in the two groups

of experiments. Then, we uncover the relation of CPU/disk temperatures and inlet/outlet
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sraRSS RsraRSS

Linear Quadratic Linear Quadratic

Home 2.287 2.213 0.084 0.081

New Product 3.203 3.0 0.121 0.113

Best Seller 3.080 2.958 0.126 0.121

Product Detail 2.121 1.969 0.147 0.136

Search Request 1.967 1.969 0.087 0.087

Search Result 1.896 1.890 0.203 0.202

Shopping Cart 2.372 2.322 0.106 0.103

Customer Register 1.977 1.979 0.363 0.363

Buy Request 1.945 1.944 0.263 0.262

Buy Con�rm 1.481 1.406 0.135 0.128

Table 4.4: sraRSS and RsraRSS of the CPU Models

FE CPU BE CPU BE Disk
a b a b a b

Home 0.170 1,793 0.044 1.814 � �

New Product 0.163 3.56 0.057 1.977 � �

Best Seller 0.119 3.476 0.049 2.036 � �

Product Detail 0.038 3.935 0.019 2.225 � �

Search Request 0.096 3.469 0.049 2.212 � �

Search Result 0.156 3.025 0.098 2.864 � �

Shopping Cart 0.161 2.234 0.044 1.451 � �

Customer Register 0.124 3.529 0.184 3.31 3.199 1.609

Buy Request 0.109 2.978 0.056 3.943 0.976 10.78

Buy Con�rm 0.084 1.267 � � � �

Table 4.5: Coe�cient Values of the Linear Polynomial Models.
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sraRSS RsraRSS

Linear Quadratic Linear Quadratic

Customer Register 10.006 9.895 0.208 0.206

Buy Request 12.884 12.728 0.286 0.283

Table 4.6: sraRSS and RsraRSS of the Disk Models

temperature gap of a node. In the �rst group of experiments, we run on the server nodes a

multi-thread matrix process, which exhibits CPU-intensive workload. We manipulate CPU

utilization of the nodes by tuning request idle time periods.
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Figure 4.5: CPU and Disk Thermal Pro�ling

Fig. 4.5(a) plots the average CPU temperature as a function of CPU utilization. The red

stars represent real measured CPU temperatures, and the green and blue curves are the linear

and quadratic models for CPU temperature estimations. The average CPU temperature is 27

�when CPU utilizations are 3%. This temperature equals to the CPU internal temperature.

Fig. 4.5(a) shows that the CPU temperature goes up from 27 � to 34 � when the CPU

utilization increases from 3% to 55%. The linear model underestimates the CPU temperature

with CPU utilization ranging from 15% to 45%. In contrast, the quadratic model has better

�tting performance than the linear model during this CPU utilization range.
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The sraRSS of the liner and quadratic models are 0.66 and 0.61 �, respectively. The

discrepancy di�erence of the two models is 0.05�, meaning that the quadratic model is 7.5%

more accurate than the linear model. Nevertheless, for all the ten types of transactions,

the quadratic model is only on average 3% more accurate than the linear model. As a

consequence, while making a tradeo� between accuracy and computing overhead, we choose

the linear model for estimating transaction request resource usage and the quadratic model

for predicting CPU temperatures.

The CPU thermal model is expressed as (4.5), where Tri is CPU temperature when

CPU Utilization is U ri
cpu/io, and a, b, c are three coe�cients.

Tri = a×U ri
cpu/io

2+b×U ri
cpu/io+c (4.5)

where a=-0.001541, b=0.2076, c=27.86.

Now we conduct a thermal pro�ling test on disks in the computing nodes. In this group

of experiments, we create disk-intensive workload using IOzone - a �lesystem benchmark. By

gradually stressing disks, we measure disk temperatures when disk utilization increases. Fig.

4.5(b) shows the impact of disk utilization on the average disk temperature in the cluster

of nodes. We observe that the disks are less thermal sensitive than the CPUs in the nodes.

Besides, the relationship between disk temperatures and utilization does not match neither

the linear nor quadratic models. However, the piecewise function (see Equation (4.6)) can

be used to depict the relation.

Tri =


28 � Uio ∈ (0, 15)

29 � Uio ∈ [15, 25]

30 � Uio ∈ (25, 100)

(4.6)

In the third set of experiments, we conduct stressing test on CPUs using CPU-intensive

workload. The inlet and outlet temperatures are collected by deploying two sensors at the
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Figure 4.6: CPU and Disk Inlet/Outlet Temperature Di�erence

node's inlet and outlet positions. Fig. 4.6(a) shows that inlet/outlet temperature di�erence

behaves as a function of CPU temperature. The inlet/outlet temperature di�erence increases

by 2.5 � from 3 to 5.5 � when the CPU temperature goes up from 28 to 39 �. Every 4 �

temperature increase in CPU contributes approximately 1� increase in outlet temperatures.

However, when CPU's temperature climbs up from 33 to 37 �, the inlet/outlet temperature

di�erence does not increase with an anticipated range from 4.25 to 5.25 �. The linear and

quadratic models overestimate by 0.25 � during this temperature range.

Fig. 4.7 shows the Inlet/Outlet temperature linear model (see equation (4.7))'s sraRSS

is around 0.15 � and RsraRSS is about 1.25%. However, the values of that are 0.33 � and

8% when temperature increases from 37 to 39 � which is 2 fold and 5 fold of that value

when temperature increases from 28 to 39 �. The model estimates well from 28 to 33 �

with least sraRSS about 0.12 �.

T inlet/outlet
ri

= a×Tcpu+b (4.7)

where a=0.1809, b=-1.883
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Fig. 4.6(b) plots the thermal pro�ling results of the fourth experiment revealing that

the disk temperature changes have no signi�cant impact on inlet/outlet temperature dif-

ference. For example, at time 100 Sec., when disk temperature jumps up 1 degree to 30

�, inlet/outlet temperature di�erence does not change at all. However, at time 600 Sec.,

inlet/outlet temperature di�erence does drop by 0.2 �, whereas disk temperature is still

30 �. Interestingly, 1 degree decreasing of disk temperature directly causes 0.2 � drop

in inlet/outlet temperature di�erence at time 3200 Sec. Comparing with Fig. 4.6(a), we

observe that 1 degree temperature increase in CPU or disk changes inlet/outlet temperature

di�erence by anywhere between 0.2 to 0.25 �. Because disks have a narrow temperature

variant range, disks have little impact on inlet/outlet temperature di�erence.

Figure 4.7: Inlet/Outlet Temperature Model sraRSS and RsraRSS

4.3.4 Integrated Models

In the previous sections, we have modeled relations between each transaction type's

arrival rate and CPU and disk utilizations (see (4.4)) for CPU utilization, see (4.5)) for

thermal modeling, see (4.7) for inlet/outlet temperature di�erence).
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Integrating (4.6), (4.5), and (4.4), we build a thermal model in form of a function of the

requests arrival rate as

Tri = f (λri) (4.8)

When putting (4.4),(4.6), (4.5),and (4.7) together, we obtain an inlet/outlet temperature

di�erence model as a function of arrival rate below.

T inlet/outlet
ri

= f (λri) (4.9)

In Section 4.1, we describe three types of workload mixes, each of which has a spe-

ci�c percentage combination of individual transaction requests. Therefore, CPU and disk

utilization model of a workload mix can be derived as

Umix =
∑
ri∈R

Pri×Uri (4.10)

where Pri is transaction request ri's combination percentage in the workload mix and Uri is

the transaction request's resource usage model.

Similarly, we construct the thermal model of a workload mix as (4.11) by incorporating

the CPU and disk thermal models of multiple transaction types.

Tmix =
∑
ri∈R

Pri×Tri (4.11)

T adjusted
ri

= Tri±σAD (4.12)
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4.4 A Self-Adjustment Strategy

4.4.1 Deriving Algorithm

The CPU temperature model and the inlet/outlet temperature di�erence model pro-

posed in the previous section do not �t well to real data when CPU temperature is in the

range between 33 � to 37 �. In this section, we develop a self-adjustment strategy (see Al-

gorithm 1) to automatically adjust the models according to the models' absolute and relative

discrepancies.

In the self-adjustment strategy, we partition a model's CPU/disk temperature range

into an array of small consecutive ranges. We set initial absolute and relative discrepancies

to 0, and set the initial model to using the original model (see Lines 1-6). Next, in an

iterative process, if previous CPU/disk temperature range has a RsraRSS exceeding the spec-

i�ed threshold, then the model will self-adjust by increasing or decreasing previous range's

sraRSS depending on the model's overestimation or underestimation. If the model is accu-

rate for the current range, there will be no need to adjust the model's parameters. Obviously,

the model applied for the �rst range is the original model where RD0 = 0 < RDthreshold (see

Lines 7-12). In the last step, the algorithm calculates the current range's absolute and rela-

tive discrepancies and determines whether or not the model should adjust itself for the next

range. Then, the algorithm repeatedly processes the next range until all the ranges are pro-

cessed. (see Lines 13-17). The model powered by the self-adjustment strategy is comprised

of multiple models for all the individual ranges.

4.4.2 Evaluation of Self Adjustment

In this section, we apply Algorithm 1 to model (4.7), where N is set to 11 and the range

of CPU temperature is set to 1. For instance, when CPU temperature is 28 �, we apply the

original model to estimate thermal behavior as well as absolute and relative discrepancies.
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Input: 〈M,Xmin, Xmax, AD,RDthreshold, N〉
M : original model
Xmin: minimum X value of Model M
Xmax: maximum X value of Model M

AD: Model M's overall sraRSS RDthreshold: prede�ned RsraRSS

N : the amount of divided ranges of x axis
Output: Madjusted the adjusted model

1 if N = 1 then

2 Madjusted = M+sign×AD
3 else

4 Xincre ← (Xmax−Xmin)/N
5 sign = 1
6 i = 0
7 ADi = 0
8 RDi = 0
9 Mi = M

10 while Xmin < Xmax do

11 if RDi > RDthreshold then

12 Mi+1 = Mi+sign×ADi

13 else

14 Mi+1 = Mi

15 end

16 i← i+1

17 RDi = RsraRSS
Xmin+Xincre
Xmin

18 sign =
∑Xmin+Xincre

Xmin
(R−M)

19 ADi = sraRSS
Xmin+Xincre
Xmin

20 Xmin = Xmin+Xincre

21 end

22 end

23 return Madjusted = 〈M1,M2, . . . ,MN 〉

Algorithm 1: A Self-Adjustment Strategy

Figure 4.8: The impact of the number of ranges N on self-adjusting algorithm
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Then, these parameters can be adjusted for the next CPU temperature range from 29 to 30

�.

Fig. 4.9(a) shows the sraRSS of the three models (i.e., the original mode, the model with

self-adjustment where the prede�ned RsraRSS threshold is set to 5% and 3%, respectively).

Fig. 4.9(b) shows the corresponding relative discrepancies. Absolute discrepancies plotted in

Fig. 4.9(a) are below 0.15 from 28� to 35� for all the three models. Then, the discrepancies

jump from 0.125 to 0.3 when CPU temperature increases from range (33,34) to range (34,35).

This trend is consistent with that shown in Fig. 4.6(a).

For the self-adjustment strategy where the threshold is set to 5%, the RsraRSS increases

from 0.032 to 0.07 when the range moves from (33,34) to (34,35). In this case, the model

starts adjusting the parameters. As a result, the sraRSS of the model in range (35,36)

decreases from 0.38 to 0.35 (see Fig. 4.9(b)), and the RsraRSS is reduced from 0.085 to

0.078, which is approximately 10% more accurate than the original mode. From range (36,

37) to (37, 38), the 5%-threshold model also reduces sraRSS. However, the 3%-threshold

model begins to adjust itself at range (29,30) in which the sraRSS noticeably increases.

Additionally, its sraRSS is larger than those of the original model and the 5%-threshold

model in ranges (36,37) and (37,38).

Fig. 4.8 illustrates the impact of the number of ranges N in self-adjusting algorithm on

the accuracy of models where the threshold is set to 5%. The sraRSS is about 0.23 � when

set N as 1. The model becomes less accurate with sraRSS climbs from 0.23 to 0.32 when

N increase from 1 to 2. Then sraRSS begins to decrease from 0.25 to 0.17 when enlarge

the number of range N from 3 to 30.

The models with our self-adjustment strategy improve estimate accuracy of the tradi-

tional modeling approach. The new models' accuracy is a�ected by the prede�ned RsraRSS

threshold. Speci�cally, if this threshold is set too high, the model will be degraded to its orig-

inal model. On the other hand, if the threshold is set too low, the self-adjustment strategy
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will be very sensitive to RsraRSS. The self-adjustment strategy coupled with a low threshold

is inadequate for models in which RsraRSS is frequently and dramatically changing.
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Figure 4.9: sraRSS and RsraRSS

4.5 Model Validation

In this section, we validate the accuracy of the resource usage models as well as the

thermal models in TERN. Section 4.5.1 evaluates the resource usage models using three

representative transaction requests (i.e., Home, New Product and Buy Request). Then, we

apply the resource usage models to predict resource utilization in real-world scenarios of

three workload mixes. We discuss in Section 4.5.3 the validation of the thermal models for

various transaction requests in addition to the three workload mixes.

4.5.1 Resource Usage Model Validation

Fig. 4.10 shows that regardless of the three types of transactions, our resource usage

models accurately estimate resource demands of front-end CPUs, back-end CPUs, and back-

end disks. For the Home request, the model slightly overestimates front-end CPU usage

by less than 3% when arrival rate increases from 10 No./Sec. to 130 No./Sec. And, the

overestimation goes up to approximately 5% when arrival rate is in the range between 130
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No./Sec. to 250 No./Sec. On the other hand, the model underestimates front-end CPU

usage by anywhere between 5% to 10% when arrival rate increases from 250 No./Sec. to 300

No./Sec.

We observe from Fig. 4.10 that in the case of Home request, the back-end CPU model

is superior to the front-end CPU model. A similar trend can be found for the resource usage

models in the cases of New Products and Buy Request requests. In the Buy Request case, the

disk resource usage model has a high sraRSS of 13. Nevertheless, Fig. 4.10(c) reveals that

real measured data are evenly distributed among the estimated data except for the cases

where arrival rate is below 30 No./Sec.

Fig. 4.11(a) illustrates the absolute discrepancies of the models in the three transaction

types. For the Home transaction request, the sraRSS of the back-end nodes is more than 2

fold of that of the front-end node. A similar observation can be drawn for the New Product

transaction request. Unlike the models for the Home and New Product requests, the Buy

Request model's sraRSS of back-end nodes is larger than than that of front-end one; this

pattern is not intuitively observed in Fig. 4.10(c).
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Figure 4.10: Accuracy of the resource usage models for front-end CPUs, back-end CPUs,
and back-end disks in the cases of the Home, New Product, and Buy Request transactions.

4.5.2 Workload with Transaction Mixes

Using di�erent transaction mixes, we investigate performance of the model that inte-

grates multiple resource usage models. Fig. 4.12 illustrates that the proposed model (see
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Figure 4.11: Resource Usage Model sraRSS
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Figure 4.12: Workload mix's CPU & Disk Utilization
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Figure 4.13: Individual Transaction Request's CPU Inner Temperature
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Figure 4.14: Individual Transaction Request's CPU Inner Temperature
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Figure 4.15: Individual Transaction Request's CPU Inner Temperature

63



(4.10)) can e�ectively predict CPU utilization of the front-end and back-end nodes under

diverse workloads with a changing transaction mix.

Fig. 4.11(b) shows the absolute discrepancies of our model when it is applied to pro-

vide resource provisioning for the Browsing, Shopping, and Ordering workload mixes. The

CPU-usage discrepancies of the model for all the three workload mixes models are below

5%. The back-end-disk-usage discrepancies in the evaluated workload mixes are higher than

all the CPU-usage discrepancies. For example, the back-end-disk-usage discrepancies are

11%, 12%, and 21% for the Browsing, Shopping, and Ordering workload mixes, respectively.

Interestingly, when back-end disk load becomes heavy, the sraRSS of disk-usage prediction

increases; in contrast, the model's prediction accuracy is improved for front-end CPU usage.

This accuracy trend can be attributed to the fact that increasing back-end disk load makes

an I/O performance bottleneck preventing front-end nodes from handling an increased num-

ber of transaction requests. Our model's prediction accuracy is high (i.e., low sraRSS) when

resource utilization is at a very low level.

To address the model's accuracy problem with respect to disk usage prediction for

the three workload mixes (e.g., the Ordering mixes), we apply the self-adjustment strategy

(see Section 4.4) to improve the model's prediction performance for the Ordering workload.

Figs 4.16(a) and 4.16(b) show the performance of the original model and the model powered

by the self-adjustment strategy. In this group of experiments, we set N to 6 and pre-de�ned

RsraRSS to 10% in the self-adjustment strategy.

Fig. 4.12(c) shows that CPU utilization ranges from 5% to 25% when arrival rate is in a

range between 0 to 20 No./Sec. In this scenario, the absolute and relative discrepancies are

11% (see Fig. 4.16(a)) and 55% (see Fig. 4.16(b)), respectively. When arrival rate reaches

the level of 60%, the sraRSS drops to 9.5%, which represents an accuracy improvement of

13.6%. We observe from Fig. 4.16(b) a similar pattern with respect to the RsraRSS.
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More importantly, the self-adjustment strategy substantially improves the prediction

performance of the original model under heavy workload conditions. For example, the origi-

nal model's discrepancy climbs up to 13.7% when arrival rate increases to the range between

60 and 80 No./Sec. The self-adjustment strategy signi�cantly improves the accuracy of our

original model by 34.3%, making the sraRSS drop down to 9%. When the load reaches a very

high level (e.g., arrival rate is in the range between 80 and 100 No./Sec), the self-adjustment

strategy is capable of improving the model's accuracy by more than 50%. Fig. 4.16(a) re-

veals that the accuracy improvement o�ered by the self-adjustment strategy becomes more

pronounced when arrival rate and disk utilization are high.
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Figure 4.16: Prediction performance measured in terms of sraRSS and RsraRSS. The self-
adjustment strategy improves the model's performance under heavy workload conditions.

4.5.3 Performance of the Thermal Models

Recall that the thermal models proposed in Section 4.3.4 (see also (4.8)) make use of

arrival rate to predict CPU temperatures. In this subsection, we focus on evaluating the
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prediction performance of the thermal models. Figs. 4.13 and 4.15 show comparisons be-

tween predicted CPU temperatures and the measured ones when the arrival rate is gradually

increased.

The experimental results suggest that the thermal models can predict CPU temperatures

of the nodes processing the three types of transactions requests under a wide range of arrival

rates. Fig. 4.15 shows that for the four transaction requests, the models either overestimate or

underestimate CPU temperatures of the front-end and back-end nodes. For example, in the

Home request case, the models overestimate the temperatures by 1.23 � and 1.46� for the

front-end and back-end nodes, respectively. On the other hand, the models underestimate

the CPU temperatures of the front-end and back-end nodes by 0.71 and 0.70 � for the

Product Detail workload, 0.73 and 1.03 � for the Buy Request workload, and 0.65 and 1.3

� for the Search Request workload.

We adjust the models (see (4.12) in Section 4.3.4) to optimize the prediction accuracy

of the thermal models, where parameter N is set to 1 and σAD equals to a corresponding

sraRSS (i.e., an underestimation or overestimation value). Fig. 4.18 illustrates that the

thermal models with adjustment o�er improved prediction accuracy.
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Figure 4.17: Performance of the thermal models for the individual transaction request.

66



0 20 40 60 80 100 120 140
24

25

26

27

28

29

30

31

32

33

Request arrvial rate (#/s)

C
P

U
 &

 D
is

k
 U

ti
liz

a
ti
o
n
 (

%
)

 

 

FE CPU Temp−−Real

BE CPU Temp−−Real

FE CPU Temp−−Model

BE CPU Temp−−Model

(a) Buy Request

0 50 100 150 200 250 300
24

26

28

30

32

34

36

Request arrvial rate (#/s)

C
P

U
 &

 D
is

k
 U

ti
liz

a
ti
o
n
 (

%
)

 

 

FE CPU Temp−−Real

BE CPU Temp−−Real

FE CPU Temp−−Model

BE CPU Temp−−Model

(b) Search Result

Figure 4.18: Performance of the thermal models for the individual transaction request.

4.5.4 Thermal Models for Workload Mixes

Now, we are in a position to evaluate the performance of the thermal models (see (4.11))

in the context of workload mixes. Fig. 4.19 shows the prediction performance of the models

under the three types of workload mixes running on the front-end and back-end nodes. The

thermal model built for the Browsing workload (see Fig. 4.19(a)) slightly underestimates

CPU temperatures of the front-end node when arrival rate increases from 10 No./Sec to 170

No./Sec. Then, the model o�ers good prediction performance when arrival rate climbs up

to 350 No./Sec. A similar performance trend is observed for the models that predict the

thermal behaviors of back-end nodes. The experimental results also show that the models

built for the Shopping and Ordering workload mixes exhibit better performance than the

model for the Browsing workload mix.
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Figure 4.19: Performance of the thermal models for workload mixes.
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Chapter 5

aHDFS: an Erasure-Coded Data Archival System for Hadoop Cluster

In this chapter, we propose an erasure-coded data archival system called aHDFS for

Hadoop clusters, where RS(k+r, k) erasure codes are employed to archive rarely accessed

replicas in the Hadoop distributed �le system or HDFS. We explore two archival strategies

(i.e., parallel data archiving and pipelined data archiving) in aHDFS to speed up the data

archival process in HDFS. Instead of directly shu�ing intermediate output from mappers to

reducers in default MapReduce programming model (a.k.a, DefaultMR), parallel archiving

scheme will, (1) store each mapper's intermediate output Key-Value pairs in a data server;

(2) merge all intermediate Key-Value pairs with the same key into one single Key-Value

pair on data server; (3) shu�e the merged single Key-Value pair to reducers for future

computing to generate �nal parity blocks. Unlike parallel archiving in step (3), pipeline

archiving scheme delivers the merged single Key-Value pair to its subsequent node's data

server instead of shu�ing to reducers. All the nodes repeat the same process until last

node which is responsible for write the �nal Key-Value (a.k.a, parity blocks) to HDFS.

aHDFS leverages the triplication redundancy to boost archiving performance by handling

encoding operations in parallel as well as reducing network tra�c during shu�ing phase .

We implement aHDFS in a real-world Hadoop cluster. Experimental results show that our

aHDFS outperforms default MapReduce programming model (a.k.a, DefaultMR)in terms of

archiving time by upto 4X and network tra�c by upto 10X in a 10-node storage cluster.

The remainder of this chapter is organized as follows. Section 5.1 introduces the back-

ground of this study. The basic idea of our data archival system using the MapReduce
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programming model is discussed in section 5.2. Section 5.3 presents design and implemen-

tation of aHDFS. Then, in section 5.4, we analyse preliminary results from default archival

strategy. Before conclusion, we evaluate aHDFS performance in section 5.5.

5.1 Background

We start this section by introducing Reed-Solomon code or RS, a popular erasure-coding

scheme. Then, we discuss scenarios of adopting RS in the Hadoop distributed �le system

(HDFS). Next, we give a glimpse of RS reconstruction in case of encountering data failures.

Finally, we shed some light on the internal data �ows of the MapReduce framework.

5.1.1 Erasure-Coded Data Storage

When data becomes corrupted in storage systems, erasure-coded data can be recon-

structed by using data stored in a disk array or distributed storage systems. Erasure coding

has two salient features, namely, improving fault-tolerance performance and minimizing the

storage-capacity overhead in date centers. For instance, Huang et al. adopted an erasure-

coded or RS codes to build an erasure-coded storage cluster [33] to improve both data storage

reliability and e�ciency.

RS(k+r, k) encodes source data with RS-generated-coding matrix (see the k+r by k

matrix on the left-hand side of the equation in Fig. 5.1). It is worth mentioning that the

RS-generated-coding matrix contains the following two matrices:

� Identical Matrix. This is a k × k matrix, where all the diagonal elements are set to

1 and the other elements are set to 0 (see, for example, the k by k sub-matrix on the

top portion of the left-hand side of the equation in Fig. 5.1).

� Redundancy Matrix. This is a k × r matrix used to generate parity blocks (see, for

example, the r by k matrix on the bottom part on the left-hand side of the equation

in Fig. 5.1).
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With a simple linear algebra calculation, the parity data blocks (see the bottom part on

the right-hand side of the equation in Fig. 5.1) are derived from the k × r redundancy matrix.

In a data archival scenario, we simply apply the redundancy matrix to obtain calculate r

parity blocks, which can be employed to reconstruct blocks for data failures (see also Section

5.1.2 for detailed discussions). A RS(k+r, r) code scheme can sustain up to r numbers of

concurrent blocks failures.

Figure 5.1: With a simple linear algebra calculation, the parity data blocks (see the bottom
part on the right-hand side of the equation are derived from the k × r redundancy matrix
(see the bottom part on the left-hand side of the equation)

5.1.2 Data Reconstruction with Reed-Solomon Coding

Now we elaborate the idea of data reconstruction using the Reed-Solomon coding.

RS(k+r, k) code can facilitate data recovery from a failed storage systems with up to r

concurrent corrupted data blocks. Fig. 5.2 outlines a data reconstruction process, where RS

coding is deployed to reconstructs source data blocks from surviving blocks and reconstruc-

tion matrix, which are de�ned as follows. We also introduce the de�nition of an inverse

matrix used in the data reconstruction process.
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� Surviving Blocks. This is archived data blocks which are not corrupted (see, for

example,k × 1 matrix on right-most-hand side of the equation in Fig. 5.2).

� Reconstruction Matrix T . This is a k × k matrix which are derived from RS-

generated-coding matrix by getting rid of corresponding rows of corrupted blocks in

Surviving Blocks (see, for example, the k by k matrix at the right middle of the left-

hand side equation in Fig. 5.2).

� Inverse Matrix T−1. This k × k matrix is an inverse matrix of Reconstruction Matrix

T (see for example, the left-most matrix on left-hand side of equation and right-hand

side of equation in Fig. 5.2).

Fig. 5.2 shows that the corrupted source data (see D0, ..., Dk−1 on the left-hand side

of the equation in Fig. 5.2) can be reconstructed by multiplying inverse matrix T−1 with

surviving blocks (see the two items on the right-hand side of the equation in Fig. 5.2).

Figure 5.2: Data reconstruction using the Reed-Solomon coding scheme RS(k+r, k). The
failed source data (seeD0, ..., Dk−1 on the left-hand side of the equation) can be reconstructed
by multiplying inverse matrix T−1 with surviving blocks (see the two items on the right-hand
side of the equation.

5.1.3 MapReduce Programming Model

Now we introduce the work�ow of a MapReduce program which consists of mappers,

shu�ers, and reducers. Fig. 5.3 delineates the data �ows of the map phase (see the module

71



on the left-hand side of shu�e) and the reduce phase (see the module on the right-hand side

of shu�e), which are connected by the shu�e phase.

The MapReduce program starts with blocks fed into prede�ned RecordReader residing

in the mapper to emit Key-Value pairs (see Step 1 in Fig. 5.3). In Step 2, given prede�ned

Key-Value pairs, mappers generate their own Key-Value pairs (a.k.a., record output). Before

written to an output bu�er in main memory, Key-Value pairs are headed with a partition

identi�cation used for the shu�ing purpose. In the case of �x-sized blocks, a large number

of Key-Value pairs created by the mappers trigger a huge amount of data written into the

main memory and disks, as well as shu�ed to reducers. After the data bu�ered into the

output bu�er reach a speci�c percentage (e.e., 80%) of the con�gured size (e.g., the default

size is 100MB), these data will be spilled into a local disk (see Step 7 in Fig. 5.3).

Unlike large blocks that tend to be kept in the disk, small blocks that are placed in

the output bu�er are sorted in accordance with their keys. The sorting time complexity is

O(n logn2 ), which is proportional to the number n of Key-Value pairs. In Step 6, these sorted

records of the small blocks are bu�ered into the local disk. Files that storing Key-Value

pairs are merge to a �nal �le to be shu�ed to reducers (see Step 8 in Fig. 5.3).

Figure 5.3: The MapReduce programming model. The data �ows of the map phase and the
reduce phase, which are connected by the shu�e phase.
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During the shu�ing stage, the size of pre-generated �les in the map phase dominates

both network tra�c and shu�ing time. In order to boost the shu�ing performance, one

may minimize data overhead (i.e., PID and Key) and compress shu�ed data in the map

phase. Increasing the number of reducers also helps in lowering network tra�c occurred in

the shu�ing phase.

As each reducer is responsible for processing multiple groups of Key-Value pairs, the

reducer merges these data in the main memory; the processed data are written to the local

disk after the reducer completes the process. If large data exceed memory capacity, the data

will be written to the disk and be merged on the disk (see Step 11 in Fig. 5.3).

The performance of a MapReduce application largely depends on

� data overhead (i.e., P_ID and Key) incurred by mappers yielding new Key-Value

pairs,

� I/O operations in the map and reduce phases when data size exceed main memory

capacity, and

� network tra�c during the shu�ing phase.

5.2 The Basic Idea of aHDFS

Before presenting the design and implementation of aHDFS (see Section 5.3), we shed

some light on the basic idea of our data archival system using the MapReduce programming

model. We start this section with the discussion on the application of Reed-Solomon coding

to Hadoop distribute �le system or HDFS (see Section 5.2.1). Then, we show the key-value

design in the context of erasure-coded data archival systems (see Section 5.2.2).

5.2.1 Reed-Solomon (RS) coding in HDFS

Although replicated data mechanisms have been widely adopted in cluster storage sys-

tems to achieve data with fault tolerance and high I/O parallelisms, redundant data (e.g.,
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two duplicated data or three) inevitably impose huge capacity overhead to storage systems.

Reed-Solomon (RS) coding has gains its popularity in modern distributed �le systems like

Google's ColossusFS [2] and Facebook's HDFS [30]; the reason is three-fold. First, a vast

majority of newly generated data (e.g., more than 90%) are less likely to be accessed after

24 hours upon their creation. Second, RS coding exhibits fault tolerance characteristics.

Third, RS coding improves e�ciency of data storage capacity. Thanks to the strengths of

RS coding, in this study we focusing the development of our aHDFS, which applies RS to

achieve data in Hadoop distributed �le system or HDFS.

Figure 5.4: The basic idea of aHDFS: the key-value design in the context of erasure-coded
data archival systems.

5.2.2 The Basic Idea of Applying MapReduce

Fig. 5.4 illustrates the key idea behind aHDFS leveraging the MapReduce programming

model to generate parity data blocks with the Key-Value pair design. We refer to the vector

((R0, ..., Rn)) on the left-hand side in Fig. 5.4 as a redundancy vector, which is one row from

the redundancy matrix in Fig. 5.1. For simplicity, we only show one redundancy vector in

Fig. 5.4; the redundancy vector can be extended to a Redundancy Matrix in our aHDFS

design. Data to be archived are considered as source data of mappers (see the k by n source

data matrix on the right-hand side of Fig. 5.4). In the example presented in Fig. 5.4, there

are a total of k source data blocks to be archived; each data block is represented as a row in
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the source data matrix. The top portion on the right-hand side of Fig. 5.4 is the intermediate

output data from the mappers; the bottom part (i.e., (P0, ...Pn−1) on the right-hand side of

Fig. 5.4 is the parity data blocks produced by reducers.

In the map phase, the number of spawned mappers depends on the number of data

blocks. For example, k mappers are originated to be in charge of archiving k data blocks. In

our system, we equally divide each block to n sub-blocks represented as Di,0 Di,1, ... , Di,n−1.

We assign one key to each sub-block; thus, the keys sequentially assigned to the n sub-blocks

are 0, 1, ..., and n−1. The value of each key is the data of each sub-block. One may tune sub-

block size in order to optimize mapper performance (see also Section 5.4.4). By multiplying

the sub-blocks with the redundancy matrix, the intermediate sub-blocks outputted from the

multiple mappers are grouped by keys and shu�ed to the reducers for further processing.

In the reduce phase, sub-blocks with the same key are grouped and calculated to derive

one parity sub-block (e.g., Pi, 0 ≤ i ≤ n−1). Thus, all the intermediate sub-blocks with keys

0, 1, ..., and n are reduced to parity sub-blocks P0, P1, ..., Pn−1, respectively.

5.3 The Design of aHDFS

In this section, we delineate the design details of aHDFS. We address the design issues

by using the RS(k+r, k) coding scheme (see, for example, RS(6+2, 6)) to facilitate the data

archiving process on a Hadoop cluster. We propose two Hadoop-based data archival strate-

gies, namely, the aHDFS-Grouping and aHDFS-Pipeline schemes. Both the two strategies

are developed using the MapReduce programming model. Please refer to Section 5.1.3 for the

introduction of MapReduce; the basic design idea governed by the MapReduce programming

model can be found in Section 5.2.2. We decide to use the HDFS default settings. Thus,

in aHDFS, the number of the replicas of each block is three. Among the three replicas, two

replicas are residing in two di�erent nodes located in the same rack; the third replica is kept

in another rack.
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5.3.1 aHDFS-Grouping: Parallel Data Archiving

We start this section by illustrating how the parallel data archiving scheme works from

the perspective of the MapReduce programming model. Then, we incorporate the key idea

of the Key-Value pair design into parallel data archival.

Overview of Parallel Archiving

Let us make use of a concrete example (see Fig. 5.5) to demonstrate the idea of apply-

ing the MapReduce programming model to design our parallel data archival system. For

simplicity, we consider a small �le containing six (6) blocks denoted as Di,j, where i ∈ {1, 6}

and j ∈ {1, 3}. Here Di,j represents the jth replica of the ith block in the �le; for example,

D4,2 signi�es the second replica of the 4th block. Recall that two out of the three replicas

of each block are residing in the same rack, whereas the third one is stored in another rack.

For instance, block 1's two replicas (i.e., D1,1 and D1,2) are residing in rack 1; block 1's

third replica D1,3 is hosted in a second rack (i.e., rack 2). Fig. 5.5 reveals two representative

run-time cases of the parallel data archiving in aHDFS. Let us elaborate the two cases below.

� Case 1. There are three map tasks spawned on nodes 1 and 3, respectively. More

speci�cally, the three mappers are concurrently processing D1,1, D2,3, and D6,2 on node

1; whereas the other three mappers are handling D2,3, D4, 1, and D5,2), respectively.

The intermediate results from the six mapper tasks running on nodes 1 and 3 are

grouped in form of a single block referred to as an intermediate parity block (see, for

example, P1 and P2 in node 1 and node 3, respectively).

� Case 2. There are two mappers spawned on each of nodes 4, n−1, and n. Thus, node

4 runs two mappers to process blocks D2,2 and D1,3; node n−1 manages two mappers

to deal with blocks D4,3 and D3,1; node n governs two mappers to treat blocks D5, 1

and D6,1. The intermediate output from each group of the two map tasks on the same

node is merged as one block also referred to as an intermediate parity block (see, for

76



example, P1, P2, and P3 on node 4, n−1, and n, respectively). The intermediate

parity blocks are delivered to reducers to generate �nal parity blocks P and P ′ in node

P and P ′, respectively.

In a real-world scenario, mapper tasks may be distributed among the nodes in an un-

balanced fashion. Nevertheless, the key idea illustrated in the aforementioned two cases

remains unchanged. In summary, the idea behind our the parallel archiving scheme is to

group intermediate results yielded from map tasks to form one intermediate parity block to

be delivered to a reducer for further computing.

Figure 5.5: Applying the MapReduce programming model to design our parallel data archiv-
ing scheme for the RS(6+2, 6)-coded storage.

MapReduce-based Parallel Archiving

Now we design a parallel archiving scheme using the MapReduce programming model.

Fig. 5.6 illustrates our MapReduce-based parallel archiving scheme, detailing the activities

of several mappers and one reducer in node 1. The behaviors of the other nodes are identical

as that of node 1.
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Figure 5.6: The MapReduce-based parallel archiving scheme.

We delineate the MapReduce-based parallel archiving algorithm in Section 15. To opti-

mize the performance of our parallel archiving algorithm, we propose a new grouping strategy

(see Section 5.3.1) to reduce the number of intermediate key-value pairs. We also design a

local key-value store (see Section 5.3.1) to minimize the disk I/O load imposed in the map

and reduce phases. The analysis of network tra�c and disk I/Os can be found in Section 15.

Grouping Strategy

Fig. 5.6 illustrates our MapReduce-based strategy of grouping intermediate output from

the multiple mappers (i.e., mappers 1−n). A conventional wisdom is to deliver an interme-

diate result created by each mapper to a reducer through the shu�ing phase. To optimize

the performance of our parallel archiving scheme, we group multiple intermediate results

sharing the same key into one Key-Value pair to be transferred to the reducer. During the

course of grouping, of course, the XOR operations are performed to generate the value in

the Key-Value pair. The advantage of our new group strategy makes it possible to shift the
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grouping and computing load traditionally handled by reducers to mappers. In doing so, we

alleviate the potential performance bottleneck problem incurred in the reducer.

Local Key-Value Store

At the heart of our MapReduce-based parallel archiving scheme is a local Key-Value

store managed in each node (see the large block sitting in the center of Fig. 5.6). Fig. 5.6

shows that a local key-value store manipulated by node 1 enables the above grouping strategy

to merge multiple intermediate results sharing the same key into one Key-Value pair.

Let us �rst introduce the notation used in Fig. 5.6, followed by the functionality of the

local key-value stores. The arrows in Fig. 5.6 represent data �ows among mappers, reducers,

and the key-value data store. It is worth noting that the transferred data are in the form

of V alueks, where k is a key. The local key-value store residing in node 1 is responsible for

temporally storing intermediate Key-Value pairs created by the mappers. n number of data

servers, distributed to nodes 1−n nodes, are booted up ahead of spawned mappers. Each local

key-value store, which processes local data, independently functions without collaborating

with the other key-value stores on remote nodes.

The metadata of a local key-value store includes two counters, namely, theMap_Register

and Map_Counter_Key counters (see also the local key-value store in Fig. 5.6). The �rst

counter (i.e., Map_Register) is used to keep track of the total number of spawned mapper

tasks on its local node. The second counter (i.e., Map_Counter_Key) monitors the number

of mappers that have already stored their intermediate Key-Value pairs with respect to

speci�c keys to the local key-value store.

The Parallel Archiving Algorithm

Now we present the algorithm of the MapReduce-based parallel archiving scheme. Al-

gorithm 2 illustrates the detailed process of parallel archiving, where the Map-Register and
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Input: Map-Register,Map-Counter-Key,Val-Bu�er
Map-Register: spawned Mapper tasks on each node
Map-Counter-Key: amount of mapper tasks which have already stored the key's value into data server
Val-Bu�er: store the value of Key-Value pairs

1 if Val-Bu�er.get(KEYk) == null then
2 Val-Bu�er.put(KEYk, VALUE)
3 Map-Counter-KEYk++

4 else

5 Return Val-Bu�er.get(KEYk) to Mapper
6 Mapper executes exclusive or calculation to returned value and value of KEYk emitted
7 Map-Counter-KEYk++
8 if Map-Counter-KEYk==Map-Register then
9 write calculated result to reducer

10 Val-Bu�er remove Keyk
11 else

12 store calculated result to data server
13 Map-Counter-KEYk++

14 end

15 end

Algorithm 2: The parallel archiving algorithm.

Map-Counter-Key values keep track of the total number of spawned mappers and the num-

ber of mappers that have stored intermediate results, respectively. Recall that Map-Register

and Map-Counter-Key can be found in the local key-value store.

When a mapper delivers key K 's value to the local key-value store, the algorithm checks

whether the local store bu�ers a copy of key K 's value (see Line 1 in Algorithm 2). If the

value of key K is not residing in the local store, the algorithm places key K and its value

into bu�er Val_Bu�er, followed by increasing the counter of key Key by 1 (see Lines 1-3 in

Algorithm 2 and mapper 1 in Fig. 5.6).

If key K 's is found in the local key-value store, then the stored value will be forwarded

back to the mapper, which will in turn be XORed with the same key's value emitted by the

mapper (see Lines 5-6 in Algorithm 2 and Mapper 2 in Fig. 5.6).

After key K 's counter is increased by 1, the algorithm checks if the mapper is the last

one storing key K 's value to the local key-value store. The algorithm achieves this goal

by comparing Map_Counter_Key with Map_ Register. If the mapper is the last one, this

mapper writes the key-value pair to a reducer rather than storing this key-value pair in the

local store (see Lines 9-10 in Algorithm 2 and Mapper n in Fig. 5.6).
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Unlike the last mapper, non-last mappers bu�er the key-value pairs to the local store

while increasing the counters of their key by 1 (see Lines 12-13 in Algorithm 2 and Mapper

2 in Fig. 5.6).

Reducing Network Tra�c and I/O Load

Intuitively, we show that only one copy of each key K 's value is shu�ed to a reducer. As

a result, regardless of the number of spawned mappers on each node, only one intermediate

key-value pair is transferred on the network during the shu�ing phase. Suppose there are

m mappers on a node, our algorithm is capable of reducing the shu�ing network load by

m−1
m
×100%. For example, given a node running eight mappers, our algorithm reduces the

network tra�c by 87.5%.

Similarly, our algorithm signi�cantly lowers the I/O load, because the total amount of

data written to a local disk is reduced by m−1
m
×100%, where m is the number of running

mappers on a node. Our algorithm is conducive to suppressing the I/O load of the map and

reduce phases, because the local key-value store (see Fig. 5.6) bu�ers intermediate Key-Value

pairs in the main memory rather than the hard drive.

5.3.2 aHDFS-Pipeline: Data Archiving with a Pipeline

Overview of Parallel Archiving with a Pipeline

To boost the performance of the parallel data archiving scheme proposed in Section 5.3.1,

we design a pipeline and incorporate the pipelining technique into our aHDFS system.

Fig. 5.7 shows a way of incorporating a pipeline into our parallel data archiving scheme

for the RS(6+2, 6)-coded storage.

In the parallel archiving scheme described in Section 5.3.1 (see Fig. 5.6), intermediate

parity blocks created by mappers running on a node are delivers to reducers. Unlike this

process, the pipelined data archiving scheme delivers intermediate parity blocks (see blocks

P1 and P2 in Fig. 5.7) to subsequent nodes (for example, node 3 and node n−1 in Fig. 5.7).
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Next, the subsequent nodes repeatedly deliver their intermediate parity blocks to their sub-

sequent nodes (see, for example, node n is the subsequent one of node n−1). Finally, the last

node that has no subsequent node writes its parity blocks to the �le system (i.e., HDFS).

Figure 5.7: Incorporating a pipeline into our parallel data archiving scheme for the RS(6+
2, 6)-coded storage.

Constructing Data Archiving Pipelines

According to data placement governed by the layout of HDFS, all nodes can be divided

into multiple groups, each of which handles data archiving operations in a pipelined manner.

For example, Fig. 5.7 shows that node group 1 consists of nodes 2 and 3, whereas node

group 2 contains nodes 4, n−1, and n. In this example, aHDFS builds an archiving pipeline

between nodes 2 and 3 in node group 1; aHDFS constructs another archiving pipeline among

nodes 4, n−1, and n in node group 2. These two archiving pipelines perform data archival

operations in parallel. Please refer to the two run-time cases discussed in Section 5.3.1 for

details on how to form multiple node groups to conduct parallel data archiving.
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Multiple data archiving pipelines are capable of simultaneously carrying out encoding

processes for separate data sets, thereby delivering high data-archival performance through

improved archival parallelism.

Input: Map-Register,Map-Counter-Key,Val-Bu�er
Map-Register: spawned Mapper tasks on each node
Map-Counter-Key: amount of mapper tasks which have already stored the key's value into data server
Val-Bu�er: store the value of Key-Value pairs

1 if Val-Bu�er.get(KEYk) == null then
2 Val-Bu�er.put(KEYk, VALUE)
3 Map-Counter-KEYk++

4 else

5 Return Val-Bu�er.get(KEYk) to Mapper
6 Mapper executes exclusive or calculation to returned value and value of KEYk emitted
7 Map-Counter-KEYk++
8 if Nodes is �rst node && Map-Counter-KEYk==Map-Register then
9 write calculated result to subsequential node

10 else if node is not last node && Map-Counter-KEYk==Map-Register+1 then

11 write calculated result to subsequential node
12 else if node is not last node && Map-Counter-KEYk==Map-Register+1 then

13 write calculated result to reducer
14 Val-Bu�er remove Keyk
15 else

16 store calculated result to data server
17 Map-Counter-KEYk++

18 end

19 end

Algorithm 3: aHDFS Pipeline archiving

MapReduce-based Pipelined Data Archiving

Our pipelined data archiving strategy is an extension of the parallel data archiving

scheme proposed in Section 5.3.1. Fig. 5.8 plots that in the pipelined archiving strategy,

the last mapper writes key-value pairs to its subsequent node's local key−value store (see

Section 5.3.1) rather than a reducer. The last mapper in each node propagates key-value

pairs to the node's subsequent node's key-value store. The last node in an archiving pipeline

has no subsequent node, it is the last node's responsibility to write a parity block to HDFS.

Compared with the parallel archiving scheme (see also Section 15), this pipelined data

archiving approach evenly distributes network I/O load among multiple nodes in each

pipeline. A salient feature of our pipelined archiving scheme lies in its improvement of

the parallel archiving scheme in terms of the archiving performance in the shu�ing and

reduce phases.
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Figure 5.8: The MapReduce-based parallel archiving scheme coupled with a pipeline.

Algorithm 3 outlines the procedure of MapReduce-based pipelined data archiving. Algo-

rithm 3) has to �gure out whether a node is the �rst or the last node in an archiving pipeline

(see Lines 8 and 10 in Algorithm 3), because the �rst node has no predecessor node whereas

the last node has no subsequent node. The intermediate data are deliver from one node to its

subsequent node (see Lines 9 and 11 in Algorithm 3). The last node in an archiving pipeline

is in charge of writing a parity block to reducer (see Lines 12 and 13 in Algorithm 3). To

check if all the mappers has stored intermediate Key-Value pairs to the local key−value store,

all the nodes except the �rst node in a pipeline has to add 1 to Register-Map, indicating

that these non-�rst nodes receive one more value from their predecessors (see Lines 10-13 in

Algorithm 3).
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Improving I/O Performance

Block sizes of HDFS are large; the default block size of HDFS [12] is 128MB. A storage

request unit is an access unit from the I/O path's standpoint, where each block is accessed

via a sequence of storage request units. I/O accesses tend to be non-sequential when storage

request units are located on di�erent blocks; as a result, such non-sequential access patterns

downgrade the write bandwidth of our aHDFS.

The aforementioned non-sequential I/O access patterns may occur in aHDFS if the

following two conditions are met: (1) Two parity blocks generated by two data archiving

pipelines are written to an identical node and (2) the two parity blocks are written to di�erent

disk regions. We incorporate the write aggregation technique into aHDFS. It is noteworthy

that the write aggregation technique is a popular I/O optimization scheme, because large

storage request units help in achieving high write bandwidth [32][31], The write aggregation

technique consolidates multiple request units into a single write request. A node storing

parity blocks bu�ers storage request units delivered from multiple data archiving pipelines;

then, the bu�ered parity-block requests are written to the node in form of a large sequential

write request.

5.4 Case Studies

We conduct three case studies to uncover the factors a�ecting data archival perfor-

mance. The case studies o�er an insightful guidance on the development of the performance

optimization strategies presented in Section 5.3.

5.4.1 Experimental Setup

We setup a Hadoop cluster; Table 5.1 summarizes the cluster's hardware and software

con�guration. The number of parity is con�gured to 3; and the number of nodes is con�gured

as 10. We set the default value size, block size, and �le size to 1KB, 128MB, and 10GB,
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Hardware

CPU Intel Genuine 62@ 2.2GHz,20 CPU
Memory 128 GB
Network 1 GigaBit Ethernet network card
Disk 1 TB

Software

Operating System CentOS 6.5 Linux 2.6.32-431.el6.x86_64 x86_64
Hadoop 2.6.0

Table 5.1: Hardware and software con�gurations of the testbed.

respectively. We measure data archival performance in terms of the execution times in the

map, shu�e, and reduce phases as well as the total execution time of each archiving process.

We investigate the impacts of �le size, block size, and key−value pair size on the archival

performance of a baseline system, where we disable the proposed grouping strategy (see Sec-

tion 5.3.1), local key-value store (see Section 5.3.1), and archiving pipeline (see Section 5.3.2).

5.4.2 Case Study 1: File Size

We conduct six groups of experiments by varying �le size, which is an a�ecting factor to

archival performance. The �le sizes chosen in the experiments are 640MB, 1280MB, 2560MB,

5120MB, 10GB, and 20GB. We set the block size and the value size to their default values.

(a) (b)

Figure 5.9: The execution time of the four MapReduce phases under the various �le size
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We aim to pinpoint data-archival-performance bottleneck among the four MapReduce

phases, namely, map, shu�e, merge, and reduce. Fig. 5.9 illustrates the execution time of

the four MapReduce phases under the various �le size. Fig. 5.9(b) shows that with the �le

size increased from 640MB to 20GB, the total execution time signi�cantly increases from 50

to 400 Sec. Such a trend is more pronounced when the �le size is doubled from 10GB up to

20GB.

The results reveal that the map phase contributes a tiny portion to the total execution

time (see Fig. 5.9(a)). Additionally, the map execution time does not change noticeably

when the �le size dramatically increase from 640MB to 20GB. In contrast to the map tasks,

the shu�e tasks play a major role in determining the total execution time. More speci�cally,

the shu�ing time accounts for more than half of the total execution time (see Fig. 5.9(a)).

Fig. 5.9(b) shows that the archival-performance trend, measured in total execution time,

largely depends on the shu�ing execution time. Following the shu�e tasks, the reduce tasks

consume approximately 25% of the total execution time (see Fig. 5.9(a)).

Optimization Guidance. Because the shu�e and reduce phases account for 60% and

25% of the entire data archiving time, this convincing evidence suggests that shortening the

time spent in the shu�e and reduce phases can greatly optimize the archival performance of

aHDFS. Please refer to Section 5.1.3 for the discussions on the fact that an excessive amount

of intermediate results from the mappers makes the shu�e phase impose a signi�cant impact

on the archival performance. The execution time of the reduce phase is also determined by

the amount of data shu�ed to the reducers.

We take the following two approaches to optimizing the data archival performance.

First, because the load of the mappers is fairly light thanks to the high parallelism, we

optimize the aHDFS 's performance by lowering the workload of the reducers, the computing

load of which is reallocated to the mappers. Second, we minimize the amount of data shu�ed

to the reduce tasks. This goal can be achieved by our grouping strategy (see Section 5.3.1)

and data-archiving pipelines (see Section 5.3.2).
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(a) Map (b) Shu�e (c) Reduce

Figure 5.10: The execution times of the map, shu�e, and reduce phases under various block
size

5.4.3 Case Study 2: Block Size

In this section, we conduct �ve groups of experiments to evaluate the impacts of block

size on archival performance. Again, we set the �le size to 640MB, 1280MB, 2560MB,

5120MB, 10GB, and 20GB, respectively.

Fig. 5.12 reveals that the execution times of the map, shu�e, and reduce phases, which

are obviously a�ected by block size. Let us �rst consider the map phase (see Fig. 5.10(a)).

When the block size increases from 16MB to 320MB, the execution time of the mappers

doubles regardless of the �le size. For example, when we set block size to 16 and 320MB,

the time spent in the map phase is 6 and 12 Sec., respectively. Interestingly, keeping the

blocks size a constant, we observe that the map execution time discrepancy among various

�le size is within two seconds.

The trend shown in Fig. 5.10(a) is attributed to fact that each spawned mapper is in

charge of one block serving as an input split. A small block size implies that the amount of

data to be loaded and calculated by each map task is small. Moreover, a small block size

of a �xed �le size means a large number of mappers, which pushes the parallelism level up.

For example, Fig. 5.11 shows that when we increase the number of mappers from 16 to 90,

the average map execution time is correspondingly cut down from 13 to 7.

In contrast, the mapper performance is marginally improved by one second when the

number of mappers is changed from 90 to 180 and from 180 to 360, respectively. Such a

limited performance improvement lies in the heavy load in terms of the number of mappers
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on each data node of the Hadoop cluster. In our experiments, the average number of mappers

assigned to each node is 1.6, 4.5, 9, 18, and 36, respectively. The nodes are lightly loaded

if the average number of mappers per node is below nine. Under light workload condition,

increasing the number of mappers on each node enhances the parallelism level. On the other

hand, assigning too many mappers to each node can undoubtedly overload the node, thereby

slowing down the speed of the mappers.

Figure 5.11: The impact of the number of map tasks on time spent in the map phase. File
size = 5GB.

Fig. 5.10(b) shows that when the block size is increased from 16 to 320MB, the shu�ing

time is enlarged. This trend becomes more pronounced when the �le size is large (e.g., 20GB).

Similarly, Fig. 5.10(c) reveals that a large block size leads to a long reduce phase. Comparing

Figs. 5.10(b) and 5.10(c), we observe that reduce execution time is more sensitive to block

size than shu�e execution time. For instance, in the 20GB case, the shu�e and reduce

execution times jump from 200 to 280 seconds and from 65 upto 120 seconds, respectively.

In the same case, the map execution time only increases from 8 to 13 seconds.

Optimization Guidance. There are two approaches to tuning the performance of

aHDFS. First, block size has a noticeable impact on map, shu�e, and reduce phases. We

can speed up data archival performance by applying a small block size, which gives rise to

high level of parallelisms. Second, to signi�cantly shorten the reduce execution time, we
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make the data archiving process less reduce-intensive by shifting computing load from the

reducers to the mappers in aHDFS.

5.4.4 Case Study 3: Key-Value Pair Size

Now we demonstrate the impacts of key-value pair size on mappers in data archiving.

In this group of experiments, we test nine value sizes (i.e., 16B, 64B, ..., 32M). Fig. 5.12(a)

plots the correlation between execution times and the value size.

The results show that a large value size lowers the execution times. For example,

when value size is 16B, the total execution time is 1422 seconds (see Tab. 5.2), which is

approximately three times larger than the case of value size being 64B. Similarly, the shu�ing

time dramatically changes from 511 to 210 seconds; the merging time declines from 365 to

59 seconds; and the reducing time signi�cantly shrinks 509 to 151 seconds. Not surprisingly,

the total execution time drops from 422 to 205 seconds when the value size is doubled from

64 to 128B. Fig. 5.12(b) shows a large value size helps in reducing the mapping time. For

example, increasing the value size from 16 to 64B cuts the mapping time from 37 to 17

seconds.

(a) Total (b) Map (c) Other

Figure 5.12: The execution times of the map, shu�e, and reduce phases under various value
size

Figs. 5.12(a)-5.12(c) shows that when the value size is smaller than 128 KB, the archival

performance is extremely sensitive to the value size. When the value size goes beyond 128

KB, further increasing the value size can hardly lower the archiving time. We discover that
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512 KB is an optimal value size, which leads to the smallest map and reduce phases (i.e., 7

and 32 seconds in Table reftab:tm).

The aforementioned performance trends are attributed to the data overhead introduced

to key-value pairs (See Section 5.1.3). Recall that each key-value pair has a eight-byte key

and a four-byte partition identi�cation (see Section 5.1.3). When the value size is 16B, the

data overhead represents 75% of the value size; such overhead percentage drops down to

18.75%, if the value size is as large as 64B. Moreover, increasing the number of key-value

pairs inevitably imposes data overhead used to maintain the partition identi�cations.

Figure 5.13: The amount of data in map phase and shu�e phase, File size = 10GB

Fig. 5.13 illustrates that a large value size leads to a small amount of data emitted from

the mappers. Let us consider an example, where the input data size is 10 GB (see Tab. 5.3).

When the value size is 16B, the amounts of map emitted data, output and input data are

17.5, 67.15, and 48.75 GB, respectively (see Fig. 5.14 and Tab. 5.3). Tab. 5.3 shows that

network I/O tra�c during the shu�ing stage is 18.75 GB when the value size is set to 16B.

Fortunately, an increasing value size helps to cut the amount of map emitted data as well as

to alleviate the heavy network tra�c (i.e., approximately to 10 GB, see also Fig 5.13). The

I/O load in terms of writes and reads is gradually lowered down to the levels of 30 and 20

GB, respectively.
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Optimization Guidance. This group of experiments suggests that the bene�t of a

large value size is four-fold: (1) minimizing data overhead; (2) reducing the number of I/O

operations; (3) lowering network tra�c; and (4) conserving time spent in sorting key-value

pairs (see Step 5 in Section 5.1.3). Nevertheless, an extremely large value size may lead to the

heap over�ow problem, thereby downgrading archival performance (see Fig. 5.12(b) 5.12(c)).

Value Size Total Map Shu�e Merge Reduce

16 Byte 1422 37 511 365 500
64 Byte 442 17 210 59 151
128 Byte 205 13 153 34 100
1 KB 173 11 103 7 45
8 KB 151 10 93 3 41
64 KB 145 8 91 2 38
512 KB 136 7 94 2 32
4 MB 153 8 96 2 40
32 MB 155 8 95 8 45

Table 5.2: The execution times of the map, shu�e, merge, and reduce phases as well ass
total execution time under various value size

Value Size IO/W IO/R HDFS/R Map/Out Shu�ing

16 Byte 48.75 67.15 10.00 17.50 18.75
64 Byte 26.51 38.70 10.00 11.88 12.19
128 Byte 24.30 35.48 10.00 10.94 11.17
1 KB 20.31 30.48 10.00 10.12 10.16
8 KB 20.04 30.07 10.00 10.01 10.02
64 KB 20.01 30.02 10.00 10.01 10.00
512 KB 20.00 30.01 10.00 10.00 10.00
4 MB 20.00 30.01 10.00 10.00 10.00
32 MB 20.00 30.01 10.00 10.00 10.00

Table 5.3: I/O Write, Read, HDFS I/O Read, Mapper Output and Network Tra�c I/O
under various vaue size, File size = 10GB.

5.5 Performance Evaluation

We conduct extensive experiments to quantitative evaluate the archival performance

of aHDFS. We also compare aHDFS with the baseline system, the performance of which
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Figure 5.14: The amount of Input and Output data during the MapReduce' all phases. File
size = 10GB

is analyzed in Section 5.4. We denote aHDFS-Grouping as the aHDFS system, where the

grouping and local key-value store strategies are incorporated. We denote aHDFS-Pipeline

as the aHDFS system, where the archiving pipeline is enabled. In the tested baseline system

(i.e., referred to as Baseline), none of the three optimization schemes is applied. The details

on the testbed can be found in Section 5.4.1.

5.5.1 Key-Value Pair Size

We examine the impacts of key-value pair size on the archival performance of aHDFS-

Grouping, aHDFS-Pipeline, and Baseline. We test six optimal value sizes (i.e., 1KB, 8KB,

..., 32M) (see Case Study 3 in Section 5.4.4 for the optimal value sizes). The �le size and

block size are set to 10GB and 128MB, respectively.

Fig. 5.15 shows execution times of the map, shu�e, reduce phases as well as the total

time of the three systems under various value sizes. The results show that Baseline outper-

forms aHDFS-Grouping and aHDFS-Pipeline during the map phase when the value size is

1KB (see Fig. 5.15(a)). For example, the mapper execution times of aHDFS-Grouping and

aHDFS-Pipeline are 65 and 85 seconds, which are approximately 6.5 and 8.5 times longer

than that ofBaseline. Interestingly, the discrepancy of the mapper execution times among
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(a) Map (b) Shu�e

(c) Reduce (d) Total

Figure 5.15: The execution times of the map, shu�e, reduce phases as well as the total time
of the three systems under various value sizes

aHDFS-Grouping, aHDFS-Pipeline, and Baseline is gradually diminishing when the value

size increases. For instance, if the value size is 8KB, aHDFS-Grouping and aHDFS-Pipeline's

mapper execution times are approximately 2.5 and 4 times longer than that of Baseline. The

mapper time di�erences among the three system is further narrowed down when the value

size exceeds 512KB.

The aforementioned performance trends with respect to the map phase are attributed

to the fact that heavy computation load is reallocated from reducers to mappers in aHDFS-

Grouping and aHDFS-Pipeline. Each mapper in aHDFS should store temporal key-value

pairs into the local key−value store; then, aHDFS performs the XOR operation on the

emitted key-value pair with the previous stored key-value pairs in the local key−value store.

Given �x-sized blocks, a small value size leads to a large number of key-value pairs, which in

turn push up the number of I/O accesses to the local key−value store. Although the mapper

execution time of aHDFS is longer compared to Basedline, aHDFS-Grouping is superior to

Baseline in terms of shu�e and reduce execution times. For example, aHDFS-Grouping
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signi�cantly shorten Baseline's shu�e and reduce phase by approximate 90% and 60% when

the value size is larger than 1KB. (see Figs. 5.15(b) and 5.15(c)).

Fig. 5.15(d) shows that when the value size is large than 1KB, aHDFS-Grouping and

aHDFS-Pipeline are capable of cutting Baseline's the overall archival time by up 60% and

75%, respectively.

(a) Map Time (b) Shu�e Time

(c) Reduce Time (d) Total Time

Figure 5.16: The execution time of the map, shu�e, and reduce phases along with the total
execution time of the three systems under various �le size

5.5.2 File Size

To evaluate the impacts of �le size on the three data archival systems, we set the �le

size to 640MB, 1280MB, 2560MB, 5120MB, 10GB, and 20GB, respectively.

Fig. 5.16 illustrates the execution time of the map, shu�e, and reduce phases along with

the total execution time. Fig. 5.16(a) shows that Baseline's mapper execution time rises from

5 to 10 seconds when we increase the �le size from 640MB to 20GB. In contrast, aHDFS-

Grouping and aHDFS-Pipeline's mapper times are almost kept at the level of 19 seconds.
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Figure 5.17: Network Tra�c

Such a downside of aHDFS-Grouping and aHDFS-Pipeline is attributed to frequent accesses

of the mappers to the local key−value store (see Section 5.3.1 and 5.3.2).

Figs. 5.16(b) and 5.16(c) shows that aHDFS-Pipeline embraces neither shu�e nor reduce

phases. Recall that Baseline and aHDFS-Grouping have a reduce phase being responsible

for receiving output from mappers and computing �nal results to be written into HDFS. In

aHDFS-Pipeline, the last �nished mapper residing in the last node of a pipeline is responsible

for writing parities to HDFS.

In contrast to mappers, the shu�e and reduce tasks in aHDFS-Grouping take less

time than those in Baseline in the large-�le-size cases. For example, aHDFS-Grouping

shortens the shu�e execution time of Baseline by up to 85.7% when the �le size is 20GB (see

Fig. 5.16(b)). A similar trend in the reduce phase can also be observed from Fig. 5.16(c).

Such a performance improvement of aHDFS-Grouping over Baseline is more pronounced

when we increase �le size, because key-value pairs with same keys emitted from mappers

on each node are grouped by aHDFS-Grouping as a single �nal key-value pair shu�ed to

reducers.

aHDFS-Grouping achieves the above performance improvement by (1) reducing net-

work I/O tra�c and (2) cutting down the data amount of key−value pairs processed by the

reducers (see Section 15). The evidence shown in Fig. 5.17 indicates that aHDFS-Grouping
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and aHDFS-Pipeline are conducive to lowering the network I/O tra�c of Baseline by ap-

proximately to 87% and 89%, respectively.

(a) Total Time (b) Map Time

(c) Shu�e Time (d) Reduce Time

Figure 5.18: The execution time of the map, shu�e, and reduce phases along with the total
execution time of the three systems under various block size

5.5.3 Block Size

To evaluate the archival performance impacts of block size on aHDFS, we set the block

size to 16MB, 32MB, 64MB and 128MB, respectively. Fig. 5.18(a) shows that aHDFS-

Grouping and aHDFS-Pipeline can cut Baseline's total archiving time by approximately

20% when the bock size is set to 64 and 128MB. In what follows, we show the comparison

of the three schemes with respect to execution times of the map, shu�e, and reduce phase.

Fig. 5.18(b) shows that block size has a big impact on mapper performance. For example,

when block size increases from 16 to 128MB, the map execution times of Baseline, aHDFS-

Grouping, and aHDFS-Pipeline are enlarged by 60%, 300%, and 60%, respectively. Given

�les with �xed size, a small block size triggers a large number of mappers spawned, which

in turn push up the parallelism level. aHDFS-Grouping outperforms aHDFS-Pipeline at
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the map phase, because mappers at the downstream nodes of a pipeline has to wait for

predecessor nodes to deliver key-value pairs. Delaying mappers in the predecessor nodes

slows down the process of the entire pipeline.

Fig. 5.18(c) reveals that aHDFS-Grouping 's shu�e time is two times longer than that

of Baseline when block size is 16MB. Nevertheless, increasing block size helps in shortening

aHDFS-Grouping 's shu�e time; in contrast, the increased block size slightly worsens the

shu�e time of Baseline. Consequently, when the block size is larger than or equal to 32MB,

aHDFS-Grouping is superior to Baseline in terms of shu�e time. Fig. 5.18(d) shows that a

large block size leads to long reduce execution time. aHDFS-Grouping exhibits small reduce

time in the small-block-size case, because each node only shu�es one block to reducers, the

processing time of which depends on block size.
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Chapter 6

Conclusion and Future Work

In this dissertation, we proposed two novel strategies to achieve thermal and resource

e�ciency in data center. Thermobench provides a simple yet powerful benchmark solution

for assessing thermal behaviours of computing clusters in data centers. TERN running one

ThermoBnech is conducive to predicting thermal and resource trends of diverse workload

conditions with a changing transaction mix. aHDFS focus more on achieving storage e�-

ciency in data center. This chapter concludes the dissertation study by summarizing the

contributions and future work.

6.1 Self-Adjusting Thermal Model for Dynamic Resource Provisioning in Data

Centers

We have proposed a modeling system called TERN, which dynamically adjusts itself to

predict thermal behaviors of hardware resources allocated to applications running on clus-

ters. TERN is conducive to predicting thermal patterns of diverse workload conditions with

changing transac- tion mixes. More precisely, TERN seamlessly integrates a resource uti-

lization model and a thermal model, which establish correlation between resource utilization

and ther- mal trends of processors and hard drives in servers. We made use of the TPC-W

benchmark to conduct thermal pro�ling studies of workload with various transaction mixes.

A salient feature of TERN lies in its capability of adjusting the modeling parameters to

improve prediction accuracy by approximately 10terns. We showed through the experiments

performed on a real-world cluster that TERN o�ers a simple yet pow- erful solution for

thermal-aware resource provisioning in data centers. The main drawback of TERN is that

it is focused on CPU and disk resources. For large-scale data centers, we have to consider
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other shared system resources like main memory and network interconnections. We plan to

extend TERN by incorporating the other resource types supporting various applications on

clusters. Furthermore, we will exploit a prediction model for thermal-aware Hadoop clusters

in the context of big data analytics.

6.2 An Erasure-Coded Data Archival System for Hadoop Clusters

We presents an erasure-coded data archival system - aHDFS - in the realm of Hadoop

cluster computing. We proposed two archiving strategies called aHDFS-Grouping and

aHDFS-Pipeline to speed up archival performance in Hadoop distributed �le system or

HDFS. Both the archiving schemes adopt the MapReduce-based grouping strategy, which

wraps up multiple intermediate key-value pairs sharing same key into one key-value pair

on each node. aHDFS-Grouping transfers the single key-value pair to a reducer, whereas

aHDFS-Pipeline delivers this key-value pair to the subsequent node in the archiving pipeline.

We implemented these two archiving strategies, which were compared against the conven-

tional MapReduce-based archiving strategy referred to as Baseline. The experimental results

show that aHDFS-Grouping and aHDFS-Pipeline can improve the overall archival perfor-

mance of Baseline by a factor of 4. In particular, aHDFS-Grouping and aHDFS- Pipeline

speed up Baseline's shu�e and reduce phases by a factor of 10 and 5, respectively. In ad-

dition, aHDFS- Grouping and aHDFS-Pipeline signi�cantly lower the net- work I/O tra�c

by 87% and 89%, respectively. As a future research direction, we will develop a data recon-

struction system to deal with block failure issues on Hadoop clusters. We plan to apply the

grouping and pipelining strategies to the reconstruction system to speed up the reconstruc-

tion process. To optimize reconstruction performance, we will investigate a way of choosing

inter- mediate parity blocks to be kept in the local key-value store.
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