Reliability and Modeling of 32nm SOI Transistors at Cryogenic Temperatures

by
William Ryan King
A thesis submitted to the Graduate Faculty of
Auburn University in partial fulfillment of the requirements for the Degree of Master of Science
Auburn, Alabama
August 6, 2016

Keywords: electronics, cryogenic, reliability, hot carrier effects

Copyright 2016 by William Ryan King

Approved by
Michael C. Hamilton, Chair, Associate Professor of Electrical and Computer Engineering
Robert N. Dean, McWane Professor of Electrical and Computer Engineering
Mark L. Adams, Assistant Professor of Electrical and Computer Engineering

Abstract

With conventional transistor scaling rules and performance trends coming to an end, new methods are being explored to continue the advancements of electronic devices. One such method is to operate the devices in cryogenic environments. A few concerns for cryogenic electronics are the device reliability and lack of cryogenic models. Integrated circuits fabricated using a 32 nm SOI technology containing MOSFET transistors are stressed and measured at room temperature and in liquid helium to determine how the characteristics of the transistors change as a function of temperature. Various high voltage bias are applied to the gate and drain of an nFET transistor to induce hot carrier effects in the gate oxide of the transistor. Different gate widths are being tested to understand the geometrical impacts on reliability. Using the transistor characteristics gathered from the different widths, scalable cryogenic SPICE models are developed.

Acknowledgments

I sincerely thank Dr. Michael Hamilton for serving as my advisor and for his guidance and expertise throughout this work and graduate studies.

I express my thanks Dr. Robert Dean and Dr.Mark Adams for their review and commentary on this work.

I would also like to thank Dr. Charles Ellis, Kyle Owen, Drew Sellers, and Hannah Masten for their support in areas of this work.

I wish to express my most sincere gratitude to Ryan and Cindy King for their encouragement and support throughout my academic career.

Table of Contents

Abstract ii
Acknowledgments iii
List of Figures vii
List of Tables x
List of Abbreviations xi
1 Introduction 1
2 IC Fabrication Design 3
2.1 Design Steps 3
2.1.1 Schematic Design 3
2.1.2 Simulation 4
2.1.3 Layout 5
2.1.4 Checking and Submission 5
2.2 Test Chips 6
2.3 Test Devices 8
3 Test Procedures 12
3.1 Stress Introduction 12
3.2 Testing Equipment 13
3.3 Measurements 14
3.3.1 Standard 14
3.3.2 Stress 15
3.3.3 Post 15
3.4 Parameter Extraction 16
4 Measurement Results 20
4.1 RT vs. LHe Standard 20
4.2 Reliability Results 24
5 Modeling and Simulations 32
5.1 Modeling 32
5.1.1 Initial Setup 32
5.1.2 Optimization 33
5.1.3 Extraction 36
5.2 Simulations 37
6 Conclusion and Future Work 41
6.1 Conclusion 41
6.2 Future Work 42
Bibliography 43
Appendices 45
A Cadence Simulation Tutorial 46
A. 1 Simulation Steps 46
A.1.1 Launching ADE XL 46
A.1.2 Creating a new test 48
A.1.3 Setting Global Variable and Corners 52
A.1.4 Running Simulation and Viewing Data 53
B Testing Equipment and Procedures 55
B. 1 Testing Equipment 56
B. 2 Measurement Process Steps 59
B. 3 Kite Settings 59
B. 4 External Instrument Code 66
C Wedge Wire Bonding 71
C. 1 Components 71
C. 2 Steps 72
C.2.1 Sheering DIP package leads 72
C.2.2 Mounting a chip to the package 73
C.2.3 Bonding 74
C. 3 Example bonding diagrams 76
D MATLAB Code 80
D. 1 Batch Read Scripts 80
D.1.1 Standard/Post 80
D.1.2 Stress 82
D.1.3 Simulations 83
D. 2 Standard/Post Plots 84
D. 3 MTTF Plots 85
D. 4 Subthreshold 91
D. 5 IC-CAP 92
E IC-CAP Modeling Fitting Tutorial 94
E. 1 Process Overview 94
E.1.1 Creating a New Model 94
E.1.2 Adding SPICE Circuit and Variables 95
E.1.3 Adding DUT and Setups 97
E.1.4 Optimization 100
E.1.5 Extraction 102

List of Figures

2.1 Schematic diagram of a single transistor with ESD diodes used to run simulations and layout the design. 4
2.2 Corner simulation results from the 2860 nm transistor compared to the measured results at 300 K and 4.2 K 5
2.3 Top level view of the $2 \times 2 \mathrm{~mm}$ pad frame. All of the transistors measured are on the right side of the chip in between the 6×12 pad array. 7
2.4 Top level view of the $1 \times 1 \mathrm{~mm}$ pad frame. All of the pads are located around the edge of the chip to make wire bonding easier. 7
2.5 Closer look at a transistor on the 1 x 1 mm chip. 8
2.6 Cross section of a transistor fabricated using an SOI process vs a bulk process. 8
3.1 First derivative of the $\underline{I}_{-}-\underline{V_{G S}}$ curve using the 3-point derivative and a fit line used to extract where max gm occurs. 17
3.2 Extraction processes used to extrapolate the threshold voltage from an $\underline{I_{D}} \underline{-V_{G S}}$ curve. 18
3.3 Threshold voltage shift during HCE stressing. 19
4.1 Comparison between RT and LHe standard measurements from (a) 104 nm and
(b) 2860 nm single transistor. 21
4.2 Transconductance difference between RT and LHe for a 2860 nm transistor. 22
4.3 Subthreshold slope extraction from a 2860 nm transistor. 23
4.4 Complete set of the RT standard measurements used to complete the reliability study from (a) 104 nm and (b) 2860 nm RVT nFETs. 25
4.5 Complete set of LHe standard measurements used to perform the LHe tempera- ture stresses from (a) 104nm and (b) 2860nm RVT nFETs. 26
4.6 Threshold voltage shift from the 104 nm devices at (a) RT and (b) in LHe and from the 2860 nm devices at (c) RT and (d) in LHe. 28
4.7 MTTF extraction plots for the (a) 104 nm and (b) 2860 nm devices. 29
4.8 MTTF comparison between the 104 nm and 2860 nm devices in LHe. 30
4.9 Comparison between standard and post (circle) measurements for (a) 104 nm and (b) 2860 nm stressedin LHe at 2 V 31
5.1 Cryogenic measurements from (a) 104nm RVT nFET and (b) 2860nm RVT nFET that were averaged together and used to fit the BSIMSOI model. 35
5.2 BSIMSOI model vs. the averaged measured data from Figure 5.1 (a) 104 nm RVT nFET and (b) 2860 nm RVT with 10 percent error bars plotted along the simulated data. 36
5.3 Cadence simulation the cryogenic model at (a) 104 nm and (b) 2860 nm with the ESD diodes connected as shown in Figure 2.1. 38
5.4 Cadence simulation results from changing the width to 520 nm (dashed) and 1040 nm (solid) in the cryogenic model. 39
5.5 Cryogenic model with voltage step swept from 50 mV to 900 mV in 50 mV increments. 39
5.6 Comparison between the cryogenic model and the initial measurements taken during the stress measurements with $V_{D S}$ equal to 50 mV 40

List of Tables

2.1 Complete list of the transistors that were fabricated on the three chips used in this study 9
3.1 Measurement Performed on the 32nm RVT nFETs 16
5.1 List of Parameters used in Device Optimization 34

List of Abbreviations

DRC	Design Rule Check
GDS	Graphic Data System
HCE	Hot Carrier Effect
HVT	High Voltage Threshold
IC	Integrated Circuit
IC-CAP	Integrated Circuit Characterization and Analysis Program
KITE	Keithley interactive test environment
LHe	Liquid Helium
LM	Levenberg-Marquardt
LVS	Layout Versus Schematic
MTTF	Mean Time to Failure
PDK	Process Design Kit
RT	Room Temperature
RVT	Regular Voltage Threshold
SMU	Source Measurement Unit
SOI	Silicon on Insulator
SVT	Super-high Voltage Threshold

Chapter 1

Introduction

"If the auto industry advanced as rapidly as the semiconductor industry, a Rolls Royce would get a half a million miles to the gallon and it would be cheaper to throw it away than to park it." Gordon Moore [1]

Gordon Moore, co-founder of Intel, developed a theory in 1965 stating that the number of transistors that would fit on a square inch of an integrated circuit would double every year and the price would halve [1]. This theory would prove to hold true over several decades that followed the statement. However, after approximately 50 years of being the industry standard for transistor scaling trends, Moores Law has approached the physical limit for improvement. Moores Law coming to an end is requiring scientists and engineers to explore new ways to continue the advancement of transistors. One such way that this is being accomplished is by using the transistors in cryogenic environments.

Cryogenic electronics are designed to operate at temperatures as low as a few millikelvin. Electric systems that operate at these temperatures are commonly called cryoelectronics. The use of cryoelectronics has many benefits in terms of circuit performance. A general improvement of cryoelectronics are that conductors, such as niobium and lead, transition into superconductors at sub-10K temperatures [2]. Superconductors have essentially no resistance when at cryogenic temperatures allowing current to flow with approximately zero loss in the conductor. Transistors, when used at cryogenic temperatures, exhibit reduced noise, superior speed, and increased efficiency when compared to RT results. These transistor improvements, when combined with superconducting connections, are enabling cryoelectronic systems to be developed with superior performance and efficiency compared to the same system at RT.

One system that requires the use of cryoelectronics is the quantum computer. Quantum computers use qubits instead of traditional bits that are found in todays computer, allowing the quantum computer to achieve processing speeds hundreds or thousands of times faster than a traditional computer. One downside of the quantum computer is that currently they do not work at RT. Most qubits must be kept at temperatures that are lower than 1K to be able to operate. Because the qubits must be at cryogenic temperatures to operate, cryoelectronic circuits must be used to interface between the qubits and the external inputs and outputs. Two issues with developing these cryoelectronic circuits are the reliability of the transistors at cryogenic temperatures and the lack of having cryogenic models of the transistors.

The following chapters will be comprised of: an overview of the IC design process, a reliability comparison of HCE on a MOSFET at RT and in LHe , and the process of developing a cryogenic model for a MOSFET transistor.

Chapter 2

IC Fabrication Design

This chapter will give an overview of the IC design process using Cadence Virtuoso. Cadence Virtuoso is a custom IC design tool that encompasses the schematic diagram, simulation, and layout all into one software package. The main steps of designing a transistor test chip will be highlighted, and the completed designs used for all of the modeling and reliability test performed in this study will be discussed. Refer to Appendix A for a more detailed tutorial on using Cadence Virtuoso for transistor simulations.

2.1 Design Steps

The entire IC design process can be grouped into four sequential steps:

1. Schematic Design
2. Simulation
3. Layout
4. Checking and Submission

2.1.1 Schematic Design

First, a schematic of the design must be made using component symbols (Figure 2.1). All of the models that are available can be found in the Model Reference Guide of the PDK.

Figure 2.1: Schematic diagram of a single transistor with ESD diodes used to run simulations and layout the design.

2.1.2 Simulation

When the schematic design is complete, simulations are performed on the design to ensure that the circuit is functional and gives a desired result (Figure 2.2). During the simulations, corner simulations are useful to help account for imperfections in the materials and variation of the manufacturing process. FFF and SSF are the best and worst case design manual value limits of the model. FF and SS account for increased and decreased mobility due to chip fabrication imperfections and chip-to-chip connections. By looking at the log scale plot, it is easily seen that results are not compatible for the cryogenic measurements. The models associated with the component symbols in the PDK were developed from RT devices. This issue will be covered in more detail in Chapter 5.

Figure 2.2: Corner simulation results from the 2860 nm transistor compared to the measured results at 300 K and 4.2 K .

2.1.3 Layout

Once the simulations are producing desired results, the chip layout development can begin. Each PDK comes with a design manual for the process. This manual has detailed information about most aspects of the layout design including: metal stack, standard cells, rules, and various other topics. All of the transistors used in all of these designs were included in these standard cells of the PDK. For the test chips, all of routing was done on wide, thick, metal layers to help reduce the resistance of the chip.

2.1.4 Checking and Submission

After the layout has been completed, two checks must be performed before the design can be submitted for fabrication. The first check the design must pass is DRC. DRC is an automated checking feature that compares the physical layout to a series of parameters established by the design manual of the fabrication process. The DRCs main purpose is to make certain that the design will be able to be fabricated. LVS is the final check that must
be executed on the design. LVS takes the schematic that was created in the initial step of the design process and compares the electrical connections to the layout. This ensures that there are not any wires crossing, causing shorts, and all of the interconnections formed match the previously simulated schematic. Finally, after both of the design checks are clean, the layout GDS File can be streamed out and submitted to the foundry.

2.2 Test Chips

There were two different chips layouts used to perform all of the measurements included in this study, a $2 \times 2 \mathrm{~mm}$ and two 1 x 1 mm . Both of these chips were fabricated using a 32 nm SOI process. Figure 2.3 and Figure 2.4 show an overview of the 2 x 2 and 1 x 1 chips, respectively. By taking a closer look, Figure 2.5 gives a more detailed view of how an individual transistor looks in the layout of the schematic shown in Figure 2.1. While the ESD diodes were primarily added because they are required by the design rule manual, they do provide ESD protection. As seen in Figure 2.1, the diodes allow a resistive path for charge to bleed-off of the gate oxide when the transistor is not in use. Without these diodes, once enough charge builds up, the gate oxide would break down, causing the transistor to fail prematurely. All of the sources of the transistors are tied together and tied to the substrate through the BITIE. Connecting the transistors in this manner ensures that all of the transistors are at the same electrical potential. Table 2.1 gives a list of all the transistors that can be found on the three chips.

Figure 2.3: Top level view of the 2 x 2 mm pad frame. All of the transistors measured are on the right side of the chip in between the 6×12 pad array.

Figure 2.4: Top level view of the 1 x 1 mm pad frame. All of the pads are located around the edge of the chip to make wire bonding easier.

Figure 2.5: Closer look at a transistor on the 1x1mm chip.

2.3 Test Devices

Transistors fabricated in the SOI process are superior to those fabricated in the conventional bulk process. SOI transistors have up to 20 percent greater performance, 30 percent less power consumption, and a 15 percent reduction in size [3]. The SOI process is implemented by adding a silicon dioxide insulating layer in between the silicon substrate and the transistor wells as diagrammed in Figure 2.6 [4].

Figure 2.6: Cross section of a transistor fabricated using an SOI process vs a bulk process.

Table 2.1: Complete list of the transistors that were fabricated on the three chips used in this study

Device	w (nm)	L (nm)	$T_{o x}^{a}$ $(\mathrm{~nm})$	Nom. Oper. Voltage (V)	Device	w (nm)	L (nm)	$T_{o x}$ $(\mathrm{~nm})$	Nom. Oper. Voltage (V)
RVT nFET	104	40	1.5	0.9	UVT pFET	2860	40	1.5	0.9
RVT nFET	208	40	1.5	0.9	SVT nFET	104	40	1.5	0.9
RVT nFET	520	40	1.5	0.9	SVT nFET	2860	40	1.5	0.9
RVT nFET	1040	40	1.5	0.9	SVT pFET	104	40	1.5	0.9
RVT nFET	2860	40	1.5	0.9	SVT pFET	2860	40	1.5	0.9
RVT pFET	104	40	1.5	0.9	AVT nFET	624	56	1.5	0.9
RVT pFET	208	40	1.5	0.9	AVT PFET	624	56	1.5	0.9
RVT pFET	520	40	1.5	0.9	TOnFET	312	100	2.5	1.5
RVT pFET	1040	40	1.5	0.9	TOnFET	624	100	2.5	1.5
RVT pFET	2860	40	1.5	0.9	TOnFET	1560	100	2.5	1.5
HVT nFET	104	40	1.5	0.9	TOpFET	312	100	2.5	1.5
HVT nFET	208	40	1.5	0.9	TOpFET	624	100	2.5	1.5
HVT nFET	520	40	1.5	0.9	TOpFET	1560	100	2.5	1.5
HVT nFET	2860	40	1.5	0.9	AVT nFET BC	624	56	1.5	0.9
HVT pFET	104	40	1.5	0.9	AVT pFET BC	624	56	1.5	0.9
HVT pFET	208	40	1.5	0.9	AVTL nFET BC	624	490	1.5	0.9
HVT pFET	520	40	1.5	0.9	AVTL pFET BC	624	490	1.5	0.9
HVT pFET	2860	40	1.5	0.9	AVTD nFET BC	624	100	1.5	0.9
UVT nFET	104	40	1.5	0.9	AVTD pFET BC	624	100	1.5	0.9
UVT nFET	2860	40	1.5	0.9	TOnFET BC	624	100	2.5	1.5
UVT pFET	104	40	1.5	0.9	TOpFET BC	624	100	2.5	1.5

[^0]From the capacitance charge equation,

$$
\begin{equation*}
Q=C v \tag{2.1}
\end{equation*}
$$

where Q is the charge of the capacitor in coulombs, C is the capacitance in farads, and v is the voltage in volts [5, 93]. As the capacitance increases, the amount of voltage needed to produce a given amount of charge will decrease. For a transistor the capacitive structure is the gate oxide. The gate oxide capacitance resembles a parallel plate capacitor and is calculated by,

$$
\begin{equation*}
C_{o x}=\frac{K_{o} \epsilon_{o} A_{G}}{t_{o x}} \tag{2.2}
\end{equation*}
$$

where $C_{o x}$ is the gate oxide capacitance, K_{o} is an oxide dielectric constant, ϵ_{o} is the permittivity of free space constant, A_{G} is the gate area, and $t_{o x}$ is the gate oxide thickness [6, 49]. Shown in Table 2.1, for the same size HVT and RVT transistor $t_{o x}$ and A_{G} are identical. The only term from Eq. 2.2 that affects the capacitance of the two devices is $K_{o} . K_{o}$ is modified during the IC fabrication process through ion implantation [6, 120]. By implanting boron or phosphorus ions near the oxide-semiconductor boundary, K_{o} of the transistor is modified. For example, if boron ions are implanted, K_{o} will decrease causing $C_{o x}$ to decrease, which will cause the voltage required to reach an adequate charge to turn on the transistor to increase. Implanting boron ions are how the threshold voltage is adjusted to make HVT devices.

Out of all of the devices listed in Table 2.1, the 104 nm and 2860 nm RVT MOSFETs were chosen as the devices on which to perform the reliability study. The RVT devices were chosen instead of the HVT devices because in low power electronics, transistors with lower threshold voltages are more commonly used in industry. In addition, the lower the threshold voltage for the device, the more susceptible the devices is to high voltage stress effects. The 104 nm device is the minimum width that can be fabricated using the 32SOI process and, at 27.5 times bigger, the 2860 nm device is the largest size that is allowed. Choosing these two devices allows a best and worst case scenario to be developed for the RVT MOSFET.

Furthermore, during the cryogenic model development, having a model that covers the entire range of the process will be beneficial when making future circuit designs.

Chapter 3
 Test Procedures

This chapter is an overview of the process used to test transistor reliability at RT and in LHe. The stress method used to determine the transistor reliability, testing equipment, and data processing will be discussed. A complete overview of testing equipment and procedure can be found in Appendix B.

3.1 Stress Introduction

HCE, also called hot carrier injection, is becoming an increasing issue with MOSFETs as the size of the transistors decrease. HCE occurs in MOSFETs when channel carriers gain abundant kinetic energy while traveling through the depletion region and collide with the gate oxide with sufficient force to cause the carrier to become embedded into the oxide [6, 136]. When high voltage biases are applied to the gate $\left(V_{G S}\right)$ and drain $\left(V_{D S}\right)$ of transistors, these hot carriers are introduced into the devices. Multiple parameters of the MOSFETs are effected by HCE, but arguably the most important parameter is threshold voltage $\left(V_{T}\right)$. With the increase in number of hot carriers embedded into the oxide, V_{T} of the devices also increases. This causes a higher bias on $V_{G S}$ of the device to achieve the desired drain current $\left(I_{D}\right)$ defined by:

$$
\begin{equation*}
I_{D}=\frac{w \mu C_{o x}}{L}\left(V_{G S}-V_{T}-\frac{V_{D S}^{2}}{2}\right) V_{D S} \tag{3.1}
\end{equation*}
$$

in the linear regime, and by:

$$
\begin{equation*}
I_{D}=\frac{w \mu C_{o x}}{2 L}\left(V_{G S}-V_{T}\right)^{2} \tag{3.2}
\end{equation*}
$$

in the saturation region, where w is the gate width, μ is the mobility, and L is the gate length [7]. From these equations it can be easily seen that, with all other parameters constant, as
V_{T} increases, I_{D} will decrease. Due to HCE continuing to accumulate over time, the life of the MOSFETs is impacted and becomes a critical factor in the reliability of the device. Holes have been proven to cause approximately 100 times more breakdown in the oxide than electrons when traveling with enough energy [8]. The gate current (IG) in pMOS devices is made up of strictly electrons. In nMOS devices IG is a combination of electrons and holes. Due to this fact, pMOS devices have been known tolerate about 1000 times more HCE stress than nMOS devices [8]. For this reason, nMOS devices will be the focus of the reliability so that the worst case scenario can be observed.

3.2 Testing Equipment

In order to simulate this stress, a test set-up has been designed that allows each transistor to be connected to a Keithley 4200 Semiconductor Characterization System. The entire setup consists of 4 parts: the Keithley 4200, an Agilent B2201A Switch Mainframe with B2211A cards, a custom cryogenic probe, and a Cryofab dewar.

The Keithley 4200 is used for all of the measurements of the devices. The transistor is connected using 3 SMUs. The drain and source contacts both have force and sense connections with the gate contact only using the force connection SMU. 4 point measurements and stresses are performed on the transistor using KITE.

The Aglient B2201A is used to automate the test set-up, allowing multiple transistors to be tested autonomously. All of the inputs and outputs of the B2201A and B2211A cards are triax ports that provide sufficient shielding for the signals to and from the transistors.

The cryogenic probe is used to interface the individual transistors to the switch matrix. The probe is constructed of a hollow stainless steel pipe to allow signal lines to be fed through connecting the PCB board mounted on the bottom to the breakout box on the top. A 40 pin gold plated DIP is used to wire bond the transistor out to a manageable package. In order to eliminate ESD issues, a wedge bonder was used to make the bonds. A wedge wire bonder uses ultrasonic energy to attach gold wires to the exposed chip pads without having
the electric arc used to create the ball on a ball bonder. A complete tutorial of how to use the wedge bonder to bond these chips can be found in Appendix C. After the chips are wire bonded to a DIP, they are placed in the DIP socket on the PCB board on the end of the probe. This probe allows testing to be performed at room temperature or cryogenic temperatures when submerged into a dewar.

The Cryofab dewar is a stainless steel vacuum sealed tank that can hold up to 100 L of LHe allowing transistors to be measured in temperatures as low as 4.2 K when the PCB on the end of the probe is submerged.

3.3 Measurements

A set of measurements is performed on each transistor to conduct the reliability study. The set of measurements includes 3 different measurements:

1. Standard
2. Stress

3. Post

3.3.1 Standard

Standard measurements are where the transistors characteristic curves, $I_{D^{-}} V_{D S}$ and $I_{D^{-}}$ $V_{G S}$, are established. During the standard measurement, one of the voltage biases $V_{D S}$ or $V_{G S}$ is swept from 0 to the nominal operating voltage over 51 data points, while the other bias is stepped from 0 to nominal operating voltage over 5 data points. For the 32 nm SOI process used to fabricate these transistors, the nominal operating voltage specified in the design manual is 0.9 V . The standard measurements ensure device functionality and allows the standard parameters of the transistors to be determined before stressing.

3.3.2 Stress

During the stress measurements the reliability of the transistor is determined. Stress measurements induce HCE and by applying a high voltage bias to $V_{D S}$ and $V_{G S}$ of the transistors and periodically taking measurements to determine how much stress has occurred. After various test to determine what stress biases would be used, the voltage range of 1.6 V and 2.1 V was selected for $V_{D S}$. The lower bound, 1.6 V , was set because by decreasing the voltage anymore required too much time to achieve significant levels of HCE stress. Contrarily, the upper bound of 2.1 V was set because any higher bias caused too much stress over just 1 second of stress and kill the device. If $V_{G S}$ is too large the gate oxide is will break down causing the device to fail before the HCE stress can affect the device. Because of this, the bias on $V_{G S}$ is always set equal to half of $V_{D S}$. The periodic measurement performed during the stress is $I_{D}-V_{G S}$ with $V_{G S}$ sweeping from 0 to 0.8 V while $V_{D S}$ is set equal to 50 mV . Setting $V_{D S}$ equal to 50 mV ensures that the transistors will be in the linear regime allowing the extrapolation in the linear regime method to be used when extrapolating the device threshold voltage. By only sweeping to 0.8 V instead of the nominal operating range, prevents the measurement from adding any additional stress to the devices.

3.3.3 Post

The post measurement is identical to the standard measurement, except the characteristic curves show the effects that the HCE have on the device.

Table 3.1 contains a list of the measurement parameters. After performing this set of measurements on the transistor, the data can then be imported into MATLAB to analyze the data.

Table 3.1: Measurement Performed on the 32 nm RVT nFETs

Measurement	Type	$V_{G S}$	Steps	$V_{D S}$	Steps
Standard/Post	$I_{D}-V_{G S}$	$0-0.9 \mathrm{~V}$	51	$0-0.9 \mathrm{~V}$	5
	$I_{D}-V_{D S}$	$0-0.9 \mathrm{~V}$	5	$0-0.9 \mathrm{~V}$	51
	$I_{D}-V_{G S}$	$0-0.8 \mathrm{~V}$	51	50 mV	0

3.4 Parameter Extraction

In order to determine how the HCE affects the transistor's parameters, the parameters must be extracted from measured data. V_{T} is primarily the most important parameter of the transistor in terms of characterization. There are over a dozen ways to extract V_{T} from MOSFETs. To determine V_{T} for all of the discussion to follow, the extrapolation in the linear regime method will be used [9]. This method requires that the maximum derivative be calculated from the $I_{D}-V_{G S}$ curve of the transistor, which corresponds to the maximum transconductance given by:

$$
\begin{equation*}
g_{m}=\frac{d I_{D}}{d V_{G S}} \tag{3.3}
\end{equation*}
$$

where g_{m} is the transconductance $[10,500]$. When extracting the maximum derivative, a 3-point derivative is performed on the curve. Using

$$
\begin{equation*}
f^{\prime}\left(x_{i-1}\right)=\frac{-y_{i+1}+4 y_{i}-3 y_{i-1}}{x_{i+1}-x_{i-1}} \tag{3.4}
\end{equation*}
$$

a plot can be made of $g_{m}-V_{G S}$ to determine at what voltage of $V_{G S}$ the maximum gm occurs (Figure 3.1).

Figure 3.1: First derivative of the $I_{D}-V_{G S}$ curve using the 3-point derivative and a fit line used to extract where max gm occurs.

After the voltage level of $V_{G S}$ is determined, the slope at that point is extrapolated from the $I_{D}-V_{G S}$ curve. Once this slope is found, a linear line is plotted on the $I_{D}-V_{G S}$ curve that has the extrapolated slope and travels through the $V_{G S}$ that was determined from the maximum g_{m}. Using this linear line, the voltage of $V_{G S}$ can be found to achieve any I_{D} specified (Figure 3.2). The voltage level of $V_{G S}$ at I_{D} equal to 0 A is the V_{T} of the transistor.

Figure 3.2: Extraction processes used to extrapolate the threshold voltage from an $I_{D}-V_{G S}$ curve.

As the stress time increases, the number of carriers embedded in the transistors increases causing V_{T} to increase. Increasing V_{T} causes the $I_{D}-V_{G S}$ curve to shift to the left (Figure 3.3). When extrapolating the new V_{T} after the shift, the slope of the linear line is held constant. Only the $V_{G S}$ level at which the maximum g_{m} occurs is allowed to change. Keeping the slope constant assumes that the g_{m} is constant as the amount of HCE exposure in the transistor increases. This assumption is made because the mobility of the channel remains constant because the embedded electrons only affect the gate oxide. When plotted together on the same $I_{D}-V_{G S}$ curve as a function of HCE stress, all of the linear lines are parallel to one another.

Figure 3.3: Threshold voltage shift during HCE stressing.

Taking multiple V_{T} measurements as the amount of HCE stress applied to the transistor is increased, plots of change in V_{T} versus time can be developed. This plot is the basis for the MTTF extractions. The MTTF of a transistor is the time that it takes for the transistor to fail when operating at a given voltage. By determining the time to failure at various high voltage biases when performing the stress measurements, the time to failure at any other voltage bias can be extracted. This allows for the nominal voltage reliability of the device to be estimated without having to perform exceptionally long duration stresses on the transistor. Refer to Appendix D for all of the MATLAB code used for the parameter and MTTF extractions.

Chapter 4

Measurement Results

The following sections will be used to display the measurement results of the study. Differences in the standard measurements at RT and in LHe will be shown explaining the effect cryogenic temperatures have on transistor parameters. The MTTF will be determined for the 104 nm and 2860 nm RVT nFET and the results from the determination will be examined.

4.1 RT vs. LHe Standard

The standard measurements can be used to show many of the advantages of using MOSFETs at cryogenic temperatures. By observing standard measurement results in Figure 4.1 there is a visible difference in the RT and LHe results.

Figure 4.1: Comparison between RT and LHe standard measurements from (a) 104nm and (b) 2860 nm single transistor.

The two linear scale plots show an increase in current for the high voltage bias on the LHe measurements. This is due to both a decrease in resistance and an increase in transconductance [7]. In metals, as the temperature decreases the thermal vibrations of the lattice atoms decrease allowing free electrons to flow more freely. Increasing the flow of electrons, increases the conductivity of the metal [11, 954]. On the $I_{D}-V_{G S}$ RT linear curves the roll off at the end of the curves is due to the resistance of all the metal interconnects in the chip and on the probe. From Ohms Law, with a constant voltage applied as the
resistance decreases the current, I_{D} in this case, must increase. This effect is displayed by the LHe $I_{D}-V_{G S}$ curves continuing on a linear trend of increasing I_{D}.

The transconductance is directly related to the mobility of the transistor defined by,

$$
\begin{equation*}
g_{m}=\mu C_{o x} \frac{w}{L}\left(V_{G S}-V_{T}\right) \tag{4.1}
\end{equation*}
$$

where, μ is the mobility[7]. Analogous to metals, the mobility of semiconductors increases as the temperature decreases due to a decrease in lattice vibrations (Figure 4.2). From Eq. 4.1 the increase in transconductance is directly related to the rate at which I_{D} increases. This is why the transconductance, when combined with the temperature dependent resistive effects cause the increase in I_{D} for the LHe standard measurements.

Figure 4.2: Transconductance difference between RT and LHe for a 2860 nm transistor.

Similarly, the \log scale plot exhibits an increase in the transistor performance for the LHe measurements in two key characteristics, subthreshold leakage current and subthreshold slope. The subthreshold leakage current is defined as the magnitude of I_{D} when the transistor is in the off state, $V_{G S} \ll V_{T}$ [12]. From looking at the RT and LHe log plots of $I_{D}-V_{G S}$,
the magnitude of I_{D} while $V_{G S} \ll V_{T}$ is multiple orders of magnitude lower for the LHe measurements. The rate at which the transistor transitions from the off state to the on state or vise-versa is called the subthreshold slope [13]. The subthreshold slope is inversely related to temperature for transistors. As the temperature decreases, the subthreshold slope becomes steeper. Comparing the slope of the RT to the LHe measurements, the LHe has a subthreshold slope that is over 50% steeper than the device measure at RT (Figure 4.3). Increasing the subthreshold slope allows the transistor to be turned on and off at a faster rate, which increases the speed at which the transistor can operate. The subthreshold leakage and subthreshold slope advantages at cryogenic temperatures are both related to the decrease in lattice vibration causing increased isolation and increased mobility.

Figure 4.3: Subthreshold slope extraction from a 2860 nm transistor.

One disadvantage related to the characteristics of the transistors at cryogenic temperatures is the increase in V_{T}. From the linear $I_{D}-V_{G S}$ plot it can be observed on average that the RT measurements turn on around 0.3 V for the RT and 0.4 V for the LHe. This effect on the V_{T} is due to the Fermi potential and thermal voltage levels of the semiconductor. This
relationship can be defined by:

$$
\begin{equation*}
V_{T}=\phi_{M S}+2 \phi_{F}-\frac{Q_{o x}}{C_{o x}}-\frac{Q_{d e p l}}{C_{o x}} \tag{4.2}
\end{equation*}
$$

where, $Q_{o x}$ is the charge density in the gate oxide, $Q_{\text {depl }}$ is the depletion charge controlled by the gate, and $\phi_{M S}$ is the metal semiconductor work function difference defined by:

$$
\begin{equation*}
\phi_{M S}=-\frac{E_{g}}{2}-\phi_{F} \tag{4.3}
\end{equation*}
$$

where E_{g} is the silicon band gap and ϕ_{F} is the Fermi potential defined by,

$$
\begin{equation*}
\phi_{F}=\frac{k T}{q} \ln \frac{N_{a}}{n_{i}} \tag{4.4}
\end{equation*}
$$

with k being Boltzmanns constant, T is the temperature in Kelvin, q is electron charge, and N_{a} and n_{i} are the substrate and intrinsic carrier concentrations, respectively. Assuming all of the charge and concentration quantities are held constant with respect to temperature, Eq. 4.2 can be condensed to

$$
\begin{equation*}
\frac{d V_{T}}{d T}=\frac{d \phi_{F}}{d T} \tag{4.5}
\end{equation*}
$$

From Eq. 4.4 it is shown that increasing the temperature increases the Fermi potential. Increasing the Fermi potential decreases the amount of external potential that is needed to get an electron in the conduction band in the channel. For MOSFETs, this external potential is $V_{T}[6,31]$.

4.2 Reliability Results

The transistor characteristics associated cryogenic temperatures show advantageous results, but because these devices will be used in costly, complex systems the reliability at cryogenic temperatures is currently a large area of interest. Using the stress measurements
detailed in Chapter 3, the MTTF for the devices can be determined. Figure 4.4 is a compilation of all of the RT standard measurements used in the reliability study.

Figure 4.4: Complete set of the RT standard measurements used to complete the reliability study from (a) 104 nm and (b) 2860 nm RVT nFETs.

Curves depicted as circle data points were the devices used to complete the LHe stresses. Comparing all of the devices at RT before they are stressed ensures that initially the devices
were similar to allow a logical comparison to be made from the stress results. Figure 4.5 is a compilation of all the LHe standard measurements that were used in the LHe stresses.

Figure 4.5: Complete set of LHe standard measurements used to perform the LHe temperature stresses from (a) 104 nm and (b) 2860 nm RVT nFETs.

Due to the variation seen in the 104 nm devices, the stress magnitudes were limited to 1.8 V, 1.9 V, and 2.0 V with a pair devices stressed at each level. Averaging the failure times at each level before the MTTF is calculated increases the statistical significance of the results. The threshold voltage shifts from all of the stresses can be found in Figure 4.6. The
square data points in the 104 nm plots correspond to the dashed fit lines. Taking the stress times for each device to reach a 70 mV shift the MTTF for the devices can be plotted (Figure
4.7).

(a)

(b)

Figure 4.6: Threshold voltage shift from the 104 nm devices at (a) RT and (b) in LHe and from the 2860 nm devices at (c) RT and (d) in LHe.

Figure 4.7: MTTF extraction plots for the (a) 104 nm and (b) 2860 nm devices.

By looking at the two MTTF extractions in Figure 4.7, the LHe extraction curve on the top indicates that the reliability of the devices measured in LHe is greater. For the 104nm results in Figure 4.7a the LHe only show a slight advantage over the RT. However, the 2860 nm results in Figure 4.7 b shows a 170 mV increase in the voltage limit for failure in 1 and 20 years for the LHe devices. This data shows that devices operating in LHe can withstand about a 10% increase in drain voltage. Being that it is clearly seen in Figure 4.7
that the LHe devices show superior reliability, the LHe measures of the 104 nm and 2860 nm were compared to determine how the width of the transistor affects the reliability (Figure 4.8). The results from Figure 4.8 reveal that the 2860 nm devices have a higher reliability. This size-dependence increase in reliability is due to the time-dependence HCE. If the same amount of electrons become embedded in the 104 nm and 2860 nm over a given amount of time, the effects seen by that amount of electrons on the 104 nm devices will be greater.

Figure 4.8: MTTF comparison between the 104 nm and 2860 nm devices in LHe.

Looking at an example of standard vs. post measurement shown in Figure 4.9. The HCE on the characteristic curves of the transistor show sizable degradation. Similarly to the results in Figure 4.8, the 104nm post measurement show greater degradation than the 2860 nm devices. The maximum current from the $I_{D^{-}} V_{D S}$ decreased by 30% and 14% for the 104nm and 2860nm device, respectively.

Figure 4.9: Comparison between standard and post (circle) measurements for (a) 104 nm and (b) 2860 nm stressedin LHe at 2 V .

Chapter 5

Modeling and Simulations

With an increasing complexity of electric circuits, the ability to be able to simulate the circuits during the design is becoming a necessity. The same goes for cryoelectronics. This section will cover the process of developing a mathematical model, such as a SPICE model, for a 32 nm RVT nFET. All of the results will be shown in comparison with devices measured in LHe.

5.1 Modeling

Keysight's IC-CAP is used to produce the SPICE models of these devices. IC-CAP's device modeling process can be broken down into 3 steps:

1. Model set-up
2. Parameter Optimization

3. Model Extraction

A complete step by step tutorial of transistor modeling using IC-CAP can be found in Appendix E.

5.1.1 Initial Setup

The first step when setting up the model is selecting which model will be used. There are various CMOS transistor models, such as BSIMv3.3, PSP, HISIMv2, and BSIMSOIv4.4. For modeling these transistors, designed with a 32 nm SOI process, the BSIMSOIv4.4 model was selected. The BSIMSOIv4.4 is a MOSFET model that can be used to model SOI devices
of both n-type and p-type. This model was developed by UC Berkeley in 2010 and is an industry standard for SOI MOSFET modeling [14]. Once the model is selected, the circuit must be added for the model. The circuit contains all of the model parameters of the BSIMSOI model in a format that is compatible with the simulator being used. Because Cadence Virtuoso will be used for the simulations when designing IC chips, Spectre was chosen as the simulator so that the cryogenic SPICE model will match the other RT models already in the PDK.

5.1.2 Optimization

Once, the model has been set-up, the model parameters must be adjusted until the simulated data is fit to the measured data. This is done by using IC-CAPs optimization function. The LM algorithm was chosen to optimize the parameters of the BSIMSOI MOSFET model. The LM algorithm uses a combination of gradient and Taylor series methods to fit a set of nonlinear data to another set of predetermined nonlinear data [15]. LM is an industry standard for nonlinear data fitting optimization and an essential tool that is built into IC-CAP. The parameters that were optimized using LM can be found in Table 5.1. By optimizing both the 104 nm and 2860 nm transistors at the same time, a single, scalable model can be created that only requires the width parameter to be adjusted when performing simulations. Due to all of the variation seen during the measurements, the measured data that was used to fit the model was an average of multiple devices that are shown in Figure 5.1. Figure 5.2 shows the final result after all of the parameters in Table 5.1 were optimized to the cryogenic data. A 10% margin was used when fitting the data due to the variations shown in Figure 5.1.

Table 5.1: List of Parameters used in Device Optimization

Parameter	Description
Vth0	Threshold Voltage
Dvt0	First coefficient of short-channel effect on Vth
Dvt1	Second coefficient of short-channel effect on Vth
Vsat	Saturation Velocity
Voff	Offset voltage in the subthreshold region
U0	Mobility
Nfactor	Temperature coefficient for threshold voltage
Kt1	Memperature coefficient for saturation velocity
Eta0	Drain-induced barrier lowering coefficient in subthreshold region
Ute	Second non-saturation effect parameter
At	
A2	

Figure 5.1: Cryogenic measurements from (a) 104nm RVT nFET and (b) 2860nm RVT nFET that were averaged together and used to fit the BSIMSOI model.

Figure 5.2: BSIMSOI model vs. the averaged measured data from Figure 5.1 (a) 104nm RVT nFET and (b) 2860 nm RVT with 10 percent error bars plotted along the simulated data.

5.1.3 Extraction

Finally, after the model is optimized, the SPICE model must be extracted so it can be used in Cadence to simulate circuit diagrams. The model data is exported from IC-CAP using the Extracted Deck function. This function extracts all of the SPICE parameters
from the model into a text file. In order to use these parameters with Cadence, they must be converted to a Model Card. The Model Card contains all of the SPICE parameters of the model. Then, after changing the reference location of the transistor symbol to the new cryogenic Model Card, the simulation can be performed using Cadence as detailed in Appendix A.

5.2 Simulations

Adding in the ESD diodes as shown in Figure 2.1, the complete circuit that was used on the test chips can be simulated (Figure 5.3). Furthermore, due to the fact that the model is scalable, the width can be swept over a range of 104 nm to 2860 nm to generate simulated results for any RVT nFET transistor within the PDK width range (Figure 5.4).

Figure 5.3: Cadence simulation the cryogenic model at (a) 104 nm and (b) 2860 nm with the ESD diodes connected as shown in Figure 2.1.

Figure 5.4: Cadence simulation results from changing the width to 520 nm (dashed) and 1040 nm (solid) in the cryogenic model.

By sweeping the step voltage, the functionality of the model can be tested over the entirety of the transistors rated voltage range (Figure 5.5). Taking the lowest voltage step, 50 mV , on the $I_{D}-V_{G S}$ curve, and comparing it to the initial measurement performed on the stress measurements shows that the model is valid for all voltage ranges when tested against measured data (Figure 5.6).

Figure 5.5: Cryogenic model with voltage step swept from 50 mV to 900 mV in 50 mV increments.

Figure 5.6: Comparison between the cryogenic model and the initial measurements taken during the stress measurements with $V_{D S}$ equal to 50 mV .

Chapter 6

Conclusion and Future Work

This chapter will cover the conclusions of the study along with succeeding reliability studies objectives to enhance the understanding of advanced node cryogenic transistors.

6.1 Conclusion

The use of cryogenic electronics open new doors for future electronic systems. Using cryogenic transistors in conjunction with superconducting material and q-bits, the supercomputers that can be developed will bring about tremendous performance improvements. However, with the continual push to decrease the fabrication node and decrease the operating temperature, reliability and modeling is becoming a greater concern. The study that was presented can be used as a step-by-step guide for testing and modeling advanced node RT and cryogenic transistors.

Inducing HCE by applying high voltage biases on the transistor accelerated the degradation from electrons being embedded into the gate oxide. By extrapolating the MTTF curves, the nominal failure times were calculated for transistors at RT and in LHe. The results presented in this study display an increase in reliability for the same size transistors stressed at cryogenic temperatures. Combining the increased performance with higher reliability shows promising results for the future of cryoelectronics. The development of cryogenic models enables future, more complex, circuits to be designed. The results illustrate the ability to produce circuit simulations that better emulate the circuit operation at cryogenic temperatures.

6.2 Future Work

All of the results, and models presented in this study are the forefront of a detailed cryogenic transistor database. Continuation of the 32 nm RVT nFET testing will allow probability density functions to be developed, increasing the statistical significance of the results presented. Various stresses including: thermal cycling, bias temperature instability, and AC pulse stressing can be performed allowing the degradation effects to be compared to HCE degradation. Ion implantation effects can be observed by testing other V_{T} levels, such as HVT and SVT. Gate length and $t_{o x}$ affects on gate leakage can be determined by testing thick-oxide transistors that have lengths of 100 nm and $t_{o x}$ of 2.5 nm . Completing all of these test for the 32 nm SOI nFETs will allow greater understanding of the devices while developing cryogenic models for each device. By testing pFETs fabricated from 32nm SOI, all of the transistors for the process can be evaluated based on reliability. Using the pFET data, cryogenic pFET models can be generated to allow complete cryogenic digital circuits to be simulated. Using this same measurement and modeling process, various fabrication processes such as: $12 \mathrm{SO}, 10 \mathrm{RF}$, and 14 LPP can be evaluated. This will allow for reliability comparisons to be made across a wide range of advanced node technologies. Determining the MTTF and developing models across all of the technologies and transistor types enables a complete cryogenic transistor database to be developed that can be referenced for reliability considerations and modeling of future cryogenic circuits.

Bibliography

[1] S. R. Das. The Chip that Changed the World. New York, NY: The New York Times, 2008.
[2] J. Eisenstein. "Superconducting Elements," Reviews of Modern Physics., vol. 26, pp. 277-299, Jul. 1954
[3] A. M. Kodeti. (June 2009). White Paper on Silicon on Insulator (SOI) Implementation [Online]. Avaliable: www.infotech-enterprises.com [Jan. 13, 2016].
[4] X. Caunchy. (Feb. 20,2013). Fully Depleted Silicon Technology to Underlie Energy-Efficient Designs at 28nm and Beyond [Online]. Available: http://www.edn.com/design/consumer [Jan. 20, 2016].
[5] R. C. Jaeger, "Solid-State Diodes and Diode Circuits," in Microelectronic Circuit Designs, 4th ed, New York: Mcgraw-Hill, 2011, ch. 3, sec. 7, pp. 93.
[6] R. F. Pierret, Field Effect Devices, 2nd ed. Reading: Addison-Wesley, 1990
[7] J. Hu, "Low Temperature Effects on CMOS Circuits," Dept. Elec. Eng., Northwestern Univ, Evanston, IL
[8] E. Rosenbaum et al., "Effects of Hot-Carrier Injection on n- and pMOSFET Gate Oxide Integrity," IEEE Electron Device Lett., vol. 12, no. 11 pp. 599-601, Nov. 1991.
[9] A. Ortiz-Conde et al., "A Review of Recent MOSFET Threshold Voltage Extraction Methods," Microelectronics Reliability, vol. 42, pp. 583-596, Apr. 2002.
[10] D. K. Schroder, "MOSFET Mobility," in Semiconductor Material and Device Characterization, 3rd ed. Hoboken: Wiley, 2006, ch. 8, sec. 6, pp. 500.
[11] R. D. Knight, "Current and Resistance," in Physics for Scientists and Engineers a Strategic Approach, 2nd ed. San Francisco, Pearson, 2008, ch. 31 sec. 4, pp. 954-955.
[12] A. O. Adan and K.Hisgashi, "OFF-State Leakage Current Mechanisms in BulkSi and SOI MOSFETs and Their Impact On CMOS ULSIs Standby Current," IEEE Trans. Electron Devices, vol.48, no. 9 pp.2050-2057, Sep. 2001.
[13] R.Singh et al., "Analysis of the Effect of Temperature Variations on Sub-threshold Leakage Current in P3 and P4 SRAM Cells at Deep Sub-micron CMOS Technology," International Journal of Computer Applications, vol.35, no.5, pp. 8-13, Dec. 2011.
[14] BSIMSOIv4.4 MOSFET MODEL Users' Manual, Department of Elect. Eng. and Comput. Sci., University of California Berkeley, Berkeley, CA, 2010.
[15] D. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," in J. of the Soc. for Ind, and Appl. Math. vol. 11 no.2, pp. 431-441, June, 1962.

Appendices

The following appendices include tutorials, equipment descriptions, and code used to complete this study. These appendices are intended to be supplemental documents for all of the procedures summarized.

Appendix A
 Cadence Simulation Tutorial

The following appendix will cover the procedure for performing a DC analysis on a single transistor using Cadence Virtuoso.

A. 1 Simulation Steps

1. Launch ADE XL
2. Create new tests
3. Set Global Variables and Corners
4. Run simulation and view data

A.1.1 Launching ADE XL

1. ADE XL is launched from the schematic window of the design.

2. Create a new view for the current schematic

3. ADE XL start screen

A.1.2 Creating a new test

1. Adding a new test

Add a new test by clicking under "Tests" on the left side.

2. Selecting the reference design

Select the schematic that is used as a reference.

3. Adding variables

Add variables by clicking "Copy From" under the "Variables" tab of the test window.

4. Adding outputs

Add output by clicking "From Design" under the "Output" tab of the test window and selecting the components of interest

5. Selecting analysis

Select the analysis under the "Analysis" tab of the test window. For the transistor simulations the analysis used is dc.

6. Selecting output plots

Select output plots checking the box in the "Output" section of the test window.

7. Changing Model Libraries (Optional)

Change the model library under the "Setup" tab of the test window. (The default model library only needs to be changed when using cryogenic models.)

A.1.3 Setting Global Variable and Corners

1. Setting global variables

Set global variables on the left side of the page. 0:0.225:0.9 steps the variable from 0 to 0.9 over 0.225 invervals.

2. Adding multiple corners

Add a new corner by clicking under "Corners" on the left side of the page. By clicking the thermometer with the asterisk at the top of the page a new column is added to the corner window. Then add the corner model file need. Corner model files for 32 nm can be found under mch0021_group $>$ lowtemp_group >32 SOI $>$ Corners.

A.1.4 Running Simulation and Viewing Data

1. Run simulation by clicking the green arrow at the top of the screen.

2. View all outputs plot by clicking "Plot all" as shown above

3. Toggle output views

4. By right clicking on the data, the data points plotted can be sent to a table that is saved as CSV file.

Appendix B

Testing Equipment and Procedures
All of the equipment, settings, and code used to perform all measurements will be displayed. A diagram detailing the interconnections between the equipment is shown below. When performing RT measurements, the connection are the same, but the probe was left in the holding rack on the lab table.

B. 1 Testing Equipment

1. Keithley 4200-SCS Parameter Analyzer

3 SMUs are used to perform the 4 point measurements on the transistors. SMU 1 and 2 both have preamps connected that extend the measurement resolution down to 0.1fA. These two SMUs are connected to the gate and drain so that the current measured has higher precision.

2. Aglient B2200 Low Leakage Switch Matrix

The SMUs from the 4200 connect to the first 5 inputs on the front of the B2200. The cables coming from the BNC box connect to the B2211A cards connected to the output of the B2200.

3. BNC Box

The BNC box is used to connect the ribbon cable from the probe to the triax cables that connect to the output of the B2200.

4. Cryogenic probe

Cryogenic probe with 40 pin DIP socket attached the a PCB board on the bottom.

5. 100L Cryofab dewar

Dewars are filled with LHe allowing the probe to be submerged enabling cryogenic testing to be performed.

B. 2 Measurement Process Steps

There are 5 steps taken to perform a stress measurement in LHe:

1. Standard at RT
2. Pre-cool/Standard in liquid nitrogen
3. Standard in LHe
4. Stress in LHe

5. Post in LHe

To perform a RT stress measurements, omit steps 2 and 3 , and perform steps 4 and 5 at RT. Using reliability chips, multiple devices can be stressed in parallel. In order to stress devices in parallel, steps 1, 2, and 3 on devices independently, then using the B2200 and the code in Section B. 4 step 4 is performed automatically on all the devices. After, the stress is finished step 5 is performed on each device independently.

B. 3 Kite Settings

1. Creating Subsites

On the 4200 test plans are called Subsites. Subsites are added to the project sequence by right clicking on a new cell under the "Sequence" tab.

For performing the reliability measure two subsites are needed. The first subsite includes the standard/post $I_{D}-V_{D S}$ and $I_{D}-V_{G S}$ measurements. The second subsite is used to perform the stress and make the periodic $I_{D}-V_{G S}$ measurement. New test for transistor testing are added by copying the 3 terminal-FET test over from the MOSFET device sections built into KITE to the selected subsite.

When performing stress measurements in parallel, functions are added in between the $I_{D}-V_{G S}$ measurements to switch the B2200 to the correct connections. All of the settings are shown of the Subsites are shown below
(a) Subsite 1
$I_{D}-V_{G S}$ settings

By clicking the "Force/Measure" button on the SMU description the settings can be modified.

SMU 1

SMU 2

Forcing Functions / Measure Options - (Device Terminal: Instrument ID: SMU2) \mathbf{x}
$\left[\begin{array}{c}\text { Instrument Information } \\ \text { Instrument ID: SMU2 }\end{array} \quad\right.$ Instrument Model: KI4200 MPSMU with PreAmp \quad Mode: Sweeping

OK
Cancel

SMU 3

The settings of SMU 1 and 2 are swapped when performing $I_{D^{-}} V_{G S}$ measurements.
(b) Subsite 2
$I_{D}-V_{G S}$ linear regime settings

Under the "Subsite Setup" tab, cycling can be enabled the periodic measurement times are added.

By clicking "Device Stress Properties", the voltages of the drain and gate stresses can be set and the Pin/SMU connections are listed.

2. Setting up plots

By right clicking on the plot under the graph tab of the test module dual plots can added. After setting the definitions for each axis by clicking the "Graph Settings" button at the stop of the plot, the y-axis on one of the plots can be modified so that the \log scale output is shown. This is used for all of the $I_{D}-V_{G S}$ curves.

3. Running Subsite

By clicking the green arrow at the top of the selected test module will run one time. In order to perform a cycle measurement, click the with the subsite selected icon labeled cycle below and the subsite will cycle for the defined times.

4. Saving Results

Under the "Sheet" tab of the test module is where all of the data points are saved. By clicking "Save As" on the right side the data is saved in an .CSV format. This data can be transferred to another computer using a thumb drive so the data can be processed.

B. 4 External Instrument Code

The script below is used to control the B2200 for connecting and disconnecting the devices to the 4200 . The syntax for specifying the connection is $X Y Y Z Z$. Where X is the card number, $Y Y$ is the input port, and $Z Z$ is the output port. By simply adding sequential connections allows multiple connections to be made at once.

```
char command_string0 [100];
char command_string1 [100];
char command_string2[100];
char command_string3[100];
char command_string4[100];
char command_string5 [100];
char command_string6[100];
char command_string7[100];
char command_string8 [100];
char command_string9 [100];
char command_string10[100];
/*Open all*/
sprintf(command_string0, ":ROUT:OPEN:CARD_ALL");
/*B2200 Setup8?
sprintf(command_string1, "*RST");
sprintf(command_string2, ":ROUT:FUNC NCON");
sprintf(command_string3, ":ROUT:CONN:RULE ALL,FREE");
sprintf(command_string4, ":ROUT:CONN:SEQ ALL,NSEQ");
sprintf(command_string5, ":SYST:DISP:STR 'MEASURING 1...'");
/*Close the following Connections*/
sprintf(command_string6, ":ROUT:CLOS」(@10101)");
sprintf(command_string7, ":ROUT:CLOS」(@10202)");
sprintf(command_string8, ":ROUT:CLOS」(@10303)");
sprintf(command_string9, ":ROUT:CLOS」(@10404)");
sprintf(command_string10, ":ROUT:CLOS」(@10505)");
```

kibsnd (22, - 1 , GPIBTIMO, strlen (command_string0), command_string0);
kibsnd (22, -1, GPIBTIMO, strlen (command_string1), command_string1);
kibsnd (22, -1, GPIBTIMO, strlen (command_string2), command_string2);
kibsnd (22, - 1 , GPIBTIMO, strlen (command_string3), command_string3);
kibsnd (22, - 1 , GPIBTIMO, strlen (command_string4), command_string4);
kibsnd $(22,-1$, GPIBTIMO, strlen (command_string5), command_string 5);
kibsnd (22, - 1 , GPIBTIMO, strlen (command_string6), command_string6);
kibsnd (22, -1, GPIBTIMO, strlen (command_string7), command_string7);
kibsnd (22, - 1 , GPIBTIMO, strlen (command_string8), command_string8);
kibsnd (22, -1, GPIBTIMO, strlen (command_string9), command_string9);
kibsnd (22, -1, GPIBTIMO, strlen (command_string10), command_string10);
delay (3000);

This scripted is added to the tests using the following steps:

1. Create new library and module under the "File" tab

2. Add Script

3. Adding I/O

| Parameters \| Includes | Description | Build \| | | | | | | Add |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter Name | Data Type | 1/0 | Default | Min | Max | | |
| GPIB_address | int | Input | 22 | | | \bullet | Delete |
| | | | | | | | Apply |
| | | | | | | \checkmark | |

4. Compile and build library

5. Add a New User Test Module to Subsite

6. Select Library, Modules, and Inputs

Appendix C
Wedge Wire Bonding

The wire bonder used is a West Bond Model 7KE. This model is capable of doing wedge and ball bonds. All of the bonds made for this study were 45 degree wedge bonds.

C. 1 Components

1. Power supply
2. Force settings (For ball bonding option)
3. Control panel
4. Heated workholder temperature controller
5. Workholder
6. Manual operation arm

C. 2 Steps

1. Sheer DIP package leads
2. Mount a chip to the package
3. Bond

C.2.1 Sheering DIP package leads

Using an angle cutter, cut off the bottom on the package leads that tie all of the lead together. Make sure all of the leads are approximately the same length.

C.2.2 Mounting a chip to the package

Place the DIP in the workholder with the heat off. Using a small gauge wire, create a small loop using tweezers to dip into the silver paste. Apply small amount of silver paint to desired location on DIP package. Using tweezers, place chip on silver paste and allow to dry for 5-10 minutes.

C.2.3 Bonding

1. Start up

Turn on the power supply switch, the air supply, and the heated workholder temperature controller. The temperature of the work holder should be set to $125^{\circ} \mathrm{C}$. The compressed air value is on the wall located to the right of the bonder as shown below.

2. Completing Bonds

Make all of the bonds from the bonding diagram. Always start with the first bond on the DIP package to ensure that any excess wire will not be on the smaller chip pad. If the wire come out of the tool head, the head is re-threaded using the following steps:
(a) Open clamps by using tweezers to extend the spring releasing the wire

(b) Pull off the end to make sure the end is straight
(c) Re-thread wire at approximately a 45° angle through the end of the tool head using tweezers.

(d) Open clamps while pulling wire through tool head so that the wire is in between the clamps.

3. Shut down

Remove the DIP package from the workholder and place it on the base of the bonder to cool. Turn off the power supply switch, air supply, and heated workholder temperature controller

C. 3 Example bonding diagrams

This is an example of a wire bonding diagram made for the 32 nm 1 x 1 mm reliability chip.

The following is the wire bonding documentation for the 32SOI 15A P15139G chips onto gold plated 40-pin dip packages. Figure 1 shows the pad number diagram for the 15A chips. Tables 1 shows the details for the connections between the DIP package and chips shown in Figure 2.

Please let me know if you have any questions.
William King
wdk0004@auburn.edu
256-508-2076

32SOI_15A Layout

Figure 1. 32 SO I 15 A chip

32SOI_15A Auburn University Wire Bonding
Rev: 1.0 (3 March 2016)
AUBURN

Table 1: Description of the chip to DIP bonds for 104 nm

Chip A					Chip B				
$\begin{gathered} \text { DIP pad } \\ \# \end{gathered}$	Chip Pad \#	Description	Device	Number	DIP pad\#	$\begin{aligned} & \text { Chip } \\ & \text { Pad } \end{aligned}$	Description	Device	Number
38,39	15	common source	-	-	18,19	15	Common source	-	-
38,39	16	common Source	-	-	18,19	16	$\begin{aligned} & \text { common } \\ & \text { Source } \end{aligned}$	-	-
28	5	Gate	TOAEEt	2	8	5	Gate	TOAEEt	2
27,26	6	Drain	TPOEET	2	7,6	6	Drain	TPNEEX	2
37	19	Gate	NFET	1	17	19	Gate	NFET	1
36,35	20	Drain	NFET	1	16,15	20	Drain	NFET	1
34,33	21	Drain	NFET	3	14,13	21	Drain	NFET	3
32	22	Gate	NFET	3	12	22	Gate	NFET	3
29	45	Gate	NFET	2	9	45	Gate	NFET	2
31,30	46	Drain	NFET	2	11,10	46	Drain	NFET	2

Figure 2. Wire Bonding Diagram

Appendix D

MATLAB Code

D. 1 Batch Read Scripts

D.1.1 Standard/Post

```
close all
global fig
%File directory where the Excel files are
foldersInit = {'Insert^File_Location'};
DATA = cell(numel(foldersInit),1);
k = 1;
%Save file names
for fo = 1:numel(foldersInit)
        files = dir(foldersInit{fo}); % get array of all files the folder
        files([files(:).isdir]) = [];
        DATA{fo} = cell(numel(files),1);
        for fi = 1:numel(files)
        filename = fullfile(foldersInit{fo},files(fi).name);
        file(k) = cellstr(filename);
        g = num2str(k);
        display(['[',g,']', files(fi).name])
        k = k+1;
            [status,sheets] = xlsfinfo(filename);
            if `isempty(status)
                lastsheet = sheets{end};
                [num,txt,raw] = xlsread(filename,lastsheet);
                DATA{fo}{fi} = num; % # or txt, or raw
            end
    end
end
%Display number of files to check the read-in process
number_files = fi
x = 'A':'Z';
yy = ['2', , 80'];
y = num2str(yy);
for z = 1:number_files
fig(z).title = strrep(files(z).name,' -','-');
n = 2;
V = xlsread(char(file(z)),'Data', [[x(n),y(1)],\ldots.
':',[x(n),[y(2),y(3)]]]);
%Determine whether the file is ID-VGS or ID-VDS and set variable
%columns
if V(2) = V (3)
m}=3;%start with column C for Id
```

```
n = 4; %start with column D for Vds
h=1; %start with column C for Ig
g= 5; %start with column C for Is
    fig(z).xx = 'VDS_(V)';
else
            m= 3; %start with column C for Id
            n= 2; %start with column B for Vgs
            h=1; %start with column C for Ig
            g= 5; %start with column C for Is
    fig(z).xx = 'VGS(V)';
end
%Cycle through all of the data saving in a structured array "fig"
for k = 1:5
I = xlsread(char(file(z)),'Data', [[x(m),y(1)],\ldots
    ':',[x(m),[y(2),y(3)]]]);
IG = xlsread(char(file(z)),'Data', [[x(h),y(1)],\ldots
':',[x(h),[y(2),y(3)]]]);
IS = xlsread(char(file(z)),'Data', [[x(g),y(1)],\ldots
':',[x(g),[y(2),y(3)]]]);
V = xlsread(char(file(z)),'Data', [[x(n),y(1)],\ldots
':',[x(n),[y(2),y(3)]]]);
            m}=\textrm{m}+5
            n = n+5;
            h}=\textrm{h}+5
            g = g+5;
% z is the device and k is the step in the measurement
fig(z).data(k).v = V;
fig(z).data(k).i = I;
fig(z).data(k).ig = IG;
fig(z).data(k).is = IS;
end
end
```


D.1.2 Stress

```
%close all
global stress
%File directory where the excel files are
folderStress = {'InputьFile」Location'};
DATA = cell(numel(folderStress),1);
k = 1;
%Save file names
for fo = 1:numel(folderStress)
    files = dir(folderStress{fo}); %get array of all files the folder
    files([files(:).isdir]) = [];
    DATA{fo} = cell(numel(files),1);
    for fi= 1:numel(files)
            filename = fullfile(folderStress{fo},files(fi).name);
            file(k) = cellstr(filename);
            g = num2str(k);
            display(['[',g,']', files(fi).name])
            k = k+1;
            [status, sheets] = xlsfinfo(filename);
            finalsheet (k-1)= length(sheets);
            if ~
                    lastsheet = sheets{end};
                    [num,txt,raw] = xlsread(filename, lastsheet);
                    DATA{fo}{fi} = num; % # or txt, or raw
            end
    end
end
%Display number of files to check read-in process
number_files = fi
x = 'A':'Z';
yy = ['2', , '80'];
y = num2str (yy);
%Cycle through files
for z = 1:number_files
    stress(z).title= strrep(files(z).name,' -','-');
    V = xlsread(char(file(z)),'Data', [[x(2),y(1)],\ldots
    ':',[x(2),[y(2),y(3)]]]);
    I = xlsread(char(file(z)),'Data', [[x(3),y(1)],\ldots
    ':',[x(3),[y(2),y(3)]]]);
    stress(z).cycle(1).v = V;
    stress(z).cycle(1).i = I;
    name = 'Cycle';
    %Read all of the sheets in the stress Excel file
    for k}=2:(finalsheet(z)-2
            N = num2str (k);
        input = [name,N];
            I = xlsread(char(file(z)),input,[[x(3),y(1)],\ldots
            ':',[x(3),[y(2),y(3)]]]);
            %z is the device and k}\mathrm{ is the stress cycle
            stress(z).cycle(k).v = V;
            stress(z).cycle(k).i = I;
    end
end
```


D.1.3 Simulations

```
%File directory where the .csv files are
foldersInit = {'H:\Simulations\cryo_model_results \voltagesweep'};
DATA = cell(numel(foldersInit),1);
k = 1;
%Read all file names
for fo = 1:numel(foldersInit)
    files = dir(foldersInit{fo}); % get array files in the folder
    files([files(:).isdir]) = [];
    DATA{fo} = cell(numel(files),1);
    for fi = 1:numel(files)
        filename = fullfile(foldersInit{fo},files(fi).name);
        file(k) = cellstr(filename);
        g = num2str (k);
        display(['[',g,']', files(fi).name])
        k = k+1;
            [status, sheets] = xlsfinfo(filename);
            if ~isempty(status)
                lastsheet = sheets{end};
                [num,txt,raw] = xlsread(filename, lastsheet);
                DATA{fo}{fi} = num; %# or txt, or raw
            end
    end
end
%Display number of files to check the read-in process
number_files = fi
x = 'A':' Z';
yy = ['2', , '80'];
y = num2str(yy);
%Read in all of the data in the csv file
for z = 1:number_files
    [num,txt,raw] = xlsread(char(file(z)));
%number of steps
    for k = 1:5;
        for g}=1:length(num)-
            if strcmp((files(z).name(2)), 'd')
%z is the device, }k\mathrm{ is the step, and }g\mathrm{ is the data point
                    sim}(\textrm{z})\cdotv\textrm{vds}(\textrm{k})\cdotv(g)=\operatorname{num}(\textrm{g},1)
                        sim(z).vds(k).i(g) = num(g,1+k);
            elseif strcmp(( files(z).name(2)),'g')
                sim(z).vgs(k).v(g) = num(g,1);
                sim(z).vgs(k).i(g)= num(g,1+k);
            end
        end
    end
end
```


D. 2 Standard/Post Plots

```
global fig
font = 20;
color = {'k','m','b','g','r'};
figure(1)
for x = 1:length(fig)
    if stremp(fig(x).xx,'VDS_(V)')
        for }\textrm{k}=2:
            subplot(1,3,1)
            ax1 = plot(fig(x).data(k).v,fig(x).data(k).i,\ldots.
            '*','color',},\operatorname{color}{\textrm{k}})
            hold all
            %formatting
            xlabel(fig(x).xx,'FontSize',(font))
            ylabel('I_D_(A)','FontSize',(font))
            a = get(gca,'XTickLabel');
            set(gca,'XTickLabel',a,' fontsize',(font - 3),\ldots
            'XTickLabelMode ','auto ')
            box on
        end
    else
        %Plot ID-VGS
        for k = 2:5
            %Linear
            subplot(1,3,2)
            plot((fig(x).data(k).v),(fig(x).data(k).i ),\ldots.
            '*','color',}\mathrm{ (olor{k});
            hold all
            %formatting
            ylabel('I_Du(A)','FontSize',(font))
            a = get(gca,'XTickLabel');
            set(gca,'XTickLabel',a,'fontsize',(font-3),\ldots
            'XTickLabelMode','auto')
            box on
            xlabel(fig(x).xx,'FontSize',(font))
            %Log Scale
            subplot(1,3,3)
            semilogy((fig(x).data(k).v),abs(fig(x).data(k).i),\ldots.
            '*','color', color{k});
            hold all
            %formatting
            box on
            ylabel('I_D_(A)','FontSize',(font))
            a = get(gca,'XTickLabel');
            set(gca,'XTickLabel',a,''fontsize',(font - 3),\ldots
            'XTickLabelMode','auto ')
            xlabel(fig(x).xx,'FontSize',(font))
        end
    end
end
```


D. 3 MTTF Plots

```
global stress
close all
g = 1;
font = 20;
%Calculate VT for all devices
for z = 1:length(stress)
    fig =figure(z);
    fig.Units = 'inches';
    fig.Position = [.5*z, .5, 5.5, 4.75];
    N = length(stress(z).cycle) ;
    for n = 1:N;
        %calculate gm
        N = length(stress(z).cycle) ;
        %3 point derivative calc
        for k = 2:length(stress(1).cycle(1).i)}-
            f(n).run(k-1)=
                (-stress(z).cycle(n).i(k+1)+4*stress(z).cycle(n).i(k)...
                -3*stress(z).cycle(n).i (k-1))/\ldots
                (stress(z).cycle(n).v(k+1)-stress(z).cycle(n).v(k-1));
        end
        %Fit line of gm to calculate gm max
        p = polyfit(stress(z).cycle(n).v(2:end-1), transpose(f(n).run),10);
        fit(n).gm = polyval(p,stress(z).cycle(n).v(2:end-1));
        V = stress(z).cycle(n).v;
        %find where max gm occurs and get vg
        xIndex(n) = find(fit(n).gm = max(fit(n).gm), 1, 'first') +1;
        maxVg(n) = V(xIndex (n));
        %fit line slope at Vgs of gm max
        front=
        (stress(z).cycle(n).i(xIndex (n)+1)-stress(z).cycle(n).i(xIndex(n)))
            /...
            (stress(z).cycle(n).v(xIndex(n)+1)-stress(z).cycle(n).v(xIndex(n))
                );
        back =
        (stress(z).cycle(n).i(xIndex(n))-stress(z).cycle(n).i(xIndex (n)-1))
            /...
                (stress(z).cycle(n).v(xIndex(n)+1)-stress(z).cycle(n).v(xIndex(n))
                    );
        slope(n) = (front+back)/2;
        %constant mobility calculation of threshold
        yth(n).vt = slope(1).*(stress(z).cycle(n).v-maxVg(n))...
        +stress(z).cycle(n).i(xIndex(n));
        %find where line hits mag
        mag = 0;
        Vt(z).cycle(n)= interp1(yth(n).vt,V,mag);
    end
    %plot results
    plot(V,stress(z).cycle(1).i,'*',' color', [0 . . 6 0 0 ) 
    box on
    hold all
    plot(V,yth(1).vt,''Linewidth', 1.25,' color', ,[\begin{array}{lll}{0}&{.6}&{0}\end{array}])
```

```
    hold all
    plot(V,stress(z).cycle(N).i ,'*','color','b')
    plot(V,yth(N).vt,'Linewidth ', 1.25,'color','b')
    plot(Vt(z).cycle(1),mag,'o','Linewidth ',1.25,'color',[[0 . 6 0])
    plot(Vt(z).cycle(N),mag,'o ','Linewidth', 1.25,'color','b')
    %format plots
    a = get(gca,'XTickLabel');
    set(gca,'XTickLabel',a,'fontsize',(font-3),'XTickLabelMode','auto')
    box on
    xlabel('V_{GS}(V)',',FontSize', font)
    ylabel('I_D(A)','FontSize', font)
```



```
        -4)
    h = legend('Initial','Linear\_Fit_Initial', 'Post」Stressing', ,..
        'Linear_Fit\_Post', ['V_{T}_Init=',num2str(Vt(z).cycle(1))],_..
        ['V_{T}_Post=',num2str(Vt(z).cycle(N))],'Location','Best');
    set(h,'FontSize',(font-6));
    tightfig();
    set(gcf,'color','w');
    %input times of stresses
    timeL}=[0,10,30,100,300,1000,3600,10000,36000,72000];
    timeS = [0,1,3,6,10,15,30,60,90,120,240,360,720,1080];
    timeXL = [0,10,40,140,440,1440,5040,15040,51040,123040];
    timeM = [0,10,30,100,300,1000,1800,3600];
    %normalized vth vs time calc
    for n = 1: length(Vt(z).cycle)
        vt_change(z).shift(n) =abs(Vt(z).cycle(n)-Vt(z).cycle(1));
    end
end
%change in vth plot vs time
fig =figure(z+1);
fig.Units = 'inches';
fig.Position = [.5*6, .5, 6, 5];
vt_goal= 0.07;
g = 1;
q = 1;
%set color
matchcolor = { 'b';'g';'g';'b';[0 . 6 0 0];[0 . .6 0
for z= 1: length(vt_change)
    %Use to omit outliners at the beginning and end
    start = [llllllll}
    stop =
    [length(vt_change(1).shift) length(vt_change(2).shift)...
    length(vt_change(3).shift) length(vt_change(4).shift)...
    length(vt_change(5).shift) length(vt_change(6).shift) - 2];
    %determine stress voltage
    str = stress(z).title(24:26);
    numbers(z) = strread(lower(str), %%f,,'whitespace',['a':'z', ,\t']);
    switch numbers(z)
        case 20
            %set correct time
                time = timeM;
                %plot data points
                p20(1).vt = loglog(time((start(z):stop(z))),\ldots
```

```
    vt_change(z).shift(start(z): stop(z)),'*', 'color', matchcolor{z});
    hold all
    %fit data points
    pvt = polyfit(log(time((start(z)+1:stop(z)))),\ldots
    log(vt_change(z).shift((start (z)+1:stop (z)))),1);
    fit(z).vt = exp(pvt(1)*log(time((start (z):stop (z))))+pvt(2));
    p20(2).vt = loglog(time((start(z):stop(z))), fit(z).vt,'color',},
    matchcolor{z},'Linewidth',1.25);
    %interpolate failure time
    fail(z).vt =
    interp1(abs(fit(z).vt), time((start(z): stop(z))),vt_goal,'spline');
    p20(3).vt =
    plot(fail(z).vt,vt_goal,'o','Linewidth', 1.25,' color', matchcolor{z
    });
    %display faiure time
    str1 = [',',num2str(round(fail(z).vt,2)),'s'];
    text(fail(z).vt,vt_goal -.01,str1,'VerticalAlignment','top',...
    'HorizontalAlignment ', 'center',' FontSize',(font - 4))
case 21
    time = timeS;
    p21(1).vt = loglog(time((start(z):stop (z))),\ldots
    vt_change(z).shift(start(z):stop(z)),'*',',color', matchcolor{z});
    hold all
    pvt = polyfit(log(time((start(z)+1:stop (z)))),\ldots
    log(vt_change(z).shift ((start(z)+1:stop (z)))),1);
    fit(z).vt = exp(pvt(1)*log(time((start(z): stop (z))) )+pvt(2));
    p21(2).vt = loglog(time((start(z):stop(z))), fit(z).vt,'color',},
    matchcolor{z},'Linewidth',1.25);
    fail(z).vt =
    interp1(fit(z).vt, time((start(z): stop(z))),vt_goal,'spline');
    p21(3).vt =
    plot(fail(z).vt,vt_goal,'o','Linewidth', 1.25,' color', matchcolor{z
    });
    str1 = [',',num2str(round(fail(z).vt,2)),'s'];
    text(fail(z).vt,vt_goal -.001,str1,'VerticalAlignment','top',\ldots.
    'HorizontalAlignment', 'center', 'FontSize',(font-4))
    q=q+1;
case 205
    time = timeS;
    p205(1).vt = loglog(time((start (z): stop (z))) , ...
    vt_change(z).shift(start(z):stop(z)),'*',' color', matchcolor{z});
    hold all
    pvt = polyfit(log(time((start (z) +1:stop (z)))),\ldots
    log(vt_change(z).shift((start(z)+1:stop (z)))),1);
    fit(z).vt = exp(pvt(1)*log(time((start (z):stop (z))) )+pvt (2));
    p205(2).vt = loglog(time((start(z):stop(z))), fit(z).vt,'color'
        ,...
    matchcolor{z},'Linewidth',1.25);
    fail(z).vt =
    interp1(fit(z).vt, time((start(z): stop(z))),vt_goal,'spline');
    p205(3).vt =
    plot(fail(z).vt,vt_goal,'o','Linewidth', 1.25,' color', matchcolor{z
    });
str1 = ['', num2str(round(fail(z).vt,2)),'s'];
```

text (fail(z).vt, vt_goal+.01, str1, ' VerticalAlignment ', 'bottom ', \ldots
'HorizontalAlignment ', 'center ', 'FontSize ',(font -4$)$)
case 19
time $=$ timeL;
\%used to extend fit line if needed
timeper $=$ linspace $\left(10,3000,10^{\wedge} 4\right)$;
p19(1).vt $=\log \log ($ time (start $(z): s t o p(z)), \ldots$
 \}) ;
hold all
pvt $=$ polyfit $(\log (\operatorname{time}((\operatorname{start}(z)+1: \operatorname{stop}(z)))), \ldots$
$\log (\operatorname{abs}($ vt_change $(z) . \operatorname{shift}((\operatorname{start}(z)+1$:stop $(z))))), 1)$;
fit (z).vt $=\exp (\operatorname{pvt}(1) * \log ($ timeper $)+\mathrm{pvt}(2))$;
p19(2).vt =

fail(z).vt $=\operatorname{interp}\left(\right.$ fit $^{\prime}(z) . v t$, timeper, vt_goal, 'spline');
p19(3).vt =
plot(fail(z).vt, vt_goal, 'o', 'Linewidth', 1.25 , 'color ', matchcolor $\{\mathrm{z}$ \}) ;

text (fail(z).vt, vt_goal+.01,str1, 'VerticalAlignment', 'bottom', \ldots
'HorizontalAlignment ', 'center ', 'FontSize' , (font -4)
case 18
time $=$ timeL;
timeper $=$ time(start (z): stop(z));
p18(1).vt $=\log \log ($ time (start (z): stop (z)) , \ldots
vt_change(z).shift(start(z):stop(z)),'*', 'color', matchcolor\{z\});
hold all
pvt $=$ polyfit $(\log (\operatorname{time}((\operatorname{start}(z)+1: \operatorname{stop}(z)))), \ldots$
$\log ($ vt_change(z).shift ((start(z) $+1: \operatorname{stop}(z)))), 1) ;$
fit (z).vt $=\exp (p v t(1) * \log ($ timeper $)+p v t(2))$;
p18(2).vt =

fail(z).vt = interp1(fit(z).vt,timeper, vt_goal, 'spline');
p18(3).vt =
plot(fail(z).vt, vt_goal, , o', 'Linewidth', 1.25 , ' color', matchcolor $\left\{\begin{array}{l}\text { z }\end{array}\right.$
\});
str1 $=\left[{ }^{\prime}\right.$, , $\left.\operatorname{num} 2 \operatorname{str}(\operatorname{round}(f a i l(z) \cdot v t, 2)), ' s '\right] ;$
text (fail(z).vt, vt_goal-.01,str1, 'VerticalAlignment ', 'top ',..
'HorizontalAlignment ', 'center ', 'FontSize ', (font-4))
case 16
time $=$ timeXL;
timeper $=$ linspace $\left(300,1.3 * 10^{\wedge} 5,10^{\wedge} 4\right)$;
p16(1).vt $=\log \log ($ time (start (z): stop (z)) , \ldots

hold all
pvt $=$ polyfit $(\log (\operatorname{time}((\operatorname{start}(z)+1: \operatorname{stop}(z)))), \ldots$
$\log ($ vt_change $(z) . \operatorname{shift}((\operatorname{start}(z)+1: \operatorname{stop}(z)))), 1) ;$
fit (z).vt $=\exp (\operatorname{pvt}(1) * \log ($ timeper $)+\mathrm{pvt}(2))$;
p16(2).vt =

fail(z).vt $=$ interp1 (fit(z).vt, timeper, vt_goal, 'spline');
p16(3).vt =

```
        plot(fail(z).vt,vt_goal, 'o',''Linewidth', 1.25,' color', matchcolor{z
    });
        str1 = [',',num2str(round(fail(z).vt,2)),'s'];
        text(fail(z).vt,vt_goal -.01,str1,'VerticalAlignment','top',\ldots
            'HorizontalAlignment', 'center',''FontSize',(font-4))
        otherwise
    end
    clear time
end
%plot goals and format plots
goal_vt = plot(get(gca,'Xlim'),[vt_goal vt_goal],'k','Linewidth', 1.25);
h = legend([p18(1).vt p19(1).vt p20(1).vt goal_vt ] ,...
' 1.8V',' 1.9V', '2.0V','70mV\smileshift','Location','Best');
set(h,'FontSize',(font -4));
box on
ylabel('\\DeltaьV_{T} ((V)',',FontSize', font)
```



```
set(gcf,'color', 'w');
a = get(gca,'XTickLabel');
set(gca,'XTickLabel',a,' fontsize',(font - 3),'XTickLabelMode',',auto ')
goal_vt = plot(get(gca,' Xlim'),[vt_goal vt_goal],'k',,'Linewidth', 1.25);
tightfig();
%mttf plot
fig =figure(z+2);
fig.Units = 'inches';
fig.Position = [.5*8, .5, 6, 5];
%determine 1/(stress voltage)
for z = 1:length(fail)
    vds_stress(z)=
    1/(\boldsymbol{str2num(stress(z).title(24))+str2num(stress(z).title(25))/10);}
    mttfV (z)=
    semilogy(vds_stress(z), fail(z).vt,'o',' color', matchcolor {z},'Linewidth'
        ,1.25);
    fail_time(z)= fail(z).vt;
    hold all
end
%fit line through fail times
voltage_range = linspace(0,1.5,200);
p = polyfit(vds_stress, log(fail_time),1);
fit_time = exp(polyval(p, voltage_range));
plot(voltage_range, fit_time,' color', 'k')
hold all
year = 3.1536*10^7; %time of a year in seconds
%plot year and 20 year lines
plot(get(gca,'Xlim'), [ year year ], '--k');
plot(get(gca,'Xlim'),[20* year 20*year ],'--k');
% find voltage at year and 20 years
yearVolt = interp1(fit_time, voltage_range, year, 'pchip');
plot(yearVolt, year, 'o', 'color', 'k','Linewidth',1.25)
str1 = [',',num2str (round(1/yearVolt,2)),'`V_{DS}'];
text(yearVolt +.1, year - 10000,str1,'VerticalAlignment', ...
'top','HorizontalAlignment','center','FontSize',(font -4))
year = 20*year;
yearVolt = interp1(fit_time, voltage_range, year, 'pchip');
```

```
plot(yearVolt, year, 'o',' color','k','Linewidth',1.25)
str1 = [ ', , num2str(round(1/(yearVolt), 2)),', 'V_{DS}'];
text(yearVolt +.1, year +1000000000,str1, 'VerticalAlignment ',...
    'bottom','HorizontalAlignment','center ','FontSize ',(font-4))
% find time of failure at 0.9V
nomVolt = interp1(voltage_range, fit_time,1.1111,'pchip')
plot(1.1111, nomVolt, 'o','color','k','Linewidth', 1.25);
str1 = [',',num2str(round(nomVolt/(year/20)),1),', Years'];
text(1.1111, nomVolt+100000,str1,'VerticalAlignment',...
'bottom','HorizontalAlignment ','center ',' FontSize',(font -4))
% find time of failure at 1V
%plot([1 1],get(gca,'Ylim'), ':k');
nomVolt = interp1(voltage_range, fit_time,1,'pchip')
plot(1,nomVolt,'o','color','k','Linewidth', 1.25);
str1 = [',',num2str(round(nomVolt/(year/20)),1),', Years'];
text(1,nomVolt+10000,str1,'VerticalAlignment ','top ',...
'HorizontalAlignment ','center', 'FontSize ',(font-4))
%formatting
ylabel('Time_in_Seconds',' FontSize',font)
xlabel('1/V_{DS}_(1/V)','FontSize', font)
a = get(gca,'XTickLabel');
set(gca,'XTickLabel',a,'fontsize',(font-3),'XTickLabelMode','auto ')
str1 = ['1^Year'];
text(0.2-.01, year/20-10,str1,'VerticalAlignment','top ',...
'HorizontalAlignment','center','FontSize ',(font-4))
str1 = ['20_Years'];
text(0.2-.01, year+1000,str1,'VerticalAlignment ,''bottom', ,..
'HorizontalAlignment ','center ', 'FontSize ',(font-4))
str1 = ['0.9 -V_{DS}'];
text(1.1111+.01,10`-10,str1,'VerticalAlignment ','bottom',...
'HorizontalAlignment','left ','FontSize',(font-4))
str1 = ['1.0_V-{DS}'];
text(1-.01,10^-10, str1,'VerticalAlignment','bottom', ,..
'HorizontalAlignment','right','FontSize',(font-4))
%plot voltage limits
plot([1.1111 1.1111],get(gca,'Ylim'),':k');
plot([1 1],get(gca,'Ylim'),':k');
h = legend([mttfV (2) mttfV (3) mttfV (1)],\ldots.
'1.8V', '1.9V', '2.0V','Location','Best');
set(h,'FontSize',(font-4));
tightfig();
set(gcf,'color','w');
```


D. 4 Subthreshold

```
color = {'k';'m';'b';'g';'r'};
font = 20;
%file number
x= 1;
%step number
for k = 3
    semilogy(abs(fig(x). data(k).v),abs(fig(x). data(k).i ),\ldots
        '*','color', color {k});
        hold all
    box on
    ylabel('I_D_(A)',',FontSize',( font))
    xlabel('V_{GS}ь(V)','FontSize',(font))
    hold all
end
%fit log curve
P = polyfit(abs(fig(x). data(k).v), log(abs(fig(x).data(k).i ) ), 6);
fit.log = exp(polyval(P, abs(fig(x).data(k).v)));
plot(abs(fig(x).data(k).v), fit.log,'-')
%get tick values on plot
tick=(\boldsymbol{get}(\mathrm{ gca,'ytick'))}
%find value of Vgs at each tick
for n = 1:length(tick)
    Vx(n)= interp1(fit.log, fig(x).data(k).v, tick(n));
end
diffe = zeros(1, length(tick));
%calculate difference between ticks
for n = 2:length(tick)
    if isnan(Vx(n-1))
    else
        diffe(n)}= Vx(n)-Vx(n-1)
    end
end
dd = abs(diffe);
%display highest subthreshold slope
maxV}=\operatorname{min}(\textrm{dd}(\textrm{dd}>0)
```


D． 5 IC－CAP

```
vg_start =num2str(0); %Measurement settings
vg_stop =num2str (0.9);
vg_step =num2str(0.0225);
vg_points =num2str (51);
vd_start =num2str(0.225);
vd_stop =num2str (.9);
vd_step =num2str(0.225);
vd_points =num2str (4);
%inData This data format is found on the MATLAB GUI on the lab
% computer. Input numbers of the files that are being averaged
inDataNum = [\begin{array}{lllll}{1}&{2}&{3}&{4}&{5}\end{array}];
%open file with desired name
fileID = fopen('VD.mdm','w');
%Writing file
fprintf(fileID,'! !VERSION_=ь6.00\r\n');
fprintf(fileID,'BEGIN_HEADER\r\n');
fprintf(fileID,' „ICCAP INPUTS\r\n');
```



```
['^ぃ-',vg_step]],'\r\n']);
```



```
['\mp@code{-ぃ'',vd_step ]],'\r\n']);}
```



```
3\lrcorner1」0\r\n');
fprintf(fileID,'ICCAP_OUTPUTS\r\n');
```



```
fprintf(fileID,'ICCAP_VALUES\r\n');
fprintf(fileID,' s-MASTER_SETUP_TYPE_"~ soi_dc_idvg ~"\r\n');
fprintf(fileID,',_LINVT_VALUE_""\r\n');
fprintf(fileID,', -LISTVT_VALUE„""\r\n');
fprintf(fileID,'`\iotaTYPE_"1"\r\n');
%Input Width and length
fprintf(fileID,' - _MAIN.W`" 2.86u"\r\n');
fprintf(fileID,', „MAIN.L`"40n"\r\n');
fprintf(fileID,', _-MAIN.AD`" 5.000p"\r\n');
fprintf(fileID,', sMAIN.AS"" 5.000p"\r\n');
fprintf(fileID,''``MAIN.PD`" 11.00u"\r\n');
fprintf(fileID,', ぃ-MAIN.PS`"11.00u"\r\n');
fprintf(fileID,', „MANN.NF」"1.000"\r\n');
fprintf(fileID,', MAIN.M" 1"\r\n');
fprintf(fileID,' suMAIN.NRD`"0"\r\n');
fprintf(fileID,' « MMAIN.NRS`"0"\r\n'');
fprintf(fileID,' „^MAIN.LDRIFT1」"1E-06"\r\n');
fprintf(fileID,', -MAIN.LDRIFT2\lrcorner" 1E-06"\r\n');
fprintf(fileID,', ~\checkmarkMAIN.SA`" 3.000u"\r\n');
fprintf(fileID,', „MAIN.SB`" 3.000u"\r\n');
fprintf(fileID,', „MAIN.SD`" 0.000"\r\n');
fprintf(fileID,' «ьMAIN.SCAь"0"\r\n');
```

```
fprintf(fileID,' suMAIN.SCB`"0"\r\n');
fprintf(fileID,' «^MAIN.SCC`" 0"\r\n');
fprintf(fileID,', „MAIN.SC`"0"\r \ n');
fprintf(fileID ,' = MODULE_"Mod_T1"\r\n');
fprintf(fileID,'`\__PIN_D_" ""\r\n');
fprintf(fileID,', „^PIN_G_" 2"\r\n');
fprintf(fileID,',_„PIN_S_" 31"\r\n');
fprintf(fileID,',
fprintf(fileID,',`_PIN_E&" 33"\r\n');
fprintf(fileID,', ч-PIN_6"""\r\n');
fprintf(fileID,',_XY_ID_""\r\n');
fprintf(fileID,' sFUNC."Large"\r\n');
fprintf(fileID,' „\lrcornerSTI\lrcorner"SA\lrcornerref"\r\n');
fprintf(fileID,', „WPE^"WPE\_ref"\r\n');
fprintf(fileID,', _OOMMENT」""\r\n');
fprintf(fileID,', ь-DIS_MEASь""\r\n');
fprintf(fileID,' «ьTypeTCIs"11"\r\n');
fprintf(fileID,'ENDHEADER\r\n\n');
%input step for header
step = [lllllll}0.2250.450 0.675 0.900];
for n = 2:size(inData.Data_Structure{inDataNum(1)}. Cycle.VG, 2);
    fprintf(fileID,'BEGINDB\r\n');
```



```
    num2str( step (n-1)),'\r\n']);
```



```
ーナームig
    %read data and average
    for k = 1:length(inData.Data_Structure{inDataNum(1)}.Cycle.VD);
        fprintf(fileID ,['`ь'',
        num2str (mean ([ . . 
        inData.Data_Structure{inDataNum (1) }. Cycle.VD(k,n ); ...
        inData.Data_Structure{inDataNum (2)}. Cycle.VD(k,n);...
        inData.Data_Structure{inDataNum (3)}.Cycle.VD(k,n)
```



```
        num2str (mean ([ . . 
        inData.Data_Structure{inDataNum(1)}.Cycle.ID (k,n ); ...
        inData.Data_Structure{inDataNum(2)}. Cycle.ID(k,n);...
        inData.Data_Structure{inDataNum (3)}. Cycle.ID (k,n); ...
```



```
        num2str (mean ([ . . 
        inData.Data_Structure{inDataNum (1) }. Cycle.IG(k,n);...
        inData.Data_Structure{inDataNum(2)}. Cycle.IG(k,n);\ldots
        inData.Data_Structure{inDataNum (3)}. Cycle.IG(k,n);\ldots
        inData.Data_Structure{inDataNum(4)}.Cycle.IG(k,n)])),
```



```
        , ,...
        num2str (mean ([ . . 
        inData.Data_Structure{inDataNum(1)}. Cycle.IS (k,n);...
        inData.Data_Structure{inDataNum(2)}. Cycle.IS (k,n);...
        inData.Data_Structure{inDataNum(3)}. Cycle.IS (k,n);\ldots
        inData.Data_Structure{inDataNum(4)}.Cycle.IS (k,n)])),'\r\n']);
    end
    fprintf(fileID,'END_DB\r\n\n');
end
fclose(fileID);
```

Appendix E
IC-CAP Modeling Fitting Tutorial

The following tutorial details the steps of creating a cryogenic SPICE model using ICCAP. The model circuit used is the BSIMSOIv4.4 model.

E. 1 Process Overview

1. Create a new model
2. Add SPICE circuit and variables
3. Add DUT
4. Device setup
5. Optimization
6. Extraction

E.1.1 Creating a New Model

On the IC-CAP main screen click the white blank sheet of paper on the left side of the tool bar to create a new model.

E.1.2 Adding SPICE Circuit and Variables

1. Setting model variables

SPMODEADS is a simulator template that allows IC-CAP to read Spectre files.

2. Adding the transistor circuits

By clicking on "Import Text" under the circuits tab model circuits can be added to the model. Model circuits for the BSIMSOIv4.4 model can be found under the ICCAP example files.

3. Example BSIMSOIv4.4 circuit


```
* Model Card for bsimsoi4 n-type devices
*
* Simulator: Spectre
* Model: BSIMSOI4 Modeling Package
* Date: 31.03.2011
* Origin: ICCAP_ROOT/..../bsimsoi4/circuits/spectre/cir/nmos.cir
M1 (D G S B) MOSMOD \(1=2 \mathrm{u}\) w=50u \(\mathrm{nf}=1\) ad=100p \(\mathrm{as}=100 \mathrm{p}\) pd=104u ps=104u \(\mathrm{sa}=0 \quad \mathrm{sb}=0 \quad \mathrm{sd}=0\)
model MOSMOD bsimsoi type \(=n\)
+ version \(=4.4 \quad\) paramchk \(=0\)
+ mtrlmod \(=0 \quad\) mobmod \(=1\)
+ capmod \(=2 \quad\) vgstcvmod \(=0\)
+ igcmod \(=0 \quad\) iiimod \(=0\)
+ rgatemod \(=0\)
+ tsi \(=1 \mathrm{E}-007\)
+ toxm \(=1 \mathrm{E}-008\)
+ ngate \(=0\)
\(+\mathrm{prwb}=0\)
\(+\mathrm{dwb}=0\)
\(+11=0\)
\(+1 w 1 c=0\)
\(+w 1=0\)
\(+w \ln =1\)
+ eot \(=1 \mathrm{E}-008\)
+ bgosub \(=1.16\)
+ easub \(=4.05\)
+ tempeot \(=300.15\)
\(+\mathrm{vtho}=0.7\)
\(+\mathrm{k} 2=-0.0186\)
\(+\mathrm{nlx}=1.74 \mathrm{E}-007\)
\(+\operatorname{dvt} 2=-0.032\)
\(+\mathrm{vfb}=-1\)
+ ags \(=0\)
+ ketas \(=0\)
+ dvtp3 \(=0\)
+ pditsl \(=0\)
+ vsat \(=80000\)
\(+\mathrm{ud}=0\)
+ cdscb \(=0\)
+ voff \(=-0.08\)
+ etab \(=-0.07\)
+ pdiblcl \(=0.39\)
+ delta \(=0.01\)
+ betal \(=0\)
+ tii \(=0\)
+ siil \(=0.1\)
+ cbjtii \(=0\)
+ agidl \(=0\)
\(+\mathrm{kgidl}=0\)
+ bgisl \(=2.3 \mathrm{E}+009\)
+ fgisl \(=0\)
+ ndioded \(=1\)
shmod \(=0\)
etsi \(=1 \mathrm{E}-007\)
toxp \(=1 \mathrm{E}-008\)
nsd \(=1 \mathrm{E}+020\)
prwg \(=0\)
\(\mathrm{dwbc}=0\)
\(11 n=1\)
\(+w 1=0 \quad 1 w=0\)
\(w l c=0\)
\(w w=0\)
epsrox \(=3.9\)
tbgasub \(=0.000702\)
leffeot \(=1\)
ados \(=1\)
\(\mathrm{k} 1=0.6\)
\(\mathrm{k} 1=0\).
\(\mathrm{k} 3=0\)
lpeb \(=0\)
dvt0w \(=0\)
\(\mathrm{aO}=1\)
\(\mathrm{bo}=0\)
dvtp0 \(=0\)
dvtp4 \(=0\)
dvtp4 \(=0\)
pditsd \(=0\)
ua \(=2.25 \mathrm{E}-009\)
\(\mathrm{eu}=1.67\)
cdscd \(=0\)
noff \(=1\)
drout \(=0.56\)
pdiblc2 \(=0.0086\)
alphao \(=0\)
beta2 \(=0.1\)
lii \(=0\)
sii2 \(=0\)
abjtii \(=0\)
bgidl \(=2.3 \mathrm{E}+009\)
fgidl \(=0\)
cgisl \(=0.5\)
ntun \(=10\)
nrecfo \(=2\)
\begin{tabular}{|c|c|}
\hline binunit \(=0\) & soimod \(=0\) \\
\hline fdmod \(=0\) & gidlmod \(=0\) \\
\hline igmod \(=0\) & igbmod \(=0\) \\
\hline rbodymod \(=0\) & rdsmod \(=0\) \\
\hline fnoimod \(=1\) & tnoimod \(=0\) \\
\hline tbox \(=3 \mathrm{E}-007\) & tox \(=1 \mathrm{E}-008\) \\
\hline nsub \(=6 \mathrm{E}+016\) & nch \(=1.7 \mathrm{E}+017\) \\
\hline \(\mathrm{xj}=1 \mathrm{E}-007\) & rdsw \(=100\) \\
\hline \(\mathrm{wr}=1\) & \(\mathrm{dwg}=0\) \\
\hline lint \(=0\) & wint \(=0\) \\
\hline \(11 \mathrm{c}=0\) & \(1 \mathrm{wc}=0\) \\
\hline \(1 \mathrm{wn}=1\) & \(1 w 1=0\) \\
\hline \(w w c=0\) & wwlc \(=0\) \\
\hline wwn \(=1\) & wwl = 0 \\
\hline epsrsub \(=11.7\) & ni0sub \(=1.45 \mathrm{E}+010\) \\
\hline tbgbsub \(=1108\) & phig \(=4.05\) \\
\hline weffeot \(=10\) & vddeot \(=1.5\) \\
\hline \(\mathrm{bdos}=1\) & epsrgate \(=11.7\) \\
\hline klw1 \(=0\) & \(\mathrm{k} 1 \mathrm{w} 2=0\) \\
\hline \(\mathrm{k} 3 \mathrm{~b}=0\) & w0 \(=0\) \\
\hline dvt0 \(=2.2\) & dvt1 \(=0.53\) \\
\hline dvtlw \(=5.3 \mathrm{E}+006\) & dvt2w \(=-0.032\) \\
\hline al \(=0\) & \(\mathrm{a} 2=1\) \\
\hline \(\mathrm{b} 1=0\) & keta \(=0\) \\
\hline dvtpl = 0 & dvtp2 \(=0\) \\
\hline minv \(=0\) & pdits \(=1 \mathrm{E}-020\) \\
\hline \(\mathrm{uO}=670\) & luo \(=0\) \\
\hline \(\mathrm{ub}=5.87 \mathrm{E}-019\) & uc \(=-0.0465\) \\
\hline ucs \(=1.67\) & cdsc \(=0.00024\) \\
\hline nfactor \(=1\) & cit \(=0\) \\
\hline dsub \(=0.56\) & eta0 \(=0.08\) \\
\hline fprout \(=0\) & pclm \(=1.3\) \\
\hline pdiblcb \(=0\) & pvag \(=0\) \\
\hline fbjtii \(=0\) & beta0 \(=0\) \\
\hline vdsatiio \(=0.9\) & \(\mathrm{vbci}=0\) \\
\hline esatii \(=1 \mathrm{E}+007\) & siio \(=0.5\) \\
\hline siid \(=0\) & ebjtii \(=0\) \\
\hline mbjtii \(=0.4\) & egidl \(=1.2\) \\
\hline cgidl \(=0.5\) & rgidl \(=1\) \\
\hline egisl \(=1.2\) & agisl \(=0\) \\
\hline rgisl \(=1\) & kgisl \(=0\) \\
\hline ntund \(=10\) & ndiode \(=1\) \\
\hline nrecfod \(=2\) & nrecro \(=10\) \\
\hline
\end{tabular}
```


E.1.3 Adding DUT and Setups

1. Adding DUT

Clicking on the "DUTs-Setups" tab, a new DUT can be added by clicking "Add" in the lower left corner.

2. Adding Setups

By clicking "Add" in the bottom left corner and selecting "Add New Setup to Dut" a new setup is added. A setup is is a measurement that is performed, such as $I_{D}-V_{G S}$ for transistors.

3. Import create

Using the MATLAB script in Appendix D. 5 to generate the file, the measured data collected can be added to the setup by clicking "Import Create" in the "Measure/Simulate" tab.

4. Setting up plots

Under the plot tab of each Setup, plots are added to plot the results by clicking "New" on the left side. The notations $i d . m$ and $i d . s$ stand for I_{D} of the measured and simulated data.

5. Simulate and plot

Finally after all the Setups are complete, each Setup can be simulated by clicking "Simulate" under the "Measure/Simulate" tab. Then, by clicking "Display Plots" in the tool bar shown below, the initial plots of the measured and simulated data are displayed.

聞 IDVDS:5@eelnx165.eng.auburn.edu

E.1.4 Optimization

1. Enable plot optimization by clicking "PO" in the corner of all the plots.
2. Adding optimization function

To open a new optimization function click "Open Optimizer" under the optimizer tab on the plot window.

3. Adding parameters

All of the parameters from the model circuit are listed under the "Parameters" tab on the right side. Clicking on the parameter will enable the parameter to be optimized. By clicking "Autoset Min/Max and Optimized" in the tool bar all of the parameters enabled are optimized using the algorithm selected. After a few cycles of clicking "Autoset Min/Max and Optimized" the simulated data will begin to conform to the measured data.

4. Multiple setup optimization

By completing E.1.3 for multiple DUTs the model can be optimized for multiple devices simultaneously.

E.1.5 Extraction

On the model window, clicking "File" >"Export Data" >"Extracted Deck" the model card is extracted. By taking this model card and adding it to the model library of Cadence, simulation can be performed on the new cryogenic model.


```
* Model Card for bsimsoi4 n-type devices
*
* Simulator: Spectre
* Model: BSIMSOI4 Modeling Package
* Date: 31.03.2011
* Origin: ICCAP_ROOT/..../bsimsoi4/circuits/spectre/cir/nmos.cir
* -------------------------------------------------------------------------------------
model rvtnch bsimsoi type = n
+ version = 4.4 paramchk = 0 binunit = 0 soimod = 3
+ mtrlmod = 0 mobmod = 1 fdmod = 0 gidlmod = 0
+ capmod = 2 vgstcvmod = 0 igmod = 0 igbmod = 0
+ igcmod = 0 iiimod = 0 rbodymod = 0 rdsmod = 0
+ rgatemod = 0 shmod = 0 fnoimod = 1 tnoimod = 0
+ tsi = 1E-07 etsi = 1E-07 tbox = 3E-07 tox = 1.4E-09
+ toxm = 1.4E-09 toxp = 1E-08 nsub = 6E+16 nch = 1.7E+17
+ ngate = 0 nsd = 1E+20 xj = 1E-07 rdsw = 100
+ prwb = 0 prwg = 0 wr = 1 dwg = 0
+ dwb = 0 dwbc = 0 lint = 0 wint = 0
+ ll=0 lln = 1 llc = 0 lwc = 0
+ lwlc = 0 lw = 0 lwn = 1 lwl = 0
+wl = 0 wlc = 0 wwc = 0 wwlc = 0
+wln=1 ww = 0 wwn = 1 wwl = 0
+ eot = 1E-08 epsrox = 3.9 epsrsub = 11.7 ni0sub = 1.45E+10
+ bg0sub = 1.16 tbgasub = 0.000702 tbgbsub = 1108 phig = 4.05
+ easub = 4.05 leffeot = 1 weffeot = 10 vddeot = 1.5
+ tempeot = 300.1 ados = 1 bdos = 1 epsrgate = 11.7
+ vth0 = 0.997 k1 = 0.6 k1w1 = 0 k1w2 = 0
+k2 = -0.0186 k3 = 0 k3b = 0 w0 = 0
+ nlx = 1.74E-07 lpeb = 0 dvt0 = 6.502 dvt1 = 0.2472
+ dvt2 = -0.032 dvt0w = 0 dvt1w = 5.3E+06 dvt2w = -0.032
+vfb = -1 a0 = 1 a1 = 0 a2 = 2.434
+ ags = 0 b0 = 0 b1 = 0 keta = 0
+ ketas = 0 dvtp0 = 0 dvtp1 = 0 dvtp2 = 0
+ dvtp3 = 0 dvtp4 = 0 minv = 0 pdits = 1E-20
+ pditsl = 0 pditsd = 0 u0 = 7.055 lu0 = 0
+ vsat = 1.22E+05 ua = 2.25E-09 ub = 5.87E-19 uc = -0.0465
+ ud = 0 eu = 1.67 ucs = 1.67 cdsc = 0.00024
+ cdscb = 0 cdscd = 0 nfactor = 2.873 cit =0
+ voff = -0.01505 noff = 1 dsub = 0.56 eta0 = 0.1024
etab = -0.07 drout = 0.56 fprout = 0 pclm = 1.3
+ pdiblc1 = 0.39 pdiblc2 = 0.0086 pdiblcb = 0 pvag = 0
+ delta = 0.01 alpha0 = 0 fbjtii = 0 beta0 = 0
+ beta1 = 0 beta2 = 0.1 vdsatiiO = 0.9 vbci = 0
+ tii = 0 lii = 0 esatii = 1E+07 sii0 = 0.5
+ sii1 = 0.1 sii2 = 0 siid = 0 ebjtii = 0
+ cbjtii = 0 abjtii = 0 mbjtii = 0.4 egidl = 1.2
+ agidl = 0 bgidl = 2.3E+09 cgidl = 0.5 rgidl = 1
+ kgidl = 0 fgidl = 0 egisl = 1.2 agisl = 0
+ bgisl = 2.3E+09 cgisl = 0.5 rgisl = 1 kgisl = 0
```


[^0]: ${ }^{a}$ Approximated values. See design manual for actual values

