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Abstract

In this work, we analysis the application of emerging wireless communications on the sta-

bility of computing and transmission queues of mobile devices. Firstly, we present a Lyapunov

optimization-based scheme for cloud offloading scheduling, as well as download scheduling for

cloud execution output, for multiple applications runningin a mobile device with a multi-core

CPU. We derive an online algorithm and prove performance bounds for the proposed algorithm

with respect to average power consumption and average queuelength. which is indicative of delay,

and reveal the fundamental trade-off between the two optimization goals.

Extending Long Term Evolution (LTE) to unlicensed bands, termed LTE-unlicensed promises

tremendous spectrum to meet the increasing wireless data transmission demands and we proposed

a novel distributed online algorithm for opportunistic sharing of unlicensed bands among LTE-

unlicensed base stations (BS), while guaranteeing the QoS ofuser equipments (UE). We first de-

rive a Lyapunov optimization based algorithm for BS’s to evaluate the true value of unlicensed

spectrum, guarantee a maximum delay, and minimize the packet drop rate. We then develop a

distributed auction mechanism to maximize the social welfare in each auction and enable optimal

spectrum reuse. We prove that BS’s bid truthfully with the proposed algorithm, while UEs’ QoS

requirements on delay and packet drop rate can be guaranteedwith bounded optimality gaps. We

also reveal an interesting trade-off between delay and packet drop rate.

Full-duplex is gaining significant interest recently and can double the system throughput the-

oretically. In this work, we investigate the trade-off between energy consumption and delay in a

multi-channel full-duplex wireless LAN (WLAN). The goal is to minimize the energy consump-

tion while keeping the packet queues stable. With Lyapunov optimization, we develop an online

scheme to achieve the goals with optimized channel assignment, transmission scheduling, and

transmission mode selection. We prove the optimality of theproposed algorithm and derive upper
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bounds for the average queue length and energy consumption,which demonstrate the energy-delay

trade-off.

We finally studied the problem of joint access control and spectrum resource allocation in a

two-tier femtocell network with one macro base station (MBS)and multiple Femto Access Points

(FAP). The objective is to maximize the overall network capacity, while guaranteeing the quality

of service (QoS) requirement of all UE. We develop an access scheme for Macro User Equipments

(MUE) and a spectrum allocation mechanism for the FAPs. Spectrum allocation is employed as an

incentive mechanism to encourage FAPs to serve more MUEs. Wealso derive an upper bound of

the network-wide capacity through a reformulation of the problem.
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Chapter 1

Introduction

Recent years have witnessed the exceptional increase of mobile devices, including smart-

phones and tablets. In the US, the number of smartphone usershas been steadily increasing for

some years and forecasts estimate that the increase of smartphone users in North American will

continue rising steadily into the future. The prediction ofthe number of smartphone users in the

United States from 2010 to 2019 is shown as Fig.1.1. For 2016,the number of smartphone users

is estimated to reach 207.2 million in the United States and is estimated to exceed 2 billion world-

wide by that time [1]. Accompany with the fast increasing of the mobile device users, the number

of apps available on mobile devices is also expanding steadily. For Apple along, there are 1.5 mil-

lion Apps available in June, 2015, and the number of available apps in the Apple App Store from

July 2008 to June 2015 is shown in Fig.1.2. With the burst of applications targeting mobiles de-

vices, mobile devices are expected to be capable of running multiple applications simultaneously

and take part of the role of a laptop, such as mobile office, online videos and video games, which

requires strong computational capacity and high speed wireless data transmission.

However, due to the mobility requirement, the energy supplyand physical size of mobile de-

vices are limited, the computational capacity of mobile devices can hardly been met. Under such

circumstances, smart phone manufacturers are keep adopting stronger CPUs which always come

with thermal problems, heavier batteries and less the battery time. In other words, it is challenging

to balance the demands for stronger computation capacity and the mobility of mobile devices in

the foreseeing future. Mobile cloud offloading has been recognized as an effective solution to the

limited resource problem [4, 5]. Mobile cloud offloading involves wireless communication, cloud

computing and mobile computing, which brings rich computation and storage resource of cloud

computing providers to resource-constraint mobile devices through wireless channel of Internet.
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Figure 1.1: Prediction of the number of smartphone users in the United States from 2010 to 2019
(in millions) [1]
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Figure 1.2: number of available apps in the Apple App Store from July 2008 to June 2015 [2]

With offloading, we can store our photos and videos in the cloud and fetch it whenever it is needed.

Furthermore, computation intensive tasks can also be offloaded to software clones in the cloud [7],

so that most computation can be executed in the cloud to greatly reduce the burden on the mobile

device [8]. However, offloading data and computational tasks could involve considerable com-

munications between mobile devices and cloud clones, whichcould consume a large amount of

energy and incur extra delay. Hence, the decision between cloud offloading or local execution

should be carefully made at each mobile device, taking into account the energy consumption and

delay of various options, as well as the status of the wireless network.

To support the higher speed of wireless data transmission ofmobile devices, full-duplex radio,

LTE-unlicensed and Femtocells were introduced to increasethe wireless link capacity.
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To meet the so-called 1000x mobile data challenge [87], extending LTE to the unlicensed

spectrum, as specified in LTE Rel-10 – Rel-13 [83, 84], has recently gained significant atten-

tion [83, 84, 87, 88, 90, 92–98]. However, there are two main challenges to the success of the

so-calledLTE-unlicensedtechnology. First, the unlicensed bands are already occupied by many

existing wireless networks (e.g., WiFi). It is essential toenable the coexistence of LTE-unlicensed

with existing unlicensed band users, i.e., to avoid significant performance degradation to exist-

ing users while achieving high capacity gains with LTE-unlicensed. Second, the interference in

unlicensed bands is unpredictable, which is detrimental tothe performance of LTE-unlicensed

users. Hence, it is important to effectively manage the interference between LTE-unlicensed and

existing users, and that among LTE-unlicensed users themselves. In this work, we investigate the

problem of opportunistic spectrum sharing among LTU-unlicensed BS’s. We consider the License

Assisted Access (LAA) scenario, in which licensed and unlicensed carrier bands are integrated and

used [84]. We also adopt the LBT mechanism for co-existence ofLTE-unlicensed and WiFi [95].

For the LTE-unlicensed BS’s deployed in the same area on both licensed and unlicensed bands, we

propose a novel distributed online algorithm for opportunistic sharing of unlicensed bands among

the BS’s, while guaranteeing the QoS of UEs in the form of bounded worst case delay and mini-

mized packet drop rate.

Through effective self-interference cancellation, full-duplex transmission, i.e., transmitting

and receiving simultaneously in the same band, has been successfully demonstrated [36]. With

various self-interference cancellation techniques, full-duplex transmission has the potential to in-

crease and even double the wireless link capacity [37]. Due to imperfect self-interference cancel-

lation, the residual self-interference may still lead to a lower signal-to-interference-plus-noise ratio

(SINR) and deteriorate the performance of a full-duplex link[42]. Additional power is needed to

combat the residual self-interference to achieve a suitable SINR. As a result, full-duplex transmis-

sion may not always be helpful, and there is a trade-off between the energy cost and delay in the

design of full-duplex wireless networks [43].
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Femtocells, also named as Femto Access Points (FAP), are small, low power cellular base

stations (BS). Femtocells are designed for use at homes and small enterprises, and are usually

connected to the core network with broadband wireline connections [50]. In addition to providing

a shortcut to the core network, the wireline connection alsoenables coordinations among FAPs and

macrocell base stations (MBS) to improve the performance of the two-tier network. Femtocells are

considered as a low-cost and effective solution to extend wireless coverage and offload voice and

wireless data. This is really important, as research indicates that 70% of data traffic take place

indoor where the coverage of conventional cellular networks is usually poor. With femtocells, the

distance between BS and a User Equipments (UE) is greatly reduced, thus enabling better signal

transmissions and better spatial reuse of spectrum. In thiswork, we investigate the problem of

access control and spectrum resource allocation in two-tier femtocell networks. We assume one

MBS and multiple FAPs in the area and consider the open access scheme. The FUEs are always

connected to the corresponding FAPs, while the MUEs can choose between the MBS and a nearby

FAP for connection. The spectrum is divided into two parts, one for the MBS and the other part

for the FAPs. To provide incentives to FAPs for serving MUEs,we allow dynamic partition of the

spectrum according to the network dynamics; more bandwidthwill be allocated to the FAPs if they

serve more MUEs.

The contributions of this work are summarized as follows.

• We present a Lyapunov optimization-based scheme for cloud offloading scheduling, as well

as download scheduling for cloud execution output, for multiple applications running in a

mobile device with a multi-core CPU. We derive an online algorithm and prove performance

bounds for the proposed algorithm with respect to average power consumption and average

queue length, which is indicative of delay, and reveal the fundamental trade-off between

the two optimization goals. The performance of the proposedonline scheduling scheme is

validated with trace-driven simulations.
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• We proposed a novel distributed online algorithm for opportunistic sharing of unlicensed

bands among LTE-unlicensed base stations (BS), while guaranteeing the QoS of UE. We

first derive a Lyapunov optimization based algorithm for BS’sto evaluate the true value of

unlicensed spectrum, guarantee a maximum delay, and minimize the packet drop rate. We

then develop a distributed auction mechanism to maximize the social welfare in each auction

and enable optimal spectrum reuse. We prove that BS’s bid truthfully with the proposed

algorithm, while UEs’ QoS requirements on delay and packet drop rate can be guaranteed

with bounded optimality gaps. We also reveal an interestingtrade-off between delay and

packet drop rate. The proposed algorithm is validated with simulations.

• We investigate the trade-off between energy consumption and delay in a multi-channel full-

duplex WLAN. The goal is to minimize the energy consumption while keeping the packet

queues stable. With Lyapunov optimization, we develop an online scheme to achieve the

goals with optimized channel assignment, transmission scheduling, and transmission mode

selection. We prove the optimality of the proposed algorithm and derive upper bounds for the

average queue length and energy consumption, which demonstrate the energy-delay trade-

off. The proposed algorithm is validated with simulations.

• We study the problem of joint access control and spectrum resource allocation in a two-tier

femtocell network with one MBS and multiple FAP. The objective is to maximize the overall

network capacity, while guaranteeing the QoS requirement of all UE. We develop an access

scheme for MUE and a spectrum allocation mechanism for the FAPs. Spectrum allocation

is employed as an incentive mechanism to encourage FAPs to serve more MUEs. We also

derive an upper bound of the network-wide capacity through areformulation of the problem.
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Chapter 2

Energy Delay Trade-off in Cloud Offloading for Mutli-core Mobile Devices

2.1 Introduction

There is a proliferation of mobile devices in recent years, such as smartphones and tablets,

which are becoming more and more powerful with even multi-core CPUs. However, mobile de-

vices still suffer from comparably limited resources. For example, the power of a smartphone

comes at the cost of higher burden on the battery. As a result,although we are freed from a wire-

line data connection, we are still highly dependent on a power socket and charger. In addition,

smartphones usually have relatively limited storage. Withmany apps, photos, and multimedia files

recorded or cached, the internal storage space of our mobiledevices can be easily depleted.

Cloud offloading has been recognized as an effective solutionto the limited resource prob-

lem [4,5]. With offloading, we can store our photos and videosin the cloud and fetch it whenever

it is needed. Furthermore, computation intensive tasks canalso be offloaded to software clones

in the cloud [7], so that most computation can be executed in the cloud to greatly reduce the bur-

den on the mobile device [8]. However, offloading data and computational tasks could involve

considerable communications between mobile devices and cloud clones, which could consume a

large amount of energy and incur extra delay. Hence, the decision between cloud offloading or

local execution should be carefully made at each mobile device, taking into account the energy

consumption and delay of various options, as well as the status of the wireless network.

In this chapter, we study the problem of effective cloud offloading scheduling while consid-

ering downloading the output of cloud execution, for mobiledevices with muti-core CPUs. We

also consider task scheduling among the multiple cores of the CPU and frequency adaptation for

the CPU, considering both energy cost and user experience with respect to delay. Specifically,
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there are several trade-offs in making the optimal decisions. First, cloud offloading involves data

transmissions from the mobile device to the cloud, as well asdownloading the output of cloud

execution, through a stochastic and thus unpredictable wireless channel. The energy efficiency of

cloud offloading could be poor when the wireless coverage is weak. In such cases, energy may be

conserved if we delay cloud offloading and downloading untilthe channel gets better, but at the

cost of additional delays. Furthermore, cloud offloading may not be a good choice for applications

with a large amount of offloading data to be sent to the cloud, or a large amount of output data

to be downloaded after cloud execution, since transmittingthe data over a wireless channel may

consume considerable power and incur large delay as well, which offset the gains achieved by

executing the task in the cloud. Similarly, energy can be conserved for local execution by reducing

the CPU frequency, but at the cost of slower execution (and thus increased delay) of the tasks.

Motivated by these observations, we present a holistic formulation of the problem of optimal

cloud offloading decision making for multiple applicationsrunning in a multi-core mobile device.

The formulation takes into account the above trade-offs by incorporating the key control knobs,

including CPU frequency and computation capability at the mobile device, offloading and down-

loading data volume of the applications, and the time-varying capacity and expected offloading

power consumption of the wireless connection.

We then develop an effective solution algorithm to the formulated problem. The proposed

scheduling algorithm is based on the Lyapunov optimizing framework [9, 14, 46]. It dynamically

schedules the tasks in the task queues for cloud offloading orlocal execution, downloads output

from the cloud for offloaded tasks, and in the case of local execution, tunes the CPU frequency

to balance energy consumption and delay, based on the current network condition and task queue

backlogs. The proposed algorithm is inherently anonline algorithm, meaning that it does not re-

quire information about the stationary distributions of the arrival and wireless channel processes,

neither does any future application and network state information. It makes decisions based on the

current queue backlogs and wireless channel conditions. Such an online algorithm would be useful

8



for real-time applications. We derive upper bounds on the average energy consumption and aver-

age queue length achieved by the proposed algorithm, which clearly reveal the trade-off between

energy consumption and delay in optimal cloud offloading. The proposed algorithm is validated

with trace-driven simulations, where the mobile device hasboth LTE and WiFi connections, and

the energy-delay trade-off is clearly revealed.

The rest of this chapter is organized as follows. The system model and problem statement

are presented in Section 2.2. The proposed algorithm is developed in Section 2.3 and evaluated

with trace-driven simulations in Section 2.4. We review related work in Section 2.5. Section 2.6

concludes the chapter. The main notation used in this chapter is summarized in Table 2.1 and

Table 2.2.
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Table 2.1: Notation
Symbol Description

N number of applications
N set of applications
N ′ number of applications can be offloaded
N ′ set of applications can be offloaded
Q(t) set of application queues
Qi(t) queue of applicationi
Ai(t) new arrivals to queuei at timet
A(t) set of arrivals at timet
λi arrival rate of applicationi
~λ set of arrival rate
Bi(t) number of tasks of applicationi executed locally at timet
BO
i (t) number of executed tasks of applicationi downloaded at

time slott
BD
i (t) service rate of the cloud output queue for applicationi at

time slott
θi(k) computational complexity of taskk of applicationi
Di(k) data size for offloading taskk of applicationi
DD
i (k) data size of cloud execution output of taskk of

applicationi
QD
i (t) returned output queue at of applicationi at the end of

time slott
QD(t) set of returned output queue at of application at the

end of time slott
ADi (t) arrival to queueQD

i (t) at time slott
Ai(t) set of arrival to queuesQD(t) at time slott
f(t) clock frequency of CPU at time slott
v voltage of the mobile CPU at timet
η′ energy coefficient of CPU
εi(t) energy consumption of corei at time slott
ε(t) overall energy consumption of the CPU at timet
αL(t) set of application being executed locally
Θi(t) amount of computations a CPU core can offer to

applicationi
M number of CPU core
η adjusted energy coefficient
ωO(t) uplink wireless data rate
ωD(t) downlink wireless data rate
αO(t) offloaded application at timet
pO(t) energy consumption of offloading
αD(t) application downloaded for execution data at timet

10



Table 2.2: Notation(contd.)

Symbol Description

pD(t) energy consumption of downloading at timet
P̄ average overall power consumption
P (t) overall power consumption at time slott
Q̄ average overall queue length, including task queues and

downloading queues
L(Q(t)) Lyapunov function
Vp Lyapunov constant
P opt optimum (minimum) energy consumption
ǫ > 0 distance between the data arrival rate vector~λ and the

system capacity region under the proposed algorithm
ξ defined in (2.39), (2.41) and (2.42)
ϕ a term defined in (2.30)
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Figure 2.1: The system model.

2.2 System Model and Problem Statement

2.2.1 System Model

The system model is illustrated in Fig. 2.1. We consider a mobile device havingN applica-

tions running,1 denoted asN = {1, 2, · · · , N}, among which1 ≤ N ′ ≤ N applications, denoted

asN ′, can be offloaded to the cloud. The tasks generated from each application are enqueued

and processed in a First-In-First-Out (FIFO) manner. In addition, we assume that the arrival and

execution of these tasks follow a discrete, time-slotted system. In particular, the queue of tasks

waiting to be processed for applicationi at the beginning of time slott is denoted asQi(t), and the

overall queue lengths at the beginning of time slott are denoted as

Q(t) = {Q1(t), Q2(t), · · · , QN(t)}. (2.1)

In time slott, the tasks generated by applications are denoted as

A(t) = {A1(t), A2(t), · · · , AN (t)}, (2.2)

1A multiple-thread application that enables parallel computing, can be treated as multiple applications.
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which can be regarded as new arrivals toQ(t). In this chapter, we assume that eachAi(t) is

independent and identically distributed (i.i.d.) over time slots and the expectations of them, i.e.,

the average arrival rates, are denoted as

~λ
∆
= E{A(t)} = {λ1, λ2, · · · , λN}. (2.3)

The departing tasks from queueQ(t) at time slott is either scheduled for local execution, denoted

as

B(t) = {B1(t), B2(t), · · · , BN(t)}, (2.4)

or offloaded to the cloud, denoted as

BO(t) = {BO
1 (t), B

O
2 (t), · · · , B

O
N (t)}. (2.5)

In addition, we assume that for taskk of applicationi, the computational complexity for local

execution,θi(k) (i.e., the amount of computations required to accomplish the task), the data size

for offloading,Di(k) (i.e., the amount of data transmitted for executing the taskin the cloud), and

the data size of the cloud execution output,DD
i (k) (i.e., the results to be returned to the mobile

device), are all i.i.d. random variables. If the task cannotbe offloaded to the cloud, then we have

Di(k) = ∞ andDD
i (k) = 0. Alternatively, if the task can only be offloaded to the cloud, then we

haveθi(k) = ∞.

When a task is offloaded, it is first processed by a server in the cloud and then the output of

cloud execution is returned to the mobile device. Hence, there is also a queue for the output data

of cloud execution (e.g., at the access point or base station). LetQD(t) denote the returned output

queue at the end of the time slott, as shown in Fig. 2.1. We have

QD(t) = {QD
1 (t), Q

D
2 (t), · · · , Q

D
N(t)}, (2.6)
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whereQD
i (t) = 0 for i ∈ N\N ′, as there will be no output from cloud computing if the task

cannot be offloaded. The arrival to the queueQD(t) can be denoted as

AD(t) = {AD1 (t), A
D
2 (t), · · · , A

D
N(t)}, (2.7)

for an applicationi task that is to be offloaded,|ADi (t)| = |BO
i (t)|. That is, if we ignore the time

a cloud server takes to process the task, there is an increment of queue length inQD
i (t) if a task in

Qi(t) is offloaded to the cloud.

2.2.2 Local Execution Energy Consumption Model

For applications that are executed locally at the mobile device, most of the energy consump-

tion comes from the CPU and the screen. As the screen energy consumption is largely dependent

on the user habit, we do not take this part into account in thischapter.2 The energy consumption is

thus mainly determined by the CPU operation.

In particular, the CPU energy consumption is proportional tov2, wherev is the CPU volt-

age [10]. Furthermore, the clock frequency of the CPU at time slot t, denoted asf(t), is shown

approximately linear to the CPU voltagev [10]. Therefore, the CPU power consumption in a CPU

core occupied by applicationi in time slott can be approximated as

εi(t) = η′ · f 2
i (t), (2.8)

whereη′ is the energy coefficient determined by the CPU hardware architecture. As the energy

consumption is linear withf 2(t), energy can be saved by reducing the CPU frequency, which,

however, will slow down the execution of the tasks.

A CPU schedule can be represented by{αL(t),Θ(t)}, whereαL(t) ∈ N is the set of ap-

plications being executed locally,Θ(t) = {Θ1(t),Θ2(t), · · · ,ΘN(t)}, andΘi(t) is the amount of

2It may be annoying to dynamically adjust the display size, resolution, or brightness during the execution of an
application. We simply assume some constant amount of energy consumption associated with this part.
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computations a CPU core can offer to applicationi at time slott. Note thatΘi(t) = 0, if i /∈ αL(t).

Assuming that there areM cores in the CPU. We have|αL(t)| ≤ M , i.e., the number of parallel

computing applications cannot exceed the number of cores inthe CPU. For a given CPU architec-

ture, the computational capabilityΘi(t) is usually linear with the CPU frequency. Hence, the CPU

energy consumption at timet is also a quadratic function ofΘi(t), i.e.,

εi(t) = η ·Θ2
i (t), (2.9)

whereη is the adjusted energy coefficient. The total energy consumption for local execution is

ε(t) =
N
∑

i=1

εi(t). (2.10)

2.2.3 Offloading Energy Consumption Model

For applications that can be offloaded to the cloud, we make the following assumptions. First,

we assume that a software clone has already been associated with each application in the cloud

to support cloud computing [11], such that only the latest use generated data, application status

updates, and cloud execution output, refereed to asoffloading data, need to be transmitted between

the mobile device and the cloud.

Second, we focus on the channel models associated with the wireless interfaces and ignore

the delay and energy consumption in the cloud, which are justifiably minor issues comparing to

that on the mobile device side. It is typical for a smartphoneto choose one of the mobile networks

(e.g., 2G, 3G, LTE, and WiFi) and the corresponding data rateis determined by the operator and

the baseband chip configuration. We adopt the network selection algorithm proposed in [12] to

choose between a cellular network and WiFi, and focus on the task scheduling problem in this

chapter.
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Let ωO(t) be the wireless link data rate from the mobile device to the cloud, andωD(t) the

data rate from the cloud to the mobile device. An offloading decision is denoted as

αO(t) ∈ {N ′,′ idle′}. (2.11)

That is, the device can choose to offload a task from one of the eligible queues or remain idle (i.e.,

to choose local execution). Then, the expected energy consumption is denoted aspO(t). Similarly,

the decision for downloading the cloud execution output canbe denoted as

αD(t) ∈ {N ′,′ idle′}, (2.12)

and the expected energy consumption is denoted aspD(t).

2.2.4 Queuing And The Overall Energy Consumption Model

As discussed, energy can be conserved by optimizing the execution decision for the applica-

tion tasks, i.e., local execution or offloading to the cloud.For local execution, energy can be saved

by reducing the CPU frequency (i.e., running the applicationat a lower speed, which leads to a

smallerΘ(t)). For offloading, energy can be saved by only using good channels for transmission

of offloading data and receiving the cloud output. There maybe an additional delay to wait for the

channel to get better. If we aggressively save power by thesemeans, the applications will suffer

from large delays; the lengths of the task queues may increase to very high levels and the system

may become unstable. We need to balance energy saving and delay, which is indicated by the task

queue length.

Define the total power consumption in time slott as

P (t) = ε(t) + pO(t) + pD(t). (2.13)
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Based on the local execution and offloading energy consumption models, the overall energy con-

sumption of the mobile device can be derived as follows.

P̄
∆
= lim sup

T→∞

1

T

T−1
∑

t=0

P (t) (2.14)

= lim sup
T→∞

1

T

T−1
∑

t=0

E{ε(t) + pO(t) + pD(t)}.

We define the average task and output queue length, denoted asQ̄, for evaluation of the energy-

queue trade-off as

Q̄
∆
= lim sup

T→∞

1

T

T−1
∑

t=0

N
∑

i=1

E{Qi(t) +QD
i (t)}, (2.15)

whereQi(t) is the task queue length for applicationi at timet, andQD
i (t) is the cloud output queue

length for applicationi at timet. We consider the system to be stable if the average queue length

is bounded, i.e., the limit in (2.15) exists.

The dynamics of the task queue backlogQi(t) can be written as

Qi(t+ 1) = max{Qi(t) + Ai(t)−Bi(t)− BO
i (t), 0}, ∀ i, (2.16)

whereBi(t) is the service rate at timet defined as follows.3

Bi(t) =



















































argmax{b}

{

∑b
k=1 θi(k) ≤ Θi(t)

}

,

if i ∈ αL(t)

argmax{b}

{

∑b
k=1Di(k) ≤ ωO(t)

}

,

if i ∈ αO(t)

0, otherwise.

(2.17)

3We assume that the duration of a time slot is large enough suchthat any task can be executed locally, offloaded to
the cloud, or with output downloaded from the cloud in less than one time slot. This can be achieved by choosing a
suitable time slot duration or by partitioning big tasks into smaller ones.
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Note thatαL(t) andαO(t) should not point to the same applicationi, as it is inefficient to both

offload and locally execute the same application task at the same time. Ifi ∈ αL(t), the task queue

of applicationi is executed locally andBi(t) is the maximum number of tasks can be executed

locally at time slott. If i ∈ αO(t), the tasks of applicationi are offloaded to the cloud andBi(t) is

the maximum number of tasks can be offloaded at this time slot.

Similarly, the dynamics of the cloud output queue backlogQD
i (t) can be written as

QD
i (t+ 1) = max{QD

i (t) + ADi (t)−BD
i (t), 0}, ∀ i ∈ N ′, (2.18)

where
∣

∣ADi (t)
∣

∣ =
∣

∣BO
i (t)

∣

∣ andBD
i (t) is the service rate at timei for the cloud output queue defined

as

BD
i (t) =























argmax{b}

{

∑b
k=1D

D
i (k) ≤ ωD(t)

}

,

if i ∈ αD(t)

0, otherwise.

(2.19)

If i ∈ αD(t), the cloud output queuei is downloaded andBD(t) is the maximum number of tasks

that can download their cloud output at this time slot.

2.2.5 Problem Statement

For a mobile device, it makes task scheduling decisions about offloading and local execution

at the beginning of each slot. It then makes decisions for downloading the return data of cloud

execution for the next slot at the end of current time slot. The objective of mobile devices is

to keep all the queues stable and to minimize the overall energy consumption. The scheduling

problem can be formulated as

min : lim sup
T→∞

1

T

T−1
∑

t=0

E{ε(t) + pO(t) + pD(t)} (2.20)

s.t. αL(t) ∩ αO(t) = ∅, for all t (2.21)

∣

∣αL(t)
∣

∣ ≤M, for all t (2.22)
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Q̄ <∞, (2.23)

where Constraint (2.21) forbids a task to be both executed locally and offloaded to the cloud in

the same time slot, Constraint (2.22) is the limitation forced by the number of cores in the CPU,

and Constraint (2.23) ensures stability of the task and output queues. The optimal solution to the

problem consists of cloud offloading or local execution decisions for each time slott (i.e.,αL(t) and

αO(t)) and the optimized CPU computation capabilityΘ(t) for each time slott, which translates

to the optimal CPU clock frequencyf as discussed in Section 2.2.2 (configured as in (2.41)).

2.3 Task Scheduling Algorithm for Mobile Users

In this section, we present a task scheduling algorithm based on the Lyapunov optimization

framework [9]. This algorithm requires no information about the stationary distributions of the

arrival and wireless channel processes; it only requires information on the current queue lengths

and the current channel conditions. Such anonline algorithmproperty is useful for real-time

applications [13,14,46].

2.3.1 Lyapunov Optimization Based Solution Algorithm

To present the proposed algorithm, we first define a Lyapunov functionL(Q(t)) as in [9].

L(Q(t))
∆
=

1

2

N
∑

i=1

Q2
i (t) +

1

2

N
∑

i=1

{QD
i (t)}

2, (2.24)

whereL(Q(0)) = 0. If all the queue lengths are small, thenL(Q(t)) will be small; if at least one

queue is congested, thenL(Q(t)) will become large. Since there is a finite number of applications

running on the mobile device,L(Q(t)) being bounded is equivalent to the notion that the system

is stable.
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SinceL(Q(0)) = 0, for L(Q(t+ 1)), we have

E{L(Q(t+ 1))} = E

{

t
∑

k=0

[L(Q(k + 1))−L(Q(k))]

}

=
t
∑

k=0

E{L(Q(k + 1))−L(Q(k))|Q(k)} =
t
∑

k=0

∆(L(k)),

where∆(L(t)) is thedrift defined as [15]

∆(L(t))
∆
= E{L(Q(t+ 1))− L(Q(t)) |Q(t)}. (2.25)

We can minimize∆(L(t)) to maintain a low expectation forL(Q(t)). It follows (2.16) that

Q2
i (t+ 1) ≤ {Qi(t) + Ai(t)−Bi(t)− BO

i (t)}
2. (2.26)

For i ∈ αO(t), we have

{QD
i (t+ 1)}2 ≤ {QD

i (t) + BO
i (t)−BD

i (t)}
2. (2.27)

For i /∈ αO(t), we have

{QD
i (t+ 1)}2 ≤ {QD

i (t)−BD
i (t)}

2. (2.28)

Substituting (2.26), (2.27), and (2.28) into (2.25), we derive the drift (2.30) as follow.

∆(L(t)) (2.29)

≤ Φ + E







∑

i/∈αO(t)

Qi(t)(Ai(t)−Bi(t))−QD
i (t)B

D
i (t)







+E
{

{Qi(t)Ai(t)− (Qi(t)−QD
i (t))Bi(t)−QD

i (t)B
D
i (t)}|{i∈αO(t)}

}
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= Φ+ E{ϕ}. (2.30)

In (2.30),ϕ denotes the terms in the expectation operators and

Φ =
1

2

N
∑

i=1

E
{

{Ai(t)−Bi(t)−BO
i (t)}

2 + {BO
i (t)−BD

i (t)}
2
}

. (2.31)

Note thatBO
i (t) = 0 for i /∈ αO(t). If the arrival rate and service rate of each queue is bounded,

which is true for stable systems, thenΦ is bounded.

As in [9], we obtain thedrift-plus-penalty, defined as∆(L(t))+Vp ·E{P (t)}}, by scaling the

energy consumption with a positive coefficientVp. The parameterVp indicates the user’s emphasis

on energy consumption. Following (2.30), the upper bound ofthedrift-plus-penaltycan be derived

as

∆(L(t)) + Vp · E{P (t)} ≤ Φ + E {ϕ+ Vp · P (t)} . (2.32)

To minimize the drift-plus-penalty, we can instead minimize {ϕ + Vp · P (t)} at every time slot,

which only requires the current information on queue lengths, channel conditions, and the price

for offloading.

Since there areM cores in the CPU of the mobile device, onlyM application can be executed

by the CPU in each time slot. We assume that only one application can be offloaded at each time

slot (through the single active wireless connection). We can derive the minimization expression as

given in (2.33).

min{ϕ+ VpP (t)} (2.33)

=min

{

N
∑

i=1

Qi(t)Ai(t)−
N
∑

i=1

QD
i (t)B

D
i (t)−

∑

i/∈αO(t)

Qi(t)Bi(t)
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− (Qi(t)−QD
i (t))B

O
i (t)|i∈αO(t) + VpP (t)

}

=
N
∑

i=1

Qi(t)Ai(t) + min

{

VppD(t)−
N
∑

i=1

QD
i (t)B

D
i (t) + Vpε(t)−

∑

i/∈αO(t)

Qi(t)Bi(t) (2.34)

+ VppO(t)− (Qi(t)−QD
i (t))B

O
i (t)|i∈αO(t)

}

=
N
∑

i=1

Qi(t)Ai(t)+min
{

VppD(t)−Q
D
i (t)B

D
i (t)|i∈αD(t)

}

(2.35)

+min







Vpε(t)−
∑

i∈αL(t)

Qi(t)Bi(t)+{VppO(t)− (Qi(t)−Q
D
i (t))B

O
i (t)|i∈αO(t)}







=
N
∑

i=1

Qi(t)Ai(t) + min{H1}+min{H2}. (2.36)

The first term in (2.33),
∑N

i=1Qi(t)Ai(t), only depends on the current queue lengths and

arrival rates. It does not affect the offloading downloadingdecision for this time slot. We need to

minimize the second term

H1 = VppD(t)−QD
i (t)B

D
i (t)|i∈αD(t), (2.37)

as a function ofαD(t), and the third term

H2 = Vpε(t)−
∑

i∈αL(t)

Qi(t)Bi(t)+

{VppO(t)− (Qi(t)−QD
i (t))B

O
i (t)|i∈αO(t)}, (2.38)

as a function ofαL(t), αO(t), andΘ(t).

Notice that formin{H1}, with the expectation of power consumption and offloading data,

we need to find a properαD(t) that minimizes−QD
i (t)B

D
i (t) in order to minimize the following

function.

ξDi = VppD(t)−QD
i (t)B

D
i (t). (2.39)
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This can be done by evaluating (2.39) for every application in N ′ to find the applicationi having

the smallestξDi . Recall thatBD
i (t) is defined in (2.19). For a given downlink capacityωD(t), tasks

with smaller data size and longer queue length tend to have a smaller−QD
i (t)B

D
i (t). Note that

VppD(t) − QD
i (t)B

D
i (t)|i∈αD(t) = 0 whenαD(t) = ’idle’. Thus a task will be offloaded in time

slot t only whenmin{VppD(t) − QD
i (t)B

D
i (t)} < 0, meaning the channel condition is good or at

least one of the task queues is long.

For the other termH2, we need to minimize it by tuningαL(t), αO(t), andΘ(t). The term

Vpεi(t)−Qi(t)Bi(t) can be rewritten as

Vpεi(t)−Qi(t)Bi(t)

= VpηΘ
2
i (t)−Qi(t) · argmax

{b}

{

b
∑

k=1

θi(k, t) ≤ Θi(t)

}

∼= VpηΘ
2
i (t)−Qi(t)

Θi(t)

θ̄i(t)
, (2.40)

where θ̄i(t) = 1
Qi(t)

∑Qi(t)
k=1 θi(k, t). We can derive the approximate minimum valueVpε(t) −

Qi(t)Bi(t) subject to the CPU computation capabilityΘi(t) as

ξLi (t) = −
Q2
i (t)

4Vpηθ̄2i (t)
, whenΘi(t) =

Qi(t)

2Vpηθ̄i(t)
. (2.41)

Similarly, we can evaluate (2.41) for all the applications in N and find the minimizer. Since the

computational capability of the CPU cannot be increased indefinitely, we set an upper bound for

the CPU power, e.g., 10 W in this chapter.

For the term{VppO(t)− (Qi(t)−QD
i (t))B

O
i (t)|i∈αO(t)}, we can minimize it by tuningαO(t).

Denoting

ξOi = VppO(t)− (Qi(t)−QD
i (t))B

O
i (t) < 0, (2.42)
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an applicationi ∈ N ′ with smaller offloading data size and greaterQi(t) − QD
i (t) will achieve a

smallerξOi . Also note that{VppO(t)− (Qi(t)−Q
D
i (t))B

O
i (t)|i∈αO(t)} = 0 whenαOi =′ idle′. Thus

a task can be offloaded only whenξOi < 0.

Then themin{H2} term can be rewrite as

min{H2} = min







∑

i∈αL(t)

ξLi + ξOj |j∈αO(t),αO(t)∩αL(t)=∅







.

According to the above evaluation, the problem becomes

N
∑

i=1

Qi(t)Ai(t) + min{H1}+min{H2}

=
N
∑

i=1

Qi(t)Ai(t) + min
{

ξDi
}

+

min







∑

i∈αL(t)

ξLi + ξOj |j∈αO(t),αO(t)∩αL(t)=∅







, (2.43)

whereξDi , ξLi , andξOj are defined in (2.39), (2.41) and (2.42), respectively. We also haveαO(t) ∩

αL(t) = ∅, since the same application cannot be executed locally and offloaded to the cloud in

the same time slot. The proposed task scheduling algorithm is presented in Algorithm 1, where all

computations except Step 2 are simple operations.

For Step 2 in Algorithm 1, the task scheduling can be illustrated as a minimum weighted

matching of a bipartite graph as shown in Fig. 2.2. In the graph, vertex Applicationi, i =

1, 2, · · · , N represent the applications, vertex Corei, i = 1, 2, · · · , L stands for the cores in the

CPU, and vertex OffLoad stands for the offloading link. The edge between vertice Applicationi

and Corej means that it can be executed locally on corej and the weight of the edge isξLi . Cor-

respondingly, the edge between vertice Applicationi and OffLoad means that it can be offloaded

to cloud, while the weight of the edge isξOi . In Step 2, we need to find the selection edges with

minimum weight, and according to constraint (2.21) and (2.22), each vertex can only be connected
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Core 1

Application 1

Core 2 OffLoad

Application 4Application 3Application 2

Figure 2.2: Task scheduling as a minimum weighted matching of a bipartite graph (illustrated for
N = 4 andM = 2).

Algorithm 1: Task Scheduling Algorithm

1 Update all the task queues and estimate wireless link capacities at the beginningof time slott ;
2 Find the minimum combination of

∑

i∈αL(t) ξ
L
i + ξOj , whereαO(t) ∩ αL(t) = ∅ andj ∈ N ′ ;

3 if ξOj < 0 then
4 Offload tasks of applicationj to the cloud ;
5 end
6 for i ∈ αL(t) do
7 if ξLi < 0 then
8 Execute tasks of applicationi locally, with CPU capacityΘi(t) =

Qi(t)

2Vpηθ̄i(t)
;

9 end
10 end
11 Find the minimumξDi ;
12 if ξDi < 0 then
13 Fetch the output data for applicationi tasks from the cloud ;
14 end

with one selected edge. Then it is a maximum weighted bipartite matching problem and can be

solved with Hungarian algorithm [16] with complexityO(N ∗ (M + 1)2) if (M + 1 < N), or

O((M + 1) ∗N2) otherwise.

In Algorithm 1, at the beginning of each time slott, the mobile device first update the queues

of tasks and estimate the capacity of wireless capacities tocomputeξLi , ξOi , andξDi . In Step 2, it

find out smallest combination of
∑

i∈αL(t) ξ
L
i +ξ

O
j , whereαO(t)∩αL(t) = ∅, since a task should not

be computed locally and offloaded to cloud at the same time. Then it offloads the corresponding

task of applicationj if ξOj < 0 and computes the tasks of applicationi ∈ αL(t) if ξLi < 0, with

Θi(t) =
Qi(t)

2VpηΘ̄i(t)
. At last, the mobile user make the decision of downloading the output of cloud
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computing. It first find the smallestξDi for all applications inN ′. If ξDi < 0 for the smallestξDi ,

then it download the corresponding output of cloud computing.

2.3.2 Performance Analysis

Following the framework of Lyapunov optimization [9], we derive the upper bounds for the

expected average power consumption and the expected average queue length achieved by the pro-

posed algorithm, which are summarized in the following theorem. The proof is presented in the

Appendix.

Theorem 2.1.Assume that the arrival rate of tasks~λ is strictly within the system capacity region.

That is, the system can maintain stability under certain{αL(t), αO(t), αD(t),Θ(t)}. Then the

bounds on average energy consumption and queue length underAlgorithm 1 can be written as

lim sup
T→∞

1

T

T−1
∑

t=1

E{P (t)} ≤ P opt +
Φ

Vp
(2.44)

lim sup
T→∞

1

T

T−1
∑

t=1

N
∑

i=1

E{Qi(t) +QD
i (t)} ≤

1

ǫ
(Φ + VpP ), (2.45)

whereP opt is the minimum energy consumption a stable system can achieve, P is the average

energy consumption under the proposed algorithm, andǫ > 0 is the distance between the data

arrival rate vector~λ and the system capacity region under the proposed algorithm.

Theorem 2.1 demonstrates the trade-off between energy consumption and queue length (or,

delay). The upper bound of the average energy consumption isO(1/Vp) and the upper bound of

the average queue length isO(Vp). Therefore these are conflicting objectives. We can tuneVp to

flexibly trade off between energy consumption and queue length. When the power supply is not so

limited (e.g., a charger is available), the user can increaseVp to reduce the queue length (and thus

delay) and enjoy better quality of experience (QoE). On the other hand, if the power constraint is

stringent (e.g., the mobile device is running out of batteryand no charger is available), the user can

decreaseVp to save energy at the expense of longer average queue length and larger delay.
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2.4 Trace-driven Simulation Validation

We evaluate the performance of the proposed algorithm with trace-driven simulations. In the

simulations, we adopt the wireless network measurement data gathered by testing the data rate

of the LTE/WiFi networks while walking around the Auburn University campus with an iPhone5.

The LTE carrier is AT&T and the WiFi network is deployed by Auburn university. In particular,

half of the LTE rate tests are conducted outdoor and half of the tests are conducted indoor. The

WiFi rate tests are conducted in Broun Hall in the Auburn University Campus.

In the simulations, the wireless link data rate is randomly selected from the measured trace.

For power consumption, we adopt the power models for LTE and WiFi proposed in [17]. For the

uplink, the LTE power model can be approximated aspO = aLTE · ωO + bLTE, whereaLTE =

0.5 W, bLTE = 1.25 W, andωO is the wireless network data rate in Mbps. For WiFi, the power

consumption mode isp = aWiFi · ωO + bWiFi, whereaWiFi = 0.24 W andbWiFi = 0.125 W. For

downlink, the power model for LTE can be approximated aspD = aDLTE · ωD + bDLTE, whereaDLTE

= 0.042 W,bDLTE = 1.25 W. For WiFi, the power consumption mode ispD = aDWiFi · ωD + bDWiFi,

whereaDWiFi = 0.12 W andbDWiFi = 0.125 W.

We consider a scenario with five applications running in the mobile device and all of them can

be offload. The task arrival rate of each application ranges from 0.5 to 2.0. The offloading data size

of the tasks follows a truncated Exponential distribution with means ranging from 60 KB to 300

KB. For local execution,η was set to 0.6 corresponding to the normalized computation complexity

Θ. The normalized computation complexity of each task follows an Exponential distribution with

means ranging from 0.1 to 1. In the simulations,Vp is increased from 1 to 200. For eachVp value,

the simulation runs for 50,000 time slots.

We compare the following four schemes in the simulations: (i) the proposed scheme with

single core CPU, (ii) the proposed scheme with dual core CPU, (iii) the proposed scheme with

single core CPU, and with Large Output of Cloud Computing (LOCC) (i.e. the average data size
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of cloud computing is twice of that of offloading), and (iv) the “eTime” strategy proposed in [15]

with LOCC.

The simulation results are plotted in Figs. 2.3 and 2.4 for average queue length and average

power consumption, respectively. It can be seen that there is a clear trade-off between average

energy consumption and average queue length achieved by tuning Vp for both single core and dual

core CPU. WhenVp is increased, the average energy consumption is decreased but the average

queue length is increased. It confirms the findings in Theorem2.1 that the average queue length

follows O(Vp) (see Fig. 2.3) and the average energy consumption followsO(1/Vp) (see Fig. 2.4)

asymptotically. WhenVp is smaller than 10, the energy consumption decreases rapidly with Vp,

while the average queue length increases almost linearly with Vp. Therefore, users can achieve

big energy savings, while only suffers a linearly increaseddelay, by increasingVp in this region.

From the simulation, we can find clearly that for dual core CPU,the queue length is much shorter

than that of the single CPU system. But the power consumption for dual core is much higher with

smallVp, but with highVp (i.e., larger than 4), the system with dual core CPU enjoy lower energy

consumption. It means that system with dual core system enhances the system computation ability

and show greater flexibility for trade off between energy consumption and queue length.

For system with single core CPU with LOCC, it suffers from longerqueue length and greater

energy consumption with largeVp (i.e. greater than 4), as the downloading for Output of Cloud

Computing is more resource consumption. The queue length of the single core CPU system with

LOCC suffers from a high queue length with the lowVp(i.e. smaller than 4), that is because

the system offloading tasks aggressively with lowVp and the downloading for output of cloud is

resource consuming, which increases the average queue length. With low Vp (i.e. smaller than 4),

the power consumption of single core CPU system with LOCC consumes less energy consumption

than that of single core CPU system. It is because that the single core CPU system with LOCC

has longer queue for downloading the output of cloud computing, which result in a smallerξOj and

effects ofVp is enhanced.
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Figure 2.3: Average queue length of the four schemes.

0 5 10 15 20 25 30
0

5

10

15

20

25

V
p

A
ve

ra
ge

 p
ow

er
 c

on
su

m
pt

io
n 

(W
)

 

 

Proposed Single−Core
Proposed Dual−Core
Single−core with LOCC
eTime with LOCC

Figure 2.4: Average power consumption of the four schemes.

The simulation results also demonstrate that the performance of the proposed algorithm is

better than that of the strategy proposed in [15] with LOCC, which suffers higher energy con-

sumption. In addition, in the LOCC scenario, eTime couldn’t stabilize the system with a lowVp. It

is because that with a lowVp, eTime aggressively offloads tasks to the cloud but couldn’tdownload

the output of cloud execution.
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2.5 Related Work

Cloud offloading is regarded as an effective solution to save energy, extend storage spaces,

and enable computation intensive applications at mobile devices [4–6]. There have been many

prior work addressing the various design issues of cloud computing to fully harvest its potential [7,

18–21, 24–26]. In particular, considerable recent works have focused on building the framework

of enable mobile computation offloading [7,21,24–26], suggesting for a mobile device to execute

codes remotely in resource-rich servers, which connect themobile device through LAN or wireless

link. Ref. [25] implemented method level offloading for applications on Microsoft .NET, and

Ref. [26] implemented a flexible application partitioner which enables seamlessly offloading of

part of the execution to the virtual machine. On the other hand, many other works [18, 27, 30]

have focused on backing up data and applications to extend the storage space of mobile devices.

However, both computation offloading and data/applicationbackup involve considerable energy

consumption for data transmission between mobile devices and the cloud, which may makes some

excellent techniques [32] infeasible in practical implementation scenarios.

Researchers have started to investigate the energy cost of offloading [11, 15, 19, 22, 23, 25,

28–31, 33, 35]. Some techniques focused on reducing the energy consumption during offload-

ing [22, 25, 29–31, 33, 33]. For example, in [22], the authorsproposed a dynamic offloading algo-

rithm to save energy by offloading some components of an application to the cloud, while Ref. [33]

proposed an algorithm to reduce energy consumption by selecting the most energy efficient WiFi

AP for offloading. Furthermore, some researches have investigated the tradeoff between energy

consumption and delay [11, 19, 23, 28, 34]. For example, the bandwidth and energy costs of cloud

computing were investigated in [11]. In [28], a heuristic algorithm was proposed to jointly mini-

mize the energy consumption and delay. However, these worksare based on static models of ap-

plication, and more important, the stochastic characteristics of applications and network dynamics

have not been taken into consideration. The authors of [19,23] proposed an energy-optimal mobile

computing framework under stochastic wireless channels, while considering the single application
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scenario. In [15], an energy-efficient transmission algorithm between the cloud and mobile devices

was presented based on the Lyapunov optimizing framework [9]. However, the local computation

resources in the mobile devices has not been fully utilized,and it doesn’t consider downloading

the cloud execution output.

This work was motivated by the above interesting works to investigate the energy-delay trade-

off in cloud offloading with a Lyapunov optimization approach. We explicitly considered the

stochastic nature of both user and application behaviors, and network dynamics, and addressed

the more challenging case of multiple applications, thus greatly extending the work in [19, 23].

This work also extended prior work [15] by considering multi-core CPUs and fully utilizing the

local computing capability, by making offloading decisionsbased on both task queues and queues

for downloading the output of cloud execution. As in [15], the online operation of the proposed

scheme makes it highly suitable for real-time applications.

2.6 Conclusions

In this chapter, we proposed a scheduling scheme for energy-efficient cloud offloading for

muti-core mobile devices, while considering downloading the cloud execution output in the model.

Based on Lyapunov optimization, we developed an online algorithm that does not require informa-

tion about stationary distribution of applications and thenetwork condition, making it amenable to

real-time implementation for practical scenarios. We proved theoretical bounds for the proposed

algorithm and validated its performance with trace-drivensimulations.

2.7 Appendix

2.7.1 Proof Of Theorem 2.1

According to (2.30) and (2.33), we have

min{ϕ+ VpP (t)} (2.46)
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= min

{

VpP (t) +
N
∑

i=1

Qi(t)Ai(t)−
N
∑

i=1

QD
i (t)B

D
i (t)−

∑

i/∈αO(t)

Qi(t)Bi(t)− (Qi(t)−QD
i (t))B

O
i (t)|i∈αO(t)







= min

{

VpP (t) +
N
∑

i=1

QD
i (t)(B

O
i (t)− BD

i (t))+

N
∑

i=1

Qi(t)(Ai(t)−Bi(t)− BO
i (t))

}

≤ VpP
∗(t) +

N
∑

i=1

QD
i (t)(B

∗O
i (t)−B∗D

i (t))+

N
∑

i=1

Qi(t)(Ai(t)−B∗
i (t)−B∗O

i (t)),

whereP ∗(t),B∗
i (t),B

∗O
i (t) andB∗D

i (t) are the terms corresponding to any other (possibly random-

ized) feasible schedule. Now consider a randomized scheduling policy that achieves the following

for Applicationi ∈ N .

E{P ∗(t)} = P opt (2.47)

E
{

B∗O
i (t)−B∗D

i (t)
}

≤ 0 (2.48)

E
{

Ai(t)− B∗
i (t)− B∗O

i (t)
}

≤ 0, (2.49)

whereP opt is the minimum power consumption a stable system can achieveand (2.48) and (2.49)

stabilize the queues.

For the proposed algorithm, we have

∆(L(t)) + Vp · E{P (t)} (2.50)

≤ Vp · E{P (t)}+ Φ+ E{ϕ}

≤ Vp · E{P
∗(t)}+ E

{

N
∑

i=1

QD
i (t)(B

∗O
i (t)− B∗D

i (t))

}

+
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E

{

N
∑

i=1

Qi(t)(Ai(t)−B∗
i (t)− B∗O

i (t))

}

+ Φ

≤ Vp · P
opt + 0 + Φ,

where

E

{

N
∑

i=1

QD
i (t)(B

∗O
i (t)−B∗D

i (t))

}

≤ 0 (2.51)

E

{

N
∑

i=1

Qi(t)(Ai(t)−B∗
i (t)−B∗O

i (t))

}

≤ 0, (2.52)

according to (2.48) and (2.49).

Then we have

∆(L(t)) + Vp · E{P (t)} ≤ Vp · P
opt + Φ, (2.53)

and
∑T−1

k=0 ∆(L(t)) = L(T ) <∞ for a stable system. It follows that

lim sup
t→∞

1

T

T−1
∑

k=0

∆(L(T )) + lim sup
t→∞

Vp
T

T
∑

k=0

E{P (t)}

= 0 + lim sup
t→∞

Vp
T

T
∑

k=0

E{P (t)}

≤ Vp · P
opt + Φ.

Then we have that (2.44) holds true.

Suppose for Applicationi ∈ N , there exist some real numberǫ > 0, such that

E
{

BO
i (t)−BD

i (t)
}

≤ −ǫ (2.54)

E
{

Ai(t)− Bi(t)−BO
i (t)

}

≤ −ǫ. (2.55)
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According to (2.46), we have

∆(L(t)) + Vp · E{P (t)} (2.56)

≤ Vp · E{P (t)}+ E

{

N
∑

i=1

QD
i (t)(B

O
i (t)− BD

i (t))

}

+

E

{

N
∑

i=1

Qi(t)(Ai(t)−Bi(t)−BO
i (t))

}

+ Φ

≤Vp · E{P (t)}+ Φ− ǫ · E

{

N
∑

i=1

(Qi(t) +QD
i (t))

}

.

As∆(L(t)) + Vp · E{P (t)} ≥ 0, we have

E

{

N
∑

i=1

(Qi(t) +QD
i (t))

}

≤
1

ǫ
{Vp · E{P (t)}+ Φ}. (2.57)

It follows that

lim sup
T→∞

1

T

T−1
∑

t=1

N
∑

i=1

E{Qi(t) +QD
i (t)} (2.58)

≤
Φ

ǫ
+

1

ǫ
lim sup
T→∞

1

T
{VpE{P (t)}}

=
1

ǫ
(Φ + VpP ),

and we conclude that (2.45) holds true.
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Chapter 3

Inter-operator Opportunistic Spectrum Sharing in LTE-unlicensed

3.1 Introduction

With the unprecedented growth in wireless data, wireless operators are in critical need of

more spectrum for higher capacity. To meet the so-called 1000x mobile data challenge [87], ex-

tending LTE to the unlicensed spectrum, as specified in LTE Rel-10 – Rel-13 [83,84], has recently

gained significant attention [83, 84, 87, 88, 90, 92–98]. However, there are two main challenges to

the success of the so-calledLTE-unlicensedtechnology. First, the unlicensed bands are already

occupied by many existing wireless networks (e.g., WiFi). It is essential to enable the coexis-

tence of LTE-unlicensed with existing unlicensed band users, i.e., to avoid significant performance

degradation to existing users while achieving high capacity gains with LTE-unlicensed. Second,

the interference in unlicensed bands is unpredictable, which is detrimental to the performance of

LTE-unlicensed users. Hence, it is important to effectively manage the interference between LTE-

unlicensed and existing users, and that among LTE-unlicensed users themselves.

To study the coexistence of LTE-unlicensed with existing unlicensed band users, some system

level simulation studies have been reported in several recent works [88,93,94]. The simulation re-

sults show that the WiFi performance could be significantly degraded, while the LTE performance

is only slightly affected. This is because WiFi uses Carrier Sensing Multiple Access (CSMA) to

compete for channel access, while LTE adopts a centralized channel access control mechanism.

WiFi usually keeps silent when sensing a busy channel continuously used by LTE. To protect ex-

isting unlicensed band users, requirements for clear channel assessment (CCA) and Listen Before

Talk (LBT) are specified by European standardization bodies [95]. In LBT, a user equipment (UE)
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must perform CCA on the operating channel(s) before starting atransmission. The observing

duration should be at least 20µs.

Although the LTE performance may be only slightly affected by WiFi in some coexistence

scenarios [93,94], there could still be significant throughput degradations due to the inter-operator

interference, when multiple LTE-unlicensed base stations(BS) of different operators are deployed

in the same area [83]. There are two solutions to this problem: (i) make an agreement for the

operators to allocate the unlicensed spectrum; or (ii) enable opportunistic access to unlicensed

channels. The first solution may not be practical in most countries due to competition among oper-

ators and the lack of regulation for unlicensed bands [83], while the second solution is promising

for effective unlicensed spectrum sharing.

In this work, we investigate the problem of opportunistic spectrum sharing among LTU-

unlicensed BS’s. We consider the License Assisted Access (LAA) scenario, in which licensed

and unlicensed carrier bands are integrated and used [84]. We also adopt the LBT mechanism for

co-existence of LTE-unlicensed and WiFi [95]. For the LTE-unlicensed BS’s deployed in the same

area on both licensed and unlicensed bands, we propose a novel distributed online algorithm for

opportunistic sharing of unlicensed bands among the BS’s, while guaranteeing the QoS of UEs in

the form of bounded worst case delay and minimized packet drop rate.

Specifically, based on Lyapunov optimization, we first derive an online algorithm for BS’s

to evaluate the true value of unlicensed spectrum, guarantee a maximum delay, and minimize the

packet drop rate. We then develop a distributed auction mechanism to incorporate the Lyapunov

optimization based schemes, aiming to maximize the social welfare in each auction and enable op-

timal spectrum reuse. We prove that all the BS’s bid truthfully with the proposed algorithm, while

the UEs’ QoS requirements on delay and packet drop rate can beguaranteed with bounded opti-

mality gaps. The proposed algorithms are validated with simulations and are shown to outperform

two benchmark schemes with considerable gains in all the cases simulated in this work.

This work presents a comprehensive and effective solution to the problem of opportunistic

spectrum sharing for LTE-unlicensed. The algorithm designis based on rigorous theoretic model
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and analysis. Due to the Lyapunov optimization approach, the proposed algorithms are applicable

to very general scenarios with different traffic models and service rate distributions. The proposed

schemes are alsoonlinealgorithms, i.e., only requiring the current state of the network (e.g., queue

backlogs and channel conditions), making them highly suitable for practical implementations. In

addition to proving several nice properties of the proposedalgorithms, including truthful bidding,

utility maximization, social welfare maximization, and packet drop rate minimization, we also

reveal an interesting trade-off between delay and packet drop rate, which provides a useful control

knob for operators.

The remainder of this work is organized as follows. We discuss related works in Section 3.2

and introduce the system model in Section 3.3. We discuss evaluation of unlicensed spectrum,

resource allocation, and drop scheduling in Section 3.4. Wepresent the proposed auction mecha-

nism and analyze its performance in Section 3.5. Our simulation results are analyzed in Section 3.6.

Section 3.7 concludes this work.

3.2 Related Work

The considerable amount of underutilized spectrum in unlicensed bands is the main motiva-

tion for operators and researchers to extend LTE, a well-designed OFDMA solution, to unlicensed

bands [82–84,87,88,90,92–98]. One of the biggest challenges is the coexistence of LTE-unlicensed

and WiFi [83, 87, 88, 90, 92–97, 102–104]. In [93, 94], systemlevel simulations were conducted

to evaluate the feasibility of LTE/WiFi coexistence. It wasshown that such coexistence causes

significant degradations to the WiFi performance. but only affects the LTE performance slightly.

Hence, LBT was introduced to protect the WiFi users in the coexistence scenario [95,104], where

an LTE-unlicensed BS follows a CCA process before accessing theunlicensed spectrum. In [92],

an analytical model was presented for evaluating the effectiveness of the simple LBT. The analysis

showed that LBT can effectively mitigate the impact of LTE-unlicensed on WiFi, though the per-

formance of LTE-unlicensed would be degraded. Furthermore, experiments [82], show that with
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LBT or adaptive duty cycle, WiFi can be will protected. Therefore, we consider LBT in this work

to address the coexistence issue of LTE-unlicensed and WiFi.

Another challenge in LTE-unlicensed is interference management among LTE-unlicensed

BS’s [83], while opportunistic spectrum sharing is one of theproposed solutions. In [99], a credit

token based spectrum auction scheme was proposed for spectrum leasing among secondary users,

while in [100], a revenue generation for truthful spectrum auction in dynamic spectrum access was

proposed to render a truthful bidding for spectrum leasing from agencies. In a recent work [101],

a socially-optimal online spectrum auction is proposed forspectrum sharing among secondary

users. However, these works either fail to address the new challenges for spectrum sharing in LTE-

unlicensed, or provide no precise evaluation of the value ofspectrum based on QoS guarantees in

auctions. In [98], a game theoretic approach is proposed to enable spectrum sharing among LTE-

unlicensed BS’s through power control. However, it neglectsto exploit the potential advantage of

spectrum reuse among the BS’s.

Motivated by the interesting prior work and the high potential of LTE-unlicensed, we propose

a distributed online auction scheme for LTE-unlicensed BS’s. The goal is to maximize the expected

social welfare in each auction through efficient assignmentand spectrum reuse, as well as meeting

the QoS requirement of maximum delay and minimizing the packet drop rate at the same time.

3.3 System Model

3.3.1 LTE-unlicensed Network Model

We consider the LAA scenario, in which licensed and unlicensed carrier bands are integrated

and used [84]. This can be enabled by Carrier Aggregation (CA) defined in LTE Rel-10 – Rel-

13 [83, 84]. With LAA, LTE on licensed band serves as a backbone and the CA of unlicensed

bands boosts the downlink (FDD) or both downlink and uplink (TDD) capacity [87]. Considering

the asymmetric uplink and downlink traffic, we focus on the downlink transmission of LAA in

the FDD scenario, in which the unlicensed carrier bands are utilized to enhance downklink data
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transmission. Due to the low power constraint on unlicensedspectrum imposed by regulations

(e.g., WiFi standards) and the relatively higher frequencyof unlicensed bands (i.e., 5GHz), it

is expected to have coverage holes in unlicensed band with co-site deployment of licensed and

unlicensed bands. Hence, we consider non-co-site deployment of licensed and unlicensed bands

in this work.

Specifically, we consider a system withM BS’s operating in the LTE-unlicensed mode, de-

noted asM = {1, 2, . . . ,M}. The BS’s could be several Macro eNBs of different operators

operating on both licensed and unlicensed bands, and/or pico nodes working on unlicensed bands.

We also assume a high speed backhaul for coordinating the operation of the BS’s, e.g., inter-cell

interference coordination (ICIC) and bidding information exchange as in our proposed scheme.

Define the interference index variable for BSi andj as1

Ii,j =











1, if BS i andj interfere with each other

0, otherwise.
(3.1)

Let Um = {1, 2, . . . , Um} denote the set of UEs served by LTE-unlicensed BSm, which

maintains a queue for each UEi, denoted asQm
i . Let C = {1, 2, . . . , C} be the set of orthogonal

channels, each of which has an identical bandwidth as the corresponding WiFi channel. Further-

more, there is no overlap between two different channels andnone of the channels overlaps with

more than one WiFi channels (i.e., they are “aligned”). We adopt the LBT mechanism for LTE-

unlicensed/WiFi co-existence [95]. Moreover, any transmission of an LTE-unlicensed BS must be

followed by an idle period of the channel to avoid starvationof WiFi users. The transmission time

of LTE-unlicensed BS’s should be confined to one frame to limitthe impact on coexisting WiFi

users.
1We adopt the physical model in [107] to define the interference range of nodes.
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3.3.2 Transmission And Qeueing Model

In this work, we consider the UEs covered by LTE with both licensed and unlicensed bands.2

LTE on licensed bands provides relatively reliable data transmissions. We assume that for UEi,

BSm provides a data rate on licensed bands that transmitsRm
i (t) packets in framet. With the

LBT mechanism, an LTE-unlicensed BS needs to wait for an available frame on unlicensed bands

and bid for transmission opportunity on the frame to avoid collision among the BS’s.3 If BS m

wins the transmission opportunity on an unlicensed channelc ∈ C in framet, then it can provide

an extra data rate for UEi ∈ Um, denoted asRm
ic (t). We also haveRm

ic (t) = ϕmic (t)e
m
ic (t), where

ϕmic (t) is the number of Resource Blocks (RBs) assigned to UEi, andemic (t) is the expected data

rate provided by an RB in packets per frame, which depends on the condition of channelc between

BSm and UEi.4

For each UEi, Ami (t) data packets arrive at BSm during framet. We assume the arriving

packets follow a certain process with a bounded maximum rate, i.e.,Ami (t) ≤ (Ami )
max. The queue

at BSm for UE i is maintained as

Qm
i (t+ 1) (3.2)

= max{Qm
i (t)−Rm

ic (t)−Rm
i (t)− dmi (t), 0}+ Ami (t),

whereQm
i (0) = 0 anddmi (t) is the number of packets dropped at framet due to violating the

maximum delay requirement.

3.3.3 Spectrum Auction And LBT On Unlicensed Band

The success of LTE on unlicensed bands hinges upon the coexistence of LTE-unlicensed

with other wireless networks on the same bands. LBT is introduced to enable the coexistence of
2For UEs with no coverage of LTE licensed band, LTE-unlicensed is not available due to the absence of a control

channel. For UEs with no coverage of LTE-unlicensed band, the regular LTE service can be offered.
3On unlicensed spectrum, planning is not feasible since any operator can deploy a BS if it is desired to do so.
4We assume negligible frequency selective fading in each of the channels.
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Figure 3.1: The frame structure of the proposed auction scheme, where LTE-unlicensed and WiFi
share the same unlicensed channels.

LTE-unlicensed and WiFi. Before an LTE-unlicensed transmission, the BS should follow a CCA

procedure and wait for an idle frame before claiming the channel to transmit. The CCA process

of LBT can effectively prevent collision between LTE-unlicensed and WiFi. However, if more

than one LTE-unlicensed BS’s, within an interference range,claim and transmit on the same idle

channel, there will still be collision among themselves. A channel bidding mechanism among

LTE-unlicensed BS’s is thus needed right after LBT.

Spectrum auction takes place among the LTE-unlicensed BS’s that are interested in trans-

mitting on an idle channel. After CCA, if a BS identifies an idle channelc ∈ C, it may bid for

the transmission opportunity. Other BS’s can bid for the samechannel following the first bid in

the bidding window. All bids should be submitted to auction session initiated by the first bidder,

denoted as theauction initiator, in its interference range. If there is no BSs in an active auction

session for channelc in the interference range of a BS, the BS itself will become the auction initia-

tor.5 The auction is denoted asSm
∗

c (t), wherem∗ is auction initiator,t is the frame that the winner

BS/BS’s access,c is the channel for auction, and{i ∈ Sm
∗

c (t)} are the BS’s that participate in the

auction. The frame structure of the auction is shown in Fig. 3.1. The auction can be conducted in

the followingthreesteps.

Step 1: Any BSm ∈ M interested in transmitting on channelc evaluates the value of transmitting

on channelc for frame t, denoted as̃bmc (t). It then submits a bidbmc (t) to the auction session

for transmission on the next frame.6 Note that each BS aims to maximize its own utility in the

5The auction initiator serves as a virtual holder. The actualauction is processed in a back-end server to reduce the
cost on the auction initiator and avoid cheating from it.

6If there are more than one auction sessions in its interference range, the BS will look for transmission opportunities
on other channels. Such information can be obtained by sensing and/or information from a Geographic Information
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auction, so it may try to manipulate the auction by submitting a bid deviating from its true value,

i.e., b̃mc (t) 6= bmc (t). In this work, we aim to design a strategy-proof auction to force BS’s to bid

truthfully (see Section 3.5.2).

Step 2: At the end of each bidding window, the auction session makesthe channel assignment

decisionαm
∗

c (t), i.e., the set of auction winners to access channelc in the following transmission

frames. Notice that the set of auction winners should be beyond the interference range of each

other (i.e.,Ii,j = 0, for all i, j ∈ αm
∗

c (t)). The auction session decides the paymentb̂m(t) of all the

BS’s participating in the auction. Auction losers do not needto make a positive payment.

Step 3: At the beginning of transmission framet, the winner BS’s make decisions on transmission

or dropping packets.

3.3.4 Utility Function And Social Welfare

We consider selfish BS’s, each aiming to maximize its utility during each bidding cycle. The

utility of BS m ∈ M depends on the QoS of the UEs it serves, including the drop rate and packet

delay. The BS decides to bid when there is a potential transmission opportunity on channelc

starting at framet. If BS m participates in an auction of channelc that is available at framet, its

utility function is defined as

φmc (t) =
∑

i∈Um

{−βmi d
m
i (t)} − b̂mc (t), (3.3)

whereβmi is the penalty of dropping a packet of UEi served by BSm. Note that we do not include

the delay constraint in the utility function, which, however, will be considered in the design of a

dropping policy in next section. The transmission on licensed band is not included in the utility

function because we aim to limit the modification on the current LTE system; and assume that the

transmission on licensed band is not affected by the transmission on unlicensed band. However,

System (GIS), to the auction server to compete for the channel. If there are more than one channels available, then the
BS can randomly chooseoneto bid.
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the transmissions on licensed band do have a great influence on the queue length and packet drop

rates of the UEs, which will be considered in the algorithm design.

The objective of the auction design is to maximize the socialwelfare of each auction. The

social welfare of an auction on transmission opportunity atframet on channelc should be the total

utility of all anticipating BS’s in auctionSm
∗

c (t). As payments are made among the participants,

so the total payment should always be 0. Hence, the social welfare of auctionSm
∗

c (t) is defined as

follows.

∑

m∈Sm∗
c (t)

φmc (t) =
∑

m∈Sm∗
c (t)

∑

i∈Um

{−βmi d
m
i (t)} . (3.4)

3.4 Lyapunov Optimization based Valuation and Scheduling

3.4.1 Virtual Queue And Delay Bound

In each auction, a BS needs to dynamically evaluate the value of spectrum resource in LTE-

unlicensed, and decide the resource allocation and packet drop scheme according to the channel

condition and the queue length of each UE it serves. In this section, we apply Lyapunov optimiza-

tion to derive an online algorithm for resource allocation and packet drop control to guarantee the

maximum delay of packets [46, 86, 105]. For bidding on LTE-unlicensed bands, a successful bid

would provide additional transmission opportunity for thenext frame.

We adopt theǫ-persistence queue [86] to guarantee the maximum delay requirement. The BS

maintains the followingvirtual queuefor each UE it serves.

Zm
i (t+ 1) = max

{

Zm
i (t) + ǫmi · 1{Qm

i (t)>0} −Rm
i (t) −

Rm
ic (t)− dmi (t)− Zm

i (t) · 1{Qm
i (t)=0}, 0

}

, (3.5)

whereǫmi > 0 is a prescribed constant;1{·} is an indicator function; andZm
i (0) = 0. When

Qm
i (t) > 0, the virtual queueZm

i (t) has the same departure processRm
ic (t) + Rm

i (t) + dmi (t) as
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Qm
i (t), but its arrival rate is a constantǫmi . WhenQm

i (t) = 0, Zm
i (t) will be reset to 0. In fact,

Zm
i (t) approximately tracks the packet delay of queueQm

i . A largerZm
i (t) indicates a longer delay

of packets in the real queueQm
i (t). An algorithm that stabilizesZm

i (t) andQm
i (t) will ensure a

bounded maximum delay, as given in the following Fact [86].

Fact 1. (Upper Bound of Delay) SupposeQm
i (t) andZm

i (t) maintained by an algorithm satisfy

the following constraints for all framest ∈ {0, 1, 2, . . .}.

Qm
i (t) ≤ (Qm

i )
max and Zm

i (t) ≤ (Zm
i )

max, (3.6)

where(Qm
i )

max and (Zm
i )

max are finite constants. Then the maximum delay of packets can be

bounded with a finite constant(Wm
i )max, i.e., a packet will be either transmitted or dropped

within (Wm
i )max. If packets are served in the first-in-first-out (FIFO) manner, according to the

ǫ–persistence queue analysis in [86], the delay bound can be written as

(Wm
i )max = ⌈((Qm

i )
max + (Zm

i )
max)/ǫmi ⌉, (3.7)

where⌈·⌉ is the ceiling function.

3.4.2 Lyapunov Optimization

Let Θm(t) be a vector of allQm
i (t) andZm

i (t), i ∈ Um. We define theLyapunov function

L(Θm(t)) as

L(Θm(t))
.
=

1

2

∑

i∈Um

{(Qm
i (t))

2 + (Zm
i (t))

2}. (3.8)

We also define a1-step sample pathLyapunov driftas

∆1(Θ
m(t))

.
= L(Θm(t+ 1))− L(Θm(t)). (3.9)
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The drift-plus-penaltyused in Lyapunov optimization [86] is obtained by adding thepenalty of

spectrum bidding cost. The penalty includes the payments and cost of dropped packets as

−V mφm(t)
.
= V mbmc (t) + V m

∑

i∈Um

βmi d
m
i (t), (3.10)

whereV m > 0 indicates BSm’s concern on the price it needs to pay, andβmi is the penalty

of dropping a packet of UEi, i ∈ Um. Hence, the1-frame drift-plus-penaltycan be written

as∆1(Θ
m(t)) + V mbmc (t) +

∑

i∈Um V mβmi d
m
i (t). If BS m bids for transmission opportunity on

channelc at framet, the problem can be formulated as follows.

min : ∆1(Θ
m(t)) + V mbmc (t) +

∑

i∈Um

V mβmi d
m
i (t) (3.11)

s.t.
∑

i∈Um

ϕmic (t) = ϕ, for c ∈ C (3.12)

ϕmic (t) ≥ 0, for i ∈ Um, c ∈ C (3.13)

Rm
ic (t) +Rm

i (t) + dmi (t) ≤ Qm
i (t), for i ∈ Um, c ∈ C (3.14)

ǫmi ≥ (Ami )
max, for i ∈ Um (3.15)

(dmi )
max ≥ (Ami )

max, dmi (t) ≥ 0, for i ∈ Um, (3.16)

whereϕ is the total amount of RBs on channelc. In the formulation, (3.12) and (3.13) are resource

allocation constraints, while constraint (3.14) guarantees that the packets transmitted and dropped

in slot t is no greater thanQm
i (t).

We can reformulate thedrift-plus-penaltyas follows.

∆1(Θ(t)) + V mbmc (t) +
∑

i∈Um

V mβmi d
m
i (t) (3.17)

≤ Bm + V mbmc (t) +
∑

i∈Um

V mβmi d
m
i (t)−

∑

i∈Um

Qm
i (t)(R

m
ic (t) +Rm

i (t) + dmi (t)− Ami (t))+
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∑

i∈Um

Zm
i (t)ǫ

m
i 1{Qm

i (t)>0} −
1

2
(Zm

i (t))
21{Qm

i (t)=0}−

∑

i∈Um

Zm
i (t)(R

m
ic (t) +Rm

i (t) + dmi (t))

= Bm −
1

2
(Zm

i (t))
21{Qm

i (t)=0} +
∑

i∈Um

Qm
i (t)A

m
i (t))+

∑

i∈Um

Zm
i (t)ǫ

m
i 1{Qm

i (t)>0} − Φm
(1)(t)− Φm

(2)(t),

where















































Φm
(1)(t) =

∑

i∈Um(Rm
ic (t) +Rm

i (t))(Q
m
i (t)+

Zm
i (t))− V mbmc (t)

Φm
(2)(t) =

∑

i∈Um dmi (t)(Q
m
i (t)+Z

m(t)− V mβmi )

Bm .
= 1

2

∑

i∈Um{[(Rm
ic +Rm

i + dmi )
max]2+

2[(Ami )
max]2 + [(ǫm−Rm

ic−R
m
i −dmi )

max]2}.

(3.18)

With Lyapunov optimization [86], we can derive an online algorithm to minimize thedrift-

plus-penalty, which will yield policies for resource allocation, valuation of spectrum, and packet

dropping.

Resource Allocation: MaximizingΦm
(1)(t) defined in (3.18), we can derive the optimal allocation

of RBs and obtain the transmission policy. Note that the first term inΦm
(1)(t) is valid only when BS

m wins the auction and makes the payment. And the value of the second term does not affect the

maximization ofΦm
(1)(t). We thus solve the following problem.

max :
∑

i∈Um

(Rm
ic (t) +Rm

i (t))(Q
m
i (t) + Zm

i (t)) (3.19)

s.t. Constraints(3.12), (3.13), (3.14).
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The objective function (3.19) can be rewritten as

∑

i∈Um

(Rm
ic (t) +Rm

i (t))(Q
m
i (t) + Zm

i (t)) (3.20)

=
∑

i∈Um

ϕmic (t)e
m
ic (t)(Q

m
i (t) + Zm

i (t))+

∑

i∈Um

Rm
i (t)(Q

m
i (t) + Zm

i (t)).

Recall thatϕmic (t) is the number of RBs in spectrumc allocated to UEi by BSm. We focus

on resource allocation on the unlicensed spectrum and do notconsider optimization of the rate

from licensed band (i.e.,Rm
i (t)). Hence we can tuneϕmic (t) to maximize (3.19). Specifically, we

apply a greedy algorithm to allocate more RBs to UEi with a higheremic (t)(Q
m
i (t)+Zm

i (t)) under

constraints (3.12)–(3.14).

True Value of Channel: To find the highest price that BSm is willing to pay for unlicensed

channelc, i.e., b̃mc (t), we can compareΦm
(1)(t) when a bid is successful for spectrumc, with that

when no bid is made. Sincẽbmc (t) is the highest price that BSm is willing to pay for channelc, it

is also thetrue valueof channelc to BSm.

If the bid is successful, we have

Φm
(1)(t)

′ (3.21)

=
∑

i∈Um

(Rm
ic (t) +Rm

i (t))(Q
m
i (t) + Zm

i (t))− V mbmc (t).

Otherwise, if BSm does not bid for channelc, we have

Φm
(1)(t)

′′ =
∑

i∈Um

Rm
i (t)(Q

m
i (t) + Zm

i (t)). (3.22)
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When BSm pays the highest price, we haveΦm
(1)(t)

′ − Φm
(2)(t)

′′ = 0, from which we can solve for

b̃mc (t) as

b̃mc (t) =
1

V m

{

max
∑

i∈Um

(Rm
ic (t) +Rm

i (t))× (3.23)

(Qm
i (t)+Z

m
i (t))−

∑

i∈Um

Rm
i (t)(Q

m
i (t)+Z

m
i (t))

}

=
1

V m
max

{

∑

i∈Um

Rm
ic (t)(Q

m
i (t)+Z

m
i (t))

}

s.t. Constraints(3.12), (3.13), (3.14).

Packets to Drop: By maximizingΦm
(2)(t) defined in (3.18), we can obtain the amount of packets

to drop as follows.

dmi (t) =











(dmi )
max, Qm

i (t) + Zm
i (t) > V mβmi

0, Otherwise,
(3.24)

where(dmi )
max is a constant, i.e., a predefined limit fordmi . To satisfy the maximum delay require-

ment, packets are dropped as in (3.24) in each frame, whetheror not there is addition transmission

opportunity on unlicensed bands.

3.4.3 Guarantee On Maximum Delay

In this section, we first derive upper bounds on the real and virtual queue lengths. We then

translate the backlog bounds to an upper bound on queueing delay.

Lemma 3.1. With the drop decision (3.24) and assuming0 ≤ ǫmi ≤ (dmi )
max and0 ≤ (Ami )

max ≤

(dmi )
max, the proposed resource allocation and dropping policies ensure the following upper bounds

on the real and virtual queues.

(Qm
i (t) + Zm

i (t))
max = V mβmi + (Ami )

max + ǫmi (3.25)
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(Zm
i )

max = V mβmi + ǫmi . (3.26)

Proof. We first prove (3.25) withinduction. Since the real and virtual queues are all initially

empty, we haveQm
i (0) + Zm

i (0) ≤ V mβmi + (Ami )
max + ǫmi . Then we assume (3.25) holds for

somet0 ≥ 0, and prove that (3.25) also holds for(t0 + 1).

If Qm
i (t0) + Zm

i (t0) ≤ V mβmi , it follows (3.2) and (3.5) that

Qm
i (t0 + 1) + Zm

i (t0 + 1)

≤ Qm
i (t0) + Zm

i (t0) + (Ami )
max + ǫmi

≤ V mβmi + (Ami )
max + ǫmi .

Otherwise, ifV mβmi ≤ Qm
i (t0) + Zm

i (t0) ≤ V mβmi + (Ami )
max + ǫmi , then we havedmi (t) =

(dmi (t))
max according to (3.24). Hence

Qm
i (t0 + 1) + Zm

i (t0 + 1)

≤ Qm
i (t0)−Rm

ic (t0)−Rm
i (t0)− (dmi )

max + Ami (t0)+

Zm
i (t0) + ǫmi −Rm

ic (t0)−Rm
i (t0)− (dmi )

max

≤ Qm
i (t0) + Zm

i (t0) + Ami (t0) + ǫmi − 2(dmi )
max

≤ V mβmi + (Ami )
max + ǫmi .

Thus (3.25) also holds for the case of(t0 + 1), and we conclude that (3.25) is true for allt. The

proof for (3.26) is similar to that in [86] and is omitted for brevity.

Theorem 3.1. With the proposed resource allocation and packet dropping polices and the FIFO

service discipline, the queueing delay is upper bounded by(Wm
i )max. That is, any packet is either

transmitted or dropped within(Wm
i )max, given by

(Wm
i )max = 2 + (2V mβmi + (Ami )

max)/ǫmi . (3.27)
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Proof. According to Fact 1, we have

(Wm
i )max = ((Qm

i )
max + (Zm

i )
max)/ǫmi .

It follows Fact 3.1 and Lemma 3.1 that

(Wm
i )max ≤ ((Qm

i + Zm
i ))max + (Zm

i )
max)/ǫmi

= 2 + (2V mβmi + (Ami )
max)/ǫmi .

From Theorem 3.1, we see that there is a approximately linearrelationship between the max-

imum delay andV mβmi /ǫ
m
i .

3.5 Auction and Pricing

3.5.1 Determine The Auction Winner

During the auction, the same spectrum can only be allocated to a set of BS’s with no mutual

interference at a time. A set of BS’s with no mutual interference can be denoted as a non-interfering

bidding set. In each auction, the auction session determines the bidding setαm
∗

c (t) that wins the

auction and obtains the opportunity of transmission in frame t. The objective of the auction is to

maximize the sum of bids inαm
∗

c (t). It follows that

max
{αm∗

c (t)}
: Gc(t)|{Sm∗

c (t)}
.
=

∑

m∈αm∗
c (t)

bmc (t) (3.28)

s.t. Ii,j = 0, for all i, j ∈ αm
∗

c (t). (3.29)

Recall thatSm
∗

c (t) is the set of BS’s that bid in the auction. Constraint (3.29) guarantees that there

is no mutual interference among the winner BS’s. It is possible that the solution to problem (3.28)
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α

Figure 3.2: Illustrate the maximum independent set.

is not unique. Then the auction session will randomly chooseone non-interfering set as a winner

set.

To solve problem (3.28), we could use a brute-force approachto examine all the BS combi-

nations for the optimal non-interfering bidding set, whichhas a complexity ofO(2n − 1), where

n = |Sm
∗

c (t)| is the number of BS’s participating in the auction. In fact, this is amaximum weighted

independent set problemin graph theory [81], which is NP-complete. Wuet al. in [91] proposed

an approximation solution with a polynomial complexity by relaxing the objective function. For-

tunately, in the auction design of this work, the number of BS’s in a non-interfering bidding set is

limited. Without loss of generality, if the interference range of each BS is shaped as disks with an

identical diameter, the maximum number of BS’s in a non-interfering bidding set is 7. The proof

is given below.

Recall that all the bidding BS’s are in the interference range of the auction initiator. Hence

the distance between any two BS’s is no more than 2d, whered is the interference range of a BS.

Without loss of generality, we assume that the interferencerange of each BS is shaped as a disk

with diameterd. Then a maximal independent bidding set should be formed as shown in Fig. 3.2.

As α = π/6, there are 6 disks in the outer layer and the size of the independent set is 7.

We propose a recursive algorithmWINNERSET
(

Sm
∗

c (t)
)

to solve problem (3.28), to find the

maximum sum of bids of a non-interfering bidding set. The algorithm has a complexity ofO(n(k−
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Algorithm 2: WINNERSET
(

Sm
∗

c (t)
)

Input: Information about participating BS’s,Sm
∗

c (t) andIi,j(t), and all the bids made for channel
c, bmc (t), for i, j,m ∈ Sm

∗

c (t)
Output: The Optimum Non-interfering Bidding Set

1 Gmax = 0 ;
2 α = ∅ ;
3 for each BSm ∈ Sm

∗

c (t) do
4 S = Sm

∗

c (t) ;
5 Delete BSm and all BS’s interfering with BSm from S ;
6 α′ = WINNERSET(S) ∪m ;
7 ComputeG′ as the sum of all bids inα′ ;
8 if G′ > Gmax then
9 Gmax = G′ ;

10 α = α′ ;
11 end
12 end
13 Return α ;

1)!), wherek is the maximum depth of the recursive algorithm, which is equal to the maximum

number of BS’s in a non-interfering bidding set.

As shown in Algorithm 2, the recursive algorithmWINNERSET(·) works as follows. The

goal is to obtain the maximum non-interfering bidding set among all the sets that contain BSm,

for m ∈ Sm
∗

c (t). The maximum non-interfering bidding set containing BSm, is BSm plus the

maximum non-interfering bidding setα′ in Sm
∗

c (t), after deleting BSm and all its interfering BS’s.

And α′ can be obtained recursively.

In our auction design, all bidders are equal. Hence, we introduce the second-price strategy

in second-price sealed-bid auctions (i.e.,Vickrey auctions) [89, 91], in which the auction winner

pays the second highest bid among the bidders. Applying thisstrategy, the winning BS setαm∗
c (t)

pays for the maximum sum bids of the non-interfering biddingsets among the losers(the maximum

independent set aside from the winner set, denoted as secondary winner set). Different from the

traditional second-price strategy, there may be multiple winners in a single auction in our design.
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Hence we need to split the payment among the winners, given by

∑

m∈αm∗
c (t)

b̂mc (t) = Gc(t)|{Sm∗
c (t)\αm∗

c (t)}, (3.30)

whereGc(t)|{Sm∗
c (t)\αm∗

c (t)} is the maximum sum bids of the non-interfering bidding sets among

the losers.

To effectively split the payment among winners, a Nash bargaining solution (NBS) is intro-

duced in [91], aiming to maximize
∑

m∈αm∗
c (t)(b

m
c (t) − b̂mc (t)). However, the solution in [91]

ignores the constraintbmc (t) − b̂mc (t) ≥ 0, for m ∈ αm
∗

c (t). Actually, we could obtain a truthful

bidding if 0 ≤ b̂mc (t) ≤ bmc (t) (as given by Theorem 3.2 in Section 3.5.2). Hence we propose the

following pricing scheme.

b̂mc (t)=























bmc (t)
Gc(t)|{Sm∗

c (t)\αm∗
c (t)}

Gc(t)|{Sm∗
c (t)}

, m ∈ αm
∗

c (t)

−bmc (t), m ∈ αm
∗

c (t)′

0, otherwise,

(3.31)

whereαm
∗

c (t)′ is the optimal set of non-interfering loser BS’s inSm
∗

c (t)\αm
∗

c (t).

3.5.2 Proposed LMWA Algorithm And Performance Analysis

With the proposed schemes for resource allocation, valuation of spectrum, packet dropping,

and auction, we develop an integrated algorithm for the LTE-unlicensed system, named Lyapunov

based Multi-Winner Auction (LMWA), which is presented in Algorithm 3. In Line 10 of LMWA,

no bid would be made to avoid the hidden node problem.

We have the following theorems on the performance of LMWA about truthful bidding, utility

and social welfare maximization, and the QoS of UEs.

Theorem 3.2. (Truthful Bidding) The pricing scheme in (3.31) guaranteesthe truthfulness of bid-

ding, i.e.,bmc (t) = b̃mc (t).
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Algorithm 3: The Proposed LMWA Algorithm

1 for each BSm idle on unlicensed bandsdo
2 if a set of channelsC′ on unlicensed bands are sensed idle at framet then
3 Randomly select a channelc from C′ ;

4 ComputeRmic (t) as in (3.19),̃bmc (t) as in (3.23), anddmi (t) as in (3.24) ;
5 if a BS in the interference range is the auction initiator of channelc then
6 Submitbmc (t) = b̃mc (t) to the auction initiator ;
7 else ifno BS in the interference range is bidding forc then
8 BSm becomes the auction initiator and broadcasts a message to hold channelc ;
9 else

10 Continue ;
11 end
12 end
13 end
14 Each auction session decides the winner BS set with Alg. 2 ;

15 Each auction session decides the actual priceb̂mc (t) as in (3.31) ;
16 for each BSm, at the beginning of framet do
17 Dropdmi (t) packets as in (3.24) in framet ;
18 if BSm wins a bidthen
19 Schedule transmission on channelc with Rmic (t) in framet ;
20 end
21 end

Proof. With the proposed pricing scheme (3.31), the payment of a winner b̂mc (t) is a complicated

function of bidbmc (t). It also depends on other BS’s bids, which are unknown to BSm before

submitting its bid. Hence a bidder cannot predict the payment during the auction. Ifbmc (t) > b̃mc (t),

then it may be charged with a priceb̂mc (t) > b̃mc (t). If bmc (t) < b̃mc (t), then it has a lower chance to

win the auction. Hence,bmc (t) = b̃mc (t) is always the best bidding strategy.

The proposed pricing scheme (3.31) also resistant to the version of shill bidding in which a

buyer uses multiple identities in the auction in order to maximize its profit [108]. In shill bidding,

one identity of a buyer submit a price high enough to surely win the auction and the another identity

of the same buyer submit a price high enough to be the second highest price. In this case, the buyer

will win the auction and only pay to itself. In this work, two or more BSs from the same operators

may form multiple identities of the buyer(the operator). However, in pricing scheme (3.31), BSs

from the same operator have no clue of whether there would be any other BS/BSs in the secondary

winner set without overall interfering matrix and bids fromother BSs. If they apply the shill
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bidding in [108] and there is any other BS in the secondary winner set, they would need to make a

high payment to other BS/BSs in the secondary winner set.

Theorem 3.3. (Utility Maximization for Individual BS) If the compound process{Ami (t), e
m
ic (t)}

is i.i.d. over frames and for any UEi served by BSm, the proposed LMWA algorithm achieves the

following lower bound on the utility of BSm.

E{φmc (t)} ≥ {φmc }
opt − Bm/V m, (3.32)

whereφmc (t) is the utility of BSm defined in (3.3),Bm is defined in (3.18), and(φmc )
opt is the

maximum utility BSm can achieve without knowing the bids of others in an auction.

Proof. According to (3.17), we have

∆1(Θ(t)) + V mbmc (t) +
∑

i∈Um

V mβmi d
m
i (t) (3.33)

≤ Bm + V mbmc (t) +
∑

i∈Um

V mβmi d
m
i (t)+

∑

i∈Um

Qm
i (t)(A

m
i (t)−Rm

ic (t)−Rm
i (t)− dmi (t))+

∑

i∈Um

Zm
i (t)(ǫ

m
i 1{Qm

i (t)>0} −Rm
ic (t)−Rm

i (t)− dmi (t)).

Then for any (possibly randomized) feasible schedule, we have

min{∆1(Θ(t))− V mφmc (t)} (3.34)

≤ Bm + V mφm∗
c (t)+

∑

i∈Um

Qm
i (t)(A

m
i (t)−Rm∗

ic (t)−Rm∗
i (t)− dm∗

i (t))+

∑

i∈Um

Zm
i (t)(ǫmi 1{Qm

i (t)>0} −Rm∗
ic (t)−Rm∗

i (t)− dm∗
i (t)),
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whereRm∗
ic (t), Rm∗

i (t), anddm∗
i (t) are the terms corresponding to the feasible schedule. Now we

consider a randomized scheduling policy that achieves the following for each applicationi ∈ Um.

E{φm∗
c (t)} = {φmc (t)}

opt (3.35)

E{Ami (t)−Rm∗
ic (t)−Rm∗

i (t)− dm∗
i (t)} ≤ 0 (3.36)

E{ǫmi 1{Qm
i (t)>0} −Rm∗

ic (t)−Rm∗
i (t)− dm∗

i (t)} ≤ 0, (3.37)

where{φmc (t)}
opt is the maximum utility BSm can achieve in a stable system, and (3.36) and

(3.37) stabilize the queues.

Hence, as the proposed LMWA algorithm minimizes (3.34), we have

E{∆1(Θ(t))− V mφmc (t)|t} ≤ Bm − V m{φmc (t)}
opt+

E

{

∑

i∈Um

Qm
i (t)(A

m
i (t)−Rm∗

ic (t)−Rm∗
i (t)− dm∗

i (t))

}

+

E

{

∑

i∈Um

Zm
i (t)(ǫ

m
i 1{Qm

i (t)>0} −Rm∗
ic (t)−Rm∗

i (t)−

dm∗
i (t))} ≤ Bm − V m{φmc (t)}

opt,

where

E

{

∑

i∈Um

Qm
i (t)(A

m
i (t)−Rm∗

ic (t)−Rm∗
i (t)− dm∗

i (t))

}

≤ 0

E

{

∑

i∈Um

Zm
i (t)(ǫmi 1{Qm

i (t)>0} −Rm∗
ic (t)−Rm∗

i (t)−

dm∗
i (t))} ≤ 0.

Then we have

E{∆1(Θ(t))− V mφmc (t)|t} ≤ Bm − V m{φmc (t)}
opt
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for the proposed LMWA algorithm. Notice that
∑T−1

t=0 E{∆1(Θ(t))|t} = E{L(Θ(t))} < ∞ for a

stable system. It follows that

lim sup
t→∞

1

T

T−1
∑

t=0

E{∆1(Θ(t))|t} − lim sup
t→∞

V m

T

T−1
∑

k=0

E{φmc (t)}

= 0− lim sup
t→∞

V m

T

T−1
∑

k=0

E{φmc (t)}

≤ Bm − V m{φmc (t)}
opt.

Then we conclude that Theorem 3.3 holds true.

It follows that with LMWA, each BS can achieve an average utility with a gap ofBm/V from

the optimal average utility.

Theorem 3.4. (Social Welfare Maximization or Weighted Dropping Minimization) If V m .
= V is

a constant for all BS’s, and the compound process{Ami (t), e
m
i (t)} is i.i.d. over frames, for BS

m ∈ Sm
∗

c (t) and UEi ∈ Um, then for each auction the following inequality holds true.

∑

m∈Sm∗
c (t)

∑

i∈Um

E{βmi d
m
i (t)} (3.38)

≤ E







∑

m∈Sm∗
c (t)

∑

i∈Um

[βmi d
m
i (t)]







opt

+B/V,

whereB =
∑

m∈Sm∗
c (t)B

m, Bm is given in (3.18), andE{
∑

m∈Sm∗
c (t)

∑

i∈Um [βmi d
m
i (t)]}

opt is the

expected minimum weighted dropping penalty that can be achieved in an auction.

Proof. As in (3.28), the proposed LMWA algorithm maximizes
∑

m∈αm∗
c (t) b

m
c (t) in the auction

part. According to (3.23) and Theorem 3.2, we have

∑

m∈αm∗
c (t)

bmc (t) =
∑

m∈αm∗
c (t)

b̃mc (t)
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=
1

V m

∑

m∈αm∗
c (t)

max

{

∑

i∈Um

Rm
ic (t)(Q

m
i (t) + Zm

i (t))

}

.

As Rm
ic , Q

m
i (t), andZm

i (t) are independent among different BS’s at framet, LMWA maximizes
∑

m∈αm∗
c (t)

∑

i∈Um{Rm
ic (t) +Rm

i (t)}(Q
m
i (t) + Zm

i (t)) in each auction, by enforcing the constraint

that no interfering BS’s transmit at the same time. Based on theorem(3.3) we have

E







∑

m∈Sm∗
c (t)

∑

i∈Um

[

−b̂mi (t)− βmi d
m
i (t)

]







(3.39)

≥ E







∑

m∈Sm∗
c (t)

∑

i∈Um

[

−b̂mi (t)− βmi d
m
i (t)

]







opt

−
B

V
.

Since
∑

m∈Sm∗
c (t) b̂

m
i (t) = 0 according to the auction design, the above inequality (3.39) can be

simplified as

−
∑

m∈Sm∗
c (t)

∑

i∈Um

E{βmi d
m
i (t)}

≥ E







∑

m∈Sm∗
c (t)

∑

i∈Um

[−βmi d
m
i (t)]







opt

−
B

V
. (3.40)

Thus we conclude that (3.38) holds true.

In the special case withβmi = β for all UEs and BS’s involved in the auction, we have

∑

m∈Sm∗
c (t)

∑

i∈Um

E{dmi (t)} − E







∑

m∈Sm∗
c (t)

∑

i∈Um

[dmi (t)]







opt

≤ B/(V β). (3.41)

In this special case, it can be seen that the optimality gap for packet drop rate is proportional to

1/(V β). If V β → ∞, the proposed LMWA algorithm can achieve the minimum drop rate in each
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auction. Furthermore, according to Theorem 3.1, the maximum delay is proportional toV β. There

is clearly a tradoff between packet drop and delay here.

3.6 Simulation Validation

In this section, we use Matlab simulations to evaluate the performance of the proposed algo-

rithms with a typical outdoor small cell scenario. We used two simple schemes as benchmarks:

(i) Single-Winner that selects only one winner during an auction; and (ii) Random Access that

randomly selects a winner during the bidding stage. The configuration of simulation parameters

is based on [85], as summarized in Table 3.1. Specifically, weset ǫmi = 8 and (dmi )
max = 8

for all UEs, which are both normalized to the time scale of onesecond. We also setβmi = β

to better reveal its impact. The network area of200 × 200 m2 is covered with LTE macro cells

in licensed bands and the average data rate provided by the LTE Macro cell is4 Mbytes/s for all

UES. Six LTE-unlicensed BS’s are deployed in the area, each serving 10 UEs. Two channels on

the LTE-unlicensed band are available.

We adopt a truncated Poisson traffic model in the simulations, which is a Poisson process with

arrival rateλ and the maximum number of arrival packets is bounded with2λ. The packet size is

2 Mbytes (a file in the application and can be separated two smaller packets to fit the MAC layer

packet size [95]). In this work, we focus on the coordinationamong LTE-unlicensed users, so the

evaluation of WiFi performance is not included.

We also adoptedCOST 231 Hatafor metropolitan areas as the propagation model [106].

where

L(d) = 46.3 + 33.9 log10(fc)− 13.82 log10(hb)− α(hm) (3.42)

+ (44.9− 6.55 log10(hb)) log10(d) + 3

whereα(hm) = 3.2(log10(11.75))
2 − 4.75, fc, hb andhm are the central frequency, height of BS

and height of mobile device respectively.
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Table 3.1: Simulation Parameters

Parameter Scenario for Outdoor Small Cells

Carrier frequency 5 GHz
Bandwidth 20 MHz
Number of RBs 100
Frame duration 10 ms
BS height 10 m, below rooftop
mobile device height 1.5m
Antenna configuration 2Tx-2Rx
Transmit power 30 dBm
UE noise figure 7 dB
Channel model UMi outdoor
BS antenna configuration Omni-directional, 0 dBi gain
UE antenna gain 0 dBi
Thermal noise -174 dBm/Hz
LBT threshold -85 dBm
Traffic model Poisson
Packet size 2 Mbytes

In Fig. 3.3, we present the relationship between arrival rate of packets and the average packet

dropping rate. We find that the average dropping rate is increasing as the arrival rate grows. The

proposed LMWA algorithm outperforms the two other schemes with a considerably smaller drop-

ping rate. This is because that under the proposed LMWA algorithm, spectrum in unlicensed bands

can be spatially reused, and the lower dropping rate is enabled by an higher throughput due to spec-

trum reuse. We can also see that the dropping rate of Single-Winner is also considerably lower that

of Random Access, which indicates that the auction enables the BS with a higher utility to win the

unlicensed spectrum.

In Fig. 3.4, we present the relationship between packet arrival rate and average queueing delay.

The simulation shows there is a linear relationship betweenthe arrival rate and average delay, thus

validating Theorem 3.1. The increased arrival rate do not cause a surge in delay. Hence, even if

the arrival rate is really high, LMWA can still guarantee that the QoS requirement that a packet

is dropped or transmitted within a limited time. As in the previous case, the proposed LMWA
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Figure 3.3: Packet arrival rate versus average drop rate:V β = 20 for all UEs.
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Figure 3.4: Packet arrival rate versus average delay:V β = 20 for all UEs.

algorithm outperforms the two benchmarks with considerable gains, while Single-Winner also

outperforms Random Access.

In Fig. 3.5, we present the relationship between arrival rate and average throughput. The

simulation shows that throughput increases with the increasing of the arrival rate for all three

algorithms, while the curve for Random Access is pretty flat.

In Fig. 3.6, we present the relationship betweenV β and the average dropping rate. The sim-

ulation confirms theO(1/V β) bound of dropping packets. For the proposed LMWA and Single-

Winner algorithm, the average dropping rate decreases asV β grows, and theO(1/V β) bound of

dropping packets can be observed. Hence, we can chooseV β to better tradeoff between the QoS
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Figure 3.5: Packet arrival rate versus average throughput:V β = 20 for all UEs.
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Figure 3.6:V β versus average drop rate:Ami = 3.5 for all UEs.

requirements on dropping rate and delay in practice. For Random Access, we find that the drop-

ping rate does not decrease significantly with increasedV β. This is because that the arrival rate is

much higher than the provided throughput and dropping of many packets is unavoidable, even with

a loosen delay requirement. Obviously, this simulation shows similar gap among the performance

of the three schemes as in Figs. 3.3, 3.4 and 3.5.

In Fig. 3.7, we show the relationship betweenV β and average delay. The simulation con-

firms the bound of delay andV β as in Theorem 3.1. Although Theorem 3.1 is about the upper

bound of the maximum delay, we can still see that there is an approximately linear relationship be-

tween average delay andV β in all the three curves, which all adopt the proposed dropping policy.
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Figure 3.7:V β versus average delay:Ami = 3.5 for all UEs.
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Figure 3.8:V β versus average throughput:Ami = 3.5 for all UEs.

In addition, the proposed algorithm outperforms Single-Winner, and Single-Winner outperforms

Random Access in this simulation again.

In Fig. 3.8, we present the relationship betweenV β and average throughput. The simulation

shows that throughput increases with the increasing of the arrival rate for all three algorithms and

the simulation shows similar gap among the performance of the three schemes Fig.3.5.

3.7 Conclusions

We studied distributed online auction for sharing unlicensed bands among LTE-unlicensed

BS’s to maximize the social welfare in each auction, while achieving the dual goal of minimizing
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the expected packet dropping rate and guarantee a maximum delay. Specifically, we propose Lya-

punov optimization based schemes to evaluate the true valueof unlicensed spectrum, to allocate

RBs on unlicensed bands, and to decide when to drop packets based on current channel condition,

queue lengths, and delay of packets. We also proposed a truthful auction mechanism to integrate

the schemes, which can maximize the overall social welfare and guarantee bounded drop rate and

delay. The superior performance of the proposed algorithmsover two benchmark schemes was

validated with simulations.
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Chapter 4

Online Channel Assignment, Transmission Scheduling, and Transmission Mode Selection in

Multi-channel Full-duplex Wireless LANs

4.1 Introduction

Due to the dramatic increase of wireless data demands drivenby the wide use of smartphones,

tablets and other smart devices, there is an urgent need to improve the spectrum efficiency of exist-

ing wireless networks. Through effective self-interference cancellation, full-duplex transmission,

i.e., transmitting and receiving simultaneously in the same band, has been successfully demon-

strated [36]. With various self-interference cancellation techniques, full-duplex transmission has

the potential to increase and even double the wireless link capacity [37].

Combined with RF interference cancellation and digital baseband interference cancellation,

antenna cancellation can achieve a sufficient self-interference cancellation for full-duplex transmis-

sions. In [37–39], analog and digital cancellation techniques were investigated. With full-duplex

transmissions, various full-duplex links can be formed. For example, in the three-node full-duplex

link scenario, one node (e.g., a base station) executes self-interference cancellation to transmit to

and receive from two different half-duplex nodes simultaneously [40]. In the two-node link sce-

nario, both nodes are capable of self-interference cancellation and can transmit to and receive from

each other simultaneously [41].

Due to imperfect self-interference cancellation, the residual self-interference may still lead to

a lower signal-to-interference-plus-noise ratio (SINR) and deteriorate the performance of a full-

duplex link [42]. Additional power is needed to combat the residual self-interference to achieve a

suitable SINR. As a result, full-duplex transmission may notalways be helpful, and there is a trade-

off between the energy cost and delay in the design of full-duplex wireless networks [43]. In [42,
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43], the extra energy consumption and the limits of full-duplex transmission were investigated.

Joint resource allocation and scheduling in wireless networks is a challenging problem, for which

Lyapunov optimization has been applied and shown effective[9, 44–46]. However, these prior

works are all focused on half-duplex wireless networks. Many challenging issues that arise in

full-duplex wireless networks have not been adequately addressed.

In this chapter, we consider a multi-channel wireless LAN (WLAN) where both the access

point (AP) and user equipments (UE) are capable of full-duplex transmission. Since full-duplex

is not always more efficient than half-duplex, we aim to jointly consider the problems of channel

assignment, transmission scheduling, and transmission mode selection for the AP and UEs. We

develop a problem formulation to capture the trade-off between energy consumption and queue

length (which is indicative of delay) in the multi-channel full-duplex WLAN, with the objective

to minimize the overall energy consumption of the system andstabilize the packet queues at all

the nodes. We then develop an effective solution algorithm based on the Lyapunov optimization

framework. With the proposed algorithm, the overall optimization problem over the entire time

period is first reduced to the maximization of adrift-plus-penaltyfor each node in each time slot.

The reduced problem only depends on the queue lengths, wireless link rates, and energy consump-

tions in the current time slot. We then transform the reducedproblem into a maximum weighted

matching problem and solve it with the Hungarian Method [47].

The proposed algorithm is an online algorithm since it does not require any past and future

information of the WLAN system. We prove that the proposed algorithm maximizes thedrift-plus-

penaltyamong all possible transmission modes and channel assignment schemes. Furthermore, we

derive upper bounds on the average sum queue length and average total energy consumption under

the proposed algorithm, which clearly demonstrate the energy-delay trade-off in the multi-channel

full-duplex WLAN. The performance of the proposed algorithmis validated with simulations.

The remainder of this chapter is organized as follows. The system model and problem formu-

lation are presented in Section 4.2. The proposed scheduling algorithm is developed and analyzed

in Section 4.3. A simulation study is presented in Section 4.4. Section 4.5 concludes this work.
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4.2 System Model and Problem Statement

4.2.1 System Model

We consider a WLAN with one AP, a set of UEs denoted asN = {1, 2, ..., N}, and a set

of orthogonal channels denoted asS = {1, 2, ..., S}. The AP determines the channel assignment,

transmission schedule, and transmission mode selection for both uplink and downlink transmis-

sions. We assume that data is transmitted via the AP in packets, and there is no direct transmission

among the UEs. The packets waiting for transmission are buffered and served in the First In First

Out (FIFO) manner. We assume a discrete time system. The uplink queue lengths at the beginning

of time slott are denoted as~Qu(t) = {Qu
1(t), Q

u
2(t), ..., Q

u
N (t)} and the downlink queue lengths

are denoted as~Qd(t) = {Qd
1(t), Q

d
2(t), ..., Q

d
N (t)}, whereQu

i (t) is the backlog of the uplink queue

maintained at UEi andQd
i (t) is the backlog of the downlink virtual queue for UEi maintained at

the AP.

At time slott, the arrivals of packets to the uplink queues are denoted as~Au(t) = {Au1(t), A
u
2(t),

..., AuN (t)}. The arrivals of packets to the downlink queues are denoted as ~Ad(t) = {Ad1(t), A
d
2(t),

..., AdN (t)}. In addition, we assume that the arrivals of packets, eitherto the uplink or downlink

queues, are i.i.d over time. The expectations, i.e., the average arrival rates, are

~λu
∆
= E{ ~Au(t)} = {λu1 , λ

u
2 , ..., λ

u
N} and~λd

∆
= E{ ~Ad(t)} = {λd1, λ

d
2, ..., λ

d
N}. (4.1)

Recall that there areS = {1, 2, ..., S} orthogonal channels. During each time slott, a UE can

transmit and/or receive on one of the channels inS. The channel assignment decision is denoted

asαi(t), wherei ∈ N andαi(t) ∈ {S ∪ {0}} is the channel UEi uses at time slott. Note that

αi(t) = 0 indicates that no channel is assigned to UEi. In addition, each UE can choose from three

transmission modes:uplink, downlink, or full-duplex. The transmission mode selection is denoted

asβi(t) ∈ {U, D, F}, whereβi(t) = U , βi(t) = D, andβi(t) = F indicate that at time slott, UE

i selects half-duplex uplink, half-duplex downlink, and full-duplex transmission, respectively.
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For the full-duplex mode, the residual self-interference is treated as interference. Let

Cu
i (t)|αi(t)=s,βi(t)=F andCd

i (t)|αi(t)=s,βi(t)=F be the uplink and downlink channel capacity of UEi

at time slott, respectively, given that channels is assigned to UEi and the full-duplex mode is

selected. We have

Cu
i (t)|αi(t)=s,βi(t)=F = B log2

(

1 +
pui (t)|h

u
s |

2

N0 + pdi ηd

)

(4.2)

Cd
i (t)|αi(t)=s,βi(t)=F = B log2

(

1 +
pdi (t)|h

d
s|

2

N0 + pui ηu

)

, (4.3)

whereB is the channel bandwidth;hus andhds are the channel gains between the AP and UEi

for the uplink and downlink channel, respectively;pui (t) > 0 andpdi (t) > 0 are the uplink and

downlink transmit power, respectively;ηd andηu are the self-interference cancellation ratio at the

AP and a UE, respectively; andN0 is additive white Gaussian noise power.

For half-duplex uplink transmission, the uplink channel capacity for UE i, given that it is

assigned with channels, is

Cu
i (t)|αi(t)=s,βi(t)=U = B log2

(

1 +
pui (t)|h

u
s |

2

N0

)

. (4.4)

In this case, we havepui (t) > 0 and pdi (t) = 0. For half-duplex downlink transmission, the

downlink channel capacity for UEi, given that it is assigned with channels, is

Cd
i (t)|αi(t)=s,βi(t)=D = B log2

(

1 +
pdi (t)|h

d
s|

2

N0

)

. (4.5)

In this case, we havepui (t) = 0 andpdi (t) > 0.

The dynamics of the uplink and downlink queues can be writtenas

Qu
i (t+ 1) = max{Qu

i (t) + Aui (t)− Bu
i (t), 0} (4.6)

Qd
i (t+ 1) = max{Qd

i (t) + Adi (t)− Bd
i (t), 0}, (4.7)
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whereBu
i (t) = T

L
Cu
i (t)|αi(t), βi(t) andBd

i (t) = T
L
Cd
i (t)|αi(t), βi(t) are the service rates in packets

per time slot at timet for the uplink and downlink queues, respectively,T is the duration of a time

slot, andL is the packet length in bits.

4.2.2 Problem formulation

As can be seen from (4.2)–(4.5), the overall throughput can be enhanced with full-duplex

transmissions, but at the cost of higher energy consumption. The energy efficiency maybe de-

graded due to the residual self-interference. There is a trade-off between the overall queue length

(which is indicative of delay) and energy efficiency with different transmission mode selections.

Furthermore, both energy efficiency and throughput can be enhanced by transmitting only on good

channels. However, there may be the extra delay to wait for the channel condition to be good from

a deep fade.

The average total energy consumption of the system can be written as

P̄
∆
= lim sup

T→∞

1

T

T−1
∑

t=0

N
∑

i=1

E{pui (t) + pdi (t)|αi(t), βi(t)} (4.8)

We also define the average queue length asQ̄
∆
= lim sup

T→∞

1
T

T−1
∑

t=0

N
∑

i=1

E{Qu
i (t) +Qd

i (t)}. We schedule

the uplink and downlink transmissions at the beginning of each time slot. According to the notion

of throughput-optimal[45], the objective is to minimize the average energy consumption while

keeping all the uplink and downlink queues stable. We have the following problem formulation.

min : P̄ = lim sup
T→∞

1

T

T−1
∑

t=0

N
∑

i=1

E{pui (t) + pdi (t)|αi(t), βi(t)} (4.9)

s.t. αi(t) 6= αj(t), if αi(t) ∈ S or αj(t) ∈ S, for all i 6= j, i, j ∈ N (4.10)

Q̄ <∞, for all {~λu, ~λd} ∈ ~Λ, (4.11)
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where~Λ is the capacity region of the WLAN system. Constraint (4.10) forbids two nodes accessing

the same channel and Constraint (4.11) ensures that the schedule meets the notion of throughput-

optimal.

4.3 Solution Algorithm and Performance Analysis

4.3.1 Lyapunov Optimization Based Scheduling Algorithm

Following the Lyapunov optimization framework, we first define the Lyapunov functionL(Q(t))

asL(Q(t))
∆
= 1

2

N
∑

i=1

{

{Qu
i (t)}

2 + {Qd
i (t)}

2
}

, whereL(Q(0)) = 0. Note thatL(Q(t)) is small if

and only if all the queue lengths are small;L(Q(t)) will become large if any of the queues is

congested. The system is thus stable whenE{L(Q(t))} <∞.

We then define the drift∆(L(t)) as

∆(L(t))
∆
= E{L(Q(t+ 1))− L(Q(t)) |Q(t)}. (4.12)

The system is stable when

E{L(Q(t))} =E

{

t−1
∑

k=0

[L(Q(k + 1))−L(Q(k))]

}

(4.13)

=
t−1
∑

k=0

E{L(Q(k + 1))−L(Q(k))|Q(k)}

=
t−1
∑

k=0

∆(L(k)) <∞

We can minimize the drift in every time slott to maintain a finite expectation forL(Q(t)).

It follows the queue dynamics (4.6) and (4.7) that

{Qu
i (t+ 1)}2 + {Qd

i (t+ 1)}2

≤ {Qu
i (t) + Aui (t)− Bu

i (t)}
2 + {Qd

i (t) + Adi (t)− Bd
i (t)}

2
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= {Qu
i (t)}

2 + {Aui (t)−Bu
i (t)}

2 + 2Qu
i (t)(A

u
i (t)−Bu

i (t))+

{Qd
i (t)}

2 + {Adi (t)− Bd
i (t)}

2 + 2Qd
i (t)(A

d
i (t)−Bd

i (t)). (4.14)

Substituting (4.14) into (4.12), we have

∆(L(t)) ≤ Φ + E

{

N
∑

i=1

{Qu
i (t)(A

u
i (t)− Bu

i (t)) +Qd
i (t)(A

d
i (t)−Bd

i (t))}

}

, (4.15)

whereΦ = 1
2
E

{

∑N
i=1{[A

u
i (t)−Bu

i (t)]
2 + [Adi (t)−Bd

i (t)]
2}
}

, which is bounded if the arrival

rate and service rate of each uplink and downlink queue are bounded. This is true if the arrival

rates are within the capacity region of the system.

Defining P (t)
∆
=
∑N

i=1

{

pui (t) + pdi (t)
}

, we then obtain thedrift-plus-penalty∆(L(t)) +

V E{P (t)} as in [9], by incorporating the energy penalty (i.e., the overall energy consumption

at time t) with a positive coefficientV . ParameterV indicates the UEs’ emphasis on energy

consumption. That is, the more emphasis on energy consumption, the greater the value ofV . In

particular,V = 0 indicates that the UEs are not sensitive to energy consumption at all. Based

on (4.15), we can derive an upper bound on thedrift-plus-penaltyas

∆(L(t)) + V E{P (t)}

≤ Φ + E

{

N
∑

i=1

{Qu
i (t)(A

u
i (t)−Bu

i (t)) +Qd
i (t)(A

d
i (t)− Bd

i (t))}+ V P (t)

}

.

We minimize the second term on the right-hand-sideΘ
∆
=
∑N

i=1{Q
u
i (t)(A

u
i (t)−B

u
i (t))+Q

d
i (t)(A

d
i (t)−

Bd
i (t))}+V P (t) at each time slott in order to minimize thedrift-plus-penalty. Notice thatΘ can be

rewritten asΘ =
∑N

i=1{Q
u
i (t)A

u
i (t)+Q

d
i (t)A

d
i (t)}−

∑N
i=1{Q

u
i (t)B

u
i (t)−V p

u
i (t)+Q

d
i (t)B

d
i (t)−

V pdi (t)}. Then first term on the right-hand-side,
∑N

i=1{Q
u
i (t)A

u
i (t) + Qd

i (t)A
d
i (t)}, only depends

71



on the arrival rates and the current queue lengths. Therefore, it doesn’t affect the scheduling de-

cision. We only need to maximize the second term ofΘ, which is a function of bothαi(t) and

βi(t).

Let the channel assignment be~α(t) = {α1(t), α2(t), ..., αN (t)} and the transmission mode

selection be~β(t) = {β1(t), β2(t), ..., βN (t)}. We have

Ψ(t)|~α(t),~β(t)
∆
=

N
∑

i=1

{Qu
i (t)B

u
i (t)− V pui (t) +Qd

i (t)B
d
i (t)− V pdi (t)}|αi(t),βi(t)

=
N
∑

i=1

ψi(t)|αi(t),βi(t), (4.16)

whereψi(t)|αi(t),βi(t) = {Qu
i (t)B

u
i (t)− V pui (t) +Qd

i (t)B
d
i (t)− V pdi (t)}|αi(t),βi(t). Let the optimal

channel assignment be~α∗(t) = {α∗
1(t), α

∗
2(t), ..., α

∗
N (t)} and the optimal transmission mode se-

lection be~β∗(t) = {β∗
1(t), β

∗
2(t), ..., β

∗
N (t)}. To find the optimal schedule{~α∗(t), ~β∗(t)}, we first

need to identify the transmission mode for a given channel assignmentαi(t) = s for each UEi.

That is,

β∗
i (t)|αi(t)=s = argmax

βi(t)∈{U,D,F}

{ψi(t)|αi(t)=s,βi(t)}. (4.17)

Note thatψi(t) = 0 if no transmission is conducted. Therefore we have

ψ∗
i (t)|αi(t)=s = max{ψi(t)|αi(t)=s,β∗

i (t)
, 0} (4.18)

~ψ∗
i (t)|αi(t)

∆
= {ψ∗

i (t)|αi(t)=1, ψ
∗
i (t)|αi(t)=2, ..., ψ

∗
i (t)|αi(t)=S}. (4.19)

We need to find the maximum channel assignment~α∗(t) based on~ψ∗
i (t)|αi(t), for i = 1, 2, ..., N .

The channel assignment problem can be transformed into amaximum weighted bipartite matching

problem. In the bipartite graphG, UEs and the channels represent the two independent sets of

vertices: the set of UEsG1 and the set of channelsG2. In graphG, the weight of the edge between

an vertex inG1 (i.e., a UEi) and another vertex inG2 (i.e., a channels) is set toψ∗
i (t)|αi(t)=s. This

way, the maximum weighted bipartite matching of graphG corresponds to the optimal channel

72



Algorithm 4: Scheduling Algorithm for Channel Assignment and Transmission Mode Se-
lection
1 Update all uplink and downlink queues and estimate all channel conditions atthe beginning of each

time slott ;
2 For each UEi, find the transmission modeβ∗i (t)|αi(t)=s as in (4.17) ;

3 Obtain the channel assignment matrix{~ψ∗
1(t)|

T
α1(t)

, ~ψ∗
2(t)|

T
α2(t)

, ..., ~ψ∗
N (t)|

T
αN (t)} ;

4 Apply the Hungarian Method and (4.17) to find the optimal schedule{~α∗(t), ~β∗(t)} ;
5 if ψi(t)|{α∗

i (t),β
∗
i (t)}

> 0 then
6 UE i transmits on channelα∗

i (t) with transmission modeβ∗i (t);
7 end

assignment~α∗(t). The maximum weighted bipartite matching problem can be solved with the

Hungarian Method [47]. The complexity of the Hungarian Method isO(NS2) if N > S, or

O(N2S) if N ≤ S.

When the optimal channel assignment is derived, the optimal transmission modeβ∗
i (t) for

UE i is readily obtained as in (4.17), i.e.,β∗
i (t) = β∗

i (t)|α∗
i (t)

. Now we obtain the optimal sched-

ule {~α∗(t), ~β∗(t)} as well as the correspondingΨ(t)|~α∗(t),~β∗(t). Then we can assign the chan-

nels and decide the transmission mode for each UE based on theoptimal schedule. Note that

ψi(t)|α∗
i (t),β

∗
i (t)

= 0 if no transmission is scheduled for UEi; so UE i transmits if and only if

ψi(t)|α∗
i (t),β

∗
i (t)

> 0.

The detailed algorithm for deriving the optimum schedule{~α∗(t), ~β∗(t)} is presented in Al-

gorithm 4, which is executed at the beginning of each time slot.

4.3.2 Performance Analysis

We have the following theorems for the performance of Algorithm 4. The proofs are omitted

for lack of space.

Theorem 4.1.The schedule{~α∗(t), ~β∗(t)} obtained by Algorithm 4 achieves the maximumΨ(t).

We also derive the upper bounds for the expectations of average sum queue lengths of all the

uplink and downlink queues and the corresponding average total energy consumption as follows.
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Theorem 4.2.Assume that the arrival rates to the queues~λu and~λd are strictly within the system’s

capacity region, i.e., the system can be stabilized under certain {~α(t), ~β(t)}. Then the upper

bounds on the average sum queue lengths and average energy consumption under Algorithm 4 can

be derived as

lim sup
T→∞

1

T

T−1
∑

t=1

N
∑

i=1

E{Qu
i (t) +Qd

i (t)} ≤
1

ǫ
(Φ + V P̄ ) (4.20)

lim sup
T→∞

1

T

T−1
∑

t=1

N
∑

i=1

E{pui (t) + pdi (t)} ≤ P̄ opt +
Φ

V
, (4.21)

whereP̄ opt is the minimum average energy consumption under any stable scheduling strategy,̄P

is the average energy consumption under the proposed algorithm, ǫ > 0 is the distance between

the arrival rates{~λu, ~λd} and the system capacity region under the proposed algorithm, andΦ is

given in (4.15).

4.4 Performance Evaluation

In this section, we evaluate the performance of the proposedalgorithm through Matlab simu-

lations. We assume that the maximum transmit power is 46 dBm atthe AP and 23 dBm at the UEs.

We assume that there is a 110 dB self-interference cancellation in both the uplink and downlink

transceivers. For the wireless channels, we adopt the commonly used Okumura-Hata model for

small and medium-sized cities. Each channel has a bandwidthof 360kHz. We assume that there

are 12 UEs and 10 channels in the WLAN.

We compare the average energy consumptions and queue lengths of a half-duplex only system

and a full-duplex system under different V values. The simulation results are presented in Figs. 4.1

and 4.2 for different traffic arrival rates. From the simulations, we find that the full-duplex system

always outperforms the half-duplex only system with respect to both average queue length and

energy consumption. Moreover, there is a trade-off betweenthe average queue length and energy

consumption for the full-duplex system under differentV values.
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Fig. 4.1 presents the average queue length versus traffic load. WhenV = 0, the scheme only

minimizes the drift and does not care about energy consumption. In this case, the average queue

length of the half-duplex case is always greater than that ofthe full-duplex case. Moreover, in the

half-duplex only case, the queues cannot be stabilized whenthe arrival rate exceeds 25. In the

full-duplex case, the queues can be stabilized until the arrival rate reaches 38. Clearly, full-duplex

transmissions are helpful to keep the queue backlog low and increase the capacity region of the

WLAN. It is also interesting to see that for all the full-duplex cases, the queues can be stabilized

when the arrival rate is lower than 38, indicating that differentV values do not affect the stability

of the system. Moreover, the average queue length increaseswhenV is increased, as indicated by

the upper bound of average queue length (4.20) in Theorem 4.2.

Fig. 4.2 presents the average energy consumption versus traffic load. We find the average

energy consumption of the half-duplex only case is smaller than that of the full-duplex cases under

heavy load, when the queues become unstable. However, in thestable capacity region of the half-

duplex only case (i.e., when the arrival rate is lower than 25), the average energy consumption of

the half-duplex only case is greater than that of the full-duplex cases withV > 50. This is because

whenV > 50, the energy consumption is more seriously considered (i.e., in the drift-plus-penalty)

and the UEs would transmit only when the energy efficiency is high. For the full-duplex case with

V = 0, the average energy consumption is the highest among all thecases, since the proposed

scheme does not consider energy efficiency. Furthermore, the energy consumption drops when

the arrival rate is greater than 38. This is due to the unbalanced service rates of the uplink and

downlink. When the queues are not stable, more uplink transmissions were made; the uplink

transmit power is comparatively smaller than that of the downlink transmissions. Finally, it can be

seen that the energy consumption decreases whenV is increased, as indicated by the upper bound

of average energy consumption (4.21) in Theorem 4.2.
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Figure 4.1: Average queue lengths achieved by the proposed algorithm: half-duplex only with
V=0, full-duplex with V=0, full-duplex with V=50, full-duplex with V=100, and full-duplex with
V=150.
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Figure 4.2: Average energy consumptions achieved by the proposed algorithm: half-duplex with
V=0, full-duplex with V=0, full-duplex with V=50, full-duplex with V=100, and full-duplex with
V=150.

4.5 Conclusion

In this chapter, we proposed an online scheduling algorithmto jointly decide the channel as-

signment, transmission scheduling, half- or full-duplex transmission mode selection for each UE

in a multi-channel ful-duplex WLAN. The proposed scheme was based on Lyapunov optimization.

We also proved the optimality of the proposed algorithm and derived upper bounds for the average
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queue length and energy consumption under the proposed algorithm. We evaluated the perfor-

mance of the proposed algorithm with simulations. We showedthat under the proposed algorithm,

there was a trade-off between the average queue length and energy consumption under differentV

values.

4.6 Appendix

4.6.1 Proof For Theorem.4.2

According to Theorem.4.2, Algorithm 4 maximizesΨ(t), which minimizesΨ(t). And we

have

min{Ψ(t)} (4.22)

=min{
N
∑

i=1

{Qu
i (t)(A

u
i (t)−Bu

i (t)) +Qd
i (t)(A

d
i (t)− Bd

i (t))}

+ V P (t)}

≤
N
∑

i=1

{Qu∗
i (t)(Aui (t)− Bu∗

i (t)) +Qd∗
i (t)(Adi (t)−Bd∗

i (t))}

+ V P ∗(t)

WhereQu∗
i , Qd∗

i , Bd∗
i (t) andP ∗(t) are the terms corresponding to any (possible randomized)

scheme. Now consider a randomized scheduling policy that achieves the optimal energy consump-

tion and stabilizes the system, i.e., fori ∈ N

E{P ∗(t)} = P opt (4.23)

E{Aui (t)− Bu∗
i (t)} ≤ 0 (4.24)

E{Adi (t)−Bd∗
i (t)} ≤ 0 (4.25)
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wherepopt is the minimal energy consumption under the corresponding scheduling policy that

stabilizes the system, ie, (4.24) and (4.25) is fulfilled.

Then under algorithm 4, we have

∆(L(t)) + {P (t)} (4.26)

≤Φ + E{min{Ψ(t)}}

≤Φ + E

{

N
∑

i=1

{Qu∗
i (t)(Aui (t)−Bu∗

i (t))}

}

+ E

{

N
∑

i=1

{Qd∗
i (t)(Adi (t)− Bd∗

i (t))}

}

+ V E{P ∗}

AsQu∗
i (t) is independent to(Aui (t)−B

u∗
i (t)) andQd∗

i (t) is independent to(Adi (t)−B
d∗
i (t)), along

with (4.24) and (4.25), we have

E{Qu∗
i (t)(Aui (t)− Bu∗

i (t))} ≤ 0 (4.27)

E{Qd∗
i (t)(Adi (t)−Bd∗

i (t))} ≤ 0 (4.28)

for all i ∈ N . Then substitute (4.27) and (4.28) to (4.22), we have

∆(L(t)) + E{P (t)} (4.29)

≤Φ + 0 + V E{P ∗} = Φ+ P opt

For a stable system, we have
∑T−1

k=1 ∆(L(t)) = L(t) <∞, it follows that

lim sup
t→∞

1

T

T−1
∑

k=0

∆(L(t)) + lim sup
t→∞

Vp
T

T−1
∑

k=0

E{P (t)} (4.30)

= lim sup
t→∞

Vp
T

T−1
∑

k=0

E{P (t)}

= lim sup
t→∞

Vp
T

T−1
∑

k=0

E{pui (t) + pdi (t)}
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≤Φ + Vp · P
opt

Then (4.21) hold true.

Suppose that the system is can be stabilized under the proposed scheduling algorithm and for

all i ∈ N there exist a real numberǫ ≥ 0, such that

E{Aui (t)− Bu
i (t) ≤ −ǫ} (4.31)

E{Adi (t)−Bd
i (t) ≤ −ǫ} (4.32)

then we have

∆(L(t)) + E{P (t)} (4.33)

≤Φ + E

{

N
∑

i=1

{Qu
i (t)(A

u
i (t)−Bu

i (t))}

}

+ E

{

N
∑

i=1

{Qd
i (t)(A

d
i (t)− Bd

i (t))}

}

+ V E{P (t)}

≤Φ− E

{

N
∑

i=1

ǫQu
i (t)

}

− E

{

N
∑

i=1

ǫQd
i (t)

}

+ V E{P (t)}

=Φ− ǫE

{

N
∑

i

{Qu
i (t) +Qd

i (t)}

}

+ V E{P (t)}

Note that∆(L(t)) + E{P (t)} ≥ 0 as is guaranteed in Algorithm 4, we have

E

{

N
∑

i

{Qu
i (t) +Qd

i (t)}

}

≤
1

ǫ
{Φ + V E{P (t)}} (4.34)
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It follows that

lim sup
t→∞

1

T

T−1
∑

t=1

N
∑

i=1

E{Qu
i (t) +Qd

i (t)} (4.35)

≤
Φ

ǫ
+

1

ǫ
lim sup
t→∞

1

T
{VpE{P (t)}}

=
1

ǫ
(Φ + VpP )

Then (4.21) holds.
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Chapter 5

Access Strategy and Dynamic Downlink Resource Allocation for Femtocell Networks

5.1 Introduction

Femtocells, also named as Femto Access Points (FAP), are small, low power cellular base

stations (BS). Femtocells are designed for use at homes and small enterprises, and are usually

connected to the core network with broadband wireline connections [50]. In addition to providing

a shortcut to the core network, the wireline connection alsoenables coordinations among FAPs and

macrocell base stations (MBS) to improve the performance of the two-tier network. Femtocells are

considered as a low-cost and effective solution to extend wireless coverage and offload voice and

wireless data. This is really important, as research indicates that 70% of data traffic take place

indoor where the coverage of conventional cellular networks is usually poor. With femtocells, the

distance between BS and a User Equipments (UE) is greatly reduced, thus enabling better signal

transmissions and better spatial reuse of spectrum.

The success of femtocell networks largely relies on the management of interference. The

deployment of femtocells provides better coverage to nearby Femtocell User Equipments (FUE),

but it may also produce a “dead zone” to nearby Macro User Equipments (MUE). FAPs are usually

deployed in places where there is poor MBS coverage; the MUE and MBS must use high transmit

power to sustain their connection, thus leading to strong interference to FUEs. Unlike well-planned

and optimized deployment of cellular networks (i.e., the MBS’s), FAPs are usually installed by

end-users in a chaotic manner. The coverage of FAPs may overlap with each other and cause

interference among FAPs themselves.
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From the perspective of access policy, femtocells can be classified into (i) closed access,

where only subscribers can access the FAPs, and (ii) open access, where an FAP serves both sub-

scribers and nearby MUEs. Although open access is more appealing for interference management,

its success depends on the willingness of the FAPs to serve non-subscribed MUEs; some incentive

mechanisms would be critical to encourage FAP owners to adopt this strategy. From the perspec-

tive of spectrum resource allocation, femtocells can be classified into (i) co-channel scenarios,

where MBS’s and FAPs share the spectrum band, and (ii) dedicated channel scenarios, where or-

thogonal channels are assigned. The tension between interference and spectrum efficiency should

be carefully balanced.

In this work, we investigate the problem of access control and spectrum resource allocation

in two-tier femtocell networks. We assume one MBS and multiple FAPs in the area and consider

the open access scheme. The FUEs are always connected to the corresponding FAPs, while the

MUEs can choose between the MBS and a nearby FAP for connection. The spectrum is divided

into two parts, one for the MBS and the other part for the FAPs. To provide incentives to FAPs for

serving MUEs, we allow dynamic partition of the spectrum according to the network dynamics;

more bandwidth will be allocated to the FAPs if they serve more MUEs.

We developed a scheme for joint access control and spectrum resource allocation. The goal

is to maximize the network-wide capacity and improve the performance of UEs with poor MBS

coverage, by assigning the MUEs to the MBS or FAPs and by dynamically partition the spectrum

for the MBS and the FAPs. We also aim to guarantee the quality ofservice (QoS) of the users in the

form of a minimum capacity requirement. The formulated problem is a mixed integer nonlinear

programming (MINLP) problem. We then develop an algorithm that assigns MUEs to the BS’s and

an algorithm for allocating spectrum resource to the BS’s once the BS association for the MUEs

are determined. An upper bound on the network capacity achieved by the proposed algorithms is

also derived. The performance of the proposed algorithms are evaluated with simulations, and are

shown to outperform an existing scheme with considerable gains. The upper bound is also found

to be quite tight for most of the cases examined in the simulation study.
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The remainder of the chapter is organized as follows. We discuss related work in Section 5.2

and the problem formulation in Section 5.3. In Section 5.4, we propose access control and spec-

trum resource allocation algorithms and derive the capacity upper bound. Simulation studies are

presented in Section 5.6. Section 5.7 concludes the chapter.

5.2 Related Work

Compared with Wi-Fi access points, femtocells provide a solution of supporting better voice

and data coverage by switching from the cellular network to another service provider when the

signal quality is poor indoor, instead of just providing high speed data transmissions. Femtocells

are now primarily viewed as a cost-effective means of offloading data and voice from the macrocell

network [50]. Because of the advantages for both network operators and customers, the benefits

of femtocells cannot be overemphasized in the long term. However, the two-tier architecture of

macrocells and femtocells inevitably brings about the cross-tier interference problem. Further,

as femtocells are usually deployed by end-users and the deployment of femtocells are not well

planned, femtocells may be overlapped with each other, causing co-tier interference among such

femtocells [58]. Hence, interference management in femtocell network has received tremendous

attention from either academic or industrial areas [60,61].

As the interference in femtocell network is largely determined by the deployment scenarios,

Mahmoud and Guvenc in [54] summarized femtocell deploymentfrom two perspectives: (i) closed

access or open access, (ii) co-channel or dedicated channels. A game-theoretic approach for re-

source allocation in OFDMA femtocells with closed access was proposed in [55]. However, an

non-subscribed user that is close to an FAP may be far away from the MBS. Its transmit power

should be increased to meet its QoS requirement, thus introducing stronger interferences to users

of the FAP. In [73], a self-optimized coverage coordinationscheme was proposed to provide bet-

ter indoor femtocell coverage and avoid leaking the femtocell coverage into an outdoor macrocell.

In [52], the authors introduced a game-theoretic frameworkfor the FAPs to decide their own access

policy in order to maximize the system performance. And another game-theoretic approach in [77]
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was proposed to mitigate the interference between Macrocell and femtocell. In [53], an algorithm

was proposed for the open access scenario to improve networkthroughput, while a hybrid access

mechanism was introduced in [56] to guarantee the resourcesfor users and reduce interference.

In [67, 68], neighborhood femtocell Handover schemes were developed improve the system per-

formance in dense femtocellular network. In [70], a framework of Spectrum-Sharing Rewarding

was proposed for hybrid access mechanism to maximize the benefit of femtocell owners. The per-

formance of two-tier femtocell networks with partially open channels was evaluated in [71]. In

co-channel scenarios, the spectrum is available for all users but it may lead to high cross-tier inter-

ference. To mitigate the interference in co-channel scenarios, a Frequency ALOHA (F-ALOHA)

was adopted to avoid excessive cross-tier interference in [51]. In [64–66, 79, 80], some power

adaptive schemes were developed to mitigate the interference. In [57,60,74], the authors proposed

a Cognitive Radio (CR) approach to mitigate the cross-tier interference. In [49], the impact of

Interference Alignment (IA) in femtocell networks was evaluated, and in [69], a game theory ap-

proach for IA was proposed. In [63], a interference avoidance strategy is developed in a two-tier

CDMA network to mitigate the uplink interference. In [72], a resource allocation scheme with

QoS constraints was proposed for the interference avoidance application. In [76], a joint subchan-

nel scheme as well as a disjoint subchannel scheme were proposed for resource allocation in the

two-tier femtocell network. The performance of two-tier femtocell networks with cochannel fem-

tocell deployment was analysed with outage constraints in [78]. A Femtocell Identification (FID)

approach was proposed in [75] to avoid co-channel interference between neighbour femtocells. In

Co-channel deployment scenarios, it is usually difficult to guarantee the Quality of Service (QoS)

requirements for users. In dedicated channel scenarios, spectrum is divided into orthogonal por-

tions and allocated to different tiers, in order to eliminate cross-tier interference at the price of a

lower spectrum efficiency [54].
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5.3 System Model and Problem Statement

5.3.1 System Model

We consider a femtocell network with one MBS (indexed with 0) collocated withN =

{1, 2, · · · , N} FAPs. LetL0 = {1, 2, · · · , L0} denote the set of active MUEs in the network.

Each FAPi ∈ N serves a set of active FUEs, denoted asLi = {1, . . . , Li}, for i = 1, 2, · · · , N .

The spectrumB for this femtocell network is divided into two parts: (i)B0 allocated to the

MBS, and (ii) the remaining portion(B − B0) allocated to the FAPs. An FAPi will use spectrum

(B − B0) to serve its subscribersLi and some of the MUEs; the remaining MUEs will be served

by the MBS using spectrumB0. Since the spectrum allocated to the MBS and the FAPs are

orthogonal, there is no cross-tier interference.

Due to the autonomous, chaotic deployment of the FAPs, the set of FAPs can be classified

into disjointed clusters. The FAPs in a cluster has overlapped coverage and may interfere with

each other, but there is no interference among different clusters. If a cluster consists of an isolated

FAP, the FAP can use all the(B − B0) spectrum without interfering other FAPs or the MBS.

A cluster with multiple FAPs is treated as a “virtual” FAP. From the perspective of MUEs and

the MBS, the cluster behaves like one FAP. Within the cluster,we assume the interfering FAPs

are allocated with orthogonal spectrum resources in the(B − B0) band to avoid interference. For

example, interference graphs can be used to model the exclusive relationship among the interfering

FAPs [60].

In this work, we consider an open access scheme, in which all the MUEs are allowed to access

a nearby FAP, while the FUEs always connect to the corresponding FAPs. Recall thatLk is the

set of UEs subscribed to BSk, for k = 0, 1, · · · , N (L0 is the set of MUEs). For open access of

the MUEs, we define a variableρi,j(k) to indicate the access strategy of a UEj ∈ Lk originally
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subscribed to BSk.

ρi,j(k) =











1, UE j ∈ Lk accesses BSi

0, otherwise,

∀ i, k ∈ {0} ∪ N . (5.1)

Since we assume that all FUEs inLk access to the correspondent FAPk, it follows thatρk,j(k) = 1,

for all k 6= 0.

As FAPs are usually deployed by customers for home or office use, we adopt the standard

indoor propagation model for the FAP link between UEj, j ∈ Lk, and BSi as [59]

λi,j(k) = 37 + 30log10di,j(k) + 18.3n(
n+2
n+1

−0.46),

∀ i, k 6= 0, (5.2)

wheredi,j(k) is the separation from BSi to UE j, for all j ∈ Lk; n is the number of floors along

the path. For the MBS, we adopt the standard outdoor model for the path loss from the MBS to

MUE j ∈ L0 as [59]

λ0,j(0) = 40log10d0,j(0) + 30log10f + 49, (5.3)

wheref (in MHz) is the central carrier frequency. As the bandwidth of the spectrum is much small

comparing to the carrier frequency, we can fixf to a constantf0 for simplification.

Consider an addictive white Gaussian noise (AWGN) channel, the Signal to Interference plus

Noise (SINR) of userj, j ∈ Lk, from BSi is denoted as

εi,j(k) = pi,j(k)hi,j(k), j ∈ Lk, i, k ∈ {0, 1, · · · , N}, (5.4)
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wherehi,j(k) = 10(−λi,j(k)/10)/(N0+ Ij(k)); pi,j(k) is the transmit power of BSi to UEj, j ∈ Lk;

N0 denotes the power of background white Gaussian noise;Ij(k) is the received interference of

UE j, j ∈ Lk, from nearby FAPs. Therefore, the downlink capacity for UEj, j ∈ Lk can be

approximated by the Shannon capacity as

Cj(k) =
N
∑

i=0

ρi,j(k)Bi,j(k) log2(1 + εi,j(k)), j ∈ Lk, ∀ k, (5.5)

whereBi,j(k) denotes the spectrum band allocated to UEj, j ∈ Lk by BS i. Then, the downlink

capacity of BSi can be computed as

Ci =
N
∑

k=0

∑

j∈Lk

ρi,j(k)Bi,j(k) log2(1 + εi,j(k)), ∀ i. (5.6)

5.3.2 Problem Formulation

In femtocell networks, the deployment of FAPs makes the transmitter and receiver closer to

each other, hence offering better QoS and reducing power consumption and interference. However,

FAPs may introduce strong interference to, or be interferedby nearby MUEs, if the same spectrum

is used. Consequently, some open access schemes have been introduced as a means for mitigating

such cross-tier interference. However, it is usually hard to persuade FAP owners to offer open

access to non-subscribed users, as FAPs are installed and owned by end-users, rather than service

providers.

In this work, we propose an incentive scheme that compensates FAPs with spectrum resource

for offering open access to nearby MUEs. Specifically, we dynamically partition the spectrum

resource according to the association of the MUEs. If more MUEs are switched to nearby FAPs

for better service, the MBS share of the spectrumB0 will be reduced and more spectrum will be

allocated to the FAPs. Since the FAP clusters are not interfering with each other, the share(B−B0)

can be used by all the FAP clusters simultaneously, achieving the gain of spatial reuse. It is worth

noting that the share(B − B0) for FAPs is determined by the FAP cluster that serves the most
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MUEs. For other FAPs serving fewer MUEs, the extra spectrum can be allocated to their FUEs for

better service, as an additional incentive for the FAPs to serve MUEs.

The objective is then to maximize the overall capacity of thefemtocell network. To achieve

this goal, an efficient access scheme for the MUEs and a corresponding spectrum allocate mech-

anism are needed to dynamically determine the spectrum partition and the spectrum resource al-

located to each UE. The constraints are the total spectrum resource of the system and the QoS

requirements of the UEs. The dynamic access and resource allocation problem can be formulated

as follows.

maximize
N
∑

i=0

Ci (5.7)

subject to:

ρi,j(k) ∈ {0, 1}, i, k ∈ {0} ∪ N , j ∈ Lk (5.8)

ρk,j(k) = 1, k ∈ N , j ∈ Lk (5.9)
∑

i

ρi,j(k) = 1, i, k ∈ {0} ∪ N , j ∈ Lk (5.10)

Bi,j(k) ≥ 0, i, k ∈ {0} ∪ N , j ∈ Lk (5.11)
∑

k

∑

j

Bi,j(k)ρi,j(k) = B0,

i ∈ {0}, k ∈ {0} ∪ N , j ∈ Lk (5.12)
∑

k

∑

j

Bi,j(k)ρi,j(k) = B − B0,

i ∈ N , k ∈ {0} ∪ N , j ∈ Lk (5.13)

0 ≤ Cj(k) ≤ C, k ∈ {0} ∪ N , j ∈ Lk. (5.14)

In the formulated problem, constraint (5.9) indicates thatan FUE can only access the FAP to

which it subscribes, while constraint (5.10) indicates that a UE can only access the MBS or one

FAP at a time. Constraint (5.12) represents the fact that the MBS have spectrum resourceB0 for
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all the MUEs, while constraint (5.13) represents the fact that the FAPs have spectrum resource

(B −B0). Constraint (5.14) is the QoS requirement that the downlink capacity of each UE should

be no less thanC.

We aim to maximize the capacity of the entire network. The solution of this problem involves

optimizing the access strategy of the MUEs (i.e., determining the binary values ofρi,j(k)’s) and

the allocation of the spectrum resource (i.e., determine the non-negative real values ofBi,j(k)’s).

Problem (5.7) is an MINLP problem, which is NP-hard in general. In the following section, we

proposed an algorithm to solve this problem with near-optimal solutions as well as a proven per-

formance bound.

5.4 Algorithms and Performance Bound

In this section, we first reformulate problem (5.7) to obtaina simplified version. Based on

observations obtained from the reformulation, we then develop two algorithms that assign the

MUEs to either the MBS or an FAP based on the achievable capacity gains, and then to allocate

the spectrum resource to the FAPs, We also develop an upper bound for the network-wide capacity

achieved by the proposed algorithms.

5.4.1 Solution Algorithms

To solve the problem, we first simplify it by reformulating the objective function (5.7). Based

on (5.8), (5.9) and (5.10), the objective function (5.7) canbe reformulated as in (5.16). According

to the reformulation in (5.16), the total capacity of the network can be divided into two parts:

• the capacity achieved by the MUEs served by the MBS, which shares a total spectrum of

B0 (see (5.12)).

• the capacity achieved by the MUEs served by FAPs and the capacity achieved by the FUEs,

where each FAP cluster has spectrum resource of(B − B0) (see (5.13)).
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N
∑

i=0

Ci = C0 +
N
∑

i=1

Ci

=
N
∑

k=0

∑

j∈Lk

ρ0,j(k)B0,j(k) log2(1 + ε0,j(k)) +
N
∑

i=1

N
∑

k=0

∑

j∈Lk

ρi,j(k)Bi,j(k) log2(1 + εi,j(k))

=
∑

j∈L0

ρ0,j(0)B0,j(0) log2(1 + ε0,j(0))

+
N
∑

i=1

{

∑

j∈L0

ρi,j(0)Bi,j(0) log2(1 + εi,j(0)) +
∑

j∈Li

ρi,j(i)Bi,j(i) log2(1 + εi,j(i))

}

(5.15)

=
∑

j∈L0

N
∑

i=0

ρi,j(0)Bi,j(0) log2(1 + εi,j(0)) +
N
∑

i=1

∑

j∈Li

ρi,j(i)Bi,j(i) log2(1 + εi,j(i)). (5.16)

According to (5.16), the first component to reformulate is the capacity achieved by MUEs.

Let Bi,j(0) ≡ Bj, whereBj is a constant, for all base stationsi and MUEj ∈ L0. That is, for

MUE j it should be allocated with the same amount of spectrum resource no matter which base

station it connects to. It follows that

∑

j∈L0

N
∑

i=0

ρi,j(0)Bi,j(0) log2(1 + εi,j(0))

=
∑

j∈L0

N
∑

i=0

ρi,j(0)Bj log2(1 + εi,j(0))

≤
∑

j∈L0

Bj ·max{0≤i≤N}{log2(1 + εi,j(0))}. (5.17)

The inequality is because there is only oneρi,j(0) is one and all others are zero. Hence, each MUE

should access an MBS or FAP that offers the best SINR for the downlink link.

Consider the case whenmax{0≤i≤N}{log2(1 + εi,j(0))} = log2(1 + ε0,j(0)), i.e., the MBS

can offer the best SINR for MUEj. Even in this case, accessing a nearby FAP may still bring a

larger capacity gain for the entire network, since the spectrum resource allocated to the FAPs can

be spatially reused. Define

Gi,j(k) = log2(1 + εi,j(k)), (5.18)
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and letψi denote the maximumGi,j(k) among the UEs served by BSi, i.e.,

ψi = max
j∈Lk,0≤k≤N

{Gi,j(k)}, ∀ i, (5.19)

and definen∗ as

n∗ = argmax
1≤i≤N

{Gi,j(0)} . (5.20)

In this case, if the following condition is satisfied, i.e.,

G0,j(0) <
∑

i∈N\n∗

ψi − ψn∗

(

G0,j(0)

Gn∗,j(0)
− 1

)

+G0,j(0),

we have that

∑

i∈N\n∗

ψi
1

G0,j(0)
− ψn∗

(

1

Gn∗,j(0)
−

1

G0,j(0)

)

> 0. (5.21)

Then an MUE can achieve larger network-wide capacity by accessing FAPn∗.

Theorem 5.1.An MUE can achieve larger network-wide capacity by accessing the FAPn∗, which

offers the best SINR among all FAPs, if the following inequality holds:

∑

i∈N\n∗

ψi
1

G0,j(0)
− ψn∗

(

1

Gn∗,j(0)
−

1

G0,j(0)

)

> 0. (5.22)

Proof. Consider that a MUE is now decided to access the MBS in the step one, and assume that it

is allocated with spectrum bandwidth B. If it decide to accessto FAPn∗, and assign the bandwidth

B to FAPs, then it would bring about the change of capacity as following:

1. For MBS, capacity is decreased byBG0,j(0), as the MUE is served by a FAP other than the

MBS and the corresponding spectrum bandwidth is assigned to FAPs.

2. For FAPs other thann∗, the capacity can be increased byB
∑

i∈N\n∗

ψi as the spectrum re-

source B is assigned to the FAPs.
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3. For FAPn∗, the capacity would be increase by−ψn∗

(

B
G0,j(0)

Gn∗,j(0)
− 1
)

+BG0,j(0). As in step

one, the MUE decided to access the MBS, then the SINR of the MBS must be better than

that of any FAP. That is,G0,j(0)

Gn∗,j(0)
> 1. So the FAPn∗ need to assign a spectrum bandwidth

B
G0,j(0)

Gn∗,j(0)
for the MUE to remain the same capacity. In this condition, the spectrum assign

to the FUE served by FAPn∗ with best SINR would decrease byB ∗ G0,j(0)

Gn∗,j(0)
− B and

would bring about a capacity decrease of theψn∗B
(

G0,j(0)

Gn∗,j(0)
− 1
)

. In addition, as the MUE

is served by FAPn∗ and remain the same capacity, it brings about an capacity increase of

BG0,j(0).

In summary, if the MUE decide to access FAPn∗, the network-wide capacity would increase

by:

∆C = BG0,j(0) + B
∑

i∈N\n∗

ψi − ψn∗

(

B
G0,j(0)

Gn∗,j(0)
− 1

)

+ BG0,j(0) (5.23)

And if the∆C > 0, then the MUE can achieve larger network-wide capacity by accessing the FAP

n∗. Proved;

According to (5.17) and (5.21), we develop an access scheme for the MUEs, which is given

in Algorithm 9. With this access scheme, each MUE chooses theBS (i.e., the MBS or an FAP)

with the best channel condition to access, as given in Lines 2–3 in Algorithm 9. For the MUEs that

falls within the coverage of each FAP but are connected to theMBS (as determined in Lines 2–3),

we next examine if switching such MUEs to the corresponding FAP can achieve further gains in

the overall network capacity, as in Line 7, and switch such MUEs to the corresponding FAP if this

is the case, as in Lines 8–9. It can be verified that the complexity of Algorithm 9 isO(L0N).

Once the cell associations for the MUEs are determined by Algorithm 9 (note that for the

FUEs, the FAP associations are already determined; see (5.9)), we next develop a greedy algorithm

for spectrum resource allocation for the users. The goal of this algorithm is to greedily maximize

the overall capacity of the system under the QoS constraint (5.14). The algorithm is shown in

Algorithm 15, whereGi,j(k) andψi are defined in (5.18) and (5.19), respectively;φi is the spectrum
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Algorithm 5: Access Scheme

1 for j = 0 → L0 do
2 i = argmax0≤i≤N{Gi,j(0)}
3 ρi,j(0) = 1

4 for j = 0 → L0 do
5 if ρ0,j(0) == 1 then
6 n∗ = argmax1≤i≤N {Gi,j(0)}

7 if
∑

i∈N\n∗

ψi

G0,j(0)
− ψn∗

Gn∗,j(0)
+ ψn∗

G0,j(0)
> 0 then

8 ρn∗,j(0) = 1
9 ρ0,j(0) = 0

needed by FAPi to satisfy the QoS requirements of all the UEs it serves;B(ψi) is the spectrum

resource of the UE corresponding toψi. The algorithm first determines the bandwidth needed for

satisfying the QoS requirement for each UE, and then allocates the spectrum to each BS according

to the number of UEs it serves, which is given by Algorithm 9.

The spectrumB is allocated as follows. Ifψ0 ≥
N
∑

i=1

ψi, allocate the extra spectrum to the MBS

and the MBS then allocates it to the MUE connecting to it and having the best channel condition.

In this case, as the spectrum resource allocated to the FAPs is determined by the FAP that needs

the most spectrum resource to meet the QoS requirements of the UEs connecting to it, some other

FAPs may still have some extra spectrum for allocation and they allocate the extra spectrum to

the UEs with the best channel condition among those that connect to it. On the other hand, if

ψ0 <
N
∑

i=1

ψi, the extra spectrum is allocated to the FAPs, and the FAPs will allocate the extra

spectrum to the UEs with best channel condition among those connecting to it. It can be verified

that the complexity of Algorithm 15 is alsoO(L0N).

5.4.2 Performance Upper Bound

We next derive a performance upper bound for the overall network capacity. According

to (5.15), we can derive the upper bound as in (5.24).
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Algorithm 6: Spectrum Allocation

1 for j = 0 → L0 do
2 if ρ0,j(0) == 1 then
3 B0,j(0) = C/G0,j(0)

4 for i = 1 → N do
5 for j = 0 → Li do
6 Bi,j(i) = C/Gi,j(i)

7 for j = 0 → L0 do
8 if ρi,j(0) == 1 then
9 Bi,j(0) = C/Gi,j(0)

10 if ψ0 ≥
N
∑

i=1
ψi then

11 B(ψ0) = B(ψ0) +B − φ0 −max{1≤i≤N}φi for i = 1 → N do
12 B(ψi) = B(ψi) + max{1≤i≤N}φi − φi

13 else
14 for i = 1 → N do
15 B(ψi) = B(ψi) +B − φ0 − φi

N
∑

i=0

Ci

=
∑

j∈L0

ρ0,j(0)B0,j(0) log2(1 + ε0,j(0)) +

N
∑

i=1

{

∑

j∈L0

ρi,j(0)Bi,j(0) log2(1 + εi,j(0))+
∑

j∈Li

ρi,j(i)Bi,j(i) log2(1 + εi,j(i))

}

≤
∑

j∈L0

ρ0,j(0)B0,j(0)ψ0 +
N
∑

i=1

{

∑

j∈L0

ρi,j(0)Bi,j(0)ψi +
∑

j∈Li

ρi,j(i)Bi,j(i)ψi

}

= ψ0(B − φ′) + φ′
N
∑

i=1

ψi

= ψ0B + φ′

(

N
∑

i=1

ψi − ψ0

)

≤ Bψ0 + Bmax

{

N
∑

i=1

ψi − ψ0, 0

}

= Bmax

{

N
∑

i=1

ψi, ψ0

}

. (5.24)
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In (5.24), first inequality is due to the definition ofψi, i.e., as the maximumGi,j(k). The

second inequality is due to the fact that(B−B0) ≤ B (i.e.,B0 ≥ 0). This result is summarized in

the following theorem.

Theorem 5.2. The network-wide capacity achieved by the proposed algorithms is upper bounded

as follows.

N
∑

i=0

Ci ≤ Bmax

{

N
∑

i=1

ψi, ψ0

}

(5.25)

5.5 scenario with overlapped FAPs

We have discussed the scenario that all FAPs are not overlapped. However, in practical sce-

nario, the deployment of FAPs can not be well organized and avoid overlapping, as FAPs are

deployed by users. In this case, the coverage of some FAPs areoverlapped in the scenario with

overlapped FAPs. With overlapped FAPs, not all FAPs are ableto reuse spectrum simutaneously

because of the interference among them. This makes the access scheme and the spectrum alloca-

tion much more complicated.

In the introduction, we have mentioned that when the coverage of FAPs are overlapped, we

can form the overlapped FAPs into FAP clusters, and then allocate frequency spectrum for clusters.

Here, we introduce the access scheme and the spectrum allocation for the scenario with overlapped

FAPs.

5.5.1 Accesss Scheme In Scenario With Overlapped FAPs

In 5.17, we have shown that the frequency efficiency each MUE can be improved if it access

an MBS or FAP that offers the best SINR. Besides, as shown in 5.21,sometimes the whole system

will achieve better overall performance if some MUE choose to access a FAP even if the MBS

offers greater SINR. However, as evaluating the overall performance of scenario with overlapped
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FAPs is much more complex that of non-overlapped scenario, we simplify the access scheme of

MUEs to be accessing the MBS or FAP with stronger SINR at here.

5.5.2 Spectrum Allocation For Scenario With Overlapped FAPs

Although the interference deteriorates the spectrum reusebetween overlapped FAPs, the fre-

quency reuse is still feasible between FAPs not overlapped.Hence, if we divide the FAPs into

clusters that there is no interference between clusters, then the same spectrum can be reused be-

tween clusters. A cluster is group of FAPs that there exists interference between FAPs in a cluster,

and there is no interference between FAPs from different clusters. Here, we give a mathematical

definition for clusters.

Lemma 5.1. If two FAPs A and B can interfere each other, then they are communicate, denote at

A↔B. And the communicate relationship is transitive. That is,If A↔B, and B↔C, then A↔C. All

FAPs are divided into subsetsS1, S2, ..., Sk, called clusters , such that any two FAPs within the

same cluster communicate, but FAPs from different clustersdo not. WhereS1 ∪ S2∪, ...,∪Sk =

{1, 2, .., N}, andS1 ∩ S2∩, ...,∩Sk = ∅.

Where for FAPs have no interference with other FAPs, each of them form a cluster with only

one FAP.

As FAPs are divided into clusters and there is no interference between FAPs from different

clusters, spectrum can be simultaneously reused by clusters. However, a FAPs is not necessarily

interfering with all others FAPs in the same cluster.

For example, in figure.5.1, there are 4 FAPs.FAP1 is interfering withFAP2, andFAP3 is

interfering withFAP2 andFAP4. In this case,FAP1 andFAP2 can not reuse the same frequency

spectrum simultaneously, andFAP2, FAP3 andFAP4 can not reuse the same frequency spectrum

simultaneously. However, if we divide them into two group,{FAP1, FAP3} and{FAP2, FAP4},

then FAPs in the same group can use the same frequency spectrum simultaneously. Hence, it is

necessary for us to find a feasible and effective algorithm todivide every cluster with more than
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Figure 5.1: example of a cluster with 4 FAPs.

one FAPs into groups that all FAPs in the same group are able touse the same frequency spectrum

simultaneously.

Here we define the index variableVi,j as

Vi,j =











1, the coverage ofFAPi andFAPj is overlapped

0, otherwise,

∀ i, k ∈ N . (5.26)

According to the definition ofVi,j, the constraint of the spectrum allocation in a cluster can

be described as
∑

j∈Sk

Bj(t)Li,j ≤ 1, for i ∈ Sk, andSk ⊂ N . WhereBj(t) means certain fre-

quency spectrum point is assigned toFAPj at time t. Then the spectrum allocation problem can

be formulated as follow:

maximize C0 +
k−1
∑

n=0

CSn
(5.27)

subject to:

constraint(5.8), (5.9), (5.10), (5.11), (5.12)and(5.14) (5.28)
∑

j∈Sn

Bj(t)Vi,j ≤ 1, for i ∈ Sn. (5.29)
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The idea of solving the problem can be summarized into the following three steps:

1. Divide the all FAPs into clusters.

2. Divide each clusters into groups, where FAPs in the same group can reuse the same spectrum

in the same time.

3. Allocate spectrum resource for each FAP

5.5.3 Solution Algorithms

Firstly, we try to divide FAPs into clusters. we may considerthe topology of FAPs as undi-

rected graph G = (V,E). Where V =1,...,N, representing the FAPnodes. V contains all edges

between vertices, and a edge between two vertices means the two corresponding FAP nodes are

overlapped. According to the definition of the clusters in lemma5.1, a FAP node can reach to all

FAPs nodes among the cluster. So we can identify all nodes in acluster, if we search for all reach-

able vertices from one vertex. Here, we adopt the idea of breadth-first search [62] to identify FAPs

in the same cluster and then divide all FAPs nodes into clusters. The algorithm is presented as the

algorithm 7:

In the algorithm, the graph G=(V, E) uses a adjacency-list torepresent the edges. For each

Vertex u∈ V, a Adj list is created to record the Adj vertices. That is, Adj[u] includes all vertices

that connected to vertex u. The algorithm also uses a First-In-First-Out (FIFO) queue Q. The

function ENQUEUE(Q,s) pushes s into Q, and the function DEQUEUE(Q) pushes a node out.

The algorithm first labels all nodes to be white and initialize the FIFO queue Q. Then it select the

node first mode as the source node for searching. After the search, all nodes in the same cluster

of the source node are identified and labeled black. Then the algorithm select the next node that

is still white to be the source and do search again. This process is repeated until all nodes are

divided into clusters and labeled black. The function SEARCH(G,s,i) is a modified Breath-first

search algorithm, readers may check chapter 22 of [62] for more information.
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Algorithm 7: divide into cluster

1 cluster(G):
2 for each vertex u∈ G.V do
3 u.color = WHITE

4 Q = ∅
5 i = 0, k = 0while G.V[k] 6= Nil do
6 s = G.V[k]
7 if s.color = = WHITE then
8 SEARCH (G, s, i)

9 k++

10 SEARCH (G, s, i):
11 ENQUEUE (Q, s)
12 while Q 6= ∅ do
13 u = DEQUEUE (Q)
14 for each v=G.Adj[u]do
15 if v.color == WHITE
16 v.color = GRAY
17 ENQUEUE(Q,v)

18 u.color = BLACK
19 cluster [i].add (u)

20 i++

After grouping nodes into clusters, we then need to divide nodes in each cluster into groups.

The algorithm should ensure that each FAP nodes are not overlapped (not connected in the topol-

ogy) with any other nodes among the same group. The algorithmis shown as algorithm(8)

Where we use G=(V,E) to represent the topology of FAPs in a cluster, as in algorithm(7). In

the initialization, we label all vertices to WHITE. The algorithm select the first WHITE vertex

s, then labels all adjacent vertices to BLACK. By repeating that, the algorithm select a group of

vertices that not connected with each other, and the remaining vertices are BLACK, which means

they are connected to at least one of the vertices picked up inthe group. After a group of vertices

are selected, we deleted them from the gragh, and label the remaining vertices WHITE again. The

process is repeated until all vertices are selected. When thealgorithm is finished, all vertices are

divided into groups, in which each vertex is not connected with other vertex in the same group.

Then we proposed an algorithm to allocate the frequency spectrum. Similar to the non-

overlapped scenario, the objective of the algorithm is to maximize the network-wide capacity
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Algorithm 8: divide into groups

1 grouping (G)
2 k=0 while G.V[k] 6= 0 do
3 s = G.V[k]
4 s.color = WHITE

5 i=0
6 while G.V 6= ∅ do
7 k=0
8 while G.V[k] 6= Nil do
9 s=G.V[k]

10 if s.color == WHITE then
11 for each v = G.Adj[s]do
12 V.color = BLACK

13 Group[i].add(s)
14 delete(s)

15 k = 0
16 while G.V[k] 6= Nil do
17 s=G.V[k]
18 s.color = WHITE

and the guarantee the QoS requirement of each UE. For the scenario with overlapped FAPs, the

frequency allocation is much more complex that in scenario with no overlapping FAPs, as the

spectrum allocation scheme is not independent among FAPs ina cluster. Firstly, we analysis the

spectrum allocation in one cluster. Assume that in clusterSn, there are m FAPs, and they can be

divided into k groupsGroup0, Group1, ...Groupk−1. Assume that frequency spectrum B’ is allo-

cated to the cluster and the QoS requirement is fulfilled. Then if extra band frequency spectrum

∆B can be allocated to clusterSn, the added throughput∆C can be represented as:

∆C =
∑

i∈Sn

∆Ci (5.30)

=

j=k−1
∑

j=0

∑

i∈Groupj

∆Ci (5.31)

=

j=k−1
∑

j=0

∑

i∈Groupj

∆Bjψi (5.32)
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≤ ∆Bmax(
∑

i∈Groupj

ψi) (5.33)

Where∆Bj is the extra spectrum allocated toGroupj, and
j=k−1
∑

j=0

∆Bj = ∆B. Besides,ψi is

defined in equation(5.19).

So in each cluster, the extra spectrum resource should be allocated to the group with maximum
∑

i∈Groupj

ψi, to get better network-wide capacity.

For the overall throughput, if there are extra spectrum∆B, then the added throughput can be

represented as:

∆C (5.34)

= ∆C0 +
k−1
∑

n=0

∆CSn (5.35)

≤ (∆B0)ψ0 (5.36)

+
k−1
∑

n=0

(∆B −∆B0)max(
∑

i∈Groupj ,Groupj⊂Sn

ψi) (5.37)

≤ ∆Bmax{ψ0,
k−1
∑

n=0

max(
∑

i∈Groupj ,Groupj⊂Sn

ψi)} (5.38)

We can notice that if

ψ0 >
k−1
∑

n=0

max(
∑

i∈Groupj ,Groupj⊂Sn

ψi) (5.39)

holds, the we can get better network-wide capacity if we allocate the extra spectrum resource

to the MBS. Otherwise, we can get better network-wide capacity if we allocate the extra spectrum

resource to the FAPs.

Hence, the spectrum allocation algorithm can be represented as algorithm(9)

In the algorithm(9), we assume that we have already applied the algorith (7) and (8). That is,

we have already divided the FAPs into clusters and groups. The basic idea of the algorithm is that
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Algorithm 9: Spectrum allocation for the overlapped scenario

1 φmax = 0
2 for every clusterSn do
3 φ(Sn) = 0
4 for every group m∈ clusterSn do
5 φ(Sn,m) = 0
6 for Every FAP i in group mdo
7 if φi > φ(Sn,m) then
8 φ(Sn,m) = φi

9 for j = 1 → L0 do
10 if ρi,j(0) == 1 then
11 Bi,j(0) = C/Gi,j(0)

12 for j = 1 → Li do
13 Bi,j(i) = C/Gi,j(i)

14 φ(Sn) = φ(Sn) + φ(Sn,m)
15 for every FAP i in group mdo
16 if φi < φ(Sn,m) then
17 B(ψi) = B(ψi) + ψ(Sn,m)− ψi

18 if φ(Sn) > φmax then
19 φmax = φ(Sn)

20 for j = 1 → L0 do
21 if ρ0,j(0) == 1 then
22 B0,j(0) = C/G0,j(0)

23 if ψ0 >
k−1
∑

n=0
max(

∑

i∈Groupj ,Groupj⊂Sn

ψi) then

24 B(ψ0) = B(ψ0) +B − φ0 − φmax
25 for every clusterSn do
26 if φ(Sn) < φmax then
27 m = argmaxj{ψi|i ∈ Groupj , Groupj ⊂ Sn}

28 for every FAP i in group mdo
29 B(ψi) = B(ψi) + φmax − φ(Sn)

30 else
31 for every clusterSn do
32 m = argmaxj{ψi|i ∈ Groupj , Groupj ⊂ Sn} for every FAP i in group mdo
33 B(ψi) = B(ψi) +B − φ0 − φ(Sn)

we first need to ensure the QoS requirement of each UE. Then we should ensure that different clus-

ters reuse the same spectrum resource, and in each clusterm FAPs in the same group should share
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the same spectrum and the FAPs from different groups must avoid occupying the same spectrum

to avoid interference. Lastly, we also need to follow the idea discussed in (5.30) and (5.34).

In algorithm(9), from line(7) to line (8), we calculate the minimum spectrum resource needed

to ensure the QoS requirement of all FAPs in each group. From line(9) to line(13), we allocate

spectrum for UEs that access to FAPs to meet their QoS requirement. Line(14) calculate the

minimum spectrum resource needed to ensure the QoS requirement for each cluster. From line(15)

to line(17) we allocate some extra spectrum to the UEs with the greatestψi in each group to

make FAPs in the same group share the same spectrum resource.Line(18) to line(19) calculate

the minimum spectrum resource needed to ensure the QoS requirement for all clusters. Line(20)

to line(22) allocates the minimum spectrum resource for MUEs that access the MBS to ensure

the QoS requirement. In line(23), we check the inequation (5.39). If inequation(5.39) holds, we

allocate the extra spectrum to the MUE with best SINR (greatestψ0) among MUEs that access the

MBS in line(24). And from line(25) to line(29), we allocate some spectrum resource to some UEs

access to FAPs with THE best SINR to the make all clusters share the same spectrum resource.

Otherwise, we allocate the extra spectrum resource to some UEs access to FAPs with best SINR

and make them share the same spectrum resource(between line(31) and line(33).

5.5.4 Performance Upper Bound

Based on the discuss in (5.30) and (5.34), the upper bound of the network-wide capacity can

be derived as follow:

C = C0 +
k−1
∑

n=0

CSn (5.40)

≤ B0ψ0 +
k−1
∑

n=0

(B − B0)max(
∑

i∈Groupj ,Groupj⊂Sn

ψi) (5.41)

≤ Bmax{ψ0,
k−1
∑

n=0

max(
∑

i∈Groupj ,Groupj⊂Sn

ψi)} (5.42)
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5.6 Performance Evaluation

5.6.1 Scenario With Non-overlap FAP

We evaluate the performance of the proposed scheme with MATLAB simulations. Specifi-

cally, we compared the proposed algorithms with the access scheme and resource allocation mech-

anism (termed OA scheme) presented in [53], as well as the OA scheme enhanced with our pro-

posed resource allocation algorithm (OA-PRA). In OA, the MUEs decide to access the MBS or an

FAP that provides the best SINR; if an MUE chooses to access an FAP, the FAP will be allocated

with the corresponding spectrum resource. In the followingsimulations, the network has a total

spectrum resource ofB = 20 MHz. The coverage of the MBS is 500 m and the coverage of the

FAPs are 50 m. In addition, we assume each FAP has one FUE and there are a large number of

MUEs. The channel models are defined in (5.2) and (5.3), respectively.

In Fig. 5.2, we evaluate the impact of the number of FAPs on thetotal capacity of the system.

In the simulation, there are 100 MUEs, the QoS requirementC is set to 400 Kbps. As shown in the

figure, the total capacity increases as more FAPs are deployed. For OA, the total capacity increases

slightly with the number of FAPsN . In the proposed algorithm and OA-PRA, the total capacity

increases greatly withN . This is because that more resources are allocated to users with better

SINR, and resources can be spatially reused among the FAPs. The proposed algorithm achieves

better performance than OA-PRA when there are more than one FAPs. After all, the proposed

access scheme has taken into account spatial reuse among FAPs. For the one FAP scenario, OA-

PRA and the proposed algorithms achieve an equal total capacity. Actually OA-PRA is equivalent

to the proposed algorithm when there is only one FAP in the system. In short, the proposed

algorithm achieves considerable network capacity gains than OA, due to the integration of access

control and resource allocation. We also find that the upper bound given in Theorem 5.2 is quite

tight for the range of FAP numbers examined in this study.

In Fig. 5.3, we evaluate the impact of the QoS requirementC on the total capacity of the sys-

tem. In this simulation, there are 100 MUEs and 4 FAPs. From the figure, we notice that when
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Figure 5.2: Number of FAPs versus total capacity.
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Figure 5.3: QoS requirement versus total capacity.

QoS requirement is 0, the upper bound, proposed algorithm and OA-PRA achieve the same capac-

ity. Actually, when there is no QoS requirement, in the proposed scheme and OA-PRA, the system

allocates all the spectrum resource to the UEs that bring larger capacity gains, hence achieving

the upper bound given in Theorem 5.2. With increased QoS requirement, the performance of the

proposed scheme and OA-PRA degrades, but is still much higherthan that of OA. This is because

that a more stringent QoS requirement forces the system to allocate more spectrum resource to

UEs with a lower SINR to ensure that their QoS requirements are met. Hence, there is a balance

between fairness and efficiency, as can be seen from this study. The proposed scheme always

achieves better performance than that of OA-PRA and OA, and the gain gets larger when the QoS

requirement is increased.
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Figure 5.4: Number of MUEs versus total capacity.

In Fig. 5.4, we examine the impact of the number of UEs on the total capacity of the system.

In this simulation, there are 4 FAPs, and the QoS requirementC is set to 400 Kbps. It can be seen

that the proposed scheme always outperforms both OA and OA-PRA. In addition, the performance

of the proposed scheme and OA-PRA get worse with more MUEs are enabled. The reason is

similar to that in Fig. 5.3. With more MUEs, the system needs to allocate more spectrum resource

to the UEs with lower SINRs and hence less spectrum resource will be available for the MUEs

with good channels.

5.6.2 Scenario With Overlapped FAPs

We also evaluate the performance of proposed scheme for the the scenario with overlapped

FAPs. We compared the performance with the proposed algorithm on non-overlap case. We also

compared the proposed algorithm with OA scheme [53]. As the OA-PRA is may not be applied

to the overlapped FAP case, it is not included in the comparation. In the simulation, there are

6 FAPs, the topology can be summerized as:FAP1 is not overlapped as any FAPs;FAP2 is

overlapping withFAP3, andFAP3 is overlapping withFAP4; FAP5 is overlapping withFAP6.

Other settings are the same with the non-overlap case, if notspecifically pointed out. In figure. 5.5,

we examine the impact of the number of UEs on total capacity ofthe system. In this simulation, the

QoS requirementC is set to 400Kbps. It can be seen that the performance of proposed algorithm
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Figure 5.5: Number of MUEs versus total capacity.
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Figure 5.6: QoS requirement versus total capacity.

on overlapping case is worse that that on non-overlapping case, but it still outperforms the OA

scheme. And it is simular to the simulation in Figure. (5.6),where we examine the impact of

different QoS requirement on the system performance.

5.7 Conclusion

In this work, we studied the access strategy of MUEs and spectrum resource allocation for

the FAPs in a two-tier femtocell network. We considered the dedicated channel and open access

deployment scenario, and used spectrum resource as incentives to encourage FAPs to serve more

MUEs. The objective is to maximize the overall performance of the network while guaranteeing
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the QoS requirement for the users. To solve the formulated MINLP problem, we proposed an

algorithm to decide the access policy for the MUEs, and an algorithm for allocation of spectrum

resources to the FAPs. An upper bound was derived for the total capacity achieved by the proposed

algorithms. The bound and proposed algorithms were evaluated with simulations and shown to

outperform an existing scheme.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work, we aim to enhance the computational capacity and wireless data transmitting

rate, and stabilize of computing and transmission queues ofmobile devices. Based on lyapunove

optimization, we balance the energy consumption and the queue length in dynamic cloud offload-

ing scheme. We also studied the distributed online auction for sharing unlicensed bands among

LTE-unlicensed BS’s, scheduling algorithms in full-duplexenabled multi-channel WLAN and

access strategy of MUEs and spectrum resource allocation for the FAPs in a two-tier femtocell

network, in order to improve the connectivity of mobile devices while minimizing the energy con-

sumption.

In chapter 2, we proposed a scheduling scheme for energy-efficient cloud offloading for muti-

core mobile devices, while considering downloading the cloud execution output in the model.

studied the energy delay trade-off in cloud offloading for multi-core mobile devices. Based on

Lyapunov optimization, we developed an online algorithm that does not require information about

stationary distribution of applications and the network condition, making it amenable to real-time

implementation for practical scenarios. We proved theoretical bounds for the proposed algorithm

and validated its performance with trace-driven simulations.

In chapter 3, we studied distributed online auction for sharing unlicensed bands among LTE-

unlicensed BS’s to maximize the social welfare in each auction, while achieving the dual goal of

minimizing the expected packet dropping rate and guaranteea maximum delay. Specifically, we

propose Lyapunov optimization based schemes to evaluate the true value of unlicensed spectrum,

to allocate RBs on unlicensed bands, and to decide when to drop packets based on current channel
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condition, queue lengths, and delay of packets. We also proposed a truthful auction mechanism to

integrate the schemes, which can maximize the overall social welfare and guarantee bounded drop

rate and delay. The superior performance of the proposed algorithms over two benchmark schemes

was validated with simulations.

In chapter 4, we proposed an online scheduling algorithm to jointly decide the channel as-

signment, transmission scheduling, half- or full-duplex transmission mode selection for each UE

in a multi-channel ful-duplex WLAN. The proposed scheme was also based on Lyapunov opti-

mization. We also proved the optimality of the proposed algorithm and derived upper bounds for

the average queue length and energy consumption under the proposed algorithm. We evaluated

the performance of the proposed algorithm with simulations. We showed that under the proposed

algorithm, there was a trade-off between the average queue length and energy consumption under

differentV values.

In chapter 5, we studied the access strategy of MUEs and spectrum resource allocation for

the FAPs in a two-tier femtocell network. We considered the dedicated channel and open access

deployment scenario, and used spectrum resource as incentives to encourage FAPs to serve more

MUEs. The objective is to maximize the overall performance of the network while guaranteeing

the QoS requirement for the users. To solve the formulated MINLP problem, we proposed an

algorithm to decide the access policy for the MUEs, and an algorithm for allocation of spectrum

resources to the FAPs. An upper bound was derived for the total capacity achieved by the proposed

algorithms. The bound and proposed algorithms were evaluated with simulations and shown to

outperform an existing scheme.

6.2 Future Work

With the unprecedented growth in wireless data, wireless operators are in critical need of more

spectrum for higher capacity. To meet the so-called 1000x mobile data challenge [87], extending

LTE to the unlicensed spectrum, as specified in LTE Rel-10 – Rel-13 [83,84], has recently gained

significant attention [83, 87, 88, 90]. However, there are two main challenges to the success of the
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so-calledLTE-unlicensedtechnology. First, the unlicensed bands are already occupied by many

existing wireless networks (e.g., WiFi). It is essential toenable the coexistence of LTE-unlicensed

with existing unlicensed band users, i.e., to avoid significant performance degradation to existing

users while achieving high capacity gains with LTE-unlicensed. Second, the interference in unli-

censed bands is unpredictable, which is detrimental to the performance of LTE-unlicensed users.

Hence, it is important to effectively manage the interference between LTE-unlicensed and existing

users, and that among LTE-unlicensed users themselves.

To study the coexistence of LTE-unlicensed with existing unlicensed band users, some system

level simulation studies have been reported in several recent works [88,93,94]. The simulation re-

sults show that the WiFi performance could be significantly degraded, while the LTE performance

is only slightly affected. This is because WiFi uses Carrier Sensing Multiple Access (CSMA) to

compete for channel access, while LTE adopts a centralized channel access control mechanism.

WiFi usually keeps silent when sensing a busy channel continuously used by LTE. To protect ex-

isting unlicensed band users, requirements for clear channel assessment (CCA) and Listen Before

Talk (LBT) are specified by European standardization bodies [95]. In LBT, a user equipment (UE)

must perform CCA on the operating channel(s) before starting atransmission. The observing

duration should be at least 20µs.

Although the LTE performance may be only slightly affected by WiFi in some coexistence

scenarios [93,94], there could still be significant throughput degradations due to the inter-operator

interference, when multiple LTE-unlicensed base stations(BS) of different operators are deployed

in the same area [83]. There are two solutions to this problem: (i) make an agreement for the

operators to allocate the unlicensed spectrum; or (ii) enable opportunistic access to unlicensed

channels. The first solution may not be practical in most countries due to competition among oper-

ators and the lack of regulation for unlicensed bands [83], while the second solution is promising

for effective unlicensed spectrum sharing.

For future works, we will study the following problems,
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1. Investigating reasonable metrics of defining whether existing unlicensed band users is inter-

fered by LTE-unlicensed.

2. Verifying whether the LBT can efficiently protect the existing unlicensed band users.

3. Investigating the capacity region of LTE-unlicensed users when coexist with existing unli-

censed band users.

4. Studying spectrum sharing among LTU-unlicense BS’s to avoid interference among LTE-

unlicensed users.
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