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Abstract

In this work, we analysis the application of emerging wissleommunications on the sta-
bility of computing and transmission queues of mobile desicFirstly, we present a Lyapunov
optimization-based scheme for cloud offloading schedulasgwell as download scheduling for
cloud execution output, for multiple applications runninga mobile device with a multi-core
CPU. We derive an online algorithm and prove performance é®dor the proposed algorithm
with respect to average power consumption and average dgregid. which is indicative of delay,
and reveal the fundamental trade-off between the two opétiun goals.

Extending Long Term Evolution (LTE) to unlicensed bandeyted LTE-unlicensed promises
tremendous spectrum to meet the increasing wireless @atsniission demands and we proposed
a novel distributed online algorithm for opportunistic shg of unlicensed bands among LTE-
unlicensed base stations (BS), while guaranteeing the QoSesfequipments (UE). We first de-
rive a Lyapunov optimization based algorithm for BS’s to eed the true value of unlicensed
spectrum, guarantee a maximum delay, and minimize the packp rate. We then develop a
distributed auction mechanism to maximize the social welfa each auction and enable optimal
spectrum reuse. We prove that BS’s bid truthfully with thepgased algorithm, while UES’ QoS
requirements on delay and packet drop rate can be guaranmitrelddounded optimality gaps. We
also reveal an interesting trade-off between delay andgtatrkbp rate.

Full-duplex is gaining significant interest recently and dauble the system throughput the-
oretically. In this work, we investigate the trade-off beem energy consumption and delay in a
multi-channel full-duplex wireless LAN (WLAN). The goal is minimize the energy consump-
tion while keeping the packet queues stable. With Lyapurgiinozation, we develop an online
scheme to achieve the goals with optimized channel assignrransmission scheduling, and

transmission mode selection. We prove the optimality ofptugposed algorithm and derive upper



bounds for the average queue length and energy consumptiach) demonstrate the energy-delay
trade-off.

We finally studied the problem of joint access control anccspen resource allocation in a
two-tier femtocell network with one macro base station (MBSl multiple Femto Access Points
(FAP). The objective is to maximize the overall network aafyawhile guaranteeing the quality
of service (QoS) requirement of all UE. We develop an acoassmse for Macro User Equipments
(MUE) and a spectrum allocation mechanism for the FAPs. tByp@callocation is employed as an
incentive mechanism to encourage FAPs to serve more MUEsal8ederive an upper bound of

the network-wide capacity through a reformulation of thetypem.
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Chapter 1

Introduction

Recent years have witnessed the exceptional increase oferadvices, including smart-
phones and tablets. In the US, the number of smartphone kiaeriseen steadily increasing for
some years and forecasts estimate that the increase ofpbimiaet users in North American will
continue rising steadily into the future. The predictiortted number of smartphone users in the
United States from 2010 to 2019 is shown as Fig.1.1. For 2@G&Esnumber of smartphone users
is estimated to reach 207.2 million in the United States arestimated to exceed 2 billion world-
wide by that time [1]. Accompany with the fast increasingloé mobile device users, the number
of apps available on mobile devices is also expanding dye&dir Apple along, there are 1.5 mil-
lion Apps available in June, 2015, and the number of availablps in the Apple App Store from
July 2008 to June 2015 is shown in Fig.1.2. With the burst giiaptions targeting mobiles de-
vices, mobile devices are expected to be capable of runnuityphe applications simultaneously
and take part of the role of a laptop, such as mobile officanenlideos and video games, which
requires strong computational capacity and high speedessalata transmission.

However, due to the mobility requirement, the energy supply physical size of mobile de-
vices are limited, the computational capacity of mobileides can hardly been met. Under such
circumstances, smart phone manufacturers are keep ag@btonger CPUs which always come
with thermal problems, heavier batteries and less thetyattee. In other words, it is challenging
to balance the demands for stronger computation capaaityrenmobility of mobile devices in
the foreseeing future. Mobile cloud offloading has beenga@ed as an effective solution to the
limited resource problem [4, 5]. Mobile cloud offloading atwes wireless communication, cloud
computing and mobile computing, which brings rich compataand storage resource of cloud

computing providers to resource-constraint mobile devibeough wireless channel of Internet.

1
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Figure 1.1: Prediction of the number of smartphone usersarnited States from 2010 to 2019
(in millions) [1]




Number of available apps in the Apple App Store from July 2008 to June 2015
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Figure 1.2: number of available apps in the Apple App Stavenfduly 2008 to June 2015 [2]

With offloading, we can store our photos and videos in thectknd fetch it whenever it is needed.
Furthermore, computation intensive tasks can also be dffldbéo software clones in the cloud [7],
so that most computation can be executed in the cloud tolgrealuce the burden on the mobile
device [8]. However, offloading data and computational $astuld involve considerable com-
munications between mobile devices and cloud clones, wtocid consume a large amount of
energy and incur extra delay. Hence, the decision betwemrd abffloading or local execution
should be carefully made at each mobile device, taking intmant the energy consumption and
delay of various options, as well as the status of the wisateswork.

To support the higher speed of wireless data transmissiorobfle devices, full-duplex radio,

LTE-unlicensed and Femtocells were introduced to incréaseavireless link capacity.



To meet the so-called 1000x mobile data challenge [87],neitg LTE to the unlicensed
spectrum, as specified in LTE Rel-10 — Rel-13 [83, 84], has t&cgained significant atten-
tion [83, 84, 87, 88, 90, 92-98]. However, there are two mduallenges to the success of the
so-calledLTE-unlicensedechnology. First, the unlicensed bands are already oedupy many
existing wireless networks (e.g., WiFi). It is essentiaét@ble the coexistence of LTE-unlicensed
with existing unlicensed band users, i.e., to avoid sigafiqperformance degradation to exist-
ing users while achieving high capacity gains with LTE-oelised. Second, the interference in
unlicensed bands is unpredictable, which is detrimentahéoperformance of LTE-unlicensed
users. Hence, it is important to effectively manage therfietence between LTE-unlicensed and
existing users, and that among LTE-unlicensed users theassdn this work, we investigate the
problem of opportunistic spectrum sharing among LTU-weriged BS’s. We consider the License
Assisted Access (LAA) scenario, in which licensed and @mlgzd carrier bands are integrated and
used [84]. We also adopt the LBT mechanism for co-existent¢d Bfunlicensed and WiFi [95].
For the LTE-unlicensed BS’s deployed in the same area on lwathded and unlicensed bands, we
propose a novel distributed online algorithm for opporstinisharing of unlicensed bands among
the BS'’s, while guaranteeing the QoS of UEs in the form of bednaorst case delay and mini-
mized packet drop rate.

Through effective self-interference cancellation, fliplex transmission, i.e., transmitting
and receiving simultaneously in the same band, has beeessfolly demonstrated [36]. With
various self-interference cancellation techniques;dujblex transmission has the potential to in-
crease and even double the wireless link capacity [37]. Dueperfect self-interference cancel-
lation, the residual self-interference may still lead towér signal-to-interference-plus-noise ratio
(SINR) and deteriorate the performance of a full-duplex [#4R]. Additional power is needed to
combat the residual self-interference to achieve a s@t8bR. As a result, full-duplex transmis-
sion may not always be helpful, and there is a trade-off betwbe energy cost and delay in the

design of full-duplex wireless networks [43].



Femtocells, also named as Femto Access Points (FAP), alk smmapower cellular base
stations (BS). Femtocells are designed for use at homes aalll smterprises, and are usually
connected to the core network with broadband wireline cotiores [50]. In addition to providing
a shortcut to the core network, the wireline connection atsbles coordinations among FAPs and
macrocell base stations (MBS) to improve the performanceefwo-tier network. Femtocells are
considered as a low-cost and effective solution to extemdl@ess coverage and offload voice and
wireless data. This is really important, as research indgcéghat 70% of data traffic take place
indoor where the coverage of conventional cellular netwaskusually poor. With femtocells, the
distance between BS and a User Equipments (UE) is greatlgeédthus enabling better signal
transmissions and better spatial reuse of spectrum. Inmbik, we investigate the problem of
access control and spectrum resource allocation in twderatocell networks. We assume one
MBS and multiple FAPs in the area and consider the open acchesne. The FUEs are always
connected to the corresponding FAPs, while the MUEs cansshbetween the MBS and a nearby
FAP for connection. The spectrum is divided into two partg for the MBS and the other part
for the FAPs. To provide incentives to FAPs for serving MU&s,allow dynamic partition of the
spectrum according to the network dynamics; more bandwwilthbe allocated to the FAPs if they
serve more MUEs.

The contributions of this work are summarized as follows.

e We present a Lyapunov optimization-based scheme for cléfl@hding scheduling, as well
as download scheduling for cloud execution output, for ipldtapplications running in a
mobile device with a multi-core CPU. We derive an online ailfpon and prove performance
bounds for the proposed algorithm with respect to averagepoonsumption and average
gueue length, which is indicative of delay, and reveal thedamental trade-off between
the two optimization goals. The performance of the propasdohe scheduling scheme is

validated with trace-driven simulations.



e We proposed a novel distributed online algorithm for oppaigtic sharing of unlicensed
bands among LTE-unlicensed base stations (BS), while gtesiaig the QoS of UE. We
first derive a Lyapunov optimization based algorithm for B®'®valuate the true value of
unlicensed spectrum, guarantee a maximum delay, and nzithe packet drop rate. We
then develop a distributed auction mechanism to maximiadcial welfare in each auction
and enable optimal spectrum reuse. We prove that BS’s bidftdiy with the proposed
algorithm, while UES’ QoS requirements on delay and packep date can be guaranteed
with bounded optimality gaps. We also reveal an interedtiade-off between delay and

packet drop rate. The proposed algorithm is validated vittukations.

¢ We investigate the trade-off between energy consumptidrdatay in a multi-channel full-
duplex WLAN. The goal is to minimize the energy consumptiorilevkeeping the packet
gueues stable. With Lyapunov optimization, we develop dmerscheme to achieve the
goals with optimized channel assignment, transmissiorduding, and transmission mode
selection. We prove the optimality of the proposed algari#nd derive upper bounds for the
average gqueue length and energy consumption, which deratem#ite energy-delay trade-

off. The proposed algorithm is validated with simulations.

e We study the problem of joint access control and spectruwures allocation in a two-tier
femtocell network with one MBS and multiple FAP. The objeetis to maximize the overall
network capacity, while guaranteeing the QoS requiremeall & E. We develop an access
scheme for MUE and a spectrum allocation mechanism for tHesFASpectrum allocation
is employed as an incentive mechanism to encourage FAPsu®e s®re MUEs. We also

derive an upper bound of the network-wide capacity througdi@mulation of the problem.



Chapter 2
Energy Delay Trade-off in Cloud Offloading for Mutli-core MiédDevices

2.1 Introduction

There is a proliferation of mobile devices in recent yeanghsas smartphones and tablets,
which are becoming more and more powerful with even multed®PUs. However, mobile de-
vices still suffer from comparably limited resources. Fmample, the power of a smartphone
comes at the cost of higher burden on the battery. As a redtigugh we are freed from a wire-
line data connection, we are still highly dependent on a paeeket and charger. In addition,
smartphones usually have relatively limited storage. \Wiimy apps, photos, and multimedia files
recorded or cached, the internal storage space of our midiiees can be easily depleted.

Cloud offloading has been recognized as an effective solttidhe limited resource prob-
lem [4,5]. With offloading, we can store our photos and vided$se cloud and fetch it whenever
it is needed. Furthermore, computation intensive tasksatsmbe offloaded to software clones
in the cloud [7], so that most computation can be executeddrctoud to greatly reduce the bur-
den on the mobile device [8]. However, offloading data and puatational tasks could involve
considerable communications between mobile devices andl @dlones, which could consume a
large amount of energy and incur extra delay. Hence, thesidecbetween cloud offloading or
local execution should be carefully made at each mobilecggvaking into account the energy
consumption and delay of various options, as well as thest#tthe wireless network.

In this chapter, we study the problem of effective cloud a@iflmg scheduling while consid-
ering downloading the output of cloud execution, for mohikyices with muti-core CPUs. We
also consider task scheduling among the multiple coreseoCRAU and frequency adaptation for

the CPU, considering both energy cost and user experientergspect to delay. Specifically,



there are several trade-offs in making the optimal decssidiirst, cloud offloading involves data
transmissions from the mobile device to the cloud, as well@agnloading the output of cloud
execution, through a stochastic and thus unpredictablelegis channel. The energy efficiency of
cloud offloading could be poor when the wireless coverageesiskwIn such cases, energy may be
conserved if we delay cloud offloading and downloading uh# channel gets better, but at the
cost of additional delays. Furthermore, cloud offloadingymat be a good choice for applications
with a large amount of offloading data to be sent to the cloud lmrge amount of output data
to be downloaded after cloud execution, since transmittiegdata over a wireless channel may
consume considerable power and incur large delay as welghwdffset the gains achieved by
executing the task in the cloud. Similarly, energy can beseored for local execution by reducing
the CPU frequency, but at the cost of slower execution (anslitiareased delay) of the tasks.

Motivated by these observations, we present a holistic déation of the problem of optimal
cloud offloading decision making for multiple applicatiansining in a multi-core mobile device.
The formulation takes into account the above trade-offsnopiiporating the key control knobs,
including CPU frequency and computation capability at théiteadevice, offloading and down-
loading data volume of the applications, and the time-vayytapacity and expected offloading
power consumption of the wireless connection.

We then develop an effective solution algorithm to the foated problem. The proposed
scheduling algorithm is based on the Lyapunov optimiziagniework [9, 14, 46]. It dynamically
schedules the tasks in the task queues for cloud offloadihgcat execution, downloads output
from the cloud for offloaded tasks, and in the case of locatetxen, tunes the CPU frequency
to balance energy consumption and delay, based on the taggwork condition and task queue
backlogs. The proposed algorithm is inherentlyostine algorithm meaning that it does not re-
quire information about the stationary distributions o trrival and wireless channel processes,
neither does any future application and network state médion. It makes decisions based on the

current queue backlogs and wireless channel conditiorgh &uonline algorithm would be useful



for real-time applications. We derive upper bounds on thexaye energy consumption and aver-
age queue length achieved by the proposed algorithm, wietnlg reveal the trade-off between
energy consumption and delay in optimal cloud offloadinge Pphoposed algorithm is validated
with trace-driven simulations, where the mobile device bath LTE and WiFi connections, and
the energy-delay trade-off is clearly revealed.

The rest of this chapter is organized as follows. The systedemnand problem statement
are presented in Section 2.2. The proposed algorithm isafs® in Section 2.3 and evaluated
with trace-driven simulations in Section 2.4. We revievatetl work in Section 2.5. Section 2.6
concludes the chapter. The main notation used in this chapsmmarized in Table 2.1 and

Table 2.2.



Table 2.1: Notation

Symbol | Description

N

N
N/

number of applications

set of applications

number of applications can be offloaded

set of applications can be offloaded

set of application queues

gueue of application

new arrivals to queugat timet

set of arrivals at time

arrival rate of application

set of arrival rate

number of tasks of applicatianexecuted locally at time
number of executed tasks of applicatiotiownloaded at
time slott

service rate of the cloud output queue for applicatian
time slott

computational complexity of task of applicatiori
data size for offloading taskof applicatior:

data size of cloud execution output of tadskf
applicationi

returned output queue at of applicatioat the end of
time slott

set of returned output queue at of application at the
end of time slot

arrival to queue)?” (¢) at time slott

set of arrival to queueQ” (¢) at time slott

clock frequency of CPU at time slot

voltage of the mobile CPU at time

energy coefficient of CPU

energy consumption of coieat time slott

overall energy consumption of the CPU at time

set of application being executed locally

amount of computations a CPU core can offer to
application:

number of CPU core

adjusted energy coefficient

uplink wireless data rate

downlink wireless data rate

offloaded application at time

energy consumption of offloading

application downloaded for execution data at time

10



Table 2.2: Notation(contd.)

Symbol | Description

pp(t) energy consumption of downloading at time

P average overall power consumption

P(t) overall power consumption at time slot

Q average overall queue length, including task queues and
downloading queues

L(Q(t)) | Lyapunov function

Vi Lyapunov constant

povt optimum (minimum) energy consumption

e>0 distance between the data arrival rate vegtand the
system capacity region under the proposed algorithm

19 defined in (2.39), (2.41) and (2.42)

© a term defined in (2.30)

11
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Figure 2.1: The system model.

2.2 System Model and Problem Statement

2.2.1 System Model

The system model is illustrated in Fig. 2.1. We consider ailaatevice havingV applica-
tions running! denoted as\V' = {1,2,--- , N}, among whichl < N’ < N applications, denoted
as/N’, can be offloaded to the cloud. The tasks generated from gailtation are enqueued
and processed in a First-In-First-Out (FIFO) manner. Initaald we assume that the arrival and
execution of these tasks follow a discrete, time-slottestesy. In particular, the queue of tasks
waiting to be processed for applicatioat the beginning of time sldtis denoted a€);(¢), and the

overall queue lengths at the beginning of time glate denoted as

Qt) = {Q1(1), Qa(t),--- ,Qn(t)}. (2.1)

In time slott, the tasks generated by applications are denoted as

A(t) = {A1<t)7 A2(t)7 T 7AN(t)}7 (22)

1A multiple-thread application that enables parallel cotimy can be treated as multiple applications.

12



which can be regarded as new arrivalsQgt). In this chapter, we assume that eatlit) is
independent and identically distributed (i.i.d.) overeislots and the expectations of them, i.e.,

the average arrival rates, are denoted as

X2 R{AM)} = {A, Aay -+, An ). (2.3)
The departing tasks from quegXt) at time slott is either scheduled for local execution, denoted

as

B(t> = {B1<t)7B2(t>7 T 7BN(t)}7 (24)

or offloaded to the cloud, denoted as

BO(t) = {Blo(t)v B2O(t)v T 7B]?f(t)} (2.5)

In addition, we assume that for taslof application:, the computational complexity for local
executiond;(k) (i.e., the amount of computations required to accomplightéisk), the data size
for offloading, D; (k) (i.e., the amount of data transmitted for executing the taske cloud), and
the data size of the cloud execution outpD{; (k) (i.e., the results to be returned to the mobile
device), are all i.i.d. random variables. If the task carb®bffloaded to the cloud, then we have
D;(k) = oo and DP (k) = 0. Alternatively, if the task can only be offloaded to the clptitbn we
haved;(k) = co.

When a task is offloaded, it is first processed by a server inlthel@nd then the output of
cloud execution is returned to the mobile device. Hencegtigealso a queue for the output data
of cloud execution (e.g., at the access point or base sjatienQ” () denote the returned output

gueue at the end of the time slgtas shown in Fig. 2.1. We have

Q7(1) ={Q7 (1), Q7 (1), . QN(1)}, (2.6)
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whereQP(t) = 0 for i € N\N’, as there will be no output from cloud computing if the task

cannot be offloaded. The arrival to the que®@(¢) can be denoted as

AD(t) = {A1D<t)7 A2D<t)7 T >A]l\)7(t>}7 (2.7)

for an application task that is to be offloadedld? ()| = |BE(t)|. That is, if we ignore the time
a cloud server takes to process the task, there is an incterhgueue length irf)? (¢) if a task in

Q;(t) is offloaded to the cloud.

2.2.2 Local Execution Energy Consumption Model

For applications that are executed locally at the mobileagg\most of the energy consump-
tion comes from the CPU and the screen. As the screen energyrogition is largely dependent
on the user habit, we do not take this part into account indiégpter The energy consumption is
thus mainly determined by the CPU operation.

In particular, the CPU energy consumption is proportionat*owherev is the CPU volt-
age [10]. Furthermore, the clock frequency of the CPU at tilnets denoted ag(¢), is shown
approximately linear to the CPU voltagd10]. Therefore, the CPU power consumption in a CPU

core occupied by applicatiann time slott can be approximated as

eit) =n"- f2(t), (2.8)

wherer' is the energy coefficient determined by the CPU hardware teathre. As the energy
consumption is linear withf?(¢), energy can be saved by reducing the CPU frequency, which,
however, will slow down the execution of the tasks.

A CPU schedule can be represented{y (¢), O(t)}, wherea®(t) € N is the set of ap-

plications being executed locall§(t) = {©(t), ©s(t), - ,On(t)}, andO;(t) is the amount of

2It may be annoying to dynamically adjust the display sizephation, or brightness during the execution of an
application. We simply assume some constant amount of gieergsumption associated with this part.
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computations a CPU core can offer to applicati@time slot:. Note thato,(¢) = 0, if i ¢ a*(t).
Assuming that there ar&/ cores in the CPU. We have’(t)| < M, i.e., the number of parallel
computing applications cannot exceed the number of cortei@PU. For a given CPU architec-
ture, the computational capabili€y;(¢) is usually linear with the CPU frequency. Hence, the CPU

energy consumption at times also a quadratic function &¥;(t), i.e.,
eit) =1 ©2(1), (2.9)

wheren is the adjusted energy coefficient. The total energy consomfor local execution is

e(t) = Zgi(t). (2.10)

2.2.3 Offloading Energy Consumption Model

For applications that can be offloaded to the cloud, we makéaitowing assumptions. First,
we assume that a software clone has already been associttegleh application in the cloud
to support cloud computing [11], such that only the latest generated data, application status
updates, and cloud execution output, refereed tuffasading dataneed to be transmitted between
the mobile device and the cloud.

Second, we focus on the channel models associated with tieéess interfaces and ignore
the delay and energy consumption in the cloud, which ardiplsy minor issues comparing to
that on the mobile device side. It is typical for a smartphtinehoose one of the mobile networks
(e.q., 2G, 3G, LTE, and WiFi) and the corresponding dataisatietermined by the operator and
the baseband chip configuration. We adopt the network seeatgorithm proposed in [12] to
choose between a cellular network and WiFi, and focus onakle $cheduling problem in this

chapter.
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Let wo(t) be the wireless link data rate from the mobile device to tleid| andvy(t) the

data rate from the cloud to the mobile device. An offloadingslen is denoted as

a?(t) € {N"/idle'}. (2.11)

That is, the device can choose to offload a task from one ofliible queues or remain idle (i.e.,
to choose local execution). Then, the expected energy ogutsan is denoted gsy (¢). Similarly,

the decision for downloading the cloud execution outputlxadenoted as

o (t) € {N"/idle'}, (2.12)

and the expected energy consumption is denotegh &s.

2.2.4 Queuing And The Overall Energy Consumption Model

As discussed, energy can be conserved by optimizing thaiegaaecision for the applica-
tion tasks, i.e., local execution or offloading to the clokdr local execution, energy can be saved
by reducing the CPU frequency (i.e., running the applicatiba lower speed, which leads to a
smaller©(t)). For offloading, energy can be saved by only using good aklarfar transmission
of offloading data and receiving the cloud output. There reaa additional delay to wait for the
channel to get better. If we aggressively save power by thesans, the applications will suffer
from large delays; the lengths of the task queues may inereagery high levels and the system
may become unstable. We need to balance energy saving ayj\ahich is indicated by the task
queue length.

Define the total power consumption in time siats

P(t) = (t) + po(t) + pp(t). (2.13)
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Based on the local execution and offloading energy consumpimdels, the overall energy con-
sumption of the mobile device can be derived as follows.

2.14
T—o00 T =0 ( )

= limsup — ZE{&‘ ) +po(t) +pp(t)}.

T—00

We define the average task and output queue length, denotgdfas evaluation of the energy-
gueue trade-off as

A

= limsup — ZZ E{Q;(t) + QP (1)}, (2.15)

T—o00 —0 i1

where(); () is the task queue length for applicatioat timet, andQ? (¢) is the cloud output queue

length for application at timet. We consider the system to be stable if the average queuthleng
is bounded, i.e., the limit in (2.15) exists.

The dynamics of the task queue back@dt) can be written as

Qi(t + 1) = max{Q;(t) + A;(t) — B;(t) — BY(t),0},V i,

(2.16)
whereB;(t) is the service rate at timedefined as follows.
( b
arg maxg,, {Zk:l 0;(k) < @i(t)} ,
if i € aL(t)
Bi(t) arg maxg,, {22:1 ) < wolt (2.17)
if i € a9(t)
0, otherwise
\

3We assume that the duration of a time slot is large enoughtbatlany task can be executed locally, offloaded to

the cloud, or with output downloaded from the cloud in lesntlone time slot. This can be achieved by choosing a
suitable time slot duration or by partitioning big taskoismaller ones.
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Note thata*(¢) anda®(¢) should not point to the same applicatignas it is inefficient to both
offload and locally execute the same application task atatreegime. Ifi € o”(t), the task queue

of application: is executed locally and;(¢) is the maximum number of tasks can be executed
locally at time slot. If i € a©(t), the tasks of applicationare offloaded to the cloud arig} () is

the maximum number of tasks can be offloaded at this time slot.

Similarly, the dynamics of the cloud output queue backiidtft) can be written as
QP (t+1) = max{QP(t) + AP(t) — BP(t),0},Vi e N, (2.18)

where|AP(t)| = |B?(t)| andBP (t) is the service rate at timeor the cloud output queue defined

as
arg max,, {22:1 DP(k) < wD(t)} ,
BP(t) = if i € aP(t) (2.19)

0, otherwise

If i € oP(t), the cloud output queugis downloaded and? (¢) is the maximum number of tasks

that can download their cloud output at this time slot.

2.2.5 Problem Statement

For a mobile device, it makes task scheduling decisionstatfiaading and local execution
at the beginning of each slot. It then makes decisions forntlmading the return data of cloud
execution for the next slot at the end of current time slot.e Bbjective of mobile devices is
to keep all the queues stable and to minimize the overallggnesnsumption. The scheduling

problem can be formulated as

-1
1
min : limsup T Efe(t) + po(t) + po(t)} (2.20)
T—o0o —0
st X (t)na®(t) = 0, forall t (2.21)
la®(t)| < M, forall ¢ (2.22)
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Q < , (2.23)

where Constraint (2.21) forbids a task to be both executealljoand offloaded to the cloud in
the same time slot, Constraint (2.22) is the limitation fdrby the number of cores in the CPU,
and Constraint (2.23) ensures stability of the task and ouppeues. The optimal solution to the
problem consists of cloud offloading or local execution dliecis for each time slat(i.e.,a*(¢) and
«9(t)) and the optimized CPU computation capabilityt) for each time slot, which translates

to the optimal CPU clock frequengyas discussed in Section 2.2.2 (configured as in (2.41)).

2.3 Task Scheduling Algorithm for Mobile Users

In this section, we present a task scheduling algorithmdasethe Lyapunov optimization
framework [9]. This algorithm requires no information abdlie stationary distributions of the
arrival and wireless channel processes; it only requirsnmation on the current queue lengths
and the current channel conditions. Suchamtine algorithmproperty is useful for real-time

applications [13, 14, 46].
2.3.1 Lyapunov Optimization Based Solution Algorithm
To present the proposed algorithm, we first define a Lyapuaetion ZL(Q(¢)) as in [9].
Al 1
LQ) =5 ) Qi) +5 > Q1)) (2.24)
=1 =1

whereL(Q(0)) = 0. If all the queue lengths are small, thé(Q(¢)) will be small; if at least one
queue is congested, thériQ(¢)) will become large. Since there is a finite number of apploati
running on the mobile device,(Q(t)) being bounded is equivalent to the notion that the system

is stable.
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SinceL(Q(0)) = 0, for L(Q(t + 1)), we have

E{L(Q(t+1))} =E {Z [L(Q(k + 1>>—L<@<k>>]}

= Y E{LQk + 1)~LQ(K)QKR)} = Y A(L(K)),

k=0

whereA(L(t)) is thedrift defined as [15]
A(L() £ B{L(Q(t + 1)) = LIQ(1) |Q(1) }. (2.25)
We can minimizeA (L(t)) to maintain a low expectation fdr(Q(t)). It follows (2.16) that
QAt+1) < {Qi(t) + Ai(t) — Bilt) — BO(1)}* (2.26)
Fori € a®(t), we have
{QP(t+ 1)} < {QP(t) + B2(t) - BP(1)}* (2.27)
Fori ¢ a©(t), we have
{QP(t+1)}2 < {QP(t) - BP (1)}~ (2.28)

Substituting (2.26), (2.27), and (2.28) into (2.25), weidethe drift (2.30) as follow.

A(L()) (2.29)
<O+E { S Qut)(At) — Bilt)) - @?(t)B?(t)}

+E {{Qi(1)Ai(1) — (Qi(t) — Q7 (1) Bi(t) — Q7 (1) B () Hieao (1) }
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— & 4 E{p). (2.30)

In (2.30),¢ denotes the terms in the expectation operators and
1 N
® =5 E{At) - Bi(t) - BY ()Y + {B/(t) - BP()}*}. (2.31)
=1

Note thatB?(t) = 0 fori ¢ a(t). If the arrival rate and service rate of each queue is bounded
which is true for stable systems, théris bounded.

As in [9], we obtain thelrift-plus-penalty defined as\(L(t)) + V, - E{P(¢) } }, by scaling the
energy consumption with a positive coefficiéfjt The paramete¥), indicates the user’s emphasis
on energy consumption. Following (2.30), the upper bourt@drift-plus-penaltycan be derived

as
A(L(®)) + Vy - E{P()} < O +E{p+V, - P(1)}. (2.32)

To minimize the drift-plus-penalty, we can instead miniejzp + V,, - P(¢)} at every time slot,
which only requires the current information on queue leagtihannel conditions, and the price
for offloading.

Since there aré/ cores in the CPU of the mobile device, orlly application can be executed
by the CPU in each time slot. We assume that only one applicatio be offloaded at each time
slot (through the single active wireless connection). Wedsrive the minimization expression as

given in (2.33).

min{y + V,P(t)} (2.33)
= min { Z Qi(t)A;(t) — Z Q7 (t)B(t) — Z Qi(t)Bi(t)
i=1 i=1 i¢a0 ()
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—(Qi(t) = Q7 (1) BY (1) icao sy + VpP(t)}
Z ) + min { "ot Z QPH)BP(t) + Voe(t) — > Qi()Bi(t)  (2.34)
i=1 i¢a®(t)

+ Vopo(t) — (Qi(t) — QiD(t))BiO(t)|i6ao(t)}

Qi(t) A;(t) +min {V,pp (t) — Q7 (t) BP (t)icar () } (2.35)

Il
.MZ

1

1

+ min {Vs Z Qi(t)Bi(t) +{Vppo(t) — (Qi(t>QiD(t))BiO(t)iEoco(t)}}

i€al(t)

Il
.MZ

=1

The first term in (2.33),21.]11 Qi(t)A;i(t), only depends on the current queue lengths and
arrival rates. It does not affect the offloading downloadilegision for this time slot. We need to

minimize the second term

Hy, = Vypp(t) — QD( )B; ( )‘lGaD(t)a (2.37)

as a function ofv” (¢), and the third term

- > Qi)

ieal(t)

{Vipo(t) — (Qi(t) — QP (1)) BY (Dicao ()}, (2.38)

as a function ofv2(t), a©(t), andO(t).
Notice that formin{H, }, with the expectation of power consumption and offloadintada
we need to find a proper”(t) that minimizes—QP (¢t) BP(t) in order to minimize the following

function.

&7 = Vipp(t) — Q7 (t) B (t). (2.39)
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This can be done by evaluating (2.39) for every applicati/V1 to find the applicationr having
the smallest”. Recall thatB? (¢) is defined in (2.19). For a given downlink capacity(t), tasks
with smaller data size and longer queue length tend to haveadles —QP (t) BP(t). Note that
Vopp(t) — QP (1) BP (t)]iear@ = 0 whena”(t) = idle’. Thus a task will be offloaded in time
slot¢ only whenmin{V,pp(t) — QP (t)BP(t)} < 0, meaning the channel condition is good or at
least one of the task queues is long.
For the other ternf,, we need to minimize it by tuning”(¢), a®(t), and(¢). The term

Vyei(t) — Qi(t)B;(t) can be rewritten as

Vpﬁi(t) - Qi(t)Bi<t)
b
= pn@f( ) — Qi(t) - argmax{ZQZ (k,t) < Ot )}

{b} k=1

= VOl () - Qult) 5 (2.40)

whered;(t) = 3, (t) S f>9 (k,t). We can derive the approximate minimum valde(t) —

Q;(t)B;(t) subject to the CPU computation capabiliy(t) as

Q7 (t)

Qi)
Wl (1) wheno;(t) = o, (2.41)

HOEE ;
2V,06;(t)’
Similarly, we can evaluate (2.41) for all the applications\i and find the minimizer. Since the
computational capability of the CPU cannot be increasedfiimitkly, we set an upper bound for
the CPU power, e.g., 10 W in this chapter.
For the term{V,po (t) — (Qi(t) — QP (£)) B (t)|ica0 (1) }» We can minimize it by tuning©(t).

Denoting

&7 = Vopo(t) — (Qi(t) — Q7 (1) BY(t) < 0, (2.42)
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an application € A with smaller offloading data size and greafg(t) — QP (¢) will achieve a
smaller¢?. Also note thafV,po (t) — (Qi(t) — QP (t)) BY (t)]icaoy } = 0 Whenat =" idle’. Thus
a task can be offloaded only wheft < 0.

Then themin{ H,} term can be rewrite as

min{ H>} = min Z & + €5 | jea0 @),00 (tynat ()=

ieal(t)

According to the above evaluation, the problem becomes

M-

Qi(t)A;(t) + min{H;} + min{ Hs}

1

1

M-

Qi(1)A;(t) + min {&} +

=1

min{ Z & +€]'Oj€ao(t)7ao(t)ﬁaL(t)(Z)} : (2.43)

ieal(t)

wherec?, ¢k, andfjo are defined in (2.39), (2.41) and (2.42), respectively. \§ie Ahven®(t) N
ok (t) = 0, since the same application cannot be executed locally ftwhded to the cloud in
the same time slot. The proposed task scheduling algorgtpresented in Algorithm 1, where all
computations except Step 2 are simple operations.

For Step 2 in Algorithm 1, the task scheduling can be illusttaas a minimum weighted
matching of a bipartite graph as shown in Fig. 2.2. In the lyrartex Applicationi, i =
1,2,---, N represent the applications, vertex Core = 1,2,--- , L stands for the cores in the
CPU, and vertex OffLoad stands for the offloading link. Theestgtween vertice Application
and Corej means that it can be executed locally on cpend the weight of the edge §&. Cor-
respondingly, the edge between vertice Applicati@amd OffLoad means that it can be offloaded
to cloud, while the weight of the edge §§. In Step 2, we need to find the selection edges with

minimum weight, and according to constraint (2.21) and4®.8ach vertex can only be connected
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Core 1 Core 2 OffLoad

Application 1 Application 2 Application 3 Application 4

Figure 2.2: Task scheduling as a minimum weighted matchiragtapartite graph (illustrated for
N =4andM = 2).

Algorithm 1: Task Scheduling Algorithm

1 Update all the task queues and estimate wireless link capacities at the begihtiing slott ;
2 Find the minimum combination of, ., & + ¢, wherea®(t) N a*(t) = 0 andj € V' ;
3 if £€§ < 0 then

4 \ Offload tasks of application to the cloud ;

5 end

6 for i € a®(t) do

7 | if ¢ <0then

8 ‘ Execute tasks of applicatiariocally, with CPU capacitp); (t) = 2‘2:7%?( ok

9 end

10 end

11 Find the minimum¢?;

12 if €P < 0then

13 \ Fetch the output data for applicatiotasks from the cloud ;
14 end

with one selected edge. Then it is a maximum weighted bipamatching problem and can be
solved with Hungarian algorithm [16] with complexiy(N * (M + 1)?) if (M +1 < N), or
O((M + 1) x N?) otherwise.

In Algorithm 1, at the beginning of each time stothe mobile device first update the queues
of tasks and estimate the capacity of wireless capacitiesiwputes”, £, and¢”. In Step 2, it
find out smallest combination 9F .., £ +&7, wherea® (t)Na’(t) = 0, since a task should not
be computed locally and offloaded to cloud at the same timenTihoffloads the corresponding
task of applicatiory if §j0 < 0 and computes the tasks of applicatiog o*(t) if £&& < 0, with

O,(t) = ng;gf(t). At last, the mobile user make the decision of downloadiregdhtput of cloud
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computing. It first find the smallest’ for all applications in\”. If ¢P < 0 for the smallest?,

then it download the corresponding output of cloud computin

2.3.2 Performance Analysis

Following the framework of Lyapunov optimization [9], werde the upper bounds for the
expected average power consumption and the expected awprage length achieved by the pro-
posed algorithm, which are summarized in the following tkem The proof is presented in the

Appendix.

Theorem 2.1. Assume that the arrival rate of taskss strictly within the system capacity region.
That is, the system can maintain stability under certgirt (), a©(t),a?(t),0(¢)}. Then the

bounds on average energy consumption and queue length Afgteithm 1 can be written as

T-1

) 1 opt | P

lim sup 7 ;E{P(t)} <P+ (2.44)
1 T-1 N 1

lim sup 7 YD E{Qi) + QP (1)} < -(@+1,P), (2.45)

t=1 =1

where PP is the minimum energy consumption a stable system can aghiteis the average
energy consumption under the proposed algorithm, and 0 is the distance between the data

arrival rate vector) and the system capacity region under the proposed algorithm

Theorem 2.1 demonstrates the trade-off between energyiegi®n and queue length (or,
delay). The upper bound of the average energy consumptionlisl},) and the upper bound of
the average queue length@¥V,,). Therefore these are conflicting objectives. We can tjn®
flexibly trade off between energy consumption and queuetteryhen the power supply is not so
limited (e.g., a charger is available), the user can iner&gso reduce the queue length (and thus
delay) and enjoy better quality of experience (QoE). On tihemohand, if the power constraint is
stringent (e.g., the mobile device is running out of bateergl no charger is available), the user can

decreasé, to save energy at the expense of longer average queue lemtarger delay.
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2.4 Trace-driven Simulation Validation

We evaluate the performance of the proposed algorithm wattetdriven simulations. In the
simulations, we adopt the wireless network measuremeat githered by testing the data rate
of the LTE/WIiFi networks while walking around the Auburn Wersity campus with an iPhone5.
The LTE carrier is AT&T and the WiFi network is deployed by Auh university. In particular,
half of the LTE rate tests are conducted outdoor and half eftéists are conducted indoor. The
WiFi rate tests are conducted in Broun Hall in the Auburn Ursitg Campus.

In the simulations, the wireless link data rate is randonelgcted from the measured trace.
For power consumption, we adopt the power models for LTE aifél @oposed in [17]. For the
uplink, the LTE power model can be approximatedpgs= ar.rg - wo + brre, Whereaprg =
0.5 W, b, = 1.25 W, andup is the wireless network data rate in Mbps. For WiFi, the power
consumption mode ig = aw;p; - wo + bwir;, Whereay,;r; = 0.24 W andbyy;; = 0.125 W. For
downlink, the power model for LTE can be approximate¢pas= a2 - wp + b2y, wherea?. .
=0.042 WpP,., = 1.25 W. For WiFi, the power consumption modejs = al;p; - wp + b5ips
whereal, ., = 0.12 W andh},, ., = 0.125 W.

We consider a scenario with five applications running in tlodibe device and all of them can
be offload. The task arrival rate of each application ranges 0.5 to 2.0. The offloading data size
of the tasks follows a truncated Exponential distributiathwneans ranging from 60 KB to 300
KB. For local executiony was set to 0.6 corresponding to the normalized computatorptexity
©. The normalized computation complexity of each task fo@m Exponential distribution with
means ranging from 0.1 to 1. In the simulatiolgjs increased from 1 to 200. For eakhvalue,
the simulation runs for 50,000 time slots.

We compare the following four schemes in the simulationgth@ proposed scheme with
single core CPU, (ii) the proposed scheme with dual core CRiJtHe proposed scheme with

single core CPU, and with Large Output of Cloud Computing (LOC() (ihe average data size
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of cloud computing is twice of that of offloading), and (ivetheTime” strategy proposed in [15]
with LOCC.

The simulation results are plotted in Figs. 2.3 and 2.4 ferage queue length and average
power consumption, respectively. It can be seen that tisesedlear trade-off between average
energy consumption and average queue length achieved ibg finfor both single core and dual
core CPU. WherV/, is increased, the average energy consumption is decreasédebaverage
queue length is increased. It confirms the findings in Theddnthat the average queue length
follows O(V,,) (see Fig. 2.3) and the average energy consumption folio@gV,) (see Fig. 2.4)
asymptotically. WherV,, is smaller than 10, the energy consumption decreases yapiti V,,,
while the average queue length increases almost lineatly i Therefore, users can achieve
big energy savings, while only suffers a linearly increadetdy, by increasing,, in this region.
From the simulation, we can find clearly that for dual core Ctd,queue length is much shorter
than that of the single CPU system. But the power consumptiodual core is much higher with
smallV,, but with highV/, (i.e., larger than 4), the system with dual core CPU enjoy tasvergy
consumption. It means that system with dual core systemneisahe system computation ability
and show greater flexibility for trade off between energystonption and queue length.

For system with single core CPU with LOCC, it suffers from longeeue length and greater
energy consumption with large, (i.e. greater than 4), as the downloading for Output of Cloud
Computing is more resource consumption. The queue lengtiredfingle core CPU system with
LOCC suffers from a high queue length with the ldy(i.e. smaller than 4), that is because
the system offloading tasks aggressively with [Bwand the downloading for output of cloud is
resource consuming, which increases the average queub.|&kih low V, (i.e. smaller than 4),
the power consumption of single core CPU system with LOCC amesuess energy consumption
than that of single core CPU system. It is because that théesooge CPU system with LOCC
has longer queue for downloading the output of cloud comgutivhich result in a small@rjo and

effects ofl/, is enhanced.
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Figure 2.3: Average queue length of the four schemes.
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Figure 2.4: Average power consumption of the four schemes.

The simulation results also demonstrate that the perfocmai the proposed algorithm is
better than that of the strategy proposed in [15] with LOCC,chtsuffers higher energy con-
sumption. In addition, in the LOCC scenario, eTime couldtzbdize the system with a low,. It

is because that with a loWw,, eTime aggressively offloads tasks to the cloud but coulitmitnload

the output of cloud execution.
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2.5 Related Work

Cloud offloading is regarded as an effective solution to sae¥gy, extend storage spaces,
and enable computation intensive applications at mobilécds [4—6]. There have been many
prior work addressing the various design issues of cloudoedimg to fully harvest its potential [7,
18-21,24-26]. In particular, considerable recent workeHacused on building the framework
of enable mobile computation offloading [7, 21, 24—-26], sgjug for a mobile device to execute
codes remotely in resource-rich servers, which connechtitgle device through LAN or wireless
link. Ref. [25] implemented method level offloading for appliions on Microsoft .NET, and
Ref. [26] implemented a flexible application partitioner elnienables seamlessly offloading of
part of the execution to the virtual machine. On the otherdhamany other works [18, 27, 30]
have focused on backing up data and applications to extensttinage space of mobile devices.
However, both computation offloading and data/applicabaokup involve considerable energy
consumption for data transmission between mobile deviedshee cloud, which may makes some
excellent techniques [32] infeasible in practical implea¢ion scenarios.

Researchers have started to investigate the energy cosfladdihg [11, 15, 19, 22, 23, 25,
28-31, 33, 35]. Some techniques focused on reducing thgemrensumption during offload-
ing [22, 25,29-31, 33, 33]. For example, in [22], the authmgposed a dynamic offloading algo-
rithm to save energy by offloading some components of an@adjuin to the cloud, while Ref. [33]
proposed an algorithm to reduce energy consumption bytsedetie most energy efficient WiFi
AP for offloading. Furthermore, some researches have igatstl the tradeoff between energy
consumption and delay [11, 19, 23, 28, 34]. For example, émellvidth and energy costs of cloud
computing were investigated in [11]. In [28], a heuristiga&ithm was proposed to jointly mini-
mize the energy consumption and delay. However, these vesekbased on static models of ap-
plication, and more important, the stochastic charadiesisf applications and network dynamics
have not been taken into consideration. The authors of Bl§@posed an energy-optimal mobile

computing framework under stochastic wireless channdigewonsidering the single application
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scenario. In [15], an energy-efficient transmission atbonibetween the cloud and mobile devices
was presented based on the Lyapunov optimizing framewgrik{&wever, the local computation
resources in the mobile devices has not been fully utilized] it doesn’t consider downloading
the cloud execution output.

This work was motivated by the above interesting works tegtigate the energy-delay trade-
off in cloud offloading with a Lyapunov optimization appréacWe explicitly considered the
stochastic nature of both user and application behaviors,n@twork dynamics, and addressed
the more challenging case of multiple applications, theatly extending the work in [19, 23].
This work also extended prior work [15] by considering maltre CPUs and fully utilizing the
local computing capability, by making offloading decisidrased on both task queues and queues
for downloading the output of cloud execution. As in [15]e tbnline operation of the proposed

scheme makes it highly suitable for real-time applications

2.6 Conclusions

In this chapter, we proposed a scheduling scheme for eredfigyent cloud offloading for
muti-core mobile devices, while considering downloadimg¢loud execution output in the model.
Based on Lyapunov optimization, we developed an online dhgurthat does not require informa-
tion about stationary distribution of applications andnleéwork condition, making it amenable to
real-time implementation for practical scenarios. We prbtheoretical bounds for the proposed

algorithm and validated its performance with trace-driggnulations.

2.7 Appendix

2.7.1 Proof Of Theorem 2.1

According to (2.30) and (2.33), we have

min{y + V,P(t)} (2.46)
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S VP () + Y QP (1)(BO(t) — B (1)) +

i=1

Z Qi(t)(Ailt) — Bi (t) = B{°(t)),

whereP*(t), B;(t), B;°(t) andB;P(t) are the terms corresponding to any other (possibly random-
ized) feasible schedule. Now consider a randomized scimedoblicy that achieves the following

for Applicationi € .

E{P*(t)} = P (2.47)
E{B°t) - B 1)} <0 (2.48)
E{A;(t) - B (t) = B{°(t)} <0, (2.49)

where PPt is the minimum power consumption a stable system can achied¢2.48) and (2.49)

stabilize the queues.

For the proposed algorithm, we have
A(L(t) +V, - E{P(t)} (2.50)
<V, E{P()} + @ + E{v}

<V -E{P"(t)} +E {Z QP (1)(BO(t) — BE‘D(t))} +
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E {Z QuO(AD) — Bi(D) - B;‘O(t))} +o

<V, P"+0+0,

where

{Z t)(B(t) — B2 (t ))} <0 (2.51)
{Z i B (t) - Bé‘o(t))} <0, (2.52)

according to (2.48) and (2.49).

Then we have
A(L(1)) + V- E{P()} <V, - P™ + O, (2.53)

and>",_ ) A(L(t)) = L(T) < oo for a stable system. It follows that

lim sup — Z A(L(T)) + limsup —= Z E{P(t)}

t—o00 t—o00 k=0

= O+hmsup—ZE{P )}

t—o00 k—0

<V, P? 4@

Then we have that (2.44) holds true.

Suppose for Application € N\, there exist some real number- 0, such that

E{B(t) - BP(t)} < —e¢ (2.54)

E{Ai(t) — Bi(t) — BO(t)} < —e. (2.55)

7
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According to (2.46), we have

A(L(1) +V, - E{P(1)} (2.56)

<V, E{P(t)} +E {Z QP (t)(BY (1) — Bf’(t))} +

<V, -E{P()} +® —¢- E{Z t)+ QP (1) }

=1

As A(L(t)) + V, - E{P(t)} > 0, we have

E {Z(@m + @?<t>>} < {V, E{P()} + @} (2.57)
It follows that
h;n_)sup Z > E{Qi(t) + QP (1)} (2.58)

t=1 =1

< @ + - hmsup {V]E{P( )+

€ € T—co

1

and we conclude that (2.45) holds true.
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Chapter 3

Inter-operator Opportunistic Spectrum Sharing in LTEieerised

3.1 Introduction

With the unprecedented growth in wireless data, wirelessaiprs are in critical need of
more spectrum for higher capacity. To meet the so-calledA®obile data challenge [87], ex-
tending LTE to the unlicensed spectrum, as specified in LTEIRel Rel-13 [83,84], has recently
gained significant attention [83, 84,87, 88, 90, 92-98]. kElsv, there are two main challenges to
the success of the so-called E-unlicensedechnology. First, the unlicensed bands are already
occupied by many existing wireless networks (e.g., WiFt)islessential to enable the coexis-
tence of LTE-unlicensed with existing unlicensed bandsises., to avoid significant performance
degradation to existing users while achieving high cagagains with LTE-unlicensed. Second,
the interference in unlicensed bands is unpredictableghwisi detrimental to the performance of
LTE-unlicensed users. Hence, it is important to effecyiveenage the interference between LTE-
unlicensed and existing users, and that among LTE-unlezkasers themselves.

To study the coexistence of LTE-unlicensed with existinfjogmsed band users, some system
level simulation studies have been reported in severahteearks [88,93,94]. The simulation re-
sults show that the WiFi performance could be significandgrdded, while the LTE performance
is only slightly affected. This is because WiFi uses Carrienssng Multiple Access (CSMA) to
compete for channel access, while LTE adopts a centraliradnzl access control mechanism.
WiFi usually keeps silent when sensing a busy channel contisly used by LTE. To protect ex-
isting unlicensed band users, requirements for clear egHassessment (CCA) and Listen Before

Talk (LBT) are specified by European standardization bodBk [In LBT, a user equipment (UE)
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must perform CCA on the operating channel(s) before startitiarssmission. The observing
duration should be at least 263.

Although the LTE performance may be only slightly affectgdWiFi in some coexistence
scenarios [93,94], there could still be significant thrqugttrdegradations due to the inter-operator
interference, when multiple LTE-unlicensed base stat{&%®) of different operators are deployed
in the same area [83]. There are two solutions to this probl@hmake an agreement for the
operators to allocate the unlicensed spectrum; or (ii) kenapportunistic access to unlicensed
channels. The first solution may not be practical in most t@esdue to competition among oper-
ators and the lack of regulation for unlicensed bands [88]lexthe second solution is promising
for effective unlicensed spectrum sharing.

In this work, we investigate the problem of opportunistiespum sharing among LTU-
unlicensed BS’s. We consider the License Assisted Acces#\)ls&enario, in which licensed
and unlicensed carrier bands are integrated and used [81hl8% adopt the LBT mechanism for
co-existence of LTE-unlicensed and WiFi [95]. For the LTilicensed BS'’s deployed in the same
area on both licensed and unlicensed bands, we propose bdigtvibuted online algorithm for
opportunistic sharing of unlicensed bands among the BS'8ewharanteeing the QoS of UEs in
the form of bounded worst case delay and minimized packe .

Specifically, based on Lyapunov optimization, we first deran online algorithm for BS’s
to evaluate the true value of unlicensed spectrum, guaanteaximum delay, and minimize the
packet drop rate. We then develop a distributed auction aresim to incorporate the Lyapunov
optimization based schemes, aiming to maximize the so@Hdave in each auction and enable op-
timal spectrum reuse. We prove that all the BS’s bid trutlfulith the proposed algorithm, while
the UEs’ QoS requirements on delay and packet drop rate cgnd@anteed with bounded opti-
mality gaps. The proposed algorithms are validated withuktions and are shown to outperform
two benchmark schemes with considerable gains in all thescgimulated in this work.

This work presents a comprehensive and effective solubahé problem of opportunistic

spectrum sharing for LTE-unlicensed. The algorithm des&dmased on rigorous theoretic model
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and analysis. Due to the Lyapunov optimization approaahptbposed algorithms are applicable
to very general scenarios with different traffic models aexdise rate distributions. The proposed
schemes are alsmlinealgorithms, i.e., only requiring the current state of thewmek (e.g., queue
backlogs and channel conditions), making them highly bletéor practical implementations. In
addition to proving several nice properties of the propadgdrithms, including truthful bidding,
utility maximization, social welfare maximization, andgbkat drop rate minimization, we also
reveal an interesting trade-off between delay and packst dite, which provides a useful control
knob for operators.

The remainder of this work is organized as follows. We disae$ated works in Section 3.2
and introduce the system model in Section 3.3. We discudsati@n of unlicensed spectrum,
resource allocation, and drop scheduling in Section 3.4 pk&sent the proposed auction mecha-
nism and analyze its performance in Section 3.5. Our sinomagsults are analyzed in Section 3.6.

Section 3.7 concludes this work.

3.2 Related Work

The considerable amount of underutilized spectrum in enbed bands is the main motiva-
tion for operators and researchers to extend LTE, a welgded OFDMA solution, to unlicensed
bands [82—-84,87,88,90,92-98]. One of the biggest chakeisghe coexistence of LTE-unlicensed
and WiFi [83, 87, 88,90, 92-97, 102-104]. In [93, 94], systewel simulations were conducted
to evaluate the feasibility of LTE/WiFi coexistence. It wslsown that such coexistence causes
significant degradations to the WiFi performance. but ofilgcss the LTE performance slightly.
Hence, LBT was introduced to protect the WiFi users in the sbemce scenario [95,104], where
an LTE-unlicensed BS follows a CCA process before accessingnieensed spectrum. In [92],
an analytical model was presented for evaluating the @ffsutss of the simple LBT. The analysis
showed that LBT can effectively mitigate the impact of LTHicensed on WiFi, though the per-

formance of LTE-unlicensed would be degraded. Furtherpexperiments [82], show that with
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LBT or adaptive duty cycle, WiFi can be will protected. Theref, we consider LBT in this work
to address the coexistence issue of LTE-unlicensed and WiFi

Another challenge in LTE-unlicensed is interference managnt among LTE-unlicensed
BS’s [83], while opportunistic spectrum sharing is one of pheposed solutions. In [99], a credit
token based spectrum auction scheme was proposed forigpdetising among secondary users,
while in [100], a revenue generation for truthful spectrwnatéon in dynamic spectrum access was
proposed to render a truthful bidding for spectrum leasingifagencies. In a recent work [101],
a socially-optimal online spectrum auction is proposedsjeectrum sharing among secondary
users. However, these works either fail to address the nallediges for spectrum sharing in LTE-
unlicensed, or provide no precise evaluation of the valugpettrum based on QoS guarantees in
auctions. In [98], a game theoretic approach is proposeddble spectrum sharing among LTE-
unlicensed BS’s through power control. However, it negléztsxploit the potential advantage of
spectrum reuse among the BS’s.

Motivated by the interesting prior work and the high potelhif LTE-unlicensed, we propose
a distributed online auction scheme for LTE-unlicensed BB® goal is to maximize the expected
social welfare in each auction through efficient assignraedtspectrum reuse, as well as meeting

the QoS requirement of maximum delay and minimizing the padkop rate at the same time.

3.3 System Model

3.3.1 LTE-unlicensed Network Model

We consider the LAA scenario, in which licensed and unlieelhsarrier bands are integrated
and used [84]. This can be enabled by Carrier Aggregation (&fihed in LTE Rel-10 — Rel-
13 [83, 84]. With LAA, LTE on licensed band serves as a backband the CA of unlicensed
bands boosts the downlink (FDD) or both downlink and uplifkD) capacity [87]. Considering
the asymmetric uplink and downlink traffic, we focus on thevdbnk transmission of LAA in

the FDD scenario, in which the unlicensed carrier bands tlizaed to enhance downklink data
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transmission. Due to the low power constraint on unlicersgaettrum imposed by regulations
(e.g., WiFi standards) and the relatively higher frequeatynlicensed bands (i.e., 5GHz), it
is expected to have coverage holes in unlicensed band wiliteaeployment of licensed and
unlicensed bands. Hence, we consider non-co-site depluyofidicensed and unlicensed bands
in this work.

Specifically, we consider a system witli BS’s operating in the LTE-unlicensed mode, de-
noted asM = {1,2,...,M}. The BS’s could be several Macro eNBs of different operators
operating on both licensed and unlicensed bands, andnpides working on unlicensed bands.
We also assume a high speed backhaul for coordinating thatopeof the BS's, e.g., inter-cell
interference coordination (ICIC) and bidding informatiorclkeange as in our proposed scheme.

Define the interference index variable for B&nd; as

1, if BS ¢ andj interfere with each other

0, otherwise.

Leti/™ = {1,2,...,U™} denote the set of UEs served by LTE-unlicensedBSwhich
maintains a queue for each UEdenoted ag)!". LetC = {1,2,...,C} be the set of orthogonal
channels, each of which has an identical bandwidth as thresmonding WiFi channel. Further-
more, there is no overlap between two different channelsnam@ of the channels overlaps with
more than one WiFi channels (i.e., they are “aligned”). Wepdhe LBT mechanism for LTE-
unlicensed/WiFi co-existence [95]. Moreover, any trarsgiain of an LTE-unlicensed BS must be
followed by an idle period of the channel to avoid starvatdhViFi users. The transmission time

of LTE-unlicensed BS’s should be confined to one frame to lihmt impact on coexisting WiFi

users.

IWe adopt the physical model in [107] to define the interfeesramge of nodes.
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3.3.2 Transmission And Qeueing Model

In this work, we consider the UEs covered by LTE with bothrised and unlicensed bartds.
LTE on licensed bands provides relatively reliable datagmaissions. We assume that for UE
BS m provides a data rate on licensed bands that transkfitg) packets in frame. With the
LBT mechanism, an LTE-unlicensed BS needs to wait for an édaillmame on unlicensed bands
and bid for transmission opportunity on the frame to avoilision among the BS’S. If BS m
wins the transmission opportunity on an unlicensed chanrel in framet, then it can provide
an extra data rate for UE€ U™, denoted as?!”(t). We also haveR!(t) = ¢ (t)e*(t), where
©(t) is the number of Resource Blocks (RBs) assigned toihde!”(¢) is the expected data
rate provided by an RB in packets per frame, which dependseocaihdition of channel between
BSm and UE:.*

For each UE, A"(t) data packets arrive at B& during framet. We assume the arriving
packets follow a certain process with a bounded maximumicated?” () < (A™)™, The queue

at BSm for UE 7 is maintained as

Q" (t+1) (3.2)

= max{Q"(t) — Ri(t) — R"(t) — di"(t), 0} + A7"(2),

where@?*(0) = 0 andd*(t) is the number of packets dropped at fratnéue to violating the
maximum delay requirement.
3.3.3 Spectrum Auction And LBT On Unlicensed Band

The success of LTE on unlicensed bands hinges upon the temgsof LTE-unlicensed

with other wireless networks on the same bands. LBT is intteduo enable the coexistence of

2For UEs with no coverage of LTE licensed band, LTE-unlicehisanot available due to the absence of a control
channel. For UEs with no coverage of LTE-unlicensed bararégular LTE service can be offered.

30n unlicensed spectrum, planning is not feasible since payator can deploy a BS if it is desired to do so.

4We assume negligible frequency selective fading in eachethannels.
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WiFi | WiFi occupation WiFi idle | |
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LTE-U ‘

LTE frame on ./ Bidding . >~ ‘
licensed band CCA window LTE-U transmissions LTE-U idle

Figure 3.1: The frame structure of the proposed auctionrseh&here LTE-unlicensed and WiFi
share the same unlicensed channels.

LTE-unlicensed and WiFi. Before an LTE-unlicensed transioig, the BS should follow a CCA
procedure and wait for an idle frame before claiming the aeato transmit. The CCA process
of LBT can effectively prevent collision between LTE-uninsed and WiFi. However, if more
than one LTE-unlicensed BS’s, within an interference rawot@m and transmit on the same idle
channel, there will still be collision among themselves. Hanel bidding mechanism among
LTE-unlicensed BS’s is thus needed right after LBT.

Spectrum auction takes place among the LTE-unlicensed B3tsatre interested in trans-
mitting on an idle channel. After CCA, if a BS identifies an idleanhelc € C, it may bid for
the transmission opportunity. Other BS’s can bid for the sah@nnel following the first bid in
the bidding window. All bids should be submitted to aucti@ssion initiated by the first bidder,
denoted as thauction initiator, in its interference range. If there is no BSs in an activeianct
session for channelin the interference range of a BS, the BS itself will become tiatian initia-
tor® The auction is denoted & (¢), wherem* is auction initiator is the frame that the winner
BS/BS's access; is the channel for auction, add € S™ (¢)} are the BS's that participate in the
auction. The frame structure of the auction is shown in Figj. The auction can be conducted in

the followingthreesteps.

Step I Any BSm € M interested in transmitting on channedvaluates the value of transmitting
on channel: for framet, denoted a$”(t). It then submits a bid(¢) to the auction session

for transmission on the next framieNote that each BS aims to maximize its own utility in the

5The auction initiator serves as a virtual holder. The aciuation is processed in a back-end server to reduce the
cost on the auction initiator and avoid cheating from it.

6|f there are more than one auction sessions in its interéereange, the BS will look for transmission opportunities
on other channels. Such information can be obtained by sgasid/or information from a Geographic Information
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auction, so it may try to manipulate the auction by subngténbid deviating from its true value,
i.e., b™(t) # b(t). In this work, we aim to design a strategy-proof auction taéoBS’s to bid

truthfully (see Section 3.5.2).

Step 2 At the end of each bidding window, the auction session m#keshannel assignment
decisiona™ (t), i.e., the set of auction winners to access chanmeithe following transmission
frames. Notice that the set of auction winners should be meybe interference range of each
other (i.e.,l;; = 0, for all i, j € o™ (¢)). The auction session decides the paynerit) of all the

BS’s participating in the auction. Auction losers do not neethake a positive payment.

Step 3 At the beginning of transmission framgthe winner BS’s make decisions on transmission

or dropping packets.

3.3.4 Utility Function And Social Welfare

We consider selfish BS's, each aiming to maximize its utilityidg each bidding cycle. The
utility of BS m € M depends on the QoS of the UEs it serves, including the dreparad packet
delay. The BS decides to bid when there is a potential trassonisopportunity on channel
starting at frame. If BS m participates in an auction of channethat is available at framg its

utility function is defined as

o) = > {=Brdr()} — b (t), (3.3)

ieUum™

whereS!™ is the penalty of dropping a packet of UBerved by BSn. Note that we do not include
the delay constraint in the utility function, which, howewill be considered in the design of a
dropping policy in next section. The transmission on lieehband is not included in the utility
function because we aim to limit the modification on the coirtd E system; and assume that the

transmission on licensed band is not affected by the trassom on unlicensed band. However,

System (GIS), to the auction server to compete for the cHalirikere are more than one channels available, then the
BS can randomly choosmeto bid.
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the transmissions on licensed band do have a great influenttee@ueue length and packet drop
rates of the UEs, which will be considered in the algorithraigie.

The objective of the auction design is to maximize the sowglfare of each auction. The
social welfare of an auction on transmission opportunityaahet on channet should be the total
utility of all anticipating BS’s in auctiors™ (¢). As payments are made among the participants,
so the total payment should always be 0. Hence, the sociémeedf auctionS™ (¢) is defined as

follows.

dooerm =Y. > {-prdr) (3.4)

meSm™ (t) meSm™ (t) teU™

3.4 Lyapunov Optimization based Valuation and Scheduling

3.4.1 Virtual Queue And Delay Bound

In each auction, a BS needs to dynamically evaluate the vdlspeatrum resource in LTE-
unlicensed, and decide the resource allocation and paosetstheme according to the channel
condition and the queue length of each UE it serves. In tlusmse we apply Lyapunov optimiza-
tion to derive an online algorithm for resource allocatiowl @acket drop control to guarantee the
maximum delay of packets [46, 86, 105]. For bidding on LTHiaensed bands, a successful bid
would provide additional transmission opportunity for tiext frame.

We adopt the-persistence queue [86] to guarantee the maximum delayreeaent. The BS

maintains the followingirtual queuefor each UE it serves.

ZM(t+1) = max {Z"(t) + €" - Ligmy=0y — R (t) —

R2(t) — d"(t) — Z]"(t) - Ligm(=0y,0} (3.5)

)

wheree” > 0 is a prescribed constanty., is an indicator function; and]*(0) = 0. When

Q™M(t) > 0, the virtual queueZ™(t) has the same departure procégs(t) + R}*(t) + d"(t) as
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Q" (t), but its arrival rate is a constadt’. WhenQ!"(t) = 0, Z"(t) will be reset to 0. In fact,
Z"(t) approximately tracks the packet delay of quélje A largerZ"(t) indicates a longer delay
of packets in the real queu@(¢). An algorithm that stabilizeg(¢) and Q! (¢) will ensure a

bounded maximum delay, as given in the following Fact [86].

Fact 1. (Upper Bound of Delay) Supposg”(t) and Z"(t) maintained by an algorithm satisfy

the following constraints for all framese {0,1,2,...}.
Qi"(t) < (@)™ and z"(t) < ("), (3.6)

where (Q")™** and (Z™)™** are finite constants. Then the maximum delay of packets can be
bounded with a finite constarftV;™)™**, i.e., a packet will be either transmitted or dropped
within (17™)™e*_ If packets are served in the first-in-first-out (FIFO) manreecording to the

e—persistence queue analysis in [86], the delay bound can btewias
(Wi )™ee = T(@F)™ + (Z7")™) /"], (3.7)
where(-] is the ceiling function.

3.4.2 Lyapunov Optimization

Let ©™(¢) be a vector of al!"(t) and Z"(t), i € U™. We define theLyapunov function
L(e™(t)) as

L(O™ (1) = 5 Y@M + (27 38)
ieU™

We also define a-step sample pathyapunov driftas

AL(O™(1)) = L(O™(t + 1)) — L(O™(1)). (3.9)
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The drift-plus-penaltyused in Lyapunov optimization [86] is obtained by adding plremalty of

spectrum bidding cost. The penalty includes the paymemtsast of dropped packets as

SV () = V() + VY Br(E), (3.10)
icU™
whereV™ > 0 indicates BSm’s concern on the price it needs to pay, agd is the penalty
of dropping a packet of UE, i € U™. Hence, thel-frame drift-plus-penaltycan be written
asA (O™ (t)) + V™OI(t) + 3 cym VBT (t). If BS m bids for transmission opportunity on

channek at framet, the problem can be formulated as follows.

min : Ay (O™ () + VH(E) + Y VB (t) (3.11)
1EU™

st gty =g, forcec (3.12)
eum

em(t) >0, forielUd™, ceC (3.13)

R™(t) + R™M(t) + d™(t) < QM(t), fori e U™, c € C (3.14)

€m > (Amymar for i e Y™ (3.15)

(d7)mes > (Am)yme qm(t) > 0, fori € U™, (3.16)

wherey is the total amount of RBs on channelin the formulation, (3.12) and (3.13) are resource
allocation constraints, while constraint (3.14) guarastihat the packets transmitted and dropped
in slott is no greater tha!™(t).

We can reformulate therift-plus-penaltyas follows.

AL (O(1) + VMBI () + Y VBT (t) (3.17)

ieyum
< BTV + > VB (t) -
e
D QIR + R (1) + (1) — A7(1)+

1eU™
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m m 1 m
> Z e arasor — (27 (1) Liar -0

ieum
D ZPO(RE() + RP (1) + (1))
ieU™
1
= B" = (2" (1) Harw=o + Y QI(OAT(1)+
ieU™
Z ZM(Oe Ligr >0y — Py (1) — 3y (2),
ieY™

where

(D11 (1) = S (RI(E) + RI(0)(QE(0)+

Zm(t)) — Vr(t)
B () = Yiegom A (8 QI (1) + 27 (t) — V™ B (3.18)
B = 15 {[(R + R 4 dmymos]24

2[(A7)me) + (€ = Rig = Ry —di") ™)}

\

With Lyapunov optimization [86], we can derive an onlinea@ithm to minimize thedrift-
plus-penalty which will yield policies for resource allocation, vali@t of spectrum, and packet
dropping.

Resource Allocation Maximizing 7}, (¢) defined in (3.18), we can derive the optimal allocation
of RBs and obtain the transmission policy. Note that the first i@ CH (t) is valid only when BS
m wins the auction and makes the payment. And the value of ttenseterm does not affect the

maximization of®f}, (t). We thus solve the following problem.

max: Y (RE(t) + RI(6)(QF (1) + Z"(t) (3.19)

ieum™

s.t. Constraint$3.12), (3.13), (3.14)
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The objective function (3.19) can be rewritten as

> (R + RMO)Q () + ZM(1)) (3.20)

ieU™

= D A@erO@ M) + ZM(1))+

ieu'm

AT )+ Zm(1)).

1eU™

Recall thaty!(t) is the number of RBs in spectrumallocated to UEi by BS m. We focus
on resource allocation on the unlicensed spectrum and doamsiider optimization of the rate
from licensed band (i.eR!*(¢)). Hence we can tung!’(¢) to maximize (3.19). Specifically, we
apply a greedy algorithm to allocate more RBs to Jkth a highere?? (¢)(Q7(¢) + Z™(t)) under
constraints (3.12)—(3.14).

True Value of Channel  To find the highest price that B& is willing to pay for unlicensed
channel, i.e., b"(t), we can comparé (1(t) when a bid is successful for spectrugnwith that
when no bid is made. Slndfy( ) is the highest price that B& is willing to pay for channet, it
is also thetrue valueof channek to BSm.

If the bid is successful, we have

o (1) (3.21)

= ST(RE(E) + RPO)Q() + Z(E) — V(D).

ey

Otherwise, if BSn does not bid for channe] we have

"= R )+ Z" (1)) (3.22)

eudm
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When BSm pays the highest price, we ha®g] (¢)" — {5, ()" = 0, from which we can solve for

b (t) as

b (t) = % {maX 3" (RE(8) + R () % (3.23)
@) +Z1(1) =) RT(t)(QT(t)+ZZ”(t))}

= % max { Z R:Z(t)(Q;n(t)+sz(t))}

ieU™

s.t. Constraint$3.12), (3.13), (3.14)

Packets to Drop By maximizing@g) (t) defined in (3.18), we can obtain the amount of packets

to drop as follows.

arymer . Q)+ Zn(t) > vrgr

(1) = (d") Qi"(t) () & (3.24)
0, Otherwise

where(d")™** is a constant, i.e., a predefined limit fgf". To satisfy the maximum delay require-

ment, packets are dropped as in (3.24) in each frame, whetimett there is addition transmission

opportunity on unlicensed bands.

3.4.3 Guarantee On Maximum Delay

In this section, we first derive upper bounds on the real artdaliqueue lengths. We then

translate the backlog bounds to an upper bound on queueliag de

Lemma 3.1. With the drop decision (3.24) and assuming ¢* < (d!")™** and(0 < (A7")™** <

(d7)™e* the proposed resource allocation and dropping policiesuea the following upper bounds

on the real and virtual queues.

(Q"(t) + Z" ()™ = V™ B" + (A7) + €& (3.25)

)
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(Zm)mee = VmET + €. (3.26)

Proof. We first prove (3.25) withinduction Since the real and virtual queues are all initially
empty, we have)"(0) + Z*(0) < V™a™ + (A7*)™*® + €. Then we assume (3.25) holds for
somet, > 0, and prove that (3.25) also holds f@p + 1).

If Q7 (to) + Z™(ty) < V™3™, it follows (3.2) and (3.5) that

QP (to+ 1) + Z"(to + 1)
< Q" (to) + Z" (to) + (A7) + €

S VPB4 (A7) e

(2

Otherwise, ifV™gM™ < Q7 (ty) + Z™(to) < VB + (A")™** + €', then we havel"(t) =

(d(t))™* according to (3.24). Hence

Q' (to+ 1)+ Z"(to + 1)

< Q" (to) = Rig(to) — Ri"(to) — (&)™ + A" (to)+
Zi"(to) + € = Ric(to) — B"(to) — (4i")"**

< Q" (to) + Z" (to) + A" (fo) + " — 2(d")™*

S VPB4 (A7) e

(2

Thus (3.25) also holds for the case(af + 1), and we conclude that (3.25) is true for allThe

proof for (3.26) is similar to that in [86] and is omitted fordvity. n

Theorem 3.1. With the proposed resource allocation and packet droppiolicps and the FIFO
service discipline, the queueing delay is upper bounde@dyy)**. That is, any packet is either
transmitted or dropped withifil//)™**  given by

(Wrmymes — 9 4 (V™8I 4 (ATymes) fei. (3.27)

)
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Proof. According to Fact 1, we have

(Wim)mes = (@)™ + (Z7")™) /&

7

It follows Fact 3.1 and Lemma 3.1 that

(W)™ < ((@QF + Z0)™ +(27)) e

(3

=2+ 2V7E" 4 (A7)™) /€.
O
From Theorem 3.1, we see that there is a approximately liedationship between the max-

imum delay and/ ™3™ /€™,

3.5 Auction and Pricing

3.5.1 Determine The Auction Winner

During the auction, the same spectrum can only be allocatadset of BS’s with no mutual
interference at atime. A set of BS’s with no mutual interfeeenoan be denoted as a non-interfering
bidding set. In each auction, the auction session detesnhrebidding set™ () that wins the
auction and obtains the opportunity of transmission in #amrhe objective of the auction is to

maximize the sum of bids in™ (¢). It follows that

max 1 Ge(t)|ismr oy = Y, (D) (3.28)
) e
st. I; =0,foralli,j € o™ (t). (3.29)

Recall thatS™ (t) is the set of BS'’s that bid in the auction. Constraint (3.29ygntees that there

is no mutual interference among the winner BS's. It is posdivht the solution to problem (3.28)
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Figure 3.2: lllustrate the maximum independent set.

is not unique. Then the auction session will randomly chawsenon-interfering set as a winner
set.

To solve problem (3.28), we could use a brute-force appre@aexamine all the BS combi-
nations for the optimal non-interfering bidding set, whiths a complexity o (2" — 1), where
n = |S™ (t)| is the number of BS’s participating in the auction. In facis th amaximum weighted
independent set problem graph theory [81], which is NP-complete. Véual. in [91] proposed
an approximation solution with a polynomial complexity l®faxing the objective function. For-
tunately, in the auction design of this work, the number ofs88’a non-interfering bidding set is
limited. Without loss of generality, if the interferencenge of each BS is shaped as disks with an
identical diameter, the maximum number of BS’s in a non-feténg bidding set is 7. The proof
is given below.

Recall that all the bidding BS’s are in the interference ranigih® auction initiator. Hence
the distance between any two BS’s is no more thénathered is the interference range of a BS.
Without loss of generality, we assume that the interferenoge of each BS is shaped as a disk
with diameterd. Then a maximal independent bidding set should be formetd@asrsin Fig. 3.2.
As o = /6, there are 6 disks in the outer layer and the size of the inke set is 7.

We propose a recursive algoritHMNNERSET(SgL* (t)) to solve problem (3.28), to find the

maximum sum of bids of a non-interfering bidding set. The&thm has a complexity ab(n(k—
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Algorithm 2: WINNERSET (S (1))

Input: Information about participating BS'$;™ (¢) andI; ;(¢), and all the bids made for channel
¢, b (t), fori, j,m € S™ (t)
Output: The Optimum Non-interfering Bidding Set
1 Gmaac =0 :
2a=0;
3 for each BSn € S™ (t) do

4 | S=85"(1);

5 Delete BSm and all BS’s interfering with BSn from S ;
6 o/ = WINNERSET(S) Um ;

7 ComputeG’ as the sum of all bids in/ ;

8 if G’ > G™ then

9 Gma:v — G/ 1

10 a=ada;

11 end

12 end

13 Return «a;

1)!), wherek is the maximum depth of the recursive algorithm, which isa¢da the maximum
number of BS’s in a non-interfering bidding set.

As shown in Algorithm 2, the recursive algorithmiNNERSET(-) works as follows. The
goal is to obtain the maximum non-interfering bidding sebamall the sets that contain BS,
for m € S™ (t). The maximum non-interfering bidding set containing BSis BSm plus the
maximum non-interfering bidding setin S™ (¢), after deleting BSn and all its interfering BS's.
And o’ can be obtained recursively.

In our auction design, all bidders are equal. Hence, we dinite the second-price strategy
in second-price sealed-bid auctions (i¥ickrey auction}[89, 91], in which the auction winner
pays the second highest bid among the bidders. Applyingthasegy, the winning BS sef*(t)
pays for the maximum sum bids of the non-interfering biddiats among the losers(the maximum
independent set aside from the winner set, denoted as sagyondner set). Different from the

traditional second-price strategy, there may be multigleners in a single auction in our design.
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Hence we need to split the payment among the winners, given by

Yo ) = Gel)l s oz iy (3.30)
mea” (t)
whereG.(t)|sm* iy am* 1)y IS the maximum sum bids of the non-interfering bidding set®ag
the losers.

To effectively split the payment among winners, a Nash bangg solution (NBS) is intro-
duced in [91], aiming to maximiz@_, . .- (b (t) — b™(t)). However, the solution in [91]
ignores the constrairi(t) — b™(t) > 0, for m € o™ (t). Actually, we could obtain a truthful
bidding if 0 < B?(t) < b(t) (as given by Theorem 3.2 in Section 3.5.2). Hence we propuse t

following pricing scheme.

m () GOl ism ram® 1) m*
b () Oy e Q

b (t) =9 —bm (1), m e o™ (t) (3.31)
0, otherwise

wherea™ (t)" is the optimal set of non-interfering loser BS'sSf" (t)\ o™ ().

3.5.2 Proposed LMWA Algorithm And Performance Analysis

With the proposed schemes for resource allocation, valuati spectrum, packet dropping,
and auction, we develop an integrated algorithm for the Lifilkeensed system, named Lyapunov
based Multi-Winner Auction (LMWA), which is presented ingdrithm 3. In Line 10 of LMWA,
no bid would be made to avoid the hidden node problem.

We have the following theorems on the performance of LMWAwhuthful bidding, utility

and social welfare maximization, and the QoS of UEs.

Theorem 3.2. (Truthful Bidding) The pricing scheme in (3.31) guarantdestruthfulness of bid-
ding, i.e.,b™(t) = b™(t).
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Algorithm 3: The Proposed LMWA Algorithm

1 for each BSn idle on unlicensed bandio
if a set of channel§’ on unlicensed bands are sensed idle at frartieen
Randomly select a channefromC’ ;
ComputeR?(t) as in (3.19)p7(t) as in (3.23), and"(t) as in (3.24) ;
if a BS in the interference range is the auction initiator of chanrtélen
| Submitt?(t) = b7'(t) to the auction initiator ;
else ifno BS in the interference range is bidding fothen
\ BS m becomes the auction initiator and broadcasts a message to hold channel
else
| Continue ;
end

© 00 N o g b~ WDN

=
o

=
[N

end

=
N

end
Each auction session decides the winner BS set with Alg. 2 ;
Each auction session decides the actual ffitg) as in (3.31) ;
for each BSn, at the beginning of framedo

Drop d]™(t) packets as in (3.24) in frameg

if BSm wins a bidthen

\ Schedule transmission on chana&ith R} (t) in framet ;

end

end

NN R R R R R R
B O © ©® N o o A~ W

Proof. With the proposed pricing scheme (3.31), the payment of zmwiiiﬂ‘(t) iIs a complicated
function of bidb*(¢). It also depends on other BS’s bids, which are unknown tonBBefore
submitting its bid. Hence a bidder cannot predict the payrdening the auction. 15" (¢) > Bgn(t),
then it may be charged with a prié&(t) > b™(t). If b™(t) < b™(t), then it has a lower chance to
win the auction. Hencé!™(t) = b7(t) is always the best bidding strategy.

The proposed pricing scheme (3.31) also resistant to treoveof shill bidding in which a
buyer uses multiple identities in the auction in order to immaze its profit [108]. In shill bidding,
one identity of a buyer submit a price high enough to suretytive auction and the another identity
of the same buyer submit a price high enough to be the secghdstiprice. In this case, the buyer
will win the auction and only pay to itself. In this work, twe more BSs from the same operators
may form multiple identities of the buyer(the operator).wdwer, in pricing scheme (3.31), BSs
from the same operator have no clue of whether there wouldyetaer BS/BSs in the secondary

winner set without overall interfering matrix and bids frasther BSs. If they apply the shill
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bidding in [108] and there is any other BS in the secondary aiirset, they would need to make a

high payment to other BS/BSs in the secondary winner set. O

Theorem 3.3. (Utility Maximization for Individual BS) If the compoundqmess{ A}"(t), e[*(¢)}
is i.i.d. over frames and for any UEserved by B%:, the proposed LMWA algorithm achieves the

following lower bound on the utility of B&.

E{¢ ()} > {¢ " — B™/V™, (3.32)

where ¢ (t) is the utility of BSm defined in (3.3),B™ is defined in (3.18), andy™)"" is the

maximum utility BSn can achieve without knowing the bids of others in an auction.

Proof. According to (3.17), we have

AL(O@) + VTBI () + Y VAT () (3.33)
ieum™
< BT VTR + Y VB (t)+
1EU™
Zu; Q" (A" (t) — Rz (t) — R (t) — d"(1))+
ezu;n Zi" (€ Ligpwsoy — Rit(8) = R (1) — di'(1)).

Then for any (possibly randomized) feasible schedule, we ha

min{A,(O(t)) — V™™ ()} (3.34)
< B™ + V™™ () +

D QUAN(E) — Ry (t) — RP™(t) — d™*(1)+

1eU™

> ZMO( L grwsoy — Rz (1) = B (8) — di™ (1)),

1eU™

55



whereR"*(t), R (t), andd"*(t) are the terms corresponding to the feasible schedule. Now we

consider a randomized scheduling policy that achievesalt@xfing for each application € U™

E{or"(t)} = {o0' ()} (3.35)
LA (t) — Rig™(t) = R™(t) — 4™ (8)} < 0 (3.36)
E{e" Lioprwsoy — Rie"(t) — R (t) — di"(8)} <0, (3.37)

where{¢7(t)}°"" is the maximum utility BSm can achieve in a stable system, and (3.36) and
(3.37) stabilize the queues.

Hence, as the proposed LMWA algorithm minimizes (3.34), a&eeh

E{A(O() = V™ (1)t} < B™ = Vg ()} 7"+

{Z Q" (1) (A (1) — Ri™ (1) — B (1) — d?”*(t))} +

icey™

E{ZZZ”( & Ligr >0y — Rin"(t) — R (t)—

1eU™

di"(t)} < B™ = V™ {gr (1)},

where

{Z@m AP(t) — R (1) — Ri”*(t)—d?*(t))}so

ey™

{sz (6" Ligr >0y — Rie"(t) — R™(t)—

eym

" ()} < 0.

Then we have

E{AL(O1)) = V™o (t)|t} < B™ = V™ {g (1)}
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for the proposed LMWA algorithm. Notice that, ' E{A,(O(t))[t} = E{L(O(t))} < oo for a

stable system. It follows that

lim sup — Z E{A(©())|t} — hm sup — Z E{o(

t—o0

=0 —lim sup — ZE{gbm

t—o00

< B = V™o ()}

Then we conclude that Theorem 3.3 holds true. ]

It follows that with LMWA, each BS can achieve an averageytilith a gap ofB™ /V from

the optimal average utility.

Theorem 3.4. (Social Welfare Maximization or Weighted Dropping Miniatian) If V'™ = V' is
a constant for all BS's, and the compound procéds(t), e*(¢)} is i.i.d. over frames, for BS

m € S™ (t) and UEi € U™, then for each auction the following inequality holds true.

> ) E{Brdy(t) (3.38)

meSm* () iEU™

{ > Y } LBV,

meSm* (t) ieU™

whereB = 3 s,y B™, B™ is givenin (3.18), and{}_, c gm= (1) 2icyem [ ()]} is the

expected minimum weighted dropping penalty that can be aetii|m an auction.

Proof. As in (3.28), the proposed LMWA algorithm maximizs, . .-, b"(¢) in the auction

part. According to (3.23) and Theorem 3.2, we have

PIRLAUEED DR AU

mea” (t) meam” (t)
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:% Z maX{ZR —I—Zm())}

mear” (t) ey

As R

1c)

> meam® (1) 2icum L (1) + R () HQ](t) + Z" (1)) in each auction, by enforcing the constraint

Q"(t), andZ™(t) are independent among different BS’s at frameMWA maximizes

that no interfering BS’s transmit at the same time. Based aoréime(3.3) we have

{ S [ - arar) } (3.39)

meSm™ (t) tEU™

{ >y [ W()}}@g

mesm ) ieU™

Slncezmesm ® Em( t) = 0 according to the auction design, the above inequality j3ca@ be

simplified as
meSm™ (t) i€U™
opt
B
{ S>> ) } - (3.40)
Vv
meSm* (t) iEU™
Thus we conclude that (3.38) holds true. n

In the special case with]” = g for all UEs and BS'’s involved in the auction, we have

)3 ZE{dl'"(t)}E{ > Z[d’?’(t)]}

meSm™ (t) teU™ meSm* (t) teU™

< B/(VB). (3.41)

In this special case, it can be seen that the optimality gapdoket drop rate is proportional to

1/(VB). If V3 — oo, the proposed LMWA algorithm can achieve the minimum drdp naeach
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auction. Furthermore, according to Theorem 3.1, the maxirdelay is proportional t&’ 5. There

is clearly a tradoff between packet drop and delay here.

3.6 Simulation Validation

In this section, we use Matlab simulations to evaluate thifopmance of the proposed algo-
rithms with a typical outdoor small cell scenario. We used simple schemes as benchmarks:
(i) Single-Winner that selects only one winner during antaun¢ and (ii)) Random Access that
randomly selects a winner during the bidding stage. The gordtion of simulation parameters
is based on [85], as summarized in Table 3.1. Specificallysete]* = 8 and (d*)"** = 8
for all UEs, which are both normalized to the time scale of saeond. We also s¢t” =
to better reveal its impact. The network area20f x 200 m? is covered with LTE macro cells
in licensed bands and the average data rate provided by tBeMacro cell is4 Mbytes/s for all
UES. Six LTE-unlicensed BS's are deployed in the area, eastingel0 UEs. Two channels on
the LTE-unlicensed band are available.

We adopt a truncated Poisson traffic model in the simulatiwhgh is a Poisson process with
arrival rateX and the maximum number of arrival packets is bounded WithThe packet size is
2 Mbytes (a file in the application and can be separated twdlesnpackets to fit the MAC layer
packet size [95]). In this work, we focus on the coordina@omong LTE-unlicensed users, so the
evaluation of WiFi performance is not included.

We also adoptedOST 231 Hatdor metropolitan areas as the propagation model [106].

where

L(d) = 46.3 + 33.910g,,(f.) — 13.8210g,0(hs) — a(hm) (3.42)

+ (44.9 — 6.5510g,4(hp)) logyo(d) + 3

wherea(h,,) = 3.2(log,,(11.75))? — 4.75, f., hy andh,, are the central frequency, height of BS

and height of mobile device respectively.
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Table 3.1: Simulation Parameters

Parameter Scenario for Outdoor Small Cells
Carrier frequency 5 GHz

Bandwidth 20 MHz

Number of RBs 100

Frame duration 10 ms

BS height 10 m, below rooftop

mobile device height 1.5m

Antenna configuration 2Tx-2Rx

Transmit power 30dBm

UE noise figure 7dB

Channel model UMi outdoor

BS antenna configuration Omni-directional, O dBi gain
UE antenna gain 0 dBi

Thermal noise -174 dBm/Hz

LBT threshold -85 dBm

Traffic model Poisson

Packet size 2 Mbytes

In Fig. 3.3, we present the relationship between arrival ofippackets and the average packet
dropping rate. We find that the average dropping rate is asingl as the arrival rate grows. The
proposed LMWA algorithm outperforms the two other schemels avconsiderably smaller drop-
ping rate. This is because that under the proposed LMWA dligoy spectrum in unlicensed bands
can be spatially reused, and the lower dropping rate is edddyl an higher throughput due to spec-
trum reuse. We can also see that the dropping rate of Singiediis also considerably lower that
of Random Access, which indicates that the auction enabéB$&with a higher utility to win the
unlicensed spectrum.

In Fig. 3.4, we present the relationship between packetemnate and average queueing delay.
The simulation shows there is a linear relationship betwkemrrival rate and average delay, thus
validating Theorem 3.1. The increased arrival rate do nosea surge in delay. Hence, even if
the arrival rate is really high, LMWA can still guarantee tttfae QoS requirement that a packet

is dropped or transmitted within a limited time. As in the\poais case, the proposed LMWA
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Figure 3.3: Packet arrival rate versus average drop tate= 20 for all UEs.
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Figure 3.4: Packet arrival rate versus average délay/= 20 for all UEs.

algorithm outperforms the two benchmarks with considerajdins, while Single-Winner also
outperforms Random Access.

In Fig. 3.5, we present the relationship between arrivad eatd average throughput. The
simulation shows that throughput increases with the irgtngaof the arrival rate for all three
algorithms, while the curve for Random Access is pretty flat.

In Fig. 3.6, we present the relationship betwéén and the average dropping rate. The sim-
ulation confirms the)(1/V ) bound of dropping packets. For the proposed LMWA and Single-
Winner algorithm, the average dropping rate decreas&%Jagrows, and the&(1/V 3) bound of

dropping packets can be observed. Hence, we can chiogge better tradeoff between the QoS
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Figure 3.5: Packet arrival rate versus average throughptit= 20 for all UEs.
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Figure 3.6:V 3 versus average drop ratd;” = 3.5 for all UEs.

requirements on dropping rate and delay in practice. For &andiccess, we find that the drop-
ping rate does not decrease significantly with increas@dThis is because that the arrival rate is
much higher than the provided throughput and dropping ofynpaickets is unavoidable, even with
a loosen delay requirement. Obviously, this simulatiormshsimilar gap among the performance
of the three schemes as in Figs. 3.3, 3.4 and 3.5.

In Fig. 3.7, we show the relationship betweEw and average delay. The simulation con-
firms the bound of delay and 5 as in Theorem 3.1. Although Theorem 3.1 is about the upper
bound of the maximum delay, we can still see that there is progpmately linear relationship be-

tween average delay ands in all the three curves, which all adopt the proposed drappiicy.
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Figure 3.8:V 3 versus average throughput]” = 3.5 for all UEs.

In addition, the proposed algorithm outperforms Singlexwéir, and Single-Winner outperforms
Random Access in this simulation again.

In Fig. 3.8, we present the relationship betwééh and average throughput. The simulation
shows that throughput increases with the increasing ofttneabrate for all three algorithms and

the simulation shows similar gap among the performanceeofittee schemes Fig.3.5.

3.7 Conclusions

We studied distributed online auction for sharing unli@hdands among LTE-unlicensed

BS’s to maximize the social welfare in each auction, whilei@ahg the dual goal of minimizing
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the expected packet dropping rate and guarantee a maximiam &gecifically, we propose Lya-
punov optimization based schemes to evaluate the true wluslicensed spectrum, to allocate
RBs on unlicensed bands, and to decide when to drop packet$ tiaseirrent channel condition,
gueue lengths, and delay of packets. We also proposed &uitratittion mechanism to integrate
the schemes, which can maximize the overall social welfadegaiarantee bounded drop rate and
delay. The superior performance of the proposed algoritbwes two benchmark schemes was

validated with simulations.
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Chapter 4
Online Channel Assignment, Transmission Scheduling, aadsinission Mode Selection in

Multi-channel Full-duplex Wireless LANs
4.1 Introduction

Due to the dramatic increase of wireless data demands drivére wide use of smartphones,
tablets and other smart devices, there is an urgent neegtowethe spectrum efficiency of exist-
ing wireless networks. Through effective self-interfarertancellation, full-duplex transmission,
i.e., transmitting and receiving simultaneously in the edrmand, has been successfully demon-
strated [36]. With various self-interference cancellatiechniques, full-duplex transmission has
the potential to increase and even double the wireless aphkcity [37].

Combined with RF interference cancellation and digital basdlnterference cancellation,
antenna cancellation can achieve a sufficient self-intemfee cancellation for full-duplex transmis-
sions. In [37-39], analog and digital cancellation techegwere investigated. With full-duplex
transmissions, various full-duplex links can be formed. &ample, in the three-node full-duplex
link scenario, one node (e.g., a base station) executemsaiference cancellation to transmit to
and receive from two different half-duplex nodes simultarsdy [40]. In the two-node link sce-
nario, both nodes are capable of self-interference cateiland can transmit to and receive from
each other simultaneously [41].

Due to imperfect self-interference cancellation, thedesi self-interference may still lead to
a lower signal-to-interference-plus-noise ratio (SINRY @eteriorate the performance of a full-
duplex link [42]. Additional power is needed to combat theideal self-interference to achieve a
suitable SINR. As a result, full-duplex transmission mayalaays be helpful, and there is a trade-

off between the energy cost and delay in the design of fylleuwireless networks [43]. In [42,
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43], the extra energy consumption and the limits of fulld@gxptransmission were investigated.
Joint resource allocation and scheduling in wireless nedsvis a challenging problem, for which
Lyapunov optimization has been applied and shown effe¢fyd4-46]. However, these prior
works are all focused on half-duplex wireless networks. Wehallenging issues that arise in
full-duplex wireless networks have not been adequatelyesded.

In this chapter, we consider a multi-channel wireless LAN @MW) where both the access
point (AP) and user equipments (UE) are capable of full-exptansmission. Since full-duplex
is not always more efficient than half-duplex, we aim to jyimionsider the problems of channel
assignment, transmission scheduling, and transmissiaterselection for the AP and UEs. We
develop a problem formulation to capture the trade-off leemvenergy consumption and queue
length (which is indicative of delay) in the multi-channallfduplex WLAN, with the objective
to minimize the overall energy consumption of the system stabdilize the packet queues at all
the nodes. We then develop an effective solution algoritlsed on the Lyapunov optimization
framework. With the proposed algorithm, the overall opzation problem over the entire time
period is first reduced to the maximization oflaft-plus-penaltyfor each node in each time slot.
The reduced problem only depends on the queue lengthsegsrthk rates, and energy consump-
tions in the current time slot. We then transform the redymedlem into a maximum weighted
matching problem and solve it with the Hungarian Method [47]

The proposed algorithm is an online algorithm since it dogsraquire any past and future
information of the WLAN system. We prove that the proposedalgm maximizes thdrift-plus-
penaltyamong all possible transmission modes and channel assnjseteemes. Furthermore, we
derive upper bounds on the average sum queue length andjatetal energy consumption under
the proposed algorithm, which clearly demonstrate thegyndelay trade-off in the multi-channel
full-duplex WLAN. The performance of the proposed algoritlewalidated with simulations.

The remainder of this chapter is organized as follows. Tiséesy model and problem formu-
lation are presented in Section 4.2. The proposed schedalljorithm is developed and analyzed

in Section 4.3. A simulation study is presented in Sectidn 8ection 4.5 concludes this work.
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4.2 System Model and Problem Statement

4.2.1 System Model

We consider a WLAN with one AP, a set of UEs denoted\as= {1,2,..., N}, and a set
of orthogonal channels denoted&s= {1,2, ..., S}. The AP determines the channel assignment,
transmission schedule, and transmission mode selectrdootb uplink and downlink transmis-
sions. We assume that data is transmitted via the AP in pecked there is no direct transmission
among the UEs. The packets waiting for transmission areetedfand served in the First In First
Out (FIFO) manner. We assume a discrete time system. Thekuplieue lengths at the beginning
of time slot¢ are denoted a§*(t) = {Q“(t), Q4(t), ..., Q%(¢)} and the downlink queue lengths
are denoted ag(t) = {Q%(t), Q(), ..., Q% (t)}, whereQ(¢) is the backlog of the uplink queue
maintained at UE andQ%(t) is the backlog of the downlink virtual queue for UEnaintained at
the AP.

Attime slott, the arrivals of packets to the uplink queues are denoteft &3 = { A% (t), A%(t),
..., A% (t)}. The arrivals of packets to the downlink queues are denatetf@) = {A%(t), AL(t),

.., A%(t)}. In addition, we assume that the arrivals of packets, etitvéne uplink or downlink

gueues, are i.i.d over time. The expectations, i.e., theageearrival rates, are
X2 E{A()} = {A% A, LAY andh 2 B{AY ()} = (A% AL LAY (4.1)

Recall that there ar§ = {1, 2, ..., S} orthogonal channels. During each time slat UE can
transmit and/or receive on one of the channel§.inThe channel assignment decision is denoted
asa;(t), wherei € N ando;(t) € {S U {0}} is the channel UE uses at time slot. Note that
a;(t) = 0 indicates that no channel is assigned toUm addition, each UE can choose from three
transmission modesiplink, downlink or full-duplex The transmission mode selection is denoted
asp;(t) € {U, D, F},whereg;(t) = U, p;(t) = D, andp;(t) = F indicate that at time slat UE

1 selects half-duplex uplink, half-duplex downlink, andlifduplex transmission, respectively.
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For the full-duplex mode, the residual self-interfererctréated as interference. Let

Cu(t)

(2

on(t)=s,8;(0)=F ANACE(t)] a; (1)=s,5.(=r b€ the uplink and downlink channel capacity of WE
at time slott, respectively, given that channels assigned to UE and the full-duplex mode is

selected. We have

pi(t) e
CH* ()| o (D=s.8,(=F = B1 14+ =2 4.2
()] as(t)=s.8:(0)=F ng( + No + o (4.2)
d d|2
pi(t)|Rg]
CUt)| (01258, (0)—F = B1 1+ s ) 4.3
7,( )| 1(t)** 751(@ F Og2( + No_i_p;br]u ( )

where B is the channel bandwidth* and h¢ are the channel gains between the AP andiUE
for the uplink and downlink channel, respectivepy;(t) > 0 andp?(t) > 0 are the uplink and
downlink transmit power, respectively; andn, are the self-interference cancellation ratio at the
AP and a UE, respectively; any, is additive white Gaussian noise power.

For half-duplex uplink transmission, the uplink channgbaety for UE i, given that it is

assigned with channe| is

Ci(t)

v(t)|hy]?
ai(t)=s,8;()=U = B10gy (1 + %) : (4.4)

In this case, we havg!(t) > 0 andp?(t) = 0. For half-duplex downlink transmission, the

downlink channel capacity for UE given that it is assigned with channglis

C(t)

)

(1) hd|?
ai(t)=s,5:(t)=D = B10g, (1 + %) : (4.5)
0

In this case, we havg!(t) = 0 andp(t) > 0.

The dynamics of the uplink and downlink queues can be wraten

Qi'(t +1) = max{Q}(t) + Aj(t) — Bj‘(t), 0} (4.6)

Qi (t +1) = max{Q7 (t) + A{(t) — B{(t),0}, (4.7)
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where B (t) = ZC(t)|a), vy @A B (t) = LCH(t)]aye), 5,1y are the service rates in packets
per time slot at time for the uplink and downlink queues, respectivélyis the duration of a time

slot, andL is the packet length in bits.

4.2.2 Problem formulation

As can be seen from (4.2)—(4.5), the overall throughput eamerhanced with full-duplex
transmissions, but at the cost of higher energy consumptidre energy efficiency maybe de-
graded due to the residual self-interference. There isdetodf between the overall queue length
(which is indicative of delay) and energy efficiency withfdrent transmission mode selections.
Furthermore, both energy efficiency and throughput can hared by transmitting only on good
channels. However, there may be the extra delay to wait éoctiannel condition to be good from
a deep fade.

The average total energy consumption of the system can lervas

P 2 lim sup ! 421[:71{]9z (t) + pi ()] (t), Bi(t)} (4.8)

We also define the average queue lengt 48 lim Sup Z Z E{Q¢(t) + QJ(t)}. We schedule
T— t=0 1=

the uplink and downlink transmissions at the beglnnlng «rhetame slot. According to the notion

of throughput-optimal45], the objective is to minimize the average energy corsion while

keeping all the uplink and downlink queues stable. We hagddtowing problem formulation.

T—1 N
min : P = limsup — Z ZE{pl + ()]s (t), Bi (1)} (4.9)
T=o0 t=0 i=1
S.t.oai(t) # o (t),if a;(t) e Sora;(t) € S, foralli # j,.i,5 e N (4.10)
Q < oo, forall {X* X%} € A, (4.11)
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whereA is the capacity region of the WLAN system. Constraint (4.18)ifs two nodes accessing
the same channel and Constraint (4.11) ensures that theudelmedets the notion of throughput-

optimal.

4.3 Solution Algorithm and Performance Analysis

4.3.1 Lyapunov Optimization Based Scheduling Algorithm

Following the Lyapunov optimization framework, we first aefithe Lyapunov functioh(Q(t))
asL(Q(t)) 2 %% {{Qu(1)}?* + {Q4(t)}?}, whereL(Q(0)) = 0. Note thatZ(Q(t)) is small if
and only if all tlh:é queue lengths are small{Q)(¢)) will become large if any of the queues is
congested. The system is thus stable WEéh(Q(t))} < oo.

We then define the drif\(L(¢)) as

A(L(t) £ B{L(Q(t + 1)) — LIQ(1)) |Q(1) }. (4.12)

The system is stable when

—

lmquan{

1

E{L(Q(Kk +1))=L(Q(F))|Q(F)}

[L(Q(k + 1))—L(Q(k‘))]} (4.13)

B
I

0
t

T’-??‘
Dy

Il
>

(L(k)) < o0

B
Il

0

We can minimize the drift in every time sloto maintain a finite expectation fdr(Q(t)).

It follows the queue dynamics (4.6) and (4.7) that

{Qrt+ 1) +{Q{t+ 1)}

<{Qi(®) + Af (1) — B ()} +{Qi(t) + A{(t) — B ()}?
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={Qr ()} +{AF (1) — B (1)} + 207 (1) (A} (1) — B (t)+
{QI(N)Y + {A{(t) — B(1)}* +2Q7 () (A (t) — B(1)). (4.14)

Substituting (4.14) into (4.12), we have

N

A(L(t) <@ +E {Z{Q?(t)(flé‘(t) = B}(1)) + Q7 (t)(Af(t) — Bf(t))}} , (4.15)
=1

where® = 1E {Zfil{[Ay(t) — BI(8)]* + [Ad(t) — Bid(t)]?}}, which is bounded if the arrival

rate and service rate of each uplink and downlink queue anedexd. This is true if the arrival

rates are within the capacity region of the system.

Defining P(t) 2 SN, {pi(t) + pf(t)}, we then obtain thalrift-plus-penaltyA(L(t)) +
VE{P(t)} as in [9], by incorporating the energy penalty (i.e., theralteenergy consumption
at time¢) with a positive coefficieni’. Parameteil” indicates the UES’ emphasis on energy
consumption. That is, the more emphasis on energy consomypkie greater the value of. In
particular,VV = 0 indicates that the UEs are not sensitive to energy consompati all. Based

on (4.15), we can derive an upper bound ondh#é-plus-penaltyas

A(L(t)) + VE{P(t)}
<®+E {Z{Q?(t)(fl?(t) — BI(t) + Q{()(A{(t) — B{(t)} + VP(t)} :
We minimize the second term on the right-hand-gideé SN {Qu(t)(A¥(t)— B2 (1)) +Q%(t) (A% (t)—

B(t))}+V P(t) at each time slatin order to minimize thelrift-plus-penalty Notice that® can be

rewritten as9 — S0, {QU(1)A(1) + QU1 AL} — X {QU(O) BY(E) — V() + QU B(E)
Vpl(t)}. Then first term on the right-hand-sidg, " , {Q(t) A%(t) + Q4(t) A%(t)}, only depends
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on the arrival rates and the current queue lengths. Thereitodoesn’t affect the scheduling de-
cision. We only need to maximize the second tern®ofwhich is a function of bothy;(¢) and
Bi(t).

Let the channel assignment bét) = {«a;(t), as(t), ..., an(t)} and the transmission mode

selection be3(t) = {B1(t), Ba(t), ..., Bn(t)}. We have

1>

N
V(0w 2 S AQUOBE®) — VL) + QU BAE) = VDLt a0
=1

NE

Vi(t)

o (),B:(8) (4.16)

1

.
Il

Whered, (), .0 = {QL()BE(E) = VpE() + QU1 BAt) — Vpl(t)}ayo,5.0)- Let the optimal
channel assignment b (t) = {af(t), as(t), ..., ay(t)} and the optimal transmission mode se-
lection bef*(t) = {B;(t), B;(t), ..., 8% (t)}. To find the optimal schedulg* (¢), 5*(t)}, we first
need to identify the transmission mode for a given chanrgyamento;(t) = s for each UE:.

That is,
Bi(t)

oi(t)=s = argmax {v;i(t)]a,t)=sp0)}- (4.17)

Bi(t)e{UvaF}

Note thaty;(t) = 0 if no transmission is conducted. Therefore we have

¥i (t)
¥; (t)

a;(t)=s — max{¢i (t) a;i(t)=s,Bf(t)s 0} (418)

@ (t) 2 {7 () asy=1 05 (D) |as@)=25 - V5 (D) |as0)=5}- (4.19)

We need to find the maximum channel assignniit) based onj7 (t)

ait) fori = 1,2, .. N.

The channel assignment problem can be transformed imaxdmum weighted bipartite matching
problem In the bipartite grapty/, UEs and the channels represent the two independent sets of
vertices: the set of UES; and the set of channels,. In graphg, the weight of the edge between

an vertex inG (i.e., a UE:) and another vertex i, (i.e., a channet) is set toy; (t)|q,t)=s. This

way, the maximum weighted bipartite matching of graplcorresponds to the optimal channel
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Algorithm 4: Scheduling Algorithm for Channel Assignment and Transraisélode Se-

lection

1 Update all uplink and downlink queues and estimate all channel conditidig beginning of each
time slott ;

2 For each UE, find the transmission mod¢ (¢) |, 1)—s as in (4.17) ;

3 Obtain the channel assignment matfix; (¢)|Z 45 (1)|% ). ...,J}"V(t)]gN(tl} ;

4 Apply the Hungarian Method and (4.17) to find the optimal scheddldt), 5*(¢)} ;

5 if wi(t)‘{a;*(t),,ﬁj(t)} > 0 then

6 \ UE ¢ transmits on channel (¢) with transmission modg; (t);

7 end

assignmenti*(t). The maximum weighted bipartite matching problem can bgesblwvith the
Hungarian Method [47]. The complexity of the Hungarian Methis O(NS?) if N > S, or
O(N?S)if N < S.

When the optimal channel assignment is derived, the optiraakimission modg; (¢) for
UE i is readily obtained as in (4.17), i.¢3;(t) = 5 (t)|ax)- Now we obtain the optimal sched-

ule {a*(t), 5*(t)} as well as the corresponding(t)

& ()3 ()" Then we can assign the chan-
nels and decide the transmission mode for each UE based arptimeal schedule. Note that

Vi(t)]ar )82y = 0 if no transmission is scheduled for U so UE transmits if and only if

Vi(t)

oz (t),57(t) > 0.
The detailed algorithm for deriving the optimum sched{ii(t), 5*(¢)} is presented in Al-
gorithm 4, which is executed at the beginning of each time slo

4.3.2 Performance Analysis

We have the following theorems for the performance of Altjoni 4. The proofs are omitted

for lack of space.
Theorem 4.1. The scheduléa*(t), 5*(t)} obtained by Algorithm 4 achieves the maximiia).

We also derive the upper bounds for the expectations of geesam queue lengths of all the

uplink and downlink queues and the corresponding averagednergy consumption as follows.
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Theorem 4.2. Assume that the arrival rates to the quetXésand X are strictly within the system’s
capacity region, i.e., the system can be stabilized undeaice{d(t), ﬁ(t)}. Then the upper
bounds on the average sum queue lengths and average enegyneption under Algorithm 4 can

be derived as

T-1 N
lim sup — ZZE{Q“ )+ Q1)) < (<I>+VP) (4.20)
=00 t=1 i=1

T—1 N P
lim su E{p{(t) + pi(t)} < PP + —, 4.21
msup ZZ {py(t) + pi (1)} v (4.21)

t=1 i=1

where PPt is the minimum average energy consumption under any stab&sling strategyP
is the average energy consumption under the proposed #hgoré > 0 is the distance between
the arrival rates{X”, Xd} and the system capacity region under the proposed algoritmd @ is

given in (4.15).

4.4 Performance Evaluation

In this section, we evaluate the performance of the propakgatithm through Matlab simu-
lations. We assume that the maximum transmit power is 46 dBhea&P and 23 dBm at the UEs.
We assume that there is a 110 dB self-interference canoellat both the uplink and downlink
transceivers. For the wireless channels, we adopt the coymised Okumura-Hata model for
small and medium-sized cities. Each channel has a bandeid®60kHz. We assume that there
are 12 UEs and 10 channels in the WLAN.

We compare the average energy consumptions and queuedefgthalf-duplex only system
and a full-duplex system under different V values. The satiah results are presented in Figs. 4.1
and 4.2 for different traffic arrival rates. From the simigdas, we find that the full-duplex system
always outperforms the half-duplex only system with respedoth average queue length and
energy consumption. Moreover, there is a trade-off betwkeraverage queue length and energy

consumption for the full-duplex system under differ&nvalues.
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Fig. 4.1 presents the average queue length versus traftic Waenl” = 0, the scheme only
minimizes the drift and does not care about energy consemptn this case, the average queue
length of the half-duplex case is always greater than th#tefull-duplex case. Moreover, in the
half-duplex only case, the queues cannot be stabilized e m@rrival rate exceeds 25. In the
full-duplex case, the queues can be stabilized until theadmate reaches 38. Clearly, full-duplex
transmissions are helpful to keep the queue backlog low acr@ase the capacity region of the
WLAN. It is also interesting to see that for all the full-dupleases, the queues can be stabilized
when the arrival rate is lower than 38, indicating that d#f& |\ values do not affect the stability
of the system. Moreover, the average queue length incredsss) is increased, as indicated by
the upper bound of average queue length (4.20) in Theorem 4.2

Fig. 4.2 presents the average energy consumption verdtis tomd. We find the average
energy consumption of the half-duplex only case is smdii@n that of the full-duplex cases under
heavy load, when the queues become unstable. However, stahle capacity region of the half-
duplex only case (i.e., when the arrival rate is lower tha)) 2t average energy consumption of
the half-duplex only case is greater than that of the fufidx cases with > 50. This is because
whenV > 50, the energy consumption is more seriously consideredi.the drift-plus-penalty)
and the UEs would transmit only when the energy efficiencygh.hFor the full-duplex case with
V = 0, the average energy consumption is the highest among adlabes, since the proposed
scheme does not consider energy efficiency. Furthermoeeenkrgy consumption drops when
the arrival rate is greater than 38. This is due to the unloaldrservice rates of the uplink and
downlink. When the queues are not stable, more uplink trassomns were made; the uplink
transmit power is comparatively smaller than that of the mlovk transmissions. Finally, it can be
seen that the energy consumption decreases Whisnncreased, as indicated by the upper bound

of average energy consumption (4.21) in Theorem 4.2.
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Figure 4.1: Average queue lengths achieved by the propdgedtam: half-duplex only with
V=0, full-duplex with V=0, full-duplex with V=50, full-dufex with V=100, and full-duplex with
V=150.
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Figure 4.2: Average energy consumptions achieved by theosex algorithm: half-duplex with
V=0, full-duplex with V=0, full-duplex with V=50, full-dufex with V=100, and full-duplex with
V=150.

4.5 Conclusion
In this chapter, we proposed an online scheduling algorithjointly decide the channel as-
signment, transmission scheduling, half- or full-duplesnsmission mode selection for each UE

in a multi-channel ful-duplex WLAN. The proposed scheme waseld on Lyapunov optimization.

We also proved the optimality of the proposed algorithm agrivéd upper bounds for the average
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gueue length and energy consumption under the proposedthigo We evaluated the perfor-
mance of the proposed algorithm with simulations. We shavatlunder the proposed algorithm,
there was a trade-off between the average queue length angyasonsumption under different

values.

4.6 Appendix

4.6.1 Proof For Theorem.4.2

According to Theorem.4.2, Algorithm 4 maximiz&gt), which minimizes¥(¢). And we
have
min{¥(¢)} (4.22)
N
=min{) {Q}()(A!(t) — Bi(1)) + Q{(t)(A{(t) — Bi(t))}
i=1
+VP(t)}
N
<D AQEB(AL() = B (1) + QF()(AL() — B (1)}
i=1
+ VP*(t)
Where Q%*, Q¥, B#(t) and P*(t) are the terms corresponding to any (possible randomized)

scheme. Now consider a randomized scheduling policy thaeees the optimal energy consump-

tion and stabilizes the system, i.e., for N

E{P*(t)} = P (4.23)
E{A}(t) - B*(1)} <0 (4.24)
E{A{(t) — B*(t)} <0 (4.25)
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wherep°?* is the minimal energy consumption under the correspondimgduling policy that
stabilizes the system, ie, (4.24) and (4.25) is fulfilled.

Then under algorithm 4, we have

A(L(t)) +{P(t)} (4.26)

<& + E{min{¥(¢)}}

<®+E {Z{Q?*(t)(fl?(t) - B?*(t))}}

=1

+E{Z{Qd* i) = B (t ))}} +VE{P}

As Q¥ (t) is independent toA%(t) — B¥*(t)) andQ%*(¢) is independent t6A¢(t) — B*(t)), along
with (4.24) and (4.25), we have

E{Qi"(1)(A}(t) = Bi"(1))} <0 (4.27)
E{Qi"(1)(Af(t) — B*(1))} <0 (4.28)

for all i € N. Then substitute (4.27) and (4.28) to (4.22), we have

A(L(t)) + E{P(t)} (4.29)

<®+0+ VE{P*} =&+ P

For a stable system, we ha f;ll A(L(t)) = L(t) < oo, it follows that

lim sup — Z A(L(t)) + limsup — Z E{P(t)} (4.30)

t—00 t—00 k=0

VT 1
—hmsup—ZE{P )}
k=0

t—o00

_hmsup—ZE{pZ )+ pi(t)}

t—o0
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<O 4V, Pt

Then (4.21) hold true.
Suppose that the system is can be stabilized under the mogokeduling algorithm and for

all i € N there exist a real number> 0, such that

E{AY(t) — B(t) < —¢} (4.31)
E{A](t) - B{(t) < —¢} (4.32)

then we have
A(L(t)) + E{P(t)} (4.33)

N

<®+E {Z{Q?(t)(fl?(i) - B?(t))}}

+E {Z{@f(t)(Af(t) - Bf’(t))}} + VE(P(1)}
<o - E {ieczw)}

=1

~E {Z eQ?(t)} + VE{P(1)}
=P — ¢E {Z{Qg(t) + Q?(t)}} + VE{P(t)}

Note thatA(L(t)) + E{P(t)} > 0 as is guaranteed in Algorithm 4, we have

{Z{Q” QU } < = {8+ VE(P)}} (439
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It follows that

T-1 N
lim sup — ZZE{Qu t)+ Qi (1)} (4.35)
t—o0 t=1 i=1

g% Ehmsup {VIE{P( )}

= (@ +V,P)

Then (4.21) holds.
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Chapter 5

Access Strategy and Dynamic Downlink Resource AllocatiarFeEmtocell Networks
5.1 Introduction

Femtocells, also named as Femto Access Points (FAP), ailk smmapower cellular base
stations (BS). Femtocells are designed for use at homes aalll smterprises, and are usually
connected to the core network with broadband wireline cotimies [50]. In addition to providing
a shortcut to the core network, the wireline connection atstbles coordinations among FAPs and
macrocell base stations (MBS) to improve the performanceefwo-tier network. Femtocells are
considered as a low-cost and effective solution to extemdless coverage and offload voice and
wireless data. This is really important, as research indgcéghat 70% of data traffic take place
indoor where the coverage of conventional cellular netwaskusually poor. With femtocells, the
distance between BS and a User Equipments (UE) is greatlgeedthus enabling better signal
transmissions and better spatial reuse of spectrum.

The success of femtocell networks largely relies on the mament of interference. The
deployment of femtocells provides better coverage to nekdmtocell User Equipments (FUE),
but it may also produce a “dead zone” to nearby Macro Usergigents (MUE). FAPs are usually
deployed in places where there is poor MBS coverage; the MUBVEBIS must use high transmit
power to sustain their connection, thus leading to strotegfierence to FUEs. Unlike well-planned
and optimized deployment of cellular networks (i.e., the MBSFAPs are usually installed by
end-users in a chaotic manner. The coverage of FAPs mayapveiith each other and cause

interference among FAPs themselves.
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From the perspective of access policy, femtocells can besifiad into (i) closed access,
where only subscribers can access the FAPs, and (ii) op@ssorhere an FAP serves both sub-
scribers and nearby MUEs. Although open access is more pgéar interference management,
its success depends on the willingness of the FAPs to servsutascribed MUES; some incentive
mechanisms would be critical to encourage FAP owners totatapstrategy. From the perspec-
tive of spectrum resource allocation, femtocells can besifi@d into (i) co-channel scenarios,
where MBS'’s and FAPs share the spectrum band, and (ii) dedickiannel scenarios, where or-
thogonal channels are assigned. The tension betweereir@ece and spectrum efficiency should
be carefully balanced.

In this work, we investigate the problem of access contrdl gppectrum resource allocation
in two-tier femtocell networks. We assume one MBS and mdtipAPs in the area and consider
the open access scheme. The FUEs are always connected writggponding FAPs, while the
MUEs can choose between the MBS and a nearby FAP for connedilmm spectrum is divided
into two parts, one for the MBS and the other part for the FARsrbvide incentives to FAPs for
serving MUEs, we allow dynamic partition of the spectrumadang to the network dynamics;
more bandwidth will be allocated to the FAPs if they serveendtJEs.

We developed a scheme for joint access control and spectsouice allocation. The goal
is to maximize the network-wide capacity and improve thdqerance of UEs with poor MBS
coverage, by assigning the MUEs to the MBS or FAPs and by dysaiyipartition the spectrum
for the MBS and the FAPs. We also aim to guarantee the qualggmice (QoS) of the users in the
form of a minimum capacity requirement. The formulated jpeobis a mixed integer nonlinear
programming (MINLP) problem. We then develop an algorithiat tassigns MUESs to the BS’s and
an algorithm for allocating spectrum resource to the BS’ssdhe BS association for the MUEs
are determined. An upper bound on the network capacity aetiiby the proposed algorithms is
also derived. The performance of the proposed algorithegwaluated with simulations, and are
shown to outperform an existing scheme with considerallesgdhe upper bound is also found

to be quite tight for most of the cases examined in the sinmuiatudy.
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The remainder of the chapter is organized as follows. Weaudscelated work in Section 5.2
and the problem formulation in Section 5.3. In Section 5.4,propose access control and spec-
trum resource allocation algorithms and derive the capagiper bound. Simulation studies are

presented in Section 5.6. Section 5.7 concludes the chapter

5.2 Related Work

Compared with Wi-Fi access points, femtocells provide atswiof supporting better voice
and data coverage by switching from the cellular networkrtotlaer service provider when the
signal quality is poor indoor, instead of just providing Ihigpeed data transmissions. Femtocells
are now primarily viewed as a cost-effective means of offilegdata and voice from the macrocell
network [50]. Because of the advantages for both networkatpes and customers, the benefits
of femtocells cannot be overemphasized in the long term. @¥ew the two-tier architecture of
macrocells and femtocells inevitably brings about the sitter interference problem. Further,
as femtocells are usually deployed by end-users and theytepht of femtocells are not well
planned, femtocells may be overlapped with each other,imgu®-tier interference among such
femtocells [58]. Hence, interference management in fealtoetwork has received tremendous
attention from either academic or industrial areas [60, 61]

As the interference in femtocell network is largely detared by the deployment scenarios,
Mahmoud and Guvenc in [54] summarized femtocell deployrfrem two perspectives: (i) closed
access or open access, (ii) co-channel or dedicated clsanhaame-theoretic approach for re-
source allocation in OFDMA femtocells with closed access waposed in [55]. However, an
non-subscribed user that is close to an FAP may be far away tine MBS. Its transmit power
should be increased to meet its QoS requirement, thus untnog stronger interferences to users
of the FAP. In [73], a self-optimized coverage coordinattsheme was proposed to provide bet-
ter indoor femtocell coverage and avoid leaking the femta@oeerage into an outdoor macrocell.
In [52], the authors introduced a game-theoretic frameviarkhe FAPs to decide their own access

policy in order to maximize the system performance. And b@ogame-theoretic approach in [77]
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was proposed to mitigate the interference between Madrandlfemtocell. In [53], an algorithm
was proposed for the open access scenario to improve netimatkghput, while a hybrid access
mechanism was introduced in [56] to guarantee the resotdiocassers and reduce interference.
In [67,68], neighborhood femtocell Handover schemes wekeldped improve the system per-
formance in dense femtocellular network. In [70], a framewaf Spectrum-Sharing Rewarding
was proposed for hybrid access mechanism to maximize thefibehfemtocell owners. The per-
formance of two-tier femtocell networks with partially apehannels was evaluated in [71]. In
co-channel scenarios, the spectrum is available for atbusng it may lead to high cross-tier inter-
ference. To mitigate the interference in co-channel scesaa Frequency ALOHA (F-ALOHA)
was adopted to avoid excessive cross-tier interferenc&lih [In [64—66, 79, 80], some power
adaptive schemes were developed to mitigate the intederdn [57,60, 74], the authors proposed
a Cognitive Radio (CR) approach to mitigate the cross-tier fimtence. In [49], the impact of
Interference Alignment (I1A) in femtocell networks was avatied, and in [69], a game theory ap-
proach for IA was proposed. In [63], a interference avoi@asicategy is developed in a two-tier
CDMA network to mitigate the uplink interference. In [72], @source allocation scheme with
QoS constraints was proposed for the interference avogdapglication. In [76], a joint subchan-
nel scheme as well as a disjoint subchannel scheme weregawpor resource allocation in the
two-tier femtocell network. The performance of two-tiemi@cell networks with cochannel fem-
tocell deployment was analysed with outage constraintg8h [A Femtocell Identification (FID)
approach was proposed in [75] to avoid co-channel intemfegdetween neighbour femtocells. In
Co-channel deployment scenarios, it is usually difficult sagntee the Quality of Service (QoS)
requirements for users. In dedicated channel scenariestrsm is divided into orthogonal por-
tions and allocated to different tiers, in order to elimenatoss-tier interference at the price of a

lower spectrum efficiency [54].
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5.3 System Model and Problem Statement

5.3.1 System Model

We consider a femtocell network with one MBS (indexed with 6)lacated with ' =
{1,2,--- ,N} FAPs. LetL, = {1,2,---, Ly} denote the set of active MUEs in the network.
Each FAP; € N serves a set of active FUEs, denoted’as- {1,...,L;},fori =1,2,--- | N.

The spectrumB for this femtocell network is divided into two parts: (B, allocated to the
MBS, and (ii) the remaining portio3 — By) allocated to the FAPs. An FAPwill use spectrum
(B — By) to serve its subscribers; and some of the MUEs; the remaining MUEs will be served
by the MBS using spectrun®,. Since the spectrum allocated to the MBS and the FAPs are
orthogonal, there is no cross-tier interference.

Due to the autonomous, chaotic deployment of the FAPs, thef4éAPs can be classified
into disjointed clusters. The FAPs in a cluster has oveddpgoverage and may interfere with
each other, but there is no interference among differesteta. If a cluster consists of an isolated
FAP, the FAP can use all theB — By) spectrum without interfering other FAPs or the MBS.
A cluster with multiple FAPs is treated as a “virtual” FAP.om the perspective of MUEs and
the MBS, the cluster behaves like one FAP. Within the clusterassume the interfering FAPs
are allocated with orthogonal spectrum resources irthe B,) band to avoid interference. For
example, interference graphs can be used to model the axctetationship among the interfering
FAPs [60].

In this work, we consider an open access scheme, in whicheaMUESs are allowed to access
a nearby FAP, while the FUEs always connect to the correspgrieAPs. Recall that, is the
set of UEs subscribed to BS for k = 0,1,--- , N (L, is the set of MUES). For open access of

the MUEs, we define a variable ;(k) to indicate the access strategy of a YE L originally
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subscribed to BS.

1, UEj € L accesses BS
pij(k) = _
0, otherwise

Vi ke {0}UN. (5.1)

Since we assume that all FUEs4p access to the correspondent FRt follows thatp;, ; (k) = 1,
forall £ #£ 0.
As FAPs are usually deployed by customers for home or offieg we adopt the standard

indoor propagation model for the FAP link between Wg € £,, and BSi as [59]

Aij(k) = 37+ 30logyod; (k) + 18.3,”(%—0‘46)’

Vi k%0, (5.2)

whered, ;(k) is the separation from BSto UE j, for all j € £;; n is the number of floors along
the path. For the MBS, we adopt the standard outdoor modehépéath loss from the MBS to
MUE j € L, as [59]

/\O,j(o) = 4010g1od0,j(0) + 30logyq f + 49, (5.3)

wheref (in MHz) is the central carrier frequency. As the bandwidtkhe spectrum is much small
comparing to the carrier frequency, we canfito a constany, for simplification.
Consider an addictive white Gaussian noise (AWGN) channelStgnal to Interference plus

Noise (SINR) of usey, j € L, from BSi is denoted as

81'71'(]{7) = pz,j(k)hz,j<k);,] c Ek,i, k c {0, 1, s ,N}, (54)
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whereh; ;(k) = 10— ®)/10) /(Ny + I;(k)); pi; (k) is the transmit power of BSto UE 7, j € Ly;
N, denotes the power of background white Gaussian ndig¢) is the received interference of
UE j, j € L, from nearby FAPs. Therefore, the downlink capacity for WE < £, can be

approximated by the Shannon capacity as

Zpu k)logs(1+ (k) j € Li, VY &, (5.5)

whereB, ;(k) denotes the spectrum band allocated to JE € £, by BSi. Then, the downlink

capacity of BS can be computed as

C; = Z Z pi;i(k k)logy(1+¢€;(k)),V i. (5.6)

k=0 jELy
5.3.2 Problem Formulation

In femtocell networks, the deployment of FAPs makes thestratier and receiver closer to
each other, hence offering better QoS and reducing poweucoption and interference. However,
FAPs may introduce strong interference to, or be interfesedearby MUES, if the same spectrum
is used. Consequently, some open access schemes have beducied as a means for mitigating
such cross-tier interference. However, it is usually hargpersuade FAP owners to offer open
access to non-subscribed users, as FAPs are installed aredl dy end-users, rather than service
providers.

In this work, we propose an incentive scheme that compenfates with spectrum resource
for offering open access to nearby MUEs. Specifically, weadlyically partition the spectrum
resource according to the association of the MUEs. If moreBdgldre switched to nearby FAPs
for better service, the MBS share of the spectrBgwill be reduced and more spectrum will be
allocated to the FAPs. Since the FAP clusters are not imtegevith each other, the shat&— B,)
can be used by all the FAP clusters simultaneously, achgetie gain of spatial reuse. It is worth

noting that the sharéB — B,) for FAPs is determined by the FAP cluster that serves the most
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MUEs. For other FAPs serving fewer MUES, the extra spectramiae allocated to their FUES for
better service, as an additional incentive for the FAPs tees®IUES.

The objective is then to maximize the overall capacity offdmatocell network. To achieve
this goal, an efficient access scheme for the MUEs and a gpameig spectrum allocate mech-
anism are needed to dynamically determine the spectruntiparand the spectrum resource al-
located to each UE. The constraints are the total spectrgouree of the system and the QoS

requirements of the UEs. The dynamic access and resouocmatidin problem can be formulated

as follows.
N
maximize » C; (5.7)
subject to: -
pii(k) €{0,1}, i,k € {0} UN,j € Ly (5.8)
prj(k)=1keN,je Ly (5.9)
> pijlk) =10,k € {0y UN,j € Ly (5.10)
Bij(k) >0,i,k € {0} UN,j € Ly (5.11)
> Bij(k)pij(k) = By,
kg
ie{0},ke{0}UN,j€E Ly (5.12)
> Z B j(k)pij(k) = B — B,
k Jie/\/,ke{O}U/\/,jeﬁk (5.13)
0<Cj(k) <C ke {0}UN,j€ Ly (5.14)

In the formulated problem, constraint (5.9) indicates #traFUE can only access the FAP to
which it subscribes, while constraint (5.10) indicated th&E can only access the MBS or one

FAP at a time. Constraint (5.12) represents the fact that tB& Mave spectrum resourég for
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all the MUEs, while constraint (5.13) represents the faat the FAPs have spectrum resource
(B — By). Constraint (5.14) is the QoS requirement that the downlapecity of each UE should
be no less thad.

We aim to maximize the capacity of the entire network. Thetsmh of this problem involves
optimizing the access strategy of the MUES (i.e., detemmgjrthe binary values of; ;(k)’s) and
the allocation of the spectrum resource (i.e., determirentin-negative real values &% ;(k)’s).
Problem (5.7) is an MINLP problem, which is NP-hard in geheha the following section, we
proposed an algorithm to solve this problem with near-ogtisolutions as well as a proven per-

formance bound.

5.4 Algorithms and Performance Bound

In this section, we first reformulate problem (5.7) to obtaisimplified version. Based on
observations obtained from the reformulation, we then ldgvénvo algorithms that assign the
MUEs to either the MBS or an FAP based on the achievable cgpgaihs, and then to allocate
the spectrum resource to the FAPs, We also develop an uppedtbor the network-wide capacity

achieved by the proposed algorithms.

5.4.1 Solution Algorithms

To solve the problem, we first simplify it by reformulatingetbbjective function (5.7). Based
on (5.8), (5.9) and (5.10), the objective function (5.7) barreformulated as in (5.16). According

to the reformulation in (5.16), the total capacity of thewatk can be divided into two parts:

e the capacity achieved by the MUEs served by the MBS, whicheshartotal spectrum of
By (see (5.12)).

e the capacity achieved by the MUEs served by FAPs and the itgjpabieved by the FUEs,

where each FAP cluster has spectrum resour¢@&of By) (see (5.13)).
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= Z D £ (F)Bo(k)logy (14 20(k)) + D> D pis (k) B (k) loga(1 + 2i,(k))

k=0 jeLy, i=1 k=0 jeLy
= Z p0,;(0)Bo,;(0) logy (1 + £0,;(0))
J€Lo
N
‘l’Z{ZPz}j(O)B 1(0) logy(1 4 €4,;(0 +pr () logy(1 + €i,5(d ))} (5.15)
i=1 (jeLo JEL;
N
=Y > pi3(0)Bi;(0) logy(1+£4;(0 +Zzpu (i)logy(1 +55(7)).  (5.16)
JELY i=0 i=1 jeL,

According to (5.16), the first component to reformulate is dapacity achieved by MUEs.
Let B, ;(0) = B;, whereB; is a constant, for all base statiohand MUE;j € £,. That is, for
MUE j it should be allocated with the same amount of spectrum resaw matter which base

station it connects to. It follows that

> Zpu 0) logy(1 +£,,(0))

JjELY =0

=> Zp” 0)B; logy(1 + €;.;(0))
JELY =0

<) B; - maxq<i<ny{logy(1 + £:5(0))}. (5.17)
J€Lo

The inequality is because there is only ¢ne(0) is one and all others are zero. Hence, each MUE
should access an MBS or FAP that offers the best SINR for thenkiokvink.

Consider the case whenaxo<;<ny{log,(1 + £;;(0))} = log,(1 + £,(0)), i.e., the MBS
can offer the best SINR for MUE. Even in this case, accessing a nearby FAP may still bring a
larger capacity gain for the entire network, since the spettresource allocated to the FAPs can

be spatially reused. Define

Gij(k) = logy(1 +€4,(k)), (5.18)
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and lety; denote the maximur&’; ;(k) among the UEs served by BSi.e.,

Y= max  {Gij(k)} Vi, (5.19)
and definex* as
n* = argmax {G;;(0)} . (5.20)
1<i<N

In this case, if the following condition is satisfied, i.e.,

Goj(0) < D thi— (GO]( ) —1)+Go,j<0>,

ieN\n* n ‘7(0)

we have that

1 1
> iy~ Yw (G o —GOJ(O)) > 0. (5.21)

iEN\n* nj
Then an MUE can achieve larger network-wide capacity by ssing FAPn*.

Theorem 5.1. An MUE can achieve larger network-wide capacity by accessiad-8Pn*, which

offers the best SINR among all FAPs, if the following inequéldlds:

1 1
2 %OJ Yo (Gn*,j<o> ‘Go,j<o>) =0 (5.22)

ieN\n*

Proof. Consider that a MUE is now decided to access the MBS in the stepaoil assume that it
is allocated with spectrum bandwidth B. If it decide to acdedsAP»*, and assign the bandwidth

B to FAPs, then it would bring about the change of capacitydswing:

1. For MBS, capacity is decreased By~ ;(0), as the MUE is served by a FAP other than the
MBS and the corresponding spectrum bandwidth is assignefiRg.F

2. For FAPs other than*, the capacity can be increased By Y ¢, as the spectrum re-
iEN\n*
source B is assigned to the FAPs.
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3. For FAPn*, the capacity would be increase by),, (B C?Ojﬁ(?g) — 1) +BGy(0). Asin step

one, the MUE decided to access the MBS, then the SINR of the MBS bmubetter than

that of any FAP. That isGGOj (?3) > 1. So the FAP»* need to assign a spectrum bandwidth

BGGL(?&) for the MUE to remain the same capacity. In this conditio®, $hectrum assign
nv,y

to the FUE served by FAR* with best SINR would decrease by x g%% — B and

would bring about a capacity decrease of theB (GGO;J'% — 1). In addition, as the MUE
is served by FAR* and remain the same capacity, it brings about an capacitgase of

BG, ;(0).

In summary, if the MUE decide to access FAPR the network-wide capacity would increase

by:

AC = BGoj(0)+B Y i — e (BSL%)) - 1) + BGy;(0) (5.23)
ieN\n* g

And if the AC > 0, then the MUE can achieve larger network-wide capacity logssing the FAP

n*. Proved; O

According to (5.17) and (5.21), we develop an access schentad MUESs, which is given
in Algorithm 9. With this access scheme, each MUE choose88éi.e., the MBS or an FAP)
with the best channel condition to access, as given in Lir8dr2Algorithm 9. For the MUES that
falls within the coverage of each FAP but are connected tdoAB8 (as determined in Lines 2-3),
we next examine if switching such MUEs to the correspondiAB Ean achieve further gains in
the overall network capacity, as in Line 7, and switch suchBdlb the corresponding FAP if this
is the case, as in Lines 8-9. It can be verified that the coritplekAlgorithm 9 isO(LyN).

Once the cell associations for the MUEs are determined bpritlgn 9 (note that for the
FUES, the FAP associations are already determined; s&g¢, (#sOnext develop a greedy algorithm
for spectrum resource allocation for the users. The godiisfalgorithm is to greedily maximize
the overall capacity of the system under the QoS constréid#dj. The algorithm is shown in

Algorithm 15, where?; ;(k) andy; are defined in (5.18) and (5.19), respectivelyis the spectrum
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Algorithm 5: Access Scheme
1 forj=0— Lgdo

2 i = argmaxo<,<y{Gi;(0)}
3 B inj(O) =1

4 for j=0— Lo do

5 if po;(0) == 1then

6 n* = argmax; <;<y 1Gi;(0)}

! If iel%in* GO,j(O) Gn*,]’(o) + GO,j(U) > 0 then
pn*,j(o) =1
po,;(0) =0

needed by FAR to satisfy the QoS requirements of all the UEs it servegy;) is the spectrum
resource of the UE corresponding@®@ The algorithm first determines the bandwidth needed for
satisfying the QoS requirement for each UE, and then aksdhie spectrum to each BS according
to the number of UEs it serves, which is given by Algorithm 9.

N
The spectrunB is allocated as follows. Ify, > >° v, allocate the extra spectrum to the MBS

and the MBS then allocates it to the MUE connelc;t}ng to it andritpthe best channel condition.
In this case, as the spectrum resource allocated to the FAdRgermined by the FAP that needs
the most spectrum resource to meet the QoS requirements bk connecting to it, some other
FAPs may still have some extra spectrum for allocation aeg #ilocate the extra spectrum to
the UEs with the best channel condition among those thatemrto it. On the other hand, if
Yy < ﬁlm the extra spectrum is allocated to the FAPs, and the FAHsalldkcate the extra

spectrum to the UEs with best channel condition among thosaecting to it. It can be verified

that the complexity of Algorithm 15 is als@(LyN).

5.4.2 Performance Upper Bound

We next derive a performance upper bound for the overall otweapacity. According

to (5.15), we can derive the upper bound as in (5.24).
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Algorithm 6: Spectrum Allocation

1 for j=0— Ly do
2 if po ;(0 )__1then
3 | Bo,(0) = C/Go,;(0)

4 fori=1— Ndo
5 for j=0— L;do
6 | Bij(i) = C/Gi;(i)
for j =0 — Lgdo
if p;,;(0 ) == 1then
L [ Bis(0) =C/Gis(0)

N
10 if o9 > > 1; then
=1

i B(,l;o:) ("bO) + B — ¢ — maX{1<z<N}¢z fortr=1— Ndo
12 | B(¢i) = B(i) + maxpi<i<nydi — ¢i

13 else
14 fori=1— Ndo

15 L B(¢i) = B(¥;) + B — ¢ — ¢i

N
>

= ZPOJ )Bo,;(0) logy (1 + €0,;(0)) +

Jj€Lo
z{zpm ) logs(1 + 20O Y s ()B 1og2<1+e”<>>}
=1 JELY JEL;

<) " p0(0)Bos(0)tho + { > i (0)Bi; (00 +> i (i)Bz‘,j(i)%}

J€Lo i=1 \jeLo JEL;

N
= W(B-¢)+¢ > U

=1

N
= woB+¢’<Zwi—wo>
- N N
Bwo+Bmax{Zwi —wo,O} = Bmax{Zwi,wo}.

i=1 i=1

IN
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In (5.24), first inequality is due to the definition ¢f, i.e., as the maximung; ;(k). The
second inequality is due to the fact th#&t — By) < B (i.e., By > 0). This result is summarized in

the following theorem.

Theorem 5.2. The network-wide capacity achieved by the proposed algositisrapper bounded

as follows.

N N
Yo < Bmax{zwi,wo} (5.25)

=0 i=1

5.5 scenario with overlapped FAPs

We have discussed the scenario that all FAPs are not ovedapfiowever, in practical sce-
nario, the deployment of FAPs can not be well organized amidasverlapping, as FAPs are
deployed by users. In this case, the coverage of some FARwarkapped in the scenario with
overlapped FAPs. With overlapped FAPs, not all FAPs are @bleuse spectrum simutaneously
because of the interference among them. This makes thessatesme and the spectrum alloca-
tion much more complicated.

In the introduction, we have mentioned that when the covedd-APs are overlapped, we
can form the overlapped FAPs into FAP clusters, and theoatkdrequency spectrum for clusters.
Here, we introduce the access scheme and the spectruntialiofca the scenario with overlapped

FAPs.

5.5.1 Accesss Scheme In Scenario With Overlapped FAPs

In 5.17, we have shown that the frequency efficiency each Malttbe improved if it access
an MBS or FAP that offers the best SINR. Besides, as shown in Sadetimes the whole system
will achieve better overall performance if some MUE choas@adcess a FAP even if the MBS

offers greater SINR. However, as evaluating the overallquerénce of scenario with overlapped
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FAPs is much more complex that of non-overlapped scenakosimplify the access scheme of

MUEs to be accessing the MBS or FAP with stronger SINR at here.

5.5.2 Spectrum Allocation For Scenario With Overlapped FAR

Although the interference deteriorates the spectrum rbaseeen overlapped FAPs, the fre-
guency reuse is still feasible between FAPs not overlappéehce, if we divide the FAPs into
clusters that there is no interference between clustees, tthe same spectrum can be reused be-
tween clusters. A cluster is group of FAPs that there exigtsfierence between FAPs in a cluster,
and there is no interference between FAPs from differergstets. Here, we give a mathematical

definition for clusters.

Lemma 5.1. If two FAPs A and B can interfere each other, then they are camcate, denote at
A+~B. And the communicate relationship is transitive. Thalfi«B, and B—C, then A->C. All
FAPs are divided into subset, S», ..., Sk, called clusters , such that any two FAPs within the
same cluster communicate, but FAPs from different clustersaot. WhereS; U S,U, ..., US;, =

{1,2,..,N},andS; N SN, ...,NS, = .

Where for FAPs have no interference with other FAPs, eacheshtform a cluster with only
one FAP.

As FAPs are divided into clusters and there is no interfexdsetween FAPs from different
clusters, spectrum can be simultaneously reused by cdugtiawever, a FAPs is not necessarily
interfering with all others FAPs in the same cluster.

For example, in figure.5.1, there are 4 FARSAP, is interfering with AP, and FAP; is
interfering withF AP, andF AP,. In this caseF' AP, andF AP, can not reuse the same frequency
spectrum simultaneously, adtid P,, F'AP; andF'A P, can not reuse the same frequency spectrum
simultaneously. However, if we divide them into two gro§ip,AP,, FAP;} and{ FAP,, FAP,},
then FAPs in the same group can use the same frequency spesitrultaneously. Hence, it is

necessary for us to find a feasible and effective algorithmhivtmle every cluster with more than
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Figure 5.1: example of a cluster with 4 FAPs.
one FAPs into groups that all FAPs in the same group are abigetithe same frequency spectrum

simultaneously.

Here we define the index variabl¢; as

1, the coverage of' AP, andF'AP; is overlapped

0, otherwise
Vi keN. (5.26)

According to the definition of/; ;, the constraint of the spectrum allocation in a cluster can
be described asy B;(t)L;; <1, fori € Sy, andS, C N. WhereB;(t) means certain fre-
JESk

quency spectrum point is assignedHel P; at time t. Then the spectrum allocation problem can

be formulated as follow:

maximize Cj+ S Cs, (5.27)
subject to: i
constraint(5.8), (5.9), (5.10), (5.11), (5.12)and(5.14) (5.28)
> Bj(t)Vi; <1, fori €S, (5.29)
jESn
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The idea of solving the problem can be summarized into tHeviihg three steps:

1. Divide the all FAPs into clusters.

2. Divide each clusters into groups, where FAPs in the samgpgran reuse the same spectrum

in the same time.

3. Allocate spectrum resource for each FAP

5.5.3 Solution Algorithms

Firstly, we try to divide FAPs into clusters. we may consittex topology of FAPs as undi-
rected graph G = (V,E). Where V =1,...,N, representing the RaBes. V contains all edges
between vertices, and a edge between two vertices meansdhetresponding FAP nodes are
overlapped. According to the definition of the clusters imhea5.1, a FAP node can reach to all
FAPs nodes among the cluster. So we can identify all nodeslumster, if we search for all reach-
able vertices from one vertex. Here, we adopt the idea ofdbhefarst search [62] to identify FAPs
in the same cluster and then divide all FAPs nodes into aksisténe algorithm is presented as the
algorithm 7:

In the algorithm, the graph G=(V, E) uses a adjacency-lisefmesent the edges. For each
Vertex ue V, a Adj list is created to record the Adj vertices. That is jjatlincludes all vertices
that connected to vertex u. The algorithm also uses a FirBiirst-Out (FIFO) queue Q. The
function ENQUEUE(Q,s) pushes s into Q, and the function DEQE(Q) pushes a node out.
The algorithm first labels all nodes to be white and initialie FIFO queue Q. Then it select the
node first mode as the source node for searching. After threlseal nodes in the same cluster
of the source node are identified and labeled black. Thenlgfuegitam select the next node that
is still white to be the source and do search again. This gsoterepeated until all nodes are
divided into clusters and labeled black. The function SEARGH() is a modified Breath-first

search algorithm, readers may check chapter 22 of [62] foenmdormation.
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Algorithm 7: divide into cluster

1 cluster(G):
2 for each vertexg G.Vdo
3 L u.color = WHITE
Q=0
i =0, k =0while G.V[k] # Nil do
s =G.V[K]
if s.color ==WHITEthen
L SEARCH (G, s, i)

k++

10 SEARCH (G, s, i):

11 ENQUEUE (Q, s)

12 while Q # () do

13 u=DEQUEUE (Q)

14 for each v=G.Adj[u]do

© 00 ~N o 0 b

[N

15 if v.color == WHITE
16 v.color = GRAY
17 ENQUEUE(Q,v)

18 u.color = BLACK
19 | cluster [i].add (u)

20 i++

After grouping nodes into clusters, we then need to dividéesan each cluster into groups.
The algorithm should ensure that each FAP nodes are notagyst (not connected in the topol-
ogy) with any other nodes among the same group. The algorgistmown as algorithm(8)

Where we use G=(V,E) to represent the topology of FAPs in aeluas in algorithm(7). In
the initialization, we label all vertices to WHITE. The algbm select the first WHITE vertex
s, then labels all adjacent vertices to BLACK. By repeating, ttieg algorithm select a group of
vertices that not connected with each other, and the rentairgrtices are BLACK, which means
they are connected to at least one of the vertices picked tigigroup. After a group of vertices
are selected, we deleted them from the gragh, and labeltheimeng vertices WHITE again. The
process is repeated until all vertices are selected. Whealgoeithm is finished, all vertices are
divided into groups, in which each vertex is not connecteith wiher vertex in the same group.

Then we proposed an algorithm to allocate the frequencytepac Similar to the non-

overlapped scenario, the objective of the algorithm is tim&e the network-wide capacity
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Algorithm 8: divide into groups

A W N P

© 00 N o u

11
12

13
14

15
16
17
18

grouping (G)
k=0 while G.V[k] # 0do

s =G.VIK]
s.color = WHITE
i=0
while G.V# () do
k=0
while G.V[K] # Nil do
s=G.V[K]
if s.color == WHITEthen
for each v = G.Adj[s]do
| V.color = BLACK
Groupli].add(s)
delete(s)
k=0
while G.V[K] # Nil do
s=G.V[K]
L s.color = WHITE

and the guarantee the QoS requirement of each UE. For thargzevith overlapped FAPs, the

frequency allocation is much more complex that in scenaiitb wo overlapping FAPs, as the

spectrum allocation scheme is not independent among FAR<Iuster. Firstly, we analysis the

spectrum allocation in one cluster. Assume that in cluSterthere are m FAPs, and they can be

divided into k groupsroupg, Groupy, ...Group,_,. Assume that frequency spectrum B’ is allo-

cated to the cluster and the QoS requirement is fulfilled.nTihextra band frequency spectrum

AB can be allocated to clustéy,, the added throughpdtC' can be represented as:

AC

=) AG (5.30)
i€Sn
j=k—1

= > > AG (5.31)
j=0 i€Group;
j=k—1

= > > AByy (5.32)

j=0 i€Group;
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<ABmax( Y ) (5.33)

i€Group;

j=k—1
WhereAB; is the extra spectrum allocated@roup;, and > AB; = AB. Besidesy); is
j=0
defined in equation(5.19).

So in each cluster, the extra spectrum resource shoulddzagdd to the group with maximum
> 1, to get better network-wide capacity.
1€Group;

For the overall throughput, if there are extra specteyi, then the added throughput can be

represented as:

AC (5.34)
k—1
= ACy+ Y ACq, (5.35)
n=0
< (ABy)vo (5.36)
k—1
+> (AB — ABp) max( > ;) (5.37)
n=0 1€Group;,Group; CSn
k—1
< AB max{ty, Z max( Z i)} (5.38)
n=0 1€Group;,Group; CSp

We can notice that if

k—1
Go>) max( Y ) (5.39)
n=0

ieGroup;,Group;CSy,

holds, the we can get better network-wide capacity if wecalle the extra spectrum resource
to the MBS. Otherwise, we can get better network-wide cap#aie allocate the extra spectrum
resource to the FAPSs.

Hence, the spectrum allocation algorithm can be repredest@lgorithm(9)

In the algorithm(9), we assume that we have already apgliealgorith (7) and (8). That is,

we have already divided the FAPs into clusters and groups.bakic idea of the algorithm is that
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Algorithm 9: Spectrum allocation for the overlapped scenario

1 Pmaz =0

2 for every clustelsS,, do

3 »(Sn) =0

4 for every group ne cluster.S,, do
5 d(Sp,m) =0

6 for Every FAP i in group ndo
7 if ¢; > &(Sp,m) then

8 L d’(Sn? m) = ¢;

9 for j =1— Lgdo

10 if pi,j(O) == 1then
11 L L BiJ(O) :C/GLJ‘(O)
12 for j=1— L;do

13 L Bi’j(’i) = C/Gm@)
14 ¢(Sn) = ¢(Sn) + ¢(Sn,m)
15 for every FAP iin group mdo
16 if ¢; < @(Sp, m)then

7 | B(¥i) = B(thi) + ¢(Sn, m) — 9
18 if #(Spn) > Omas then

19 L ¢maac = d)(sn)

20 for j=1— Ly do

21 if po;(0) == 1then

22 L Bo’j(()) = C/G(],j(())

k—1
23 if o > > max( > ;) then
n=0 i€Group;,Group; CSn
24 B(wO) = B(wO) + B — d)O - ¢maz
25 for every clusterS,, do
26 if #(Sp) < dmaz then
27 m = arg max,;{1;|i € Group;, Group; C Sy}
28 for every FAP i in group nao
29 | B(¥i) = B(¢i) + Gmaz — ¢(Sn)
30 else
31 for every clustertS,, do
32 m = arg max;{1;|i € Group;, Group; C Sy} for every FAP iin group ndo
33 | B(¢i) = B(¢) + B — ¢o — ¢(Sn)

we first need to ensure the QoS requirement of each UE. Thehoutdsensure that different clus-

ters reuse the same spectrum resource, and in each clugi@srirthe same group should share
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the same spectrum and the FAPs from different groups musd aecupying the same spectrum
to avoid interference. Lastly, we also need to follow theaidéescussed in (5.30) and (5.34).

In algorithm(9), from line(7) to line (8), we calculate themmum spectrum resource needed
to ensure the QoS requirement of all FAPs in each group. Frnoe(9) to line(13), we allocate
spectrum for UEs that access to FAPs to meet their QoS renent Line(14) calculate the
minimum spectrum resource needed to ensure the QoS reguitéon each cluster. From line(15)
to line(17) we allocate some extra spectrum to the UEs wiéhgtreatest); in each group to
make FAPs in the same group share the same spectrum resaimeé€l8) to line(19) calculate
the minimum spectrum resource needed to ensure the QoSewrwunt for all clusters. Line(20)
to line(22) allocates the minimum spectrum resource for MUttat access the MBS to ensure
the QoS requirement. In line(23), we check the inequatioB95 If inequation(5.39) holds, we
allocate the extra spectrum to the MUE with best SINR (gstat® among MUESs that access the
MBS in line(24). And from line(25) to line(29), we allocatemse spectrum resource to some UEs
access to FAPs with THE best SINR to the make all clustersesth@ same spectrum resource.
Otherwise, we allocate the extra spectrum resource to sdaseadcess to FAPs with best SINR

and make them share the same spectrum resource(betwd@i)iaad line(33).

5.5.4 Performance Upper Bound

Based on the discuss in (5.30) and (5.34), the upper bounct afeétwork-wide capacity can

be derived as follow:

k—1

n=0
k—1

< Botho + Y (B — By) max( > W;) (5.41)

n=0 i€Group;,Group; CSy

k—1
< Bmax{to, Y _ max( > i)} (5.42)

n=0 i€Group;,Group; CSy
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5.6 Performance Evaluation

5.6.1 Scenario With Non-overlap FAP

We evaluate the performance of the proposed scheme with MBT&imulations. Specifi-
cally, we compared the proposed algorithms with the acedgsense and resource allocation mech-
anism (termed OA scheme) presented in [53], as well as thedbAnse enhanced with our pro-
posed resource allocation algorithm (OA-PRA). In OA, the Milttecide to access the MBS or an
FAP that provides the best SINR; if an MUE chooses to accesé&Bntke FAP will be allocated
with the corresponding spectrum resource. In the followsimgulations, the network has a total
spectrum resource d¢ = 20 MHz. The coverage of the MBS is 500 m and the coverage of the
FAPs are 50 m. In addition, we assume each FAP has one FUE argdfe a large number of
MUEs. The channel models are defined in (5.2) and (5.3), otispéy.

In Fig. 5.2, we evaluate the impact of the number of FAPs oridta capacity of the system.
In the simulation, there are 100 MUES, the QoS requirer@asiset to 400 Kbps. As shown in the
figure, the total capacity increases as more FAPs are dapl&pe OA, the total capacity increases
slightly with the number of FAP$V. In the proposed algorithm and OA-PRA, the total capacity
increases greatly wittv. This is because that more resources are allocated to ugérbetter
SINR, and resources can be spatially reused among the FARSpréposed algorithm achieves
better performance than OA-PRA when there are more than ofs.FAfter all, the proposed
access scheme has taken into account spatial reuse amosg F&Rhe one FAP scenario, OA-
PRA and the proposed algorithms achieve an equal total dgpActually OA-PRA is equivalent
to the proposed algorithm when there is only one FAP in théegys In short, the proposed
algorithm achieves considerable network capacity gaias A, due to the integration of access
control and resource allocation. We also find that the uppand given in Theorem 5.2 is quite
tight for the range of FAP numbers examined in this study.

In Fig. 5.3, we evaluate the impact of the QoS requirenfemt the total capacity of the sys-

tem. In this simulation, there are 100 MUEs and 4 FAPs. Froanfidure, we notice that when
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Figure 5.3: QoS requirement versus total capacity.

QoS requirement is 0, the upper bound, proposed algoritth©#rPRA achieve the same capac-
ity. Actually, when there is no QoS requirement, in the psgabscheme and OA-PRA, the system
allocates all the spectrum resource to the UEs that brirggtazapacity gains, hence achieving
the upper bound given in Theorem 5.2. With increased QoSneqgent, the performance of the

proposed scheme and OA-PRA degrades, but is still much higherthat of OA. This is because

that a more stringent QoS requirement forces the systenidoas® more spectrum resource to
UEs with a lower SINR to ensure that their QoS requiremergsaet. Hence, there is a balance
between fairness and efficiency, as can be seen from thig. sflite proposed scheme always
achieves better performance than that of OA-PRA and OA, amdaim gets larger when the QoS

requirement is increased.
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Figure 5.4: Number of MUES versus total capacity.

In Fig. 5.4, we examine the impact of the number of UEs on the tapacity of the system.
In this simulation, there are 4 FAPs, and the QoS requiredénset to 400 Kbps. It can be seen
that the proposed scheme always outperforms both OA andRA-P addition, the performance
of the proposed scheme and OA-PRA get worse with more MUEsrabled. The reason is
similar to that in Fig. 5.3. With more MUES, the system needallocate more spectrum resource
to the UEs with lower SINRs and hence less spectrum resoultéeavavailable for the MUEs

with good channels.

5.6.2 Scenario With Overlapped FAPs

We also evaluate the performance of proposed scheme foh¢hscenario with overlapped
FAPs. We compared the performance with the proposed digoin non-overlap case. We also
compared the proposed algorithm with OA scheme [53]. As tAePRA is may not be applied
to the overlapped FAP case, it is not included in the compmaratin the simulation, there are
6 FAPs, the topology can be summerized &54P; is not overlapped as any FAPSAP, is
overlapping withF AP;, and F'A P is overlapping withF’ A P,; F'AP; is overlapping with/" A F;.
Other settings are the same with the non-overlap case, dpsatifically pointed out. In figure. 5.5,
we examine the impact of the number of UEs on total capacitlye$ystem. In this simulation, the

QoS requirement is set to 400Kbps. It can be seen that the performance of pegpalgorithm
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on overlapping case is worse that that on non-overlappisg,daut it still outperforms the OA

scheme. And it is simular to the simulation in Figure. (5¥6here we examine the impact of

different QoS requirement on the system performance.

5.7 Conclusion

In this work, we studied the access strategy of MUEs and gjpctesource allocation for
the FAPs in a two-tier femtocell network. We considered tadicated channel and open access
deployment scenario, and used spectrum resource as wveetdiencourage FAPS to serve more

MUEs. The objective is to maximize the overall performantée network while guaranteeing
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the QoS requirement for the users. To solve the formulated LNl problem, we proposed an
algorithm to decide the access policy for the MUEs, and aardlgn for allocation of spectrum

resources to the FAPs. An upper bound was derived for thecapacity achieved by the proposed
algorithms. The bound and proposed algorithms were eveduaith simulations and shown to

outperform an existing scheme.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work, we aim to enhance the computational capacity wimeless data transmitting
rate, and stabilize of computing and transmission queuesobile devices. Based on lyapunove
optimization, we balance the energy consumption and theeglength in dynamic cloud offload-
ing scheme. We also studied the distributed online auctorstiaring unlicensed bands among
LTE-unlicensed BS’s, scheduling algorithms in full-duplerabled multi-channel WLAN and
access strategy of MUEs and spectrum resource allocatiothéoFAPs in a two-tier femtocell
network, in order to improve the connectivity of mobile dms while minimizing the energy con-
sumption.

In chapter 2, we proposed a scheduling scheme for energyeetficloud offloading for muti-
core mobile devices, while considering downloading thaidlexecution output in the model.
studied the energy delay trade-off in cloud offloading forltmzore mobile devices. Based on
Lyapunov optimization, we developed an online algorithit thoes not require information about
stationary distribution of applications and the networkdition, making it amenable to real-time
implementation for practical scenarios. We proved thecakbounds for the proposed algorithm
and validated its performance with trace-driven simuteio

In chapter 3, we studied distributed online auction for sigaunlicensed bands among LTE-
unlicensed BS’s to maximize the social welfare in each aoctihile achieving the dual goal of
minimizing the expected packet dropping rate and guaraat@aximum delay. Specifically, we
propose Lyapunov optimization based schemes to evaluateué value of unlicensed spectrum,

to allocate RBs on unlicensed bands, and to decide when to diakes based on current channel
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condition, queue lengths, and delay of packets. We alsoogeapa truthful auction mechanism to
integrate the schemes, which can maximize the overall seeiéare and guarantee bounded drop
rate and delay. The superior performance of the proposedtims over two benchmark schemes
was validated with simulations.

In chapter 4, we proposed an online scheduling algorithnoitdly decide the channel as-
signment, transmission scheduling, half- or full-dupleansmission mode selection for each UE
in a multi-channel ful-duplex WLAN. The proposed scheme was dased on Lyapunov opti-
mization. We also proved the optimality of the proposed algm and derived upper bounds for
the average queue length and energy consumption underdpesad algorithm. We evaluated
the performance of the proposed algorithm with simulatidle showed that under the proposed
algorithm, there was a trade-off between the average qesggh and energy consumption under
differentV values.

In chapter 5, we studied the access strategy of MUEs andrapecésource allocation for
the FAPs in a two-tier femtocell network. We considered thdicated channel and open access
deployment scenario, and used spectrum resource as wveetdiencourage FAPS to serve more
MUEs. The objective is to maximize the overall performantée network while guaranteeing
the QoS requirement for the users. To solve the formulated LAl problem, we proposed an
algorithm to decide the access policy for the MUES, and aardlgn for allocation of spectrum
resources to the FAPs. An upper bound was derived for thecapacity achieved by the proposed
algorithms. The bound and proposed algorithms were eveduaith simulations and shown to

outperform an existing scheme.

6.2 Future Work

With the unprecedented growth in wireless data, wirelessaiprs are in critical need of more
spectrum for higher capacity. To meet the so-called 1000Bilmalata challenge [87], extending
LTE to the unlicensed spectrum, as specified in LTE Rel-10 —1R4B3, 84], has recently gained

significant attention [83, 87, 88, 90]. However, there are main challenges to the success of the
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so-calledLTE-unlicensedechnology. First, the unlicensed bands are already oedupy many
existing wireless networks (e.g., WiFi). It is essentiaétmble the coexistence of LTE-unlicensed
with existing unlicensed band users, i.e., to avoid sigafiperformance degradation to existing
users while achieving high capacity gains with LTE-unleet. Second, the interference in unli-
censed bands is unpredictable, which is detrimental to ¢éhopnance of LTE-unlicensed users.
Hence, it is important to effectively manage the interfeeshetween LTE-unlicensed and existing
users, and that among LTE-unlicensed users themselves.

To study the coexistence of LTE-unlicensed with existinfiogmsed band users, some system
level simulation studies have been reported in severahteeerks [88,93,94]. The simulation re-
sults show that the WiFi performance could be significandgrdded, while the LTE performance
is only slightly affected. This is because WiFi uses Carrienssng Multiple Access (CSMA) to
compete for channel access, while LTE adopts a centraliadrel access control mechanism.
WiFi usually keeps silent when sensing a busy channel cootisly used by LTE. To protect ex-
isting unlicensed band users, requirements for clear éHassessment (CCA) and Listen Before
Talk (LBT) are specified by European standardization bodB§ In LBT, a user equipment (UE)
must perform CCA on the operating channel(s) before startib@rasmission. The observing
duration should be at least 243.

Although the LTE performance may be only slightly affectgdWiFi in some coexistence
scenarios [93,94], there could still be significant throqugitdegradations due to the inter-operator
interference, when multiple LTE-unlicensed base stat{&$®) of different operators are deployed
in the same area [83]. There are two solutions to this probl@hmake an agreement for the
operators to allocate the unlicensed spectrum; or (ii) kenapportunistic access to unlicensed
channels. The first solution may not be practical in most t@esydue to competition among oper-
ators and the lack of regulation for unlicensed bands [88]lexthe second solution is promising
for effective unlicensed spectrum sharing.

For future works, we will study the following problems,
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1. Investigating reasonable metrics of defining whethestag unlicensed band users is inter-

fered by LTE-unlicensed.
2. Verifying whether the LBT can efficiently protect the ekgtunlicensed band users.

3. Investigating the capacity region of LTE-unlicensedrsisehen coexist with existing unli-

censed band users.

4. Studying spectrum sharing among LTU-unlicense BS’s tadawvderference among LTE-

unlicensed users.
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