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Abstract

This dissertation studies the derivations of some subalgebras of the Lie algebra of block

upper triangular matrices. Specifically, we study the derivations of the Lie algebra of strictly

block upper triangular matrices and the Lie algebra of so-called dominant upper triangular

(DUT) ladder matrices, which are block upper triangular matrices that take zero on some

preset nonconsecutive diagonal blocks.

The dissertation consists of six chapters. Chapter 1 provides a brief introduction, back-

ground information, and some related literatures to the topics to be studied.

In Chapter 2, we introduce the definitions and basic properties of matrices, ladder

matrices, and Lie algebras. We also describe some linear transformations between matrix

spaces that satisfy certain special properties. These linear transformations will appear in

the derivations of Lie algebra to be studied.

Chapter 3 provides an explicit description of the derivations of the Lie algebra N of

strictly block upper triangular matrices over a field F.

In Chapter 4, we completely characterize the derivations of the Lie algebra ML of

dominant upper triangular (DUT) ladder matrices over a filed F with char(F) 6= 2. In

exploring the results, we obtain some properties of these Lie algebras and their derivations.

Chapter 5 discusses the derivations of the Lie algebra [ML,ML] for the so-called strongly

dominant upper triangular (SDUT) ladder L over a field F with char(F) 6= 2, 3.

The final chapter provides some potential future research directions on those Lie algebras

that we study in this dissertation.
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Chapter 1

Introduction

Let (g, [ , ]) be a Lie algebra over a field F or a ring R. A derivation of g is an F-linear

map (resp. an R -linear map) f : g→ g that satisfies

f([X, Y ]) = [f(X), Y ] + [X, f(Y )] for all X, Y ∈ g.

Let Der(g) denote the set of all derivations of the Lie algebra g, which itself forms a Lie

algebra with Lie bracket defined by [f, g] = f ◦ g − g ◦ f for all f, g ∈ Der(g) [17, p.15].

The Lie algebra Der(g) is called the derivation algebra of g. The dissertation is a study

of the derivations of some subalgebras of the Lie algebra of block upper triangular matrices.

The subalgebras we study include the Lie algebra of strictly block upper triangular matrices

and the Lie algebra of so-called dominant upper triangular (DUT) ladder matrices, which

are block upper triangular matrices that take zero on some preset nonconsecutive diagonal

blocks.

The derivations of Lie algebras play an important role in disclosing the structure of

Lie algebras. On the other hand, by Ado-Iwasawa theorem, every finite dimensional Lie

algebra over a field can be realized as a matrix Lie algebra [1, 12]. In recent years, sig-

nificant progress has been made in studying the derivations and generalized derivations of

Lie algebras (esp. matrix Lie algebras) over a field or a ring. Here is some of the progress:

Chen determined the structure of certain generalized derivations of a parabolic subalgebra

of the general linear Lie algebra gl(n,F) over a field F with char(F) 6= 2 and |F| > n ≥ 3

[6]. Brice described the derivation algebras of the parabolic subalgebras of a reductive Lie

algebra over an algebraically closed field of characteristic zero and over the real field, and
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proved the zero-product determined property of such derivation algebras [4]. Let R be a

commutative ring with identity. Cheung characterized proper Lie derivations and gave suf-

ficient conditions for any Lie derivation of a triangular algebra over R to be proper [7]. Du

and Wang investigated the Lie derivations of 2× 2 block generalized matrix algebras over R

[9]. Wang, Ou, and Yu described the derivations of intermediate Lie algebras between the

Lie algebra of diagonal matrices and that of upper triangular matrices in gl(n,R) [28]. Wang

and Yu characterized all the derivations of parabolic subalgebras of gl(n,R) [27]. Ou, Wang,

and Yao described the derivations of the Lie algebra of strictly upper triangular matrices in

gl(n,R) [23]. Ji, Yang, and Chen studied the biderivations of the algebra of strictly upper

triangular matrices in gl(n,R) [15]. More recently, Benkovič described the Lie derivations

and Lie triple derivations of upper triangular matrix algebras over a unital algebra [3]. There

are some other results on the Lie triple derivations of certain matrix Lie algebras, such as the

algebra gl(n,R) [18], the algebra of upper triangular matrices of gl(n,R) [2], the parabolic

subalgebras of gl(n,R) [20], and the algebra of strictly upper triangular matrices of gl(n,R)

[29].

Let F be a field, let Mm,n be the set of all m× n matrices over F, and put Mn := Mn,n.

Let N denote the set of all strictly block upper triangular matrices in Mn relative to a given

partition. Then N can be viewed as a Lie subalgebra of Mn with the standard Lie bracket

[X, Y ] = XY − Y X. In the first part of the dissertation, we study the derivations of the

Lie algebra N over F (Theorems 3.2 and 3.14). The motivation for this work comes from

Ou, Wang and Yao’s work on the derivations of the Lie algebra of strictly upper triangular

matrices in gl(n,R), where R is a commutative ring with identity [23]. The results that we

obtain on the derivations of N could be viewed as extensions of Ou, Wang and Yao’s results

in the special case R = F.

The derivation algebras Der(N ) for all possible N constitute an important family of

the derivation algebras of nilpotent Lie algebras. First of all, each N is a direct sum of

root spaces in the root space decomposition of sl(n,F) or gl(n,F), so that N and Der(N )
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have elegant graded structures relative to the roots. Secondly, a derivation f ∈ Der(g) of

a Lie algebra g always maps the center Z(g) into itself. There is an induced Lie algebra

homomorphism φ : Der(g)→ Der(g/Z(g)), f 7→ f̄ , defined by

f̄(a+ Z(g)) := f(a) + Z(g) for f ∈ Der(g), a ∈ g.

The Kerφ consists of all f ∈ End(g) such that Ker f ⊇ [g, g] and Im f ⊆ Z(g). Moreover,

Der(g)/Kerφ is isomorphic to a subalgebra of Der(g/Z(g)). If g is nilpotent, then g/Z(g) '

ad g is isomorphic to a subalgebra of the specific Lie algebra N of strictly upper triangular

matrices in End(g) [10, Engel’s Theorem]. Therefore, knowledge of Der(N ) would be helpful

to explore the derivations of an arbitrary nilpotent Lie algebra.

The notion of ladder matrix, introduced by Brice and Huang in [5], generalizes the

notion of block upper triangular matrix. A ladder matrix is, roughly speaking, a matrix that

has zero entries outside of a ladder shape region determined by a set L of matrix indices,

called a “ladder.” When a given ladder L is “upper triangular,” the set ML of all ladder

matrices corresponding to L is a Lie algebra with respect to the standard Lie bracket.

Classical examples of ladder matrix Lie algebras include the Lie algebras of block upper

triangular matrices and of strictly block upper triangular matrices, Mp,q embedded in the

upper right corner of Mn (when p ≤ n and q ≤ n), and Mn itself. Nevertheless, not much

work has been done on ladder matrix Lie algebras in general. A non-classical example of

a ladder matrix Lie algebra arises from the nilpotent Lie algebra g constructed by Dixmier

and Lister [8], to disprove the converse of a statement of Jacobson [13]. The corresponding

derivation algebra Der(g) is well-embedded in a special nilpotent ladder matrix Lie algebra.

Let Tn denote the space of upper triangular matrices in Mn. In [14], it is shown without

a formal introduction that any subset ML of Tn consisting of ladder matrices is a subspace

invariant under the triangular matrix similarity.
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In the second part of the dissertation, we define two special types of ladders, namely

“dominant upper triangular” (DUT) and “strongly dominant upper triangular” (SDUT). We

give an explicit description of the derivations of the Lie algebra ML of DUT ladder matrices

over a field F with char(F) 6= 2 (Theorem 4.4), and the derivations of the Lie algebra [ML,ML]

associated with an SDUT ladder L over a field F with char(F) 6= 2, 3 (Theorem 5.8).

In general, a derivation of a Lie algebra stabilizes each subalgebra appearing in the

derived series of the Lie algebra. Moreover, the derived series of a non-solvable Lie algebra of

upper triangular ladder matrices terminates at the Lie algebra [ML,ML] for a certain SDUT

ladder L. Therefore, knowledge of the derivations of the Lie algebras [ML,ML] associated

with SDUT ladders L are useful in finding the derivations of non-solvable Lie algebras of

upper triangular ladder matrices.

The organization of this dissertation is as follows. In Chapter 2, we introduce ladder

matrices and basic Lie theory, and determine some linear maps between matrix spaces that

satisfy certain special properties. In Chapter 3, we completely characterize the derivations

of the Lie algebra N of strictly block upper triangular matrices in Mn over a field F. In

Chapter 4, we characterize the derivations of the Lie algebra ML of DUT ladder matrices in

Mn over a field F with char(F) 6= 2, and give some examples and applications. In Chapter

5, we discuss the derivations of the Lie algebra [ML,ML] associated with an SDUT ladder

L over a field F with char(F) 6= 2, 3. Finally, in Chapter 6, we give some future research

directions.
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Chapter 2

Preliminaries

In this chapter, we introduce background information and notation needed throughout

the dissertation. We also describe some linear transformations between matrix spaces that

satisfy some special properties.

2.1 Matrices

Let m and n be positive integers and let F be a field. The set of all m × n matrices

over F is denoted by Mm,n(F), and Mn,n(F) is abbreviated to Mn(F). If F is known, Mn(F)

is further abbreviated to Mn and Mm,n(F) to Mm,n. Matrices are usually denoted by capital

letters. A submatrix of a matrix A ∈ Mm,n is a matrix that can be obtained by deleting

some rows and columns of A.

Let [n] := {1, 2, · · · , n}. An ordered partition of [n] is a sequence (n1, n2, · · · , nt) such

that t, n1, · · · , nt ∈ Z+ and
∑t

i=1 ni = n. If (n1, n2, · · · , nt) is an ordered partition of [n],

then a matrix in Mn can be partitioned into a t× t block matrix (or partitioned matrix)

such that the (i, j) block has the size ni×nj. Explicitly, a matrix A ∈Mn can be viewed in

the following block matrix form according to the given ordered partition (n1, n2, · · · , nt)

of [n]:

A =



A11 A12 · · · A1t

A21 A22 · · · A2t

...
...

. . .
...

At1 At2 · · · Att


, Aij ∈Mni,nj

, i, j ∈ [t].
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A matrix A ∈Mn of the form

A =



A11 ∗ · · · ∗

0 A22
. . .

...

...
. . . . . . ∗

0 · · · 0 Att


in which Aii ∈ Mni

, i ∈ [t], with
∑t

i=1 ni = n and ∗ denotes any entry, is called block

upper triangular. Similarly, we can define block lower triangular, strictly block

upper triangular, and strictly block lower triangular.

2.2 Ladders and Ladder matrices

Fix a field F. Let Mn denote the set of all n×n matrices over F. Let Eij ∈Mn denote the

matrix with the only non-zero entry 1 in the (i, j) position. Recall that [n] := {1, 2, · · · , n}.

Definition 2.1. A subset {(i1, j1), · · · , (is, js)} of the set [n]× [n] is called a ladder of size

n if

i1 < i2 < · · · < is and j1 < j2 < · · · < js.

Given a ladder L = {(i1, j1), · · · , (is, js)} of size n, a matrix A = (aij) ∈ Mn is called an

L-ladder matrix if

aij 6= 0 ⇒ there exists ` ∈ [s] such that i ≤ i` and j` ≤ j.

The set of all L-ladder matrices is denoted by ML.

Explicitly, ML consists of matrices in Mn that have nonzero entries only in the upper

right direction of some (i`, j`) in L.

Definition 2.2. A ladder L = {(i1, j1), · · · , (is, js)} of size n is called
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• upper triangular: if i` < j`+1 for ` ∈ [s − 1], equivalently all “inner corner entry

positions” (i`, j`+1) (` ∈ [s − 1]) of matrices in ML are located on the strictly upper

triangular part;

• dominant upper triangular (DUT): if j` ≤ i` < j`+1 for ` ∈ [s− 1], equivalently L

is upper triangular and all “outer corner entry positions” (i`, j`) (` ∈ [s]) of matrices

in ML are located on the lower triangular part;

• strongly dominant upper triangular (SDUT): if j` < i` < j`+1 for ` ∈ [s − 1],

equivalently L is upper triangular and all “outer corner entry positions” (i`, j`) (` ∈ [s])

of matrices in ML are located on the strictly lower triangular part.

When L is upper triangular, a matrix in ML is called an upper triangular ladder matrix.

Similarly for the others.

In [5], Brice and Huang proved that if L is an upper triangular ladder of size n, then

ML with matrix product is a subalgebra of Mn. Naturally, ML with respect to the standard

Lie bracket [X, Y ] = XY − Y X is a Lie subalgebra of Mn (aka. gl(n,F)), in which we call

ML a Lie algebra of upper triangular ladder matrices.

Given a ladder L = {(i1, j1), · · · , (is, js)} of size n, the matrices in ML may be viewed

as block matrices by dividing the rows and columns after those indexed by the set

(
{i1, i2, · · · , is} ∪ {j1 − 1, j2 − 1, · · · , js − 1}

)
\ {0, n}. (2.1)

Suppose matrices in Mn are partitioned into t× t block matrix form according to (2.1).

We define the block index set of matrices in ML as

Ω(L) := {(i, j) ∈ [t]× [t] : the (i, j) block of a matrix of ML is nonzero}.

We call an element of Ω(L) a block index. The block index set Ω(L) collects the positions

of possibly nonzero blocks of matrices in ML. Denote by MB the set of all block upper
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triangular matrices in Mn with the same block matrix form as ML. The set MB is itself a set

of ladder matrices for a special DUT ladder B. Obviously, Ω(B) = {(i, j) : 1 ≤ i ≤ j ≤ t}.

Example 2.3. Consider the ladder L = {(1, 1), (4, 3), (5, 5)} of size 7. By definition 2.2, L

is a DUT ladder. The matrix form in ML is given in Figure 2.1(a). Figure 2.1(b) indicates

the block matrix form in ML obtained by dividing the rows and columns after those indexed

by (2.1): (
{1, 4, 5} ∪ {1− 1, 3− 1, 5− 1}

)
\ {0, 7} = {1, 2, 4, 5}.

The matrices in ML are clearly conformal to this block matrix form, in the sense that if a

matrix in ML has a nonzero entry in the (i, j) block then every matrix whose nonzero entries

are located in the (i, j) block is in ML. The block index set Ω(L) of matrices of ML is

Ω(L) = {(i, j) : 1 ≤ i ≤ j ≤ 5} \ {(2, 2), (5, 5)}.

∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 0
0 0 0 0 0 0 0
(a) matrix form of ML

∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(b) block matrix form of
ML

Figure 2.1: Ladder L = {(1, 1), (4, 3), (5, 5)} of size 7

Finally, MB is the set of block upper triangular matrices according to the partition in

Figure 2.1(b), and Ω(B) = {(i, j) : 1 ≤ i ≤ j ≤ 5}.

The different kinds of ladder L could be easily distinguished by the block matrix form

of ML and the corresponding MB:

• L is upper triangular if and only if ML ⊆MB;
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• L is DUT if and only if for every (i, j) ∈ Ω(L) there exists an integer k such that

(k, k) ∈ Ω(L) and i ≤ k ≤ j;

• L is SDUT if and only if L is DUT, and every nonzero diagonal block of a matrix in

ML has size greater than 1.

The next theorem completely characterizes DUT ladders in terms of the block matrix

form of matrices in ML obtained by (2.1).

Theorem 2.4. 1. Let L be a ladder of size n, and the matrices in ML have a t× t block

matrix form obtained by (2.1). Then L is DUT if and only if

Ω(L) = {(i, j) : 1 ≤ i ≤ j ≤ t} \ {(i, i) | i ∈ S}

for a certain subset S ⊆ [t] that consists of some non-consecutive integers. In particu-

lar, if L is DUT, then (i, j) ∈ Ω(L) for every i, j ∈ [t] with i < j.

2. Equivalently, a ladder L of size n is DUT if and only if ML consists of block upper

triangular matrices of Mn that have zero submatrices on some preset non-consecutive

diagonal blocks, according to a given ordered partition of [n].

Proof. It suffices to prove the first statement. Let L = {(i1, j1), · · · , (is, js)} be a ladder

of size n. Let {k1 · · · , kt−1} be the corresponding set given by (2.1), which determines an

ordered partition (k1, k2 − k1, · · · , kt−1 − kt−2, n − kt−1) of [n], and the corresponding t × t

block matrix form of matrices in Mn. The set MB of block upper triangular matrices is a set

of ladder matrices for the ladder

B = {(k1, 1), (k2, k1 + 1), · · · , (kt−1, kt−2 + 1), (n, kt−1 + 1)}.

Clearly, Ω(B) = {(i, j) | 1 ≤ i ≤ j ≤ t}.

Suppose Ω(L) = Ω(B) \ {(i, i) | i ∈ S} where S is a subset of [t] that consists of

some non-consecutive integers. Then ML ⊆ MB. On the other hand, each pair (i`, j`) ∈ L
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is the position of the most lower-left entry of the (p, q) block of matrices in ML for some

(p, q) ∈ Ω(L). If p < q, then any of (p, p), (p + 1, p + 1), · · · , (q, q) is not in Ω(L), which

contradicts the assumption of Ω(L). Therefore, p = q. Then L ⊆ B. Since B is DUT, it is

clear from the definition that L is also DUT.

Now assume that L is DUT (one may refer to Example 2.3 for the following argument).

Then Ω(L) ⊆ {(i, j) : 1 ≤ i ≤ j ≤ t}, and for every (i, j) ∈ Ω(L) there exists an integer

p such that (p, p) ∈ Ω(L) and i ≤ p ≤ j. Hence every (i`, j`) ∈ L is the position of

the most lower-left entry of a diagonal (p, p) block of matrices for some (p, p) ∈ Ω(L). So

(i`, j`) = (kp, kp−1 + 1) (set k0 := 0 and kt := n). If there exists i ∈ [t− 1] such that neither

(i, i) nor (i + 1, i + 1) is in Ω(L), then (i, i + 1) is not in Ω(L). Then ki cannot be the

row position (resp. ki + 1 cannot be the column position) of the most lower-left entry of a

diagonal (p, p) block for any (p, p) ∈ Ω(L), which means that ki is not in the set (2.1). This

is a contradiction. Similarly, if there exists (i, j) ∈ [t]× [t] such that i < j and (i, j) 6∈ Ω(L),

then none of (i, i), (i+ 1, i+ 1), · · · , (j, j) is in Ω(L), which leads to the same contradiction.

Therefore, we must have Ω(L) = {(i, j) : 1 ≤ i ≤ j ≤ t} \ {(i, i) | i ∈ S} where S is a subset

of [t] that consists of some non-consecutive integers.

A direct consequence of Theorem 2.4 is the counting of sets of DUT ladder matrices.

Corollary 2.5. Let (Ft)
∞
t=1 = (1, 1, 2, 3, 5, · · · ) be the Fibonacci sequence.

1. Given a t × t block matrix form in Mn, the number of ML corresponding to a DUT

ladder L associated with this block form equals Ft+2.

2. Given n ∈ Z+, the number of ML such that L is a DUT ladder and ML ⊆ Mn equals

F2n+1.

Proof. 1. Let bt denote the number of ML corresponding to a DUT ladder L associated

with the given t × t block matrix form in Mn. Clearly b1 = 2 = F3 and b2 = 3 = F4.

It suffices to prove that the sequence (bt) satisfies the same recursive formula as (Ft+2)
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does, that is,

bt = bt−1 + bt−2. (2.2)

By Theorem 2.4, bt equals the number of ways to choose non-consecutive diagonal

blocks in a given t× t block form. If the first diagonal block is chosen, then the second

one should be skipped, and there are bt−2 ways to choose the remaining diagonal blocks;

if the first diagonal block is not chosen, then there are bt−1 ways to choose the remaining

diagonal blocks. Therefore, (2.2) is true.

2. Given t ∈ [n], there are
(
n−1
t−1

)
ways to partition matrices of Mn into a t× t block form;

each block form corresponds to Ft+2 sets ML of DUT ladder matrices. Put r1 := 1+
√

5
2

and r2 := 1−
√

5
2

and note that r1 and r2 are the roots of x2 − x − 1 = 0. The Binet’s

Fibonacci number formula says that

Ft =
1√
5
rt1 −

1√
5
rt2.

Therefore, the number of ML such that L is a DUT and ML ⊆Mn

=
n∑

t=1

(
n− 1

t− 1

)
Ft+2 =

n∑
t=1

(
n− 1

t− 1

)(
1√
5
rt+2

1 − 1√
5
rt+2

2

)
=

1√
5

[
r3

1(1 + r1)n−1 − r3
2(1 + r2)n−1

]
=

1√
5

[
r3

1(r2
1)n−1 − r3

2(r2
2)n−1

]
= F2n+1.

2.3 Lie algebra

A vector space g over a field F, with a product g× g→ g, denoted by (X, Y ) 7→ [X, Y ]

and called the Lie bracket of X and Y , is called a Lie algebra over F [10, p.1] if the

following axioms are satisfied:

1. The Lie bracket is bilinear.

2. [X,X] = 0 for all X ∈ g.
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3. The Jacobi identity [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 holds for all X, Y, Z ∈ g.

A classical example of a Lie algebra is the general linear algebra gl(V ) consisting of all

linear operators on a vector space V with the Lie bracket defined by

[X, Y ] = XY − Y X for all X, Y ∈ gl(V ).

The set Mn of n×n matrices over F can be viewed as a Lie algebra, denoted by gl(n,F),

with the Lie bracket defined by

[X, Y ] = XY − Y X for all X, Y ∈Mn.

Let g and h be Lie algebras over a field F. A linear transformation ϕ : g → h is called

a Lie algebra homomorphism if

ϕ[X, Y ] = [ϕ(X), ϕ(Y )] for all X, Y ∈ g.

By the bilinearity of the Lie bracket and the Jacobi identity, the linear transformation

ad : g→ gl(g) defined by

adX(Y ) := [X, Y ] for all X, Y ∈ g

is a Lie algebra homomorphism and therefore a representation of g, called the adjoint

representation of g. The adjoint representation is important in the study of Lie algebras.

The Lie algebra g is said to be abelian if [X, Y ] = 0 for all X, Y ∈ g. A subspace s of

g is called a subalgebra or Lie subalgebra if [X, Y ] ∈ s for all X, Y ∈ s; it is called an

ideal if [X, Y ] ∈ s for all X ∈ g and Y ∈ s.
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For later use we mention a couple of notions, analogous to those which arise in group

theory. Let s be a subalgebra of g. The normalizer N(s) of s is defined by

N(s) = {X ∈ g : [X, Y ] ∈ s for all Y ∈ s}.

The centralizer Z(s) of s is defined by

Z(s) = {X ∈ g : [X, Y ] = 0 for all Y ∈ s}.

Both N(s) and Z(s) are subalgebra of g.

It is natural to study a Lie algebra g via its ideals. Define a sequence of ideals of g

(the derived series) by

g(0) = g, g(1) = [g, g], g(2) = [g(1), g(1)], · · · , g(k) = [g(k−1), g(k−1)].

We call g solvable if g(k) = 0 for some k [10, p.10]. For example, the Lie algebra of upper

triangular matrices in Mn is solvable.

Define a sequence of ideals of a Lie algebra g (the lower central series) by

g0 = g, g1 = [g, g], g2 = [g, g1], gk = [g, gk−1].

g is called nilpotent if gk = 0 for some k [10, p.11]. For example, the Lie algebra of strictly

upper triangular matrices and the Lie algebra of strictly block upper triangular matrices in

Mn are nilpotent. It is easy to check that g(k) ⊆ gk for all k, and it follows that nilpotent

Lie algebras are solvable.

13



2.4 Derivations of Lie algebras

Recall that a derivation of Lie algebra g over a field F is an F-linear map f : g→ g that

satisfies

f([X, Y ]) = [f(X), Y ] + [X, f(Y )] for all X, Y ∈ g.

The collection Der(g) of all derivations of g is a Lie algebra with the Lie bracket [f, g] =

f ◦ g− g ◦ f for all f, g ∈ Der(g). Certain derivations of g arise quite naturally, as follows. If

X ∈ g, Y 7→ [X, Y ] is an endomorphism of g, which we denote adX. Then, adX ∈ Der(g),

because of the Jocabi identity. Derivations of this form are called inner, all others outer.

The collection ad(g) of all inner derivations of g is an ideal of Der(g) [10, p.8].

2.5 Some linear transformations between matrix spaces

The purpose of this section is to describe some linear transformations between matrix

spaces that satisfy certain special properties. These results will be useful in the study of

derivations of matrix Lie algebras. Recall that [n] := {1, 2, · · · , n}. Let E
(mn)
pq ∈Mm,n denote

the matrix with the only non-zero entry 1 in the (p, q) position.

Lemma 2.6. If linear transformations φ : Mm,p →Mm,q and ϕ : Mn,p →Mn,q satisfy that

φ(AB) = Aϕ(B) for all A ∈Mm,n, B ∈Mn,p,

then there is X ∈Mp,q such that φ(C) = CX for C ∈Mm,p and ϕ(D) = DX for D ∈Mn,p.

Proof. For any j ∈ [n] and B ∈Mn,p,

φ(E
(mn)
1j B) = E

(mn)
1j ϕ(B).
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All such E
(mn)
1j B span the first row space of Mm,p. So φ sends the first row of Mm,p to the

first row of Mm,q. There exists a unique X ∈Mp,q such that

E
(mn)
1j ϕ(B) = φ(E

(mn)
1j B) = E

(mn)
1j BX, for all j ∈ [n], B ∈Mn,p.

Therefore, ϕ(B) = BX. Then φ(AB) = Aϕ(B) = ABX for any A ∈ Mm,n and B ∈ Mn,p.

All such AB span Mm,p. So φ(C) = CX for all C ∈Mm,p.

Lemma 2.7. If linear transformations φ : Mm,p →Mn,p and ϕ : Mm,q →Mn,q satisfy that

φ(BA) = ϕ(B)A for all A ∈Mq,p, B ∈Mm,q,

then there is X ∈Mn,m such that φ(C) = XC for C ∈Mm,p and ϕ(D) = XD for D ∈Mm,q.

Proof. The proof (omitted) is similar to that of Lemma 2.6.

Lemma 2.8. Suppose F is an arbitrary field. If X ∈Mm and Y ∈Mn satisfy that XA = AY

for all A ∈Mm,n, then X = λIm and Y = λIn for certain λ ∈ F.

Proof. For any (i, j) ∈ [m]× [n],

XE
(mn)
ij = E

(mn)
ij Y.

Comparing the (i, j)th entry, we get xii = yjj. Comparing the (p, j)th entry for p 6= i, we get

xpi = 0. Comparing the (i, q)th entry for q 6= j, we get 0 = yjq. Therefore, X = λIm and

Y = λIn for some λ ∈ F.

Lemma 2.9. If linear transformations φ : Mm,p →Mm,q and ϕ : Mq,n →Mp,n satisfy that

φ(A)B = Aϕ(B) for all A ∈Mm,p, B ∈Mq,n,

then there is X ∈Mp,q such that φ(C) = CX for C ∈Mm,p and ϕ(D) = XD for D ∈Mq,n.
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Proof. For any j ∈ [p] and any E
(qn)
kl ∈Mq,n,

φ(E
(mp)
1j )E

(qn)
kl = E

(mp)
1j ϕ(E

(qn)
kl ),

which shows that the only possibly nonzero row of φ(E
(mp)
1j ) is the first row. So φ maps the

first row of Mm,p to the first row of Mm,q. There exists a unique X ∈Mp,q such that

E
(mp)
1j ϕ(E

(qn)
kl ) = φ(E

(mp)
1j )E

(qn)
kl = E

(mp)
1j XE

(qn)
kl , for all j ∈ [p], E

(qn)
kl ∈Mq,n.

Therefore, ϕ(E
(qn)
kl ) = XE

(qn)
kl for all E

(qn)
kl ∈ Mq,n. So ϕ(B) = XB for B ∈ Mq,n. Then

φ(A)B = AXB for any A ∈Mm,p and B ∈Mq,n. Hence φ(A) = AX for all A ∈Mm,p.

Lemma 2.10. If linear transformations f : Mp,r → Mp,r, g : Mp,q → Mp,q, and h : Mq,r →

Mq,r satisfy that

f(AB) = g(A)B + Ah(B) for all A ∈Mp,q, B ∈Mq,r, (2.3)

then there exist X ∈Mp, Y ∈Mr, Z ∈Mq such that

f(C) = XC + CY for C ∈Mp,r, (2.4)

g(A) = XA+ AZ for A ∈Mp,q, (2.5)

h(B) = BY − ZB for B ∈Mq,r. (2.6)

Proof. For any n ∈ [p], j, k ∈ [q], m ∈ [r], E
(pq)
nj ∈Mp,q and E

(qr)
km ∈Mq,r,

f(E
(pq)
nj E

(qr)
km ) = g(E

(pq)
nj )E

(qr)
km + E

(pq)
nj h(E

(qr)
km ). (2.7)

We further discuss (2.7) in two cases:
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1. j 6= k: the left side of (2.7) is zero and

g(E
(pq)
nj )E

(qr)
km = −E(pq)

nj h(E
(qr)
km ). (2.8)

2. j = k: the left side of (2.7) is f(E
(pr)
nm ), and according to (2.7), the only possibly

nonzero entries of f(E
(pr)
nm ) are

f(E(pr)
nm )im = g(E

(pq)
nk )ik for all i ∈ [p], i 6= n; (2.9)

f(E(pr)
nm )n` = h(E

(qr)
km )k` for all ` ∈ [r], ` 6= m; (2.10)

f(E(pr)
nm )nm = g(E

(pq)
nk )nk + h(E

(qr)
km )km. (2.11)

Next we define a linear transformation f ′ : Mp,r → Mp,r such that property (2.3) still

holds. For C ∈Mp,r, let

f ′(C) :=

∑
i,j∈[p]

f(E
(pr)
j1 )i1E

(pp)
ij

C + C

∑
k,`∈[r]

f(E
(pr)
1k )1`E

(rr)
k`

− f(E
(pr)
11 )11C. (2.12)

Then for any n ∈ [p], m ∈ [r] and E
(pr)
nm ∈Mp,r,

f ′(E(pr)
nm ) =

∑
i∈[p]

f(E
(pr)
n1 )i1E

(pr)
im +

∑
`∈[r]

f(E
(pr)
1m )1`E

(pr)
n` − f(E

(pr)
11 )11E

(pr)
nm ,

which implies that the only possibly nonzero entries of f ′(E
(pr)
nm ) are

f ′(E(pr)
nm )im = f(E

(pr)
n1 )i1 = f(E(pr)

nm )im for i ∈ [p], i 6= n, (2.13)

f ′(E(pr)
nm )n` = f(E

(pr)
1m )1` = f(E(pr)

nm )n` for ` ∈ [r], ` 6= m, (2.14)

f ′(E(pr)
nm )nm = f(E

(pr)
n1 )n1 + f(E

(pr)
1m )1m − f(E

(pr)
11 )11 = f(E(pr)

nm )nm, (2.15)
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where the last equality in (2.13), (2.14) and (2.15) is by (2.9), (2.10) and (2.11) respectively.

Therefore, f ′ = f on each E
(pr)
nm ∈Mp,r and thus on the whole Mp,r. Denote

X :=
∑
i,j∈[p]

f(E
(pr)
j1 )i1E

(pp)
ij − f(E

(pr)
11 )11Ip, Y :=

∑
k,`∈[r]

f(E
(pr)
1k )1`E

(rr)
k` . (2.16)

We get f(C) = f ′(C) = XC + CY for C ∈ Mp,r. So (2.4) is done. Now for A ∈ Mp,q and

B ∈Mq,r, by (2.3),

g(A)B + Ah(B) = f(AB) = XAB + ABY =⇒ (g(A)−XA)B = A(BY − h(B)).

Applying Lemma 2.9 to φ : Mp,q →Mp,q defined by φ(A) = g(A)−XA and ϕ : Mq,r →Mq,r

defined by ϕ(B) = BY − h(B), we will find Z ∈Mq such that

g(A)−XA = φ(A) = AZ for A ∈Mp,q,

BY − h(B) = ϕ(B) = ZB for B ∈Mq,r,

which imply (2.5) and (2.6).
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Chapter 3

Derivations of the Lie algebra of strictly block upper triangular matrices

In this chapter, we explicitly describe the derivations of the Lie algebra N of strictly

block upper triangular matrices in Mn over a field F. In the rest of this chapter, we fix

a t × t block matrix form of matrices in Mn corresponding to a given ordered partition

(n1, n2, · · · , nt) of [n]. We first introduce some notations.

Definition 3.1. 1. Let MB denote the set of all block upper triangular matrices in Mn.

2. Let Mij denote the set of all submatrices in the (i, j) block of matrices in Mn. The

(i, j) block of a matrix A ∈Mn is denoted by Aij or (A)ij. If A ∈Mn is not given, Aij

may refer to an arbitrary matrix in Mij.

3. Let Mij denote the set of matrices in Mn that take zero outside of the (i, j) block. For

a matrix B ∈ Mij, let Bij denote the embedding of B into Mij by placing B on the

(i,j) block. If B ∈Mij is not given, Bij may refer to an arbitrary matrix in Mij.

A notation of double index, say Mij, may be written as Mi,j (resp. Mij as Mi,j) for

clarity purpose.

3.1 Derivations of N for char(F) 6= 2

In this section, we give an explicit description of Der(N ) for the Lie algebra N over F

with char(F) 6= 2. The Lie algebra MB is the normalizer of N in Mn by direct computation.

For any X ∈MB, the adjoint action

adX : N → N , Y 7→ [X, Y ],
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is a derivation of N . Now we state our main theorem of this section.

Theorem 3.2. Suppose char(F) 6= 2. Then every derivation f of the Lie algebra N can be

(not uniquely) written as

f = adX + ϕ1t + φ12
2t + φt−1,t

1,t−1, (3.1)

where the summand components are described below:

1. X ∈MB is a block upper triangular matrix in Mn.

2. ϕ1t ∈ End(N ) satisfies that Kerϕ1t contains [N ,N ] =
⊕

1<i+1<j≤t

Mij, and Imϕ1t is

contained in the center Z(N ) =M1t of N .

3. φ12
2t ≡ 0 unless the (1, 2) block of a matrix of N has only one row, in which φ12

2t ∈ Der(N )

such that φ12
2t (M12) ⊆M2t and φ12

2t (Mij) = 0 for the otherMij ⊆ N ; the explicit form

of φ12
2t is given in Lemma 3.6;

4. φt−1,t
1,t−1 ≡ 0 unless the (t − 1, t) block of a matrix of N has only one column, in which

φt−1,t
1,t−1 ∈ Der(N ) such that φt−1,t

1,t−1(Mt−1,t) ⊆ M1,t−1 and φt−1,t
1,t−1(Mij) = 0 for the other

Mij ⊆ N ; the explicit form of φt−1,t
1,t−1 is given in Lemma 3.7.

The cases t = 1 and t = 2 are trivial. So we assume t ≥ 3 in the following discussion.

Before proving the Theorem 3.2, we present several auxiliary results on the images f(Mij)

for f ∈ Der(N ) and Mij ⊆ N . We do not assume char(F) 6= 2 in Lemmas 3.1− 3.10. The

next lemma concerns the range of f on superdiagonal blocks of matrices of N except for

M12 and Mt−1,t.

Lemma 3.3. For f ∈ Der(N ) and 1 < k < t− 1,

f(Mk,k+1) ⊆
k−1∑
p=1

Mp,k+1 +
t∑

q=k+1

Mkq + Z(N ). (3.2)
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In other words, the image f(Mk,k+1) is located on the k-th block row and the (k+ 1)-th block

column of matrices of N as well as in the center Z(N ) =M1t.

Proof. Given any Ak,k+1 ∈ Mk,k+1, it suffices to prove that f(Ak,k+1)ij = 0 for i < j, i 6= k,

j 6= k+ 1, and (i, j) 6= (1, t). Either i > 1 or j < t. Without loss of generality, suppose j < t

(similarly for i > 1). Then for any Ajt ∈Mjt, the (i, t) block of f([Ak,k+1, Ajt]) is

0 = f([Ak,k+1, Ajt])it = [f(Ak,k+1), Ajt]it + [Ak,k+1, f(Ajt)]it = f(Ak,k+1)ij(A
jt)jt

where the last equality is by the assumptions on i, j. Therefore f(Ak,k+1)ij = 0.

Now consider the range of f onM12 andMt,t−1 for f ∈ Der(N ). The case char(F) 6= 2

would be simpler in the following lemma.

Lemma 3.4. Let f ∈ Der(N ). Then

f(M12) ⊆
t∑

q=2

M1q +M2t +M3t, (3.3)

f(Mt−1,t) ⊆
t−1∑
p=1

Mpt +M1,t−1 +M1,t−2. (3.4)

Furthermore, when char(F) 6= 2, the (3, t) block of matrices in f(M12) and the (1, t − 2)

block of matrices in f(Mt−1,t) are zero.

Proof. The case t = 3 is obviously true. We now assume that t ≥ 4.

To get (3.3), we prove that f(A12)ij = 0 for any A12 ∈ M12, 1 < i < j, and (i, j) /∈

{(2, t), (3, t)}. Either i > 3 or j < t.

1. Suppose j < t. Then for any Ajt ∈Mjt,

0 = f([A12, Ajt])it = [f(A12), Ajt]it + [A12, f(Ajt)]it.

Therefore, 0 = f(A12)ij(A
jt)jt, and thus f(A12)ij = 0.
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2. Suppose 3 < i. Then for any A3i ∈M3i,

0 = f([A12, A3i])3j = [f(A12), A3i]3j + [A12, f(A3i)]3j.

Therefore, 0 = −(A3i)3if(A12)ij, which implies that f(A12)ij = 0.

Overall, (3.3) is done.

Next, when char(F) 6= 2, we show that f(A12)3t = 0. For any A23 ∈M23,

0 = f([A12, [A12, A23]])1t

= [f(A12), [A12, A23]]1t + [A12, [f(A12), A23]]1t + [A12, [A12, f(A23)]]1t

= −2(A12)12(A23)23f(A12)3t.

Since char(F) 6= 2, 0 = (A12)12(A23)23f(A12)3t. Given A12, the matrix (A12)12(A23)23 for

any A23 ∈ M23 could be any matrix in M13 with rank no more than rankA12. Therefore

f(A12)3t = 0.

The proofs of (3.4) and f(Mt−1,t)1,t−2 = 0 when char(F) 6= 2 are similar.

Definition 3.5. Given i, j ∈ [t], p ∈ [ni], q ∈ [nj], let Eij
pq ∈ Mn denote the matrix with the

only nonzero entry 1 in the (p, q) position of the (i, j) block. Clearly Eij
pq ∈Mij. The matrix

Eij
pq is called the (p, q) standard matrix of Mij.

The next two lemmas explicitly describe the (2, t) block of matrices in f(M12) and the

(1, t− 1) block of matrices in f(Mt−1,t) for f ∈ Der(N ).

Lemma 3.6. For f ∈ Der(N ), the image f(M12)2t has the following properties, according

to the row size n1 of the (1, 2) block.

1. If n1 ≥ 2, then f(M12)2t = 0.

2. If n1 = 1, then {E12
1i | i ∈ [n2]} is a basis of M12; the i-th row of f(E12

1j )2t is equal to

the j-th row of f(E12
1i )2t for any i, j ∈ [n2].
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Conversely, any f ∈ End(N ) that satisfies f(Mij) = 0 for Mij ⊆ N with (i, j) 6= (1, 2),

f(M12) ⊆M2t, and the above hypothesis, is in Der(N ).

Proof. Let f ∈ Der(N ).

1. When n1 ≥ 2, it suffices to prove that f(E12
ij )2t = 0 for any i ∈ [n1], j ∈ [n2]. Since

n1 ≥ 2, we can choose r ∈ [n1]− {i}. Then for any s ∈ [n2], E12
rs ∈M12 and

0 = f([E12
rs , E

12
ij ])1t = [f(E12

rs ), E12
ij ]1t + [E12

rs , f(E12
ij )]1t

= −(E12
ij )12f(E12

rs )2t + (E12
rs )12f(E12

ij )2t.

Therefore, (E12
rs )12f(E12

ij )2t = (E12
ij )12f(E12

rs )2t. Comparing the r-th rows on both sides,

we see that the s-th row of f(E12
ij )2t is zero. Since s ∈ [n2] is arbitrary, we have

f(E12
ij )2t = 0.

2. Suppose n1 = 1. The case n2 = 1 is trivial. Now we assume that n2 ≥ 2. For any

j ∈ [n2], we can choose i ∈ [n2]− {j}. Then

0 = f([E12
1j , E

12
1i ])1t = [f(E12

1j ), E12
1i ]1t + [E12

1j , f(E12
1i )]1t

= −(E12
1i )12f(E12

1j )2t + (E12
1j )12f(E12

1i )2t.

Therefore,

(E12
1i )12f(E12

1j )2t = (E12
1j )12f(E12

1i )2t.

Comparing the first rows, we see that the i-th row of f(E12
1j )2t is equal to the j-th row

of f(E12
1i )2t for i 6= j.

The last statement is easy to verify.

Lemma 3.7. For f ∈ Der(N ), the image f(Mt−1,t)1,t−1 satisfies the following properties,

according to the column size nt of the (t− 1, t) block.
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1. If nt ≥ 2, then f(Mt−1,t)1,t−1 = 0.

2. If nt = 1, then {Et−1,t
i1 | i ∈ [nt−1]} is a basis ofMt−1,t; the i-th column of f(Et−1,t

j1 )1,t−1

is equal to the j-th column of f(Et−1,t
i1 )1,t−1 for any i, j ∈ [nt−1].

Conversely, any f ∈ End(N ) that satisfies f(Mij) = 0 for Mij ⊆ N and (i, j) 6= (t− 1, t),

f(Mt−1,t) ⊆M1,t−1, and the above hypothesis, is in Der(N ).

Proof. The proof (omitted) is similar to that of Lemma 3.6.

Next we consider the range of f on the other blocks of matrices in N .

Lemma 3.8. For f ∈ Der(N ), i, j ∈ [t] and j > i+ 1, the image f(Mij) satisfies that:

1. If char(F) 6= 2, then

f(Mij) ⊆
i−1∑
p=1

Mpj +
t∑

q=j

Miq. (3.5)

2. If char(F) = 2, then (3.5) still holds for (i, j) 6∈ {(1, 3), (t− 2, t)}, and

f(M13) ⊆
t∑

q=3

M1q +M2t, (3.6)

f(Mt−2,t) ⊆
t−2∑
p=1

Mpt +M1,t−1. (3.7)

Proof. First assume char(F) 6= 2. Let j = i+ k, k ≥ 2. We prove (3.5) by induction on k.

1. k = 2 : Mi,i+2 = Mi,i+1Mi+1,i+2 = [Mi,i+1,Mi+1,i+2]. For Ai,i+1 ∈ Mi,i+1 and

Ai+1,i+2 ∈Mi+1,i+2,

f([Ai,i+1, Ai+1,i+2]) = [f(Ai,i+1), Ai+1,i+2] + [Ai,i+1, f(Ai+1,i+2)]

∈ Mi,i+2 +
i−1∑
p=1

Mp,i+2 +
t∑

q=i+3

Mi,q (3.8)

where the last relation is by Lemmas 3.3 and 3.4. Thus k = 2 is done.
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2. k = ` > 2 : Suppose (3.5) holds for all k < ` where ` > 2 is given. Now Mi,i+` =

Mi,i+2Mi+2,i+` = [Mi,i+2,Mi+2,i+`]. For any Ai,i+2 ∈Mi,i+2 and Ai+2,i+` ∈Mi+2,i+`,

f([Ai,i+2, Ai+2,i+`]) = [f(Ai,i+2), Ai+2,i+`] + [Ai,i+2, f(Ai+2,i+`)]

∈ Mi,i+` +
i−1∑
p=1

Mp,i+` +
t∑

q=i+`+1

Mi,q (3.9)

where the last relation is by induction hypothesis, the case k = 2, and Lemmas 3.3

and 3.4. So (3.5) is true for k = `.

3. Overall, (3.5) is true for all k.

Now consider the case char(F) = 2. We get the same relation (3.8) except for i = 1 and

i = t− 2, according to Lemma 3.4. For i = 1, by Lemmas 3.3 and 3.4,

f([A12, A23]) = [A12, f(A23)]+[f(A12), A23] ∈
t∑

q=3

M1q +[M2t +M3t, A23] ⊆
t∑

q=3

M1q +M2t.

We get (3.6). Similarly, we can get (3.7). The relation (3.9) is unaffected by (3.6) and (3.7)

when i = 1 or (i, `) = (t− 4, 4). So the induction can be proceeded for char(F) = 2.

Now the range of f ∈ Der(N ) on Mij ⊆ N is limited. The next lemma explicitly

describes the f -images of each Mij ⊆ N in almost all nonzero blocks. It essentially implies

that the f -images on these blocks are the same as the images of the adjoint action of a block

upper triangular matrix. Denote the index set

Ω := {(p, q) ∈ [t]× [t] | p < q} \ {(1, t− 1), (1, t), (2, t)}. (3.10)

Lemma 3.9. Let f ∈ Der (N ). Then for any (p, q) ∈ Ω, there exists Xpq ∈Mpq such that

f(Aip)iq = −(Aip)ipXpq for all Aip ∈Mip ⊆ N , (3.11)

f(Aqj)pj = Xpq(A
qj)qj for all Aqj ∈Mqj ⊆ N . (3.12)
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Proof. Given p < q in [t], we prove (3.11) and (3.12) in the following steps:

1. We prove (3.12) for (q, j) = (t − 1, t). Then 1 < p < t − 1. For At−1,t ∈ Mt−1,t and

A1p ∈M1p,

0 = f([A1p, At−1,t])1t = [f(A1p), At−1,t]1t + [A1p, f(At−1,t)]1t

= f(A1p)1,t−1(At−1,t)t−1,t + (A1p)1pf(At−1,t)pt.

Therefore,

−f(A1p)1,t−1(At−1,t)t−1,t = (A1p)1pf(At−1,t)pt.

Applying Lemma 2.9 to φ : M1p → M1,t−1 defined by φ(C) = −f(C1p)1,t−1 and

ϕ : Mt−1,t → Mpt defined by ϕ(D) = f(Dt−1,t)pt, we will find Xp,t−1 ∈ Mp,t−1 such

that f(At−1,t)pt = Xp,t−1(At−1,t)t−1,t for all At−1,t ∈Mt−1,t.

2. Similarly, we can prove (3.11) for (i, p) = (1, 2) via Lemma 2.9. In other words, for

2 < q < t, there is −Y2q ∈M2q such that f(A12)1q = −(A12)12Y2q for all A12 ∈M12.

3. Now we prove (3.12) for (q, j) 6= (t− 1, t). Then q < t− 1. Given any j′ > j in [t], we

have Mqj′ =MqjMjj′ = [Mqj,Mjj′ ]. Then for Aqj ∈Mqj and Ajj′ ∈Mjj′ ,

f(AqjAjj′)pj′ = f([Aqj, Ajj′ ])pj′ = [f(Aqj), Ajj′ ]pj′ + [Aqj, f(Ajj′)]pj′ = f(Aqj)pj(A
jj′)jj′ .

Applying Lemma 2.7 to φ :Mqj′ →Mpj′ defined by φ(C) = f(Cqj′)pj′ and ϕ :Mqj →

Mpj defined by ϕ(D) = f(Dqj)pj, we will find Xpq ∈ Mpq such that f(Aqj)pj =

Xpq(A
qj)qj for all Aqj ∈Mqj and (q, j) 6= (t− 1, t).

4. Similarly, we can prove (3.11) for (i, p) 6= (1, 2) via Lemma 2.6. In other words,

there exists −Ypq ∈ Mpq such that f(Aip)iq = −(Aip)ipYpq for all Aip ∈ Mip and

(i, p) 6= (1, 2).
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5. Finally, for any Aip ∈Mip, Aqj ∈Mqj, we have i < p < q < j, [Aip, Aqj] = 0, so that

0 = f([Aip, Aqj])ij = [f(Aip), Aqj]ij + [Aip, f(Aqj)]ij

= f(Aip)iq(A
qj)qj + (Aip)ipf(Aqj)pj

= −(Aip)ipYpq(A
qj)qj + (Aip)ipXpq(A

qj)qj.

Therefore, Xpq = Ypq. The equalities (3.11) and (3.12) are proved.

The next lemma concerns the derivations with image in the center of N .

Lemma 3.10. Suppose f ∈ End (N ) satisfies that

f(N ) ⊆ Z(N ) =M1t, Ker f ⊇ [N ,N ] =
∑

i,j∈[t],i+1<j

Mij.

Then f ∈ Der(N ).

Proof. The f satisfying the above conditions also satisfies the derivation property:

f([N ,N ]) = 0 = [f(N ),N ] + [N , f(N )].

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. By Lemma 3.9, for (p, q) ∈ Ω we can find a matrix Xpq ∈ Mpq that

satisfies (3.11) and (3.12). Let Xpq := (Xpq)
pq ∈Mpq, and let

X0 :=
∑

(p,q)∈Ω

Xpq ∈ N , f0 := f − adX0 ∈ Der(N ). (3.13)

The equalities (3.11) and (3.12) imply that

f0(Mip)iq = 0 for all Mip ⊆ N , f0(Mqj)pj = 0 for all Mqj ⊆ N . (3.14)
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By (3.2), (3.5), and Lemma 3.4 for char(F) 6= 2, for anyMij ⊆ N , the only possibly nonzero

blocks of matrices of f0(Mij) are the (i, j) block and the following:

1. the (1, t) block when j = i+ 1, and

2. the (2, t) block when (i, j) = (1, 2), or

3. the (1, t− 1) block when (i, j) = (t− 1, t).

Define φ12
2t , φ

t−1,t
1,t−1 ∈ End(N ) such that for A ∈ N ,

φ12
2t (A) := f0(A12)2t = f(A12)2t, (3.15)

φt−1,t
1,t−1(A) := f0(At−1,t)1,t−1 = f(At−1,t)1,t−1. (3.16)

Then Lemmas 3.6 and 3.7 show that φ12
2t , φ

t−1,t
1,t−1 ∈ Der(N ). We get a derivation

f1 := f0 − φ12
2t − φ

t−1,t
1,t−1 = f − adX0 − φ12

2t − φ
t−1,t
1,t−1. (3.17)

Define ϕ1t ∈ End(N ) such that for A ∈ N ,

ϕ1t(A) :=
t−1∑
i=1

f1(Ai,i+1)1t =
t−1∑
i=1

f(Ai,i+1)1t. (3.18)

Then Lemma 3.10 implies that ϕ1t ∈ Der(N ). We get a new derivation

f2 := f1 − ϕ1t = f − adX0 − φ12
2t − φ

t−1,t
1,t−1 − ϕ1t (3.19)

where f2(Mij) ⊆Mij.

To get (3.1), it suffices to prove the following claim regarding f2: there exist X ii ∈Mii

for i ∈ [t] such that for each k ∈ [t− 1], the derivation

f
(k)
2 := f2 −

k+1∑
i=1

adX ii
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satisfies that f
(k)
2 (Mpq) = 0 for 1 ≤ p < q ≤ k + 1. The proof is done by induction on k:

1. k = 1: For any A12 ∈M12 and A23 ∈M23, we have

f2(A12A23)13 = f2([A12, A23])13 = [f2(A12), A23]13 + [A12, f2(A23)]13

= f2(A12)12(A23)23 + (A12)12f2(A23)23. (3.20)

By (2.5) in Lemma 2.10, there exist X11 ∈M11 and Y 22 ∈M22 such that

f2(A12)12 = (X11A12 + A12Y 22)12.

Define X22 := −Y 22 ∈M22. Then

f2(A12)12 = (X11A12 − A12X22)12.

Let f
(1)
2 := f2 − adX11 − adX22. Then f

(1)
2 (M12) = 0. The claim holds for k = 1.

2. k = 2: Applying (3.20) to f
(1)
2 :

f
(1)
2 (A12A23)13 = f

(1)
2 (A12)12(A23)23 + (A12)12f

(1)
2 (A23)23 = (A12)12f

(1)
2 (A23)23.

By Lemma 2.6, there exists Y 33 ∈ M33 such that f
(1)
2 (A13)13 = (A13Y 33)13 and

f
(1)
2 (A23)23 = (A23Y 33)23. DefineX33 := −Y 33 ∈M33. Then f

(1)
2 (A13)13 = (−A13X33)13

and f
(1)
2 (A23)23 = (−A23X33)23. Let f

(2)
2 := f

(1)
2 − adX33. Then f

(2)
2 (Mpq) = 0 for

1 ≤ p < q ≤ 3. So k = 2 is done.

3. k = ` > 2: Suppose the claim holds for all k < ` where ` > 2 is given. In other words,

there exist X ii ∈ Mii for all i ∈ [`] such that f
(`−1)
2 := f2 −

∑`
i=1 adX ii satisfies that

f
(`−1)
2 (Mpq) = 0 for 1 ≤ p < q ≤ `. Similar to (3.20), for any p ∈ [`− 1], Ap,` ∈ Mp,`,
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A`,`+1 ∈M`,`+1,

f
(`−1)
2 (Ap,`A`,`+1)p,`+1 = f

(`−1)
2 (Ap,`)p,`(A

`,`+1)`,`+1 + (Ap,`)p,`f
(`−1)
2 (A`,`+1)`,`+1

= (Ap,`)p,`f
(`−1)
2 (A`,`+1)`,`+1.

By Lemma 2.6, there exists Y `+1,`+1 ∈M`+1,`+1 such that

f
(`−1)
2 (Ap,`+1)p,`+1 = (Ap,`+1Y `+1,`+1)p,`+1 for all p ∈ [`].

Define X`+1,`+1 := −Y `+1,`+1 ∈M`+1,`+1. Then

f
(`−1)
2 (Ap,`+1)p,`+1 = (−Ap,`+1X`+1,`+1)p,`+1 for all p ∈ [`].

Let f
(`)
2 := f

(`−1)
2 − adX`+1,`+1. Then f

(`)
2 (Mp,`+1) = 0 for p ∈ [`]. So k = ` is proved.

Overall, the claim is completely proved; in particular, f
(t−1)
2 (N ) = 0. Let X := X0 +∑t

i=1X
ii, then we get (3.1).

3.2 Derivations of N for char(F) = 2

When char(F) = 2, Der(N ) is not completely described by Theorem 3.2. In fact,

Lemmas 3.4, 3.8, and [23, Section 2(D)] motivate us to construct the following example.

Example 3.11. Suppose char(F) = 2. Let N consist of strictly upper triangular matrices

in M4. So N has a basis B := {E12, E13, E14, E23, E24, E34}, where Eij denotes the matrix

in M4 that has the only nonzero entry 1 in the (i, j) position. Define f ∈ End(N ) by

f(E12) := −E34, f(E13) := E24, and f(E) := 0 for all other matrices E ∈ B. We prove that

f([E,E ′]) = [f(E), E ′] + [E, f(E ′)] (3.21)
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for any E,E ′ ∈ B, so that f ∈ Der(N ). There are only two cases where one side of (3.21)

is possibly nonzero:

1. {E,E ′} = {E12, E23}, where f([E,E ′]) = f(E13) = E24, [f(E), E ′] + [E, f(E ′)] = E24.

2. {E,E ′} = {E12, E13}, where f([E,E ′]) = 0, [f(E), E ′] + [E, f(E ′)] = 2E14 = 0.

Therefore, f ∈ Der(N ). However, f can not be written as in (3.1).

In Section 3.1, Lemmas 3.4 and 3.8 have special statements for char(F) = 2, while

Lemmas 3.3, 3.6, 3.7, 3.9, 3.10 remain unchanged. The following two lemmas completely

describe the images of a derivation on additional nonzero blocks when char(F) = 2.

Lemma 3.12. For f ∈ Der(N ), the images f(M12)3t and f(M13)2t satisfy the following

properties, according to the row size n1 of the first block row.

1. If n1 ≥ 2, then

f(M12)3t = 0, f(M13)2t = 0. (3.22)

2. If n1 = 1, then M12 has a basis {E12
1i | i ∈ [n2]} and M13 has a basis {E13

1j | j ∈ [n3]};

the i-th row of f(E13
1j )2t is equal to the j-th row of f(E12

1i )3t for any i ∈ [n2] and j ∈ [n3].

Conversely, any f ∈ End(N ) that satisfies f(Mij) = 0 forMij ⊆ N and (i, j) 6∈ {(1, 2), (1, 3)},

f(M12) ⊆M3t, f(M13) ⊆M2t, and the above hypothesis, is in Der(N ).

Proof. Suppose f ∈ Der(N ). Given E12
ij ∈M12 and E13

rs ∈M13,

0 = f([E12
ij , E

13
rs ])1t = [E12

ij , f(E13
rs )]1t + [f(E12

ij ), E13
rs ]1t = (E12

ij )12f(E13
rs )2t − (E13

rs )13f(E12
ij )3t.

Therefore,

(E12
ij )12f(E13

rs )2t = (E13
rs )13f(E12

ij )3t. (3.23)
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1. If n1 ≥ 2, then for a fixed E12
ij ∈ M12, we can choose r ∈ [n1] \ {i}. Comparing the

r-th rows in the equality (3.23), we see that the s-th row of f(E12
ij )3t is zero. Then

f(E12
ij )3t = 0 since s is arbitrary. Similarly, f(E13

rs )2t = 0. We get (3.22).

2. If n1 = 1, then i = r = 1 in (3.23), which implies that the j-th row of f(E13
1s )2t is equal

to the s-th row of f(E12
1j )3t.

Conversely, suppose f ∈ End(N ) satisfies that f(Mij) = 0 for Mij ⊆ N and (i, j) 6∈

{(1, 2), (1, 3)}, f(M12) ⊆ M3t, f(M13) ⊆ M2t, and the hypothesis in Lemma 3.12 (1) or

(2). When n1 ≥ 2, f ≡ 0; when n1 = 1, f satisfies (3.23) for i = r = 1 and all j ∈ [n2],

s ∈ [n3]. In both cases, f satisfies the derivation property and thus f ∈ Der(N ).

Lemma 3.13. For f ∈ Der(N ), the images f(Mt−1,t)1,t−2 and f(Mt−2,t)1,t−1 satisfy the

following properties, according to the column size nt of the last block column.

1. If nt ≥ 2, then

f(Mt−1,t)1,t−2 = 0, f(Mt−2,t)1,t−1 = 0. (3.24)

2. If n1 = 1, then Mt−1,t has a basis {Et−1,t
i1 | i ∈ [nt−1]} and Mt−2,t has a basis {Et−2,t

j1 |

j ∈ [nt−2]}; the i-th column of f(Et−2,t
j1 )1,t−1 is equal to the j-th column of f(Et−1,t

i1 )1,t−2

for any i ∈ [nt−1] and j ∈ [nt−2].

Conversely, any f ∈ End(N ) that satisfies f(Mij) = 0 for Mij ⊆ N and (i, j) 6∈ {(t −

1, t), (t − 2, t)}, f(Mt−1,t) ⊆ M1,t−2, f(Mt−2,t) ⊆ M1,t−1, and the above hypothesis, is in

Der(N ).

Proof. The proof (omitted) is similar to that of Lemma 3.12.

Now we are able to describe Der(N ) for the case char(F) = 2.
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Theorem 3.14. When char(F) = 2, every derivation f of the Lie algebra N can be (not

uniquely) written as

f = adX + ϕ1t + φ12
2t + φt−1,t

1,t−1 + ψ12;13
3t;2t + ψt−1,t;t−2,t

1,t−2;1,t−1, (3.25)

where the summand components X, ϕ1t, φ
12
2t , φt−1,t

1,t−1 are described in Theorem 3.2, and ψ12;13
3t;2t

and ψt−1,t;t−2,t
1,t−2;1,t−1 are determined as follow:

1. ψ12;13
3t;2t ≡ 0 unless the first block row of matrices of N has only one row, in which

ψ12;13
3t;2t ∈ Der(N ) maps M12 to M3t, M13 to M2t, and the other Mij ⊆ N to 0; the

explicit form of ψ12;13
3t;2t is given in Lemma 3.12;

2. ψt−1,t;t−2,t
1,t−2;1,t−1 ≡ 0 unless the last block column of matrices of N has only one column, in

which ψt−1,t;t−2,t
1,t−2;1,t−1 ∈ Der(N ) maps Mt−1,t to M1,t−2, Mt−2,t to M1,t−1, and the other

Mij ⊆ N to 0; the explicit form of ψt−1,t;t−2,t
1,t−2;1,t−1 is given in Lemma 3.13.

Proof. Given f ∈ Der(N ), we can proceed the proof of Theorem 3.2 up to (3.14). Then we

define ψ12;13
3t;2t , ψ

t−1,t;t−2,t
1,t−2;1,t−1 ∈ End(N ) such that for A ∈ N ,

ψ12;13
3t;2t (A) := f0(A12)3t + f0(A13)2t = f(A12)3t + f(A13)2t,

ψt−1,t;t−2,t
1,t−2;1,t−1(A) := f0(At−1,t)1,t−2 + f0(At−2,t)1,t−1 = f(At−1,t)1,t−2 + f(At−2,t)1,t−1.

Both linear maps are derivations by Lemmas 3.12 and 3.13. Subtracting them from f , we

can continue the remaining proof of Theorem 3.2.
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Chapter 4

Derivations of the Lie algebra of dominant upper triangular ladder matrices

In this chapter, we explicitly characterize the derivations of the Lie algebra ML of ladder

matrices in Mn associated with a dominant upper triangular (DUT) ladder L over a field

F with char(F) 6= 2, and provide some consequent results. Recall that L is a DUT ladder

of size n if and only if ML consists of block upper triangular matrices in Mn that have

zero submatrices on some preset non-consecutive diagonal blocks, corresponding to a given

ordered partition of [n] (Theorem 2.4). In the rest of this chapter, we fix the t × t block

matrix form of matrices in Mn determined by L through (2.1).

4.1 Properties of the Lie algebra of DUT ladder matrices

We describe some properties of the Lie algebra of DUT ladders matrices in this section.

We adapt the notations MB, Mij, and Mij in Definition 3.1 here. Recall that Ω(L) and

Ω(B) denote the block index set of matrices of ML and MB, respectively. We now introduce

some new notations.

Definition 4.1. 1. In Mkk, let Ikk denote the identity matrix, slkk the set of traceless

matrices, respectively.

2. Let Ikk ∈Mkk denote the matrix with the submatrix Ikk in the (k, k) block.

3. Let slkk denote the set of traceless matrices of Mkk.

A notation of double index, say Mij, may be written as Mi,j (resp. Mij as Mi,j) for

clarity purpose, as in Chapter 3.
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The normalizer N(ML) and the centralizer Z(ML) of subalgebra ML in Mn are:

N(ML) = {A ∈Mn : [A,B] ∈ML for all B ∈ML},

Z(ML) = {A ∈Mn : [A,B] = 0 for all B ∈ML}.

They are explicitly described by the following two lemmas.

Lemma 4.2. If L is a DUT ladder of size n, then N(ML) = MB, the algebra of block upper

triangular matrices in Mn.

Proof. We first show that N(ML) ⊆MB. Suppose on the contrary, there is A ∈ N(ML) such

that the (i, j) block Aij 6= 0 for some 1 ≤ j < i ≤ t. There are two cases:

1. i > j + 1: We have Mj,j+1 ⊆ ML by Theorem 2.4. So [A,Bj,j+1] ∈ ML for Bj,j+1 ∈

Mj,j+1. However, its (i, j + 1) block is

([A,Bj,j+1])i,j+1 = [Aij, (B
j,j+1)j,j+1] = Aij(B

j,j+1)j,j+1 6= {0},

which contradicts to the DUT assumption of L.

2. i = j + 1: By Theorem 2.4, either Mjj ⊆ ML or Mj+1,j+1 ⊆ ML. Without loss of

generality, supposeMjj ⊆ML. Then [A,Bjj] ∈ML for Bjj ∈Mjj. However, its (i, j)

block is

([A,Bjj])ij = Aij(B
jj)jj 6= {0},

which contradicts the DUT assumption of L.

Therefore, A ∈MB and thus N(ML) ⊆MB.

For any (i, j) ∈ [t]× [t] with i ≤ j, the possibly nonzero blocks of matrices in [Mij,ML]

are those (i, q) blocks with q ≥ j and (p, j) blocks with p ≤ i, all of which belong to ML.

Hence MB ⊆ N(ML).
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Lemma 4.3. Let L be a DUT ladder of size n, Ω(L) the block index set of matrices of ML,

and In the identity matrix in Mn.

1. If both (1, 1) and (t, t) are not in Ω(L), then Z(ML) = FIn +M1t.

2. Otherwise, Z(ML) = FIn.

Proof. Clearly Z(ML) ⊆ N(ML). The possibly nonzero blocks of any A ∈ Z(ML) are Aij

for some 1 ≤ i ≤ j ≤ t. If Aij 6= 0 and 2 ≤ i < j, then Mi−1,i ⊆ ML, and we can find

Bi−1,i ∈Mi−1,i such that

([Bi−1,i, A])i−1,j = [(Bi−1,i)i−1,i, Ai,j] 6= 0,

which contradicts to the assumption A ∈ Z(ML). Thus Aij = 0 for all 2 ≤ i < j ≤ t.

Similarly, Aij = 0 for all 1 ≤ i < j ≤ t − 1. So the only possibly nonzero blocks of

A ∈ Z(ML) are A1t and Aii for i ∈ [t].

If (1, 1) ∈ Ω(L), then 0 = [I11, A]1t = [I11, A1t] = A1t. Similarly, (t, t) ∈ Ω(L) implies

that A1t = 0. If neither (1, 1) nor (t, t) is in Ω(L), thenM1t ⊆ Z(ML) by direct computation.

Now for any i, j ∈ [t] with i < j and Bij ∈Mij ⊆ML,

0 = ([A,Bij])ij = Aii(B
ij)ij − (Bij)ijAjj.

Applying lemma 2.8, we find λ ∈ F such that Aii = λIii and Ajj = λIjj.

In summary, Z(ML) is described by the statements 1 and 2.

4.2 Derivations of the Lie algebra ML of DUT ladder matrices

We introduce the main theorem of this chapter here and provide some consequent results.

Note that the adjoint representation ad : Mn → Der(Mn) defined by adA(B) = [A,B]
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induces a Lie algebra homomorphism

ad(·)|ML : N(ML)/Z(ML)→ Der(ML), X 7→ ad(X)|ML ,

which will be used in the next theorem. Denote by ad(s)|ML the set of all ad(X)|ML for

X ∈ s and s ⊆ N(ML)/Z(ML).

Theorem 4.4. (Main theorem) Suppose char(F) 6= 2. Let L be a DUT ladder of size n with

the corresponding t× t block matrix form of matrices in Mn determined by (2.1). Then the

derivation algebra Der(ML) can be decomposed as follow:

Der(ML) = ad(N(ML)/Z(ML))|ML nD (4.1)

= (ad (ML)⊕D) o

 ⊕
(k,k)∈Ω(B)\Ω(L)

ad
(
Mkk

)
|ML

 (4.2)

where the normalizer N(ML) and the centralizer Z(ML) are described by Lemmas 4.2 and

4.3, respectively, and

D := {φ ∈ End(ML) : Kerφ ⊇ [ML,ML], Imφ ⊆ Z(ML) ∩ML}. (4.3)

Moreover, both ad(ML) and D are ideals of Der(ML).

Explicitly, we have the following cases:

1. If Ω(L) = Ω(B), i.e. ML is the Lie algebra of block upper triangular matrices in Mn,

then every f ∈ Der(ML) corresponds to an X ∈MB/FIn and c1, · · · , ct ∈ F, such that

f(A) = adX(A) +

 ∑
(k,k)∈Ω(L)

cktr(Akk)

 In for A ∈ML. (4.4)
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2. If Ω(L) 6= Ω(B) but at least one of (1, 1) and (t, t) is in Ω(L), then every f ∈ Der(ML)

corresponds to an X ∈MB/FIn, such that

f(A) = adX(A) for A ∈ML. (4.5)

3. If both (1, 1) and (t, t) are not in Ω(L), then every f ∈ Der(ML) corresponds to an

X ∈MB/(FIn +M1t) and Y 1tk ∈M1t for each (k, k) ∈ Ω(L), such that

f(A) = adX(A) +
∑

(k,k)∈Ω(L)

tr(Akk)Y 1tk for A ∈ML. (4.6)

A detailed proof of Theorem 4.4 will be given in Section 4.3. The special case ML = MB

is included in a paper of Dengyin Wang and Qiu Yu [27, Theorem 4.1]. Moreover, Daniel

Brice has obtained a formula similar to (4.1) for the derivation algebra of the parabolic

subalgebra of a reductive Lie algebra over a C-like fields or over R [4].

Example 4.5. Theorem 4.4 is not true when char(F) = 2. Consider ML = M2 with the

basis B = {E11, E12, E21, E22} where Eij denotes the matrix in M2 that has the only nonzero

entry 1 in the (i, j) position. Define f ∈ End(ML) by f(E12) = E21 and f(Eij) = 0 for

(i, j) = (1, 1), (2, 1), (2, 2). It is straightforward to verify that

f([E,E ′]) = [f(E), E ′] + [E, f(E ′)] (4.7)

for any E,E ′ ∈ B, since there are only two cases that either side of (4.7) is nonzero:

{E,E ′} = {E11, E12} or {E12, E22}. Therefore f ∈ Der(ML). However, f is not an element

of ad(N(ML)/Z(ML))|ML nD in (4.1).

Corollary 4.6. Suppose char(F) 6= 2. Let L be a DUT ladder of size n. If Ω(L) 6= Ω(B),

then every f ∈ Der(ML) maps Mij ⊆ ML for (i, j) ∈ Ω(L) to a sum of Mpq ⊆ ML for

some (p, q) ∈ Ω(L) such that p ≤ i ≤ j ≤ q.
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Proof. The corollary is a direct consequence of Theorem 4.4(2) and (3).

In general, Corollary 4.6 may not be true if L is not a DUT ladder which can be seen

via the following example.

Example 4.7. Suppose F is an arbitrary field. Let L = {(1, 2), (3, 4)} be a ladder of size 5.

Then L is not DUT ladder. The Lie algebra ML has the following block form:



0 a12 a13 a14 a15

0 0 0 a24 a25

0 0 0 a34 a35

0 0 0 0 0

0 0 0 0 0


, aij ∈ F.

So ML has a basis B = {E12, E13, E14, E15, E24, E25, E34, E35} where Eij denote the matrix

in M5 that has the only nonzero entry 1 in the (i, j) position. Given a, b ∈ F, define f ∈

End(ML) by

f(E12) : =



0 0 0 0 0

0 0 0 0 0

0 0 0 a b

0 0 0 0 0

0 0 0 0 0


, f(E13) :=



0 0 0 0 0

0 0 0 a b

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

and f(E) = 0 for all other matrices E in the basis B. We prove that

f([E,E ′]) = [f(E), E ′] + [E, f(E ′)] for all E,E ′ ∈ B, (4.8)

so that f is a derivation of ML. On one hand, [E,E
′
] ∈ span{E14, E15} and thus f([E,E

′
]) =

0; on the other hand, in (4.8), [f(E), E
′
] 6= 0 or [E, f(E

′
)] 6= 0 only when {E,E ′} =
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{E12, E13}, for which the equality (4.8) is easily verified. Therefore, f ∈ Der(ML). However,

f maps M12 into M23.

An important family of ladders is that of “1-step” ladders L = {(i, j)} of size n. Many 1-

step ladders are DUT. The derivations of the Lie algebras ML associated with these ladders

over F with char(F) 6= 2 are explicitly characterized in the following example by using

Theorem 4.4.

Example 4.8. Suppose char(F) 6= 2. Let L = {(i, j)} be a 1-step ladder of size n.

1. If i < j, then ML is abelian and it is straightforward to check that every endomorphism

of ML is a derivation.

2. If i = n or j = 1, then there are three cases:

(a) If i = n and j = 1, then ML = Mn, and Der(ML) = Der(Mn).

(b) If i 6= n and j = 1, then we can consider

ML =


A11 A12

0 0

 ∈Mn : A11 ∈M11, A12 ∈M12

 , and

Der(ML) = ad


X11 X12

0 X22

 : X11 ∈M11, X12 ∈M12, X22 ∈M22


∣∣∣∣∣∣∣
ML

.

(c) If i = n and j 6= 1, then we can consider

ML =


 0 A12

0 A22

 ∈Mn : A12 ∈M12, A22 ∈M22

 , and

Der(ML) = ad


X11 X12

0 X22

 : X11 ∈M11, X12 ∈M12, X22 ∈M22


∣∣∣∣∣∣∣
ML

.
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3. If n > i ≥ j > 1, then we can consider

ML =




0 A12 A13

0 A22 A23

0 0 0

 ∈Mn : Aij ∈Mij

 , and

Der(ML) = ad




X11 X12 X13

0 X22 X23

0 0 X33




∣∣∣∣∣∣∣∣∣∣
ML

n

fY : fY (A) = tr(A22)


0 0 Y

0 0 0

0 0 0




where Xij ∈Mij and Y ∈M13.

Note that the cases (2) and (3) are direct consequence of Theorem 4.4.

4.3 Proof of Theorem 4.4

We give a proof Theorem 4.4 here. In the rest of this section, we assume that F is a

field with char(F) 6= 2, and L is a DUT ladder of size n. Recall that Eij
pq denote the (p, q)

standard matrix in Mij (Definition 3.5).

Before proving the Theorem 4.4, we first present several results on the images f(Mij)

for f ∈ Der(ML) and Mij ⊆ ML. The next lemma concerns the f -image of some special

matrices on the diagonal blocks of matrices of ML.

Lemma 4.9. For f ∈ Der(ML), the f -images of Ikk, Ekk
`,` ∈Mkk satisfy that

f(Ikk), f(Ekk
`,`) ∈

k−1∑
i=1

Mik +
t∑

j=k+1

Mkj + (Z(ML) ∩ML) (4.9)
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where (by Lemma 4.3)

Z(ML) ∩ML =


FIn if Ω(L) = Ω(B);

M1t if (1, 1) 6∈ Ω(L) and (t, t) 6∈ Ω(L);

0 otherwise.

(4.10)

Proof. We prove (4.9) for f(Ikk) here, and the case of f(Ekk
`` ) is similar.

1. First we investigate f(Ikk)jj. When k < j,

f(Akj)kj = f([Ikk, Akj])kj = [f(Ikk), Akj]kj + [Ikk, f(Akj)]kj

= f(Ikk)kk(Akj)kj − (Akj)kjf(Ikk)jj + f(Akj)kj

Therefore

f(Ikk)kk(Akj)kj = (Akj)kjf(Ikk)jj for Akj ∈Mkj.

Lemma 2.8 implies that f(Ikk)kk = λIkk and f(Ikk)jj = λIjj for a λ ∈ F. The same

equation holds for k > j. In the situation Ω(L) 6= Ω(B), there exists (p, p) /∈ Ω(L),

which forces f(Ikk)pp = 0 and thus f(Ikk)jj = 0 for all j ∈ [t].

2. Next we prove that f(Ikk)ij = 0 for i < j, i 6= k, j 6= k, and (i, j) 6= (1, t). Either i > 1

or j < t. Without loss of generality, suppose j < t (similarly for i > 1). Then

f([Ikk, Ajt])it = [f(Ikk), Ajt]it + [Ikk, f(Ajt)]it. (4.11)

(a) If k 6= t, then (4.11) becomes 0 = f(Ikk)ij(A
jt)jt for any Ajt ∈Mjt. So f(Ikk)ij =

0.

(b) If k = t, then (4.11) becomes

−f(Ajt)it = f(Ikk)ij(A
jt)jt − f(Ajt)it.
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Again we get 0 = f(Ikk)ij(A
jt)jt and thus f(Ikk)ij = 0.

3. Finally, if (1, 1) ∈ Ω(L) or (t, t) ∈ Ω(L), say (1, 1) ∈ Ω(L), then for any (k, k) ∈ Ω(L)

and k 6∈ {1, t},

0 = f([I11, Ikk])1t = [f(I11), Ikk]1t + [I11, f(Ikk)]1t = f(Ikk)1t.

Lemma 4.3 implies (4.10). Therefore, (4.9) is proved.

For (p, q) ∈ Ω(L), we have

Mpq ∩ [ML,ML] =


slpp, if p = q;

Mpq, if p < q.

Next we investigate the image of f ∈ Der(ML) on each block in [ML,ML].

Lemma 4.10. For f ∈ Der(ML), (p, q) ∈ Ω(L), and Apq ∈Mpq ∩ [ML,ML],

f(Apq) ∈Mpq +

p−1∑
i=1

Miq +
t∑

j=q+1

Mpj. (4.12)

Proof. There are two cases for (p, q) ∈ Ω(L):

1. p = q: Then Mpq ∩ [ML,ML] = slpp = [slpp, slpp]. For Bpp, Cpp ∈ slpp,

f([Bpp, Cpp]) = [f(Bpp), Cpp] + [Bpp, f(Cpp)]. (4.13)

Since f(Bpp) and f(Cpp) are block upper triangular matrices, the nonzero (i, j) blocks

of the right side of (4.13) satisfy that p = i ≤ j or i ≤ j = p. Thus (4.12) holds in this

case.
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2. p < q: Then Mpq ∩ [ML,ML] =Mpq. Let q = p+ k and we prove (4.12) by induction

on k. For better display, we also use {·}ij here to denote the embedding of Mij to

Mij ⊆Mn.

(a) k = 1: By Theorem 2.4, at least one of (p, p) and (p+1, p+1) is in Ω(L). Without

lost of generality, suppose (p, p) ∈ Ω(L). Then for Ap,p+1 ∈Mp,p+1,

f(Ap,p+1) = f([Ipp, Ap,p+1])

= [f(Ipp), Ap,p+1] + [Ipp, f(Ap,p+1)]

=

p−1∑
i=1

{
f(Ipp)ip(A

p,p+1)p,p+1

}i,p+1
+

t∑
j=p+1

{
f(Ap,p+1)pj

}pj − p−1∑
i=1

{
f(Ap,p+1)ip

}ip
where the last equality is given by Lemma 4.9. Therefore,

f(Ap,p+1) +

p−1∑
i=1

{
f(Ap,p+1)ip

}ip
=

p−1∑
i=1

{f(Ipp)ipAp,p+1}i,p+1 +
t∑

j=p+1

{
f(Ap,p+1)pj

}pj
On one hand, as char(F) 6= 2, the nonzero blocks on the left side of the above

equality are those of f(Ap,p+1); on the other hand, the right side of this equality

has nonzero (i, j) blocks only for 1 ≤ i ≤ p−1 < p+1 = j or i = p < p+1 ≤ j ≤ t.

So k = 1 is done.

(b) k = `: Suppose the statement is true for all k < ` where ` ≥ 2. Now Mp,p+` =

[Mp,p+1,Mp+1,p+`], and

f([Bp,p+1, Cp+1,p+`]) = [f(Bp,p+1), Cp+1,p+`] + [Bp,p+1, f(Cp+1,p+`)]

By induction hypothesis, f(Bp,p+1) has nonzero blocks only on the p block row

and the (p+1) block column in the upper right direction of (p, p+1) block, so that

[f(Bp,p+1), Cp+1,p+`] has nonzero blocks only on the (p + `) block column above

the (p, p+ `) block and on the (p, p+ `) block. Similarly, [Bp,p+1, f(Cp+1,p+`)] has
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nonzero blocks only on the p block row to the right of the (p, p+ `) block and on

the (p, p+ `) block. So (4.12) is true for k = `.

(c) Overall, (4.12) is verified for all the cases.

Now we are ready to prove Theorem 4.4. The basic idea is to explore what remain in

Der(ML) after factoring out ad (N(ML)) |ML = ad (MB) |ML . Given X ∈MB, A ∈ML,

adX(A) =
∑

(p,q)∈Ω(B)

∑
(i,j)∈Ω(L)

[Xpq, Aij].

A summand [Xpq, Aij] is nonzero only if i = q or p = j. In other words, adXpq has nonzero

action only on the q block row or the p block column of A. It motivates us to investigate

the relationship of f(Aip) and f(Aqj) for given f ∈ Der(ML) and 1 ≤ p ≤ q ≤ t.

Proof of Theorem 4.4.

1. If Ω(L) = Ω(B) i.e. ML is the Lie algebra of block upper triangular matrices of Mn,

by [27, Theorem 4.1] and the assumption char(F) 6= 2, every f ∈ Der(ML) corresponds

to X ∈ML and µ ∈ML∗ such that

f(A) = adX(A) + µ(A)In.

Then µ([ML,ML]) = 0 by derivation property. All Mij with i < j are in [ML,ML].

So µ(A) =
∑

k∈[t] µ(Akk). Recall that the (p, q) standard matrix in Mij is denoted by

Eij
pq. Given k ∈ [t], we have Akk − tr(Akk)Ekk

11 ∈ [ML,ML] so that

µ
(
Akk
)

= tr(Akk)µ
(
Ekk

11

)
.
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Denote ck = µ
(
E

[kk]
11

)
. Then

f(A) = adX(A) +

∑
k∈[t]

cktr(Akk)

 In.

This is (4.4). The formulae (4.1) and (4.2) for Ω(L) = Ω(B) immediately follow.

2. In the remaining of the proof, we assume Ω(L) 6= Ω(B), so that matrices of ML have

at least one zero submatrix on diagonal blocks.

Suppose (k, k) ∈ Ω(L). For any A,B ∈Mkk, Akk, Bkk ∈Mkk and

f([Akk, Bkk])kk = [f(Akk)kk, (B
kk)kk] + [Akk, f(Bkk)kk].

So f(·kk)kk : Mkk → Mkk, (A 7→ Akk 7→ f(Akk)kk), is a derivation of Mkk. Since

char(F) 6= 2, according to [27, Corollary 5.1] 1, there is Xkk ∈ Mkk and λk ∈ F such

that

f(Akk)kk = [Xkk, (A
kk)kk] + λktr(Akk)Ikk for Akk ∈Mkk.

We prove that λk = 0 for all k. Recall that Eij
pq denotes the (p, q) standard matrix in

Mij. If we set up Akk = Ekk
11 . On one hand, the (1, 1) entry of

f(Ekk
11 )kk = [Xkk, (E

kk
11 )kk] + λkIkk

equals λk. On the other hand, for any ` ∈ [t] with ` > k,

f(Ek`
11)k` = f([Ekk

11 , E
k`
11])k` = [f(Ekk

11 ), Ek`
11]k` + [Ekk

11 , f(Ek`
11)]k`

= f(Ekk
11 )kk(Ek`

11)k` − (Ek`
11)klf(Ekk

11 )`` + (Ekk
11 )kkf(Ek`

11)k`.

1Der (gl(m,F)) has additional elements when char(F) = 2 and m = 2 [27, Corollary 5.1].
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Therefore,

f(Ekk
11 )kk(Ek`

11)k` = (Ikk − (Ekk
11 )kk)f(Ek`

11)k` + (Ek`
11)k`f(Ekk

11 )``.

Comparing the (1, 1) entry of both sides, we see that the (1, 1) entries of f(Ekk
11 )kk and

f(Ekk
11 )`` are equal. The same result holds for ` < k. By assumption Ω(L) 6= Ω(B),

there exists (`, `) 6∈ Ω(L), where f(Ekk
11 )`` = 0. Hence λk = 0. Overall, for any

(k, k) ∈ Ω(L), there exists Xkk ∈Mkk such that

f(Akk)kk = [Xkk, (A
kk)kk] for all A ∈Mkk.

3. Given p, q ∈ [t] and p < q, we claim that there exists Xpq ∈Mpq such that

f(Aip)iq = adXpq(A
ip)ip, for any (i, p) ∈ Ω(L), and (4.14)

f(Aqj)pj = adXpq(A
qj)qj, for any (q, j) ∈ Ω(L). (4.15)

There are several situations:

(a) Suppose (q, j) = (t, t) ∈ Ω(L). For any A,B ∈Mtt, A
tt, Btt ∈Mtt and

f([Att, Btt])pt = [f(Att), Btt]pt + [Att, f(Btt)]pt = f(Att)pt(B
tt)tt − f(Btt)ptA

tt
tt.

Recall that Ikk denote the matrix of Mkk with the identity matrix Ikk in the

(k, k) block. Set Btt = I tt. Then f(Att)pt = f(I tt)pt(A
tt)tt for Att ∈ Mtt. Denote

Xpt := f(I tt)pt ∈Mpt. We have f(Att)pt = Xpt(A
tt)tt and so

f(Att)pt = adXpt(A
tt)tt for all A = (Att)tt ∈Mtt.
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(b) Suppose (i, p) = (1, 1) ∈ Ω(L). Similarly, let Y1q := −f(I11)1q ∈M1q then

f(A11)1q = −(A11)11Y1q = adY1q(A
11)11 for all A = (A11)11 ∈M11.

(c) Suppose (q, j) ∈ Ω(L) \ {(t, t)}. Either q < t or j < t. Without loss of generality,

suppose j < t. Let j′ := j + 1. Then (j, j′), (q, j′), (p, j), (p, j′) ∈ Ω(L), and

Mqj′ = MqjMjj′ = [Mqj,Mjj′ ]. For A ∈ Mqj, A
qj ∈ Mqj; B ∈ Mjj′ , B

jj′ ∈

Mjj′ , and

f(AqjBjj′)pj′ = f([Aqj, Bjj′ ])pj′ = [f(Aqj), Bjj′ ]pj′+[Aqj, f(Bjj′)]pj′ = f(Aqj)pj(B
jj′)jj′ .

Applying Lemma 2.7 to φ : Mqj′ → Mpj′ defined by φ(C) := f(Cqj′)pj′ and

ϕ :Mqj →Mpj defined by ϕ(D) := f(Dqj)pj, we can find Xpq ∈ Mpq such that

f(Aqj)pj = Xpq(A
qj)qj for A = (Aqj)qj ∈ Mqj, and f(F qj′)pj′ = Xpq(F

qj′)qj′ for

F = (F qj′)qj′ ∈Mqj′ . In particular, Xpq is independent of j. So

f(Aqj)pj = adXpq(A
qj)qj for A = (Aqj)qj ∈Mqj.

(d) Suppose (i, p) ∈ Ω(L)\{(1, 1)}. Either i > 1 or p > 1. Without loss of generality,

suppose i > 1 (similarly for p > 1). Let i′ := i−1. Then (i′, i), (i′, p), (i, q), (i′, q) ∈

Ω(L), and Mi′p =Mi′iMip = [Mi′i,Mip]. For B ∈ Mi′i, B
i′i ∈ Mi′i; A ∈ Mip,

Aip ∈Mip, and

f(Bi′iAip)i′q = f([Bi′i, Aip])i′q = [f(Bi′i), Aip]i′q+[Bi′i, f(Aip)]i′q = (Bi′i)i′if(Aip)iq.

Applying Lemma 2.6 to φ : Mi′p → Mi′q defined by φ(C) := f(Ci′p)i′q and

ϕ : Mip → Miq defined by ϕ(D) := f(Dip)iq, we can find Zpq ∈ Mpq such

that f(Aip)iq = (Aip)ipZpq for A = (Aip)ip ∈ Mip, and f(F i′p)i′q = (F i′p)i′pZpq
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for F = (F i′p)i′p ∈ Mi′p. Define Ypq := −Zpq ∈ Mpq. In particular, Ypq is

independent of i. So

f(Aip)iq = adYpq(A
ip)ip, for A = (Aip)ip ∈Mip.

(e) Given any (i, p), (q, j) ∈ Ω(L), we have [Aip, Aqj] = 0, so that

0 = f([Aip, Aqj])ij = [f(Aip), Aqj]ij + [Aip, f(Aqj)]ij

= f(Aip)iq(A
qj)qj + (Aip)ipf(Aqj)pj

= −(Aip)ipYpq(A
qj)qj + (Aip)ipXpq(A

qj)qj.

Therefore, Xpq = Ypq.

Overall, we successfully find Xpq ∈ Mpq that satisfies (4.14) and (4.15). Let Xpq =

(Xpq)
pq ∈Mpq.

4. From 2 and 3, we can construct a matrix in ML:

X0 :=
∑

(k,k)∈Ω(L)

Xkk +
∑

1≤p<q≤t

Xpq.

Define the derivation

f1 := f − adX0. (4.16)

Then for any (k, k) ∈ Ω(L), 1 ≤ p < q ≤ t, and (i, p), (q, j) ∈ Ω(L), we have

f1(Mkk)kk = 0, f1(Mip)iq = 0, f1(Mqj)pj = 0.
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By Lemmas 4.9 and 4.10, f1 belong to the following set:

D0 := {g ∈ Der(ML) | g(Mkk) ∈ Z(ML) ∩ML for (k, k) ∈ Ω(L),

g(Mpq) ⊆Mpq for 1 ≤ p < q ≤ t}. (4.17)

It remains to describe the subalgebra D0 of Der(ML).

5. Given f ′ ∈ Der(ML), p, q ∈ [t] with p < q, and k ∈ [t] with p ≤ k ≤ q, Lemmas 4.9

and 4.10 imply that

f ′(ApkAkq)pq = f ′([Apk, Akq])pq = [f ′(Apk), Akq]pq + [Apk, f ′(Akq)]pq

= f ′(Apk)pk(Akq)kq + (Apk)pkf
′(Akq)kq. (4.18)

This formula will be frequently used in the following computations.

6. We prove the following claim regarding f1 defined in (4.16): there exist Y ii ∈ Mii for

i ∈ [t], such that for each k ∈ [t], the derivation f
(k)
1 :=

(
f1 −

∑k
i=1 adY ii

)∣∣∣
ML

has the

images 
f

(k)
1 (Mqq) = f1(Mqq), for (q, q) ∈ Ω(L), q ≤ k;

f
(k)
1 (Mpq) = 0, for (p, q) ∈ Ω(L), 1 ≤ p < q ≤ k.

(4.19)

Moreover, Y ii ∈ FI ii whenever (i, i) ∈ Ω(L).

The proof is proceeded by induction on k:

(a) k = 1 and 2: There are two subcases:

• If (1, 1) ∈ Ω(L), we let Y 11 = 0 ∈M11 so that f
(1)
1 = f1. By (4.18),

f
(1)
1 (A11A12)12 = f

(1)
1 (A11)11(A12)12 + (A11)11f

(1)
1 (A12)12 = (A11)11f

(1)
1 (A12)12.
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By Lemma 2.6, there exists Z22 ∈ M22, such that f
(1)
1 (A12)12 = (A12Z22)12.

Define Y 22 = −Z22. Then f
(1)
1 (A12)12 = −(A12Y 22)12. Let f

(2)
1 = f

(1)
1 −

adY 22. Then f
(2)
1 (A12) = 0. If furthermore (2, 2) ∈ Ω(L), then by (4.18),

0 = f
(2)
1 (A12A22)12 = f

(2)
1 (A12)12(A22)22 + (A12)12f

(2)
1 (A22)22 = (A12)12f

(2)
1 (A22)22.

Thus

0 = f
(2)
1 (A22)22 = f1(A22)22 − ([Y 22, A22])22 = −([Y 22, A22])22.

So Y 22 ∈ FI22 and f
(2)
1 (A22) = f1(A22). The claim holds for k = 1, 2.

• If (1, 1) 6∈ Ω(L), then (2, 2) ∈ Ω(L) by Theorem 2.4. By (4.18),

f1(A12A22)12 = f1(A12)12(A22)22 + (A12)12f1(A22)22 = f1(A12)12(A22)22.

By Lemma 2.7, there exists Y 11 ∈ M11 such that f1(A12)12 = (Y 11A12)12.

Let Y 22 = 0 ∈ M22, f
(1)
1 = f1 − adY 11, and f

(2)
1 = f

(1)
1 − adY 22. Then the

claim holds for k = 1, 2.

(b) k = ` > 2: Suppose the claim holds for k = ` − 1 ≥ 2. So there exist Y 11 ∈

M11, · · · , Y `−1,`−1 ∈M`−1,`−1, such that f
(`−1)
1 := f1−

∑`−1
i=1 adY ii satisfies (4.19)

for k = `− 1. Clearly f
(`−1)
1 ∈ D0. For any p ∈ [`− 2], by (4.18),

f
(`−1)
1 (Ap,`−1A`−1,`)p` = f

(`−1)
1 (Ap,`−1)p,`−1(A`−1,`)`−1,` + (Ap,`−1)p,`−1f

(`−1)
1 (A`−1,`)`−1,`

= (Ap,`−1)p,`−1f
(`−1)
1 (A`−1,`)`−1,`.

By Lemma 2.6, there exists Z`` ∈M``, such that

f
(`−1)
1 (Ap`)p` = (Ap`Z``)p` for all p ∈ [`− 1].
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Define Y `` = −Z``. Let f
(`)
1 := f

(`−1)
1 − adY ``. Then f

(`)
1 (Ap`) = 0 for p ∈ [`− 1].

In the case (`, `) ∈ Ω(L), by (4.18),

0 = f
(`)
1 (A`−1,`A``)`−1,` = f

(`)
1 (A`−1,`)`−1,`(A

``)`` + (A`−1,`)`−1,`f
(`)
1 (A``)``

= (A`−1,`)`−1,`f
(`)
1 (A``)``.

So

0 = f
(`)
1 (A``)`` =

(
f1 −

∑̀
i=1

adY ii

)
(A``)`` = −([Y ``, A``])``.

Thus Y `` ∈ FI`` and f
(`)
1 (A``) = f1(A``). The claim is proved for k = `.

(c) Overall, the claim holds for every k ∈ [t].

7. The derivation f
(t)
1 = f1−

∑t
i=1 adY ii sends eachMkk for (k, k) ∈ Ω(L) to Z(ML)∩ML,

and Mpq for 1 ≤ p < q ≤ t to 0. For any A,B ∈ML,

f
(t)
1 ([A,B]) = [f

(t)
1 (A), B] + [A, f

(t)
1 (B)] = 0.

Therefore, f
(t)
1 ∈ D for D defined in (4.3). Every φ ∈ D satisfies φ([A,B]) = 0 =

[φ(A), B] + [A, φ(B)] for A,B ∈ML. Thus D ⊆ DerML. So far we have

Der(ML) = (adMB) |ML +D.

If (1, 1) ∈ Ω(L) or (t, t) ∈ Ω(L), then Z(ML) ∩ML = 0 implies that D = 0. We get

(4.5).

If neither (1, 1) nor (t, t) is in Ω(L), then Z(ML)∩ML =M1t. The set {Ekk
11 | (k, k) ∈

Ω(L)} spans a subalgebra complement to [ML,ML] in ML. By a similar calculation as
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in 1, one can show that for any φ ∈ D and A ∈ML,

φ(A) =
∑

(k,k)∈Ω(L)

φ(Akk) =
∑

(k,k)∈Ω(L)

tr(Akk)φ(Ekk
11 ).

Denote Y 1tk := φ(Ekk
11 ) ∈M1t for (k, k) ∈ Ω(L). We get (4.6).

In all the cases, the equations (4.5) and (4.6) as well as (4.4) imply (4.1) and (4.2) by

a easy computation. So Theorem 4.4 is completely proved.
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Chapter 5

Derivations of the Lie algebra [ML,ML] associated with a strongly dominant upper

triangular ladder L

Recall that a ladder L = {(i1, j1), · · · , (is, js)} of size n is called strongly dominant

upper triangular (SDUT) if j` < i` < j`+1 for ` ∈ [s − 1] (Definition 2.2). In this chapter,

we give an explicit description of the derivations of the Lie algebra [ML,ML] for an SDUT

ladder L of size n over a field F with char(F) 6= 2, 3. The Lie algebra [ML,ML] consists of

matrices of ML that have a submatrix of zero trace on every diagonal block. In the rest of

this chapter, we fix the t× t block matrix form of matrices in Mn determined by L through

(2.1). Let us make the following notation.

Definition 5.1. Given an upper triangular ladder L of size n, let M0
L denote the Lie subal-

gebra of ML consisting of matrices that have zero trace on every diagonal block.

Any derivation of a Lie algebra g preserves derived series of g. Given an upper triangular

ladder L, the derived series of ML is

ML = M
(0)
L DM

(1)
L DM

(2)
L D · · · , M

(k)
L := [M

(k−1)
L ,M

(k−1)
L ].

The following observations are straightforward in the view point of block matrix form:

1. When k ≥ 1, each M
(k)
L = M0

Lk for some upper triangular ladder Lk contained in L.

2. The Lie algebra ML is non-solvable if and only if its derived series terminates at a

nonzero M0
L∗ , where L∗ is the maximal SDUT ladder contained in L. Precisely,

L∗ = {(i`, j`) ∈ L | i` > j`}.
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Example 5.2. In M8, the forms of ML, ML∗, and M0
L∗ associate with an upper triangular

ladder L = {(2, 1), (3, 3), (4, 4), (7, 6)} of size 8 are illustrated below. In particular, we see

that L∗ = {(2, 1), (7, 6)} is an SDUT of size 8.

ML ML∗ M0
L∗



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗





∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

0





a ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ −a ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 ∗ ∗ ∗

b ∗ ∗

∗ −b ∗

0



The above observations indicate that the structure of Der(M0
L) associated with an SDUT

ladder L will be useful in finding the derivations of non-solvable Lie algebras of upper trian-

gular ladder matrices.

5.1 Some linear transformations between matrix spaces sln and Mm,n

In this section, we describe some linear transformations between matrix spaces sln and

Mm,n that satisfy some special properties. Let E
(mn)
pq ∈Mm,n denote the the matrix with the

only nonzero entry 1 in the (p, q) position. We first give two lemmas similar to Lemmas 2.6

and 2.7.

Lemma 5.3. Suppose n ≥ 2. If linear transformations φ : Mm,n →Mm,q and ϕ : sln →Mn,q

satisfy that

φ(AB) = Aϕ(B) for all A ∈Mm,n, B ∈ sln, (5.1)

then there is X ∈Mn,q such that φ(C) = CX for C ∈Mm,n and ϕ(D) = DX for D ∈ sln.
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Lemma 5.3 is very similar to a special case (p = n) of Lemma 2.6, except that the

domain of ϕ is sln instead of Mn,n = Mn. The proof of Lemma 5.3 (omitted) is totally

parallel to that of Lemma 2.6, using the key fact that {E(mn)
1j B | j ∈ [n], B ∈ sln} still spans

the first row space of Mm,n. Similarly, we have the following lemma.

Lemma 5.4. Suppose n ≥ 2. If linear transformations φ : Mn,q →Mm,q and ϕ : sln →Mm,n

satisfy that

φ(BA) = ϕ(B)A for all A ∈Mn,q, B ∈ sln, (5.2)

then there is X ∈Mm,n such that φ(C) = XC for C ∈Mn,q and ϕ(D) = XD for D ∈ sln.

Next we give two lemmas related to the Lie bracket operation.

Lemma 5.5. Suppose char(F) 6= 2, 3. If a linear transformation φ : sln → Mn,m satisfies

that

φ(AB −BA) = Aφ(B)−Bφ(A), for all A,B ∈ sln, (5.3)

then there is X ∈Mn,m such that φ(C) = CX for C ∈ sln.

Proof. The case n = 1 is obviously true. We now assume that n ≥ 2. Let {Eij | i, j ∈ [n]}

be the standard basis of Mn. Then sln has the standard basis {Eij | i, j ∈ [n], i 6= j} ∪ {Hi |

i ∈ [n− 1]}, where Hi := Eii − Ei+1,i+1. We have Mn = sln ⊕ FE11.

First we prove that the only possibly nonzero row of φ(Eij) (i 6= j) is the i-th row, and

the only possibly nonzero rows of φ(Hi) = φ(Eii−Ei+1,i+1) (i ∈ [n− 1]) are the i-th and the

(i+ 1)-th rows.

Suppose i, j ∈ [n] with i < j. Denote E := Eij, F := Eji, and H := Eii − Ejj. Then

2φ(E) = φ([H,E]) = Hφ(E)− Eφ(H) =⇒ (2In −H)φ(E) = −Eφ(H).

When char(F) 6= 2, 3, the matrix 2In −H = diag(2, 2, · · · , 1
i
, · · · , 3

j
, · · · , 2) is invertible and

diagonal. The matrix (2In−H)−1 is again diagonal with 1 as the i-th diagonal entry. So we
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have

φ(E) = −(2In −H)−1Eijφ(H) = −Eijφ(H).

In particular, φ(Eij) = φ(E) has zeros outside of the i-th row. Similar argument works for

Eji.

For Hi = Eii − Ei+1,i+1, we have

φ(Hi) = φ([Ei,i+1, Ei+1,i]) = Ei,i+1φ(Ei+1,i)− Ei+1,iφ(Ei,i+1).

Therefore, φ(Hi) has zeros outside of the i-th and the (i+ 1)-th rows.

Next we extend the map φ from the domain sln to the domain Mn such that property

(5.3) still hold in Mn. Define the linear transformation φ+ : Mn →Mn,m as follow:


φ+(A) = φ(A), for A ∈ sln;

φ+(E11) = E12φ(E21).

Then φ+ is an extension of φ from sln to Mn. To verify (5.3)-like property for φ+ in Mn, it

suffices to prove the following equality for all A in the standard basis of sln:

φ+(E11A− AE11) = E11φ
+(A)− Aφ+(E11) = E11φ(A)− AE12φ(E21). (5.4)

1. A = E1j, 1 6= j ∈ [n]: the left side of (5.4) is φ+(E1j) = φ(E1j). The right side of (5.4)

is E11φ(E1j). Both sides are clearly equal since φ(E1j) has zero entries outside of the

first row.

2. A = Ei1, 1 6= i ∈ [n]: the proof is similar.

3. A = Eij, i, j ∈ [n] \ {1}, i 6= j: both sides of (5.4) are zero.
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4. A = H1 = E11 − E22: the left side of (5.4) is zero. The right side of (5.4) is

E11φ(H1)−H1E12φ(E21) = E11φ(H1)− E12φ(E21).

We have

−2φ(E21) = φ([H1, E21]) = H1φ(E21)− E21φ(H1) = −φ(E21)− E21φ(H1),

where the last equality holds since φ(E21) has zeros outside of the second row. There-

fore, φ(E21) = E21φ(H1), and the right side of (5.4) is

E11φ(H1)− E12φ(E21) = E11φ(H1)− E12E21φ(H1) = 0.

So both sides are equal.

5. A = Hi, i ∈ [n− 1] \ {1}: Both sides of (5.4) are clearly zero.

Overall, (5.4) is proved. We have

φ+(AB −BA) = Aφ+(B)−Bφ+(A), for all A,B ∈Mn. (5.5)

Finally, let B = In in (5.5), then

0 = Aφ+(In)− Inφ+(A) ⇒ φ+(A) = Aφ+(In).

Setting X := φ+(In), we get φ(A) = AX for all A ∈ sln.

Similarly, we have the following result.

Lemma 5.6. Suppose char(F) 6= 2, 3. If a linear transformation φ : sln → Mm,n satisfies

that

φ(AB −BA) = φ(A)B − φ(B)A, for all A,B ∈ sln, (5.6)
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then there is X ∈Mm,n such that φ(C) = XC for C ∈ sln.

The statements of Lemmas 5.5 and 5.6 also hold when char(F) = 2, but the proofs

should be adjusted slightly. We will not need the case char(F) = 2 here. The following

counterexample shows that Lemma 5.5 is not true when char(F) = 3. Likewise for Lemma

5.6.

Example 5.7. Suppose char(F) = 3. In M2, let H := E11 − E22, and φ : sl2 → M2 the

linear map given by

φ(E12) := E21, φ(E21) := 0, φ(H) := 0.

Then φ satisfies (5.3) since

φ([H,E12]) = 2φ(E12) = 2E21 = −E21 = Hφ(E12)− E12φ(H),

φ([H,E21]) = −2φ(E21) = 0 = Hφ(E21)− E21φ(H),

φ([E12, E21]) = φ(H) = 0 = E12φ(E21)− E21φ(E12).

However, there is no X ∈M2 such that φ(E12) = E21 = E12X.

5.2 Derivations of the Lie algebra M0
L associated an SDUT ladder L

In this section, we state the theorem about the derivations of the Lie algebra M0
L asso-

ciated with an SDUT ladder L over a field F with char(F) 6= 2, 3. We recall that the MB

denote Lie algebra of block upper triangular matrices in Mn.

Theorem 5.8. Suppose char(F) 6= 2, 3. Let L be an SDUT ladder of size n. Then every

derivation f ∈ Der(M0
L) can be extended to a derivation f+ ∈ Der(ML) such that f+|M0

L
= f .

In particular, there exists a block upper triangular matrix X ∈MB such that

f(B) = adX(B) = [X,B], for all B ∈M0
L. (5.7)
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We can write

Der(M0
L) = ad(N(ML)/Z(ML))|M0

L
. (5.8)

The proof of Theorem 5.8 will be given in next section, after we present several auxiliary

lemmas and their proofs.

Example 5.9. When char(F) = 2 or 3, we show by counterexamples that Der(M0
L) is not in

the form of (5.8).

• char(F) = 2: Let ML = M2, so that M0
L = sl2. Let f be the derivation of M2 given in

Example 4.5, that is, f(E12) = E21, and f(Eij) = 0 for (i, j) ∈ {(1, 1), (2, 2), (2, 1)}.

Then f |sl2 is a derivation of sl2. However, there is no X ∈ MB = M2 such that

f |sl2(E12) = [X,E12].

• char(F) = 3: Let L = {(2, 1)} be a ladder in M4. Then M0
L consists of matrices in M4

that takes the following forms:



a11 a12 a13 a14

a21 −a11 a23 a24

0 0 0 0

0 0 0 0


, aij ∈ F.

So M0
L has a basis B = {E11 − E22, E12, E13, E14, E21, E23, E24}. Define f ∈ End(M0

L)

by f(E12) := E24, and f(E) = 0 for all other matrices E in the basis B. We prove that

f([E,E ′]) = [f(E), E ′] + [E, f(E ′)] (5.9)

for any distinct E,E ′ ∈ B, so that f ∈ Der(M0
L). The only case that the left side or

the right side of (5.9) is nonzero is {E,E ′} = {E11 − E22, E12}, in which

f([E,E ′]) = 2f(E12) = 2E24, [f(E), E ′] + [E, f(E ′)] = −E24.
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Since char(F) = 3, the equality (5.9) holds for this case. Therefore, (5.9) holds for

all {E,E ′} ⊆ B, and f ∈ Der(M0
L). However, there is no matrix X ∈ M4, such that

f(E12) = [X,E12].

5.3 Proof of Theorem 5.8

The main goal of this section is to prove Theorem 5.8. We adapt the notations MB,

Mij, Mij, slkk and slkk in Definitions 3.1 and 4.1 here. Recall that Ω(L) and Ω(B) denote

the block index set of matrices of ML and MB, respectively.

We first present several results on the images f(slkk), f(Mij) for f ∈ Der(M0
L) and

slkk,Mij ⊆M0
L.

Lemma 5.10. Suppose char(F) 6= 2. Then for any f ∈ Der(M0
L):

f(slkk) ⊆ slkk +
k−1∑
i=1

Mik +
t∑

j=k+1

Mkj, for (k, k) ∈ Ω(L); (5.10)

f(Mpq) ⊆ Mpq +

p−1∑
i=1

Miq +
t∑

j=q+1

Mpj, for 1 ≤ p < q ≤ t. (5.11)

The proof below is similar to that of Lemma 4.10, with some slight adjustments.

Proof. Given (k, k) ∈ Ω(L), we have [slkk, slkk] = slkk in M0
L. For Akk, Bkk ∈ slkk,

f([Akk, Bkk]) = [f(Akk), Bkk] + [Akk, f(Bkk)] ∈ slkk +
k−1∑
i=1

Mik +
t∑

j=k+1

Mkj.

So (5.10) is done.

Given 1 ≤ p < q ≤ t, we prove (5.11) by induction on ` := q − p:

1. ` = 1: Here (p, q) = (p, p + 1) ∈ Ω(L). By Theorem 2.4, at least one of (p, p) and

(p + 1, p + 1) is in Ω(L). Without loss of generality, suppose (p, p) ∈ Ω(L). Let {·}ij
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also denote the embedding of Mij to Mij ⊆Mn. For App ∈ slpp, Ap,p+1 ∈Mp,p+1,

f(AppAp,p+1) = f([App, Ap,p+1]) = [f(App), Ap,p+1] + [App, f(Ap,p+1)] (5.12)

∈ Mp,p+1 +

p−1∑
i=1

Mi,p+1 +
t∑

j=p+2

Mpj

−
p−1∑
i=1

{
f(Ap,p+1)ip(A

pp)pp
}ip

+
{

[(App)pp, f(Ap,p+1)pp]
}pp

.

Recall that Ep,p+1
kj denote the (k, j) standard matrix in Mp,p+1. To get (5.11) for

q − p = 1 , it remains to prove that f(Ep,p+1
kj )ip = 0 for any given standard matrix

Ep,p+1
kj in Mp,p+1 and i ∈ [p]. There are two cases:

• i ∈ [p− 1]: (5.12) shows that for App ∈ slpp and Ap,p+1 ∈Mp,p+1,

f(AppAp,p+1)ip = −f(Ap,p+1)ip(A
pp)pp. (5.13)

Since L is SDUT ladder, the size of the submatrix in the (p, p) block of matrices

in slpp is m×m such that m ≥ 2. So we can choose s ∈ [m] \ {k}. Then

f(Ep,p+1
kj )ip = f(Epp

ksE
p,p+1
sj )ip = −f(Ep,p+1

sj )ip(E
pp
ks)pp. (5.14)

However, we also have

0 = f([Ep,p+1
kj , Ep,p+1

sj ])i,p+1

= [f(Ep,p+1
kj ), Ep,p+1

sj ]i,p+1 + [Ep,p+1
kj , f(Ep,p+1

sj )]i,p+1

= f(Ep,p+1
kj )ip(E

p,p+1
sj )p,p+1 − f(Ep,p+1

sj )ip(E
p,p+1
kj )p,p+1

= −f(Ep,p+1
sj )ip(E

pp
ksE

p,p+1
sj )p,p+1 − f(Ep,p+1

sj )ip(E
p,p+1
kj )p,p+1 (by (5.14))

= −2f(Ep,p+1
sj )ip(E

p,p+1
kj )p,p+1.
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Since char(F) 6= 2, the k-th column of f(Ep,p+1
sj )ip must be zero. Then (5.14)

shows that f(Ep,p+1
kj )ip = −f(Ep,p+1

sj )ipE
pp
ks = 0.

• i = p: (5.12) shows that for App ∈ slpp and Ap,p+1 ∈Mp,p+1,

f(AppAp,p+1)pp = [(App)pp, f(Ap,p+1)pp] = (App)ppf(Ap,p+1)pp − f(Ap,p+1)pp(A
pp)pp.

In particular, for r ∈ [m] \ {k}, we have Epp
kr ∈ slpp and

f(Ep,p+1
kj )pp = f(Epp

krE
p,p+1
rj )pp = (Epp

kr)ppf(Ep,p+1
rj )pp − f(Ep,p+1

rj )pp(E
pp
kr)pp. (5.15)

Denote

A =

[
aij

]
m×m

:= f(Ep,p+1
kj )pp.

(5.15) implies that all nonzero entries of A are located in the k-th row and the

r-th column. If m ≥ 3, we can replace r by any s ∈ [m] \ {k, r} in (5.15) to show

that all nonzero entries of A are located in the k-th row. In both m = 2 and

m ≥ 3 cases, we have

A = (Epp
kk)ppA+ arr(E

pp
rr )pp. (5.16)

Applying (5.15) twice, we get

A =
[
(Epp

kr)pp, f(Ep,p+1
rj )pp

]
=
[
(Epp

kr)pp,
[
(Epp

rk)pp, f(Ep,p+1
kj )pp

]]
= (Epp

kk)ppA− (Epp
kr)ppA(Epp

rk)pp − (Epp
rk)ppA(Epp

kr)pp + A(Epp
rr )pp

= (A− arr(Epp
rr )pp)− (Epp

kr)pp{(Epp
kk)ppA+ arr(E

pp
rr )pp}(Epp

rk)pp

−(Epp
rk)ppA(Epp

kr)pp + A(Epp
rr )pp (by (5.16))

= A− arr{(Epp
rr )pp + (Epp

kk)pp} − (Epp
rk)ppA(Epp

kr)pp + A(Epp
rr )pp.
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Therefore,

arr{(Epp
rr )pp + (Epp

kk)pp}+ (Epp
rk)ppA(Epp

kr)pp = A(Epp
rr )pp.

Comparing the (k, k) (resp. (r, r), (k, r)) entry, we get arr = 0 (resp. akk = 0,

akr = 0). Since r ∈ [m] \ {k} is arbitrary, we have f(Ep,p+1
kj )pp = 0.

The case ` = 1 is done.

2. Suppose (5.11) is true for all ` < k. Now for any (p, p + k) ∈ Ω(L), we have

[Mp,p+1,Mp+1,p+k] =Mp,p+k in M0
L, and by induction hypothesis,

f(Ap,p+1Ap+1,p+k) = f([Ap,p+1, Ap+1,p+k]) = [f(Ap,p+1), Ap+1,p+k] + [Ap,p+1, f(Ap+1,p+k)]

∈ Mp,p+k +

p−1∑
i=1

Mi,p+k +
t∑

j=p+k+1

Mpj.

Therefore, (5.11) is true for ` = k.

3. Overall, (5.11) is proved for all (p, q) ∈ Ω(L) with p < q.

Lemma 5.11. Suppose char(F) 6= 2, 3. Let f ∈ Der(M0
L). Then for any 1 ≤ p < q ≤ t,

there exists Xpq ∈Mpq such that

f(Aip)iq = −(Aip)ipXpq, for all (i, p) ∈ Ω(L) and Aip ∈Mip ∩M0
L, (5.17)

f(Aqj)pj = Xpq(A
qj)qj, for all (q, j) ∈ Ω(L) and Aqj ∈Mqj ∩M0

L. (5.18)

The proof below is similar to that of (4.14) and (4.15) inside the proof of Theorem 4.4.

Proof. Given p < q in [t], we consider the following four situations:

1. Suppose (q, j) = (t, t) ∈ Ω(L). For any Att, Btt ∈ sltt,

f([Att, Btt])pt = [f(Att), Btt]pt + [Att, f(Btt)]pt = f(Att)pt(B
tt)tt − f(Btt)pt(A

tt)tt.
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Applying Lemma 5.6 to the map φ : sltt → Mpt defined by φ(C) = f(Ctt)pt, we can

find Xpt ∈Mpt such that f(Att)pt = Xpt(A
tt)tt for Att ∈ sltt.

2. Similarly, when (i, p) = (1, 1), there exists Y1q ∈M1q such that f(A11)1q = −(A11)11Y1q

for A11 ∈ sl11.

3. Suppose (q, j) ∈ Ω(L), (q, j) 6= (t, t). Then q < t. Given any j < j′ in [t], we have

(j, j′), (q, j′), (p, j), (p, j′) ∈ Ω(L), and Mqj′ =MqjMjj′ = [Mqj,Mjj′ ].

• If q = j, then for Aqj ∈ slqq and Ajj′ ∈Mjj′ ,

f(AqjAjj′)pj′ = f([Aqj, Ajj′ ])pj′ = [f(Aqj), Ajj′ ]pj′+[Aqj, f(Ajj′)]pj′ = f(Aqj)pjAjj′ .

Applying Lemma 5.4 to the map φ :Mqj′ →Mpj′ defined by φ(C) = f(Cqj)pj′ ,

and ϕ : slqq → Mpq defined by ϕ(D) = f(Dqq)pj, there exists Xpq ∈ Mpq such

that f(Aqj)pj = Xpq(A
qj)qj for Aqj ∈ slqq, and f(Aqj′)pj′ = Xpq(A

qj′)qj′ for any

j′ > j in [t] and any Aqj′ ∈Mqj′ .

• If q < j, then for Aqj ∈Mqj and Ajj′ ∈Mjj′ , we still have

f(AqjAjj′)pj′ = f([Aqj, Ajj′ ])pj′ = [f(Aqj), Ajj′ ]pj′+[Aqj, f(Ajj′)]pj′ = f(Aqj)pj(A
jj′)jj′ .

Applying Lemma 2.7, there exists a (unique) Xpq ∈ Mpq such that f(Aqj)pj =

Xpq(A
qj)qj for all j > q in [t] and Aqj ∈Mqj.

4. Suppose (i, p) ∈ Ω(L) and (i, p) 6= (1, 1). Similar to the proceeding argument, there

exists −Ypq ∈Mpq such that f(Aip)iq = (Aip)ipYpq for (i, p) ∈ Ω(L) and Aip ∈Mip.
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5. For any (i, p), (q, j) ∈ Ω(L), we have [Aip, Aqj] = 0. So

0 = f([Aip, Aqj])ij = [f(Aip), Aqj]ij + [Aip, f(Aqj)]ij

= f(Aip)iq(A
qj)qj + (Aip)ipf(Aqj)pj

= −(Aip)ipYpq(A
qj)qj + (Aip)ipXpq(A

qj)ip.

Therefore, Xpq = Ypq.

Now we are ready to prove Theorem 5.8.

Proof of Theorem 5.8. Recall that Ekk
`` denote the (`, `) standard matrix in Mkk. We have

the Lie subalgebra decomposition

ML = span{Ekk
11 | (k, k) ∈ Ω(L)}nM0

L.

Given f ∈ Der(M0
L), we define f+(A) := f(A) for A ∈ M0

L. The next step is to define

f+(Ekk
11 ) for each (k, k) ∈ Ω(L) appropriately so that f+ ∈ Der(ML). We will let

f+(Ekk
11 ) ∈ slkk +

k−1∑
i=1

Mik +
t∑

j=k+1

Mkj

and define the nonzero blocks of f+(Ekk
11 ) as follow.

1. The (k, k) block: it is easy to see that f(·kk)kk : slkk → slkk, (A 7→ Akk 7→ f(Akk)kk),

is a derivation of slkk. Since char(F) 6= 2, there exists Xkk ∈ slkk such that f(Akk)kk =

[Xkk, (A
kk)kk] for Akk ∈ slkk. Define

f+(Ekk
11 )kk := [Xkk, (E

kk
11 )kk]. (5.19)
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2. The (i, k) block, i < k: by Lemma 5.11, there exists Xik ∈ Mik such that f(Akj)ij =

Xik(Akj)kj for any (k, j) ∈ Ω(L). Define

f+(Ekk
11 )ik := Xik(Ekk

11 )kk for all i ∈ [k − 1]. (5.20)

3. The (k, j) block, k < j: by Lemma 5.11, there exists Xkj ∈ Mkj such that for all

(i, k) ∈ Ω(L) we have f(Aik)ij = −(Aik)ikXkj. Define

f+(Ekk
11 )kj := −(Ekk

11 )kkXkj for all k < j ≤ t. (5.21)

The above process uniquely defines a linear map f+ ∈ End(ML) such that f+|M0
L

= f .

Next we verify that f+ ∈ Der(ML). It suffices to prove that for every (i, j) ∈ Ω(L),

f+([Ekk
11 , A

ij]) = [f+(Ekk
11 ), Aij] + [(Ekk

11 )kk, f
+(Aij)] for all Aij ∈Mij ∩M0

L. (5.22)

Denote

Xk := Xkk +
k−1∑
i=1

X ik +
t∑

j=k+1

Xkj (5.23)

where Xkk := (Xkk)kk ∈ slkk, X ik := (Xik)ik ∈ Mik, and Xkj := (Xkj)
kj ∈ Mkj. Then

(5.19), (5.20), and (5.21) imply that f+(Ekk
11 ) = [Xk, Ekk

11 ]. So (5.22) is equivalent to

f([Ekk
11 , A

ij]) = [[Xk, Ekk
11 ], Aij] + [Ekk

11 , f(Aij)] for all Aij ∈Mij ∩M0
L. (5.24)

We will prove (5.24) for each block (i, j) ∈ Ω(L):

1. (k, k) ∈ Ω(L): the matrices Xkk, X ik (i < k), and Xkj (k < j) satisfy that

f(Akk) = [Xk, Akk] for all Akk ∈ slkk,

where Xk is given by (5.23). Therefore, (5.24) is true for (i, j) = (k, k) ∈ Ω(L).
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2. (k, j), k < j ≤ t: when (i, j) = (k, j), we have

[Ekk
11 , A

kj] = Ekk
11A

kj = Ekk
12E

kk
21A

kj = [Ekk
12 , [E

kk
21 , A

kj]].

So (5.24) is equivalent to the following equalities:

f([Ekk
12 , [E

kk
21 , A

kj]]) = [[Xk, Ekk
11 ], Akj] + [Ekk

11 , f(Akj)]

⇐⇒ f(Ekk
12 )Ekk

21A
kj + Ekk

12 f(Ekk
21 )Akj + Ekk

12E
kk
21 f(Akj) = [Xk, Ekk

11 ]Akj + Ekk
11 f(Akj)

⇐⇒ f(Ekk
12 )Ekk

21A
kj + Ekk

12 f(Ekk
21 )Akj = [Xk, Ekk

11 ]Akj (for all Akj ∈Mkj)

⇐⇒ f(Ekk
12 )Ekk

21 + Ekk
12 f(Ekk

21 ) = [Xk, Ekk
11 ]

⇐⇒ [Xk, Ekk
12 ]Ekk

21 + Ekk
12 [Xk, Ekk

21 ] = [Xk, Ekk
11 ].

The last equality is obviously true.

3. (i, k), 1 ≤ i < k: similarly, we can prove (5.24) for the case (i, j) = (i, k).

4. (i, j) ∈ Ω(L), i 6= k, j 6= k: the left side of (5.24) is zero. We investigate the right side

of (5.24) in three cases:

(a) i ≤ j < k: the only possibly nonzero block in the right side of (5.24) is the (i, k)

block, which is

[[Xk, Ekk
11 ], Aij]ik + [Ekk

11 , f(Aij)]ik = −(Aij)ij[X
k, Ekk

11 ]jk − f(Aij)ik(Ekk
11 )kk

= −(Aij)ij[X
k, Ekk

11 ]jk + (Aij)ijXjk(Ekk
11 )kk (by Lemma 5.11)

= −(Aij)ik(Xjk)jk(Ekk
11 )kk + (Aij)ijXjk(Ekk

11 )kk (by (5.23))

= 0.

So (5.24) is done for this case.
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(b) k < i ≤ j: similarly, we can prove (5.24) for this case.

(c) i < k < j: the right side of (5.24) is

[[Xk, Ekk
11 ], Aij] + [Ekk

11 , f(Aij)] = 0 + 0 = 0.

So (5.24) holds.

Overall, we have proved (5.24). Therefore, f+ ∈ Der(ML) and f+|M0
L

= f . By Theorem 4.4,

there is X ∈MB such that f(B) = [X,B] for all B ∈M0
L.
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Chapter 6

Future research topics

In this chapter, we discuss some potential future research directions on those matrix Lie

algebras that we have studied in this dissertation.

Other than the Lie algebras of block upper triangular matrices and strictly block upper

triangular matrices, not much work has been done on the Lie algebra ML′ of upper triangular

ladder matrices. Many interesting research directions arise on this topic, for examples, the

description of Der(ML′) in terms of Levi-decomposition and root space decomposition of

ML′ , the study of Lie triple derivations of ML′ , extensions of these results to semisimple or

reductive Lie algebra, etc.

For most upper triangular ladders L′, the complete description of Der(ML′) remains an

open problem. The explicit description of the derivations of the Lie algebra ML for an DUT

ladder matrices has been given over a filed F with char(F) 6= 2 (Theorem 4.4). However,

we have not investigated the char(F) = 2 case. Example 4.5 suggests that Der(ML) has

some additional elements when char(F) = 2. In the future, I would like to continue my

investigation on Der(ML) when char(F) = 2, as well as the study of Der(ML′) for other

upper triangular ladders L′.

A Lie triple derivation (or simply triple derivation) of Lie algebra g is an F-linear

map f : g→ g that satisfies

f([X, [Y, Z]]) = [f(X), [Y, Z]] + [X, [f(Y ), Z]] + [X, [Y, f(Z)]]

for all X, Y, Z ∈ g.
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The triple derivations of Lie algebras are apparently a generalization of its derivations.

It is easy to show that every derivation of Lie algebra is a triple derivation. However, the

converse statement is in general not true, which can be seen via the following example.

Example 6.1. Let g be a Lie algebra of strictly upper triangular matrices in M3. So g

has a basis B := {E12, E13, E23}, where Eij denotes the standard matrix in M3 that has

the only nonzero entry 1 in the (i, j) position. Define f ∈ End(g) by f(E23) := E23, and

f(E) := 0 for all other matrices E ∈ B. Since [g, [g, g]] = 0, it is straightforward to check

that f is a triple derivation of g. On the other hand, f([E12, E23]) = f(E13) = 0 and

[f(E12), E23] + [E12, f(E23)] = [E12, E23] = E13. So f is not a derivation of g.

The triple derivations of matrix Lie algebras have been extensively studied over a ring

R [2, 18, 20, 29]. In [29], Wang and Li explicitly described the triple derivations of the

Lie algebra of strictly upper triangular matrices over a commutative ring R with identity.

However, no work has been done on the triple derivations of the Lie algebra of strictly block

upper triangular matrices. At this point, we want to ask the following question.

Question 6.2. Can we extend Wang and Li’s result in [29] on triple derivations of the

Lie algebra of strictly upper triangular matrices to the Lie algebra of strictly block upper

triangular matrices?

As we mentioned earlier, many interesting questions on the Lie algebra of upper trian-

gular ladder matrices remain to be addressed. The triple derivation is one of them but it

seems a lot of works are needed to be done to have a complete description of them. In the

next step, I would like to study the triple derivation of the Lie algebra ML of DUT ladder

matrices. This Lie algebra satisfies the following Lie bracket relation

[ML,ML] = [ML, [ML,ML]]

by a direct computation. This suggests the following question.
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Question 6.3. Does the Lie algebra ML of DUT ladder matrices have any triple derivations

other than derivations?
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