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Abstract

This dissertation focuses on improvement of generalized additive models (GAMs) using

rank estimators. First, we introduce estimation of the smoothing functions in GAMs via

backfitting in a local scoring algorithm using maximization of the expected log likelihood

function with weights. Improvements of GAM estimation have focused on the smoothers used

in the local scoring algorithm, but poor prediction for non-Gaussian data motivates the need

for robust estimation of GAMs. Rank-based estimation as a robust and efficient alternative

to the likelihood-based estimator of GAMs is proposed, and it is shown that rank GAM es-

timators can be restructured as iteratively reweighted GAM estimators. Simulations further

support the use of rank-based GAM estimation for heavy-tailed or contaminated sources of

data common in climate studies. Successful application of rank GAM estimation is employed

for fisheries data, a field which commonly uses GAMs for their high degree of flexibility in

modeling complex systems and could benefit from improved model prediction performance

for non-Gaussian data. Cross-validation shows improved prediction performance for rank

GAMs over GAMs, and improved adjusted R2 values highlight the better fit of rank GAMs

for the given data.
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Chapter 1

Introduction to Generalized Additive Models

The generalized linear model (GLM) (McCullagh and Nelder, 1989) is a popular method

for modeling the mean of data via a link function g(µ) = η and takes the form

η = β0 + β1X1 + . . .+ βpXp (1.1)

where X1, . . . , Xp are covariates contributing to µ = E(Y ) and Y has an exponential family

distribution. The GLM is not always appropriate for given data as it restricts the model to a

linear relationship between g(µ) and the covariates. The generalized additive model (GAM)

(Hastie and Tibshirani, 1990) is a more flexible extension of the generalized linear model,

with β0, β1, . . . , βp replaced by nonparametric smooth functions fj(·) such that

η = f0 +

p∑
j=1

fj(Xj) (1.2)

1.1 GAM Estimation

Similar to GLM, where estimation of the coefficient vector β is informative, estimation

of the smooth functions f1(·), . . . , fp(·) in GAM is required to effectively estimate the model.

This was achieved via local scoring by Hastie and Tibshirani (1990) in which the smoothers

are estimated individually using a local scoring algorithm.

Assume Y has a density fY (y, θ, φ) belonging to the exponential family with θ location

parameter and φ scale parameter

fY (y, θ, φ) = exp

{
yθ − a(θ)

b(φ)
+ c(y − φ)

}

1



In GLM of the form given in (1.1) where g(µ) = η, E(Y |X) = µ is related to θ by µ = a′(θ).

Since estimation of µ is of primary interest, an interative Fisher scoring procedure can be

used to find the maximum likelihood estimate of β̂. For a given η̂ with fitted µ̂, form an

adjusted variable

z = η̂ + (y − µ̂)

(
dη

dµ

)
(1.3)

Define the weights as

W =

(
dµ

dη

)2

V −1 (1.4)

where V is variance of Y at µ = µ̂. The estimate β̂ is derived by regressing z on 1, x1, . . . , xp

using the given weights. Then a new η̂, µ̂, and new adjusted variable z can be calculated,

and a new β̂ is computed with weights W. This weighted least squares process is iterated

until the deviance

D(y, µ̂) = 2[logL(y)− logL(µ̂)]

is sufficiently small. This iterative process was shown to be identical to the Fisher scoring

procedure by (Nelder and Wedderburn, 1972).

The scoring procedure for additive models follows similarly from the iterative Fisher

scoring procedure, where the smooth functions fj(·) are estimated. Assume the same con-

ditions as given above for the GLM case, except η is as given in (1.2). To estimate f(·), we

must smooth the adjusted variable z on X for each {fj(·)}pj=1. This can be achieved through

a variety of scatterplot smoothers including running lines smoothers, kernel estimation, or

smoothing splines (Wahba, 1990).

The local scoring procedure is a generalized technique for estimating smooth functions

using maximization of the expected log likelihood. Consider (1.2) in the case of p = 1,

where Yis are independent and Y has a distribution belonging to the exponential family. Say

the conditional density of Y given X = x is h(y, η(x)). Then η̂(·) is chosen to maximize

the expected log likelihood function E [l(η(X), Y )]. If η(x) is a nonparametric function,

then differentiating the expected log likelihood with respect to η yields E
[
dl/dη|x)η̂(x)

]
= 0
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assuming interchangeability of expectation and differentiation. For an initial η0(x), we can

derive an improved estimate of η using Taylor series expansion:

η1(x) = η0(x)− E(dl/dη|x)

E(d2l/dη2|x)
= E

[
η0(x)− ∂l/∂η

E [∂2l/∂η2|x]

∣∣∣∣x] (1.5)

which becomes the local scoring update for backfitting in the local scoring procedure. Since

we are considering the exponential family of densities, we can simplify (1.5) by calculating

dl/dη = (y − µ)V −1(dµ/dη) and E(d2l/dη2|x) = −(dµ/dη)2V −1 to get

η1(x) = E[η0(x) + (Y − µ)(dη/dµ)|x]

which can be thought of as a smooth of the adjusted variable (1.3)

η1(x) = δ[η0(x) + (y − µ)(dη/dµ)] (1.6)

with the smoother δ and weights (dµ/dη)2V −1.

For the case of p > 1 of (1.2) where E[Y |X] = g(µ) = η and E[fj(Xj)] = 0 for all j, the

exponential family local scoring update is

η1(x) = E[η0(x) + (Y − µ)(dη/dµ)|x] (1.7)

Each fj(·) can be estimated iteratively using framework of the backfitting algorithm by

Friedman and Stuetzle (1981) to give the general local scoring algorithm proposed by Hastie

and Tibshirani (1990):

Step m = 0: f0 = g(E(y)), f 0
1 (·) = f 0

2 (·) = . . . = f 0
p (·) = 0

Step m = m+ 1:

i. Use local scoring update given by (1.7) to create adjusted variable Z = ηm−1 +

(Y − µm−1)(∂η/∂µm−1) where ηm−1 = f0 +
∑p

j=1 f
m−1
j (Xj)

3



ii. Define weights, W = (∂η/∂ηm−1)2V −1

iii. For j = 1 to p: Fit additive model to adjusted variable using weights W via

backfitting to obtain f̂mj (·) and model ηm.

Until: E(D(Y, µm) no longer decreases.

A major focus of improvements to GAM estimation has been on the scatterplot smoothers

in (1.6). Hastie and Tibshirani (1990) focused on running line smoothers.

(Wahba, 1990) smoothing splines, elegant but computationally expensive

Penalized least squares for estimating f0 (? Wood, 2002, ”GAMs with integrated model

selection using penalized regression splines and applications to environmental modelling”)

1.2 Contribution

The first part of this dissertation is concerned with improving the estimation of GAMs

using rank estimation. It will be shown that the proposed rank GAM estimation method

produces better fits over a range of data types with some marginal tradeoff in computational

expense.

The second part is an application of the rank GAM estimation method used to improve

GAM fit on fisheries data with two- and three-dimensional covariates. It will be shown that

the rank GAM method produces better smoothing estimates and therefore better fits for

several types of models through higher adjusted R2 values. Cross-validation errors are re-

duced for the rank GAM method when compared to GAM estimation, showing improvement

of prediction capability when using rank GAM estimation.
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Chapter 2

Rank-Based GAMs

2.1 Introduction

Classical GAM estimation involves penalized likelihood or penalized least squares (Wood,

2006). It is well-known that such approaches are sensitive to outliers and departures from

underlying distributions (eg. normal errors). To accommodate a wide range of data gener-

ating phenomena, robust approaches have been proposed recently. These include Alimadad

and Salibian-Barrera (2011), Croux et al. (2012), and Wong et al. (2014). These are all

M -type estimators. We are interested in R-estimators as defined in Jaeckel (1972) and

Hettmansperger and McKean (2011). As discussed in Draper (1988), both M and R estima-

tors provide robust fits with no clear winner. While both M and R are location invariant,

only R-estimators are scale invariant. This makes them very attractive for estimation in

complex model settings. A drawback of both M and R estimation is that they are com-

putationally expensive. For the linear regression model, Sievers and Abebe (2004) gave

an approach that uses iterative least squares fitting to obtain R-estimators. Recently, Mi-

akonkana and Abebe (2014) extended this to generalized linear models. Wong et al. (2014)

derived a computationally efficient M -estimator of the GAM model, again using iterative

fitting of GAMs via penalized least squares. In this chapter, we propose a rank estimator of

GAMs and develop an efficient iterative computational algorithm. Our method, which we

call the iterated regularized rank quasi-likelihood (IRRQL) procedure, depends on ranking of

Pearson residuals to account for the mean-variance dependence in GAMs.
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2.2 Rank-Based Estimation

Suppose we have a linear regression model Yi = α + xTi β + εi, i = 1, . . . , n. The vector

of model residuals is given by z(β) with ith component zi(β) = Yi − xTi β. Jaeckel (1972)

proposed to estimate the regression slope parameter β by minimizing

‖z(β)‖ϕ ≡
n∑
i=1

ϕ

(
R(zi(β))

n+ 1

)
zi(β) , (2.1)

where φ : (0, 1) → R is a nondecreasing score function such that
∫
φ = 0 and

∫
φ2 = 1

and R(·) is the rank function. He showed that this produces a regression estimator that is

equivalent to the rank score estimator given by Jurečková (1971). He also showed that the

quantity ‖·‖ϕ is a convex pseudo-norm on Rn. Because ‖·‖ϕ is a pseudo-norm, it is invariant

to constant translations; hence, it cannot be used to estimate the intercept α. To see this,

consider the simplest case of the linear score function φ(u) =
√

12(u− 1/2) resulting in the

so-called Wilcoxon pseudo-norm. In this case, it is easy to observe that minimizing (2.1) is

equivalent to minimizing ∑
i<j

|zi(β)− zj(β)| .

For this and other general discussion regarding the use of (2.1) in the linear model, one is

referred to the monograph Hettmansperger and McKean (2011).

For the linear regression, it has been shown that the estimator resulting from the

Wilcoxon estimation is robust in the presence of outliers and heavy tailed error distribu-

tions. It is also very efficient. For instance, it achieves 95.5% relative efficiency versus the

least squares estimator when the underlying error distribution is normal and the relative

efficiency is much higher for distributions with tails heavier than the normal. The worst

case relative efficiency is 86.4% for symmetric error distributions. So, there is much appeal

to using ‖ · ‖ϕ for estimation purposes. The inference also extends to hypothesis testing

6



(Hettmansperger and McKean, 2011). For example, we can easily define drop, Wald, or

score tests for testing significance of model parameters.

In recent years, the method has been employed for models other than the linear model.

Bindele and Abebe (2015) studied rank estimation of semiparametric models with responses

missing at random. They showed that the rank estimator remains robust and efficient with

efficiency improving relative to standard imputation methods when a large proportion of

the responses are missing. The Wilcoxon (and its weighted versions) have been used for

estimation of general nonlinear regression (Abebe and McKean, 2013), generalized linear

models (Miakonkana and Abebe, 2014), varying coefficient models (Wang et al., 2009), and

functional regression (Denhere and Bindele, 2016) among others.

A parallel development involves the signed-rank method. This is essentially a rank

weighted L1 norm and thus can provide estimate of the intercept. The estimates of pa-

rameters found using the signed-rank method are the same as those using the rank method.

However, distributional results for the signed-rank method require the symmetry of the error

distribution, reducing its appeal. Nevertheless, the method has been successfully used for

obtaining robust and efficient estimates for linear models (Hössjer, 1994), nonlinear models

(Bindele and Abebe, 2012), and nonlinear models with multidimensionally indexed param-

eters (Nguelifack et al., 2015).

Some of the development has been facilitated by the iterative reweighted least squares

procedure given by Sievers and Abebe (2004). This greatly simplifies the computation of

rank regression coefficients even for complex models (Abebe et al., 2016).

2.3 Rank-Based GAM Estimation

For obtaining the rank estimator of GAMs, we will use a penalized version of the rank

quasi-score function given in Miakonkana and Abebe (2014). The responses {Yi}ni=1 are

assumed to be independent and follow a distribution from the exponential family with ex-

pectation µi and variance V (µi). To simplify our discussion and theoretical development, we

7



will consider the simple p = 1 version of the GAM model (1.2) given by

g(µi) = f(xi)

as well as the linear (Wilcoxon) score function
√

12(u− .5).

Taking a set of prespecified basis functions b = (b1(·), . . . , bm(·))′, the function f is

assumed to have a representation

f(xi;θ) =
m∑
j=1

bj(xi)θj ≡ bTi θ (2.2)

where θ = (θ1, . . . , θm)′ is a vector of basis coefficients and we suppress xi in b.

Ignoring the extra scale parameter, we define the Pearson residuals as

zi(θ) =
Yi − µi√
V (µi)

.

The rank quasi-likelihood function is then

`(θ) =
n∑
i=1

{
R(zi(θ))

n+ 1
− 1

2

}
∂µi/∂θ√
V (µi)

. (2.3)

By taking h ≡ g−1, we have µi = h(bTi θ) and ∂µi/∂θ = h′(bTi θ)b(xi) and

`(θ) =
n∑
i=1

{
R(zi(θ))

n+ 1
− 1

2

}
h′(bTi θ)bi√
V (h(bTi θ))

.

Theoretically, the rank estimator of θ is found by solving `(θ) = 0. However, for the

estimation of GAMs, we will need to impose a smoothness penalty. Thus we define the

regularized rank quasi-likelihood (RRQL) function and solve

`λ(θ) ≡ `(θ) + 2Sλnθ = 0 , (2.4)

8



where Sλn = λnD, λn > 0 is a smoothing parameter and D is an m×m penalty matrix. We

let θ̃n represent the zero of the RRQL function; that is θ̃n solves `λn(θ) = 0.

However, finding a direct solution of `λ(θ) = 0 is difficult. Below we will define an

iterative scheme to approximate θ̃n. To that end, define the pseudo-Pearson ‘residuals’

zi(θ,θ
∗) =

Yi − h(bTi θ)√
V (h(bTi θ

∗))

and define the corresponding rank estimator as the minimizer of ‖z(θ,θ∗)‖w, where

‖z(θ,θ∗)‖w =
n∑
i=1

{
R(zi(θ,θ

∗))

n+ 1
− 1

2

}
zi(θ,θ

∗) .

Using the IRLS scheme of Sievers and Abebe (2004), this can be represented as

‖z(θ,θ∗)‖w =
n∑
i=1

wi(θ)
(Yi − h(bTi θ))2

V (h(bTi θ
∗)

where, letting m = med{Yi − h(bTi θ)}, the weights are defines as

wi(θ) =


R(zi(θ,θ

∗))
n+1

− 1
2

Yi−h(bT
i θ)−m if Yi − h(bTi θ)−m 6= 0

0 otherwise.

Taking the weights wi at a different value of θ, say θ′, and taking the derivative of ‖ · ‖w

with respect to θ we obtain the approximate rank score function

2
n∑
i=1

wi(θ
′)

(Yi − h(bTi θ))

V (h(bTi θ
∗)

h′(bTi θ)bi

9



Following Wedderburn (1974), if we now take θ∗ = θ, then we get the weighted quasi-

likelihood function

`(θ,θ′) =
n∑
i=1

wi(θ
′)

{
Yi − h(bTi θ)

V (h(bTi θ))

}
h′(bTi θ)bi =

n∑
i=1

wi(θ
′)

(Yi − µi)
V (µi)

∂µi
∂θ

which is exactly a weighted form of the classical GLM quasi-likelihood function.

We can now define the penalized quasi-likelihood as

`λn(θ,θ′) = `(θ,θ′) + Sλnθ .

Now, suppose we have a suitable initial estimator of θ, say θ̂
(0)

n . This can be the classical

penalized likelihood estimator. For k = 1, 2, . . ., we define θ̂
(k)

n as a solution of the iterated

regularized rank quasi-likelihood (IRRQL) function

`λn(θ, θ̂
(k−1)
n ) = 0 ,

which can be computed by iteratively solving a weighted GAM estimating equation. For the

unpenalized version `0(θ, θ̂
(k−1)
n ), Miakonkana and Abebe (2014) showed that the iteration

converges to the solution of `0(θ).

Let f = (f(x1), . . . , f(xn))T and the n×m coefficient matrix be

B =


bT1
...

bTn

 .

Note that we have two rank estimators of θ: θ̃n which solves the RRQL and θ̂
(k)

n , k = 1, 2, . . .

given θ̂
(0)

n which solves the IRRQL. We can correspondingly define two rank-based GAM

10



estimators of f using equation (2.2). We define these as

f̃n = Bθ̃n (2.5)

and

f̂ (k)n = Bθ̂
(k)

n , k = 1, 2, . . . . (2.6)

Note that for a given k, f̂
(k)
n is just a regular weighted GAM estimator. Thus, its asymp-

totic properties are well understood and are part of the standard GAM literature (cf. Hastie

and Tibshirani, 1990; Wood, 2006). Theorem 2.1 below gives consistency of f̂
(k)
n . However,

we need to understand whether f̂
(k)
n provides a good approximation of the ‘true’ rank es-

timator f̃n. Below we give conditions under which f̂
(k)
n gives a valid approximation of f̃n.

The theorem following the conditions gives the asymptotic equivalence of f̂
(k)
n and f̃n. Be-

fore giving the conditions, we note that when using the iteratively reweighted least squares

(IRLS) approach of fitting GAMs, there is a reproducing kernel Hilbert space (RKHS) rep-

resentation fTΓ1/2RΓ1/2f of the penalty function λnβ
TDβ, where Γ is the IRLS weight

(Wong et al., 2014). In this set up, the residual smoother matrix for GAM estimation is

Hλn = (I + 2λnR)−1, where R is the reproducing kernel.

We assume the following conditions hold:

(A1) The function f is bounded; that is, sup−∞<t<∞ |f(t)| <∞.

(A2) Let F be the space of all f ’s. We assume that F is a reproducing kernel Hilbert space.

(A3) Let Cα = {f ∈ F : ‖f‖F ≤ α} for some constant α. We assume that Cα is compact

with respect to L2 norm.

(A4) Let dn be the maximum diagonal element of Hλn . We assume that λn/n → 0 and

dn → 0 as n→∞. Moreover, tr(Hλn)/λn < K <∞.

11



Theorem 2.1 Under (A1) – (A4), for k ∈ N,

n−1E{‖f̂ (k)n − f‖2} → 0

as n→∞

Theorem 2.2 Under (A1) – (A4), for k ∈ N,

‖f̂ (k)n − f̃n‖
E{‖f̂ (k)n − f‖}

P−→ 0

as n→∞

The proof of Theorem 2.1 can be constructed in a straightforward manner following

Hastie and Tibshirani (1990) with residuals z replaced by W1/2z, where W = diag(w1, . . . , wn).

The proof of Theorem 2.2 is similar to the one given by Wong et al. (2014) for M -estimators.

There are certain practical considerations that need attention. The first is the degrees

of freedom of the estimation problem. The RKHS literature defines the effective degrees of

freedom as tr(Hλn). So, (A4) specifies a balance between the effective degrees of freedom

and the smoothing parameter. We still need a way to estimate the smoothing parameter λn.

In this thesis, we employ generalized cross-validation to select the parameter λn. This is the

most common approach in the literature (Wood, 2006). Finally, one may question the value

of fully iterating k. If the one step estimator gives us consistent estimators (Theorems 2.1

and 2.2), then why do we need to iterate more than once? This was answered in Sievers

and Abebe (2004) and Miakonkana and Abebe (2014) where using fixed-point theory it was

established that as k → ∞ the IRLS rank estimator converges to the true rank estimator

for finite samples. In our notation, this is

lim
k→∞

f̂ (k)n = f̃n

for n fixed.
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2.4 Simulations

The following simulations reflect how the proposed rank GAM estimators performs

against GAM estimators and least absolute deviation (LAD) estimators in specific settings

for finite samples. All simulations were performed on n = 100 samples and repeated for 1000

iterations. The simple model

yj = f(xj, zj) + εi , j = 1, . . . , n .

In the simulation, f is generated as

f(xj, zj) = (πsxsz)(1.2) exp

(
−(xj − 0.2)2

s2x
− (zj − 0.3)2

s2z

)
+(0.8) exp

(
−(xj − 0.7)2

s2x
− (zj − 0.8)2

s2z

)

where sx = 0.3 and sz = 0.4; x and z are 100 random deviates generated from a continuous

uniform distribution with range [0, 1]. The correlation between two observations a distance

r apart is exp(−(r/d)2). The relative efficiencies of the rank GAM and LAD estimators as

compared to GAM estimators were obtained by

RE(R,LS) =

∑n
j=1(fj − f̂LS,j)2∑n
j=1(fj − f̂R,j)2

and RE(LAD,LS) =

∑n
j=1(fj − f̂LS,j)2∑n
j=1(fj − f̂LAD,j)2

,

respectively. Here with f̂LS the function f estimated using the classical likelihood method;

that is, penalized least squares. Similarly, f̂R and f̂LAD represent the fitted values using the

rank GAM and LAD methods, respectively. The R2 values of the GAM, rank GAM, and

LAD models were calculated as a function of the correlations

R2 = ρ2(f, f̂a) =

[∑n
j=1(f̂a,j − f̂a)(fj − f̄)

]2
∑n

j=1(f̂a,j − f̂a)2
∑n

j=1(fj − f̄)2
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with f̂a, a = LS, R, LAD, being the model predictions and f being the true function. We

can obtaining both the LAD and R estimators using the weighted GAM approach where we

use the score function φ = sgn(u) for LAD and φ =
√

3u for R estimators in the weight

function.

The first simulation involved testing the performance of GAM estimators in the presence

of heavy-tailed error distributions. To simulate this, the errors ε were randomly generated

from Student’s t distributions with increasing degrees of freedom ek where k is taken from 1 to

5 in steps of .5. The correlation between two observations a distance r apart is exp(−(r/d)2)

with d = 0.1. The GAM, LAD model, and rank GAM were fit for the given data and

estimates derived for each. The relative efficiencies and R2 values were then calculated as

described above and plotted for logarithms of the corresponding degrees of freedom, log(df)

(Figure 2.1). The left panel of Figure 2.1 shows that both LAD and rank GAM estimators are

more efficient than the GAM (LS) estimator when the error distribution is heavy-tailed. As

expected the efficiency drops as the tails of the distribution approach the tails of the normal

distribution. However, the loss in efficiency is less than 5% for the rank GAM method.

This is in line with the theoretical asymptotic relative efficiency values for the Wilcoxon

procedure. The LAD estimator is generally less efficient than the rank GAM estimator. The

right panel of Figure 2.1 shows that all methods provide improved fit as the tails of the error

distribution approach N(0, 1) tails with the rank GAM giving slightly better fit for heavy

tails and GAM giving slightly better fit for tails approaching N(0, 1).

The second simulation tested GAM estimation performance when there are outliers

in the measured response. To simulate this, we generated random errors ε drawn from

a contaminated normal distribution. The contaminated normal distribution is defined by

creating a normal-normal Huber contaminated distribution as

CN(δ, σ) = (1− δ)N(0, 1) + δN(0, σ2) ,
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Figure 2.1: Heavy-tailed distribution relative efficiencies and R2 values for increasing log(df).

where δ ∈ [0, 1] and σ > 0. This means the errors are drawn from the N(0, 1) distribution

with probability 1 − δ and from the N(0, σ2) distribution with probability δ. To simulate

this, we generate a random variate B from the Bernoulli distribution with probability of

success 1− δ; so, B = 1 with probability 1− δ and B = 0 with probability δ. Contaminated

normal errors ε ∼ CN(δ, σ) are then generated as

ε ∼ B ∗X1 + (1−B) ∗X2

where X1 ∼ N(0, 1) and X2 ∼ N(0, σ2). For our simulation experiment we took σ = 3

and δ taken from 0 to 0.35 in steps of .05 (B1). Once again, the correlation between two

observations a distance r apart is exp(−(r/d)2) with d = 0.1. Again the GAM, LAD model,

and rank GAM were fit for the given data and relative efficiencies and R2 calculated. These

values were plotted against the proportion of contamination in Figure 2.2. The left panel

shows that both LAD and rank GAM estimators were more efficient than GAM estima-

tors for greater than five percent contamination, with rank GAM producing most efficient

estimates for contamination ranging from five to fifteen percent. The gain in efficiency,

however, asymptotes for high levels of contamination. This is generally the case when it
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Figure 2.2: Relative efficiencies and R2 values for increasing proportions of contamination
of the normal distribution.

becomes difficult to distinguish between the ‘real’ and ‘contaminating’ distributions. The

right panel of Figure 2.2 shows that rank GAM produces marginally better fitting models

for contamination greater than five percent.

The performance of GAM estimators under various levels of spatial clustering was ana-

lyzed in the third simulation. The errors ε were drawn from a normal distribution centered

at zero with standard deviation of one. The correlation between two observations a distance

r apart is exp(−(r/d)2) with d taken from 0.1 to 0.4 in steps of .05 for varying correlation

structure. These represent weak clustering (almost independence) to string clustering of the

spatial data. This also means the number of clusters in the data decreases with increasing

d. The GAM (LS), LAD model, and rank GAM were fit for the given data and relative

efficiencies and R2 calculated as before; these were plotted against increasing correlation

between observations (Figure 2.3). The left panel shows that the rank GAM estimator was

more efficient than LAD and both are less efficient than GAM when the errors have low

spatial correlation. However, the loss in efficiency for rank GAM in comparison to GAM

ranged from 3% for low spatial correlation and 0% for high spatial correlation. The right

panel of Figure 2.2 shows that rank GAM produced marginally poorer fitting models than

GAM for low spatial correlation and virtually the same fit when the spatial correlation was
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Figure 2.3: Relative efficiencies and R2 values for increasing spatial correlations in data.

large. An interesting observation is that all methods provided poorer fit as the correlation

increased from d = .10 to d = .20 but the fits improved when correlation increased further.

The progression from d = .10 to d = .40 represents progression from almost independent

spatial data structure to several small spatial clusters to a few large spatial clusters. It

appears that the worst fits are obtained when the data are derived from several small spatial

clusters.

2.5 Conclusions

This chapter proposes and studies rank-based estimators of generalized additive models.

This provides a viable alternative to the usual likelihood based estimator of GAMs. Our

estimation algorithm is simple. Our reformulation of rank estimators of GAMs as iteratively

reweighted penalized least squares estimators, we manage to (1) take advantage of existing

weighted GAM theory to establish the theoretical properties of the proposed estimator and

(2) take advantage of existing software (eg. mgcv in R) to fit the models. in particular, our

estimation procedure proceeds by performing repeated weighted GAM fits until convergence

conditions are met. We evaluated the relative change in fits to establish convergence.
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Our simulation experiments show that the proposed rank GAM estimation method out-

performs GAM and LAD for data derived from processes that are heavy-tailed or contami-

nated. This is fairly common in climate studies and investigators often depend on simplifying

the problem so that they can apply simple nonparametric tests such as the Wilcoxon rank-

sum test. However, such approaches are not easy to apply for high-dimensional data with

complex underlying structure. Thus, the proposed method gives a practical approach for

studying problems where classical fitting of GAMs is inefficient.
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Chapter 3

Rank GAM Applications

3.1 Introduction

Studies have revealed potential amplified warming effects in the northern latitudes

(> 60◦N) relative to overall global warming trends (Serreze and Francis, 2006) (Holland

and Bitz, 2003). This trend has driven changes in Pacific marine systems and is predicted

to affect future fish diversity and populations (Brander, 2007) (Cheung et al., 2013). Cur-

rent fisheries research focuses on single species or predator-prey population mapping and

prediction, however fisheries management research and ecologists now need better modeling

techniques to analyze the responses of fishes to climate shifts in order to improve prediction

and management.

Fisheries data are typically correlated over space and time (i.e. spatio-temporal data)

and the relationship between variables is complex. Standard GLMs are usually not suffi-

cient to describe such a complex system. The smoothing of each covariate with individual

smoothing functions in GAMs are advantageous for such systems by assuming unknown

nonparametric relationships between the covariates and the response. GAM can also be

extended to correlated spatio-temporal data with relative ease (Fang and Chan, 2015) and

can parse out major sources of variability when several models are fit and compared.

The generalized additive model has been considerably employed in the analysis of fish-

eries data over the past decade, and extensions for spatial and spatio-temporal data using

tensor smoothers have been explored more recently. These models typically use spatial com-

ponents such as latitude, longitude, and depth to analyze movement and changes in fish

populations over two- or three-dimensional space by including factors such as sea surface

temperature (SST) as changing over space and time.
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Due to the non-Gaussian nature of ecological data and lack of robust estimation for

these types of data, inferences and predictions using GAMs are typically difficult to achieve,

particularly as the dimensions and number of covariates increases. It will be shown that the

rank GAM estimation method described previously will produce more robust estimates for

ecological data and can produce better fitting models.

3.2 Data

The data for this study was collated from two data sets provided by the National Oceanic

and Atmospheric Administration (NOAA) for download to the public. Of primary use was

the annual longline survey data (1979-present) of the Marine Ecology and Stock Assess-

ment (MESA) Program conducted by the Auke Bay Laboratories in Alaska (AFSC, 2015).

The MESA Program has performed longline surveys independently since 1979, dropping

baited lines at specific locations (“stations”) off the coast of Alaska to collect information of

groundfish species from longline sets at specific stations 30-50 km apart all along the coast of

Alaska. Seven major groundfish species are surveyed by the Alaska Fisheries Science Center

(AFSC): giant grenadier, Pacific cod, Pacific halibut, rougheye rockfish, shortraker rockfish,

shortspine thornyhead, and sablefish. The AFSC records weights and number of fish per

species collected at each location. Each station is surveyed once a year, every year using

longline sets consisting of 80 skates weighted and sunk to the sea floor 150-1000 meters off

the coast. Sampling occurs on one day for each station. The longline sets are set out in the

morning and left for a minimum of three hours before collection begins. If conditions are

predicted to exceed, 10-foot seas and 30-knot winds, the longline sets are not deployed that

day as the fish are likely to drop off the line, creating a sampling bias.

Information collected on the MESA sampling runs record the number of species collected

at each location. A catch per unit effort (CPUE) is also calculated by the AFSC for each

species at each station from the total number of fish caught divided by the total number of

hooks deployed each day, therefore the CPUE is a more standardized measure of catch at
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each location. MESA data were acquired for the years of 1979 through 2013. There is a high

proportion of zero data that indicates no catch for the day and therefore a possible absence

of fish at that location.

Global sea surface temperature (SST) readings were obtained from the National Cen-

ters for Environmental Information (formerly the National Climate Data Center) (NOAA,

2015). The data are interpolated and constructed from satellites, buoys, and ships at 1/4◦

latitude-longitude grids using a method by Richard W. Reynolds at the National Centers for

Environmental Prediction. Since it was necessary to retrieve data from the early 1980s, only

infrared satellite sensors known as Advanced Very High Resolution Radiometer (AVHRR)

were available beginning in 1981. Each day contains four variables: daily SST, SST anomaly,

estimated error standard deviation of analyzed SST, and sea ice concentration. The daily

SST from AVHRR was compared to surface buoy measures of SST at various locations and

found to be a very accurate and more complete record of SST across space. An average SST

for each 1/4◦ latitude-longitude grid was calculated per year. Since deriving a mean SST by

year flattens out most within year variability, a yearly coefficient of variance for SST was

also calculated as

cv =
σ

µ

at each latitude-longitude pairing, with σ being the yearly standard deviation and µ the

yearly mean of SST. The coefficient of variance is a ratio of the standard deviation to the

mean and includes information about the variability of the data.

In this study, we focused on two larger and more economically important fish: sablefish

and Pacific cod. The fisheries data were matched with SST data from 1981 to 2013. There

are 2344 observations for the sablefish and 1949 observations for Pacific cod. The CPUE

measures for Pacific cod were log-transformed, while sablefish CPUE was sufficiently normal

to use an identity link function in the GAM and rank GAM models.
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3.3 Methods

The main goal of this analysis was to compare GAMs with the proposed rank GAMs and

explore the relationship between the catch numbers and spatial, temporal, and environmental

factors for both species of fish. The chosen dependent variable was catch per unit effort

(CPUE) of all fish of each species caught at one station on one measurement day. A variation

of log transformation was performed on CPUE for Pacific cod to induce normality, as previous

analyses revealed high occurrences of low or zero CPUE. The models included three main

factors that are theorized to affect population dynamics: location in the form of latitude-

longitude pairs, time in the form of years, and environment in the form of yearly SST

coefficient of variance (SSTcv). All analyses were performed using the free statistical software

R and include use of the mgcv package (Wood, 2006).

Three main questions were addressed in this analysis: (i) How does CPUE change

over location and time? This was addressed by fitting a spatial and spatio-temporal model

for each species. (ii) Does SST contribute to variation in CPUE? A spatio-temporal with

environmental model was fit assuming SST changes over space and time and considering

the relationship between SST and CPUE. (iii) Do the proposed rank GAMs produce better

estimates of the smoothing functions in the tested models? Cross-validation was performed

on the GAMs and rank GAMs and the mean of cross-validation errors compared.

3.3.1 Models

In this study, we will consider three formulations to model CPUE: spatial, spatio-

temporal, and spatio-temporal with environmental.

Spatial formulation

The spatial model assumes that distribution of Pacific cod and sablefish along the stud-

ied region is only affected by location, and that CPUE variations are due to interannual
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changes in stock size:

Yt,(u,v) = s1(u, v) + εt,(u,v) (3.1)

where Y is the CPUE, t is time in years from 1981-2013, u is latitude, v is longitude, and s1

is a 2D smoothing function. For Pacific cod, Yt,(u,v) is the natural log of CPUE at (u, v) in

t. For sablefish, Yt,(u,v) is CPUE at (u, v) in t.

Spatio-temporal formulation

For the spatio-temporal model, time is included into a three-dimensional tensor smooth-

ing function which allow species distribution to smoothly and simultaneously change over

location and time.

Y(u,v,t) = z1(u, v, t) + ε(u,v,t) (3.2)

where z1 is a three-dimensional tensor smoothing function; CPUE, time, and location are

defined as in the spatial formulation.

Spatio-temporal with environmental formulation

This model allows the effect of the environmental variable SST to also smoothly change

over location and time by using a tensor smoothing function:

Y(u,v,t) = z1(u, v, t) + z2(u, v, t) · SST(u,v,t) + ε(u,v,t) (3.3)

where z1 and z2 are three-dimensional tensor smoothing functions; CPUE, time, and location

are defined as in the spatial and spatio-temporal formulations.

3.3.2 Cross-validation

Cross-validation was performed on the GAM and rank GAM version of each of the

above formulations. The data was randomly split into ten roughly equal sets F1, . . . , Fk,

k = 10. Consider training on (xj, yj), j /∈ F10, and validating on (xj, yj), j ∈ F10. For each
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estimation technique, an estimated f̂−ka , a = GAM, R, is computed on the training sets and

the total error is recorded on the validation set

ek(a) =
∑
j∈Fk

(yj − f̂−ka (xj))
2

For each estimation technique a = GAM, R, the average error was computed over all k folds

CV (a) =
1

n

K∑
k=1

ek(a) =
1

n

K∑
k=1

∑
i∈Fk

(yj − f̂−ka (xj))
2

The method a that minimizes CV is considered the best method for minimizing prediction

error and therefore the optimal method of prediction for the given model.

3.3.3 Adjusted R2 and Effect Size

For the GAM and rank GAM versions of each formulation with p predictors, an adjusted

R2 value was calculated using R2 as defined previously:

R2
adj = 1− (1−R2)(n− 1)

n− p− 1
= 1−

1
n−p−1

∑n
j=1(fj − f̂j)2

1
n−1

∑n
j=1(fj − f̄)2

An R2 value explains the goodness-of-fit of the model, but becomes inflated with the addition

of multiple predictors regardless of their significant contributions to the model. The adjusted

R2 value compensates for the number of predictors in the model and therefore produces a

more accurate representation of the percentage of data explained by the model.

The effect size of predictor A, a measure of the contribution of that predictor to the

response, was calculated using Cohen’s f 2 value

f 2 =
R2
f −R2

0

1−R2
f
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which is a function of the R2 values of the model including predictor A (R2
f ) and with

predictor A removed from the model (R2
0). The Cohen’s f 2 value can therefore be considered

a ratio of the proportion of variance explained by predictor A to the proportion of unexplained

variance. A very large Cohen’s f 2 value, f 2 >> 1 indicates that the proportion of variance

explained by predictor A is much greater than the proportion of variance not explained by

the full model.

3.4 Results

3.4.1 Sablefish

The three models fit for sablefish CPUE with intercept estimates, standard errors, and

p-values are given in Table 3.1. It can be seen that cross-validation prediction error (CV Pred

Error) is reduced for the rank GAM estimation method of all three models. Adjusted R2

values increase for the rank GAM versions, showing rank GAM produces a better fit model

than GAM estimation. Note the model fit improves greatly when using a spatio-temporal

model for sablefish CPUE over a purely spatial model, regardless of estimation method

used. Since adjusted R2 only increases if the added predictor contributes significantly to

the model, it can be seen from the adjusted R2 values of the spatio-temporal model and the

spatio-temporal with environmental model (SpT-Enviro) that although SST may contribute

significantly to the model, the effect of SST on sablefish CPUE is likely small.

The effect size of location and year for the spatio-temporal model fit for sablefish CPUE

is given in Table 3.2. While the effects for location and year increase when going from GAM

estimation to rank GAM estimation, the ratio of location to year effect sizes remains similar

between the two estimation methods, indicating consistency of rank GAM estimation for

two-dimensional and three-dimensional predictors.

The change in sablefish CPUE over space modeled using rank GAM estimation is illus-

trated in Figure 3.1. The highest sablefish CPUE counts are found in the Gulf of Alaska

region and taper off toward the Bering Sea.
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Table 3.1: Three models of sablefish CPUE tested: (1) spatial, (2) spatio-temporal and (3)
spatial and environmental. Estimated intercepts, statistical significance, adjusted R2, and
cross-validation prediction error are shown for each method.

Spatial Model Y(u,v) = β0 + s1(u, v) + ε(u,v)

Method Intercept Std. Error Pr(> |t|) Adj. R2 CV Pred Error
GAM 7.100 .042 0.000 .678 1.258

Rank GAM 7.004 .037 0.000 .737 1.239

Spatio-Temporal Model Y(u,v,t) = β0 + z1(u, v, t) + ε(u,v,t)

Method Intercept Std. Error Pr(> |t|) Adj. R2 CV Pred Error
GAM 7.100 .032 0.000 .817 .902

Rank GAM 7.034 .026 0.000 .875 .856

SpT-Enviro Model Y(u,v,t) = β0 + z1(u, v, t) + z2(u, v, t) · SST(u,v,t) + ε(u,v,t)

Method Intercept Std. Error Pr(> |t|) Adj. R2 CV Pred Error
GAM 7.680 .245 0.000 .844 .893

Rank GAM 7.423 .187 0.000 .906 .843

Table 3.2: Cohen’s f 2 values of location and time for the GAM and rank GAM versions of
the spatio-temporal model fit for sablefish CPUE

Spatio-Temporal Model Y(u,v,t) = β0 + z1(u, v, t) + ε(u,v,t)

Method Location Year Ratio
GAM 4.496 0.803 5.597

Rank GAM 6.940 1.169 5.938
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Figure 3.1: Spatial change in CPUE for sablefish. Dark green indicates low values of CPUE;
pink to white indicates high values of CPUE.

3.4.2 Pacific cod

The three models fit for Pacific cod CPUE with intercept estimates, standard errors,

and p-values are given in Table 3.3. As in the sablefish models, cross-validation prediction

error (CV Pred Error) is reduced for the rank GAM estimation method of all three models.

Adjusted R2 values increase for the rank GAM versions, showing rank GAM produces a

better fit model than GAM estimation. Again, the adjusted R2 improves greatly when

using a spatio-temporal model for Pacific cod CPUE over a purely spatial model, regardless

of estimation method used. As before, it can be seen from the adjusted R2 values of the

spatio-temporal model and the spatio-temporal with environmental model (SpT-Enviro) that

although SST may contribute significantly to the model, the effect of SST on Pacific cod

CPUE is again likely small.

The effect size of location and year for the spatio-temporal model fit for Pacific cod

CPUE is given in Table 3.2. While the effects for location and year increase considerably
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Table 3.3: Three models of Pacific cod CPUE tested: (1) spatial, (2) spatio-temporal and
(3) spatial and environmental. Estimated intercepts, statistical significance, adjusted R2,
and cross-validation prediction error are shown for each method.

Spatial Model Y(u,v) = β0 + s1(u, v) + ε(u,v)

Method Intercept Std. Error Pr(> |t|) Adj. R2 CV Pred Error
GAM 1.086 .014 0.000 .598 .323

Rank GAM 1.056 .011 0.000 .683 .306

Spatio-temporal Model Y(u,v,t) = β0 + z1(u, v, t) + ε(u,v,t)

Method Intercept Std. Error Pr(> |t|) Adj. R2 CV Pred Error
GAM 1.086 .009 0.000 .817 .188

Rank GAM 1.067 .006 0.000 .904 .166

SpT-Enviro Model Y(u,v) = β0 + z1(u, v, t) + z2(u, v, t) · SST(u,v,t) + ε(u,v)

Method Intercept Std. Error Pr(> |t|) Adj. R2 CV Pred Error
GAM 1.228 .073 0.000 .832 .183

Rank GAM 1.195 .049 0.000 .915 .168

Table 3.4: Cohen’s f 2 values of location and time for the GAM and rank GAM versions of
the spatio-temporal model fit for Pacific cod CPUE

Spatio-Temporal Model Y(u,v,t) = β0 + z1(u, v, t) + ε(u,v,t)

Method Location Year Ratio
GAM 3.319 1.264 2.626

Rank GAM 6.518 2.408 2.707

when going from GAM estimation to rank GAM estimation, the ratio of location to year

effect sizes remains stable between the two estimation methods, indicating consistency.

The change in Pacific cod CPUE over space is illustrated in Figure 3.2. Highest CPUEs

are concentrated along the coast of Alaska in the gulf region.

3.5 Discussion

Fitting GAMs is a common method employed in fisheries research to model population

changes over space and time, and the method proved its simplicity to deploy on the Alaskan

fisheries data. The spatial models show that both sablefish and Pacific cod are caught more

easily in the Gulf of Alaska region (Figure 3.1 and 3.2). Static images only partially capture

28



Figure 3.2: Spatial change in CPUE for Pacific cod. Dark green indicates low CPUE; pink
to white indicates high CPUE.

the change in CPUE over space and time. In Figure 3.3, the CPUE of sablefish is shown for

1990 and 2008 where climate events in the northern Pacific Ocean were similar. Time-lapsed

images for all 33 years shows CPUE fluctuating from low to high several times over the years.

Figure 3.4 shows increased CPUE in a larger portion of the Gulf of Alaska in 2008 for the

Pacific cod.

(a) 1990 (b) 2008

Figure 3.3: CPUE for sablefish in 1990 and 2008.
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(a) 1990 (b) 2008

Figure 3.4: CPUE for Pacific cod in 1990 and 2008.

The spatio-temporal model is an as-yet uncommon way of modeling CPUE, by consid-

ering CPUE to change over location and time simultaneously. As an exercise, the model

Yt,(u,v) = β0 + s1(u, v) + g1(t) + εt,(u,v) (3.4)

was fit and compared to the model given in equation (3.2) for sablefish CPUE. Using the

three-dimensional tensor models allowed for plotting CPUE change over time for each lo-

cation point, thereby gaining a better understanding of the “ease of catch” of each species

and whether locations share certain CPUE functional patterns. Each station’s fitted CPUE

values were plotted against time in years, which produced the plots in Figure 3.5. The

first model produces results showing the same pattern of CPUE change over time for all

stations at differing levels. The spatio-temporal model produces different patterns of CPUE

over time for each station, and a grouping of stations with common patterns become appar-

ent. This highlights patterns not visible when CPUE is reduced to two-dimentional space

covariates and lends support for incorporating time to covariates where relevant. This spatio-

temporal modeling approach is not yet common for fisheries data; typical models consider

space separately from time in two-dimentional latitude-longitude pairs or three-dimentional

latitude-longitude-depth triples. This grouping trend is apparent in the six other species of
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(a) Time as additive effect (b) Spatio-temporal formulation

Figure 3.5: Sablefish CPUE modeled using 2D and 3D smoothers.

groundfish surveyed by the MESA project (Figure 3.6), which indicates a station-location

effect that may be of future research interest.

The effect size values given in Tables 3.2 and 3.4 indicate a higher effect size for location

than year. Based on Cohen’s suggested levels at which to describe an effect, these values

would be considered very high. The problem with measuring effect size on these spatio-

temporal GAM models is concerned with the model structure. The full model for our effect

size calculations was given in equation (3.2). Standard considerations for measuring location

effect size dictates the removal of the location variables from the model to produce a reduced

model

Yt = β0 + g1(t) + εt

which considers CPUE as only a function of time with g1 being a one-dimensional smoothing

function. Similarly, measuring year effect size would necessitate a reduced model of the form

given in equation (3.1). These reduced models have changed the type of function being

estimated for the covariate of interest, therefore changing the type of model being compared

to the full model. The other issue is in the full model itself. Assuming the reduced models

given above, another natural full model to calculate effect size could be as given in equation

(3.4). Since this would have R2 values different from the original full model, different Cohen’s

f 2 values would be produced for the same reduced models. This highlights a weakness in
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(a) Pacific cod (b) Giant grenadier

(c) Shortspine thornyhead (d) Pacific halibut

(e) Rougheye rockfish (f) Shortraker rockfish

Figure 3.6: CPUE for each of six groundfish species modeled using the spatio-temporal
formulation.
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Cohen’s f 2 that a best-fit model should be properly defined when discussing effect size and

also shows an inherent issue with using Cohen’s f 2 as a measure of effect size for GAMs

and rank GAMs since the smoothed functions can change dimentions from full to reduced

models.

Bathythermographic and hydrochemical data are available from buoys within the MESA

survey area that capture temperature variations with depth and chemical analysis of the

surrounding waters. Further work can focus on interpolating buoy data for the fish catch

locations using SST from the satellite data to match SST from the buoys for interpolation,

since the buoy SST and satellite SST have been found to be highly linearly correlated. This

will provide further predictors of climate to include in the models and better determine what

kind of effect climate may have on groundfish species. Only two species were modeled in

this analysis, however the modeling of the four other species would be approached similarly

and could be easily extended in future work.
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Chapter 4

Discussion on Rank GAMs and Future Work

This dissertation focused on improvement of GAM estimation by using rank estimators

to increase robustness and efficiency, particularly for non-Gaussian data common in ecology

and climatology. The rank GAM estimation method was shown to be a reformulation of

GAM likelihood estimation using iterative reweighting, which allows for the use of well-

defined GAM theory to assert the asymptotic properties and consistency of rank GAM

estimation under certain conditions. In the presence of heavy-tailed error distributions or

spatial clustering, rank GAM estimation lost little efficiency and produced better fit in cases

of heavy-tailed errors. Rank GAM estimation outperforms GAM estimation in efficiency

and fit for errors with contamination ranging from five to fifteen percent, illustrating the

advantage of rank GAM estimation for responses with outliers. Since rank GAM estimation

was expected to perform better for non-Gaussian data, several models were fit and compared

using GAM and rank GAM estimation for a fisheries dataset. Improved fit and reduced cross-

validation prediction errors were consistently found for the rank estimation of GAMs fit for

the data. Inclusion of time as a dimension by using tensor functions highlighted response

patterns more representative of the spatial variation expected in the data.

One issue with GAMs being used for environmental data is that the models can become

overly complex for data with a large number of covariates. Future plans of adding buoy data

to the fisheries dataset will complicate the fitting of GAMs for this data and necessitate a

different approach to avoid the ‘curse of dimensionality’. Additive index models, in which

the response is related to a vector of predictors

Y = h1(α
′
1x) + h2(α

′
2x) + . . .+ hp(α

′
px)
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with projection indices α1, α2, . . . , αp and nonparametric ridge functions h1, h2, . . . , hp would

allow for this type of flexibility. Rank estimation of the single index regression model, a

variety of the additive index model, is currently being established. Application of rank single-

index models to the new data would be of interest for furthering modeling and prediction of

fisheries data with complex oceanographic covariates.
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