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Abstract

Linear eigenmode stability properties of three-dimensional instabilities in a Harris cur-

rent sheet with a finite guide magnetic field are systematically studied employing the gyroki-

netic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) particle simulation model

with a realistic ion-to-electron mass ratio mi/me, where mi and me are the ion and electron

masses, respectively. In contrast to the fully kinetic PIC simulation scheme, the fast electron

cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and

hence one can employ the realistic mass ratio mi/me.

In order to valid the GeFi code for the small guide field limit, the GeFi simulations are

benchmarked against both the fully kinetic PIC simulation and the analytical eigenmode

theory, and an excellent agreement is obtained. In order to thoroughly understand the

properties of both electrostatic (ES) and electromagnetic (EM) instabilities in the Harris

sheet, the GeFi simulation is carried out both using a simplified code in the ES limit and

using the fully EM code. Lower-hybrid drift instability (LHDI), drift-kink instability (DKI),

drift-sausage instability (DSI), and Buneman instability (BI) are found to be present in the

current sheet, among which the LHDI is predominantly an ES instability.

Under a small guide field BG, the LHDI is found to be excited, with k
√
ρiρe ∼ 1, where

k is the wave vector perpendicular to the nonuniformity direction. For small wave numbers

ky along the current direction, the most unstable eigenmodes of LHDI are peaked at the

location where k ·B = 0, consistent with previous analytical and simulation studies. Here,

B is the equilibrium magnetic field. As ky increases, however, the most unstable eigenmodes

of LHDI are found to be peaked at k ·B 6= 0. In addition, the simulation results indicate that

varying mi/me, the current sheet width, and the guide magnetic field can affect the stability
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of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and

wave number scalings.

Under a moderate BG, the DKI and DSI are excited, in the long wavelength regime

(kρi ∼ 1). The magnetic fluctuations of DKI are localized at the edge of current sheet,

whereas the DSI has compressional perturbations localized around the center. In the kx-ky

space, the DKI and DSI occupy the smaller and larger k regime, respectively. The most

unstable DKI are away from k ·B = 0, while the DSI is peaked at k ·B = 0.

At a larger guide field BG ∼ Bx0, an electromagnetic instability with a compressional

magnetic perturbation is found to be present exactly at the center of current sheet. The

growth rate of this mode is found to peak at k × B = 0. The growth rate of this mode is

consistent with that of the Buneman instability. Since the magnetic perturbations in this

unstable mode are at the current sheet center and dominated by a compressional fluctuation

δBy in the direction of the electron drift velocity, the mode may contribute directly to the

electron anomalous resistivity in magnetic reconnection.

iii



Acknowledgments

I am most obliged to my advisor Dr. Yu Lin. She led me into the field of plasma

simulation. Over the past six years, she taught me much knowledge of plasma physics. She

also put a lot of efforts on training my oral and writing communication skills. Without her

guidance and encouragement, my thesis research can never be finished.

I would like to thank Dr. Liu Chen for sharing his physics insights and encouraging me

to carry out this study. I am indebted to Dr. Xueyi Wang for teaching me a lot in numerical

algorithms. Also I appreciate the collaboration from Dr. Kurt Tummel. I would like to

thank Dr. Kaijun Liu for his helpful suggestions in the past year. I appreciate Dr. Joseph

Perez, Dr. Guofu Niu, and Dr. David Maurer for reviewing my thesis. In my graduate

studies, I received supports and encouragements from faculty, staff and my classmates of the

Physics Department at Auburn University. I want to give them my thanks.

Finally, I want to thank my parents for their endless loves and supports.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Resistive MHD Reconnection Model . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Sweet-Parker Reconnection Model . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Petschek Reconnection Model . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Collisionless Reconnection Models . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Hall MHD Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Multiple Island Collisionless Reconnection . . . . . . . . . . . . . . . 8

1.3 Current Sheet Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Tearing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Lower Hybrid Drift Instability . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Drift Kink Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Our Particle Simulation Approach for Current Sheet . . . . . . . . . . . . . 15

1.6 Summary and Outline: Central Task of the Thesis . . . . . . . . . . . . . . . 18

2 Simulation Model and Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 GeFi Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Equations of Particle Motion . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.3 Linearized GeFi δf Scheme . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.4 Harris Equilibrium in the Gyrokinetic Coordinate . . . . . . . . . . . 27

v



2.2 GeFi Simulation Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Four-point Numerical Approach for Gyrokinetic . . . . . . . . . . . . 29

2.2.2 Boundary Conditions and Field Equations Solving . . . . . . . . . . . 31

2.3 Explicit Fully Kinetic Simulation Algebra . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Fully Kinetic δf Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Field Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4 Correction for Charge Conservation . . . . . . . . . . . . . . . . . . . 38

2.3.5 Boris Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Electrostatic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 GeFi Linearized δf Scheme . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Initial and Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Parameters and Normalization . . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Fully Kinetic δf Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Results of Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Results with kx = 0 and ky 6= 0: 2-D cases . . . . . . . . . . . . . . . 48

3.3.2 Results with Finite kx and ky: Instabilities in 3-D . . . . . . . . . . . 53

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Electromagnetic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Lower-Hybrid Drift Instability under Small Guide Field . . . . . . . . . . . . 64

4.2.1 3-D Properties of Stability . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Drift Kink and Sausage Instability under Moderate Guide Field . . . . . . . 73

4.4 Instability under Large Guide Field . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vi



5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



List of Figures

1.1 Sweet-Parker reconnection model (PPPL) . . . . . . . . . . . . . . . . . . . . . 3

1.2 Petschek reconnection model (Fitzpatrick) . . . . . . . . . . . . . . . . . . . . . 5

1.3 The structure of electron diffusion region in collisionless reconnection[15] . . . . 7

1.4 Reconnection rate versus time in different simulation models[2]. . . . . . . . . . 7

1.5 The magnetic field By perpendicular to the reconnection plane on the Bx-Vx coor-

dinates, where Bx and Vx are the magnetic field and the flow velocity respectively

in the direction of the anti-parallel magnetic field[34]. . . . . . . . . . . . . . . 8

1.6 The results of MRX: (a) the profile of out-flow velocity of electrons and ions in

the radial direction, (b) the contours of the magnetic field perpendicular to the

reconnection plane and the vectors of velocity of electron flow, (c) the out-flow

velocities of electrons and ions in the horizontal direction[35]. . . . . . . . . . . 9

1.7 The evolution in the electron diffusion region of the simulation with open bound-

aries. White lines are the streamlines of ions, Black lines show magnetic field

lines and the color contours show the electron velocity perpendicular to the re-

connection plane.[41] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Four point averaging on the grids . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Temporal layout of fields and quantities used in the leap-frog scheme. E,x,ρ are

advanced at step n, B,v,J are advanced at step n− 1
2
.[91] . . . . . . . . . . . . 35

viii



2.3 Spatial Layout on the grids of 2-D fields (Ex, Ey, Ez) and the the source terms

(ρ,Jx, Jy, δφ) during the integration of the difference field equations [91]. Here

’∆x’ is corrected to be ’∆y’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Trajectory of a charge particle in an uniform field, the red dashed lines are ob-

tained from numerical calculation, blue solid line show the orbits from the analytic

calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 FK and GeFi simulation results for case 1, with L/ρi0 = 0.25, Te/Ti = 0.1,

βe0 = 0.016, nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0 and kyρi0 = 35.23. (a)

Contours of the perturbed electrostatic potential δφ from the GeFi (left) and

FK (right) models. The dashed lines mark z = ±L, ±2L, and ±3L. (b) The

solid line presents the absolute value of the eigenfunction obtained from the GeFi

(left) and FK (right) simulations. The dashed lines mark z = ±L, ±2L, an ±3L.

(c) The growth of the eigenmode obtained from the GeFi (left) and FK (right)

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 LHDIs with even (left column) and odd (right column) initial perturbations. The

parameters are the same as those in Fig. 1. (a) Contours of δφ. The dashed

lines mark z = ±L, ±2L, and ±3L. (b) The real (solid lines) and imaginary

(dashed lines) part of eigenfunction. The thin vertical dashed line marks z = ±L,

±2L,±3L. (c) The growth rate of eigenmode. . . . . . . . . . . . . . . . . . . . 51

3.3 Comparison of the frequency (top plot) and growth rate (bottom plot) between

the GeFi simulation (triangles) and the GeFi eigenmode theory (dashed lines)

for L = 0.23ρi0, βe0 = 0.0033, BG/Bx0 = 0.1, ωpe/Ωce = 10, and nb = 0.5. . . . 52

3.4 Comparison of the frequency and growth rate between the GeFi (circle-dashed

line) and FK (open triangle) simulations for parameters similar to case 1. The

top and bottom plots show the real frequency and the growth rate, respectively. 53

ix



3.5 Frequency and growth rate vs. BG/Bx0, for L = 0.25ρi0, βe0 = 0.016, ωpe/Ωce =

1.0, kyρi0 = 35.23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 δφ contours in the x-z and y-z cross-sections in the 3-D simulation of case 2. . . 55

3.7 Eigenmode structure of the 3-D LHDI: the red and blue lines show eigenfunctions

for (kxρi0 = −2.9, kyρi0 = 29.02) and (kxρi0 = 2.9, kyρi0 = 29.02), respectively. . 55

3.8 Contours of growth rate γ in the kx-ky space for L/ρi0 = 0.25, Te/Ti = 0.1,

BG/Bx0 = 0.1, nb0 = 0.0, mi/me = 1836, and ωpe/Ωce = 1.0. The dark dashed

line marks k ·B = 0. Colorbar shows growth rates. . . . . . . . . . . . . . . . . 57

3.9 Contour plots of growth rate γ in the kx-ky space with (a) realistic mass ratio

mi/me = 1836 and L = 0.25ρi0 = 33.75ρe0, (b) mi/me = 1836/4 = 459 and L =

0.25ρi0 = 16.88ρe0, and (c) mi/me = 1836/4 = 459 and L = 0.5ρi0 = 33.75ρe0.

Top row shows the results with the wave number scaled to ρ−1
i0 and growth rate

scaled to Ωi0, and the bottom row shows the results scaled to 1/
√
ρi0ρe0 and ωLH .

The black dashed line marks k ·B = 0. . . . . . . . . . . . . . . . . . . . . . . . 59

3.10 Contours of growth rate in the kx-ky space with guide field BG/Bx0 = 0.3, for

mi/me = 1836, L/ρi0 = 0.25, Te/Ti = 0.1, nb0 = 0 and ωpe/Ωce=1.0. . . . . . . . 61

4.1 FK and GeFi simulation results for case 1, with L/ρi0 = 0.25, Te/Ti = 0.1,

βe0 = 0.016, nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0 and kyρi0 = 26.1. (a)

Contours of δBz from the GeFi (top) and FK (bottom) models. (b) Contours of

δBx from the GeFi (top) and FK (bottom) models. (c) Contours of δBy from the

GeFi (top) and FK (bottom) models. The dashed lines mark z = ±L, ±2L, and

±3L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

x



4.2 Eigenmodes of the FK and GeFi simulations for case 1, with L/ρi0 = 0.25,

Te/Ti = 0.1, βe0 = 0.016, nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0 and kyρi0 =

26.1. In (a),(b),and (c), the solid lines present the absolute value of eigenfunctions

obtained from the GeFi (top) and FK (bottom) simulations. The dashed lines

mark z = ±L, ±2L, and ±3L. (d) The growth rates of eigenmodes obtained

from the GeFi (left) and FK (right) simulations. . . . . . . . . . . . . . . . . . . 66

4.3 A-φ eigenmodes for case 1. The dashed lines mark z = ±L, ±2L, an ±3L. . . . 67

4.4 ∇ · E and ∇× E. The dashed lines mark z = ±L, ±2L, an ±3L. . . . . . . . . 68

4.5 Comparison of the frequency (top plot) and growth rate (bottom plot) between

the GeFi simulation (triangles) and the GeFi theory (dashed lines) for L =

0.23ρi0, βe0 = 0.0033, BG/Bx0 = 0.1, ωpe/Ωce = 10, and nb = 0.5. . . . . . . . . . 69

4.6 δBz contours in the 3-D simulation of case 2 for planes y = 0.137ρi0 in the y-z

cross-sections, and x = −2ρi0 , x = 2ρi0, and 6ρi0. Colorbar shows magnitudes

of fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 δBx contours in the 3-D simulation of case 2 for planes y = 0.137ρi0 in the y-z

cross-sections, and x = −2ρi0 , x = 2ρi0, and 6ρi0. . . . . . . . . . . . . . . . . . 71

4.8 δBy contours in the 3-D simulation of case 2 for planes y = 0.137ρi0 in the y-z

cross-sections, and x = −2ρi0 , x = 2ρi0, and 6ρi0. . . . . . . . . . . . . . . . . . 71

4.9 Eigenfunctions of case 2, with L/ρi0 = 0.25, Te/Ti = 0.1, βe0 = 0.016, nb0 = 0.0,

BG/Bx0 = 0.1, ωpe/Ωce = 1.0, kxρi0 = 1.2 and kyρi0 = 20.7. The black solid

and the red pointed lines are the real and imaginary parts of the eigenfunctions

respectively. The dashed black lines mark the position z = ±L, ±2L, and ±3L. 72

xi



4.10 Contours of growth rate γ of LHDI in the kx-ky space for L/ρi0 = 0.25, Te/Ti =

0.1, BG/Bx0 = 0.1, nb0 = 0.0, mi/me = 1836, and ωpe/Ωce = 1.0. The dark

dashed line marks k ·B = 0. Colorbar shows growth rates. . . . . . . . . . . . . 74

4.11 δφ and δA on the y-z plane of case 3 at z = 0, with L/ρi0 = 0.25, Te/Ti = 0.1,

βe0 = 0.016, nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0, kxρi0 = 0.2 and kyρi0 = 1.2.

The dashed black lines mark the position z = ±L, ±2L, and ±3L. Colorbar

shows magnitudes of fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.12 δB on the y-z plane of case 3 at z = 0. The dashed black lines mark the position

z = ±L, ±2L, and ±3L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.13 δBy contours in the 3-D simulation of case 3 for planes y = 4.7ρi0 in the y-z cross-

sections, and x = 19.8ρi0 , x = 44ρi0, and 68ρi0. Colorbar shows magnitudes of

fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.14 Eigenfunctions of δφ and δA of case 3, with L/ρi0 = 0.25, Te/Ti = 0.1, βe0 =

0.016, nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0, kxρi0 = 0.2 and kyρi0 = 1.2.

The black solid and the red pointed lines are the real and imaginary parts of the

eigenfunctions respectively. The dashed black lines mark the position z = ±L,

±2L, and ±3L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.15 Eigenfunctions of δB of case 3, The black solid and the red pointed lines are the

real and imaginary parts of the eigenfunctions respectively. The dashed black

lines mark the position z = ±L, ±2L, and ±3L. . . . . . . . . . . . . . . . . . . 78

4.16 δB on the y-z plane of case 4 at z = 0, with L/ρi0 = 0.25, Te/Ti = 0.1, βe0 =

0.016, nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0, kxρi0 = 0.6 and kyρi0 = 4.0. The

dashed black lines mark the position z = ±L, ±2L, and ±3L, colorbar shows

magnitudes of fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xii



4.17 δBy contours in the 3-D simulation of case 4 for planes y = 4.7ρi0 in the y-z cross-

sections, and x = 19.8ρi0 , x = 44ρi0, and 68ρi0. Colorbar shows magnitudes of

fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.18 Eigenfunctions of δB of case 4, The black solid and the red pointed lines are the

real and imaginary parts of the eigenfunctions respectively. The dashed black

lines mark the position z = ±L, ±2L, and ±3L. . . . . . . . . . . . . . . . . . . 81

4.19 Contours of growth rate γ of DKI and DSI in the kx-ky space for L/ρi0 = 0.25,

Te/Ti = 0.1, BG/Bx0 = 0.2, nb0 = 0.0, mi/me = 1836, and ωpe/Ωce = 1.0. The

dark dashed line marks k ·B = 0. Colorbar shows the growth rates of DKI and

DSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.20 Mode structures of δB for case 4, with L/ρi0 = 0.25, Te/Ti = 0.1, βe0 = 0.016,

nb0 = 0.0, BG/Bx0 = 0.6, ωpe/Ωce = 1.0, kxρi0 = 0.6 and kyρi0 = 14.5. The

dashed lines mark z = ±L, ±2L, and ±3L. Colorbar shows magnitudes of fields 83

4.21 Mode structures of δA and δφ for case 4, with L/ρi0 = 0.25, Te/Ti = 0.1, βe0 =

0.016, nb0 = 0.0, BG/Bx0 = 0.6, ωpe/Ωce = 1.0, kxρi0 = 0.6 and kyρi0 = 14.5.

The dashed lines mark z = ±L, ±2L, and ±3L. . . . . . . . . . . . . . . . . . . 84

4.22 Eigenfunctions of δB case 4, with L/ρi0 = 0.25, Te/Ti = 0.1, βe0 = 0.016,

nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0, kxρi0 = 0.6 and kyρi0 = 14.5. The

black solid and the red pointed lines are the real and imaginary parts of the

eigenfunctions respectively. The dashed black lines mark the position z = ±L,

±2L, and ±3L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.23 δBz contours in the planes y = 0, and x = 2.25ρi0, x = 10.5ρi0, and 18.8ρi0 of

case 5. Colorbar shows magnitudes of fields . . . . . . . . . . . . . . . . . . . . 86

xiii



4.24 Contours of growth rate γ in the kx-ky space for L/ρi0 = 0.25, Te/Ti = 0.1,

BG/Bx0 = 0.1, nb0 = 0.0, mi/me = 1836, and ωpe/Ωce = 1.0. The dark dashed
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Chapter 1

Introduction

Magnetic reconnection[1] is a fundamental and important phenomenon in both natural

and laboratory plasmas[2, 3]. The reconnection process, which involves the breaking and

reconnecting of different magnetic field lines. In the reconnection process, magnetic energy

stored in the current sheet is rapidly released and transferred into kinetic energy of plasmas.

The reconnection process can occur in the solar atmosphere, and has been observed in solar

flares[4, 5] and/or coronal mass ejections[6, 7]. It has also been frequently observed in the

Earths magnetosphere, such as the flux transfer events[8, 9, 10] in the magnetopause and in

the magnetospheric substorm[11, 12], in which magnetic energy is released and transferred

rapidly. Magnetic reconnection has also been observed in laboratory experiment, for example,

the magnetic reconnection experiment (MRX) [13, 14].

Analytical and numerical studies have been performed for decades to understand the

physics of magnetic reconnection in a current sheet[3]. A current sheet contains inhomoge-

neous plasmas with antiparallel magnetic field components and a cross-field drift current. In

general, also contains a guide magnetic field component along the direction of the cross-field

current. It is believed that the reconnection process can occur when the ’frozen-in’ field

condition is broken due to finite resistivity in plasmas. In collisional plasmas, the resistivity

is originated from the particle-particle collision on the micro-scales. The resistive magneto-

hydro dynamic (MHD) theory has successfully explained the excitation of reconnection in

collisional plasmas[3].

In collisionless plasmas, the observed reconnection rate is usually fast. The mechanisms

of the onset of collisonless reconnection, however, are still a mystery. There has been no

consistent explanation for the fast rate of collisionless reconnection. It is believed that
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certain physical mechanisms of interaction between plasma waves and particles can exist to

slow down electrons and thus play the role of the ’resistivity’ to trigger magnetic reconnection.

This ’resistivity’, usually called the ’anomalous resistivity’, can also provide a mechanism for

fast collisionless reconnection [16, 17, 18, 19, 20, 21, 22, 23]. However, until now, the source of

anomalous resistivity is still poorly understood. It is believed that the electric and magnetic

fluctuations of instabilities of current sheet can slow down the speed of the electrons and/or

ions in the cross-field current direction. The decelerating effect causes anomalous resistivity

in the current sheet[24, 25]. Therefore, it is important to study the instabilities existing in

a current sheet.

In this chapter, the resistive MHD reconnection models are introduced first. The colli-

sionless reconnection models are discussed next. Previous studies of current sheet instabilities

are also reviewed.

1.1 Resistive MHD Reconnection Model

Early reconnection models were developed on the base of magnetohydrodynamic (MHD)

framework. The first analytic model of reconnection was given by Sweet[26] and Parker[27].

In the Sweet-Parker model, reconnection was approximated with a two dimensional (2-D)

incompressible problem of boundary layer. The rate of reconnection was derived. However,

the reconnection rate given by this model was several orders of magnitude smaller than the

observation results. Petschek[28] modified this model by including a larger outflow region

outside the small diffusion layer. The Petschek model led to an enhanced rate of reconnection.

In this section, the above two reconnection models are introduced briefly.

1.1.1 Sweet-Parker Reconnection Model

Fig 1.1 shows the Sweet-Parker model[26, 27], which is a 2-D steady-state incompressible

MHD model. The blue curves with arrows are magnetic field lines. The red dashed lines

mark the diffusion layer, whose width and length are δ and ∆, respectively. The magnetic
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Figure 1.1: Sweet-Parker reconnection model (PPPL)

field lines are frozen together with the plasma flow toward the diffusion layer from top and

bottom. In the layer, the energy of magnetic field is transferred to the kinetic and thermal

energy of plasmas by the Joule dissipation. Meanwhile, plasmas flow out along the horizontal

direction. Based on the Bernoulli equation, the outflow speed of plasma is approximately

equal to the Alfven speed vA. Because of the mass continuity, the inflow mass vR∆ should

be equal to the outflow mass vAδ, where vR is the inflow speed of plasma. The inflow speed

can thus be written as

vR = (δ/∆)vA. (1.1)

According to Ohm’s law,

ER = ηJ, (1.2)

where ER is the inductive electric field of reconnection diffusion layer, η is the resistivity of

the diffusion layer, and J is the current density in the diffusion layer. The current J can be

calculated from Ampere’s law as,

J = B/µ0δ. (1.3)

Based on eqs. (1), (2), and (3), the outflow speed can be given as

vR = vA/
√
S, (1.4)
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where S = µ0vA∆/η is the dimensionless Lundquist number. The time scale of reconnection

is tR = L/vR =
√
S(∆/vA). The Lundquist number is usually sufficiently large for colli-

sionless space plasmas. For example, the Lundquist number is larger than 1012 in the solar

corona, and the diffusion time scale ∆/vA ≈ 10s in the solar flare. The Sweet-Parker model

predicted that the period of the flare is around 0.1 year. However, the observations showed

that the time scale of flares is around several tens of minutes. Therefore, the reconnection

rate given by the Sweet-Parker model is way too small to explain the observations. Overall,

it cannot explain the fast energy transfer in solar flare and pulsations in space plasmas.

1.1.2 Petschek Reconnection Model

In order to explain the fast reconnection rate, Petschek[28] modified the theoretical

reconnection model by introducing the effects of slow shock waves in the outflow region. In

this model, due to the existence of slow shocks, the diffusion layer occupies only a very small

region of reconnection. The reconnection rate given by the Petschek model was significantly

enhanced. The slow shock introduces plasma flows into the small diffusion layer. Thus, the

majority of magnetic energy is dissipated by the slow shock, unlike theSweet-Parker model,

in which the Joule dissipation is dominant. A sketch of the Petschek model is shown in Fig.

1.2. In the figure, the slow shocks exist in the region enveloped by the dashed lines, and the

diffusion layer with effective length L∗ is marked by the rectangular solid lines. The effective

length of the diffusion layer L∗ is much shorter than the length in the Sweet-Parker model.

Therefore, the reconnection rate given by the Petschek model is much larger than that of

the Sweet-Parker model. The reconnection rate of the Petschek model is given by[29]

vR/vA = π/8lnS. (1.5)

In the near-Earth space, the value of lnS is usually around 10 20. A reconnection rate consis-

tent with the observation can thus be obtained by the Petschek model. However, numerical
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Figure 1.2: Petschek reconnection model (Fitzpatrick)

simulations show that the slow shocks can only be excited if L∗ and L are comparable[30, 31].

The two basic assumptions of the Petschek model, the short diffusion layer and the slow shock

cannot coexist.

1.2 Collisionless Reconnection Models

In collisionless plasmas, there exist little classical resistivity. To understand the fast

reconnection in space plasmas, collisionless reconnection models are developed in the recent

decades. In this section, two collisionless models, the Hall MHD model and the multiple

island collisionless reconnection model, are discussed.

1.2.1 Hall MHD Model

In the two-fluid treatment, the collisional MHD reconnection model obeys the classical

Ohm’s law,

E + V ×B = ηJ (1.6)

Since, the classical resistivity does not exist in collisionless plasmas, the generalized Ohm’s

law was introduced to treat the collisionless reconnection. From the two-fluid theory, the

generalized Ohm’s law can be written as

E + V ×B =
1

en
J×B− 1

en
∇ ·Pe −

me

e

dVe

dt
. (1.7)
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Here, the classical resistivity term is removed, and the first, second and third terms on the

righthand side describe the Hall effect, the gradient of electron pressure, and the electron

inertia, respectively. The Hall electric field is due to the electron and ion charge separation

associated with the particle inertias. In this collisionless reconnection model, the Hall effect

plays a key role. Due to the mass separation between electrons and ions, the diffusion layer

in the collisionless plasma has dual structures. One is the electron diffusion region, and the

other is the ion diffusion region. The grey area in Fig. 1.3 shows the ion diffusion region,

in which the ions are decoupled with the magnetic field, while the electrons are still frozen

in the field lines. The separation of the ion and electron motions also produces the Hall

current, which corresponds to a quadrupolar magnetic field component perpendicular to the

reconnection plane. The spatial scale of the ion diffusion region is comparable to the ion

inertial length di = c/ωpi. In the center of the ion diffusion region (white area), the strength

of magnetic field is weak in the cases with a zero guide field, and the electrons are also

unmagnetized. The region is the so-called electron diffusion region with a typical spatial

scale length of de = c/ωpe, and the electron pressure gradient term is dominant in the region.

It is believed that the whistler physics associated with the Hall effect leads to a fast

reconnection rate in the collisionless plasma[100]. The simulation results from resistive MHD,

Hall MHD, Hybrid and fully kinetic particle simulations showed that the fast reconnection

is observed when the Hall effect is included in the simulation model[2].

The Hall effect was observed by satellite observations and laboratory experiments. For

example, Polar satellites found the existence of the Hall quadrupole field in the magnetopause[32].

The Geotail satellite found the Hall currents around the X-line of reconnection in the

magnetotail[33]. The Cluster satellites further confirmed the existence of Hall quadrupole

field in the reconnection diffusion region[34]. In Fig. 1.5, the By component is perpendicular

to the reconnection plane. The red circles indicate By > 0, and the black circles indicate

By < 0, where the size of circles correspond to the strength of the field. The figure shows a
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Figure 1.3: The structure of electron diffusion region in collisionless reconnection[15]

Figure 1.4: Reconnection rate versus time in different simulation models[2].
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Figure 1.5: The magnetic field By perpendicular to the reconnection plane on the Bx-Vx
coordinates, where Bx and Vx are the magnetic field and the flow velocity respectively in the
direction of the anti-parallel magnetic field[34].

typical quadrupolar By structure as a function of the anti-parallel magnetic field and recon-

nection flow. The MRX experiment also observed the Hall effect in reconnection[35, 36]. As

Fig. 1.6 showing, the experiment found the decoupling of electrons and ions and the exis-

tence of the Hall quadrupole field. It also showed that the drift speed of ions is much smaller

than that of electrons, and thus the major carrier of the Hall currents are the electrons.

1.2.2 Multiple Island Collisionless Reconnection

In recent decades, fully kinetic particle-in-cell (PIC) simulation method was utilized

to study collisionless reconnection, and numerous new results were obtained. Simulations

based on periodical boundary conditions under a zero guide field showed that the scale of the

electron diffusion layer is comparable to the electron inertial scale[37, 38, 39, 40]. However,

periodic boundary conditions are invalid to plasmas in reality. Open boundaries were then

used in the particle simulation of reconnection[41]. The simulation results showed that in

early stage the reconnection with the open boundaries are nearly consistent with that of

periodic boundaries. However, in later stage, the electron diffusion region was elongated

(Fig. 1.6), and thus the reconnection rate was reduced. The elongated current sheet then
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Figure 1.6: The results of MRX: (a) the profile of out-flow velocity of electrons and ions in
the radial direction, (b) the contours of the magnetic field perpendicular to the reconnection
plane and the vectors of velocity of electron flow, (c) the out-flow velocities of electrons and
ions in the horizontal direction[35].
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broke up due to the instabilities that produce secondary islands. The reconnection rate

was enhanced by the split and shorter current sheets. The secondary islands continuously

expanded and emerged with the primary island[41]. The secondary islands were also found

by Cluster spacecraft in the reconnection diffusion region[42, 43, 44].

1.3 Current Sheet Instabilities

The Hall physics, however, does not provide dissipation in the electron diffusion region

because EHall · J=0, where EHall = J × B is the Hall electric field. On the other hand,

various instabilities can be excited in current sheet by inhomogeneous density and magnetic

field and/or the drift current. Since wave-particle interaction in the current sheet may

provide anomalous resistivity and trigger collisionless reconnection[24, 25], it is important to

study the instabilities in a current sheet. Analytical theory and numerical simulations were

used for decades to study the current sheet instabilities. Particle simulations found that

the electrons are slowed down in the diffusion region at the onset stage of reconnection[25],

suggesting some mechanism may play the role of resistivity in the collisionless plasma. One

possible mechanism is that the instabilities of the current sheet scatter the electrons by the

wave-particle resonance. Anomalous resistivity in current sheet was also suggested to be a

candidate to achieve fast reconnection on a rapid time scale. In the following, we review

investigations of the current sheet instabilities.

1.3.1 Tearing Mode

In early years, collisionless tearing mode instability was studied as the onset mechanism

of reconnection[48, 49, 50, 51]. The growth rate of the instability was compared to the time

scale of the magnetosheath flow from the nose of the magnetopause to the polar cusp [52]. It

was shown that only very thin current sheet can satisfy the requirement that the growth time

of tearing mode should be much less than the critical flow time at the magnetopause. In a thin

current sheet, the kinetic effects are important because the wavelength of the tearing mode
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Figure 1.7: The evolution in the electron diffusion region of the simulation with open bound-
aries. White lines are the streamlines of ions, Black lines show magnetic field lines and the
color contours show the electron velocity perpendicular to the reconnection plane.[41]
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are comparable to the ion gyroradii. Fully kinetic and gyrokinetic analytical theories were

developed, and it was found that the real frequency of the tearing mode is nearly zero [53, 54],

indicating that the instability is standing at the resonance point and does not interact with

the electrons. Thus the tearing mode in the 2-D reconnection plane cannot directly resonate

with electrons to provide the anomalous resistivity. In the gyrokinetic studies, the guide field

was found to stabilize the 2-D tearing mode. Fully kinetic particle simulations also confirmed

the results. The 3-D numerical solution of the linear Vlasov theory[55] was used to examine

the collisionless tearing mode as a function of the guide field. In the weak and strong guide

field regimes, the most unstable tearing mode was found to have a zero frequency and be

perpendicular to the cross-field current. Similar to the 2-D situation, the 3-D tearing mode

with a strong or weak guide field is not likely to be a source of the anomalous resistivity.

In the intermediate guide field regime, the results showed that the tearing mode in the 3-D

space has a finite real frequency in the drift frequency range and can obliquely propagate

with respect to the anti-parallel field. Although the propagation is not completely in the

reconnection plane, the tearing mode is still nearly perpendicular to the cross-field current.

The 3-D tearing modes still cannot directly resonate with the electrons. Besides, theories

and simulations showed that the growth rate of the tearing mode is less than Ωi, which is

the ion gyrofrequecy, too small to provide the enough resistivity for magnetic reconnection.

1.3.2 Lower Hybrid Drift Instability

Several instabilities can be excited in the plane which contains the current sheet normal

and the cross-field current, in the so-called ’out-of-plane’ direction. Although these instabil-

ities cannot directly break and reconnect the field lines of the anti-parallel field, the insta-

bilities in the out-of-plane direction usually propagate along the direction of the current and

thus may resonate with the drifting electrons. Among these instabilities, the lower-hybrid

drift instability (LHDI) has attracted long time attention as a possible source of anomalous
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resistivity. The lower-hybrid drift instability is a short wavelength quasi-electrostatic mode

driven by the finite β and ∇B.

An electromagnetic local linear theory [56, 57] found that the higher beta will stabilize

the LHDI. Nonlocal electrostatic theory was developed and applied to study the drift wave

instabilities in a density gradient plasma[58] and/or sheared magnetic field[59]. The nonlocal

kinetic theory for a Harris current sheet without guide field found that the LHDI is well

localized at the edge of the current sheet[60]. A guide field will significantly influence the

instabilities in a current sheet. Yoon [61] derived a local kinetic theory that can treat an

arbitrary diamagnetic drift speed and guide field. It is found that the most unstable LHDI

is a oblique mode when guide field exists. A gyrokinetic nonlocal theory was derived[62]

under gyrokinetic electrons and fully kinetic unmagnetized ions assumption. The analytical

calculation showed the 3-D LHDI is not constricted by k ·b = 0 , where k is the wave vector

of the LHDI and b is unit vector of the local magnetic field.

Meanwhile, numerical simulations were carried out to study the LHDI for decades of

years. Daughton[63, 64] used a linear Vlasov simulation to investigate the linear LHDI and

drift kink instability in a Harris current sheet. The simulation predicted the fastest growing

LHDI satisfies k · b = 0 in presence of finite guide field. The subsequent fully kinetic PIC

simulations[65, 66, 67] showed that the LHDI, which is initially excited at the edge of the

current sheet, can penetrate into the central region of the current sheet, then heat electron

anisotropically and produce current bifurcation. Recently, the 3-D PIC simulations of mag-

netic reconnection showed the reconnection onset and rate significantly depends on current

sheet instabilities in the full 3-D space. Yin[68] carried out a PIC simulation for 3-D pair

plasmas and found that the interaction of tearing and kink modes cause reconnection onset

that is patchy and occurs at multiple sites. Daughton[69] found that flux ropes in reconnec-

tion are dramatically different between 2-D and 3-D cases due to tearing-type instabilities

in the full 3-D spectrum. Based on these simulations, the current sheet instabilities in 3-D
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space should be further investigated. Meanwhile, previous particle simulations on reconnec-

tion and/or current sheet instabilities were focus mainly on artificial ion-to-electron mass

ratios. But theoretical studies suggested that the behaviors of the current sheet instabilities

dramatically change as the mass ratio varies[70, 63]. The characteristics of the instabilities

are still not fully understood.

Moreover, previous studies presumed that the most unstable mode satisfies k‖ = 0

where k‖ = k ·B. A PIC simulation was carried out in the rotated 2-D plane that satisfies

k‖ 6= 0, which found that the frequency and growth rate agree well with the theoretical

caculations[64]. However, as mentioned above, a recent gyrokinetic theory[62] found that the

most unstable LHDI can occur at k‖ 6= 0 for certain ks. The unstable modes with k‖ 6= 0 can

be the potential source of the anomalous resistivity because the electrons can resonate with

the modes and be scattered. Therefore, further particle simulations are needed to confirm

whether the k‖ 6= 0 mode exists. A comprehensive 3-D particle simulation is required to

examine the LHDIs in the full 3-D space.

1.4 Drift Kink Instability

A long wavelength (kρi ∼ 1) electromagnetic mode driven by the drift current was

found by simulations and theories[71, 72, 73, 75, 74]. This unstable mode has a wave vector

along the direction of the current, and was called the drift kink instability (DKI)[76]. A

two-fuild theory of the DKI was developed, and the results were compared with the particle

simulations[73]. Based on the two-fluid theory, structures of both even and odd symmetry

were found[77]. However, the wavelength of these unstable modes is comparable to the

current sheet half-width L. The kinetic effects are thus not negligible, and the two-fluid

theory is somehow invalid.

A kinetic theory was also developed and applied to the DKI, and it was found that the

linear growth rate agrees well with that from the particle simulation[74]. However, the linear

theory showed an even mode structure, while an odd mode structure was obtained in the
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simulation. The real frequency and the wavelength of the unstable mode are also signifi-

cantly different from those from the simulation. A numerical calculation of the linear Vlasov

theory[70] was used to examined the DKI, in the smaller ion-to-electron mass ratio mi/me

regime, and the numerical results agreed well with the PIC simulation results. However, at

larger mi/me the linear growth rate obtained from the numerical calculation was an order

of magnitude smaller than that from the particle simulation. Until now, the understanding

of the DKI is still far from sufficient.

Besides the discrepancies between the theories and simulations mentioned above, pre-

vious PIC simulations were based on the nonlinear models, which made it hard to identify

the polarities of the DKI in the linear stage and compare with the linear theories. In addi-

tion, previous analytical and numerical studies were performed with a zero guide field. The

influence of guide field on the mode structure and frequency of the DKI is not understood.

1.5 Our Particle Simulation Approach for Current Sheet

As mentioned above, particle simulations were used to investigate the physics of fast

reconnection. Particle simulation has proven to be a powerful tool in studying the evolution

of various plasma kinetic processes, in which the plasma usually involves nonlinear dynamics

under the realistic conditions.

However, there has always been a dilemma between the available computing resources

and the requirement in the resolution of relevant kinetic processes.

Collisionless reconnection and related current sheet instabilities are a good example.

Reconnection involves a wide range of spatial and temporal scales. Its spatial scales are from

electron Larmor radius to global Alfven scales, and its temporal scales are from the MHD

time-frames to the lower-hybrid frequencies. In the particle simulations of reconnection,

one need to resolve these broad ranges of spatial and temporal scales. It is rather difficult

to include all the disparate temporal and spatial scales of both electrons and ions in the

calculation of a realistic system due to the constraints of available computing power. In the
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following, we take the fully kinetic (FK) particle simulation model as an example to explain

the necessity of developing a new particle simulation model.

Fully kinetic particle simulation has been used to investigate the onset of reconnection

for several decades[80, 81, 78, 79]. In the FK particle codes, both the electrons and the ions

are treated as the FK particles. Due to the disparate temporal and spatial scales between the

electrons and the ions, the most of FK simulations have employed the unrealistically reduced

ion-to-electron mass ratiomi/me to accommodate the limited computing resources. However,

theoretical studies show that the current sheet instabilities are dramatically affected by the

mass ratio[70, 63]. Meanwhile, most of the previous FK simulations were carried out in a

2-D plane due to the available computing power. Nevertheless, recent 3-D PIC simulations

of magnetic reconnection, which still used a reduced mi/me, showed that the reconnection

onset and rate are significantly different from those in a 2-D simulation[68, 69]. Thus in

order to understand magnetic reconnection and the associated current sheet instabilities, 3-

D particle simulations under a realistic mass ratio, in a large system size, are need. However,

the fully kinetic particle models demand a tremendous computing resource for this kind of

simulations.

To enhance the computation effectiveness, reduced kinetic models such as drift kinetic

(DK) and gyrokinetic models were attempted for magnetic reconnection with a finite guide

field[116, 122, 117, 120, 118, 119], in which the high frequency cyclotron motions are averaged

out and the simulation time steps are greatly increased. The computation time could thus

be significantly saved. Gyrokinetic (GK) models[86] are widely used in the tokamak physics

for three decades[124]. In recent years, GK models were also applied to the magnetospheric

research[125, 127, 118]. For the specific problem of magnetic reconnection, the GK approach

is valid for the general cases with a finite guide field, which are important but not adequately

understood so far.

Nevertheless, to properly address wave modes in the lower-hybrid and kinetic Alfvén

regimes when frequencies are higher or comparable to ion cyclotron frequencies, ions must
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be treated as fully kinetic particles. For this purpose, a novel gyro-kinetic electron and

fully kinetic ion (GeFi) particle simulation model was developed in the past decade[83, 82].

In the GeFi model, the electrons obey the governance of the GK equation[86, 87, 88, 89]

in five-dimension phase space and the ions follow the FK equation in six-dimension space.

The rapid electron gyromotion has been averaged out, while finite Larmor radius effect and

off-diagonal components of the electron pressure tensor are retained[86, 90]. Therefore, a

larger time step is allowed in the simulation and thus the GeFi model can effectively handle

the realistic mi/me. In a broader sense, the application of the GeFi model is not limited

to magnetic reconnection. The model is particularly suitable for the problems that satisfy

the gyrokinetic ordering[86]. Different from the conventional GK models[126, 123, 125],

wave modes relevant to magnetic reconnection, such as LHDIs, KAWs, and MHD modes

(with characteristic frequency ω � Ωe, where Ωe is the electron gyrofrequency) are now all

included on an equal footing. In addition to the numerical advantage that realistic mi/me

can be handled with the GeFi scheme, the GeFi simulation can also be used as a reduced

theoretical framework, together with the corresponding analytical theory.

As a unique and novel simulation model, the GeFi model has been benchmarked against

the analytical theory for uniform plasmas[83, 82], and has also been used to study the Landau

damping of lower hybrid waves in the uniform plasma[129]. For inhomogeneous plasmas, the

GeFi model has been used to investigate the 2-D tearing and current-driven instabilities in a

Harris current sheet[130, 84, 54]. Nevertheless, it is also necessary and important to validate

the GeFi results by direct comparison with FK particle simulations, which to date has only

been done for tearing mode under a strong guide field[82, 54], but not yet for the high

frequency LHDI in a current sheet and under a small guide field, BG, that is much smaller

than the anti-parallel component, Bx0. Since the GK approximation assumes a gyro phase

uniformity, benchmarking the GeFi model against the FK simulations for a small BG � Bx0

is particularly necessary.
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In this dissertation work, the GeFi particle code is benchmarked against the FK particle

code and used to investigate the electrostatic and electromagnetic instabilities of the current

sheet in the lower hybrid frequency range.

1.6 Summary and Outline: Central Task of the Thesis

In this chapter, the basic physical picture of the magnetic reconnection is introduced.

The resistive MHD reconnection models on the reconnection are discussed, and the Hall

MHD model for fast collisionless reconnection is presented. Recent development of multiple

X-line model associated with the island interaction is also described. On the other hand,

anomalous resistivity due to wave-particle interaction is also important for triggering the fast

collisionless reconnection. The mechanism of the current sheet instabilities as the potential

source of the anomalous resistivity is discussed. Previous theoretical and simulation studies

of the tearing mode, lower hybrid drift instability, and drift kink instability are reviewed.

A novel gyrokinetic particle simulation model, the GeFi particle model is introduced, which

can be used to simulate a large system under a realistic proton-to-electron mass ratio.

The central task of this thesis is to systematically investigate the 3-D current-driven

instabilities (e.g., LHDI and DKI) in a Harris current sheet, which are fundamentally im-

portant to the anomalous resistivity of magnetic reconnection, using the 3-D GeFi particle

code. The GeFi simulations are benchmarked against the FK particle simulations and the

GK eigenmode theory. Since the LHDI has been found to be dominated by electrostatic

properties, our simulation is conducted by first calculating the current sheet instabilities in

the ES limit. This way, the LHDI is singled out. Then, the simulation is carried out with

the full EM code, which covers the complete ES and EM properties, and the presence of

various EM modes will be discussed as a function of the guide field strength.

The rest of the thesis is organized as follows. The GeFi particle model and its algebra

are described in chapter II. The electrostatic simulation results are shown in chapter III.
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The electromagnetic results are then shown in chapter IV. Finally, chapter V summarizes

the thesis work.
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Chapter 2

Simulation Model and Algebra

In this chapter, the simulation tools used in the thesis is introduced. Firstly, the for-

mulism of the GeFi model are is presented. Then the algebra used in the GeFi code is

introduced. The GK electron distribution function in the Harris equilibrium is also given.

The results from the GeFi code are compared to the results from the explicit FK code. The

explicit FK particle simulation scheme is also given in this chapter.

2.1 GeFi Model

2.1.1 Equations of Particle Motion

In the GeFi model, the ions are treated as FK particles and the elctrons are treated

with the GK approximations. The FK ions are governed by the Vlasov equation in the

six-dimensional phase space (x,v)

∂fi
∂t

+ v · ∂fi
∂x

+
qi
mi

(E +
1

c
v ×B) · ∂fi

∂x
= 0. (2.1)

Here, fi is ion distribution function, mi is the ion mass, qi is the charge of ion, E and B

are electric and magnetic field respectively. The GeFi particle model uses the particle-in-cell

(PIC) scheme[91]. Thus, fi can be evaluated by the statistic of a group of particles in the

discrete space,

fi(x,v, t) =
∑
j

δ(x− xj)δ(v − vj), (2.2)
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where j is the index of the individual particles. The evolution of fi is determined by the ion

equation of motion,

dv

dt
=

qi
mi

(E + v ×B), (2.3)

dx

dt
= v. (2.4)

The number density and current density, ni and Ji, are obtained from the moments of fi,

ni =

∫
fid

3v =
∑
j

δ(x− xj), (2.5)

Ji = qi

∫
vfid

3v = qi
∑
j

vjδ(x− xj) (2.6)

in a discrete space.

For electrons, the difficulty in the conventional fully kinetic particle simulation is that,

physically, the spatial size should be larger than Debye length, and the temporal scale needs

to be small enough to cover electron plasma frequency and/or electron gyrofrequency, nu-

merically, the grid size and time step need to satisfy the Courant condition[91]. However, the

reconnection studies intend to have simulation size much larger than the ion skin depth and

simulation time much longer than Alfvén time. Hence the large ion-to-electron mass ratio

introduces extreme computing power consuming. Since the modes of interest are in lower-

hybrid frequency range, and the finite Lamor radii effects of electrons are not negligible, the

GK electron approach is used in the model. By assuming k⊥ � k‖, which is generally true

for most of processes in the reconnection, the high frequency electron plasma oscillation has

been suppressed. This is valid for Ω2
e ∼ ω2

pe, where ωpe is the electron plasma frequency.

The GK ordering is applied on the electrons,

ω

Ωe

∼ ρe
L
∼ k‖ρe ∼

δB

B
∼ ε, k⊥ρe ∼ 1. (2.7)
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Here, ρe = vte/Ωe is the the electron Larmor radius, vte =
√
Te/me is the electron thermal

speed, L is the macroscopic background plasma scale length, δB is the perturbed magnetic

field on the microscopic wave scale lengths, and ε is a smallness parameter. For electrons, the

coordinate is transformed from particle coordinates (x,v) to gyrocenter coordinates (R, p‖,

µ, ζ), where R = (x−ρ) is the gyrocenter position with ρ = (b×v⊥e)/Ωe being the gyroradii

vector, b = B/B, p‖ = meve‖ + qeA‖/c the parallel canonical momentum of electrons, µ is

the magnetic moment and ζ is the gyrophase angle. The parallel direction is defined along

the background magnetic field B̄. The Vlasov equation in guiding-center coordinates can be

obtained by averaging over ζ,

∂Fe
∂t

+
dR

dt
· ∂Fe

R
+
dp‖
dt

∂Fe
∂p‖

= 0, (2.8)

where the upper-case varibles are gyrocenter variables, and Fe(R,p‖,µ) is the distribution

function of electrons in the five-dimensional gyrocenter phase space. The gyrocenter euations

of motion are[86, 87, 88]

dp‖
dt

= −b∗·[qe < ∇φ∗0 > +µ∇B̄0], (2.9)

dR

dt
= ve‖b

∗ +
c

qeB̄
b̄× [qe < ∇φ∗0 > +µ∇B̄0], (2.10)

where me and ve‖ are the electron mass and electron parallel velocity, respectively, qe is the

electron charge, µ is the magnetic moment, B̄0 is the background magnetic field, b̄ = B̄0/B̄0,

and b∗ = b̄ + (ve‖/Ω̄e)b̄× (b̄ · ∇)b̄. φ∗0 = φ̄0 − v · Ā0/c is the unperturbed scalar potential,

< . . . > represents gyro-averaging, and ⊥ and ‖ denote components perpendicular and

parallel to the background magnetic field, respectively. The electron gyro-averaged guiding

center charge-density and p‖-current are

< Ne >=

∫
Fed

3v, (2.11)
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< Je‖ >=
qe
me

∫
p‖Fed

3v. (2.12)

In GK simulations, the gyro-averaging is carried out numerically in a discrete space, the

technology will be introduced later.

2.1.2 Field Equations

The vector and scalar potentials are calculated by the Maxwell equations, which consists

of the Poisson’s and Ampere’s law, with the Coulomb gauge ∇·A = 0. The scalar potential

are firstly calculated. The Poisson’s equation in the lab frame is

∇2
⊥φ = −4π(qini + qene). (2.13)

Here, assuming |∇2
⊥| � |∇2

‖|, ∇2φ is replaced by ∇2
⊥φ in eq.(13) to suppress the undesirable

high-frequency Langmuir oscillation along B. Following the nonlinear GK formalism[86, 90],

assuming |ρe∇⊥| < 1, the electron density ne can be written as

ne =
qe
me

∫
d3v(

∂fe
∂w

)[φ− < φ > +
1

c
< v⊥ ·A >]+ < Ne >, (2.14)

where < Ne > is the guiding-center density of the electrons. Combining eq. (13) and (14),

the generalized GK Poisson’s equation

∇⊥ · (1 +
ω̄2
pe

Ω̄2
e

) · ∇⊥φ+ 4πn̄eqe
δB‖

B̄
= −4π(qini + qe < Ne >), (2.15)

where n̄e is the equilibrium electron density, δB‖ = b̄ · δB, the second and third terms

on left-hand side (LHS) represents the polarization drift and E × B drift associated with

inductive electric field ∂A/∂t, respectively.
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In the eq. (2.15), there are two unknown variables, since ω � Ωe, the δB‖ is calculated

by using the electron force balance

∇ · (neqeE) = ∇ · [∇ ·Pe −
1

c
Je ×B], (2.16)

where

Pe = (n̄eqeρ
2
e∇2
⊥φ+ 2n̄eTe

δB̄‖

B̄
)(I− 1

2
b̄b̄)+ < Pg >, (2.17)

< Pg >=

∫
mevvFed

3v, (2.18)

the first two terms of Pe are correspond to the electron perpendicular guiding-center drifts.

Noting the electron current Je = (c/4π)∇ × B − Ji with Ji being the ion current density,

|∇⊥| � |∇‖|, the eq. (2.16) can be written as

∇2Ψ = −∇ · (∇ ·Pg +
1

c
Ji ×B), (2.19)

where, noting n̄eqe = −n̄iqi,

Ψ =
(1 + β̄e)B̄δB‖

4π
− n̄iqi(1 + ρ2

e∇2
⊥)φ. (2.20)

Expressing δB‖ in the terms of Ψ, the GK Poisson’s equation, eq. (2.15) can finally be

expressed as

[∇⊥ · (1 + β̄e +
ω̄2
pe

Ω̄2
e

) · ∇⊥ −
ω̄2
pi

V̄ 2
A

]φ = −4π[(1 + β̄e)(qini + qe < Ne >)− 4πn̄iqi
B̄2

Ψ], (2.21)

where ω̄pi and V̄A are the background ion plasma frequency and the Alfvén speed, respec-

tively. Eqs. (19) and (22) completely determine Ψ and φ. Given δB‖, we can now calculate

A. Decompose A into three locally orthogonal components, i.e. A = A⊥+A‖b̄ +∇⊥ξ. A⊥
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is determined by the perpendicular Ampere’s law

∇2A⊥ = −4π

c
J⊥, (2.22)

with J⊥ = (c/4π)∇× δB‖. A‖ can be given by parallel Ampere’s law

(∇2 −
ω2
pe

c2
)A‖ = −4π

c
(Ji‖+ < Je‖ >). (2.23)

∇⊥ξ can be determined by the Coulomb gauge ∇ ·A = 0 or ∇2
⊥ξ = −∇ · (A‖b̄).

2.1.3 Linearized GeFi δf Scheme

Since the thesis focuses on the linear instabilities, we use the linearized GeFi δf scheme

for our simulation study.

For the linearized scheme, the FK ion equations of motion in unperturbed orbits are

dpi
dt

= −qi∇(φ̄0 − vi · Ā0/c),

dxi
dt

= vi, (2.24)

where qi is the ion charge, pi is the ion canonical momentum, xi is the ion position, vi is the

ion velocity, φ0 and A0 are the equilibrium scalar and vector potentials, respectively, and

the ’bar’ indicates the background quantities. The perturbed ion particle weighting function

Wi = δfi/f̄i is governed by the linearized Vlasov equation in the six-dimensional phase space

(x,vi),

dWi

dt
= qi∇δφ ·

∂lnf̄i
∂vi

. (2.25)

Here, f̄i is the equilibrium ion distribution function, and δφ is the perturbed scalar potential.

The gyrocenter equations of motion in unperturbed orbits for the parallel electron canon-

ical momentum, p‖ = meve‖ + qeA‖/c, and for the electron gyrocenter position, R, are given
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by [86, 87, 88, 89]

dp‖
dt

= −b∗·[qe < ∇φ∗0 > +µ∇B̄0],

dR

dt
= ve‖b

∗ +
c

qeB̄
b̄× [qe < ∇φ∗0 > +µ∇B̄0], (2.26)

where me and ve‖ are the electron mass and electron parallel velocity, respectively, qe is the

electron charge, µ is the magnetic moment, B̄0 is the background magnetic field, b̄ = B̄0/B̄0,

and b∗ = b̄ + (ve‖/Ω̄e)b̄× (b̄ · ∇)b̄. φ∗0 = φ̄0 − v · Ā0/c is the unperturbed scalar potential,

< . . . > represents gyro-averaging, and ⊥ and ‖ denote components perpendicular and

parallel to the background magnetic field, respectively. The weighting function of the GK

electrons obeys

dWe

dt
= − cb̄

qeB̄0

× (qe < ∇δφ >) · ∂lnF̄e
∂R

+b∗ · (qe < ∇δφ >) · ∂lnF̄e
∂p‖

. (2.27)

The linearized GK Poisson’s equation in a nonuniform plasma can be expressed as

[∇⊥(1 + β̄e +
ω̄2
pe

Ω̄2
e

) · ∇⊥ −
ω̄2
pi

V̄ 2
A

]δφ (2.28)

= −4π[(1 + β̄e)(qiδni + qe < δNe >)− 4πn̄iqi
B̄2

δΨ],

where ω̄pe and Ω̄e are the electron plasma frequency and electron gyrofrequency based on

the equilibrium magnetic field and plasma density, δni is the perturbed ion number density,

and < δNe > is the perturbed electron density in the guiding-center coordinates[83, 82]. Ψ

can be obtained from

∇2δΨ = −∇ · [∇· < δPg > +
1

c
δJi ×B +

1

c
Ji × δB], (2.29)

where δJi = qi
∫

vδfid
3v, Ji = qi

∫
vf̄id

3v, and < δPg >=
∫
mevvδFed

3v.
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The perturbed potential δA⊥ is determined by the linearized perpendicular Ampeŕe’s

law

∇2δA⊥ = −4π

c
δJ⊥, (2.30)

with δJ⊥ = (c/4π)∇× (δB‖b̄). A‖ is given by the linearized parallel Ampeŕe’s law

(∇2 −
ω2
pe

c2
)δA‖ = −4π

c
(δJi‖+ < δJe‖ >), (2.31)

where < δJe‖ >= (qe/me)
∫
p‖δFed

3v, and δJi‖ = qi
∫
v‖δfid

3v. δB‖ is obtained from

δB‖ = 4π
δΨ + n̄iqi(1 + ρ2

e∇2
⊥)δφ

(1 + β̄e)B̄
. (2.32)

Decompose δA = δA‖b̄ + δA⊥ +∇⊥ξ. To ensure the Coulomb gauge condition ∇ · δA = 0,

ξ is

∇2
⊥ξ = −∇ · (δA‖b̄). (2.33)

The perturbed electric field is determined by the electron force balance equation

n̄eqeδE = ∇ · δPe −
1

c
(J̄e × δB + δJe × B̄). (2.34)

The obtained δE and δB = ∇× δA are use to advance the ion weighting function Wi, mean

while, δA‖ and δφ are used to advance the electron weighting function We.

2.1.4 Harris Equilibrium in the Gyrokinetic Coordinate

In the Harris equilibrium[92], the equilibrium ion velocity distribution in the six dimen-

sional phase space (x,v) is given by

f̄Hi =
nh0

(2πTi/mi)3/2
exp(−mi[v

2
x + (vy − Vdi)2 + v2

z ]/2Ti)exp[−VdiqiAy(z)/Ti], (2.35)
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where Vdi is the ion drift speed and

nh0exp[−VdiqiAy(z)/Ti] = nHsech2(z/L). (2.36)

In the GeFi model, the drift Maxwellian velocity distribution of electrons in the guiding-

center coordinate can be derived as follows. In the lab frame, the velocity distribution

function of FK electrons is

f̄e =
nh0

(2πTe/me)3/2
exp(−me[v

2
x + (vy − Vdi)2 + v2

z ]/2Te)exp[−VdeqiAy(z)/Te], (2.37)

where, Vde is the electron drift speed, in the Harris equilibrium, Vdi/Ti = −Vde/Te. The

guiding center coordinate in current sheet normal is Z = z + (v× b/Ωe) · ẑ, the unit vector

of local magnetic field is b̂ = (BGŷ +Bxx̂)/B, the ξ̂ = b× ẑ represents the gyrophase angle.

The electron velocity can be written as

v = vxx̂ + vyŷ + vzẑ = v‖b̂ + v⊥, (2.38)

where v‖ is the velocity parallel to b̂, v⊥ is the perpendicular velocity. Noting that, v‖ =

vyBG/B + vxBx/B, vξ = vxBG/B − vyBx/B, the electron speed can be written as

v2
x + v2

y + (vy − Vde)2 = (v‖ − Vde
BG

B
)2 + v2

⊥ +
B2
x

B2
V 2
de + 2vξ

Bx

B
Vde. (2.39)

Noting that z = Z + vξ/Ωe, Ay can be expressed to the second order,

Ay(z) = Ay(Z) + A′y(Z)
vξ
Ωe

+
1

2
A′′y(Z)

v2
ξ

Ω2
e

. (2.40)

The fe is thus rewritten as

f̄e =
nh0

(2πTe/me)3/2
exp[−

me[(v‖ − VdeBG/B)2 + v2
⊥]

2Te
]exp(−me

2Te

B2
x

B2
V 2
de) (2.41)
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×exp[−VdeqeAy(z)

Te
](1 +

Vde
4

me

TeΩe

B′x
B
v2
⊥).

where we use the expansion

exp[−Vde
2

qe
Te
A′′y(Z)

v2
ξ

Ω2
e

] = 1 +
Vde
2

me

Te

B′x
B

me

qeB
v2
ξ . (2.42)

Take gyro-averaging (2π)−1
∫ 2π

0
dα on eq. (2.31), the electron distribution in guiding center

coordinate is obtained as

Fe =
nh(Z)

(2πTe/me)(3/2)
exp[−

me[(v‖ − VdeBG/B)2 + v2
⊥]

2Te
]exp(−me

2Te

B2
x

B2
V 2
de)(1 +

Vde
2

B′x
TeΩe

µ),

(2.43)

where µ = mev
2
⊥/2B is the magnetic moment.

2.2 GeFi Simulation Algebra

In the GeFi code, we use the second Runge-Kutta method to push particles, the Fourier

analysis and cyclic reduction (FACR) method to solve elliptical boundary value problem

(solving Poisson’s equation), iteration method to solve coupled A and Φ equations, and

four-point averaging method to carry out gyrokinetic interpolation. In this section, the

four-point approach and FCAR method are introduced.

2.2.1 Four-point Numerical Approach for Gyrokinetic

In the continuous space, the gyro-averaging is expressed as < >α≡ (2π)−1
∫ 2π

0
dα, how-

ever in the discrete space, we can only take finite points on the orbit of particle to average the

gyro-phase angle. Thus it is necessary to evaluate the accuracy of the discrete gyro-averaging

method, which average the values of a physical quantity on the equal interval points of orbit.
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Consider the averaged scalar potential Φ̄ at the gyrocenter position R,

Φ̄(R) =<

∫
d3xΦ(x)δ(x−R− ρ) >α, (2.44)

where x is the simultaneous position of the particle, ρ is the gyroradii. Expand Φ(x) in the

Fourier k space,

Φ(x) =
∑
k

Φ(k)exp(ik · x). (2.45)

< Φ̄(R) > is expressed in the k space,

< Φ(R) >=
∑
k

Φ(ik ·R) < exp(ik · ρ) >α (2.46)

Using the formula

< exp(ik · ρ) >α= J0(
k⊥v⊥

Ω
), (2.47)

where k⊥ and v⊥ is the wavenumber and speed perpendicular to the local magnetic field, Ω

is the gyrofrequency, J0 is the zero-order Bessel function. Φ̄(R) is finally written as

Φ̄(R) =
∑
k

Φ(ik ·R)J0(
k⊥v⊥

Ω
) (2.48)

in the continuous space.

In the discrete space, the gyroaveraged scalar potential < Φ(xj) >α is

< Φ(xj) >α=
∑
k

Φ(ik ·Rj) < exp(ik · ρj) >α, (2.49)

where Rj and ρj is the gyrocenter and gyroradii of the jth particle respectively. Noting that

< exp(ik · ρj) >α=
∞∑

n=−∞

Jn(k⊥ρj)sin(2πn)cot(
nπ

M
)/M, (2.50)
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Figure 2.1: Four point averaging on the grids

M is the number of sampling points on the orbit, the four-point (M=4) gyroaveraged <

Φ(xj) >α is

< Φ(xj) >α,M=4=
∑
k

Φ(k)exp(ik ·Rj)[J0(k⊥ρj)− J4(k⊥ρj)− J−4(k⊥ρj) + · · ·]. (2.51)

When k⊥ρj . 2, J4 � J0, thus the difference between Φ̄(R) and < Φ(xj) >α,M=4 is a

smallness (∼ J4), mean while the gyrokinetic ordering requires k⊥ρ ≤1, so the four-point

averaging shown in Fig.2.1 is practically suitable for the gyrokinetic simulation[90, 93].

2.2.2 Boundary Conditions and Field Equations Solving

As the section (2.1) showing, all field equations in the GeFi model are the elliptical

partial differential equation (PDE), in this subsection, we show the numerical algebra of the

elliptical PDE with the combined boundary conditions of the current sheet system. In the

current sheet, the conducting boundary condition is applied on the direction of current sheet

normal, the periodical boundary condition is applied on the directions along the anti-parallel

magnetic field and/or the cross-field current. In order to show the algebra of solving field
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equation in the GeFi code, we present the numerical solution of the Poisson’s equation of

scalar potential Ψ (eq. 2.19) in a 2-D plane (y-z) which contains the cross-field current

(in y-axis) and the current sheet normal (in z-axis). Consider an elliptical boundary value

problem

−∇2Ψ = G, (y, z) ∈ (0, Ly)× (0, Lz) (2.52)

Ψ(y = 0) = Ψ(y = Ly), Ψ(z = 0) = Ψ(z = Lz) = 0,

where G represents the right side of eq. (2.19). The correspondent differential scheme is

−(
1

∆y2
δ2
y +

1

∆z2
δ2
z)Ψj,k = Gj,k, j = 1, · · ·,My − 1, k = 1, · · ·,Mz − 1, (2.53)

Ψ0,k = ΨMy ,k, k = 0, · · ·,Mz,

Ψj,0 = Ψj,Mz = 0, j = 0, · · ·,My,

where My and Mz are grid numbers in y and z directions respectively, ∆y = 1/My and

∆z = 1/Mz are spatial steps, δyΨ = Ψj+1,k − 2Ψj,k + Ψj−1,k is the center difference operator

as well as δzΨ = Ψj,k+1 − 2Ψj,k + Ψj,k−1.

Using discrete Fourier transform (DFT), Ψ and G can be expressed as

Ψj,k =

(My−1)/2∑
m=−(My−1)/2

Ψ̂m,ke
imπj∆y, (2.54)

Ψ̂m,k =
1

My

My−1∑
j=0

Ψj,ke
−imπj∆y,

and

Gj,k =

(My−1)/2∑
m=−(My−1)/2

Ĝm,ke
imπj∆y, (2.55)

Ĝm,k =
1

My

My−1∑
j=0

Gj,ke
−imπj∆y,
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in the GeFi code, My,Mz ≡ 2n + 1 (n is positive integer) to execute fast Fourier transform

(FFT). It is proven that[94]

δ2
yΨj,k =

(My+1)/2∑
m=−(Mx−1)/2

−4sin2 lπδx

2
Ψ̂m,ke

imπj∆x. (2.56)

Based on eq. (2.43), (2.44) and (2.45), the Poisson’s equation, eq. (2.42), can be rewritten

in k space

(− 4

∆x2
sin2 jπ∆x

2
+

1

∆y2
δ2
y)Ψ̂j,k = Ĝj,k (2.57)

j = 1, · · ·,My − 1, k = 1, · · ·,Mz − 1,

Ψ̂j,0 = Ψ̂j,Mz = 0.

Solving eq. (2.46) as the tri-diagonal systems of equations[95], we can get the solution Ψ̂m,k

in the k space. The solution Ψj, k in real space is obtained by carrying out the inverse FFT

on Ψ̂m,k.

2.3 Explicit Fully Kinetic Simulation Algebra

Since the GeFi is a novel model, it is necessary to benchmark against the widely used

explicit fully kinetic (FK) particle-in-cell (PIC) model[91]. The simple description of the

FK PIC model is as follows: (1) the current density on the grids is obtained by a spatial

weighting method according to the records of the positions and velocities of particles, (2)

the electric and magnetic field are determined by the integrals of Faraday’s and Ampere’s

law

∂B

∂t
= −∇× E, (2.58)

∂E

∂t
= c2∇×B− 1

ε0
J, (2.59)
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(3) the ions and electrons are traced by the FK equations of motion

m
dv

dt
= q(E + v ×B), (2.60)

dr

dt
= v, (2.61)

repeat (1)-(3) for the designed steps. Next, the numerical algorithms used in the FK PIC

code are introduced. In the following discussion, we still focus on the geometry of the current

sheet in which the cross-field current is in y and the current sheet normal is in z.

2.3.1 Fully Kinetic δf Scheme

In the fully kinetic δf model, for both electrons and ions, the perturbed particle weight-

ing function Wα = δf/f̄α, is governed by the linearized Vlasov equation,

dWα

dt
= qα∇δφ ·

∂lnf̄α
∂vα

, (2.62)

where subscript α = i, e. The unperturbed orbits of particles follow,

dvα
dt

=
qα
mα

vα ×B0,

dxα
dt

= vα. (2.63)

The perturbed magnetic and electric field are given by Faraday’s and Ampeŕe’s law,

∂δE

∂t
= −∇× δB, (2.64)

∂δE

∂t
= c2∇× δB− 1

ε0
δJ, (2.65)

where δJ =
∫
qiδfd

3v.
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Figure 2.2: Temporal layout of fields and quantities used in the leap-frog scheme. E,x,ρ are
advanced at step n, B,v,J are advanced at step n− 1

2
.[91]

2.3.2 Field Integration

The fields are integrated forward using their time derivatives as given in eq. (2.47) and

(2.48). The leap-frog scheme[91] is applied on the coupled field equations in which the time

derivatives of B(E) on the left hand side with B(E) appearing on the right hand side. Fig.

2.2 shows the leap-frog scheme that advances E, the position of particle x and the charge

density ρ at the integer steps, B, the velocity of particle v, the current density J at the

half integer steps. The centered time differential, which is accurate to the second order, is

applied.

We are now ready to difference Maxwell’s equations explicitly in a very simple way

whose accuracy is second in space and time[91]. Particularly the time derivative becomes

(∂tEx)
n+1/2
j+1/2,k ≡

En+1
x,j+1/2,k − En

x,j+1/2,k

∆t
(2.66)

where En
x,j+1/2,k ≡ Ex([j + 1/2]∆x, k∆y, n∆t), etc. The spatial differences ∂x and ∂y are

defined analogously. The gradient ∇ becomes ∂x and ∂y. Noting that, these operators,

applied to fields defined on our space-time grids, commute. Therefore the algebra of the

difference equations are same as the correspondent differential equations.

The difference Faraday’s and Ampere’s law are,

(∂tBz)
n
j+1/2,k+1/2 = −c(∂xEy − ∂yEx)nj+1/2,k+1/2 (2.67)
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Figure 2.3: Spatial Layout on the grids of 2-D fields (Ex, Ey, Ez) and the the source terms
(ρ,Jx, Jy, δφ) during the integration of the difference field equations [91]. Here ’∆x’ is
corrected to be ’∆y’.

(∂tEx)
n+1/2
j+1/2,k = (c∂yBz − Jx)n+1/2

j+1/2,k (2.68)

(∂tEy)
n+1/2
j,k+1/2 = (−c∂xBz − Jy)n+1/2

j,k+1/2. (2.69)

When B
n−1/2
z and En are known, eq.(2.52) gives B

n+1/2
z . E is then advanced in the same

way. For example, (2.53) and (2.54) are rewritten to

En+1
x,j+1/2,k − En

x,j+1/2,k

∆t
= c

B
n+1/2
z,j+1/2,k+1/2 −B

n+1/2
z,j+1/2,k−1/2

∆y
− Jn+1/2

x,j+1/2,k (2.70)

En+1
y,j,k+1/2 − En

x,j,k+1/2

∆t
= −c

B
n+1/2
z,j+1/2,k+1/2 −B

n+1/2
z,j−1/2,k+1/2

∆z
− Jn+1/2

x,j+1/2,k. (2.71)

The code alternates, advancing E and B, as shown in Fig. 2.3. The new quantities will

replace the old one on the grids each step. It is no need to store the values in the memory

more than one time.
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2.3.3 Boundary Conditions

The fields at the boundary of y direction with the periodical condition can be written

as

Bx(j + 1/2, 0) = Bx(j + 1/2,My − 1), (2.72)

Bx(j + 1/2, 1) = Bx(j + 1/2,My), (2.73)

By(j, 1/2) = By(j,My − 1/2),

By(j, 3/2) = By(j,My + 1/2), (2.74)

Ez(j + 1/2, 1/2) = Ez(j + 1/2,My − 1/2),

Ez(j + 1/2, 3/2) = Ez(j + 1/2,My + 1/2), (2.75)

where k = 0 (k = My) is the terminal of left (right) boundary shown in Fig. 2.3.

The velocity and position of a particle which pass through the y- boundary obey, if

j < 0,

vy(j, k) = vy(j, k +My), vz(j, k) = vz(j, k +My), (2.76)

y(j, k) = y(j, k +My), z(j, k) = z(j, k +My), (2.77)

if j > 0,

vy(j, k) = vy(j, k +My), vz(j, k) = vz(j, k +My), (2.78)

y(j, k) = y(j, k +My), z(j, k) = z(j, k +My). (2.79)
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In the z-direction, the fields obey the conducting wall boundary condition, in the field

advance, only the tangential component of E is needed

Ex(1/2, k) = Ex(Mz + 1/2, k) = 0, (2.80)

Ey(0, k + 1/2) = Ey(Mz, k + 1/2) = 0,

(2.81)

where j = 1/2 (j = Mz + 1/2) is the terminal of bottom (top) boundary shown in Fig. 2.3.

The normal component of B is

Bz(1/2, k + 1/2) = Bz(Mz + 1/2, k + 1/2). (2.82)

The particles will be reflected by the conducting wall boundaries, if k < 0,

z(j, k) = −z(j, k), (2.83)

if k > 0,

z(j, k) = −z(j, k) + 2Mz. (2.84)

2.3.4 Correction for Charge Conservation

In addition to two curl equations, there are still two divergence equations in the Maxwell

sets

∇ · E = ρ,∇ ·B = 0. (2.85)

It is proven that the divergence of E and B are always correct, if the continuity of charge,

∇ · J− ∂ρ

∂t
= 0, (2.86)
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is satisfied at all times.

However, neither the current nor the charge density, which is obtained by the weighting

method on the grids, satisfies the continuity equation. Moreover, people found that calculat-

ing a charge-conservative J according to ρ by a weight method is hard due to the rapid rising

noise level in the electromagnetic fields[96, 97]. Here, the method ensuring the continuity by

using a nonconservative J is introduced as follows.

E is advanced using J in Ampere’s law. An E depending on a nonconservative J does

not satisfy the equation of continuity in generally. In order to ensuring the continuity, the

correction form of E is invented

E′ = E−∇δφ, (2.87)

where E′ satisfies ∇ · E′ = ρ. Taking divergence on the both side of eq. (2.72), we have

∇ · (E−∇δφ) = ρ. (2.88)

Thus the corrected potential δφ is obtained though the Poisson’s equation,

∇2δφ = ∇ · E− ρ. (2.89)

In the simulations, the above correction procedure is executed between several decades of

steps to satisfy the continuity.

2.3.5 Boris Scheme

In the FK code, we use the Boris scheme[98] to push electrons and ions. The electric

and magnetic fields applying on the particles are obtained from the nearby grids through

cloud-in-cell weighting method[99]. We can calculate the velocity of the particles by the
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time-center difference form of Eq. (2.49)

vn+1/2 − vn−1/2

∆t
=

q

m
[E +

vn+1/2 + vn−1/2

2
×B] (2.90)

where the superscripts indicate the time step. In the above difference from, the unknown

variable vn+1/2 is on both the left and the right hand side, thus Eq. (2.75) is in the implicit

form. Calculating vn+1/2 needs to solve linear equation sets, a splitting scheme is invented

to transfer eq. (2.75) to explicit form. First, move a particle by the electric field in the half

time step,

v− = vn+1/2 +
qE

m

∆t

2
. (2.91)

Noting that, t ≡ (qB)∆t/2, the vector v′ is then

v′ = v− + v− × t (2.92)

Next, the complementary vector v+ can be calculated as

v+ = v− + v′ × s, (2.93)

where s = 2t/1 + t2. The eq. (2.73) - (2.75) show the the rotation of the particle under B.

Then push the particle in the rest half time step and obtain vn+1/2,

vn+1/2 = v+ +
qE

m

∆t

2
. (2.94)

The Boris scheme has the second order accuracy and shows good energy conservative.

Fig. 2.4 shows the trajectory of a charge particle in an uniform background magnetic field,

the red dished lines are obtained from the numerical calculation of Boris scheme, the blue

solid line shows the orbit of the analytic results, the trajectory from numerical calculation

exactly agree with the theory orbit.
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Figure 2.4: Trajectory of a charge particle in an uniform field, the red dashed lines are
obtained from numerical calculation, blue solid line show the orbits from the analytic calcu-
lation.
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Chapter 3

Electrostatic Results

In this chapter, the current sheet instability is simulated with the GeFi code in the ES

limit. In the ES limit, it is found that only LHDI is present. Therefore, our introduction

below will focus on the LHDI only.

3.1 Introduction

The LHDI has long attracted attention as a possible source of the anomalous resistivity.

LHDI in a Harris current sheet has been investigated for decades[58, 59, 60, 108, 63, 64].

A nonlocal kinetic theory for a Harris sheet without a guide field found that the LHDI is

well localized at the edge of the current sheet[60]. Here, the guide field denotes the external

magnetic field component applied along the current direction. On the other hand, a finite

guide field was found to have a significant effect on the instability. The two-fluid theory of

Yoon and Lui [108] showed that the most unstable LHDI is an oblique mode and the maximal

growth rate occurs at ~k · ~B = 0, where ~k is the wave vector normal to the nonuniformity

direction. Daughton[63, 64] used a linear Vlasov code to investigate the linear LHDI and drift

kink instability in a Harris sheet and showed that the eigenmode structure is modified by the

presence of the finite guide field, but the calculation only considered the spatial planes with

~k · ~B = 0. A two-dimensional (2-D) fully kinetic (FK) particle simulation was also carried out

in the rotated plane with the parallel wave number k‖ = 0, and the results were compared

with those from the linear Vlasov calculation[64]. Based on a gyrokinetic (GK) electron

and fully kinetic unmagnetized ion assumption, Tummel et al.[62] developed an electrostatic

eigenmode theory to examine the LHDI. It was found that under a certain ky, where ky is the

component of wave number along the current direction, the most unstable LHDI can peak
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at locations where ~k · ~B 6= 0, or k‖ 6= 0. The unstable modes peaked at ~k · ~B 6= 0 could have

a significant consequence on the anomalous resistivity because with the finite k‖, electrons

can resonate with waves and be scattered; leading to the anomalous resistivity. Therefore,

it is necessary to scan through the entire three-dimensional (3-D) ~k · ~B 6= 0 spectral space

for the LHDI in the current sheet. It is the purpose of this chapter to calculate the complete

eigenmode structure of LHDI in a Harris sheet with a 3-D particle simulation.

Since the physics of LHDI is directly related to mi/me, it is necessary to use a realistic

mass ratio to assure a proper scale separation between electrons and ions, which is very

important for understanding the linear and nonlinear physics related to reconnection. Due

to the limitation in the computing resources, most of the previous FK particle simulations

of magnetic reconnection and LHDI are based on 2-D models[113, 115, 65, 114], and the 3-D

properties of LHDI has not been systematically simulated.

In this chapter, the electrostatic LHDI is investigated using the 3-D GeFi particle simu-

lation code[83, 82]. This study focuses on the linear LHDI, and thus a linearized δf scheme

is used in the simulation. The GeFi simulation results are compared with the results from

the linearized FK simulation. Both simulations adopt the particle-in-cell (PIC) approach.

The eigenmode structure and growth rate of the LHDI in the full 3-D space are calculated.

Effects of finite guide field BG and mass ratio mi/me are investigated. The simulation results

are compared with the theoretical finding of Tummel et al.[62] based on the GeFi eigenmode

theory.

3.2 Simulation Model

3.2.1 GeFi Linearized δf Scheme

In the GeFi particle simulation scheme, electrons are treated as GK particles[86, 87,

88, 89], and ions are treated as FK particles. The GeFi model is suitable for the process

in which the characteristic frequency ω range from the Alfvenic frequency to the lower-

hybrid frequency, smaller than the electron cyclotron frequency Ωe. Wave modes relevant
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to the current sheet instabilities associated with magnetic reconnection fall inside this range

of dynamic scales. The GeFi simulation model has been benchmarked against the fully

kinetic analytical theory[129, 83, 82] for uniform plasmas and against the GK eigenmode

theory[54] for the tearing mode. This model has also been used to study instabilities in a

two-dimensional (2-D) plane of the Harris current sheet that contains a guide field [130, 84].

For the linearized scheme, the FK ion equations of motion in unperturbed orbits are

dpi
dt

= −qi∇(φ̄0 − vi · Ā0/c),

dxi
dt

= vi, (3.1)

where qi is the ion charge, pi is the ion canonical momentum, xi is the ion position, vi is the

ion velocity, φ0 and A0 are the equilibrium scalar and vector potentials, respectively, and

the ’bar’ indicates the background quantities. The perturbed ion particle weighting function

Wi = δfi/f̄i is governed by the linearized Vlasov equation in the six-dimensional phase space

(x,vi),

dWi

dt
= qi∇δφ ·

∂lnf̄i
∂vi

. (3.2)

Here, f̄i is the equilibrium ion distribution function, and δφ is the perturbed scalar potential.

In the GK ordering for electrons, ω/Ωe ∼ ρe/L ∼ k‖ρe ∼ δB/B ∼ ε and k⊥ρe ∼ 1, where

ρe is the electron Larmor radius, L is the macroscopic background plasma scale length, δB

is the perturbed magnetic field on the microscopic wave scale lengths, and ε is a smallness

parameter. Following the above GK ordering for electrons, the rapid electron gyromotion is

removed in the calculation, which significantly enhances the computation power and allows

for the calculation of physical problems with a realistic ion-to-electron mass ratio. The

GK particle approximation can be used for reconnection under a finite guide field. The

gyrocenter equations of motion in unperturbed orbits for the parallel electron canonical

momentum, p‖ = meve‖ + qeA‖/c, and for the electron gyrocenter position, R, are given by
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[86, 87, 88, 89]

dp‖
dt

= −b∗·[qe < ∇φ∗0 > +µ∇B̄0],

dR

dt
= ve‖b

∗ +
c

qeB̄
b̄× [qe < ∇φ∗0 > +µ∇B̄0], (3.3)

where me and ve‖ are the electron mass and electron parallel velocity, respectively, qe is the

electron charge, µ is the magnetic moment, B̄0 is the background magnetic field, b̄ = B̄0/B̄0,

and b∗ = b̄ + (ve‖/Ω̄e)b̄× (b̄ · ∇)b̄. φ∗0 = φ̄0 − v · Ā0/c is the unperturbed scalar potential,

< . . . > represents gyro-averaging, and ⊥ and ‖ denote components perpendicular and

parallel to the background magnetic field, respectively. The weighting function of the GK

electrons obeys

dWe

dt
= − cb̄

qeB̄0

× (qe < ∇δφ >) · ∂lnF̄e
∂R

+b∗ · (qe < ∇δφ >) · ∂lnF̄e
∂p‖

. (3.4)

The linearized electrostatic GK Poisson’s equation in a nonuniform plasma can be ex-

pressed as

∇⊥ · [(1 +
ω̄2
pe

Ω̄2
e

)]∇⊥δφ = −4π(qiδni + qe < δNe >), (3.5)

where ω̄pe is the electron plasma frequency, δni is the perturbed ion number density, and

< δNe > is the perturbed electron density in the guiding-center coordinates[83, 82].

3.2.2 Initial and Boundary Conditions

The simulation is performed in the 3-D space, with the coordinate z along the current

sheet normal, the antiparallel field component Bx, and the guide field BG in the y direction.

The initial magnetic field is given by

B0(z) = x̂Bx0 tanh(z/L) + ŷBG, (3.6)
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where L is the half-width of the current sheet, and BG is a constant. We assume that the ion

and electron temperatures, Ti and Te, are constant everywhere in the domain. For a given

ion beta value βi0, the initial density in the Harris sheet is expressed as

ni0 = nHsech2(z/L) + nb0, (3.7)

where nb0 is the background density. The peak ion density nH in the current is obtained

from the total pressure balance

nH(Ti + Te) =
1

8π
B2
x0, (3.8)

where Ti and Te are in units of energy. The equilibrium drift Maxwellian velocity distribution

of ion population in the Harris sheet is given by

fHi =
nHsech2(z/L)

(2πTi/mi)3/2
exp(−mi

2Ti
[v2
x + (vy − vdi)2 + v2

z ]), (3.9)

where vdi = 2cTi/qiB0L is the ion drift speed. The GK equilibrium distribution function for

the Harris sheet electrons takes the form[84]

fHe,g =
nHsech2(z/L)

(2πTi/mi)1/2

B0

Te
exp(−

2µB0 +me(v‖ − vde‖)2

2Te
)

×(1 +
vde

2TeΩe

dBx

dz
) exp(

B2
x

B2
0

mev
2
de

2Te
) (3.10)

where vde is the electron drift speed. For the Harris current sheet, vde/Te = −vdi/Ti. Note

that the initial distribution functions given above are taken as the equilibrium distribution

functions in the δf calculation.

The periodic boundary conditions are applied at x = 0, lx and y = 0, ly. The conducting

boundary conditions are applied at z = ±lz/2, with δφ = 0 and δA = 0.
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3.2.3 Parameters and Normalization

The parameters used in the simulation are described as follows. The half-width of

the current sheet is L = 0.25-0.5ρi0, where ρi0 is the ion Larmor radius in the asymptotic

magnetic field B0. The system lengths are chosen as lx = 0.75-15ρi0 in the x direction,

ly = 0.1-1.5ρi0 in the y direction, and lz = 5ρi0 in the z direction. The grid number is

Nx×Ny×Nz = 16×16×128-32×32×512. The number of particles in each cell is 100-400.

The guide field BG/Bx0 = 0.1-1. The electron beta is βe0 = 0.0033-0.016, the ion-to-electron

temperature ratio is Ti/Te = 10, the mass ratio mi/me = 459-1836, and ωpe/Ωce = 1-10,

where ωpe = (4πn0e
2/me)

1/2 is the electron plasma frequency and Ωce = eB0/mec is the

electron cyclotron frequency.

In this paper, the magnetic field is normalized to B0 = (Bx0 + BG)1/2. The electric

potential is normalized to T/e. The normalized background density nb0 = 0-1, while nH =

5.6-27.5 in the cases shown. The real frequency and growth rate are normalized to the

asymptotic ion cyclotron frequency, Ωi0. The wave number is normalized to ρ−1
i0 .

3.2.4 Fully Kinetic δf Scheme

In the fully kinetic δf model, for both electrons and ions, the perturbed particle weight-

ing function Wα = δf/f̄α, is governed by the linearized Vlasov equation,

dWα

dt
= qα∇δφ ·

∂lnf̄α
∂vα

, (3.11)

where subscript α = i, e. The unperturbed orbits of particles follow,

dvα
dt

=
qα
mα

vα ×B0,

dxα
dt

= vα. (3.12)
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The perturbed electrostatic potential is given by Poisson’s equation,

∇2δφ = −4π(

∫
dviqiδfi +

∫
dveqeδfe). (3.13)

3.3 Results of Investigation

In the following, we show the simulation results of current sheet instability. Cases of

2-D LHDI with kx = 0 and ky 6= 0 are presented first. Note that there exists no (2-D)

electrostatic unstable mode for ky = 0. The full 3-D results with kx 6= 0 and ky 6= 0 are then

presented.

3.3.1 Results with kx = 0 and ky 6= 0: 2-D cases

In the cases with kx = 0 and ky 6= 0, the wave vectors of LHDI are in the 2-D (yz) plane

that contains the guide field and the current sheet normal. The current and drift direction

are in this plane, and so are the LHDI modes. For typical 2-D cases, the dispersion relation

of LHDI modes obtained from the GeFi particle simulation are compared with the GeFi

eigenmode theory and the FK particle simulation.

2-D Eigenmode

Fig. 1 shows the results of case 1, in which L = 0.25ρi0, βe0 = 0.016, BG/Bx0 = 0.1,

ωpe/Ωce = 1.0, and the back ground plasma density is set to be zero, i.e., nb0 = 0. Only

modes with kyρi0 = ±35.23 are kept, The left column of Fig. 1 presents the GeFi simulation

results, while the right column shows the corresponding FK simulation results. Fig. 1(a)

shows contours of the perturbed electrostatic potential δφ in the y-z plane, while Fig. 1(b)

shows the eigenmode structure δφ̃, which is the absolute value of the eigenfunction. The

dashed lines in Figs. 1(a) and 1(b) mark the position z = ±L, ±2L, and ±3L. Instability in

the electrostatic potential is present, which is located at the edge of the current sheet, within

L < |z| < 2L. Fig. 1(c) shows |δφ̃| of the instability as a function of time. An exponential
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growth is seen, with a linear growth rate of γ/Ωi0 = 22.3 obtained in the GeFi simulation

and γ/Ωi0 = 21.1 obtained from the FK simulation. The electrostatic instability obtained

from the simulations is the LHDI[63]. The results from the GeFi simulation are in excellent

agreement with those from the FK simulation in terms of the linear growth rate and mode

structure. As expected, higher frequency fluctuations are also present in the growth curve of

the FK results, while the growth curve obtained from the GeFi model is much smoother due

to the removal of fluctuations with ω ∼ Ωe. The LHDI propagates in the +y direction, i.e.,

direction of the ion drift, at both edges of the current sheet. Moreover, as shown in Figs.

1(a) and 1(b), there is little δφ near the center of the current sheet. The two eigenmodes on

the two sides of the current sheet are independent.

To show this property, we show two GeFi simulation runs with even and odd initial

perturbations. The initial perturbation in one run follows a cosine function across the current

sheet, whereas in the other run the initial perturbation follows a sine function. By choosing

identical initial perturbation on the z < 0 side in the two runs, the perturbations on the

z > 0 side are of opposite signs. The left and right columns of Fig. 2 show the eigenmodes

obtained from the two runs with a cosine and sine initial perturbations in δφ, respectively.

Shown in Figs. 2(a), 2(b), and 2(c) are the real space contours, eigenfunction structure,

and the time growth of |δφ̃|, respectively. The real (imaginary) part of the eigenfunction is

shown by the solid (dotted) lines in Fig. 2(b). The eigenvalues on both sides of the sheet

and in both runs are identical, with the growth rate of γ/Ωi0 = 22.3 and real frequency of

ω/Ωi0 = 242.1, as seen in Fig. 2(c). The structures of the eigenfunction in z < 0 for the two

runs are identical. whereas in z > 0 they are of opposite signs in the two runs. In general,

the sign and strength of eigenfunctions of these two independent eigenmodes are determined

by their initial perturbations.
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Figure 3.1: FK and GeFi simulation results for case 1, with L/ρi0 = 0.25, Te/Ti = 0.1,
βe0 = 0.016, nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0 and kyρi0 = 35.23. (a) Contours of
the perturbed electrostatic potential δφ from the GeFi (left) and FK (right) models. The
dashed lines mark z = ±L, ±2L, and ±3L. (b) The solid line presents the absolute value
of the eigenfunction obtained from the GeFi (left) and FK (right) simulations. The dashed
lines mark z = ±L, ±2L, an ±3L. (c) The growth of the eigenmode obtained from the GeFi
(left) and FK (right) simulations.
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Figure 3.2: LHDIs with even (left column) and odd (right column) initial perturbations.
The parameters are the same as those in Fig. 1. (a) Contours of δφ. The dashed lines mark
z = ±L, ±2L, and ±3L. (b) The real (solid lines) and imaginary (dashed lines) part of
eigenfunction. The thin vertical dashed line marks z = ±L, ±2L,±3L. (c) The growth rate
of eigenmode.
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Figure 3.3: Comparison of the frequency (top plot) and growth rate (bottom plot) between
the GeFi simulation (triangles) and the GeFi eigenmode theory (dashed lines) for L = 0.23ρi0,
βe0 = 0.0033, BG/Bx0 = 0.1, ωpe/Ωce = 10, and nb = 0.5.

Dispersion Relation of 2-D LHDI

The open circles with error bars in Fig. 3 show the real frequency ω (top plot) and the

growth rate γ (bottom plot) of LHDI as a function of ky obtained from the GeFi simulation,

in which L = 0.23ρi0, βe0 = 0.0033, BG/Bx0 = 0.1, ωpe/ωe = 10, and nb = 0.5. The growth

rate of the instability is seen to peak at kyρi0 ' 35. As a comparison, the dashed lines in Fig.

3 show the analytical dispersion relation obtained from the GeFi eigenmode theory[62]. It is

seen that both the real frequencies and the growth rate obtained from the GeFi simulation

are nearly identical to those from the GeFi theory. The peak growth rates from the two

models are also nearly identical.

The GeFi simulation results are also compared with the FK simulation results. Com-

parison of the LHDI dispersion relations between the two simulation schemes are shown in

Fig. 4 for parameters similar to those in case 1. In this figure, the triangles depict ω and γ

obtained from the GeFi scheme, and the circles show the corresponding values from the FK

simulation. The dashed lines in Fig. 4 link through the values of the GeFi results. Results

from the two particle simulation schemes are seen to agree very well.

52



Figure 3.4: Comparison of the frequency and growth rate between the GeFi (circle-dashed
line) and FK (open triangle) simulations for parameters similar to case 1. The top and
bottom plots show the real frequency and the growth rate, respectively.

To understand the influence of the guide field BG on the LHDI, Fig. 5 presents the

frequency (top plot) and growth rate (bottom plot) vs. the intensity of guide field BG/Bx0

while the asymptotic field B0 is fixed. The open circles present the GeFi simulation results,

and the dashed lines show the results from the GeFi eigenmode theory. The simulation

and the theory are seen to agree well. It is shown that as the guide field BG increases, the

frequency increases and the growth rate decreases. Such result can be understood as the

following. As BG increases under the fixed B0 =
√
B2
x0 +B2

G, the Bx0 component decreases.

A smaller Bx0 leads to a reduced diamagnetic current, which drives the unstable modes, and

a smaller growth rate of LHDI.

3.3.2 Results with Finite kx and ky: Instabilities in 3-D

In this section, the GeFi simulation results are shown for the full 3-D space, with kx 6= 0

and ky 6= 0. The eigenmode structure, frequency, and growth rate are discussed as a function

of (kx, ky). In the 3-D study, we focus on the cases with ky > kx because the ky < kx regime

possesses no electrostatic instability.
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Figure 3.5: Frequency and growth rate vs. BG/Bx0, for L = 0.25ρi0, βe0 = 0.016, ωpe/Ωce =
1.0, kyρi0 = 35.23.

3-D Eigenmodes

Fig. 6 shows the real space contours of δφ obtained from the GeFi simulation of case 2,

in which |kyρi0| = 29.02, |kxρi0| = 2.9, and all other parameters are the same as case 1. The

contours are shown for planes y = −0.17ρi0, and x = −3ρi0, 0, and 3ρi0. It is found that

the 3-D LHDI is excited and still localized at the edges of the current sheet. The phase of

the instability changes with positions x and y, according to δφ = δφ(z)exp(kxx+ kyy). The

phase is related to the mode propagation in the x and y directions, which is discussed below.

In the 3-D space, for each sign of kx, the LHDI occurs on only one side of current sheet.

The absolute value of eigenfunction, |δφ̃|, of case 2 is presented in Fig. 7. The red line in

Fig. 7 shows the eigenfunction with (kx, ky)ρi0 = (−2.9, 29.02). The blue line shows the

eigenfunction with (kx, ky)ρi0 = (2.9, 29.02). The dashed lines mark, again, z = ±L, ±2L,

and ±3L. For kxky > 0 (kxky < 0), the eigenmode is present on the z = −L (z = L) side.

This result is due to that in the presence of a finite kx, the values of ~k · ~B are different on

different sides of the current sheet, where ~k · ~B = kxBx0tanh(z/L) + kyBy. In case 2, the

unstable mode is peaked at ~k · ~B ∼ 0. For kxky > 0, the unstable mode appears on the

z < 0 side since ~k · ~B = 0 is present on this side. Finite ~k · ~B is found to stabilize the

54



Figure 3.6: δφ contours in the x-z and y-z cross-sections in the 3-D simulation of case 2.

local stability. In the nonuniform magnetic field ~B(z), properties of the local instability at

various z varies with ~k · ~B(z). For example, at the peak of the eigenfunction (z = −1.4L),

(kx, ky)ρi0 = (2.9, 29.02) gives ~k · ~B ' 0. On the opposite side of the current sheet at

z = 1.4L, the same (kx, ky) gives ~k · ~B = 5.8 and no unstable growth. Instead, the LHDI

mode with (kx, ky)ρi0 = (−2.9, 29.02) peaks at z = 1.4L.

The phase speed of unstable modes depends on z, kx, and ky. It is shown that the

LHDI propagates along the same +y-direction on both sides of current sheet, but in opposite

Figure 3.7: Eigenmode structure of the 3-D LHDI: the red and blue lines show eigenfunctions
for (kxρi0 = −2.9, kyρi0 = 29.02) and (kxρi0 = 2.9, kyρi0 = 29.02), respectively.
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directions along x. Consider the real frequency ω > 0. For (kx, ky)ρi0 = (−2.9,−29.02),the

phase velocity is vxph = −67.6vthix̂ in the x-direction and vyph = 6.8vthiŷ in the y-direction

on the z < 0 side, where vthi is the ion thermal velocity. On the z > 0 side, the sign of

the unstable kx is reversed to positive, with vxph = 67.6vthix̂ and vyph = 6.8vthiŷ. The

corresponding frequency is found to be ω/Ωi0 = 196.1 on both sides of current sheet.

Growth Rate in the kx-ky Space

In this subsection, we examine the growth rate of LHDI as a function of both kx and

ky. Dependence of the results on the mass ratio mi/me, half-width of current sheet L and

guide field BG are investigated.

Fig. 8 shows contours of the growth rate γ obtained from the GeFi simulation in the

kx-ky space for L/ρi0 = 0.25, Te/Ti = 0.1, BG/Bx0 = 0.1, nb0 = 0 and ωpe/Ωce = 1.0. As

in the previous cases, a realistic proton-to-electron mass ratio mi/me = 1836 is assumed.

The black dashed line in Fig. 8 marks k ·B = 0 at the edge of the current sheet where the

LHDI is present. As the contours showing, the maximal growth rate in the kx-ky plane is

found to be γmax/Ωi0 = 30.1, present at k ·B = 0, with (kx, ky)ρi0 = (−2.9, 29.0). This peak

LHDI growth rate corresponds to 0.7ωLH , where ωLH ≡
√

Ωi0Ωe0. The total wave number

perpendicular to the nonuniformity direction, k ≡ (k2
x + k2

y)
1/2, of this peak growth rate

corresponds to k
√
ρiρe ' 2.5. No instability is present for kyρi < 8.4. At the threshold

kyρi = 8.4, the unstable kxρi = −1.2. As the wave number ky increases, the unstable region

becomes wider in kx and is almost symmetric about mathbfk · B = 0. When the wave

number ky increases to a point around kyρi0 > 35, however, there appears no instability at

k · B = 0. Rather, the unstable region splits into two separate ones in kx for a certain ky,

located on the two sides and away from the k·B = 0 line. Overall, the simulation reveals that

the unstable mode is peaked at k ·B = 0 when the wave number is relatively small, whereas

if the wave number is large enough the instability is peaked at k ·B 6= 0. The most unstable

mode with the maximal growth rate in the kx-ky space, however, still satisfies k · B = 0.

56



Figure 3.8: Contours of growth rate γ in the kx-ky space for L/ρi0 = 0.25, Te/Ti = 0.1,
BG/Bx0 = 0.1, nb0 = 0.0, mi/me = 1836, and ωpe/Ωce = 1.0. The dark dashed line marks
k ·B = 0. Colorbar shows growth rates.

The real space structure for the cases around the peaks at k ·B 6= 0 is qualitatively similar

to those around k ·B = 0 (case 2). The contour plot obtained from the GeFi simulation is

consistent with the prediction from the GeFi eigenmode theory[62].

Most FK simulations have been carried out with an artificial mass ratio in order to

save the computing time. Therefore it is interesting to examine the mass ratio effect on

the instability. To show the influence of the mass ratio on LHDI, Fig. 9 presents the GeFi

simulation results with the realistic mass ratio, shown in column (a), and a reduced mass

ratio mi/me = 1836/4 = 459, shown in columns (b)and (c). All other parameters except the

current sheet half-width L are the same as those for Fig. 8. When the mass ratio is varied,

we also examine the results with a fixed L/ρe or L/ρi. In column (b) of Fig. 9, L/ρi0 is

fixed (L = 0.25ρi0 = 16.88ρe0) as compared with column (a), whereas in column (c), L/ρe0

is fixed (L = 0.5ρi0 = 33.75ρe0) as the mass ratio is reduced. In addition, to understand

the scaling of the LHDI physics, we present the results with two different normalizations,

normalization to the ion cyclotron scales and the lower-hybrid scales. The top row of Fig. 9

shows the results with the wave number scaled to ρ−1
i0 and growth rate scaled to Ωi0, whereas

the bottom row plots the results scaled to 1/
√
ρi0ρe0 and ωLH , where ωLH ≡

√
Ωi0Ωe0.
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Compared to the contours shown in Fig. 9 (a) for the realistic mi/me = 1836, the

unstable range in ky around the peak at k ·B = 0 becomes smaller for the smaller mi/me =

459 and fixed L/ρi0 when the results are normalized to the ion cyclotron scales, as seen

in the top row of Fig. 9(b): the LHDI occurs in 6 < kyρi0 < 14 and −9 < kxρi0 < 4

for mi/me = 459, whereas it is present in 10 < kyρi0 < 33 and −9 < kxρi0 < 1 for

mi/me = 1836. The unstable ky range of the ’wing’ regions, in which the modes satisfy

k · B 6= 0, is slightly smaller for the smaller mass ratio. The maximum growth rate in the

kx-ky space for mi/me = 459 (γ/Ωi0 ' 12) is much smaller than that for the realistic mass

ratio (γ/Ωi0 ' 30).

When For the reduced mass ratio, when L/ρe0 is fixed as L = 33.75ρe0, which corre-

sponds to an L/ρi0 two times that of Fig. 9(b), the peak growth rate is nearly the same

as that in the run of Fig. 9(b) (top row) when the results are expressed with the ion cy-

clotron scales, i.e., much smaller than the growth rate under the realistic mi/me. The kx

range of the instability is narrower by a significant 40% (−10 < kxρi0 < 5 for L = 0.25ρi0

and −7 < kxρi0 < 2 for L = 0.5ρi0) for the larger sheet width L/ρi0, while the ky range

of the instability is slightly larger (6 < kyρi0 < 21 for L = 0.25ρi0 and 7 < kyρi0 < 29

for L = 0.5ρi0). Comparing the top rows of Figs. 9(b) and 9(c), which are for the same

mass ratio, the simulation suggests that the wider current sheet stabilizes the LHDI, as the

corresponding current and thus driving force become smaller.

Therefore, with respect to the ion ρ−1
i and Ωi, a smaller mass ratio leads to a smaller

range of LHDI in the kx-ky space and/or a reduced growth rate. Furthermore, with the

smaller mass ratio, the LHDI shifts to the smaller kyρi0 region. A wider current sheet also

results in a smaller range of LHDI in the kx-ky space, stabilizing the LHDI.

On the other hand, if the results are scaled to the lower hybrid frequency ωLH , the

maximal growth rate of LHDI remains nearly the same for different values of mass ratio,

as seen from the bottom rows of Fig. 9. Moreover, the maximal growth rate is the same

for either a fixed L/ρi0 or a fixed L/ρe0 when mi/me decreases. Meanwhile, when scaled to
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Figure 3.9: Contour plots of growth rate γ in the kx-ky space with (a) realistic mass ratio
mi/me = 1836 and L = 0.25ρi0 = 33.75ρe0, (b) mi/me = 1836/4 = 459 and L = 0.25ρi0 =
16.88ρe0, and (c) mi/me = 1836/4 = 459 and L = 0.5ρi0 = 33.75ρe0. Top row shows the
results with the wave number scaled to ρ−1

i0 and growth rate scaled to Ωi0, and the bottom
row shows the results scaled to 1/

√
ρi0ρe0 and ωLH . The black dashed line marks k ·B = 0.

1/
√
ρi0ρe0, the sizes of the unstable region in ky are also similar for different values of mass

ratio and under the two different widths L. The maximal growth rate γmax/ωLH ' 0.5-0.6,

and it occurs at k
√
ρiρe ' 2.0-3.0. This result indicates that indeed the instability is scaled

with the lower hybrid characteristics. Comparing the top and bottom rows of Figs. 9(a)

and 9(c), it is also seen that for a certain mass ratio, the shape of the unstable region in the

kx-ky space remains similar regardless of the scaling to 1/
√
ρi0ρe0 or ρi0.

The guide field BG plays an important role in the LHDI. To illustrate the influence of

the guide field, Fig. 10 depicts the growth rate as a function of kx and ky for cases with

a larger guide field, BG/Bx0 = 0.3. All other parameters are the same as those for Fig. 8

with the smaller BG/Bx0 = 0.1. The mass ratio is chosen as mi/me = 1836 for both BG.

As described above, in the calculation we change BG while fixing the total B0 as a constant.
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Comparing Figs. 8 and 10, it is seen that the ky range of the ’wing’ regions of LHDI is

significantly reduced under the larger guide field. The range of ky for the LHDI peaked at

~k · ~B = 0 is also narrower under the larger BG (17 < kyρi0 < 32 for BG/Bx0 = 0.3 and

10 < kyρi0 < 35 for BG/Bx0 = 0.1). In addition, as BG is increased to 0.3, the minimum

ky of the unstable region moves to a larger kyρi0. Correspondingly, the minimum kx also

shifts to a larger absolute value because of k · B = 0 at the point. The growth rate of the

most unstable mode also decreases under a larger BG (γ/Ωi0 = 22.5 for BG/Bx0 = 0.3 and

γ/Ωi0 = 30.1 for BG/Bx0 = 0.1). The 3-D simulations reveal that the guide field has a

stabilizing effect on the LHDI, similar to the 2-D cases.

Simulations of the increased BG = 0.3 are also performed with a fixed anti-parallel field

Bx0 = 1.0, and the results show a similar tendency that the LHDI is stabilized by the larger

BG. The LHDI is driven by the diamagnetic current associated with ∇P , or the drift velocity

v∇P = −∇P ×B0/qB
2
0 . (3.14)

Here, P is the plasma thermal pressure, whose gradient is related to Bx0 according to the

pressure balance eq. (8). When the total B0 is fixed, Bx0 decreases as BG increases, and thus

∇P decreases. When Bx0 is fixed, the total B0 increases as BG increases. As a consequence,

in both situations v∇P decreases. Hence, with either B0 or Bx0 fixed, increasing BG reduces

the driving force of LHDI and thus stabilizes the instability.

3.4 Summary

In this chapter, the electrostatic LHDI in a Harris current sheet is studied systematically

by using the 3-D GeFi δf particle simulation model in the electrostatic limit for cases with a

finite guide field BG, with sheet normal in the z direction and guide field in the y direction.

The LHDI is investigated for various (kx, ky). Effects of mass ratio mi/me, guide field BG,

and half-width L of the current sheet are studied. The GeFi particle simulation results
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Figure 3.10: Contours of growth rate in the kx-ky space with guide field BG/Bx0 = 0.3, for
mi/me = 1836, L/ρi0 = 0.25, Te/Ti = 0.1, nb0 = 0 and ωpe/Ωce=1.0.

are compared with the GeFi eigenmode theory and the FK particle simulations. The main

results are summarized below.

1. Modes of the lower hybrid drift instability, localized at the edges of current sheet

(1 < |z/L| < 2), propagate oppositely along the anti-parallel magnetic field direction (x) on

the two sides of current sheet. Their propagation velocity in y is the same, along the ion

drift direction.

2. The eigenmode structure is calculated as a function of kx and ky. In the limiting

2-D cases with kx=0, two independent eigenmodes are present, with one on each side of the

current sheet.

3. Introduction of a finite kx significantly affects the eigenmode of LHDI. Unlike the

2-D results, the 3-D unstable mode only appears on one side of current sheet for a certain

(kx, ky), the side where k ·B is closer to zero.

4. The growth rates are calculated in the kx-ky space. The simulation results show that

under a certain ky, the dominant unstable mode satisfies k ·B = 0 when the wave number

ky is relatively small. As the wave number becomes larger, the dominant unstable mode can

peak at k ·B 6= 0, although the most unstable mode in the entire kx-ky plane still satisfies

k ·B = 0.
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5. The simulation also demonstrates the dependence of LHDI on the mass ratio mi/me

and corresponding current sheet half-width L. Specifically, reducing mass ratio and increas-

ing current sheet width have stabilizing effects on the LHDI. The growth rate γ and unstable

regions in the kx-ky space depend on the normalization in the description of γ and k. The

instability is found to be scaled with the lower hybrid characteristic length 1/
√
ρi0ρe0 and

frequency ωLH when mi/me and L vary. Meanwhile, increasing guide field stabilizes the

LHDI.

6. The real space and eigenmode structures of LHDI obtained from the GeFi simulation

agree very well with those from the FK δf simulations. The dispersion relation obtained

from the GeFi simulation agrees very well with those obtained from the analytic theory and

the FK simulation.
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Chapter 4

Electromagnetic Results

In this chapter, the eigenmode stability properties of 3-D EM instabilities in a Harris

current sheet with a finite guide magnetic field are systematically studied by employing

the EM GeFi model with a realistic mi/me. Our studies indicate that, at the small guide

magnetic field BG. the LHDI exists at k
√
ρiρe ∼ 1. The properties of LHDI are similar to

those obtained in the ES simulations. The results from the GeFi code are compared with

those from the electromagnetic FK particle code. On the other hand, DKI and drift sausage

instability (DSI) are found to be present under a moderate BG. The most unstable DKI is

away from k ·B = 0 and the DSI peaks at k ·B = 0. Finally, Buneman instability (BI) with

a compressional magnetic field perturbation is present at the center of current sheet under

a relatively large BG, with kρi ∼ 10. The most unstable BI is found at k×B = 0.

4.1 Introduction

In the fully electromagnetic description, more typed of instabilities can be present in

the current sheet, in addition to the LHDI. These EM-dominant instabilities include the

tearing mode and drift-kink instability, as discussed in the introduction chapter. In the

EM regime, previous studies found that the instabilities can exist in both short wavelength

regime (k
√
ρiρe ∼ 1) and long wavelength regime (kρi ∼ 1). The LHDI is the dominant

unstable mode for k
√
ρiρe ∼ 1. As found in the electrostatic simulationsin Chapter III, the

most unstable LHDI is peaked at k ·B 6= 0 at certain ky and the instability is scaled with the

lower hybrid characteristic length 1/
√
ρi0ρe0 and frequency ωLH when mi/me and L vary.

Previous electromagnetic FK PIC simulations of LHDI was carried out in a rotated plane
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that contains k · B = 0[64]. In this chapter, the linear properties of LHDI are calculated

with the fully EM GeFi code systematically in the full 3-D space.

While LHDI was extensively studied by previous authors, the instabilities at k
√
ρi ∼ 1

are still poorly understood. Previous FK simulations and theoretical results showed the

existence of drift-kink instability ([74, 70]. Meanwhile, Wang et al.[84] found an unstable

EM mode peaked at kρi ∼ 1, which was named as ’mode B’. This mode has a compressional

magnetic fluctuation at the center of current sheet. The DKI was found under a zero guide

magnetic field, whereas the mode B was found under a small but finite guide field. The guide

field, therefore, was found to influence the current sheet instabilities at kρi ∼ 1 as well. In

this chapter, we investigate the EM instabilities in a broad range of kρi, under intermediate

broad range of the guide fields.

4.2 Lower-Hybrid Drift Instability under Small Guide Field

In the following, we show the simulation results of current sheet instability under a small

guide field BG/Bx0 = 0.1 ==. It is found that under this small BG, only LHDI is present.

Cases of 2-D LHDI with kx = 0 and ky 6= 0 are presented first. The full 3-D results with

kx 6= 0 and ky 6= 0 are then presented. Because the EM GeFi code has not been benchmarked

in the lower-hybrid frequency range for an inhomogeneous plasma, the results of the GeFi

code are also compared with those of the FK code.

2-D Properties of Stability

Fig. 4.1 shows the results of case 1, with the same parameters as those in case 1 of

Chapter 3 for the ES limit, in which L = 0.25ρi0, βe0 = 0.016, BG/Bx0 = 0.1, ωpe/Ωce = 1.0,

and the background plasma density is set to be zero, i.e., nb0 = 0. Similar to Fig. 3.1, nly

modes with kyρi0 = ±26.1 are kept. The top column of Fig. 4.1 presents the GeFi simulation

results, while the bottom column shows the corresponding FK simulation results. The left,

middle and right columns show the contours of the perturbed magnetic field δBz, δBx and
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Figure 4.1: FK and GeFi simulation results for case 1, with L/ρi0 = 0.25, Te/Ti = 0.1,
βe0 = 0.016, nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0 and kyρi0 = 26.1. (a) Contours of δBz

from the GeFi (top) and FK (bottom) models. (b) Contours of δBx from the GeFi (top) and
FK (bottom) models. (c) Contours of δBy from the GeFi (top) and FK (bottom) models.
The dashed lines mark z = ±L, ±2L, and ±3L.

δBy in the y-z plane, respectively. The dashed lines in Fig. 4.1 mark the positions z = ±L,

±2L, and ±3L. Instability in the magnetic field perturbation is excited, which is found to

be located at the edge of the current sheet, within L < |z| < 2L, similar to the ES results in

Fig. 3.1. The compressional component δBy shows two anti-symmetric peaks, whereas Bx

and Bz show one peak.

Figs. 4.2 (a), (b) and (c) show the absolute values of the eigenfunctions of δBz, δBx,

and δBy respectively. Again, the compressional field δBy shows two peaks. Fig. 4.2(d) shows

|δBz| of the instability as a function of time. An exponential growth is seen, with a linear

growth rate of γ/Ωi0 = 20.5 obtained in the GeFi simulation and γ/Ωi0 = 18.7 from the

FK simulation. The results from the GeFi simulation are in excellent agreement with those

from the FK simulation in terms of the linear growth rate and mode structure. As expected,
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Figure 4.2: Eigenmodes of the FK and GeFi simulations for case 1, with L/ρi0 = 0.25,
Te/Ti = 0.1, βe0 = 0.016, nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0 and kyρi0 = 26.1. In
(a),(b),and (c), the solid lines present the absolute value of eigenfunctions obtained from
the GeFi (top) and FK (bottom) simulations. The dashed lines mark z = ±L, ±2L, and
±3L. (d) The growth rates of eigenmodes obtained from the GeFi (left) and FK (right)
simulations.

higher frequency fluctuations are also present in the growth curve of the FK results, while

the growth curve obtained from the GeFi model is much smoother due to the removal of

fluctuations with ω ∼ Ωe. The LHDI propagates in the +y direction, i.e., direction of the

ion drift, at both edges of the current sheet. Moreover, as shown in Figs. 4.2(a), 4.2(b) and

4.2(c), there is little δB near the center of the current sheet. The two eigenmodes on the

two sides of the current sheet are independent.

Fig. 4.3 shows the vector potential δA and the scalar potential δφ. For the scalar

potential δφ and each component of A, the instability is localized at z = L, . Ay shows two
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Figure 4.3: A-φ eigenmodes for case 1. The dashed lines mark z = ±L, ±2L, an ±3L.

anti-symmetric peaks at z = L, similar to δBy. The magnitude of δφ (∼ 10−2) is an order

of magnitude higher than δAz and δAx (∼ 10−3) and is two orders higher than δφ (∼ 10−4).

Therefore, as expected, the LHDI is a quasi-electrostatic mode even in the EM calculation.

To further illustrate the ES nature of the LHDI, the absolute values of ∇ × E and

∇ · E are plotted in Fig. 4.4. Overall, the ratio ∇ × E/∇ · E is found to be ∼ 10−1. The

longitudinal mode ∇ · E, in which the electromagnetic component is eliminated under the

Coulomb gauge, is much larger than the transverse mode ∇× E, in which the electrostatic

component is eliminated. Therefore, the comparison between ∇×E and ∇·E confirms that

the LHDI is a quasi-electrostatic mode.

The triangles with error bars in Fig. 4.5 show the real frequency ω (top plot) and the

open circles show the growth rate γ (bottom plot) of LHDI as a function of ky obtained from
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Figure 4.4: ∇ · E and ∇× E. The dashed lines mark z = ±L, ±2L, an ±3L.

the GeFi simulation, in which L = 0.23ρi0, βe0 = 0.0033, BG/Bx0 = 0.1, ωpe/ωe = 10, and

nb = 0.5. The growth rate of the instability is seen to peak at kyρi0 ' 70. As a comparison,

the dashed lines in Fig. 3 show the analytical dispersion relation obtained from the GeFi

theory[135]. It is seen that both the real frequencies and the growth rate obtained from the

GeFi simulation are nearly identical to those from the GeFi theory. The peak growth rates

from the two models are also nearly identical.

4.2.1 3-D Properties of Stability

We now show 3-D simulations of the LHDI for a case with a finite |kxρi0| = 1.2, for

|kyρi0| = 20.7 and all other parameters the same as case 1. Figs. 4.6, 4.7, and 4.8 show the

real space contours of δBx, δBy, and δBz, respectively, obtained from the GeFi simulation

of case 2 for planes y = 0.137ρi0, and x = −2ρi0, x = 2ρi0, and 6ρi0. It is found that the

3-D LHDI is excited and still localized at the edges of the current sheet. The phase of the

instability changes with positions x and y, according to δBz = δBz(z)exp(kxx + kyy). The

phase speed of unstable modes depends on kx and ky, and the direction of phase velocity

depends on z. It is shown, again, that the LHDI propagates along the same +y-direction on

both sides of current sheet, but in opposite directions along x. Consider the real frequency

ω > 0. For (kx, ky)ρi0 = (−1.2,−20.7),the phase velocity is vxph = −134.6vthix̂ in the x-

direction and vyph = 7.8vthiŷ in the y-direction on the z < 0 side, where vthi is the ion

thermal velocity. On the z > 0 side, the sign of the unstable kx is reversed to positive,
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Figure 4.5: Comparison of the frequency (top plot) and growth rate (bottom plot) between
the GeFi simulation (triangles) and the GeFi theory (dashed lines) for L = 0.23ρi0, βe0 =
0.0033, BG/Bx0 = 0.1, ωpe/Ωce = 10, and nb = 0.5.
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Figure 4.6: δBz contours in the 3-D simulation of case 2 for planes y = 0.137ρi0 in the y-z
cross-sections, and x = −2ρi0 , x = 2ρi0, and 6ρi0. Colorbar shows magnitudes of fields.

with vxph = 134.6vthix̂ and vyph = 7.8vthiŷ. The corresponding frequency is found to be

ω/Ωi0 = 161.5 on both sides of current sheet.

The eigenfunctions of δA and δφ of case 2 are presented in Fig. 4.9. The black solid

and the red pointed lines are the real and imaginary parts of the eigenfunctions, respectively.

The dashed black lines mark the positions z = ±L, ±2L, and ±3L. Like the ES results of

LHDI, the EM fluctuations in δA and δφ are localized at the edge of the current sheet

(L < |z| < 3L), andthe magnitude is nearly zero at the center of current sheet. It is seen

that the real and imaginary parts of the eigenfunctions on the both side of the current sheet

are not identical, but the absolute value of the eigenfunctions are identical. The two unstable

mode on the both sides are independent. Moreover, the magnitude of δφ (∼ 10−5) is two

order of magnitude higher than δA (∼ 10−7).

Next, we examine the growth rate of LHDI as a function of both kx and ky and compare

the results with the calculation in the ES limit. Fig. 4.10 shows contours of the growth
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Figure 4.7: δBx contours in the 3-D simulation of case 2 for planes y = 0.137ρi0 in the y-z
cross-sections, and x = −2ρi0 , x = 2ρi0, and 6ρi0.

Figure 4.8: δBy contours in the 3-D simulation of case 2 for planes y = 0.137ρi0 in the y-z
cross-sections, and x = −2ρi0 , x = 2ρi0, and 6ρi0.
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Figure 4.9: Eigenfunctions of case 2, with L/ρi0 = 0.25, Te/Ti = 0.1, βe0 = 0.016, nb0 = 0.0,
BG/Bx0 = 0.1, ωpe/Ωce = 1.0, kxρi0 = 1.2 and kyρi0 = 20.7. The black solid and the red
pointed lines are the real and imaginary parts of the eigenfunctions respectively. The dashed
black lines mark the position z = ±L, ±2L, and ±3L.
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rate γ obtained from the GeFi simulation in the kx-ky space for L/ρi0 = 0.25, Te/Ti = 0.1,

BG/Bx0 = 0.1, nb0 = 0 and ωpe/Ωce = 1.0, with a realistic proton-to-electron mass ratio

mi/me = 1836. The black dashed line in Fig. 4.22 marks k ·B = 0 at the edge of the current

sheet where the LHDI is present. As the contours showing, the maximal growth rate in the kx-

ky plane is found to be γmax/Ωi0 = 17.1, present at k ·B = 0, with (kx, ky)ρi0 = (−1.5, 15.0).

This peak LHDI growth rate corresponds to 0.4ωLH . The total wave number perpendicular

to the nonuniformity directionof this peak growth rate corresponds to k
√
ρiρe ' 1.5. At

the threshold kyρi = 2.6, the unstable kxρi = −0.15. When the wave number ky increases

to a point around kyρi0 > 35, the unstable region splits into two separate ones in kx for a

certain ky, located on the two sides and away from the k · B = 0 line. Similar to the ES

results, the unstable mode is peaked at k ·B = 0 when the wave number is relatively small,

whereas if the wave number is large enough the instability is peaked at k · B 6= 0. The

most unstable mode with the maximal growth rate in the kx-ky space, however, still satisfies

k · B = 0. Compared with the ES results shown in Fig. 3. 8, the maximum growth rate

becomes smaller, and the unstable region in the kx-ky plane shifts to smaller ky,

In addition, it is found that the stabilizing effects of BG is more efficient in the fully EM

calculation of LHDI. No LHDI is found when BG/Bx0 increases to 0.2 in the EM calculation,

whereas in the ES calculation the LHDI is found even when BG/Bx0 = 0.3.

4.3 Drift Kink and Sausage Instability under Moderate Guide Field

Previously, Wang et al.[84] found that EM-dominant instabilities in the lower-hybrid

frequency range and with kρi ∼ 1 exist in the 2-D plane which contains the current sheet

normal and the current under a moderate guide field BG/Bx0 = 0.2. In this section, the 3-D

instabilities under BG/Bx0 = 0.2 are studied with the 3-D GeFi code.

Fig. 4.11 shows the real space structure of δA and δφ in the y-z plane at x = 0 of

case 3, in which L = 0.25ρi0, βe0 = 0.016, BG/Bx0 = 0.2, ωpe/Ωce = 1.0, nb0 = 0. Only

modes with kxρi0 = ±0.2 and kyρi0 = ±1.2 are kept. The dashed lines mark the positions
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Figure 4.10: Contours of growth rate γ of LHDI in the kx-ky space for L/ρi0 = 0.25, Te/Ti =
0.1, BG/Bx0 = 0.1, nb0 = 0.0, mi/me = 1836, and ωpe/Ωce = 1.0. The dark dashed line
marks k ·B = 0. Colorbar shows growth rates.

z = ±L, ±2L, and ±3L, and the color-bar indicates the magnitude of fields. An instability

with fluctuation of δφ, δAx, and δAy is found to localize at the edge of the current sheet

(L < |z| < 3L), while δAz occupies the current sheet (0 < |z| < 3L). δφ and δAy have an

odd mode structure, while δAx and δAz have an even mode structure. Unlike the LHDI,

whose wave vector is parallel to the current sheet normal, the wave vector of the unstable

mode is oblique to the current direction. The quantity δB in the y-z plane is shown in Fig

4.12, in which δBx, δBy and δBz are seen to localize at the edge of the current sheet. All

components of δB propagate in the direction oblique to ŷ . The amplitude of δBy is one

order of magnitude larger than that of δBx, and two orders of magnitude larger than that

of δBz. Fig. 4.13 shows the real space contours of δBy in the x-z plane at y = 4.7ρi0, and in

y-z planes at x = 19.8ρi0, x = 44ρi0, and 68ρi0. The multiple planes in the figure show the

instability is localized at the edge of current sheet.

The eigenfunctions of scalar potential δφ and vector potential δA of case 3 are shown

in Fig. 4.13, where the black solid and red pointed lines are the real and imaginary parts,

respectively, and the black dashed lines mark the positions z = ±L, ±2L and ±3L. δφ and

δAy are of an odd symmetry, whereas δAx and δAz are of an even symmetry. The magnitude
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Figure 4.11: δφ and δA on the y-z plane of case 3 at z = 0, with L/ρi0 = 0.25, Te/Ti = 0.1,
βe0 = 0.016, nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0, kxρi0 = 0.2 and kyρi0 = 1.2. The
dashed black lines mark the position z = ±L, ±2L, and ±3L. Colorbar shows magnitudes
of fields.
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Figure 4.12: δB on the y-z plane of case 3 at z = 0. The dashed black lines mark the
position z = ±L, ±2L, and ±3L.

Figure 4.13: δBy contours in the 3-D simulation of case 3 for planes y = 4.7ρi0 in the y-z
cross-sections, and x = 19.8ρi0 , x = 44ρi0, and 68ρi0. Colorbar shows magnitudes of fields.
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Figure 4.14: Eigenfunctions of δφ and δA of case 3, with L/ρi0 = 0.25, Te/Ti = 0.1, βe0 =
0.016, nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0, kxρi0 = 0.2 and kyρi0 = 1.2. The black solid
and the red pointed lines are the real and imaginary parts of the eigenfunctions respectively.
The dashed black lines mark the position z = ±L, ±2L, and ±3L.

of δA and δφ are identical on both sides of the current sheet. At the center of the current

sheet, the value of δφ, δAx, and δAy are zero, while Az has a finite magnitude. Therefore,

unlike LHDI, the unstable mode on both sides of the current sheet are coupled.

The eigenfunctions of components of δB of case 3 are shown in Fig. 4.15. It is seen

that δBx and δBz are an even mode, and δBy is an odd mode. The magnitude of δBx and

δBy are an order of magnitude larger than that of δBz. The δBy component shows the

kink-like structure, in which the value of field at z = 0 is zero, similar to the drift kink

mode in Daughton[63]. The frequency of the mode is in the lower-hybrid frequency range

(ω/Ωi0 = 60.6 in case 3), and the imaginary part is several Ωi0 (γ/Ωi0 = 3.8). Thus, the

unstable mode is identified as the drift kink instability (DKI).
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Figure 4.15: Eigenfunctions of δB of case 3, The black solid and the red pointed lines are
the real and imaginary parts of the eigenfunctions respectively. The dashed black lines mark
the position z = ±L, ±2L, and ±3L.
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Figure 4.16: δB on the y-z plane of case 4 at z = 0, with L/ρi0 = 0.25, Te/Ti = 0.1,
βe0 = 0.016, nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0, kxρi0 = 0.6 and kyρi0 = 4.0. The
dashed black lines mark the position z = ±L, ±2L, and ±3L, colorbar shows magnitudes of
fields.

When the wave number k is increased, another instability is found to be excited. Fig.

4.16 shows the real space contours at x = lx/2 = 44ρi0 of all components of δB of case 4,

which has the same parameters as case 3 except for kxρi0 = ±0.6 and kyρi0 = ±4.0. The

dashed lines mark the positions z = ±L, ±2L, and ±3L. An instability is localized at the

edge of the current sheet, with an odd mode structure in δBx and δBz. The instability

propagates parallel to ŷ. The component δBy, also propagating along the ŷ, has two peaks

with an even symmetry and is located around the center of the current sheet. The amplitude

of Bx and By are comparable and an order of magnitude higher than that of Bz. Fig. 4.17

shows the real space contours of δBy in the x-z plane at y = 4.7ρi0, and in the y-z planes at

x = 19.8ρi0, x = 44ρi0, and 68ρi0, in the 3-D box.

The eigenfunctions of components of δB of case 4 are shown in Fig. 4.18, where the

black solid and red dotted lines indicate the real and imaginary parts, respectively. The
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Figure 4.17: δBy contours in the 3-D simulation of case 4 for planes y = 4.7ρi0 in the y-z
cross-sections, and x = 19.8ρi0 , x = 44ρi0, and 68ρi0. Colorbar shows magnitudes of fields
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Figure 4.18: Eigenfunctions of δB of case 4, The black solid and the red pointed lines are
the real and imaginary parts of the eigenfunctions respectively. The dashed black lines mark
the position z = ±L, ±2L, and ±3L.

black dashed lines mark the positions z = ±L, ±2L, and ±3L. The quantities δBx and δBz

have a kink-like structure (odd mode). The quantityδBy, whose two peaks are located close

to the center of the current sheet, has a sausage-like structure (even mode). The growth rate

of the instability is γ/Ωi0 = 2.5, larger than that of the tearing mode. Due to the sausage

structure of δBy and the lower-hybrid range frequency (ω/Ωi0 = 28.8), the instability is

called the drift sausage instability (DSI).

The growth rates of the drift kink and sausage instabilities are calculated as a function

of kx and ky, shown in Fig. 4.19. The unstable region is separated as two zones, A and

B, as pointed by the two arrows. The black dashed line marks k · B = 0. In zone A

(−2 < kxρi0 < 1, 0 < kyρi0 < 4), the DKI is dominant. The most unstable DKI is away

from k ·B = 0. The DSI exists in zone B (−3 < kxρi0 < −1, 4 < kyρi0 < 8) and is peaked
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Figure 4.19: Contours of growth rate γ of DKI and DSI in the kx-ky space for L/ρi0 = 0.25,
Te/Ti = 0.1, BG/Bx0 = 0.2, nb0 = 0.0, mi/me = 1836, and ωpe/Ωce = 1.0. The dark dashed
line marks k ·B = 0. Colorbar shows the growth rates of DKI and DSI

at k ·B = 0. The growth rates of the DKI and DSI are comparable, with the growth rates

of DKI being a little larger.

4.4 Instability under Large Guide Field

In this section, instabilities under a larger guide field, BG/Bx0 = 0.6, are searched in

the 3-D current sheet system.

Fig. 4.20 shows all components of the perturbed magnetic field δB of case 5, in which

L = 0.25ρi0, βe0 = 0.016, BG/Bx0 = 0.6, ωpe/Ωce = 1.0, and nb0 = 0. Only modes with

kxρi0 = ±0.6 and kyρi0 = ±14.5 are kept. The dashed lines in Fig. 4.13 mark the positions

z = ±L, ±2L, and ±3L. The primary peaks of δBx and δBz are of an odd mode and located

at the central region of the current sheet, within 0.2L < |z| < L. There also exist secondary

peaks with a smaller magnitude, within L < |z| < 2L. The wave vectors of δBx and δBy

are oblique to ŷ and pointing toward the current sheet center. The quantity δBy, which is
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Figure 4.20: Mode structures of δB for case 4, with L/ρi0 = 0.25, Te/Ti = 0.1, βe0 = 0.016,
nb0 = 0.0, BG/Bx0 = 0.6, ωpe/Ωce = 1.0, kxρi0 = 0.6 and kyρi0 = 14.5. The dashed lines
mark z = ±L, ±2L, and ±3L. Colorbar shows magnitudes of fields

the compressional component of magnetic field, is an even mode and peaked at the center

of current sheet.

The real space structure of δA and δφ are shown in Fig. 4.21. The scalar potential δφ

is localized at the edge of the current sheet with the wave vector oblique to the y direction.

The vector potentials δAx and δAz are an odd mode and have a kink-like structure. The

primary peaks of these two components are located inside the current sheet (|z| < L), The

secondary peaks are present at the edge of the current sheet (L < |z| < 2L). The component

δAy is an even mode and have a sausage-like structure, for which the primary peak is located

exactly at the center of the current sheet while the secondary peak is at 0.2L < |z| < L.

The magnitude of δφ is an order of magnitude larger than that of δA.

The eigenfunctions of δB of case 4 are shown in Fig 4.22, in which the black solid

and red dotted lines indicate the real and imaginary parts of the eigenfunction. The black
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Figure 4.21: Mode structures of δA and δφ for case 4, with L/ρi0 = 0.25, Te/Ti = 0.1,
βe0 = 0.016, nb0 = 0.0, BG/Bx0 = 0.6, ωpe/Ωce = 1.0, kxρi0 = 0.6 and kyρi0 = 14.5. The
dashed lines mark z = ±L, ±2L, and ±3L.
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Figure 4.22: Eigenfunctions of δB case 4, with L/ρi0 = 0.25, Te/Ti = 0.1, βe0 = 0.016,
nb0 = 0.0, BG/Bx0 = 0.1, ωpe/Ωce = 1.0, kxρi0 = 0.6 and kyρi0 = 14.5. The black solid and
the red pointed lines are the real and imaginary parts of the eigenfunctions respectively. The
dashed black lines mark the position z = ±L, ±2L, and ±3L.

dashed lines mark the positions z = ±L, ±2L, and ±3L. It is seen that δBz and δBx are an

odd mode and has a kink-like structure, while δBy is an even mode and has a sausage-like

structure. The magnitude of δBx, δBy, and δBz are comparable.

Fig. 4.23 shows the real space contours of the compressional component, δBy, for planes

y = 0, and x = 2.25ρi0, x = 10.5ρi0, and 18.8ρi0. The compressional magnetic fluctuation is

seen to be located at the center of the current sheet.

Although the spatial structure of this unstable mode is similar to that of the DSI in

case 4, the wave number (k
√
ρiρe ∼ 1 ) of the instability is much larger than that of the DSI

(kρi0 ∼ 1). The real frequency (ω/Ωi0 = 226.9) and the growth rate (γ/Ωi0 = 10.97) of this
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Figure 4.23: δBz contours in the planes y = 0, and x = 2.25ρi0, x = 10.5ρi0, and 18.8ρi0 of
case 5. Colorbar shows magnitudes of fields

mode are an order of magnitude larger than those of the DSI. Moreover, the compressional

magnetic fluctuation peaks exactly at the sheet center, which is also different from the

structure of the DSI.

Finally, we examine the growth rate of this new mode as a function of both kx and ky.

Fig. 4.24 shows contours of the growth rate γ obtained from the GeFi simulation in the kx-ky

space for L/ρi0 = 0.25, Te/Ti = 0.1, BG/Bx0 = 0.6, nb0 = 0 and ωpe/Ωce = 1.0, and a realistic

mi/me = 1836 is assumed. The black dashed line in the figure marks (k×B) = 0 atz = 0.6L,

where the peak of δAx is present. As the contours showing, the maximal growth rate is found

to be γmax/Ωi0 = 13.1, located at k×B = 0, with (kx, ky)ρi0 = (−10.0, 10.0). The instability

appears to be the ion-electron streaming instability, also known as the Buneman instability,

as predicted by Yoon and Lui[131], which peaks at k×B = 0.

It is believed that collisonless magnetic reconnection requires an excitation of anomalous

resistivity at the current sheet center, or the neutral point of magnetic field. Since the

86



Figure 4.24: Contours of growth rate γ in the kx-ky space for L/ρi0 = 0.25, Te/Ti = 0.1,
BG/Bx0 = 0.1, nb0 = 0.0, mi/me = 1836, and ωpe/Ωce = 1.0. The dark dashed line marks
ẑ · (k×B) = 0. Colorbar shows growth rates.

location where k · B = 0 can only be on the edge of the current sheet or outside the sheet

center, it was argued that the LHDI, whose maximum growth rate occurs at k ·B = 0, may

not be the direct cause for the anomalous resistivity. In the presence of a finite guide field

BG, we have found the existence of a Buneman instability mode with k ·B 6= 0 at the center

of the current sheet. In this mode, the wave perturbation in magnetic field is dominated by a

compressional fluctuation δBy in the direction of the electron drift velocity. It is speculated

that this mode may contribute directly to the electron anomalous resistivity in magnetic

reconnection.

4.5 Summary

In this chapter, the electromagnetic instabilities in a Harris current sheet are studied

systematically by using the 3-D GeFi δf particle simulation model for cases with a finite

guide field BG, with sheet normal in the z direction and guide field in the y direction. The

instabilities are investigated for various (kx, ky). Effects of the guide field BG are studied.

The GeFi particle simulation results are compared with the GeFi theory and the FK particle

simulations. The main results are summarized below.
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1. The real space and eigenmode structures of LHDI obtained from the GeFi simulation

agree very well with those from the FK δf simulations. The dispersion relation obtained

from the GeFi simulation agrees very well with those obtained from the analytic theory and

the FK simulation.

2. The lower-hybrid drift instability which exists under a small guide filed, localized at

the edges of current sheet (1 < |z/L| < 2). The LHDI is essentially a quasi-electrostatic

mode with the magnitude of δφ two orders of magnitude larger than δA. The growth

rates are calculated in the kx-ky space. The simulation results show that under a certain

ky, the dominant unstable mode of LHDI satisfies k · B = 0 when the wave number ky is

relatively small. As the wave number becomes larger, the dominant unstable mode can peak

at k·B 6= 0, although the most unstable mode in the entire kx-ky plane still satisfies k·B = 0.

3. The drift kink and the drift sausage instabilities are found under a moderate

BG/Bx0 = 0.2 at kρi0 ∼ 1 region. The magnetic fluctuations of DKI are localized at the edge

of the current sheet, which propagates obliquely to the current. The compressional field of

DSI is located around the center of the current sheet. The growth rates of the DKI and DSI

as the function of kx-ky, show that the DSI is peaked at k · B = 0 and the most unstable

DKI is away from that.

4. Under a larger guide field, the Buneman instability with the compressional magnetic

field δBy localized at the center of the current sheet is found. The electrostatic fluctuation

δφ is located at the edges (L < |z| < 3L), while the electromagnetic fluctuation δA is located

at the center of the current. The growth rates are calculated in the kx-ky space, and it is

found that the most unstable mode peaks at k×B = 0.
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Chapter 5

Summary

In this thesis, the instabilities in the Harris current sheet are investigated by the 3-

D GeFi δf particle simulation code. The instabilities are calculated for a broad range of

finite guide fields. The stability properties of unstable modes are systematically screened the

(kx,ky) space. The GeFi particle simulation results are compared with the GeFi eigenmode

theory and the FK particle simulations.

LHDI can be excited at a small but finite guide field BG/Bx0 = 0.1 and k
√
ρiρe ∼

1. The electromagnetic perturbations of LHDI are localized at the edge of current sheet.

The propagation direction of LHDI is parallel to the drift current. The LHDI is a quasi-

electrostatic instability. The linear stability calculations show that compared to the cases

in the purely ES limit, the LHDI in the fully EM calculation has a smaller growth rate and

can be more efficiently stabilized by an increasing BG. LHDI is found to be scaled with the

lower hybrid characteristic length 1/
√
ρi0ρe0 and frequency ωLH when mi/me and L vary.

Since the LHDI is located at the current sheet edge, the instability in the linear stage may

not directly contribute to the anomalous resistivity.

DSI and DKI are found to coexist at kρi ∼ 1 and BG/Bx0 = 0.2. DSI possesses a

compressional magnetic perturbation around the sheet center, thus it is a potential source of

anomalous resistivity. The fluctuations of DKI are located at the sheet edge, similar to the

LHDI, and thus the instability may not directly produce anomalous resistivity. The growth

rate contours show that the DKI is present at kyρi0 < 4, while the DSI is at kyρi0 > 4. The

most unstable DKI is away from k ·B = 0, while, the DSI is peaked at k ·B = 0.

An electromagnetic unstable mode is found to be present at a larger BG/Bx0 = 0.6 and

k
√
ρiρe ∼ 1. The mode has a compressional magnetic perturbation at the center of current
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sheet. Therefore, the unstable mode may have the contribution to anomalous resistivity.

The calculation of growth rate in kx-ky shows that the most unstable mode is at k×B = 0.

It is consistent with the calculations of Buneman instability calculated with the two-fluid

theory. Hence, the instability is recognized as the Buneman instability. Since the magnetic

perturbation of this mode is dominated by a compressional fluctuation δBy in the direction

of the electron drift velocity, it is suggested that this mode may contribute directly to the

elctron anomalous resistivity in magnetic reconnection.
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