
 
 

Development of composite beam theory and its application in composite and prestressed 

concrete structures 

 

by 

 

Fengtao Bai 

 

 

 

A dissertation submitted to the Graduate Faculty of 

Auburn University 

in partial fulfillment of the 

requirements for the Degree of 

Doctor of Philosophy 

 

Auburn, Alabama 

May 7, 2016 

 

 

 

Keywords: Composite theory, sandwich panel, transfer length, prestress losses, bond-slip, 

prestressed concrete  

 

 

Copyright 2016 by Fengtao Bai 

 

 

Approved by 

 

James S. Davidson, Committee Chair, Professor of Civil Engineering 

Robert W. Barnes, Associate Professor of Civil Engineering 

Justin D. Marshall, Associate Professor of Civil Engineering 

J. Michael Stallings, Professor of Civil Engineering 

 

 



ii 
  

Abstract 

For some complex structural engineering problems like behavior of sandwich structures and 

prestressed concrete structures, extensive experimental works and finite element analyses 

might not be able to help understand the mechanics completely rather than providing the 

numerical results of specific cases. On the other hand, conventional structural analysis 

approach like Euler-Bernoulli beam theory is inherently incapable of dealing with such 

composite behaviors due to the plane section assumption. For those complex problems in 

structural engineering, an appropriate and rigorous theory has been needed for a while but 

unfortunately absent.    

This dissertation provides a new perspective, composite beam theory that defines the 

structures as interacting components. The structural mechanics and mathematical 

manipulation are the primary tools and the balance between accuracy and applicability is 

carefully maintained so that the conclusions arrived in this research can be readily applied to 

engineering practice. 

This dissertation firstly derives the composite theory in a general form, and then applies the 

theory to various concrete structure analysis applications, including sandwich structures and 

prestressed concrete. Specifically, it provides a systematic analysis methodology for sandwich 

structures with symmetrical and unsymmetrical wythes (sandwich structures that have identical 

wythes and properties will be referred as symmetrical wythes sandwich structures since the 
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wythes are symmetrical about the neutral axis). Both longitudinal and transverse governing 

equations and closed form solutions are derived and studied. For prestressed concrete 

structures, the immediate prestress loss formulas in current design provisions and 

specifications are evaluated and improved, and a new type of loss due to slip is presented. The 

transfer length of prestressed concrete structures is redefined by investigating the mechanics 

and new methodologies to improve current transfer length prediction are presented. The 

validation against comprehensive test data demonstrates the success of the new approach, and 

comparisons with current formula suggest significant improvement.   
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Chapter 1 Introduction  

1.1 Introduction 

In many fields of structural engineering, for example sandwich structure and prestressed concrete, the 

design and analysis are primarily based on the classical Euler-Bernoulli beam theory. Once there are 

issues that cannot be solved by the classical Euler-Bernoulli beam theory, modifications and empirical 

factors tend to be added based on the Euler-Bernoulli beam solutions to account for those effects. 

However, it should be recognized that the Euler-Bernoulli beam theory was solely developed for the 

conventional solid and uniform beam structures, and modern structures may consist of very distinct 

structural components like the prestressing tendon and concrete in the prestressed concrete structures, 

or exterior and interior wythes in the sandwich structures. To better understand the behavior of these 

modern composite structures, analyses may need to be carried from an individual component level, and 

then coupled together through the interface mechanical properties. 

This dissertation makes efforts to define the structures of interest as interacting components under the 

frame work of engineering mechanics, in which the balance between accuracy and applicability is 

important. Although there are very advanced physical models available, those models may be too 

complicated to be applied to engineering practices therefore do not fit into the scope of this dissertation.   

The mechanics in this dissertation features the interaction between structural components, and the 

outcome of which is the Interface / interlayer slip. Interface / interlayer slip occurs in the composite 

structures such as steel-concrete composite T girders, insulated concrete sandwich structures and 

prestressed concrete. (Note that “slip” refers to the relative movement between the centroids of 
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components within the cross section as demonstrated in Figure 1-1). This slip results in many problems 

that cannot be addressed through classic Euler-Bernoulli beam theory because of the assumptions 

adopted. For example, due to the existence of relatively flexible shear connections, a considerable 

amount of slip (longitudinal shear deformation of the middle layer) can occur in composite T girders, 

sandwich structures and prestressed concrete, which are illustrated in Figure 1-1. This slip or shear 

deformation makes the plane section assumption invalid.  

However, for the sandwich structure illustrated in Figure 1-1, the common practice in design is to 

assume that the whole cross section participates in the action as a plane first and then assume a 

composite ratio to deduct the cross section properties. This is may be a good way to simplify the design 

process but it should be recognized that the sandwich structure cross section is not plane because of the 

relative slip (shear deformation) between the wythes. Additionally, deformation due to the transverse 

interaction occurs beside the longitudinal interaction, and the longitudinal and transverse interactions 

may even be coupled if the two wythes are not identical. Overall, the flexible middle layer and 

prominent shear deformation results in much more flexible behavior than the corresponding solid 

structures and makes analysis and design very difficult.  

slip due to longitudinal interaction

displacement due to

transverse interaction

middle

 layer

 

Figure 1-1: Definition of slip, longitudinal and transverse interactions in sandwich structures 

Another example of conventional engineering analysis method inadequacy is the design of prestressed 

concrete structures. Ideally in the prestressed concrete structure design, the concrete and prestressing 
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tendons are perfectly bonded and interface slip does not occur between them. However, in reality there 

is always slip occurring between them and the slip results in the phenomenon that prestressing force 

requires a certain transfer distance (referred to as transfer length) to be fully transmitted to the 

concrete. Although modern prestressed concrete structural design methodology, to some extent, 

accounts for the transfer length, the design methodology could not consistently take the bonding 

condition into consideration and usually needs to assume perfect bond and plane cross section first. 

Tendons and concrete are very distinct but interactive structural components, and in the design actual 

bonding condition should be determined instead of being assumed to be perfect and plane cross section 

assumption is invalid within the transfer zones due to the large interface shear force.  

It should be noted that the some design provisions dealing with steel-concrete T girders, insulated 

sandwich structures, and prestressed concrete may yield unreliable results because of the inappropriate 

theory used as the basis of the theoretical development. Many of the long debated problems are caused 

by the interlayer / interface slip that cannot be captured by conventional beam theory. Therefore, this 

dissertation presents the development of a novel structural analysis theory, namely a composite beam 

theory that considers the interface / layer slip, and also takes advantage of the developed composite 

beam theory to shed some light on various long debated issues in structural engineering.   

1.2 Research objectives  

The first objective of this dissertation research is to develop a new theoretical tool from the perspective 

of interactive composite theory. This new tool should be in a general form that considers the geometry 

and material variations of composite structures, meanwhile maintaining a balance between accuracy 

and applicability. The second objective is to apply the developed composite theory to several areas in 

structural engineering and to investigate the possibility of replacing some unreliable provisions and 

recommendations in the popular requirements, design guides and specifications of related fields. 
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Nevertheless, during the development and application of the composite theory, comprehensive data 

and results from the literature need to be scrutinized and the theoretical solutions and associated 

conclusions have to be validated. The overall goal is to make solid advancements in the related fields, 

and provide insights into existing problems and theoretical guidance for future studies.   

1.3 Scope and methodology 

This dissertation emphasizes rigorous theoretical development at normal service conditions. Therefore 

the study is limited to the linear and elastic range of the materials involved and the assumption of small 

displacements. The research presented in this dissertation includes deriving governing equations, 

obtaining the closed form solutions, studying the properties of closed form solutions, applying the 

overall theory to various long lasting structural engineering problems, and validating the theoretical 

development and its applications against test data. In addition, comparisons, recommendations and 

conclusions are made based upon the results. The theoretical development is specifically applied to 

several structure forms, including (1) symmetrical and unsymmetrical wythes insulated concrete 

sandwich structures; and (2) reinforced and prestressed concrete structures in which the prestress 

losses and transfer length immediately after transfer are thoroughly defined and discussed.   

1.4 Dissertation organization 

Chapter 2 provides a literature review of composite theory and applications that are relevant to the full 

dissertation topic. Chapter 3 introduces and derives composite theory in a general form that is ready for 

the applications presented in the subsequent chapters. Chapter 4 simplifies the composite theory and 

applies it to sandwich structures with unsymmetrical wythes. Detailed discussions on the upper and 

lower bounds of axial forces, bending moments and slip are included. In addition, thorough comparisons 

with existing theory are also provided. Chapter 5 further simplifies the composite theory presented in 

Chapter 4 and applies it to sandwich structures with symmetrical wythes. Discussions on the upper and 
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lower bonds of axial forces, bending moments and slips are also provided. Validations against test data 

are included.  Chapter 6 applies the composite theory to prestressed concrete analysis. Specifically, the 

immediate prestress losses and transfer length problems are discussed in detail. Validations against 

testing data are included.  Chapter 7 continues the discussion of Chapter 6 and develops two practical 

approaches to determine and evaluate transfer lengths. Validations against test data are also included.  

Chapter 8 summarizes the work and conclusions and discusses future steps that should be taken.      
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Chapter 2 Literature review 

2.1 Historical development of composite beam theories 

The composite theory in this dissertation features the interactions between different cross section 

components and therefore can be categorized as interactive composite theory. Its original application 

can be traced back to the 1940’s when Granholm[1] published his theory and work in the field of nailed 

timber structures. Granholm’s theory focused on the equilibrium of axial force within individual layers 

and overall bending moment of the whole cross section. More than a decade later, Holmberg[2] adopted 

and improved Granhom’s theory by considering additional transverse action and applied it to various 

concrete structures. However, all of the works done by Granholm and Holmberg focus on the composite 

structures that have identical wythes, properties (sandwich structures that have identical wythes and 

properties will be referred as symmetrical wythes sandwich structures since the wythes are symmetrical 

about the neutral axis, and this is a major assumption that simplifies its derivation of governing 

equations) and uniform distribution of connectors, and could not be applied to structures with different 

dimensions and mechanical properties in wythes.   

On the other hand, there are also composite theories that depart from the kinematics of middle layer 

shear deformation and arrive at another form of governing equations and solutions, which describe the 

structures with a single cross section. Allen[8] and Hartsock[9] respectively published essentially the same 

governing equations that considered the kinematics relationships between interior and exterior wythes, 

and overall shear or bending moment equilibrium. Later, based on very similar governing equations of 
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Hartsock, Ha[10][11] and Davies[12] focused on stiffness matrix formation and development of finite 

element algorithms.  

Surprisingly, these two categories of composite theories would yield almost identical results on the 

applications of sandwich structures[45]. However, in this dissertation the interactive composite theory is 

considered to be more versatile in terms of describing the mechanical behaviors because it does not rely 

on an assumed shape of shear deformation, therefore used as the primary tool of investigation. One of 

the merits of the interactive composite theory is that it focuses on force equilibrium and does not 

require an assumed shear deformation. So by using this type of interactive composite theory, the 

prestressed concrete analysis approaches presented in Chapters 6 and 7 are made possible.     

In bridge engineering, two-layer composite structures such as composite steel concrete T beams have 

been widely used and studied theoretically[3][16]-[20]. In 1951, Newmark[3] published his work on 

composite T beams; his theory was derived from the strain compatibility of the steel concrete interface. 

In 1967, Goodman[13] proved that Newmark’s theory is the same with Granholm’s[1]. Since then, a 

number of studies targeting different aspects of composite T beam mechanics have been carried out. 

Girhammar[16] developed a second order analysis approach. Ranzi[6][17][18], Salari[19], and Sousa[20] 

published studies involving finite element formulation. Fabbrocino[21] employed predefined moment 

curvature relation and force equilibrium to study the mechanics of composite T beams. Xu[22][23] 

considered the composite cross-section in a plane stress state and derived theoretical solutions.  

However, most available theoretical studies of composite structures focused on the longitudinal 

interaction and for sandwich structures only identical properties are considered in each wythes. 

Therefore theory considering variations in components of composite structures and both longitudinal 

and transverse interactions is developed in this dissertation (Chapters 3 and 4).  
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2.2 Insulated concrete sandwich structures 

The increasing use of Insulated Concrete Sandwich Panels (ICSPs) in building constructions calls for 

accurate analysis theory. The majority of available literatures focused on experimental studies[24]-[44], 

although there have also been attempts to define sandwich panel behavior by force equilibrium[24][25], 

classical beam theory[26][27], and adapting various existing composite theories[28][29]. Most of those 

theories however are not appropriate for ICSP behavior and not derived rigorously nor validated by 

experiments. Consequently, few of them properly predict the response behavior of concrete sandwich 

structures to transverse loading.   

ICSP analysis methodologies by others[24][26][27][30] typically consider sandwich structures to be classical 

Euler-Bernoulli beams with a reduced moment of inertia, and the role of interlayer slip is not completely 

recognized. Also, there are a number of studies that focus on a particular aspect of sandwich structures 

construction, such as design optimization, structures with thin or thick wythes[13], and development of 

various composite elements[14]. Therefore the list of multi-layer composite structures theories is 

extensive, and a comprehensive review and study of over 1300 publications is available [15]. 

2.3 Transfer length in prestressing concrete 

The transfer length problem in prestressed concrete has been a challenge for decades. Janney[57] 

appeared to be the first one who described the complicated microscopic bond behaviors observed in a 

series of tests. In the U.S. detailed experimental investigations of transfer length by Russell[49][87], 

Barnes[55][86] and Peterman[89][90][91] are frequently referenced. There are also innovative ways of studying 

transfer length, for example, using linear regression[69] and relating the measured end slip to transfer 

length[53][54][81][82], designated concrete element[62][63], reliability[58], genetic programming[61] and neural 

network[59][60]. Additional literature reviews and comparisons can be found in other studies[64][65][66][67]. 

Due to the difficulties in capturing the complex interactive mechanism in the conventional analysis 
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methodology and quantification of interface bond condition[92], researchers who study transfer length 

usually have to make assumptions and develop empirical formulas based upon test data and 

observations.  

Current ACI 318[71] and AASHTO LFRD transfer length provisions[79] are based on Hanson’s work[88], and 

Hanson’s results were derived based on the assumptions of average bond stress as well as effective 

prestress. Guyon[82] also defined the transfer length from another angle, based on end slip data, but 

assumptions of the linear or parabolic stress within transfer zones had to be made. Those assumptions 

may have reflected what were observed during the tests but the mechanics behind the observation is 

still not clearly defined. 

Since no proven and reliable analytical model is available, the focus on the experimental studies has 

resulted in debates over the true prestressing force transfer mechanisms. For example, in the 

discussions over the influence of concrete strength on the transfer length, some researchers argue that 

concrete strength has nothing to do with the transfer length[47] whereas others argue that the concrete 

strength definitely influences the transfer length[48]. Now it is generally accepted that concrete strength 

influences transfer length. However, the concrete strength can influence both concrete elastic modulus 

and the interface bonding condition, and which of them is dominant in affecting transfer length is still 

uncertain. Nevertheless, variables like concrete composition[68] and strand diameter[70][71] all appear to 

influence transfer length, but determination and quantification of those influences are a big challenge.  

After all of the efforts spent by many researchers, the mystery of transfer length is still unsolved. 

Transfer length actually is the consequence of interface slip between strands and concrete, and a model 

that fully addresses this behavior should help fundamentally understand transfer length phenomena.      
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2.4 Prestress losses 

On the other hand, immediate prestress losses due to elastic shortening, friction and seating are a 

relatively mature subject. Although the elastic shortening loss may be overestimated in some cases, for 

normal design conditions currently used formulas yield reasonable results. Zia[50], as well as other 

researchers associated with ACI-ASCE Committee 423 (Prior Committee 323), reviewed and proposed 

approaches for estimating prestress losses that are still being used, although some long term load 

factors have changed over time. This approach, referred to herein as the conventional approach, is used 

in PCI Design Handbook[70], ACI-318[71] and AASHTO-LRFD Bridge Design Specifications[79]. The National 

Cooperative Highway Research Program (NCHRP) also sponsored research[75] on the prestress losses of 

high-strength concrete bridge girders. There might still be some debates on the long term and time-

dependent losses but nobody doubts the methods used for estimating the immediate prestress losses. 

However, in the present study, it is shown that there is still room to improve the methodologies used to 

estimate the immediate prestress losses, especially when the reinforcement ratio is large.     

2.5 Transfer length by end slip 

The idea of measuring end slip to evaluate transfer length is not new and studies have investigated the 

possibility[82][76][81] and evaluated the reliability[83]. Unlike other theoretical developments in the 

prestressing transfer problem, correlating end-slip to transfer length has a solid foundation and is 

theoretically sound. However, two prominent issues must be addressed before this theory can yield 

sound solution. First, the effective prestressing force must be obtained, and second the distribution of 

the prestressing force as it transitions to the effective prestressing force from zero within the transfer 

zone must be obtained. Those two issues can be approximated in a number of ways, for example the 

use of empirical or semi-theoretical formulas, but there is not a consistent system that can provide 

sound, reliable and practical solutions.   
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Among those existing studies on relating end slip to transfer length, the important ones are Guyon’s, 

Russell’s and Rose’s. Guyon[82] first came up with the idea of relating end slip to transfer length and 

derived the equation based on different prestressing force distributions inside the transfer zones. Later, 

Russell[49] and Rose[81] adopted the same approach that assumed linear interface shear stress within the 

transfer zone based on comprehensive testing observations. The two different assumptions, parabolic or 

linear only result in the discrepancy in the constant α, which relates transfer length to mechanical 

properties. A linear distribution assumption results in a constant of α  = 2.0 whereas parabolic 

distribution has the same value as α  = 3.0. There are other studies that theoretically and experimentally 

investigated the possible shear stress distribution and the resulting α values in Guyon’s derivation, and 

Marti-Vargas[83] summarized the results and studied reliability of those conclusions.  
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Chapter 3 Composite theory in general form    

3.1 Introduction and scope  

This chapter derives the general composite theory that later chapters rely upon and sets the theoretical 

foundation. The general form composite theory uses the prestressed concrete beam geometry with 

draped tendon to demonstrate the derivation procedure. However, as will be discussed and 

demonstrated in the later chapters, this theory is not limited to prestressed concrete; it can be applied 

to other composite structures such as steel concrete T girder, and insulated sandwich structures.  

3.2 Theoretical development 

3.2.1 Assumptions and coordinate system 

The assumptions involved in this developed are: 

1) Structural behavior is limited to linear elastic material behavior and small displacements. 

2) The concrete beam and reinforcement or prestressing tendons are assumed to behave as Euler-

Bernoulli beams, and they have the same transverse deflection in the longitudinal interaction.  

3) Continuous shear resistance exists between concrete and tendons along the span.  

4) Tendon has no bending resistance.  

x direction is taken as concrete axial direction and the midspan is taken as the origin.    
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3.2.2 Axial force equilibrium  

Axial strain is equal to the derivative of its axial displacement, and the axial stress is equal to Young’s 

modulus times that strain (bending moment by eccentric tendon may exist, but it will not affect the 

longitudinal force equilibrium and will be included later in bending moment equilibrium):  

 '

2c c cE    (3.1) 

 '

, 2 ,s x s s xE    (3.2) 

where σc = axial stress in concrete; σs,x = concrete axial component of axial stress in strand; φ2c = 

concrete axial component of the concrete beam displacement from its original centroid due to axial 

deformation; φ2s,x = concrete axial component of tendon displacement from its original centroid due to 

axial deformation; Ec = concrete Young’s modulus; and Es = prestressing tendon Young’s modulus.  

     

dx

qx=qcosNc Nc+Nc'dx

q

q

 
Figure 3-1: Geometry and force equilibrium of differential element 

 

Taking the concrete portion of the beam as example from now on but the same result will be obtained if 

the tendon is taken. Using the equilibrium of forces in the axial direction of the concrete cross section 

shown in Figure 3-1: 

 '

x cq dx N dx   (3.3) 
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where qx = concrete axial component of shear (bond) force per unit length at the interface and Nc = 

resultant axial force in the concrete beam. The shear force on the differential unit length now reads:  

  
'

x c cq A   (3.4) 

where Ac = area of the concrete beam. Substituting Equation (3.1) into Equation (3.4), the interface 

shear force is determined as following: 

 ''

2x c c cq E A   (3.5) 

The slip is defined as the difference between concrete and tendon displacements:  

 
2, 2 2 ,x c s x      (3.6) 

where φ2,x = concrete axial component of the slip (between concrete and tendon) due to axial 

deformation. On the other hand, the fact that the internal axial forces in the concrete beam and tendon 

are equal to each other yields following (the sign convention of axial force is not considered since φ2,x is 

a relative movement): 

 
,c s xN N N    (3.7) 

where Ns,x = concrete axial component of resultant axial force in the tendon, and N = concrete axial 

component of axial force in both concrete beam and tendon. Equation (3.7) can now be rewritten as: 

 c c cN A   (3.8) 

 
, ,s x s s xN A   (3.9) 

Substitution of Equation (3.1) into Equation (3.8), and Equation (3.2) into Equation (3.9) respectively will 

result in: 
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 '

2c c c cN A E    (3.10) 

 '

, 2 ,s x s s s xN A E    (3.11) 

Differentiating Equation (3.6) twice:  

 '' '' ''

2, 2 2 ,x c s x      (3.12) 

Plugging Equation (3.10) and Equation (3.11) back into Equation (3.7) and differentiating once:  

 '' ''

2 2 ,c c c s s s xA E A E    (3.13) 

Substitution of φ2c˝ and φ2s,x˝ from Equation (3.13) into Equation (3.12) will yield: 

 '' ''

2, 21 c c
x c

s s

A E

A E
 

 
  
 

  (3.14) 

 '' ''

2, 2 ,1 s s
x s x

c c

A E

A E
 

 
  
 

  (3.15) 

Considering the equilibrium between interface shear forces and axial force in the horizontal direction: 

 x xK q    (3.16) 

where K = shear stiffness of the concrete strand interface; φx = φ1 + φ2,x + φ3,x = concrete axial 

component of the total slip; φ1 = ey’ = slip due to bending, as in Figure 3-1; e = the eccentricity function 

between the concrete beam centroid and the strand centroid;  y = deflection of concrete beam; and φ3,x 

= ∫( εis cos ϑ)dx = concrete axial component of the slip due to prestressing tendon. Substituting Equation 

(3.5) into Equation (3.16):  

 ''

2x c c cK E A    (3.17) 
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Substituting φ2c˝ from Equation (3.14) into Equation (3.17): 

 
''

2,

1

c c
x x

c c

s s

E A
K

A E

A E

 
 
 

 

  (3.18) 

Also, the total slip along the x axis can be written as:  

 
1 2, 3,x x x        (3.19) 

Plugging φ1 = ey
’ into Equation (3.19) and rearranging Equation (3.19) results in: 

 '

2, 3,x xx ey      (3.20) 

Note that φ3,x is the integration of strand strain along the span position. Now differentiating Equation 

(3.20) twice: 

    
''' '' '' ' ''' ' ''

2, 2 cosx x ise y ey e y          (3.21) 

where εis = initial applied strain, before transfer, in the prestressing strand and cos ϑ = 1 / √(1+(e
’
)

2
) = 

concrete axial component of strand direction, as defined in Figure 3-1. εis is negative for prestressing 

strands. Equation (3.21) now takes the form:  

  '' '' '' ' ''' ' '' '

2, 2 cosx x ise y ey e y          (3.22) 

Substituting Equation (3.22) into Equation (3.18) results in:  

   '' '' ' ''' ' '' '2 cos

1

c c
x x is

c c

s s

E A
K e y ey e y

A E

A E

       
 
 

 

  (3.23) 
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Introducing a new variable: 

 

1 1

c c s s c c s s

c c s s c c s s

s s c c

A E A E A E A E

A E A E A E A E

A E A E

   


 

  (3.24) 

After plugging Equation (3.24) into Equation(3.23), Equation(3.23) takes the form:  

   '' '' ' ''' ' '' '2 cosx x isK e y ey e y           (3.25) 

Rearranging terms and letting χB
2 = K / η yields:  

 '' 2 '' ' ''' ' '' '2 cosx B x ise y ey e y           (3.26) 

3.2.3 Bending moment equilibrium 

Recall that the distance between the concrete beam centroid and the tendon centroid is e, and then 

moment equilibrium could be established as:  

 
,ex c s xM M eN    (3.27) 

where Mex = external applied bending moment and Mc = internal bending moment of the concrete beam. 

Equation (3.27) can be rewritten as:  

 ''

ex c cM E I y eN     (3.28) 

where Ic = concrete beam moment of inertia. Differentiating Equation (3.6) once:  

 ' ' '

2, 2 2 ,x c s x      (3.29) 

Substituting Equation (3.10) and Equation (3.11) into Equation (3.7) results in the following:  

 ' '

2 2 ,c c c s s s xA E A E    (3.30) 
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Substituting φ2c
’
 and φ2s,x

’ in Equation (3.30) into Equation (3.29) results in:  

 ' '

2, 21 c c
x c

s s

A E

A E
 

 
  
 

  (3.31) 

 ' '

2, 2 ,1 s s
x s x

c c

A E

A E
 

 
  
 

  (3.32) 

Substituting either Equation (3.31) into Equation (3.10), or Equation (3.32) into Equation (3.11), results 

in:  

 '

2,xN    (3.33) 

Equation (3.28) can be rewritten after substitution of Equation (3.33) into it as:  

 
'' '

2,ex c c xM E I y e     (3.34) 

Differentiating Equation (3.20) once:  

  ' ' ' ' ''

2, cosx x ise y ey         (3.35) 

Then substituting Equation (3.35) into Equation (3.34): 

   '' ' ' ' '' cosex c c x isM E I y e e y ey           (3.36) 

After rearranging terms and letting DB = EcIc+e
2
η and αB

2
 = e

2
η / DB, Equation (3.36) can be rewritten as:  

 
2 2 2

'' ' ' ' cosexB B B
x is

B

M
y e y

e e D e

  
         (3.37) 

Finally the set of governing equations is obtained as Equation (3.26) and Equation (3.37):  
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'' 2 '' ' ''' ' '' '

2 2 2
'' ' ' '

2 cos

cos

x B x is

exB B B
x is

B

e y ey e y

M
y e y

e e D e

    

  
  

     



    


 

3.3 Discussion of governing equations 

The governing equations derivation focuses on the force equilibrium of concrete axial direction (x 

direction) and the bending moment equilibrium. In the derivation, all the variables related to the tendon 

are considered only at the concrete axial direction. This is because if the variables at tendon axial 

direction are to be considered as well, the derivation of equations such as Equation (3.12) will become 

practically intractable due to the involvement of the derivatives with respect to the angle and cosine. 

Therefore, in order to avoid that situation and make the derivation easy to follow, variables related to 

tendon are all considered directly at concrete axial direction and the results at the tendon actual 

direction can be determined after solving those concrete axial components variables.   

The solution to the governing equations will give the transverse deflection y and axial slip component φx. 

The axial force Nc or Ns,x and bending moment Mc are then readily determined. Furthermore, the axial 

force in the strand Ns and the slip along strand φ can be determined as: 

 coss cN N    (3.38) 

 cosx     (3.39) 

 
2 2 , coss s x     (3.40) 

 cosxq q    (3.41) 
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Actually, for most prestressed girders with shallow draping, cos ϑ is small, resulting in a difference in 

horizontal and actual direction from Equation (3.38) through Equation (3.40) of less than one percent 

near the end and zero everywhere else.   

The applications in the later chapters will be based on the general derivations and governing equations 

developed in this chapter. However, since the various applications may involve simplifications and 

varying forms of the governing equations, the specific governing equations used for those applications 

are also derived in the respective chapters.  
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Chapter 4 Unsymmetrical sandwich structures 

4.1 Introduction and scope 

The first application of composite theory is insulated concrete sandwich structures, as illustrated in 

Figure 4-1. For design purposes, sandwich structures are typically categorized into three types: non-

composite, partially composite and fully composite. However, because of the existence of the foam 

insulation layer and connections between two wythes, all sandwich structures are actually partially 

composite. In practice, in order to avoid thermal bow, shrinkage, creep and other time dependent 

effects that are difficult to predict, the unsymmetrical wythes sandwich structures are usually designed 

to be non-composite, whereas the symmetrical wythes sandwich structures are designed to be partially 

or fully composite. In order to provide a better understanding of sandwich structures, a new 

categorization system is suggested herein.  

  

Figure 4-1: Illustrations of unsymmetric sandwich structures (a) precast and (b) masonry 

In this dissertation, sandwich structures are differentiated by the analysis approach as symmetrical and 

unsymmetrical wythes structures. The main difference between symmetrical and unsymmetrical 
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sandwich structures is that unsymmetrical structures are more difficult to analyze and may have coupled 

longitudinal and transverse interactions (although it may not be necessary to include the coupled effect) 

in addition to more prominent transverse interaction than the symmetrical wythes one. Overall, the 

symmetry of sandwich structures really made both of the longitudinal and transverse interactions easy 

to quantify.  

Generally speaking, symmetrical sandwich structures are much easier to analyze than unsymmetrical 

sandwich structures, and the most efficient design in terms of resistance and cost. This chapter will 

focus on the unsymmetrical wythes sandwich structures, and Chapter 5 will simplify the theoretical 

development of unsymmetrical sandwich structures and apply it to the symmetrical sandwich structures.   

4.2 Theoretical development  

The longitudinal and transverse interactions are decoupled by decomposing the sandwich structure into 

the subcases shown in Figure 4-2. Figure 4-2-(b) describes the longitudinal interaction load case; Figure 

4-2-(c) and Figure 4-2-(d) are the transverse interaction load cases. In Figure 4-2, qw = applied uniform 

pressure, b = width of wythes, P1 = 0.5qwblE1I1 / (E1I1+E2I2), P2 = 0.5qwblE2I2 / (E1I1+E2I2), E1 = modulus 

of elasticity of wythe-1, E2 = modulus of elasticity of wythe-2, I1 = moment of inertia of wythe-1, and I2 = 

moment of inertia of wythe-2.  Following the subscripts on E, I, and P, “wythe-1” is the top wythe, 

“wythe-2” is the bottom wythe, and “middle layer” refers to the material between wythe-1 and wythe-2 

that provides connection between the two wythes. 
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Figure 4-2: Subcases of the uncoupled analysis (compression load case) 

 

It is important to note that, if the loading in Figure 4-2-(a) were changed to that described in Figure 4-3-

(a), the analysis procedure would remain the same except that the subcase defined in Figure 4-2-(c) 

becomes that defined in Figure 4-3-(c). The difference between Figure 4-2-(c) and Figure 4-3-(c) is that 

the same uniform pressure changes from compressing the sandwich structures to pulling. 
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Figure 4-3: Subcases of the uncoupled analysis (tension load case) 

 

4.2.1 Longitudinal interaction 

The assumptions and limitations involved in the development of this chapter are the following: 

1) Structural behavior is limited to elastic and small displacement, and the constitutive relationships are 

assumed to be linear.  

2) The wythes behave as Euler-Bernoulli beams and have the same deflection and width.   

3) Continuous and constant middle layer shear resistance exists along the span. In other words, the 

shear stiffness of the middle layer is a constant value. 

In the derivation that follows, the shear and transverse stiffness of the middle layer, K and k respectively, 

consists of the stiffness contributions from both the shear connectors and the insulation.  

Axial force equilibrium  
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Axial strain in each wythe is equal to the derivative of its axial displacement, and then the axial stress is 

equal to Young’s modulus times that strain: 

 '

1 1 21E    (4.1) 

 '

2 2 22E    (4.2) 

where σ1 = axial stress in the first wythe; σ2 = axial stress in the second wythe; φ21 = displacement from 

its original location of the first wythe (the top one with property of E1I1 and A1 in Figure 4-4) due to axial 

deformation; φ22 = displacement from its original location of the second wythes due to axial deformation;  

A2

N bdx N+N'dx

N N+N'dx

r1

r2

d1

dx

bdx
d2

A1

E1

E2

I1

I2

b

(a) (b)

 
Figure 4-4: (a) cross section; (b) Longitudinal force equilibrium 

 

 

r1+r2=r12

y'

y'd2

d1

 
 

Figure 4-5: Slip due to bending 

Wythe-1 is considered, but it should be noted that the same result would be obtained if wythe-2 were 

considered. Using the equilibrium of forces in axial direction of the wythes shown in Figure 4-4:  

 '

1bdx N dx    (4.3) 

where τ = shear stress in the middle layer, N1 = resultant axial force in wythe-1, and b = width of the 

wythes. The shear of the differential unit length now reads: 
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'

1 1b A    (4.4) 

where A1 = cross-section area of wythe-1. Substituting Equation (4.1) into Equation (4.4), the shear 

stress is determined as: 

 ''

1 1 21b E A    (4.5) 

Rearranging the terms: 

 ''1 1
21

E A

b
    (4.6) 

Since the slip is the difference between displacements, the slip due to axial deformation is introduced: 

 2 21 22      (4.7) 

where φ2 = slip between wythes due to axial deformation. The fact that the internal axial force in each 

wythe is equal to each other yields following: 

 1 2N N N    (4.8) 

where N2 = resultant axial force in the second wythe, N = resultant axial force in both wythes. Note that 

the axial force sign convention is not considered since φ2 is a relative movement. Equation (4.8) can now 

be rewritten as: 

 1 1 1N A   (4.9) 

 2 2 2N A   (4.10) 

Substituting Equation (4.1) and (4.2) into Equations (4.9) and (4.10), respectively, results in: 
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 '

1 1 1 21N A E   (4.11) 

 '

2 2 2 22N A E    (4.12) 

Differentiating Equation (4.7) twice:  

 '' '' ''

2 21 22      (4.13) 

Plugging Equation (4.11) and Equation (4.12) into Equation (4.8) and differentiating once:  

 '' ''

1 1 21 2 2 22A E A E    (4.14) 

Substituting φ21˝ and φ22˝ from Equation (4.14) into Equation (4.13) yields: 

 '' ''1 1
2 21

2 2

1
A E

A E
 

 
  
 

  (4.15) 

 '' ''2 2
2 22

1 1

1
A E

A E
 

 
  
 

  (4.16) 

Considering the equilibrium between shear connector force and slip: 

 K    (4.17) 

where K = shear stiffness of the middle layer; φ = φ1 + φ2 = total slip between wythes; φ1 = (r1 + r2)y’ = 

slip due to bending, as in Figure 4-4 and Figure 4-5; r1 + r2 = the distance from the centroid of wythe 1 to 

the centroid of wythe 2 as illustrated; and y = transverse deflection of the wythes. Note that r1 and r2 

stay together and therefore no need to be computed individually. Again, considering axial force 

equilibrium of wythe-1 and substituting Equation (4.6) into Equation (4.17):  

 ''1 1
21

E A
K

b
    (4.18) 
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Substituting φ21˝ in Equation (4.15) into Equation (4.18): 

 
''1 1

2

1 1

2 2

1

E A
K

A E
b

A E

 
 
 

 

  (4.19) 

Also, the total slip is written as: 

 1 2      (4.20) 

Rearranging Equation (4.20) and expressing φ1 with the relation from Figure 2-5, and plugging φ1 = (r1 + 

r2)y
’ into Equation (4.20): 

 '

2 1 2( )r r y      (4.21) 

Differentiating Equation (4.21) twice:  

 '' '' '''

2 1 2( )r r y      (4.22) 

Substituting Equation (4.22) into Equation (4.19):  

  '' '''1 1
1 2

1 1

2 2

( )

1

E A
K r r y

A E
b

A E

   
 
 

 

  (4.23) 

Introducing the variable η: 

 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

2 2 1 1

1 1

A E A E A E A E

A E A E A E A E

A E A E

   


 

  (4.24) 

Now plugging Equation (4.24) into Equation (4.23) yields: 
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  '' '''

1 2( )K r r y
b


      (4.25) 

Rearranging terms and letting χB
2 = Kb / η yields: 

 '' 2 '''

1 2( )B r r y       (4.26) 

Bending moment equilibrium: 

Recall that the distances between the resultant axial force in the wythes and the neutral axis are r1 and 

r2, and therefore moment equilibrium can be defined as following:  

 1 2 1 1 2 2exM M M r N r N      (4.27) 

where Mex = external applied bending moment, M1 = internal bending moment of wythe-1, and M2 = 

internal bending moment of wythe-2. Recalling the assumption that both wythes have the same 

transverse deflection and using Equation (4.8), Equation (4.27) becomes: 

    ''

1 1 2 2 1 2exM E I E I y r r N       (4.28) 

Differentiating Equation (4.7) once:  

 ' ' '

2 21 22      (4.29) 

Substituting Equation (4.11) and Equation (4.12) into Equation (4.8):  

 ' '

1 1 21 2 2 22A E A E    (4.30) 

Substituting φ21
’ and φ22

’ in Equation (4.30) back into Equation (4.29) results in: 

 ' '1 1
2 21

2 2

1
A E

A E
 

 
  
 

  (4.31) 
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 ' '2 2
2 22

1 1

1
A E

A E
 

 
  
 

  (4.32) 

Substituting either Equation (4.31) into Equation (4.11), or Equation (4.32) into Equation (4.12), results 

in: 

 '

2N    (4.33) 

Equation (4.28) can now be rewritten after substituting Equation (4.33) into it as: 

    '' '

1 1 2 2 1 2 2exM E I E I y r r        (4.34) 

Differentiating Equation (4.21) once: 

 ' ' ''

2 1 2( )r r y      (4.35) 

Then substituting Equation (4.35) into Equation (4.34): 

      '' ' ''

1 1 2 2 1 2 1 2( )exM E I E I y r r r r y          (4.36) 

After rearranging terms and letting DB = (E1I1+E2I2) + (r1+r2)
2
η and αB

2
 = (r1+r2)

2
η / DB, Equation (4.36) 

is rewritten as: 

 
 

2
'' '

1 2

ex B

B

M
y

D r r


  


  (4.37) 

Finally the governing equations are obtained as Equation (4.26) and Equation (4.37): 

 

 

'' 2 '''

1 2

2
'' '

1 2

B

exB

B

r r y

M
y

r r D
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4.2.2 Transverse interaction—the ‘sandwich pinching’ model 

The “sandwich pinching” model is obtained by decoupling the transverse action from the longitudinal 

interaction as shown in Figure 4-2-(d). Its details are further illustrated in Figure 4-6. The assumptions 

for the transverse interaction are: 

1) The longitudinal forces are neglected;  

2) The vertical connection through the middle layer remains elastic and constant for both tension and 

compression.  

 Q1 Q1+Q1'dx

dx

qwb

M1 M1+M1'dx

 Q2
Q2+Q2'dxM2 M2+M2'dx

Td=k ·b·(y1-y2)

d
1

d
2

 

Figure 4-6: Transverse force equilibrium 

Individual beam transverse shear equilibrium 

Focusing on wythe-1, the transverse shear equilibrium can be established as: 

  '

1 1 2Q dx k y y bdx qbdx     (4.38) 

where Q1 = shear force in the cross section of wythe-1 as in Figure 4-6, and k = middle layer transverse 

stiffness. After rearranging Equation (4.38): 
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  '

1 1 2Q bk y y qb     (4.39) 

Individual beam bending moment equilibrium  

Again, focusing on wythe-1, the bending moment must reach equilibrium within the wythe. So sum the 

bending moment about the left side of the differential element to obtain: 

      '

1 1 2 1 12 ( ) 2wM dx q bdx dx k y y bdx dx Q dQ dx        (4.40) 

After eliminating the second order infinitesimal terms,  

 '

1 1M Q   (4.41) 

Differentiating Equation (4.41) once: 

 '' '

1 1M Q   (4.42) 

Substituting Equation (4.39) into Equation (4.42) yields: 

  ''

1 1 2M bk y y qb     (4.43) 

Introducing the well-known Euler-Bernoulli beam equation: 

  ''

1 1 1 1y M E I    (4.44) 

Differentiating Equation (4.44) twice:  

    4 ''

1 1 1 1y M E I    (4.45) 

Substituting Equation (4.43) into Equation (4.45) and rearranging terms: 

 
       4

1 1 1 1 2 1 1wy bk E I y y q b E I     (4.46) 
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Similarly, applying the same procedure to the second wythe, its transverse shear and moment 

equilibrium equations can be obtained as: 

  '

2 1 2Q bk y y     (4.47) 

where Q2 = shear force in the second wythe as in Figure 4-6, which is determined as: 

 '

2 2M Q   (4.48) 

In the same manner, the governing equation for the second wythe reads: 

 
     4

2 2 2 1 2 0y bk E I y y     (4.49) 

Equation (4.46) and Equation (4.49) are coupled and therefore will result in difficulties for obtaining a 

closed form solution. However, they can be simplified by transforming deflections into the transverse 

forces in the middle layer, Td. Subtracting Equation (4.46) by Equation (4.49): 

 
            4 4

1 2 1 1 2 2 1 2 1 11 1 wy y bk E I E I y y q b E I       (4.50) 

Multiplying Equation (4.50) by width b and middle layer transverse stiffness k: 

 
                4 4

1 2 1 1 2 2 1 2 1 11 1 wbk y y bk E I E I bk y y q b kb E I       (4.51) 

Given that there is no uniform pressure for this case (d) of Figure 4-2, qw is equal to zero. Also only point 

loads are applied at the two ends of this particular model, which can be conveniently treated as 

boundary conditions. Thus the governing equation is now written as: 

  4 4 0d dT T    (4.52) 

where Td = bk(y1 - y2) and λ4 = bk(1/(E1I1 )+ 1/(E2I2)).  
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4.3 Solutions 

The following solutions are based on a simply supported beam subjected to uniform pressure on the top 

(above wythe-1). Mex = qwbl
2
(1 - (2x / l)

2
)

 
/ 8, l = span length, and x = 0 is located at the mid-span.  

4.3.1 Case b 

Upon inspection of the longitudinal governing equations, Equation (4.26) and Equation (4.37), the first 

impression may be that five boundary conditions are needed since the set of governing equations 

includes third derivative of deflection and second derivative of slip. However, after mathematical 

manipulation, only four boundary conditions are actually needed. Firstly, differentiating Equation (4.37) 

once results in: 

 
 

'2
''' ''

1 2

exB

B

M
y

r r D


 


  (4.53) 

Substituting Equation (4.53) back into Equation (4.26), the new fourth order governing equations are 

now: 

 

 

2
'' '1 2

2 2

2
'' '

1 2

B
ex

B B B

exB

B

r r
M

D

M
y

r r D


 

 




  
    

  

   
 

  

where βB
2
 = 1-αB

2. For simply supported beams subjected to uniformly distributed pressure, the 

symmetry boundary conditions at mid-span are slip and slope equal to zero, φ(0) = y
’
(0) = 0. Then at 

the end, deflection and curvature are both zero, so y(l/2) = y
’’
(l/2) = 0.  As a result, the solutions can 

be obtained as: 

Deflection 
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2 44

11 12

2 2 2 24

5 24 16
1

384 5 5

cosh
1 2 2 1 2

      1 1
16 2cosh

2

w

B

B

w B B B B

BB B B B

B

q bl x x
y y

D l l

x
q bl x

lD l l l



   

  



    
       

     

  
           
                         

    

  (4.54) 

Slip 

 

2
3

1 2

2

sinh
1 2 1 2 2

4 2 cosh
2

B

w B B B

BB B B B

B

x
q bl r r x

lD l l l



  


  



  
    
     

     
    

 (4.55) 

Bending Moment 

 
 

2 2

2 2 21 1
11

1 1 2 2

cosh
1 2 1 2

1 1
4 2cosh

2

B

B B
w B B

BB

B

x
E I x

M q bl
lE I E I l l



 
 





  
       
                  

    

 (4.56) 

 

 
 

2 2

2 2 22 2
12

1 1 2 2

cosh
1 2 1 2

1 1
4 2cosh

2

B

B B
w B B

BB

B

x
E I x

M q bl
lE I E I l l



 
 





  
       
                  

    

 (4.57) 

Axial Force 

 
 

2 22
2

11 12

1 2

cosh
1 2 1 2

1 1
4 2cosh

2

B

w B B
B

BB

B

x
q bl x

N N
lr r l l



 






  
       
                      

    

 (4.58) 
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Shear Force per Unit Length 

 
 

2

1 2

sinh
1 2 2

2 cosh
2

B

w B B
B

BB

B

x
q l x

lr r l l



 
 





  
  
   

   
    

  (4.59) 

4.3.2 Case c 

This is a relatively simple case, however it should be noted that since the deflection of each wythe is 

computed from the centroid of the middle layer, the stiffness is 2k.   

 
 

2 2
21 22

1 1 2 22

wq E I
y y

k E I E I
  


  (4.60) 

 
2 2

1 1 2 2

w
c

q bE I
T

E I E I



  (4.61) 

4.3.3 Case d 

The longitudinal interaction is also a fourth order differential equation of the middle layer transverse 

force. The boundary conditions are obtained according to Figure 4-2-(d). Since Td = bk(y1 - y2), at mid-

span, slopes of both wythes are zero so Td
’
(0) =  0, and no distributed pressure on both wythes so Td

’’’
(0) 

=  0. At the end, bending moment of each wythe is zero so Td
’’
(l/2) =  0, and two opposite point loads as  

Td
’’’

(l/2) = bkP1(1/(E1I1)+1/(E2I2)). Finally, the middle layer transverse force per unit length is 

determined as:  

        1 4cosh cos sinh sindT A x x A x x       (4.62) 

where A1 = -(𝜃/𝛾3)cosh(𝛾l/2)cos(𝛾l/2)/(sinh(𝛾l)+sin(𝛾l)); A4 = -(𝜃/𝛾3)sinh(𝛾l/2)sin(𝛾l/2)/(sinh(𝛾l)+sin(𝛾l));  

𝜃 = bkP1(1/(E1I1)+1/(E2I2)); and 𝛾 = λ/√2. 
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4.4 Properties of solutions 

4.4.1 Upper and lower bounds of deflection 

In the solutions, from Equation (4.54) to Equation (4.59), the shear stiffness of middle layer K is 

incorporated into the parameter χ. Therefore the upper and lower bounds of Equation (4.54) can be 

solved theoretically by setting K to zero and infinity, respectively, as:  

 
 

2 44

1 2
0

1 1 2 2

5 24 16
lim 1

384 5 5

w

K

q bl x x
y y

E I E I l l

    
       

      
 (4.63) 

 

2 44

1 2

5 24 16
lim 1

384 5 5

w

K
B

q bl x x
y y

D l l

    
       

     
 (4.64) 

Equations (4.63) and (4.64) demonstrate that, when the shear stiffness of the middle layer is small 

enough, the wythes withstand local flexural deformation independently. However, if the shear stiffness 

of the middle layer is large enough, the wythes will act together as a fully composite beam.  

4.4.2 Upper and lower bounds of slip 

The bounds of relative slip can be found based from Equation (4.65) and Figure 2-5: 

   '

1 2 1 2 2r r y           (4.65) 

For non-composite beams, φ2 is zero since the axial force is zero for each wythe. y is obtained from 

Equation (4.63). For fully composite beams, it is reasonable to assume that the relative slip is zero when 

considering the assumption made by Euler-Bernoulli beam theory that the plane’s normal remains 

coincident with the beam centroid while bending. Finally, the upper and lower bounds of relative slip 

can be obtained as: 
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33

1 2

0
1 1 2 2

5 ( ) 48 64
lim

384 5 5

w

K

r r q bl x x

E I E I l l




     
      

      
  (4.66) 

 lim 0
K




   (4.67) 

4.4.3 Upper and lower bounds of shear stress 

Although the bounds of slip have already been derived, the bounds of shear stress cannot be simply 

obtained by using the product of slip and shear stiffness. This is because slip will approach zero while the 

longitudinal shear stiffness will approach infinity when the upper bound is of interest. Consequently, the 

upper limit is not straightforward. Firstly, from examining Equation (4.19), the lower bound is for non-

composite structures, and thus there is no shear stress in the middle layer:  

 
0

lim 0
K




   (4.68) 

Now consider the upper bound, fully composite structure. In this case, φ = φ1 + φ2 = 0, so φ2 can be 

determined as: 

 '

2 1 2( )r r y      (4.69) 

Plugging Equation (4.69) into Equation (4.19), and recalling that Kφ = τ and η = A1E1A2E2 / (A1E1 + A2E2): 

 
'''1 2lim

K

r r
y

b
 



 
   

 
  (4.70) 

In order to make Equation (4.70) comparable with existing solid beam formula, it must be further 

transformed by substituting -E1I1y
’’’ = Q1 or –E2I2y

’’’ = Q2 into Equation (4.70) and again using η = 

A1E1A2E2 / (A1E1 + A2E2) and -E1I1y
’’’ = Q1 :  
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1 1 21

1 1 1 2 2

lim
1K

A r rQ

I b A E A E








  (4.71) 

Equation (4.71) takes the same form with the shear in the equivalent Euler- Bernoulli beam, and it is 

especially obvious when A1E1 = A2E2, which is the symmetrical case that classical beam theory usually 

considers. 

4.4.4 Upper and lower bounds of internal forces 

The upper and lower bounds that moment and axial forces at mid-span converge to are based on 

Equation (4.56) and Equation (4.58): 

 
 

2

1 1
1

0
1 1 2 2

lim
8

w

K

q bl E I
M

E I E I



  (4.72) 

 
 

2

2 2
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0
1 1 2 2

lim
8

w

K

q bl E I
M

E I E I



  (4.73) 

 
 

2
2 1 1

1

1 1 2 2

lim
8

w
B

K

q bl E I
M

E I E I




 
  

 
 (4.74) 

 
 

2
2 2 2

2

1 1 2 2

lim
8

w
B

K

q bl E I
M

E I E I




 
  

 
  (4.75) 

 1 2
0

lim 0
K

N N


     (4.76) 

  
2

2

1 2 1 2lim
8

w
B

K

q bl
N N r r



 
     

 
 (4.77) 

Where αB
2
 and βB

2
 represent the ratios of the middle layer bending stiffness and wythes bending 

stiffness over the overall bending stiffness, respectively. The bending moment is a result of the wythes’ 
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local bending, and the axial force is the result of composite action by shear connectors’ forces. Internal 

forces will be distributed according to the bending stiffness ratio only when fully composite action is 

achieved. For partially composite structures, internal forces will be distributed according to the 

equilibrium achieved between shear connectors’ deformation and wythes’ bending.  

4.5 Comparison with existing theories 

Many popular literatures in steel concrete composite T girder or other types of composite structures are 

more or less related to the Newmark model, which includes only the longitudinal interaction. The 

methodology presented here is similar to Newmark’s model[3] in the longitudinal interaction as well, but 

the transverse interaction was not considered by Newmark.  

Longitudinal interaction in Newmark’s model 

In order to compare with other theories, the set of governing equations are reorganized into a general 

form. Equation (4.26) and Equation (4.37) are combined to eliminate the terms containing slip. Firstly, 

differentiating Equation (4.37) once and rearrange terms: 

 
'2

''' ''

1 2

exB

B

M
y

r r D


 


  (4.78) 

 Substituting Equation (4.78) into Equation (4.26):  

 
2

'' '1 2

2 2
B

B
ex

B B

r r
M

D


 

 


     (4.79) 

then differentiating Equation (4.79) once: 

 
2

''' ' ''1 2

2 2
B

B
ex

B B

r r
M

D


 

 


     (4.80) 
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Also Equation (4.37) can be written as: 

 ' '' 1 2

2

ex

B B

M r r
y

D




  
  
 

  (4.81) 

Differentiating Equation (4.81) twice: 

  
''

4''' 1 2

2

ex

B B

M r r
y

D




  
  
 

  (4.82) 

Substituting Equation (4.81) and Equation (4.82) into Equation (4.80) and rearranging terms: 

      4 2 '' ''

1 1 2 2 B B ex exE I E I y D y M M       (4.83) 

On the other hand, Newmark’s model is adopted with symbols from this study as: 

 
 

'' 1 2

1 1 2 2 1 1 2 2

n nB
ex

K KD r r
N N M

s E I E I s E I E I


  

 
  (4.84) 

where Kn = shear stiffness of an individual connector and s = connector spacing. Then the axial force can 

be related to deflection as: 

 
 1 2''

1 1 2 2

exM N r r
y

E I E I

 
 


  (4.85) 

Equation (4.84) and Equation (4.85) together are the governing equations of Newmark’s model. Similarly, 

axial force terms must be eliminated to arrive at a general form. Firstly, from Equation (4.85), N can be 

expressed as: 

 
 ''

1 1 2 2

1 2

exM y E I E I
N

r r

 



  (4.86) 
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Differentiating Equation (4.86) twice: 

 
   4''

1 1 2 2''

1 2

exM y E I E I
N

r r

 



  (4.87) 

Substituting Equation (4.86) and Equation (4.87) back into Equation (4.84) and rearranging terms: 

      4 '' ''

1 1 2 2
n

B ex ex

K
E I E I y D y M M

s
       (4.88) 

In Newmark’s model, Kn is the stiffness of an individual connector and in this study, K is the average 

stiffness over the interface area and therefore Kb = Kn /s and Kn /(sη) = χB
2
. Upon inspecting Equation 

(4.83) and Equation (4.88), it can be concluded that the longitudinal interaction governing equations 

derived in this study are comparable to Newmark’s model.  However, it is worth mentioning that 

Newmark’s solutions are complicated and do not necessarily reveal some important resistance 

characteristics, whereas the solutions developed through the present research can be easily 

decomposed into the flexural (fully-composite) and shear (inter-layer slip compensation) components. 

In this manner, many attributes can be simplified for neglecting the shear related compensation terms 

when the structures are essentially fully composite.   

4.6 Stress and results discussion 

The internal forces solutions are already given in the solution section 4.3 and therefore the longitudinal 

stresses of top and bottom fibers are:  

 
11 1 1

1, /
2

t b

N M d

A I


 
   

 
  (4.89) 

 
12 2 2

2, /
2

t b

N M d

A I


 
   

 
  (4.90) 
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However, for the present approach, the bending moments M1 and M2 require special consideration 

because the additional transverse deformation will cause additional bending moments in the wythes. 

Therefore starting from the transverse force, which takes the form:  

 1 2( )dT kb y y    (4.91) 

Differentiating Equation (4.91) twice results in:  

  '' '' ''

1 2dT kb y y    (4.92) 

Using y1
’’ = -M1 / (E1I1) and y2

’’ = -M2 / (E2I2), Equation (4.92) can be rewritten as:  

 
''

1 2

1 1 2 2

dM M T

E I E I kb
     (4.93) 

From bending moment equilibrium:  

  1 2 1 2exM M M N r r      (4.94) 

Dividing Equation (4.94) with E2I2 and E1I1: 

 
 1 21 2

2 2 2 2 2 2

exM N r rM M

E I E I E I

 
    (4.95) 

 
 1 21 2

1 1 1 1 1 1

exM N r rM M

E I E I E I

 
    (4.96) 

Through Equation (4.93), Equation (4.95) and Equation (4.96), the total wythes bending moments 

considering the transverse effects M1 and M2 can be determined as: 

 
  ''

1 2 1 1 2 2
1

2 2 1 1 2 2

ex d
M N r r T E I E I

M
E I kb E I E I

  
  

 
  (4.97) 
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  ''

1 2 1 1 2 2
2

1 1 1 1 2 2

ex d
M N r r T E I E I

M
E I kb E I E I

  
  

 

  (4.98) 

Furthermore, the top and bottom longitudinal stresses in the two wythes are determined as:  
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Also, the bending moment solutions of the Newmark approach and current approach are given in 

Equations (4.56) and (4.57), and Equations (4.97) and (4.98). Several things are worth noting; first 

Equation (4.56) and Equation (4.57) only include the bending moments from the longitudinal interaction. 

On the other hand, Equation (4.97) and Equation (4.98) include the resultant bending moments from 

both the longitudinal and transverse interactions.    
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Figure 4-7: Precast sandwich structure cross section. 
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Figure 4-8: Scenario 1 
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Figure 4-9: Scenario 2 

 

Two scenarios are investigated as in Figure 4-8 and Figure 4-9, the only difference between the two 

scenarios is that the top and bottom wythes are switched. The basic parameters and dimensions of 

sandwich structure employed for numerical comparison purposes are defined in Figure 4-8. In the 

following numerical results and discussion, the baseline dimensions are:  a = 2 inches, b = 16 inches, t = 

11 inches, d1 = 3 inches, d2 = 6 inches, c1 = 1.5 inches, c2 = 3 inches, the structure is simply supported 

with 120 inches span and uniform pressure of 1.5 psi is applied along the span. Young’s modulus of top 

and bottom wythe are 4074.6 ksi and 3886.9 ksi, respectively. The longitudinal and transverse shear 

stiffnesses are 1740 (lbf/in) and 13921 (lbf/in3). Note in all the following plots, only the right half of the 

span is plotted because of symmetry. “0” and “1” along the horizontal axis represent the mid-span and 

end support respectively. First the middle layer transverse force, which combines the solutions from 

subcase-c and subcase-d of Figure 4-2, is plotted by using the present methodology.  
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Figure 4-10: Transverse force of scenario 1. Tmax=69.25 
(lbf/in) 

 

Figure 4-11: Transverse force of scenario 2. Tmax=369.32 
(lbf/in) 

 

It can be observed from Figure 4-10 and Figure 4-11 that at the end support the transverse force 

reaches the maximum value but decreases to its minimum value within about one third of the half span. 

However, in the Figure 4-10 scenario 1 the transverse force is in compression whereas in the Figure 4-11 

scenario 2 near the quarter span tensile transverse force (negative values) starts to develop. In Figure 

4-11 the tensile force occurs because the tensile force from the subcase-d of Figure 4-2-(d) overrides the 

compressive pressure from the subcase-c of Figure 4-2-(c) near the quarter span. Also, another 

interesting observation is that the transverse force in scenario 2 is more than four times larger than it is 

in scenario 1 at the end support. For the two scenarios, the bending moment in the two wythes are 

plotted in Figure 4-12 to Figure 4-15.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Span Position

N
o
rm

a
liz

e
d
 T

ra
n
s
v
e
rs

e
 F

o
rc

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Normalized Span Position

N
o
rm

a
liz

e
d
 T

ra
n
s
v
e
rs

e
 F

o
rc

e



  47 
 

 

Figure 4-12: Wythe-1 bending moments of scenario 1. 
Mmax=2407 (lbf-in) 

 

Figure 4-13: Wythe-2 bending moments of scenario 1. 
Mmax=18370 (lbf-in) 

 

Figure 4-14: Wythe-1 bending moments of scenario 2. 
Mmax=18367 (lbf-in) 

 

Figure 4-15: Wythe-2 bending moments of scenario 2. 
Mmax=3365 (lbf-in) 

 

From Figure 4-12 to Figure 4-15, the present approach and Newmark’s approach result in very obvious 

difference in bending moments, as much as 500% for wythe-2 near the end support. However, near the 

mid-span the difference almost vanishes since the influence of transverse interaction can hardly reach 

there. Additionally, it is worth noting that among the two different wythes the thin wythe tends to bear 

the larger difference between the two methodologies. For example, in Figure 4-12 and Figure 4-13, 

different approaches result in larger difference on wythe-1. However, in Figure 4-14 and Figure 4-15, 

two different approaches result in larger difference on wythe-2. This makes sense given the fact that the 
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main difference between the two approaches is that the present methodology considers the bending 

moment caused by the transverse interaction whereas Newmark’s methodology does not. Therefore 

when the two wythes are subjected to the same external loads as in the subcase-(d) of Figure 4-2, the 

thinner wythe will have more prominent transverse interaction and therefore larger bending moment 

associated with the transverse interaction. Stresses in the top and bottom fibers of the two wythes are 

plotted in Figure 4-16 to Figure 4-23.  

 

Figure 4-16: Top fiber stress of wythe-1 for scenario 1. 
𝛔max=172.15 (psi) 

 

Figure 4-17: Bottom fiber stress of wythe-1 for scenario 1. 
𝛔min=-28.41 (psi) 

  

 

Figure 4-18: Top fiber stress of wythe-2 for scenario 1. 
𝛔max=155.42 (psi) 

 

Figure 4-19: Bottom fiber stress of wythe-2 for scenario 1. 
𝛔min=-227.29 (psi) 
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As in Figure 4-16 to Figure 4-19, for scenario one, at the thinner wythe, wythe-1, two approaches yield 

apparent difference in terms of stress, but for the thicker wythe, wythe-2, the difference between the 

two approaches is smaller than wythe-1. This is due to the bending moment difference between the two 

wythes. In Figure 4-17 near the end support, note that the transverse interaction will result in 

compressive stress whereas, if the transverse interaction is not considered as in Newmark’s approach, 

the stress is still tensile. Furthermore the compressive stress is about 25% of the maximum stress at the 

mid-span in Figure 4-17.        

 

Figure 4-20: Top fiber stresses of wythe-1 for scenario 2. 
𝛔max= 227.26 (psi) 

 

Figure 4-21: Bottom fiber stresses of wythe-1 for scenario 2. 
𝛔min=-155.39 (psi) 

 

Figure 4-22: Top fiber stresses of wythe-2 for scenario 2. 
𝛔max=128.54 (psi) 

 

Figure 4-23: Bottom fiber stresses of wythe-2 for scenario 2. 
𝛔min=-172.26 (psi) 
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As seen in Figure 4-20 to Figure 4-23, again for scenario 2 the thinner wythe, wythe-2, also bear larger 

difference between the two approaches than the thicker wythe. However the difference is more obvious 

than it is in scenario 1. This is again mainly because the transverse interaction in subcase-d of Figure 4-2-

(d) is larger and the resultant bending moments is greater for the thin wythe but Newmark’s approach 

does not consider this resultant bending moment from transverse interaction. Therefore, as this 

transverse interaction associated bending moment becomes larger, the difference between the two 

approaches increases.  

4.7 Conclusions 

A new analysis procedure and associated subcases for analyzing partially composite structures with non-

symmetric wythes are presented to break the complicated behaviors into the the simple subcases 

illustrated in Figure 4-2 and Figure 4-3. Two sets of governing equations are derived to capture the 

longitudinal and transverse behaviors of partially composite sandwich structures. The longitudinal 

governing differential equations derived in this study are an extension of Granholm’s governing 

equations, which were originally derived only for nailed timber structures with identical timber layers. It 

has now been generalized to accommodate a wide range of structures, including the capability to deal 

with arbitrary properties and materials such as foam insulated sandwich structures, steel concrete T 

girders, etc. The transverse governing equations are derived to consider subcase (d) in Figure 4-2 and 

Figure 4-3.  Furthermore, this study provides mathematical discussion that links theories such as the 

Newmark model to the present model. The differences between the two models are thoroughly 

inspected and discussed.  

It is demonstrated that the present approach captures transverse interaction and results in more 

reasonable results than Newmark’s approach, especially in terms of bending moment. The resultant 
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stresses also show apparent difference between the two approaches. The model developed through the 

present research balances the complexity and accuracy by supplementing important transverse 

interaction as a decoupled load case. Another important aspect of this study is that the governing 

equations are all solved with closed form solutions, which lends convenience to future application to 

practical design and analysis. Also the upper and lower bounds of those solutions are derived and 

provided in closed forms, and in that way the estimation of internal forces in any partially composite 

structures is made possible.  

This analysis approach in this chapter decouples the longitudinal land transverse interactions and 

investigates them separately. However, the longitudinal and transverse effects are actually coupled. The 

discussion and evaluation on the mechanics of coupling needs thorough investigation so future study 

will include that aspect. Other future work will also include transforming the theory presented here into 

design methodology and additional discussion of nonlinear properties associated with sandwich 

structures.
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Chapter 5 Symmetrical sandwich structures 

5.1 Introduction and scope 

Symmetrical sandwich structures can be regarded as a special case of unsymmetrical structures, and the 

governing equations and solutions of unsymmetrical cases are applicable to the symmetrical structures.  

Since the internal forces and stresses have been thoroughly discussed in Chapter 4, this chapter will 

emphasize the deflection, and other symmetrical sandwich structures behavior. Furthermore, unlike 

unsymmetrical sandwich structures, the deflection associated with transverse interaction in symmetrical 

sandwich structures is usually negligible compared to the deflection associated with the longitudinal 

effect. Therefore only the longitudinal behaviors are discussed in this chapter. 

5.2 Theoretical development 

After simplifying the theory developed in Chapter 4 and applying it to symmetrical structures, the 

governing equations now take the form:  

 
'' 2 '''2ry      (5.1) 

 
2

'' '
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ex

w total

M
y

r E I


     (5.2) 

The solution cases can still be derived from Figure 4-2, but in case of symmetrical wythes the load cases 

are simplified as illustrated in Figure 5-1.  

.   
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Figure 5-1:  Load Cases of symmetrical sandwich structures 

In Figure 5-1, qw = applied uniform pressure. The case shown in Figure 5-1-(b) determines the deflection 

shared by both wythes, then the second and third cases shown in Figure 5-1-(c) and Figure 5-1-(d), 

respectively, determine the relative vertical compression between the wythes. All of the three cases are 

presented here, but the second and third cases are regarded as beam bending on soft medium, the 

details of which can also be found from related references. In this study, those later two cases are 

considered to be trivial for symmetrical wythes sandwich structures. 

5.3 Solutions 

In this section, the solutions of the longitudinal interaction as in Figure 5-1-(a) are considered.  

Deflection: 

 

2 44

1

2 2 2 24

5 24 16
1

384 5 5

cosh
1 2 2 1 2

      1 1
16 2cosh

2

w

w total

w

w total

q bl x x
y

E I l l

x
q bl x

lE I l l l



   
  



    
      

     

  
           

                              

 (5.3) 



  54 
 

 
2

4

wq
y

k
   (5.4) 

where: β = √ (1-α2); k = vertical compressive stiffness of middle layer; l = span length. 
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where: Ψ = φ1
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0
 = cosλ∙sinhλ; φ3

0
 = sinλ∙sinhλ; φ4

0
 = 

sinλ∙coshλ; φ1 = cos𝜀∙cosh𝜀; φ3 = sin𝜀∙sinh𝜀; λ = √2/4(l/l0); 𝜀 = √2/4(x/l0); and l0 = ∜(Ew∙i/(2k∙b)); i =2Isgl. 

The solution can be represented as: 
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Bending moment in the wythes: 
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The solution can be represented as: 
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Axial force in the wythes (prestressing force not included): 
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 2 0N   (5.12) 

 3 0N   (5.13) 

The solution can be represented as: 
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Slip between the wythes: 
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Middle layer shear stress: 
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Or alternatively  

 K    (5.17) 
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5.4 Property of solution 

5.4.1 Upper and lower bounds of deflection 

The upper and lower bounds of Equation (5.3) can be solved theoretically as:  
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Equations (5.18) and (5.19) mean that when the shear stiffness of the middle layer is sufficiently small, 

the wythes withstand local flexural deformation independently. However, if the shear stiffness of middle 

layer is sufficiently large, the wythes will act together as a fully composite beam.  

5.4.2 Upper and lower bounds of slip 

The bounds of relative slip can be calculated based on Equation (5.20): 

 '

1 2 22r y          (5.20) 

For non-composite beams, φ2 is zero since the axial force is zero for each wythe. y is obtained from 

Equation (5.18). For fully composite beams, it is reasonable to assume that the relative slip is zero when 

considering the assumption made by Euler-Bernoulli beam theory that the plane’s normal remains 

coincident with the beam centroid while bending. Finally, the upper and lower bounds of relative slip 

can be obtained as: 
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 lim 0
K




   (5.22) 

5.4.3 Upper and lower bounds of internal forces 

The upper and lower bounds in which the mid-span moment and axial forces converge to are based 

upon Equations (5.7) and Equation (5.11): 
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where α
2
 = 2r

2
A/Itotal, β

2 
= 1-α

2
. α2

 and β
2
 represent the ratios of middle layer bending stiffness, and 

wythes bending stiffness over the overall bending stiffness respectively. The bending moment is a result 

of the local bending in the wythes, and the axial force is the result of composite action through the 

resistance provided by the shear connectors.  Internal forces will be distributed according to bending 

stiffness ratio only when fully composite action is achieved. For partially composite structures, internal 

forces will be distributed according to equilibrium achieved between shear connector deformation and 

wythe bending.  

5.5 Theory for discrete shear connectors  

As in the section 3.2.1, one of the common assumptions is that the shear stiffness is constant and 

continuous along the span. However, in reality, this is an unrealistic assumption since discrete, perhaps 
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with non-uniform spacing, shear connector distributions are often used. Therefore, an arbitrary shear 

stiffness function is implemented in the present research. By doing so, any form of shear connector 

pattern can be analyzed, but as a result, the governing equations are nonlinear and can only be solved 

numerically. 

In this study, a rectangle wave is chosen to represent the stiffness of discrete shear connecters. 

Therefore the constant shear stiffness K is replaced by a shear stiffness function Kf, which is obtained 

through Fourier Transform as: 
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   (5.27) 

where Kf  = the shear stiffness function of the whole structure; Kin = the shear stiffness of individual 

shear connecter; t = length of positive phase; T = period length. It is suggested that Kin = K(T/t) when 

the dimension of shear connecter cannot be accurately obtained. In this way, the total shear stiffness of 

all the shear connecters remains constant, even though the shear connecter width varies. The 

rectangular wave function with T = l/6 (l = span length), and t = 0.05T is used in this study, which is 

normalized and plotted in Figure 5-2. 
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Figure 5-2:  Shear stiffness function 

K is then replaced with Kf in the governing equations, and the first governing equation is obtained as:  
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The new set of governing equations is now rewritten by replacing Equation (5.1) with Equation (5.28) as: 
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In order to solve the coupled governing equations, Equation (5.28) is mathematically manipulated to the 

second order by eliminating the third order term of deflection. The processed set of governing 

equations is determined as: 

 '' '

2 2

2 2f

ex

w w total

bK r
M

E A E I
 

 
     (5.29) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

x/(0.5l)

K
/K

m
a

x



  60 
 

 
'' ' ex
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where β2
 = (1-α2). Then the first order standard form of the governing equations is determined based on 

Equations (5.29) and (5.30) for numerical solution as: 

 '

1 1 2 2Z Z      (5.31) 

 '

2 1Z Z   (5.32) 

 '

3 3 1 4Z Z      (5.33) 

 '

4 3Z Z   (5.34) 

where: Z1 = φ'; Z2 = φ; Z3 = y'; Z4 = y; λ1 = 2bKf /(β
2
EwA); λ2 = 2rMex'/(β

2
EwItotal); λ3 = rA/Itotal; and λ4 = 

Mex/(EwItotal). 

Finally, Equations (5.31) through (5.34) can be solved with specific boundary conditions as a Boundary 

Value Problem (BVP), and numerical schemes such as finite difference can be employed. 

Granholm’s theory does not involve those additional assumptions and is mechanically closer to ICSPs but 

yields complexity in both of the governing equations and solution. However, they both have an 

unrealistic assumption of constant and continuous shear stiffness in the middle layer along the span 

length. Finally, the arbitrary shear resistance theory developed herein is better conditioned in terms of 

shear stiffness but can only be solved numerically.  

Comparison between continuous and discrete models  

The continuous model refers to Granholm’s Model or the first case of Holmberg’s solution. Equations 

(5.31) through (5.34) can be solved with simply supported beam boundary conditions, which are given in 
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Equations (5.35). Note that among these boundary conditions, Z2(0) = 0, Z3(0) = 0, and Z4(l/2) = 0 are 

directly obtained from the fact that slip and slope are zero at the mid-span, and deflection is zero at the 

end support. However, Z1(l/2) = 0 is derived from Equation (5.30), with the conditions of both external 

applied bending moment Mex and internal bending moment -EWIsgly
’’equal to zero at the ends. 

        1 2 3 42 0 0 2 0Z l Z Z Z l      (5.35) 

The normalized results of deflection, slip, bending moment and axial force (normalized to 0.39) of both 

models for half of the span are compared and plotted in Figure 5-3. As can be noted, deflection and 

relative slip are not significantly affected by the Discrete Models. However, the internal forces, such as 

axial force and bending moment, are significantly affected at the vicinity of the shear connectors. 

Furthermore, two parameters, t and T as defined in Equation (5.27), will affect the results, even though 

the total shear stiffness remains constant. The ratio of t / T is usually referred to as “duty cycle,” which 

ranges from zero to one. The greater the duty cycle is the smoother the results will become. When the 

duty cycle is equal to 1, the discrete model becomes the continuous model. For example, in Figure 5-3, 

the Discrete Model has a duty cycle of 0.05 and the Continuous Model can be regarded as the Discrete 

Model with duty cycle of 1, and they all have the same middle layer total shear stiffness.  Therefore it is 

generally sound to conclude that the continuous shear connector model is adequate for general analysis; 

however, the maximum stress may no longer occur at mid-span, but rather in the vicinity of shear 

connectors near mid-span, and actual stress near the shear connecters may be larger than predicted by 

the continuous model. Special attention should be paid to the problems with large shear stiffness, but 

small duty cycle.   
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Figure 5-3:  Comparison of different models  

5.6 Experiment setup and validation 

Holmberg’s solution is employed for the validation since the Discrete Model will yield the same 

deflection and slip results. Also, the sandwich panels tested have very large vertical resistances; 

therefore the second and third terms are trivial. 

 
1

in exy y y y    (5.36) 

5.6.1 Consideration of prestressing forces 

Prestressing forces are considered as a pair of axial forces plus a pair of additional bending moments if 

eccentric prestressing tendons are present. For this study, the prestressing tendons are in the center of 

each wythe, therefore only a pair of axial forces is considered. Since this study is limited to small 

displacement and linear elastic behaviors, curvature and deflection will not be affected by this pair of 

axial forces.   

5.6.2 Experiment setup 

Data from experiments conducted by Naito[25][31]-[34] are used for validation. Displacements were 

measured as a distributed load was applied by a load tree apparatus that simulated uniform pressure. 
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The test apparatus and cross section properties of tested sandwich panels are illustrated in Figure 5-4, 

Table 5-1 and Table 5-2. The span length of all specimens is 304.8 cm (120 inches). 

 

(a) 

76

76
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813
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(b) 

Figure 5-4: a) Test apparatus                                                         b) Cross sections (Unit: mm) 

 

Table 5-1: Cross section details  

 
A  

kN (kips) 
B C D 

E  

mm (in) 

F  

mm (in) 

G  

mm (in) 

PCS 1 
9.525mm(3/8”)

∅ @71.62(16.1) 
Steel C Shape WWR EPS 51 (2) 203 (8) 2@508 (20) 

PCS 2 
9.525mm(3/8”)

∅ @71.62(16.1) 
Carbon Mesh  WWR EPS 51 (2) 203 (8) 2@508 (20) 

PCS 3  
2×200mm2(#5) bars 

&9.525mm(3/8”)∅ 
@71.62(16.1) 

Carbon Mesh  WWR EPS 51 (2) 203 (8) 2@508 (20) 

PCS 4 
9.525mm(3/8”)

∅ @66.28(14.9) 
Metal C-pins  

71mm2(#3) @ 

45.72cm(18”) 
XEPS 76 (3) 229 (9) 3@305 (12) 

PCS 5 
9.525mm(3/8”)

∅ @66.28(14.9) 
Composite Pin 

71mm2(#3) @ 

45.72cm(18”) XEPS 76 (3) 229 (9) 2@508 (20) 

PCS 6 
9.525mm(3/8”)

∅ @71.62(16.1) 
Carbon Mesh  WWR XEPS 76 (3) 229 (9) 2@508 (20) 

Where: A is the longitudinal prestressing tendon; B is the shear connector; C is the reinforcement; D is the type of insulation foam; E is the 
thickness of insulation layer; F is the total thickness of the sandwich beam; G is the space between shear connectors. 
 

Table 5-2: Material properties  

 
Young’s Modulus 

of Wythes  

GPa (ksi) 

Insulation Foam 

Stiffness 

kN/m
3
 (lb/in

3
) 

Shear Connector 

Stiffness 

kN/m
3
 (lb/in

3
) 

PCS 1 35.63 (5167) 84517 (311.36) 3042 (11.21) 

PCS 2 36.01 (5223) 84517 (311.36) 196723 (724.72) 

PCS 3  36.03 (5226) 84517 (311.36) 196723 (724.72) 

PCS 4 36.91 (5353) 56347 (207.58) 952 (3.51) 

PCS 5 36.86 (5346) 56347 (207.58) 8490 (31.28) 

PCS 6 36.61 (5310) 56347 (207.58) 374678 (1380.30) 
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5.6.3 Mid-span deflection validation 

The upper and lower bounds of deflection are given in Equations (5.18) and (5.19). Erroneous sensor 

data and deflection associated with seating of the samples were eliminated. 
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Figure 5-5: Deflection-resistance comparisons 

Several characteristics of behavior can be observed in Figure 5-5. Firstly, the testing results will usually 

fall between the theoretical solutions with and without the middle layer foam, although it has not yet 

been studied to what extent the foam shear stiffness is effective. Secondly, the comparisons between 

the testing results and the theoretical solutions confirm that the stiffness influences the deflection in a 

nonlinear way. For example, the comparison of PCS1 and PCS2 shows that the same foam will help 

reduce the deflection more effectively for specimens with small existing shear connecter stiffness 

compared to the one with large existing shear connecter stiffness.  Furthermore, the behavior related to 

a common manufacturing flaw of concrete sandwich structures, poor embedment of the shear 

connectors, can be observed from the PCS6 specimens. Although, the shear stiffness of PCS6 is large, as 

defined in Table 5-2, all three tested samples show non-composite behaviors shortly after loading begins. 

For example, the theoretically predicted slopes of deflection are much larger than that demonstrated by 

the testing results, and the slopes of the testing results are actually very close to the lower bound, non-

composite action. This is because when the poor bonding of the shear connecter embedment is smaller 

than the demand exerted by the applied load, shear connecter embedment failure occurs and the two 

concrete wythes act independently as non-composite structures. Nonetheless, the deflection 
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of sandwich structures with reasonable accuracy considering the random characteristics of concrete 

structures and uncontrollable factors associated with the manufacturing process.   

5.6.4 End slip validation 

The upper and lower bounds of end slip are given in Equations (5.21) and (5.22). It can be noted from 

Figure 5-6 that the relative slip predicted at the ends of the specimens correlates well with the test 

results. However due to manufacturing imperfections, the slip at one end may differ slightly from the 

slip at the other end. 

  

Figure 5-6: Load-slip relationship 
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5.7 Discussions based on theory 

5.7.1 Pattern of internal forces and stresses 

The dimensions of PCS1 under pressure of 10.34 KPa is taken as an example. The internal forces and 

stresses are plotted using 60 times the true stiffness of the shear connectors to emphasize the effect. 

Figure 5-7 shows how the shear connector stiffness influences the internal forces and the related stress 

pattern. As expected, the bending moment decreases and the axial force increases to their bounds, 

respectively, when shear connectors become sufficiently stiff. Then, at the normalized stiffness of 2.1, 

exterior wythe stresses are plotted with both Continuous and Discrete Models. It should be noticed that 

the discrete model will yield larger stresses near shear connectors and the maximum value exists at the 

first one or two connectors from the mid-span. 

 

(a) 

 

(b) 

Figure 5-7: Mid-span internal forces and stresses 

5.7.2 Influence of different insulation layer thickness on overall behavior 

Five insulation setups are considered as illustrated in Figure 5-8. The insulation layers’ thicknesses vary 

but the concrete wythes’ dimensions are the same. Also, the assumption is that the same type of shear 

connectors and insulation foam are used, but their heights can vary according to different middle layer 

thickness. 
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Figure 5-8: Cross-section and dimension ratios considered (Unit: mm) 

In order to study the effect of insulation layer thickness variation, the assumption that the shear 

connectors’ ends are built into the wythes as fixed boundary conditions is made. In that case, 
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 (5.37) 

It can be observed in Equation (5.37) that K, as a function of thickness of the middle layer 2r-d, changes 

exponentially. The deflection is plotted in Figure 5-9 as a function of middle layer stiffness for the five 

cross-sections. Parameters and dimensions of PCS6 are taken under 10.34 KPa pressure for 

demonstration. Figure 5-9 demonstrates that for relatively thick insulation layers, it is more difficult to 

achieve fully composite action than for thin insulation layers (the 3-4-3 panel would need about 3 times 

the number of connectors compared to the 3-3-3 panel, and 5 times compared to 3-2-3). After achieving 

fully composite action, the 3-4-3 panel would be stiffer and have less deflection due to the larger 

moment of inertia, but for average sandwich panel design, the deflection associated with shear 

dominates and consequently a thicker insulation layer results in a larger deflection. Therefore it is not 

sound to conclude that a larger moment of inertia would help reduce deflection in sandwich structures.  
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Figure 5-9: Influence of middle layer on the mid-span deflection  

5.8 Conclusions 

This chapter derives a rigorous discrete analysis model for composite structures. Most importantly, it 

addresses the absence of reliable analysis methodology in the ICSP industry.  Key findings and 

accomplishments of the work include: 

1. The Discrete Model can improve the stress calculation accuracy near shear connectors and capture 

the key characteristic of ICSP structures. 

2. Sandwich structures deflection is decomposed and classified as flexural and shear components. 

Furthermore, the upper and lower bounds of deflection, end slip and internal forces are derived and 

verified against full-scale test data. 

3. The deflection associated with shear deformation can be so large that it can dominate the deflection 

when the middle layer stiffness is relatively small (demonstrated in Figure 5-9).  
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Chapter 6 Transfer length and immediate prestress losses 

in prestressed concrete 

6.1 Introduction and scope 

Another application of the composite theory developed in Chapter 3 is addressing problems of transfer 

length and the prestress losses immediately after release of the presstressing tendons in prestressed 

concrete structures. As discussed in Chapter 2, transfer length is not completely understood by the 

prestressing concrete industry. Many research efforts and resources have been spent on this subject 

during the development of the prestressing concrete industry over several decades but nowadays the 

methods used for predicting and understanding it are still under development. However, transfer length 

is one of the most important issues in prestressed concrete design and analysis since the applicability of 

plane cross section assumption relies on it. 

Unlike conventionally reinforced concrete structures, in prestressed concrete structures the large 

amount of prestressing forces, which are transferred to the concrete within the transfer zones, results in 

large concentrated forces that are applied to the concrete. These concentrated forces in the transfer 

zones make the assumption of plane cross section invalid. However, away from the transfer zones, the 

tendons have no interaction with the concrete as the concrete / tendon interface shear force becomes 

zero (Figure 6-1). The transfer zones essentially serves as anchorage, and the prestressing force out of 

transfer zones is transfer by the “anchorage” concrete in the transfer zones instead of tendons. 

Therefore the plane cross section assumption is only valid out of transfer zones, as illustrated in Figure 

6-1.    
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Figure 6-1: Prestressed concrete and force equilibrium in pretensioned concrete girder 

The theoretical development is based on the composite theory presented in Chapter 3. However due to 

the constant eccentricity of prestressed tendon in this chapter, the theoretical development presented 

will therefore be slightly different from that presented in Chapter 3.  

6.2 Theoretical development 

6.2.1 Assumptions and limitations 

Assumptions involved in the following development include: 

1) Structural behavior is limited to elastic and small displacement and constitutive relationships are 

assumed to be linear; 

2) The concrete beam and reinforcement or prestressing strands behave as Euler-Bernoulli beams and 

have the same transverse deflection;  

3) Strands have no bending resistance; and 
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4) Continuous and constant shear stiffness exists along the surfaces of the strands.  

The last assumption may not reflect the true bond condition when slip exceeds the elastic threshold; 

however the idea is to average the possible nonlinear bond-slip relationship by using a constant value to 

capture the trend within acceptable accuracy. If more accurate results are desired, a numerical model 

that considers the nonlinear bond-slip relationship must be employed.     

6.2.2 Axial force equilibrium  

Axial strain is equal to the derivative of its axial displacement, and then the axial stress is equal to 

Young’s modulus times that strain:  

 '

2c c cE    (6.1) 

 '

2s s sE    (6.2) 

where φ2c = concrete beam displacement from its original centroid due to axial deformation; φ2s = 

strand displacement from its original centroid due to axial deformation; Ec = modulus of elasticity of 

concrete; and Es = modulus of elasticity of prestressing strand. Bending moment caused by strand 

eccentricity may be present, but it will not affect the longitudinal equilibrium and will be included later.  

e

e

y'
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dx
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N N+N'dx

 

Figure 6-2: Geometry and force equilibrium 
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The first focus will be on the concrete girder but the same result will be obtained for the strand. Using 

the equilibrium of forces in the axial direction of the cross section shown in Figure 6-2: 

 '

cqdx N dx   (6.3) 

where q = shear force per unit length within the concrete/strand interface and Nc = resultant axial force 

in the concrete beam. The shear force within the differential unit length: 

  
'

c cq A   (6.4) 

where Ac = cross section area of the concrete beam. Substituting Equation (6.1) into Equation (6.4), the 

shear force per unit length is defined as:  

 ''

2c c cq E A   (6.5) 

Since the slip is the difference in displacements, the slip can be written as: 

 2 2 2c s      (6.6) 

where φ2 = slip between concrete and strand due to axial displacement. Note that φ2 includes slip from 

curvature and prestressed strands. The fact that internal axial forces in the concrete beam and strands 

are equal to each other yields following:  

 c sN N N    (6.7) 

where Ns = resultant axial force in the strand and N = resultant axial force in both the concrete beam 

and strand. Note that the axial force sign convention is not considered since φ2 is a relative movement.  

Equation (6.7) can now be rewritten as: 

 c c cN A   (6.8) 
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 s s sN A   (6.9) 

Substituting Equation (6.1) into Equation (6.8), and Equation (6.2) into Equation (6.9) respectively results 

in: 

 '

2c c c cN A E    (6.10) 

 '

2s s s sN A E    (6.11) 

Differentiating Equation (6.6) twice:  

 '' '' ''

2 2 2c s      (6.12) 

Plugging Equation (6.10) and Equation (6.11) back into Equation (6.7) and differentiating once:  

 '' ''

2 2c c c s s sA E A E    (6.13) 

Substituting of φ2c˝ and φ2s˝ in Equation (6.13) into Equation (6.12) yields: 

 '' ''

2 21 c c
c

s s

A E

A E
 

 
  
 

  (6.14) 

 '' ''

2 21 s s
s

c c

A E

A E
 

 
  
 

  (6.15) 

Now, considering the equilibrium between interface shear force and slip: 

 K q    (6.16) 

where K = shear stiffness of the concrete-strand interface, or bond stiffness for short; φ = φ1 + φ2 + φ3 = 

total slip between concrete beam and strand; φ1 = ey
’ = slip due to bending, as in Figure 6-2; e = the 

distance from the concrete beam centroid to the strand centroid; y = deflection. φ3 = ∫ εis dx = slip due 
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to prestrained strands. Again, taking the concrete beam as an example and substituting Equation (6.5) 

into Equation (6.16): 

 ''

2c c cK E A    (6.17) 

Substituting φ2c˝ in Equation (6.14) into Equation (6.17): 

 
''

2

1

c c

c c

s s

E A
K

A E

A E

 
 
 

 

  (6.18) 

Also, the total slip is written as: 

 1 32       (6.19) 

Rearranging Equation (6.19) and expressing φ1 with e and y as shown in Figure 6-2. φ3 is also easily 

obtained but it is not necessary in this step. Plugging φ1 = ey
’ into Equation (6.19): 

 '

2 3ey       (6.20) 

Noted that φ3 is a linear function of span position since the prestrain is constant in the strands and the 

relative slip is the integration of strain along the span length. Now differentiating Equation (6.20) twice:  

 '' '' '''

2 ey     (6.21) 

φ3 is consequently eliminated. Substituting Equation (6.21) into Equation (6.18): 

  '' '''

1

c c

c c

s s

E A
K ey

A E

A E

  
 
 

 

  (6.22) 

Introducing a new variable: 
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1 1

c c s s c c s s

c c s s c c s s

s s c c

A E A E A E A E

A E A E A E A E

A E A E

   


 

  (6.23) 

After plugging Equation (6.23) into Equation (6.22): 

  '' '''K ey      (6.24) 

Rearranging terms and letting χB
2 = K/η yields: 

 '' 2 '''

B ey      (6.25) 

6.2.3 Bending moment equilibrium 

Recalling that the distance from the centroid of concrete beam to the centroid of the strand is e, the 

moment equilibrium can be established as:  

 ex c sM M eN    (6.26) 

where Mex = external applied bending moment and Mc = internal bending moment of the concrete beam. 

On the left side of Equation (6.26) are the applied known loads, and on the right side of Equation (6.26) 

are the unknown variables. Equation (6.26) can be rewritten as: 

 ''

ex c cM E I y eN     (6.27) 

where Ic = concrete beam moment of inertia. Differentiating Equation (6.6) once: 

 ' ' '

2 2 2c s      (6.28) 

Substituting Equation (6.10) and Equation (6.11) into Equation (6.7):  

 ' '

2 2c c c s s sA E A E    (6.29) 
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Substituting φ2c
’
 and φ2s

’ in Equation (6.29) back into Equation (6.28): 

 ' '

2 21 c c
c

s s

A E

A E
 

 
  
 

  (6.30) 

 ' '

2 21 s s
s

c c

A E

A E
 

 
  
 

  (6.31) 

Substituting either Equation (6.30) into Equation (6.10), or Equation (6.31) into Equation (6.11), results 

in the following: 

 '

2N    (6.32) 

Now Equation (6.27) can be rewritten after substituting Equation (6.32) into it: 

 '' '

2ex c cM E I y e     (6.33) 

In Equation (6.33), φ2
’ represents the total axial slip, which includes the slip due to bending and 

prestrained strands. Differentiating Equation (6.20) once:  

 ' ' ''

2 isey       (6.34) 

where εis = initial applied prestrain, before transfer, in the prestressing strand. For prestressed strands, 

εis is negative. Then substituting Equation (6.34) into Equation (6.33):  

  '' ' ''

ex c c isM E I y e ey         (6.35) 

After rearranging terms and letting DB = EcIc+e
2
η and αB

2
 = e

2
η / DB, Equation (6.35) can be rewritten as: 

 
2 2

'' ' exB B
is

B

M
y

e D e

 
       (6.36) 
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When prestressing force exists, the additional resultant strain term is added to take prestressing force 

into account. So finally the set of governing equations is obtained as Equation (6.25) and Equation (6.36):  

'' 2 '''

2 2
'' '

B

exB B
is

B

ey

M
y

e D e

  

 
 

  



   


 

The governing equations are applicable to both conventionally reinforced concrete and prestressed 

concrete structures. When conventionally reinforced concrete structures are the subject of interest, the 

prestrain should be set to zero. Also, there are three possible scenarios for the eccentricity of 

prestressed strands:  

1) The simplest case is that the eccentricity e is zero, meaning that the prestressing strand is placed at 

the centroid of concrete beam, which is not common in prestressed beams and girders but occurs in 

other structures such as prestressed insulated sandwich panels and prestressed poles. Actually, for this 

scenario, the set of governing equations is reduced to one simple homogeneous differential equation 

governing the longitudinal interaction, as in Equation (6.37). The second governing equation becomes 

the well-known Euler-Bernoulli beam curvature relationship when e is zero. The solutions can be 

determined by setting e to zero in the related solutions in Section 6.3. 

 '' 2 0B      (6.37) 

2) The eccentricity e is constant, which means that the prestressing strand is straight and placed near 

the bottom of the beam, which is common for prestressed beams and girders. The conventionally 

reinforced and prestressed scenarios are both represented by the governing equations derived in this 

study. For case 2, the set of governing equations is linear and its closed form solutions will be provided 

in Section 6.3.  
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3) The eccentricity e is neither zero nor constant. Ideally, the eccentricity e, is draped to the farthest 

allowed to increase the resistance of girder at mid-span and closest to the centroid of the concrete 

girder at the end support to avoid excessive stress by prestressing force near the end support. This case 

involves higher order deformation and nonlinearities and the governing equations will be nonlinear and 

no closed form solutions will be available, as derived already in Chapter 3.    

6.3 Closed form solutions 

The origin of the x axis is at the mid-span, so for a simply supported beam subjected to uniformly 

distributed pressure of qw on unit length, the boundary conditions are: φ(0) = y
’’
(l/2) = 0 (additionally, 

y(l/2) = y
’
(0) = 0 when deflection is desired).  

6.3.1 Reinforced concrete beam 

For analysis of conventionally reinforced concrete, the term associated with prestrain is dropped and 

only the externally applied bending moment is kept.  

Slip  

 
2

3

2

sinh
2 21 1 2

8
cosh

2

B

w B B B
r

BB B B B

B

x
q l e x

lD l l l



  


  



  
   
    
   

  
  

 (6.38) 

where βB
2
 = 1 - αB

2
.  

Axial force 
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Bending moment 
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6.3.2 Prestressed concrete beam 

For prestress caused response, the applied bending moment is set to zero and a prestrain εis is added to 

account for the forces in the prestressing strands. Note that in the sign convention adopted for this 

study, εis is negative for prestressed concrete.  
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Axial force 
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Bending moment 
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6.4 Applications and discussions 

6.4.1 Additional force gain by the curvature change  

Equation (6.39) represents the elastic gain of strand force due to curvature change in the corresponding 

prestressing strand location and is relatively small when compared to the axial force caused by 

prestressing strands. Equation (6.39) can be decomposed into two components, the perfect bonding 

component (also referred as fully composite component) and interface slip compensation component: 
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  (6.44) 

In Equation (6.44), the gain or ‘add-back’ portion of the strand force consists of two components. The 

first component is associated with the bending moment induced curvature and the second component 

is associated with the bonding condition between the prestressing strands and the concrete. In other 

words, the first term is valid when the strand and concrete have fully composite action, showing very 

little slip over the span. The second term accounts for the scenario where fully composite action is not 

achieved due to poor bonding between strands and concrete. The second bonding condition related 

term is usually negative, meaning that the ‘add-back’ force with slip involved will be smaller than the 

perfect bonding condition without slip. The good news is that, for typical strands and concrete used in 

practice, the bonding is quite strong and the second term can be neglected at the mid-span, which may 

only result in less than one percent difference. Additionally, even if the bonding is not good, the first 

term will yield an upper bound. Therefore, neglecting the slip compensation and only considering 

perfect bonding related axial force, the axial force is determined as:  
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Recall that the bending moment is (qwl
2
/8)(1-(2x/l)

2
) at the mid-span so Equation (6.45) can be further 

generalized as: 

 2ex
r B

M
N

e
   (6.46) 

The development in Equation (6.46) will now be compared to the corresponding elastic gain due to self-

weight in Equation 5-65 and due to superimposed loads in Equations 5-66 and 5-67 of the PCI Design 

Handbook, 7th edition[70]. Plugging αB
2
 = e

2
η/DB into Equation (6.46), and rearranging the terms to arrive 

at this form: 

 r cdsN     (6.47) 

where 𝜀cds = eMex/DB. 𝜀cds is the strain caused by the external applied bending moment at the location of 

prestressing strands. In order to compare with the existing formula of elastic gain mentioned above, 

Equation (6.47) can also be written as: 

 
c s

r s cds

s s c c

A E
N A f

A E A E



  (6.48) 

where fcds = eMexEc/DB. fcds is the stress caused by the external applied bending moment at the location 

of prestressing strands. Given that AsEs is usually smaller compared to AcEc, Equation (6.48) is simplified 

by eliminating AsEs from the denominator as:  

 
s

r s cds

c

E
N A f

E
   (6.49) 

Equation (6.49) is now comparable to the formula used in Equations 5-66 and 5-67 of PCI Design 

Handbook, 7th edition. Note that the gain is integrated in the concrete elastic shortening (ES) and creep 

(CR) losses in the PCI Design Handbook, 7th edition.  
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Equation (6.46) is a closed form solution and does not involve any of the potentially unrealistic 

assumptions. The major importance is that Equation (6.46) facilitates a better understanding of the 

mechanics and does not include assumptions or approximations that can result in significant errors out 

of normal design conditions. In other words, Equation (6.46) is theoretically pure yet concise. On the 

other hand, the curvature gain formula presented in the PCI Design Handbook is only invalid for unusual 

design situations, for example, when reinforcement ratio is large or the cross section area of concrete 

beam is relatively small. In those cases, neglecting AsEs from the denominator in Equation (6.48) will 

result in considerable error. Details and discussion are provided in the Section 6.6.3.   

6.4.2 Bending moment resulting in zero curvature 

There is a special case of when the externally applied bending moment is balanced by the prestress 

force resulting in zero curvature. This condition was conventionally analyzed by calculating the curvature 

or stresses of concrete cross sections due to prestress force, after estimate of immediate prestress loss, 

and then plugging it back to calculate the external bending moment associated with that curvature or 

stress. The prestress force is related to the external applied bending moment through curvature or 

stress of the specific cross section. Now, with the formulation developed in this study, this zero 

curvature bending moment can be directly determined without involving cross section properties and 

prestress loss estimate by setting the right hand side of Equation (6.36) to be zero. The bending moment 

is canceled with the prestress force and the resulting curvature is zero:  
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     (6.50) 

Therefore, from Equation (6.50), the bending moment is determined as: 

 ex isM e    (6.51) 
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The bending moment represented by Equation (6.51) does not involve bending action or interface slip 

related properties because the curvature is zero and slip related loss is canceled out. As a result, it takes 

a very simple form. Note that Equation (6.51) has already considered prestress losses and the prestrain 

is the initial strain before prestress transfer and immediate losses. Therefore it simplifies the way this 

bending moment is computed while having much better accuracy by not involving prestress loss 

estimate and cross section properties.  

6.4.3 Immediate prestress losses  

Immediate prestress losses, namely elastic shortening, anchorage seating and friction, are relatively 

mature subjects. Anchorage seating is often compensated for by overjacking. Friction loss occurs 

because of curvature and is only applicable for posttensioning components. Therefore elastic shortening 

is discussed in this section. In addition to the immediate losses, a new category of immediate prestress 

loss, loss due to slip, is defined in this section, as illustrated in Figure 6-3. This slip associated loss is 

similar to the anchorage seating loss, and could be regarded as seating of strands in concrete. Note, in 

this section, elastic shortening refers to the portion caused by prestressing force only. So the gain due to 

self-weight, which can be determined by Equation (6.47), is not included.  

x

Slip

loss

Np

Elastic shortening  loss

Transfer length

Effective prestress force

Np0

Npe

L
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Figure 6-3: Immediate prestress losses of bonded construction 
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Elastic shortening loss 

Elastic shortening is an important issue, and conventional analysis approaches can achieve reasonable 

accuracy when applied to normal design conditions. However, the conventional method is mechanically 

accurate only at one specific point due to the constant factor used in concrete stress calculation. 

Specifically, in Equations 5-64 and 5-65 of the PCI Design Handbook, 7th edition[70] for elastic shortening 

loss, fcir (net compressive stress in concrete at center of gravity of prestressing force immediately after 

the prestress has been applied to the concrete) is calculated by the initial prestress force Pi multiplied 

by a constant factor Kcir of 0.9. From a mechanical perspective, fcir, in Equation 5-65 in the PCI Design 

Handbook should be calculated by the actual force after elastic shortening loss. In other words, this 

approach assumes 10% elastic shortening loss in its calculation and is mechanically correct only when 

the elastic shortening loss eventually turns out to be 10%. Better accuracy can be achieved through 

iteration. However, in this study, a concise closed form solution is derived. Additionally, the cross 

section properties should consider the existence of prestressing strands and its eccentricity in an 

appropriate way. Detailed validation and comparison are provided in the Section 6.6.  

A pure mechanical model based on the prior theoretical development is presented. It is difficult to 

separate the loss due to pure elastic shortening and loss due to slip from the total immediate loss, 

therefore the derivation begins with perfect bonding condition and no prestress force is lost through slip. 

This is the most useful case for normal design conditions since this assumption is valid outside of the 

transfer zones. In that case, the effective prestressing force is determined as -βB
2η𝜀is and prestressing 

force loss due to elastic shortening is constant through the beam, which can be written as:  

    _

2

s s BP ES is isA EN        (6.52) 

Alternatively, after sorting terms: 
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Now the remaining effective prestressing force, in percentage, due to the elastic shortening can be 

written as:  
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Accordingly, the prestressing force loss, in percentage, due to elastic shortening is determined as:  
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As reflected in Equations (6.54) and (6.55), the effective component of prestressing force or the lost 

component of prestressing force accounts for the eccentricity by including the factor βB. If βB is one (or 

αB is zero), there is no eccentricity and the expression for the prestress loss reduces to:  
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To define the elastic shortening considering slip, Equation (6.53) is reduced by a factor depending on slip 

as: 

 
2

_ _ 1 cosh cosh
2

c c B B
is

B Bc

s s B
P ES sp s s

cs s

A E
N A E

A

A E l
x

AE E

 




 

  
    

   
   (6.57) 

The percentage of loss or remaining effective prestressing force with existence of slip can be determined 

similarly based on Equation (6.57), instead of Equation (6.53) when without slip. Equation (6.57) implies 

that elastic shortening is dependent on the slip in the transfer zone, similar to that discussed by 

Guyon[82], Russell[49] and Barnes[55].   
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Loss due to slip 

Perfect bond is typically assumed in conventional analyses. Therefore, the loss due to slip at the strand-

concrete interface cannot be defined using conventional analyses approach, whereas this slip loss is 

actually the reason that the transfer length exists. In the prestressed concrete components of bonded 

construction, if the bonding condition is ideal (infinitely large interface stiffness), the axial force induced 

by the prestressing strands will be constant everywhere in the beam and there will not be prestress loss 

due to slip. However, that degree of bonding between concrete and steel strands is not possible and 

therefore there is always prestress loss due to slip within the transfer zones. The loss due to slip at any 

position is therefore determined as:  
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The percentage of prestress loss due to the slip can also be expressed as: 
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As seen in Equation (6.58), the mid-span will have the minimum slip induced loss and the end of the 

girder will suffer the maximum slip loss. For other locations between them, the loss will vary 

monotonically from minimum to maximum values. At the mid-span, Equation (6.58) becomes:  
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At the end support, Equation (6.58) becomes:   

  _ 2P sp s sisN l A E    (6.61) 
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As shown in Equation (6.60), if the bonding is large enough or the span is long enough to allow the bond 

to build up, the prestress force loss due to slip will be very small at the mid-span, which is the case for 

most prestressed girders. However, for short components or strands with very poor bond, the 

denominator in Equation (6.60) is relatively large and the prestress force loses a significant amount of 

force at the mid-span. At the end support, as in Equation (6.61), the axial force is zero and all of the 

prestress force is lost due to slip.  

6.4.4 Transfer length  

For bonded prestressing strand, a certain distance is required for the prestressing force to fully transfer 

from the end to the concrete girder, numerically from zero to the effective prestressing force, which is 

referred to as the transfer length. If this distance is calculated beyond the service condition at the 

structure’s ultimate resistance, it is called development length, which is longer than transfer length. 

Development length will require nonlinear properties and will be included in a future study.   

According to the definition of transfer length, the distance that axial force increases from zero to the 

effective value can be considered as transfer length. So plugging the axial force in Equation (6.42) and 

assuming a tolerance that is associated with effective force, the equilibrium associated with transfer 

length can be established as: 
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  (6.62) 

where γ is the tolerance of axial force at mid-span, which can be assumed as 0.95 to be consistent with 

the 95% AMS method[49]. γ is added on the one hand because in Equation (6.42) the axial force Np can 

only reach the value exactly at the mid-span. On the other hand, it is added to be consistent with the 
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popular AMS method. Therefore a certain tolerance is given to ensure that the calculation yields 

meaningful results instead of only mid-span results. Equation (6.62) can be rewritten as:  

  cosh 1 cosh
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    (6.63) 

The transfer length Lt can now be solved as: 
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      (6.64) 

where λt = (1-γ) cosh(χBl/(2βB)).  

6.5 Validation and discussion 

6.5.1 Transfer length by average interface bonding stiffness 

As discussed in Chapter 2, the transfer length has been investigated by many researchers over several 

decades. Most studies have focused on experimental work and establishing empirical formulation or 

simplified definitions of force equilibrium. The methodology developed herein will now be compared 

with testing data presented in the literature. For illustration purposes, the interface stiffness K is kept 

the same for all specimens, even though the data suggests that the bond may vary between specimens 

due to various reasons such as the mixture of concrete and other uncertainties involved in the testing. 

The interface stiffness K is calculated based on:  

 0dK n K   (6.65) 

where n = total number of strands; μd = factor depending upon individual strand circumference or 

diameter, for example μd = 1.0 was used for 0.6 inch strands so 0.83 was used for 0.5 inch strands; and 

K0 = interface shear stiffness of an individual strand, which is determined based on 0.6 inch strand from 
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reported testing[72] [78]. In the literature, Dang[72] and Floyd[78] conducted the pull-out test on 0.6 inch 

strand, and the average pull-out loads of 16 inch specimens corresponding to 0.01 inch slip from the two 

tests are 14047 lb and 14490 lb. However, according to the pullout force-slip relationship reported in 

Dang’s test this load at 0.01 inch of slip only represents the upper bound of linear and elastic interface 

stiffness and slip measured in realistic girders may reach well beyond that 0.01 inch. So in the present 

study, the interface stiffness is taken as the average interface stiffness of both 0.01 inch slip and 0.1 inch 

slip, or alternatively for simplification it can be calculated as half of the interface stiffness at 0.01 inch 

slip to approximately compensate for nonlinearity in the bond-slip relationship.  Note that for every 

batch of strands and concrete, K0 could vary due to many factors associated with the manufacture, 

storage and construction processes. Therefore pull-out tests, ASTM A1081[80], may be a good way to 

verify the condition of bond and confirm applicability of constants and factors used here.     

Specimen data from FC150, FC350, FA550, FC160, FC360, and FC560 were extracted from Russell[49]. In 

the specimen names, the first letter F refers to fully bonded specimen; the second letter C refers to 

rectangular cross section and A refers to AASHTO type cross section; the first numeral digit denotes the 

number of strands; the last two numeral digits represent the diameter of strands, in tenth inch.  For 

example, FC150 refers to a fully bonded rectangular beam containing one 0.5-inch strand.  

For rectangular cross sections (FC150, FC350, FC160, FC360, and FC560), specimens were uniformly 

supported on the ground without any external loading except the prestressing force in the strands, but 

the AASHTO type beams (FA550) were additionally subjected to its self-weight due to eccentric 

prestressing force caused camber. All of the grade 270 strands were prestressed to 75% of their tensile 

strength. For rectangular cross sections, strands and strain gages were placed at the beam centroid. For 

AASHTO beams, strands were placed 2.5 inches from the bottom and strain gauges were placed 1.5 

inches above bottom flange. Additional details can be found in Russell[49].  
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Figure 6-4: Compressive strain at the strain gauge. (Blue vertical lines indicate end of transfer length by present approach, Eq. 
(6.64), and red, black and green vertical lines indicate values reported by Russell

[49]
)  
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The comparisons to test results are presented in Figure 6-4. Generally speaking, the predicted results 

both strain and transfer length are close to the values reported in testing. However, from the strain 

profile, 0.6-inch strands may have less bonding stiffness than theoretically calculated whereas 0.5-inch 

strands have results that are close to the predicted values, the predicted transfer length of 0.6 inch 

strand is shorter than reported in the testing. For example, the FC160, FC360 and FC560 results will 

correlate better if the interface stiffness is reduced, as in Figure 6-6. One of the possible reasons is, as 

seen from the plots, 0.6-inch strands are associated with higher level of strain. The higher strain level 

will make the bond stiffness, determined by averaging bond-slip relation between concrete and strands, 

smaller. So in the next section, the 0.6-inch strand results are recalibrated using an additional factor that 

considers the bond-slip relationship.  Additionally, the effective prestress is calculated with excellent 

accuracy; for example effective prestress strain from the testing data and prediction is generally within 

10%.  

6.5.2 Transfer length considering bond-slip relation 

The bond-slip relationship at the steel concrete interface is a complicated matter. It has been reported 

by a number of studies that the bond-slip relationship exhibits nonlinear behaviors, for example a linear, 

nonlinear and softening portion. Figure 6-5 illustrates an idealized bond-slip relationship between steel 

reinforcement and concrete. Therefore, the accuracy of the value used for the bond stiffness K in 

calculations can be improved according to the strand slip if precise results are needed. However, it is not 

necessary to include all of the complicated nonlinear and microscopic properties of the bond behavior. 

An averaging factor is sufficient to represent the overall behavior, and the engineering applicability goals 

of the work can be met while maintaining sufficient accuracy through concise closed form solutions.  

The goal is achieved by averaging the nonlinear or discontinuous properties at the strand/concrete 

interfaces by a constant. This approach, validated against testing data, simplifies the nonlinear problem 

into a linear approach. Therefore K should consider the end slip as:  
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 0sl dK n K    (6.66) 

where μsl = factor depending on end slip. Based on the data from Russell’s test data[49] and bond-slip 

studies in the literature[72][74], μsl = 0.67 when 0.08≤ φp ≤ 0.11 inch and μsl = 0.5 when 0.11 < φp ≤ 0.15, 

are used in generating the data presented in Figure 6-6. Based on the complexity of this bond-slip 

behavior reported in literature, it may benefit from researches at the microscopic level. In this study, 

FC360 and FC560 are recalibrated and plotted in Figure 6-6 to take the additional slip into consideration.  

 

Figure 6-5: Typical bond-slip relationship 
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Figure 6-6: Recalibrated results for 0.6 inch strand girders  

 

Table 6-1: Transfer length results and comparison with Russell
[49]

 

Specimen 
Transfer length reported (in) Average of  

all specimens (in) 
Present 

(recalibrated)  (in) North end South end 

FC150-11 29 35 
30.5 32.0 

FC150-12 31 31 

FC350-1 35 28 
29.8 31.7 

FC350-2 29 27 

FC160-11 - - 
47.0 34.2 

FC160-12 48 46 

FC360-1 39 44 
42.8 

33. 8 
(41.4) FC360-2 37 51 

FC560-1 45 51 

49.0 
33.6 

(47.5) 
FC560-2 47 55 

FC560-3 48 48 

FA550-4 21 21 21.0 31.7 

 

Table 6-1 demonstrates that the reported transfer length results agree well with results determined 

from Equation (6.64) for all specimens except FC160. From the results in Figure 6-4, FC160 has very long 

transfer length, which indicates unusually poor bond. The absolute difference in transfer length for 

FA550 may appear large, but it is acceptable when considering the very long span length.  
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6.5.3 Prestress loss due to elastic shortening 

Validation and discussion 

Prestress loss due to elastic shortening in Equation (6.54) is validated against the data from Kaar[47] 

because Kaar’s tests include a wide range of strand diameters and concrete strengths. Specimens 0.25-

1660, 0.25-5000, 0.6-1660, and 0.6-5000 are used for validation. The first number represents the strand 

diameter and the second number indicates concrete strength. For specimens with concrete strength of 

1660 psi, two strands were placed symmetrically along the centroid of a 3 inch by 4.1875 inch 

rectangular cross section. For 5000 psi concrete strength specimens, six strands were placed 

symmetrically through the centroid of a 7.5 inch by 10.5 inch rectangular cross section. No external load 

was applied; the specimens were uniformly supported by the ground.     

Table 6-2: Immediate prestress loss comparison with Kaar
[47]

 

Specimen 
Strand stress 

before transfer (ksi) 
Strand stress 

after transfer (ksi) 
Loss (%) 

Average loss 
of A & B (%) 

Zia, PCI and 
ACI (%) 

Present (%) 

0.25-1660-A 194.1 178.8 7.9 
7.6 7.6 7.7 

0.25-1660-B 194.1 179.8 7.4 

0.25-5000-A 195.7 167.0 14.7 
14.5 15.1 14.4 

0.25-5000-B 195.7 167.7 14.3 

0.6-1660-A 182.0 172.7 5.1 
5.6 5.7 5.9 

0.6-1660-B 182.0 170.8 6.2 

0.6-5000-A 177.7 153.8 13.5 
13.7 12.4 12.1 

0.6-5000-B 177.7 153.1 13.8 

 

In Table 6-2, the prestress losses calculated using the PCI Design Handbook[70] and ACI 318-11[71] 

methodologies, which are both based on the work of Zia[50], and Equation (6.54) are essentially the same. 

Therefore, in order to demonstrate the advantage of the approach developed herein over the PCI Design 

Handbook and ACI 318-11 methodologies, specimen 0.25-5000 is taken as an example in Figure 6-7, 

with increasing the total number of 0.25-inch strands from one to eighteen. Additionally, since the 
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number of strands influences the difference between the formulation presented herein and the formula 

proposed by Zia, a normalized unit and an additional specimen 0.25-1600 are introduced to 

demonstrate the difference in Figure 6-8. The large number of strands is used here to study their 

influence on prestress loss, but it may not necessarily reflect a realistic design scenario.    

 

Figure 6-7: Prestress loss due to elastic shortening as a 
function of number of strands for 0.25-5000.  

 

Figure 6-8: Difference between two approaches for elastic 
shortening loss as a function of normalized unit.  

 

Figure 6-7 and Figure 6-8 demonstrate that the accuracy of the existing formula depends on the number 

of strands, or more fundamentally AsEs/(AcEc). When AsEs/(AcEc) is small, say below 0.1, the difference is 

basically zero. However, when AsEs/(AcEc) increases, the difference becomes larger and eventually the 

existing formula predicts 45% of loss versus the 33% based upon the approach developed herein. Note 

that the theoretical solution derived in this study and Zia’s method yield the same results at 10% 

immediate prestress loss, which is because Zia assumes 10% losses by using a load factor of 0.9 in the 

formula. Mathematical proof is provided from Equation (6.67) to Equation (6.73).  

In Figure 6-7 and Figure 6-8, however, specimens 0.25-5000 and 0.25-1660 both had strands placed 

symmetrically about the cross section centroid so there is no bending moment acting on the specimen. 

In order to study the influence of eccentricity and bending moments on the prestress loss due to elastic 
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shortening, specimen FA550 from Russell’s tests is taken in Figure 6-9 and Figure 6-10 for comparison 

between the two approaches. Specimen FA550 had five 0.5 inch strands with overall eccentricity e of 

9.19 inches from the girder bottom. In Figure 6-7 and Figure 6-8, the total number of 0.5 inch strands is 

increased from one to thirty to illustrate how strand quantity variation affects the prestress loss due to 

elastic shortening by different methodologies.  

 

Figure 6-9: Prestress loss due to elastic shortening as a 
function of number of strands for FA550. 

 

Figure 6-10: Difference between two approaches for elastic 
shortening loss as a function of normalized unit. 

 

In Figure 6-9 and Figure 6-10, when the total number of strands is below seven the two approaches yield 

almost the same results on the prestress loss due to elastic shortening. However, as the number of 

strands increases, the difference becomes larger. For example, at thirty strands, Zia’s approach 

overestimates the loss by 50%. Again, regardless of whether eccentricity is considered or not, at 10% 

loss the theoretical solution derived in this study and Zia’s approach would intersect with each other 

because the load factor 0.9 used by Zia.  

The eccentricity e is set to zero in the dot-dash lines Figure 6-9 to demonstrate the influence of bending 
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effect of bending moment on the overall elastic shortening is better illustrated in Figure 6-10 where the 

difference between the two approaches are plotted with specimens from Kaar and Russell as functions 

of normalized unit AsEs / (AcEc). Kaar’s 0.25-1660 specimen has symmetrical strands resulting in no 

eccentricity whereas Russell’s FA550 has maximum eccentricity. Therefore, the 0.25-1660 specimen only 

has elastic shortening loss due to axial compression but FA550 specimen has elastic shortening loss due 

to both axial and bending compression. This demonstrates that when AsEs / (AcEc) is relatively large for 

eccentric specimens, the present and Zia approaches will have larger difference.   

Comparison with currently used design formula 

Since Equation (6.55) does not involve interface slip, it is possible to derive the same results based on 

conventional approach. In the PCI Design Handbook[70], the elastic shortening is calculated, with 

notations adopted in this study, as: 

  es s c cirES K E E f   (6.67) 

where: Kes = 1.0 for pretensioned components; fcir = net compressive stress in concrete at the center of 

gravity of prestressing force immediately after the prestress has been applied to the concrete.  

 
2

i i c
cir cir

c c c

N N e M
f K

A I I

 
   

 

  (6.68) 

where: Kcir = 0.9 for pretensioned components; Ni = initial prestress force; Mc = bending moment due to 

dead weight of the prestressed component and any other permanent loads in place at the time of 

prestressing. Equation (6.67) reflects the mechanics well, however Equation (6.68) does not. In Equation 

(6.68), the initial applied prestress force Ni  multiplied by Kcir = 0.9  is used to calculate the concrete 

stress. Therefore, with the constant load factor Kcir = 0.9, the formula implies that it is only correct when 

elastic shortening is 10%, and otherwise it is an approximation; this can be observed in Figure 6-7 and 
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Figure 6-9 (results by two methodologies only intersect at 10% loss). It may be improved by iteration; 

however there is a much better way to obtain the closed form solution. Consider the scenario of e = 0 

for simplification and elastic gain due to self-weight not considered. In Equation (6.68), replacing Kcir 

with Peffe results in:  

 
i

cir effe

c

N
f P

A
   (6.69) 

Substituting Equation (6.69) into Equation (6.67):  

   i
es s c effe

c

N
ES K E E P

A
   (6.70) 

Equation (6.70) is further transformed by multiplying (As / Ni) to both sides and neglecting Kes = 1.0: 

 
s s

loss effe

c c

A E
P p

A E
   (6.71) 

Plugging Peffe = 1 – Ploss into Equation (6.71): 

  1 s s
loss loss
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A E
p p

A E
    (6.72) 

Now Ploss is determined as: 
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A E A E



  (6.73) 

Equation (6.73) is the same as Equation (6.56) from the theoretical development of this study.  
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6.6 Influences of variables on transfer length 

6.6.1 Elastic modulus and interface stiffness 

It has been argued for many years that concrete strength influences transfer length. It is also believed 

that the bond at the interface has the greatest influence on the transfer length but nobody has yet 

showed either compelling test data or theoretical solution to demonstrate how the bond at the 

interface influences transfer length.  The material parameters and geometry of FA550, the AASHTO type 

specimens in Russell’s tests, are used to illustrate the influence of concrete elastic modulus and 

interface stiffness on transfer length. Those two variables are increased from zero to twice that involved 

in Russell’s tests to demonstrate their effects on transfer length. Note that only the axial force caused by 

prestressing force is plotted, and that axial force due to curvature change or gravity is not included nor 

discussed in this section.  

 

Figure 6-11: Influence of concrete elastic modulus on axial 
force. (Lmax=162 in, Ecmax=8400.5 ksi and Nmax=149.13 kips) 

 

Figure 6-12: Influence of concrete interface stiffness on axial 
force. (Lmax=162 in, Kmax=364.7 kip/in  and Nmax=143.77 

kips) 

 

In Figure 6-11, the influence of elastic modulus shows interesting features. Theoretically, no matter how 

low the concrete elastic modulus is, there will always be an axial force plateau. The plateau indicates the 

end of transfer length and the beginning of effective prestress because the axial force does not change 
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within the plateau and consequently there is no slip or interface force between the strands and concrete. 

However, as shown in Figure 6-11, even if the effective prestressing force is reached, the axial force may 

still be small when the concrete elastic modulus is low due to elastic shortening.  

In Figure 6-12, not surprisingly, it is demonstrated that the bond stiffness is very influential on the axial 

force, and therefore transfer length. For example, unlike in the elastic modulus variation, if the bond 

stiffness drops below a certain threshold, there will not be an axial force plateau. This means that, below 

that threshold bond stiffness, the effective prestress is not going to be reached at the mid-span and the 

transfer length is even longer than the entire span.    

In reality, when the concrete elastic modulus, typically calculated from concrete strength for design 

purposes, becomes lower, the bond becomes weaker and consequently the interface stiffness drops as 

well. In order to compare, the plots in Figure 6-11 and Figure 6-12 are intersected with 95% of the 

effective prestressing force, which is given by the right hand side of Equation (6.62).  

 

Figure 6-13: Transfer length as function of different variables. (Ltmax=162 in, Ecmax=8400.5 ksi, Kmax=364.7 kip/in and fpmax/As 
=-405 kips).   
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One of the conclusions that Figure 6-13 demonstrates is that the concrete elastic modulus has little 

influence on the transfer length. This conclusion supports claims made by Kaar[47] and disproves claims 

made by Michelle[48]. However, this conclusion was determined without considering the influence of 

concrete strength on the interface stiffness K. Given the possibility that stronger concrete will increase 

the bond stiffness, this additional influence is likely the reason that Michelle claims that transfer length 

is related to concrete strength. Therefore the overall results of transfer length may seem to decrease 

when concrete strength increases. Again, Michelle failed to exclude other variables such as interface 

stiffness while trying to focus on concrete strength. Also, Figure 6-13 demonstrates that the transfer 

length is greatly related to the bond stiffness K. For example, as the bond stiffness increases from zero 

to the maximum value, the transfer length decreases from 162 inches to 20 inches.     

6.6.2 Prestressing force 

It has been reported that the prestressing force magnitude is related to the transfer length. Although 

this could have seemingly been observed from testing, the mechanism may not be well understood. 

First of all, if the bond-slip relationship is in the linear range, the prestressing force will not be related to 

the transfer length, as demonstrated in Equation (6.64) and Figure 6-13. However, in reality the bond-

slip relationship is likely to be nonlinear near the end supports and some of the concrete surrounding 

the strands may be fractured by higher prestressing force. So as a result, higher levels of prestressing 

force could result in longer transfer lengths due to poorer bonding.  For this reason, it is clear from the 

perspective of this theoretical development that the bond-slip condition associated with different 

prestressing force magnitude, which is already included in the interface stiffness K, affects the transfer 

length rather than the prestressing force itself.    
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6.6.3 Strand diameter 

As demonstrated by the theoretical development and bond stiffness definition, strand diameter based 

on which AASHTO-LRFD[79] calculates transfer length may not be directly related to transfer length. The 

primary factor discovered in this dissertation is the total amount of interface area between concrete and 

strands, which affects the interface stiffness K first then the interface stiffness K affects transfer length. 

For example, consider two scenarios: (1) ten 0.6 inch strands are used but placed a certain distance 

apart, and (2) those ten strands are bundled and placed together. For those two cases, the total 

prestressing forces and strand total diameters are the same; however for the second case the interface 

areas would be less due to the fact that the inner strands are not in direct contact with the concrete. 

Consequently, for the second case, the interface stiffness K becomes smaller and transfer length 

becomes larger in Equation (6.65).  

6.7 Conclusions 

This study derives a set of governing equations and closed form solutions that rigorously define the 

mechanics of prestressing concrete. The key characteristic of strand-concrete interface slip is included in 

the development to solve the transfer length problem. Additionally, the theoretical development also 

resulted in mechanics-based formulas that address elastic shortening loss and prestress loss due to slip 

within the transfer zone. Specific conclusions include: 

1. It is demonstrated analytically that the PCI Design Handbook, AASHTO-LRFD specification and ACI-318 

provisions for prestress loss due to elastic shortening are only applicable to small reinforcement ratio 

components and will overestimate the prestress loss for large reinforcement ratio components whereas 

the formulation derived herein is accurate without limitation.  

2. Transfer length is derived based on pure mechanical definition instead of empirical data as used by 

other researchers in the past investigations, and the derived formula is validated against test data.  
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3. The roles of concrete strength, prestressing force and strand diameter that were previously thought 

to directly affect transfer length however actually influence the interface stiffness, which in turn affects 

transfer length.  

4. The rigorous strand force gain due to curvature developed in this chapter is able to consider the 

existence of slip and large reinforcement ratios, which could not be accounted for in the past. It is also 

simplified for application outside of transfer zones, for example critical sections at or near midspan.    

It is concluded that the developed theory can improve prestress concrete analysis and design, and can 

provide a new perspective in prestressing structural analysis. Comparisons with testing data 

demonstrate agreement with the developed theory.   
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Chapter 7 Practical approaches to predict transfer length 

7.1 Introduction and scope 

Chapter 6 focused on the theoretical development and validation of the application of composite theory 

to prestressed concrete structures. However, in reality there may be many difficulties to quantify the 

bonding condition between tendons and concrete interface, and the transfer length formula in Chapter 

6, Equation (6.64), is also lengthy.  

In this chapter with the goal of simplifying the previous results under the normal design condition, the 

transfer length formula is firstly simplified according to the finite parameter range under normal design 

conditions. Then another important step forward in the theoretical system is that upon mathematical 

manipulation and simplification, the interface bonding stiffness can be quantified based on measured 

end slip data. All the theoretical developments are validated against experimental data in the literature. 

Additionally, comparisons on the bonding conditions among different strands configurations and 

discussions of correlation between strand diameter and transfer length are provided.  

7.2 Simplification for engineering applications  

7.2.1 Simplification of closed form transfer length solution 

Equation (6.64) is the transfer length closed form solution. However, it may be too complicated to be 

used for ordinary engineering applications and therefore it is simplified by taking advantage of the fact 

that realistic prestressed concrete structures have finite parameter ranges. In other words, several 

expressions can be eliminated or simplified to arrive at a concise expression of transfer length without 

losing much accuracy. Therefore Equation (6.64) can be transformed to: 
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By plugging λt = (1-γ) cosh(χBl/(2βB)) and letting μ = χBl / (2βB), Equation (7.1) is further transformed to: 

         2 2ln ln 1 cosh 1 cosh 1B
t

B

L e
   



 
      

 
  (7.2) 

Then considering cosh(μ) + sinh(μ) = eμ, Equation (7.2) becomes:  
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It can be noted from Equation (7.3) that if the complicated bracketed term can be simplified as a 

constant, a concise transfer length expression would result. Fortunately, this is possible for practical 

design parameter ranges. For typical prestressed structures, μ = χBl / (2βB) is large enough to make 

cosh(μ) = sinh(μ) and (1-γ)2
cosh

2
(μ) – 1 = (1-γ)2

cosh
2
(μ). Equation (7.3) then becomes:  
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7.2.2 Transfer length based on end slip  

Regardless of whether Equation (6.64) or Equation (7.4) is used, the transfer length expression requires 

that the concrete strand interface stiffness be an input. However, it would be difficult to 

nondestructively quantify that parameter on a specific existing prestressed member, if possible at all. 

The alternative would be to use pull-out tests of very similar concrete and strand samples, and then to 

recalibrate the pull-out test results appropriately to accommodate the nonlinearities associated with 

load conditions applied on the actual members. In order to obtain the realistic interface stiffness, this 
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recalibration procedure, discussed in the sections 6.6.1 and 6.6.2 of Chapter 6, may involve the 

elimination of deformations from strands and concrete themselves and consideration of appropriate 

amount of plastic behaviors.       

However, the end slip is easy to measure, and once the end slip is known, the interface stiffness on the 

specific specimen can be calculated accordingly. So the main task here is to relate Equation (6.41) to 

Equation (6.42) and Equation (7.4). First, by substituting x = l / 2 into Equation (6.41) and making μ = χBl / 

(2βB), Equation (6.41) is transformed into: 

 
2 tanhpe
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   (7.5) 

where 𝜑pe = 𝜑p(l/2) = end slip due to prestressing force. It is difficult to obtain the explicit solution of μ 

in Equation (7.5). However, it can be simplified since, for realistic prestressed concrete members, μ as a 

variable will be so large that tanh μ becomes approximately equal to 1. For example, the specimens used 

for validation in the following section have μ values ranging from 3.96 to 6.58, which results in tanh μ 

from 0.99927 to 0.9999961. Note, for specimen T15-H-S3 that has the lowest μ value of 3.96, the 

prestressing force actually cannot even be all transferred to the concrete as in Figure 7-9 since the 

transfer lengths are greater than the span length. In reality, this situation is rare and even with this 

situation the approximation of tanh μ = 1 will only result in error of 0.073%. So with this simplification μ 

is obtained as: 
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By plugging μ = χBl / (2βB) into Equation (7.6), χB is also obtained as: 
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Span length and initial prestrain in the strands are known, and the end slip is measured. Therefore 

everything in Equation (7.6) and Equation (7.7) is determined. Then, after plugging Equation (7.7) into 

Equation (7.4), the transfer length based on measured end slip can be determined as:  
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7.2.3 Strain profile based on end slip  

Similarly to the way Equation (7.8) is derived with end slip known, after plugging Equation (7.7) into 

Equation (6.42), Equation (6.42) becomes:  
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Consequently, the strain profile can be determined based on Equation (7.9). Note, Equation (7.9) only 

includes the prestressing related force (self-weight and external loads are not considered). The resultant 

force associated with self-weight and external loads can be considered as well under normal design 

conditions by the same theoretical composite theory framework developed in Chapter 6 as: 

 2
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where Ms = resultant bending moment in concrete due to gravity load; Mex = external applied bending 

moment including self-weight; Ns = resultant axial force due in both concrete and reinforcement or 

tendons due to gravity load.  

Theoretically, Equations (7.10) and (7.11) are only applicable to locations that are outside of the transfer 

zones. Inside of transfer zones, the slip compensation terms need to be added. However, the external 

bending moment is usually very small within the transfer zones and the resulting compensation terms 

will not play a significant role. Therefore the strain at any position can be determined as: 
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  (7.12) 

where d = the distance from the centroid to the position of interest. Additionally, in Equation (7.10) and 

Equations (7.11), βB
2 is very close to 1 and αB

2 is very close to 0. So for prestressing structures under 

normal design conditions, using Ms = Mex and Ns = 0 in Equation (7.12) are acceptable. Furthermore, if 

the prestressed concrete structures are only subjected to gravity load as in the validation tests, using Ms 

= 0 and Ns = 0 in Equation (7.12) should be acceptable since the force in strand due to gravity load is 

negligible compared to the prestressing force. As a result, when only prestressing force is considered, 

the strain can be calculated as:   
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  (7.13) 

Equations (7.8), (7.9), (7.12) and (7.13) imply that knowing the end slip of a specimen will not only 

enable the prediction of transfer length but will also make it possible to calculate the internal forces, 

bending moments and the entire strain profile of the prestressed structure at any position. This is 

because the end slip as the indicator of bonding condition will yield the interface stiffness, which is the 
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only unknown parameter in the theory developed in Chapter 6. So if the transfer length of existing 

prestressed structures needs to be evaluated, there is no need to measure and calculate interface 

stiffness beforehand, and this constant can be calculated after measuring the end slip of the specific 

specimen of interest.    

7.3 Existing theory on transfer length 

As discussed in the literature review section, among the existing studies, no matter what assumptions 

are presumed, the formula takes the same form as: 
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   (7.14) 

where α = the constant depending on assumed stress distribution. α = 2 for linear distribution and α = 3 

for parabolic distribution. Equation (7.14) was derived theoretically based on a stress distribution 

assumption. Unlike most of the transfer length studies, relating end slip to transfer length is 

theoretically sound. The only issue is that the stress distribution must be assumed and if stress 

distribution can be assumed correctly, Equation (7.14) will yield correct transfer length.  

The differences and arguments between those studies mainly concentrate on the values of α . It has 

been reported to be from 1.5 to 4.0[83] but α is believed to typically be between 2.0 and 3.0; other values 

are for rare cases. One very important point about this α parameter is that α is found to be heavily 

dependent on the criteria used to determine transfer length. For example, if the 95% AMS[49] method is 

to be used, α is likely to be close to 2.0. However, if the 95% Effective Prestressing Force (EPF) is used 

then α is likely to be close to 3.0. This is because transfer length is a concept made up for design 

convenience and it cannot be measured directly and depends on the measurement criteria. In the 

discussion in the Section 7.4.1, especially Table 7-1, it will be shown that thisα is dependent on the 

criteria γ.     
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7.4 Validations and Discussions 

7.4.1 Comparison with existing approaches 

It could be observed that Equations (7.8) and (7.14) have very similar expression forms, and the only 

difference is the constant in front of 𝜑pe / εis. However, plugging γ = 0.95 into Equation (7.8) results in:    

 3
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   (7.15) 

So now it is obvious that Equation (7.8) is the same as Equation (7.14) with α = 3 (parabolic stress 

distribution). Similar to Equations (7.8) and (7.15), when plugging γ = 0.95  into Equation (7.4), it 

becomes: 
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It should be recognized that the definition of transfer length depends on γ. This is because transfer 

length, unlike deflection or other variables, is an ambiguous concept and therefore difficult to determine 

either theoretically or experimentally. From its definition, it is the position where axial force no longer 

changes over the span. However, theoretically, the axial force changes as a hyperbolic sine function 

along the entire span; therefore, although the magnitude of change is very small outside of the transfer 

zones, the axial force will keep increasing until reaching the mid-span. It is also very difficult to 

experimentally measure such consistent and stable strain profiles that indicate the end of transfer 

length. So in reality, in order to determine it, there must be certain criterion to define it, which is 

defined by γ in the present study. The 95% AMS method[49] is usually employed to experimentally 

determine the transfer length. However, the 95% AMS method uses average measured plateau values 

instead of theoretically obtained effective prestressing strain in the 95% EPF, and due to the averaging 

procedure it tends to yield smaller α values than the 95% EPF.           
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For design purpose, it is difficult to decide which α value is superior. Because, in design the prestressing 

force is assumed to be bilinear, but the reality is that it is a smooth curve governed in form of hyperbolic 

sine function. Consequently, when the effective prestressing force is determined, longer transfer length, 

although accurate according to its definition, may result in underestimated prestressing force near the 

end of transfer zones.      

Table 7-1: Variation of α as function of γ 

γ 77.7% 86.5% 91.8% 95.0% 98.2% 

α 1.5 2.0 2.5 3.0 4.0 

 

7.4.2 Validations and discussions  

In this section, data from Kim’s dissertation[84] is used to validate the theoretical development. The 

specimens tested all have span length of 118.11 inches and rectangular cross sections with height of 

7.874 inches and width ranging from 4.437 inches to 7.528 inches. There are two types of strands, 0.5 

and 0.6 inch diameter strands, placed with various transverse eccentricities and lateral spacing in those 

specimens. Ten single strand specimens, M13-H-C4-1(2), M13-H-C5-1(2), M15-H-C3-1(2), M15-H-C4-1(2), 

and M15-H-C5-1(2) and six twin strands specimens T13-H-S3, T13-H-S4, T13-H-S5, T15-H-S3, T15-H-S4, 

and T15-H-S5 are used for validation. In those specimen names, M represents single strand and T 

represents twin strands. The number 13 represents 0.5 inch diameter strand and number 15 represents 

0.6 inch diameter strand. The other letters and numbers represent different eccentricities, spacing and 

specimen numbers. More details can be found in Kim’s and Oh’s works[84][85].  

In the calculation, the measured end slips are used to obtain axial forces in Equation (7.9), then bending 

moment is also calculated by the axial forces multiplying the eccentricity. Therefore the concrete strain 

profile can be determined using Equation (7.12) to compare with measured data in those specimens. 
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Note, in Figure 7-1 to Figure 7-11, the closed form solution refers to the transfer length calculated by 

Equation (6.64) with γ = 0.95 and χB obtained from Equation (7.7) since end slip data are available, and 

linear stress solution refers to Equation (7.14) with α = 2. Again, to be clear, in the validation section 

below no parameter value is assumed and all of the inputs data are determined according to the 

reported or measured results.  

 

Figure 7-1: M13-H-C4 specimens strain profiles 

 

Figure 7-2: M13-H-C5 specimens strain profiles 

 

Figure 7-3: M15-H-C3 specimens strain profiles 

 

Figure 7-4: M15-H-C4 specimens strain profiles 
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Figure 7-5: M15-H-C5 specimens strain profiles 

 

Figure 7-6: T13-H-S3 specimens strain profiles 

 

Figure 7-7: T13-H-S4 specimens strain profiles 

 

Figure 7-8: T13-H-S5 specimens strain profiles 

 

Figure 7-9: T15-H-S3 specimens strain profiles 

 

Figure 7-10: T15-H-S4 specimens strain profiles 
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Figure 7-11: T15-H-S5 specimens strain profiles 

 

Figure 7-12: Transfer lengths of all specimens 
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Actually, from Figure 7-1 to Figure 7-11, the actual transfer lengths tend to be larger than the measured 

values. This is because the 95% AMS procedure can result in smaller effective strain due to the 95% 

factor and the plateau values averaging process.  

The point numbers in Figure 7-12 are listed in Table 7-2. In Figure 7-12 and Table 7-2, the first thing 

noticed is the fact that Equation (7.8) with γ = 0.95  is basically equivalent to Equation (7.14) with α = 3, 

which demonstrates the validities of the simplifications employed in Equations (7.4), (7.6), and (7.8). 

Secondly, the measured transfer lengths are close to that predicted by the formula by assuming linear 

interface stress distribution, α = 2. However, looking back at the strain profiles in Figure 7-1 to Figure 

7-11 and the definition of transfer length, α = 3 is actually more reasonable to use whereas α = 2 tends 

to predict shorter transfer length results.   Equations (6.64), (7.4), (7.8) and (7.14) with α = 3 will yield 

essentially the same transfer length results. However, Equation (6.64) cannot be used when transfer 

lengths are larger than the span length whereas Equations (7.8) and (7.14) still can yield results based on 

measured end slip, for example in M15-H-C3 and T15-H-S3. 

Table 7-2: Transfer lengths comparison 

 
Point number Measured (in) Linear stress (in) 

Parabolic stress 
(in) 

Closed form w/ γ = 0.95 
(in) 

Cut 
end 

Dead 
end 

Cut 
end 

Dead 
end 

Cut 
end 

Dead 
end 

Cut 
end 

Dead 
end 

Cut end Dead end 

M13-H-C4-1 1 2 21.57 17.91 20.67 19.21 31.01 28.82 31.00 28.80 
M13-H-C4-2 3 4 23.11 19.72 21.19 19.46 31.79 29.19 31.80 29.17 
M13-H-C5-1 5 6 19.37 17.09 17.33 19.34 26.00 29.01 25.96 28.99 
M13-H-C5-2 7 8 20.98 19.02 17.09 18.09 25.64 27.14 25.60 27.10 

M15-H-C3-1 9 10 35.59 28.54 34.97 23.95 52.46 35.93 -* -* 
M15-H-C3-2 11 12 34.33 31.45 -* 24.77 -* 37.16 -* -* 
M15-H-C4-1 13 14 30.00 25.98 -* 20.66 -* 30.99 -* 30.99 
M15-H-C4-2 15 16 26.85 23.46 25.10 17.92 37.65 26.88 38.03 26.85 
M15-H-C5-1 17 18 21.93 21.26 21.72 16.58 32.58 24.87 32.62 24.83 
M15-H-C5-2 19 20 23.27 19.13 21.43 18.23 32.15 27.35 32.17 27.31 

T13-H-S3 21 22 27.36 23.27 24.26 20.45 36.39 30.68 36.63 30.67 
T13-H-S4 23 24 23.43 20.55 24.72 20.39 37.08 30.59 37.40 30.58 
T13-H-S5 25 26 21.97 19.80 21.41 20.39 32.12 30.59 32.14 30.58 

T15-H-S3 27 28 35.00 30.71 35.91 23.78 53.87 35.67 - - 
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T15-H-S4 29 30 28.54 25.00 21.94 18.86 32.91 28.29 32.96 28.27 
T15-H-S5 31 32 26.06 24.09 18.78 18.21 28.17 27.32 28.15 27.28 

*Missing data due to damage of instrument upon prestressing force release.  

7.5 Discussion on the bond condition and demand  

7.5.1 Evaluation of strand bonding condition 

Kim’s work[84] includes a variety of specimens, which makes it possible to compare and study the 

influence of some variables. For example, the single strand specimens M13-H-C4-1(2), M13-H-C5-1(2) 

differ from each other only by eccentricity, and M15-H-C3-1(2), M15-H-C4-1(2), and M15-H-C5-1(2) 

differ from M13-H-C4-1(2), M13-H-C5-1(2) by strand diameter. Similarly, specimens T13-H-S3, T13-H-S4, 

T13-H-S5, T15-H-S3, T15-H-S4, and T15-H-S5 make it possible to study the influence of spacing between 

strands. The strand bonding stiffness of specimens are tabulated in Table 7-3 for discussion.  

Another very important statement about the interface stiffness is that the existence of possible 

nonlinear bond-slip relationship along the tendons is recognized. However, based on the comparison 

between comprehensive testing data and corresponding analyses, uniform and constant interface 

stiffness along the prestressing tendons can achieve accuracy that is adequate for engineering analysis.  

In addition, one of the merits of using constant interface stiffness is that the complicated nonlinear 

differential equations can be simplified into linear equations, which makes it possible to determine the 

concise closed form solutions for the sake of design and easy understanding. Again, this study aims at 

developing practical approaches to determine the transfer length and at not over-complicating the 

problem while maintaining sufficient accuracy, so it is not useful and probably insignificant to include 

nonlinearities in this study. Unlike studies by others that were focused on the nonlinearities that can no 

longer be applied to engineering practice, this study can be easily adopted and included in design guides 

and analysis. On the other hand, if more precise solutions are of interest, those can be obtained by 
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replacing the interface stiffness with a reliable bond-slip function in the governing equations and solving 

the governing equations numerically.  

Table 7-3: Interface stiffness comparison 

 
End slip (in) 

χB K 
Cut end Dead end 

M13-H-C4-1 0.0734 0.0683 
0.0977 4.0392e+04 

M13-H-C4-2 0.0753 0.0691 

M13-H-C5-1 0.0616 0.0687 
0.1101 5.1250e+04 

M13-H-C5-2 0.0607 0.0643 

M15-H-C3-1 0.1243 0.0851 
0.0696 2.8698e+04 

M15-H-C3-2 -* 0.0880 

M15-H-C4-1 -* 0.0734 
0.0922 5.0345e+04 

M15-H-C4-2 0.0892 0.0637 

M15-H-C5-1 0.0772 0.0589 
0.1010 6.0507e+04 

M15-H-C5-2 0.0761 0.0648 

T13-H-S3 0.0862 0.0726 0.0880 6.4520e+04 

T13-H-S4 0.0878 0.0724 0.0873 6.3728e+04 

T13-H-S5 0.0761 0.0724 0.0943 7.4611e+04 

T15-H-S3 0.1276 0.0845 0.0656 5.0078e+04 

T15-H-S4 0.0780 0.0670 0.0964 1.0961e+05 

T15-H-S5 0.0667 0.0647 0.1062 1.3246e+05 

*Missing data due to damage of instrument upon prestressing force release.  

In Table 7-3, there are several important observations regarding the bonding condition of the strands. 

Firstly, the double strand specimens, M15-H-C3, M15-H-C4 and M15-H-C5 have approximately double 

the bonding stiffness of the corresponding single strand specimens, T15-H-S3, T15-H-S4 and T15-H-S5. 

Secondly, the 0.6 inch diameter strand specimens, M15-H-C4 and M15-H-C5 have also approximately 1.2 

times the bonding stiffness than the 0.5 inch diameter strand specimens M15-H-C4 and M15-H-C5 due 

to the increase in interface areas.  However, another observation is that the twin 0.5 inch strand 

specimens T13-H-S3, T13-H-S4 and T13-H-S5 exhibit lower strand bonding stiffness than expected upon 

the corresponding single 0.5 inch strand specimens, M13-H-C4 and M13-H-C5. It is likely that since these 

twin 0.5 inch strand specimens have the smallest spacing, the surrounding concrete at this small spacing 

is inadequate to provide the necessary support and thus results in lower interface stiffness. The same 
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trend can also be observed on 0.6 inch twin strands specimens T15-H-S3, T15-H-S4 and T15-H-S5, where 

spacing is the only variable. In those specimens, the interface bonding stiffness will increase as strand 

spacing increases.  

7.5.2 Correlation between transfer length and strand diameter  

The popular observation that transfer length is proportional to strand diameter as codified in ACI 318 

may be explained from another perspective. The reason that larger strand diameter specimens tend to 

be associated with longer transfer length is that large diameter strand will decrease the number of 

strands required for a specific cross section or increase the size of cross section for a specific amount of 

strands. The first scenario will result in less interface area, less interface stiffness and therefore longer 

transfer length. The second scenario will bring in larger demand of interface stiffness and bond than 

current strands provide already, which therefore results in longer transfer length.     

For example, specimens M13-H-C4, M13-H-C5, M15-H-C4, and M15-H-C5 are all designed to have zero 

tensile stress at the top fiber upon prestress release. However, M13-H-C4 and M13-H-C5 have 0.5 inch 

diameter strand whereas M15-H-C4 and M15-H-C5 have 0.6 inch diameter strand. These four groups of 

specimen well simulated the realistic situation. For example, as in Table 7-2, the transfer lengths of 

M13-H-C4 and M13-H-C5 are shorter than M15-H-C4 and M15-H-C5. Meanwhile, as demonstrated in 

Table 7-3, χB of M13-H-C4 and M13-H-C5 are larger than that of M15-H-C4 and M15-H-C5. χB essentially 

represents the bonding stiffness demand, which is used in Equation (7.4). This demonstrates well that 

larger strand diameter specimens will either have larger demand or have smaller interface bonding 

stiffness, and both scenarios will result in shorter transfer length.  

7.6 Application and comparison 

ACI 318[71] defines the transfer length as:  
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AASHTO LRFD[79] defines transfer length as:  

 60t bl d   (7.18) 

where fse = effective prestressing force in psi and db = strand nominal diameter in inch. For the ACI 318 

approach in Equation (7.17), the effective prestressing force is the force remaining after immediate 

prestress losses. For grade 270 prestressing strand prestressed to 75% of its tensile strength, and 

assuming 10% of immediate prestress losses, Equation (7.17) becomes lt = 60.75 db, which is very close 

to AASHTO LRFD provision of transfer length in Equation (7.18). However, those two equations do not 

consider the bonding condition at the strand-concrete interface or the cross section properties of the 

prestressed concrete structures, which may be inappropriate. This study derives transfer length as 

Equation (7.4), or Equation (7.8) if measured end slip data is available. Equation (7.4) and Equation (7.8) 

account for the cross section properties and strand interface bonding stiffness and consider the transfer 

length as the consequence of the interaction between those mechanical properties. Equation (7.4) 

however takes all of those influences into consideration along with all of the immediate prestress losses, 

but interface bonding must be assumed. Equation (7.8) on the other hand takes advantage of measured 

end slip data to determine the interface bonding condition and precisely yield the desired results. 

Therefore, in order to demonstrate impact of those two equations, the transfer length expressions from 

ACI 318 and AASHTO LRFD along with actual tested beams are compared. 

All of the strands were pretensioned to 75% of their tensile strength, so the initial prestresses are 

202500 psi for all specimens (1 psi = 6.89 kPa). The immediate prestress losses are calculated in 

accordance to Equations (6.47) and (6.55), which include curvature gain due to self-weight and elastic 

shortening loss. Note that both of the two approaches need a criteria γ to define when transfer length is 
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achieved from strain profile data, and that γ = 0.865 is used to comply with testing data measured by the 

95% AMS approach. The strands are reported to be in fresh and new condition and neither rust nor oil 

exists on the surface. Therefore the interface stiffness, according to Chapter 6, is again taken as 40000 

(lbf/in) for each 0.5 inch diameter strand and 48000 (lbf/in) for each 0.6 inch diameter strand (1 inch = 

25.4 mm, 1 lbf = 4.45 N). If more than one strand is placed, the interface bonding stiffness should be 

multiplied by the amount of strand.  

Table 7-4: Transfer length calculation according to ACI 318  

 
Gain due to 
self-weight 

(%) 

Elastic 
shortening loss 

(%) 

Total 
immediate 
losses (%) 

Effective 
prestress (psi) 

Transfer length 
(in) 

M13-H-C4-1 
0.2 6.13 5.90 190553 31.76 

M13-H-C4-2 

M13-H-C5-1 
0.19 5.21 5.02 192335 32.06 

M13-H-C5-2 

M15-H-C3-1 
0.26 9.72 9.46 183344 36.67 

M15-H-C3-2 

M15-H-C4-1 
0.22 8.31 8.09 186118 37.22 

M15-H-C4-2 

M15-H-C5-1 
0.19 7.09 6.90 188528 37.71 

M15-H-C5-2 

T13-H-S3 0.19 7.59 7.40 187515 31.25 
T13-H-S4 0.19 7.04 6.85 188629 31.44 
T13-H-S5 0.19 6.57 6.38 189581 31.60 

T15-H-S3 0.18 9.85 9.67 182918 36.58 
T15-H-S4 0.16 7.78 7.62 187070 37.41 
T15-H-S5 0.16 8.42 8.26 185774 37.15 
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Table 7-5: Transfer lengths comparison  

 

Measured by 95% 
AMS (in) 

Measured 
average of both 

ends (in) 
ACI 318 (in) 

AASHTO 
LRFD (in) 

Eq.(7.4) 
w/ γ = 

86.5% (in) 

Eq.(7.8) w/ γ = 86.5% (in) 

Cut end 
Dead 
end 

Cut end Dead end 

M13-H-C4-1 21.57 17.91 19.74 
31.76 30 20.23 

20.67 19.21 
M13-H-C4-2 23.11 19.72 21.42 21.19 19.46 
M13-H-C5-1 19.37 17.09 18.23 

32.06 30 20.33 
17.33 19.34 

M13-H-C5-2 20.98 19.02 20 17.09 18.09 

M15-H-C3-1 35.59 28.54 32.07 
36.67 36 21.57 

34.97 23.95 
M15-H-C3-2 34.33 31.45 32.89 -* 24.77 
M15-H-C4-1 30.00 25.98 27.99 

37.22 36 21.74 
-* 20.66 

M15-H-C4-2 26.85 23.46 25.16 25.10 17.92 
M15-H-C5-1 21.93 21.26 21.60 

37.71 36 21.88 
21.72 16.58 

M15-H-C5-2 23.27 19.13 21.20 21.43 18.23 

T13-H-S3 27.36 23.27 25.32 31.25 30 20.07 24.26 20.45 
T13-H-S4 23.43 20.55 21.99 31.44 30 20.13 24.72 20.39 
T13-H-S5 21.97 19.80 20.89 31.60 30 20.18 21.41 20.39 

T15-H-S3 35.00 30.71 32.86 36.58 36 21.55 35.91 23.78 
T15-H-S4 28.54 25.00 26.77 37.41 36 21.80 21.94 18.86 
T15-H-S5 26.06 24.09 25.08 37.15 36 21.73 18.78 18.21 

    *Missing data due to damage of instrument upon prestressing force release. 

Table 7-4 summarizes the ACI 318 transfer length results calculation. Table 7-5 compares the transfer 

length data between ACI 318, AASHTO LRFD and approach developed herein and demonstrates that the 

ACI 318 and AASHTO LRFD transfer length predictions would yield roughly the same results on transfer 

length for grade 270 strand pretensioned to 75% of their tensile strength, but the results have obvious 

discrepancy with testing data that is obtained in accordance to the 95% AMS approach. On the other 

hand, the results from Equation (7.4) would result in better agreement with the same set of test data 

than ACI 318 and AASHTO LRFD methods. Based upon the transfer length prediction comparisons 

presented in Table 7-5, not surprisingly, the most ideal way to predict transfer length is to use Equation 

(7.8) when end slip data is available since the end slip data clearly represent the bonding condition 

between strands and concrete and other influences such as surface condition, strand diameter, strand 

spacing and concrete strength are all accounted for. Even if the end slip data is not available, Equation 
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(7.4) would yield more reasonable results than the transfer length formulas in ACI 318 and AASHTO 

LRFD.   

7.7 Conclusions 

This chapter develops practical and accurate approaches to evaluate transfer length in prestressed 

concrete beams. The derivations are validated against comprehensive sets of testing data and show very 

satisfactory accuracy. Firstly, it demonstrates that the application of composite theory to the prestress 

transfer problem is valid. Secondly, this study further simplified the closed form solutions developed in 

Chapter 6 and established a solid foundation for its practical application to prestressed concrete design. 

For example, by measuring the end slips of specific specimens, its strain profile in addition to transfer 

length can be determined. Thirdly, by taking advantage of test data presented in the literature, the 

strand bonding conditions are evaluated. It confirms the conclusions presented in Chapter 6 that 0.6 

inch diameter strand would have a 20% greater bonding stiffness than the 0.5 inch diameter strand if all 

other conditions are kept the constant. It also demonstrates that the strand bonding stiffness is also 

proportional to the total number of strands. 
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Chapter 8 Summary and future work 

This dissertation develops a general form of composite theory in linear and elastic range, and applies it 

to a number of applications such as sandwich structures and prestressed concrete. All those applications 

are validated against comprehensive testing data in the literature, and the validations show very 

satisfactory results. This dissertation provides a new perspective from interactive composite theory and 

improves some existing analyses and design approaches in each application area, such as immediate 

prestress losses and transfer length. Specifically, for unsymmetrical and symmetrical sandwich 

structures that are discussed in Chapters 4 and 5, it is concluded that: 

1. The analysis approach in Chapter 4 captures transverse interaction and results in more reasonable 

results than Newmark’s approach, especially in terms of bending moment. The resultant stresses also 

show apparent difference between the two approaches. The model developed through the present 

research balances the complexity and accuracy by supplementing important transverse interaction as a 

decoupled load case.  

2. Another important aspect of the theory and analysis procedure in Chapters 4 and 5 is that the 

governing equations are all solved with closed form solutions, which lends convenience to future 

application to practical design and analysis. Also the upper and lower bounds of those solutions are 

derived and provided in closed forms, and in that way the estimation of internal forces in any partially 

composite structures is made possible.  

3. The Discrete Model presented in Chapter 5 can improve the stress calculation accuracy near shear 

connectors and capture the key characteristic of ICSP structures. 
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4. Sandwich structures deflection is decomposed and classified as flexural and shear components. 

Furthermore, the upper and lower bounds of deflection, end slip and internal forces are derived and 

verified against full-scale test data. 

5. The deflection associated with shear deformation can be so large that it can dominate the deflection 

when the middle layer stiffness is relatively small (demonstrated in Figure 5-9).  

On the other hand, for the transfer length and immediate prestress losses in prestressed concrete 

structures, conclusions from this study are drawn as:  

6. Developed theory in Chapters 6 and 7 can improve prestress concrete analysis and design, and can 

provide a new perspective for prestressing structural analysis. Comparisons with testing data 

demonstrate agreement with the developed theory. 

7. It is demonstrated analytically in Chapter 6 that the PCI Design Handbook, AASHTO-LRFD specification 

and ACI-318 provisions for prestress loss due to elastic shortening are only applicable to small 

reinforcement ratio components and will overestimate the prestress loss for large reinforcement ratio 

components whereas the formulation derived herein is accurate without limitation.  

8. Transfer length solution in Chapters 6 and 7 is derived based on pure mechanical definition instead of 

empirical data as used by other researchers in the past investigations, and the derived formula is 

validated against test data.  

9. In Chapters 6 and 7, the roles of concrete strength, prestressing force and strand diameter that were 

previously thought to directly affect transfer length, however, are shown actually to influence the 

interface stiffness, which in turn affects transfer length.  
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10. The rigorous strand force gain due to curvature developed in Chapter 6 is able to consider the 

existence of slip and large reinforcement ratios, which could not be accounted for in the past. It is also 

simplified for application outside of transfer zones, for example critical sections at or near midspan.    

11. A practical approach to evaluate and quantify the strand-cocnrete interface bonding of existing 

prestressed concrete structures is presented in Chapter 7 and validated against test data. By taking 

advantage of this approach, it is confirmed that 0.6 inch diameter strand would have a 20% greater 

bonding stiffness than the 0.5 inch diameter strand if all other conditions are kept the constant. It also 

demonstrates that the strand bonding stiffness is also proportional to the total number of strands. 

For sandwich structures, this study decouples the longitudinal land transverse interactions and 

investigates them separately. However, the longitudinal and transverse effects are actually coupled. It is 

recommended that future work could include the discussion and evaluation on the mechanics of 

coupling. Additionally, transforming the theory presented here into design methodology and additional 

discussions of nonlinear properties associated with sandwich structures are also recommended for the 

future studies.

For transfer length and prestress losses, future work could include the investigations in large 

displacement and nonlinear ranges, and also the investigation of time dependent behavior of concrete.  

The publications associated with sandwich structures in this dissertation are: 

1. Bai, Fengtao, Davidson, James. “Analysis of partially composite foam insulated concrete sandwich 

structures.” Engineering Structures, 91 (2015) 197–209.  

2. Bai, Fengtao, Davidson, James. “Partially composite sandwich structures with unsymmetrical wythes 

and transverse interaction.” Engineering Structures, 116 (2016): 178-191.  

The publications associated with transfer length and immediate prestress losses in this dissertation are: 
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3. Bai, Fengtao, Davidson, James. “Composite theory for transfer length and immediate prestress losses 

in prestressed concrete structures.” Under review, 2015.  

4. Bai, Fengtao, Davidson, James. “Practical approaches for predicting transfer length and strain profile.” 

Under review, 2015. 

5. Bai, Fengtao, Davidson, James. “Composite theory for prestressed concrete girders draped tendon 

and bond-slip relationship.” Under review, 2016.  
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