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Ky Fan’s result states that the real part of the eigenvalues of an n × n com-

plex matrix A is majorized by the eigenvalues of the Hermitian part of A. The

converse was established by Amir-Moéz and Horn, and Mirsky, independently. We

extend the results in the context of complex semisimple Lie algebras. Inequalities

associated with the classical complex Lie algebras are given. The real case is also

discussed.
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Chapter 1

Introduction

Let Cn×n be the space of n × n complex matrices. Each A ∈ Cn×n has the

Hermitian decomposition

A =
1

2
(A− A∗) +

1

2
(A + A∗), (1.1)

where ∗ denotes the complex conjugate transpose. Clearly the matrix A1 := 1
2
(A−

A∗) is skew-Hermitian, i.e., A∗
1 = −A1 (called the skew-Hermitian part of A) and

A2 := 1
2
(A + A∗) is Hermitian, i.e., A∗

2 = A2 (called the Hermitian part of A).

There are three important sets of scalars associated with A, known as the

eigenvalues, denoted by λ1, λ2, . . . , λn ∈ C, the real singular values, denoted by

α1 ≥ α2 ≥ · · · ≥ αn and the imaginary singular values of A, denoted by β1 ≥ β2 ≥

· · · ≥ βn. An eigenvalue λ of A is a scalar such that there exists a nonzero vector

z ∈ Cn such that

Az = λz.

The real singular values of A are the eigenvalues of the Hermitian part 1
2
(A + A∗)

of A. The imaginary singular values of A are the eigenvalues of the Hermitian

matrix 1
2i

(A− A∗).

There is a nice result of Ky Fan [7], [23, p.239] relating the eigenvalues of A

and the real singular values of A. We need the following important notion called
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majorization [23] in order to state the result of Ky Fan. Majorization has a lot of

applications in different branches of mathematics [3, 16, 23].

Definition 1.1 Let a, b ∈ Rn. We say that a is majorized by b, denoted by a ≺ b,

if

k∑
i=1

a[i] ≤
k∑

i=1

b[i], k = 1, . . . , n− 1,

n∑
i=1

a[i] =
n∑

i=1

b[i],

where a[1] ≥ a[2] ≥ · · · ≥ a[n] and b[1] ≥ b[2] ≥ · · · ≥ b[n] are the rearrangements of

the entries of a and b, respectively, in nonincreasing order.

Theorem 1.2 (Ky Fan) Given A ∈ Cn×n, the real parts of the eigenvalues (λ1, . . . , λn)T ∈

Cn of A is majorized by the real singular values (α1, . . . , αn)T ∈ Rn of A, i.e.,

Re λ ≺ α.

The converse was established by Amir-Moéz and Horn [1], and independently

by Mirsky [24]. It was later rediscovered by Sherman and Thompson [29]. The

study can be traced back to some old results of Bendixson [2], Hirsch [13], and

Bromwich [4]. Also see [23, p.237-239]. We state the result in the following theo-

rem.

Theorem 1.3 (Amir-Moéz-Horn and Mirsky) If λ ∈ Cn and α ∈ Rn such that

Re λ ≺ α, then there exists A ∈ Cn×n such that λ’s are the eigenvalues of A and

α’s are the real singular values of A.
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Similar results hold for the imaginary part of the eigenvalues of A and the

imaginary singular values of A.

The following is the result of Sherman and Thompson [29].

Theorem 1.4 (Sherman and Thompson) If H is a given Hermitian matrix with

eigenvalues β ∈ Rn and if α ∈ Rn satisfies α ≺ β, then there exists a skew

Hermitian matrix K such that α is the real part of the eigenvalues of K + H.

Remark 1.5 The result of Sherman and Thompson is indeed equivalent to Amir-

Moéz-Horn-Mirsky’s result. We now establish their equivalence.

We will use the fact that the eigenvalues, real singular values, and the imagi-

nary singular values of any A ∈ Cn×n are invariant under unitary similarity.

Theorem 1.3 =⇒ Theorem 1.4: Given α ≺ β, where β is the eigenvalues of a

Hermitian matrix H, by Amir-Moéz-Horn-Mirsky’s result (Theorem 1.3), there is

a matrix A1 such that α is the real part of the eigenvalues of A1 and β is the eigen-

values of the Hermitian part of A1. Since H and
A1+A∗1

2
are both Hermitian with

the same eigenvalues β’s, by the spectral decomposition for Hermitian matrices [16,

p.171], they are both unitarily similar to the diagonal matrix diag β, hence unitarily

similar to each other. Let U be the unitary matrix such that H = U−1 A1+A∗1
2

U . Let

K := U−1 A1−A∗1
2

U . Then K is skew Hermitian, and A := K + H = U−1A1U . By

the fact that eigenvalues and real singular values are invariant under unitary simi-

larity, A and A1 have the same eigenvalues and real singular values. Therefore K is

the required skew Hermitian matrix. This proves that Amir-Moéz-Horn-Mirsky’s

result implies the result of Sherman and Thompson.
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Theorem 1.4 =⇒ Theorem 1.3: Conversely, suppose Re λ ≺ β for λ ∈ Cn

and β ∈ Rn. Let H = diag β. By Sherman and Thompson’s result there is a

skew Hermitian matrix K such that Re λ is the real part of the eigenvalues µ’s of

A1 := K +H and the real singular values of A1 are β’s. By Schur triangularization

theorem (Theorem 2.1), there exists a unitary matrix U such that B := U−1A1U

is upper triangular and µ = diag B. Then A := B + idiag (Im λ − Im µ) has

eigenvalues λ’s and the Hermitian part of A is B+B∗
2

= U−1 A1+A∗1
2

U . Thus A and

A1 have the same real singular values β’s. Therefore A has eigenvalues λ’s and

real singular values β’s. So the result of Sherman and Thompson implies Amir-

Moéz-Horn-Mirsky’s result.

How would Ky Fan-Amir-Moéz-Horn-Mirsky’s result be if we restrict our at-

tention to complex skew symmetric matrices? If A ∈ Cn×n is skew symmetric,

then its eigenvalues occur in pair but opposite in sign, since A and AT = −A have

the same characteristic polynomial. We will see in Chapter 6 that majorization

remains to be the key, except the statements are stronger and we will separately

consider the even and odd cases. Similarly we consider the symplectic case as well

in Chapter 5.

We will have semisimple Lie algebra as a unified framework and develop our

main result in Chapter 4. The following is the motivation for our study. A transla-

tion of A, that is, A+ ξI for some ξ ∈ C, would translate the eigenvalues by ξ and

the real singular values by Re ξ. Thus it is sufficient to consider those A ∈ Cn×n

such that tr A = 0 in Ky Fan-Amir-Moéz-Horn-Mirsky’s result. Recall that

sl(n,C) := {A ∈ Cn×n : tr A = 0}
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is the Lie algebra of the special linear group

SL(n,C) := {A ∈ Cn×n : det A = 1}.

The special unitary group

SU(n) := {U ∈ Cn×n : U∗U = In, det U = 1}

is a maximal compact subgroup of SL(n,C). The diagonal matrices in sl(n,C) form

a Cartan subalgebra h of sl(n,C), and those in h with purely imaginary diagonal

entries form a Cartan subalgebra t of the Lie algebra

su(n) := {A ∈ sl(n,C) : A + A∗ = 0}

of SU(n). As a real SU(n)-module, sl(n,C) is just the direct sum of two copies of

the adjoint module su(n):

sl(n,C) = su(n)⊕ isu(n)

which in our case is essentially the well known Hermitian decomposition of a com-

plex matrix (1.1). By the Schur triangularization theorem (See Theorem 2.1) for

complex matrices, the eigenvalues of a matrix A ∈ sl(n,C) may be viewed as

the image of an element Y ∈ AdSU(n)(A) ∩ b under the orthogonal projection

5



ρ : sl(n,C) → h with respect to the inner product

〈X, Y 〉 = Re tr XY ∗, X, Y ∈ sl(n,C),

where SU(n) acts on sl(n,C) via the the adjoint representation, AdSU(n)(A) is

the orbit of A under the action of SU(n), and b is the Borel subalgebra of sl(n,C)

consisting of n × n upper triangular matrices. Thus taking the real part of the

eigenvalues of A amounts to sending Y via the orthogonal projection

π : sl(n,C) → it

with respect to 〈·, ·〉. The majorization relation α ≺ β is equivalent to α ∈ conv Snβ

for α, β ∈ Rn by Theorem 2.7, where conv Snβ denotes the convex hull of the orbit

of β under the action of Sn. It is a direct result of Theorem 2.3 (Hardy-Littlewood-

Polyá) and Theorem 2.6 (Birkhoff). So the result of Ky Fan (Theorem 1.2) may

be stated as

π(AdSU(n)(X + Z) ∩ b) ⊂ conv SnZ, (1.2)

where Z ∈ it, X ∈ su(n) and Sn is the full symmetric group on {1, . . . , n}. The

result of Amir-Moéz-Horn and Mirsky (in the version of Sherman and Thompson)

may be written as

conv SnZ ⊂ ∪X∈su(n) π(AdSU(n)(X + Z) ∩ b). (1.3)
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Combining (1.2) and (1.3) we have

∪X∈su(n) π(AdSU(n)(X + Z) ∩ b) = conv SnZ. (1.4)

We will extend (1.4) in the context of finite dimensional complex semisimple Lie

algebras (Theorem 4.6), as one of our main results in this dissertation. Notice that

(1.4) may be stated as

π((su(n) + AdSU(n)(Z)) ∩ b) = conv SnZ.

In particular, for each U ∈ sl(n,C),

π(AdSU(n)(U) ∩ b) ⊂ conv Snz,

where Z ∈ AdSU(n)(1
2
(U − θU)) ∩ it, where

θ(X) = −X∗, X ∈ sl(n,C).

Before we prove the extension of (1.4) in Theorem 4.6 in Chapter 4, we give

a detailed proof of Ky Fan-Amir-Moéz -Horn-Mirsky’s result in Chapter 2. We

then introduce some preliminary materials of complex semisimple Lie algebras in

Chapter 3 to pave the road for Chapter 4. In Chapter 4, we use Kostant’s result

[22, Theorem 8.2] to show that (1.4) remains true for all complex semisimple Lie

algebras. The interesting inequalities corresponding to the classical Lie algebras,

alike majorization, are discussed in Chapter 5 and Chapter 6. In Chapter 7, we
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discuss the case for the real Lie algebra sl(n,R) and obtain a result for sl(n,R)

which is similar to Theorem 4.6. In particular we consider su(1, 1), a real form of

sl(2,C). In Chapter 8, we consider some inequalities relating the eigenvalues, the

real and imaginary singular values for sl(2,C) and sl(2,R).
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Chapter 2

The proof of the result of Ky Fan-Amir-Moéz-Horn-Mirsky

In this chapter we review the proof of the result of Ky Fan, Amir-Moéz and

Horn, and Mirsky. We shall then point out the key elements of the proof, which

will be essential for the extension in Chapter 4. The proof makes use of the well

known Schur’s triangularization theorem [16, p.79], a result of Schur [30] and a

result of A. Horn [15] on the diagonal and the eigenvalues of a Hermitian matrix.

We denote by U(n) = {U ∈ Cn×n : U∗U = In} the unitary group.

Theorem 2.1 (Schur’s triangularization theorem) Given A ∈ Cn×n with eigenval-

ues λ1, . . . , λn ∈ C in any prescribed order, there is a unitary matrix U ∈ U(n) such

that UAU−1 is upper triangular and diag (UAU−1) = λ, where λ = (λ1, . . . , λn)T .

Remark 2.2 Indeed U(n) in Theorem 2.1 can be replaced by the special unitary

group SU(n).

We will use the following result of Hardy, Littlewood and Polyá [11, p.49] to

establish Schur’s result (Theorem 2.4). A nonnegative matrix D is called a doubly

stochastic if the row sums and column sums of D are 1.

Theorem 2.3 (Hardy-Littlewood-Polyá) Let α, β ∈ Rn. Then α ≺ β if and only

if there exists a n× n doubly stochastic matrix D such that α = Dβ.
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Clearly the diagonal entries of a Hermitian matrix are real. Schur [30], [16,

p.193] obtained the following nice result relating the diagonal and the eigenvalues

of a Hermitian matrix A ∈ Cn×n.

Theorem 2.4 (Schur) Let A ∈ Cn×n be a Hermitian matrix. The diagonal d =

(d1, . . . , dn)T ∈ Rn of A is majorized by the vector λ = (λ1, . . . , λn)T ∈ Rn of the

eigenvalues of A, i.e., d ≺ λ.

Proof: Let A = (aij). By the spectral decomposition [16, p.171] there exists

U ∈ U(n) such that A = U(diag λ) U−1. By direct computation,

aij =
n∑

s=1

uisūjsλs.

Thus d = Dλ, where D = (dij) = (|uij|2) is called an orthostochastic matrix.

An orthostochastic matrix is clearly a doubly stochastic matrix. By Theorem 2.3

d ≺ λ.

The converse of Theorem 2.4 was obtained by A. Horn [15]. The original proof

is a long and intricate argument. The following simple proof was first obtained by

Chan and Li [5] and later rediscovered by Zha and Zhang [35].

Theorem 2.5 (A. Horn) If d, λ ∈ Rn and d ≺ λ, then there exists a real symmetric

matrix A ∈ Rn×n such that diag A = d and λ’s are the eigenvalues of A.

Proof: Suppose d ≺ λ. Since permutation similarity would not change the

eigenvalues of a matrix but permute the diagonal entries, we may assume that

d1 ≥ d2 ≥ · · · ≥ dn and λ1 ≥ λ2 ≥ · · · ≥ λn. We use induction on n. When n = 2,

10



the real symmetric matrix

A =

(
d1 ξ

ξ d2

)

has the desired property if we choose ξ =
√

2
2

(λ2
1 + λ2

2 − d2
1 − d2

2)
1/2. Suppose the

statement is true when n = m. Let n = m + 1. Suppose 2 ≤ j ≤ m + 1 be the

largest index such that λj−1 ≥ d1 ≥ λj. Clearly λ1 ≥ max{d1, λ1 + λj − d1} ≥

min{d1, λ1 + λj − d1} ≥ λj. Then there exists a 2 × 2 orthogonal matrix U1 such

that

U1

(
λ1

λj

)
U−1

1 =

(
d1 ∗

∗ λ1 + λj − d1

)
.

Set U2 := U1 ⊕ Im−1. Then

A1 := U2 diag (λ1, λj, λ2, . . . , λj−1, λj+1, . . . , λm+1)U
−1
2

=

(
d1 ∗

∗ λ1 + λj − d1

)
⊕ diag (λ2, . . . , λj−1, λj+1, . . . , λm+1).

We are going to show that

(d2, . . . , dn) ≺ (λ1 + λj − d1, λ2, . . . , λj−1, λj+1, . . . , λm+1). (2.1)

To proceed, notice that λj−1 ≥ d1 ≥ d2,

d2 ≤ max{λ1 + λj − d1, λ2, . . . , λj−1, λj+1, . . . , λm+1}.

11



Moreover

k∑
i=2

di ≤ (k − 1)d1 ≤
k∑

i=2

λi, k = 2, . . . , j − 1,

k∑
i=2

di =
k∑

i=1

di − d1 ≤
k∑

i=1

λi − d1 = (λ1 + λj − d1) +
k∑

i=2,i6=j

λi, k = j, . . . ,m,

m+1∑
i=2

di =
m+1∑
i=1

di − d1 =
m+1∑
i=1

λi − d1 = (λ1 + λj − d1) +
m+1∑

i=2,i 6=j

λi.

Hence (2.1) is established. By the inductive hypothesis, there exists an m × m

orthogonal matrix U3 such that

U3 diag (λ1 + λj − d1, λ2, . . . , λj−1, λj+1, . . . , λm+1)U
−1
3

has diagonal (d2, . . . , dm+1). Then A := U4A1U
−1
4 has diagonal d and eigenvalues

λ, where U4 := 1⊕ U3.

It is straight forward to show that the set of n×n doubly stochastic matrices

Ωn is a convex set in Rn×n. Birkhoff [16, p.527] showed that it is the convex hull

of the permutation matrices.

Theorem 2.6 (Birkhoff) A matrix D ∈ Rn×n is a doubly stochastic matrix if

and only if it is a convex combination of permutation matrices, i.e., there are

permutation matrices P1, . . . , Pm and nonnegative scalars α1, . . . , αm ∈ R such

that α1 + . . . + αm = 1 and D = α1P1 + . . . + αmPm.

Combining and rewriting Theorem 2.4 and Theorem 2.5, we have the following

statement.

12



Theorem 2.7 (Schur and A.Horn) Let λ ∈ Rn. Then

diag {U(diag (λ1, . . . , λn)) U−1 : U ∈ O(n)}

= diag {U(diag (λ1, . . . , λn)) U−1 : U ∈ U(n)}

= {d ∈ Rn : d ≺ λ}

= conv Snλ,

where U(n) is the unitary group, O(n) is the orthogonal group, Sn is the full

symmetric group on {1, . . . , n} and conv denotes the convex hull of the underlying

set in Rn.

Proof: Since O(n) ⊂ U(n) and in view of Theorem 2.4,

diag {U(diag (λ1, . . . , λn)) U−1 : U ∈ O(n)}

⊂ diag {U(diag (λ1, . . . , λn)) U−1 : U ∈ U(n)}

⊂ {d ∈ Rn : d ≺ λ}.

By Theorem 2.5, {d ∈ Rn : d ≺ λ} ⊂ diag {U(diag (λ1, . . . , λn)) U−1 : U ∈ O(n)}.

So we established the first two set equalities. Theorem 2.3 asserts that

{d ∈ Rn : d ≺ λ} = Ωnλ,

where Ωn is the set of n× n doubly stochastic matrices. By Theorem 2.6

{d ∈ Rn : d ≺ λ} = conv Snλ

13



follows immediately.

Remark 2.8 We may replace O(n) by SO(n), the special orthogonal group and

U(n) by SU(n), respectively, in Theorem 2.7.

We will make use of Theorem 2.1 and Theorem 2.4 to prove the result of Ky

Fan, namely Theorem 1.2. Then we use Theorem 2.5 to prove Amir-Moéz-Horn-

Mirsky’s result, namely Theorem 1.3 which is the converse of Theorem 1.2. We

first combine Theorem 1.2 and Theorem 1.3 together in the following statement.

Theorem 2.9 (Ky Fan-Amir-Moéz-Horn-Mirsky) Let A ∈ Cn×n with eigenvalues

λ = (λ1, . . . , λn)T and real singular values α = (α1, . . . , αn)T . Then Re λ ≺ α.

Conversely, if λ ∈ Cn, α ∈ Rn such that Re λ ≺ α, then there exists A ∈ Cn×n

with eigenvalues λ’s and real singular values α’s.

Proof: (Ky Fan) Suppose that A has eigenvalues λ1, . . . , λn. By Theorem 2.1

there exists a unitary matrix U ∈ U(n) such that

Y := UAU−1 =




λ1 ∗ ∗
. . . ∗

λn




is upper triangular. Now A = U−1Y U and

A + A∗

2
= U−1(

Y + Y ∗

2
)U,

thus A and Y have the same eigenvalues and real singular values. Now 1
2
(Y + Y ∗)

is Hermitian and has diagonal entries Re λ’s and eigenvalues α’s. By Theorem 2.4,

Re λ ≺ α.

14



(Amir-Moéz-Horn-Mirsky) Conversely, suppose λ ∈ Cn and α ∈ Rn are given

such that Re λ ≺ α. By Theorem 2.5, there is a Hermitian matrix H = (hij) ∈

Cn×n with eigenvalues α’s and diagonal entries Re λ’s. The upper triangular matrix

A :=




λ1 2h12 . . . 2h1n

λ2 . . . 2h2n

. . .
...

λn



∈ Cn×n

has eigenvalues λ’s and real singular values α’s since 1
2
(A + A∗) = H, of which the

eigenvalues are α’s. This completes the proof.

The key point in the proof of Ky Fan’s result is to obtain an upper triangular

matrix Y which is similar to the original matrix A under unitary similarity. Since

eigenvalues and real singular values are invariant under unitary similarity, A and

Y have the same eigenvalues and real singular values. So the real part of the

eigenvalues of A are the real part of the diagonal of Y . Application of Schur’s

result on (Y +Y ∗)
2

then finishes the proof. The key element in the proof of Amir-

Moéz-Horn-Mirsky’s result is Theorem 2.5.

We may view taking the eigenvalues of A (the real part, respectively) as a

projection from Cn×n to Cn (Rn, respectively), after turning A into an upper

triangular matrix via Schur’s triangularization theorem. With this view in mind

we rewrite Theorem 2.9 in the following form.

15



Theorem 2.10 Given A ∈ Cn×n. Let Wn ⊂ Cn×n be the space of upper triangular

matrices. Then

Re diag {{UAU−1 : U ∈ U(n)} ∩Wn} = {d ∈ Rn : d ≺ α} = conv Snα, (2.2)

where α = (α1, . . . , αn)T is the vector of eigenvalues of 1
2
(A + A∗).

Proof: The last equality is in Theorem 2.7. The first equality is another form of

Theorem 2.9.

The above idea will be extended in Chapter 4 for the complex semisimple Lie

algebras.
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Chapter 3

Preliminaries

In this chapter we introduce some notations and basic concepts of complex

semisimple Lie algebras. Most of the material can be found in any standard Lie

theory textbook such as [12, 18, 20]. In particular we will review the details of the

root space decomposition of classical semisimple Lie algebras.

In this chapter all Lie algebras are finite dimensional over C, unless specifically

noted.

Definition 3.1 [20, p.2] A finite dimensional vector space g over C is called a

complex Lie algebra if there is a product [X, Y ] for X, Y ∈ g that is linear in each

variable and satisfies

(a) [X, X] = 0 for all X ∈ g (and hence [X, Y ] = −[Y,X]) and

(b) the Jacobi identity

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0. (3.1)

The real Lie algebra is defined analogously by changing the base field to R in the

above definition.

17



A Lie subalgebra h of g is a subspace satisfying [h, h] ⊆ h. An ideal h in g is a

subspace satisfying [h, g] ⊆ h. It is automatically a Lie subalgebra. The Lie algebra

g is said to be abelian if [g, g] = 0.

Definition 3.2 [20, p.8-9] Let g be a finite dimensional Lie algebra. We define

recursively

g
0 = g, g1 = [g, g], g

j+1 = [gj, g
j];

g0 = g, g1 = [g, g], gj+1 = [g, gj].

The sequence of ideals g0 ⊃ g1 ⊃ g2 · · · is called the derived series of g and the

sequence g0 ⊃ g1 ⊃ g2 · · · is called the descending central series of g. We say that

g is solvable if gj = 0 for some j and g nilpotent if gj = 0 for some j.

Example 3.3 [20, p.3] Let g = gl(n,C) denote the associative algebra of all n×n

matrices with complex entries. We can turn g into a Lie algebra by introducing

the product

[X,Y ] = XY − Y X, X, Y ∈ g.

The set of all n× n upper triangular matrices u is a solvable subalgebra in g.

A Lie algebra g is simple if g is nonabelian and has no proper ideals. Hence

simple Lie algebras are at least 3-dimensional. A Lie algebra g is semisimple if g

has no nonzero solvable ideals. Every simple Lie algebra is semisimple.

For any complex Lie algebra g we get a linear map

ad : g → End g (ad X)(Y ) = [X, Y ], X, Y ∈ g.
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This linear map is called the adjoint representation of g, one of the most important

maps in the theory of Lie algebras. If X and Y are in g, then ad X ◦ ad Y is a

linear transformation from g to itself, and it is meaningful to define

B(X,Y ) = tr (ad X ◦ ad Y ).

Then B(·, ·) is a symmetric bilinear form on g known as the Killing form of g.

Killing form is a very useful tool in the theory of Lie algebras. Cartan [20,

p.25] obtained two useful criteria for semisimplicity and solvability, respectively, of

a Lie algebra g by considering its Killing form.

Theorem 3.4 (Cartan’s Criterion for Semisimplicity) The complex Lie algebra g

is semisimple if and only if the Killing form for g is nondegenerate, i.e., if X ∈ g

and B(X,Y ) = 0 for all Y ∈ g, then X = 0.

Theorem 3.5 (Cartan’s Criterion for Solvability) The complex Lie algebra g is

solvable if and only if its Killing form satisfies B(X, Y ) = 0 for all X ∈ g and

Y ∈ [g, g].

Let us consider the root space decomposition of a complex Lie algebra. From

now on we assume that g is a complex semisimple Lie algebra unless specified.

Definition 3.6 A Lie subalgebra h of g is called a Cartan subalgebra [12, p.130] if

h is maximal abelian and for each H ∈ h, the endomorphism ad gH is semisimple,

i.e., diagonalizable.
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It is known that any finite dimensional complex Lie algebra has a Cartan subal-

gebra. The importance of the Cartan subalgebras for unraveling the structure of

g lies in the following fundamental fact.

Theorem 3.7 [18, p.84] The Cartan subalgebras of a complex semisimple Lie

algebra g are all conjugate under the adjoint group Int g, where Int g ⊂ GL(g) is

the analytic subgroup of GL(g) with Lie subalgebra ad g ⊂ End (g).

Since all the Cartan subalgebras of g are conjugate, there is no harm in choos-

ing one, say, h. Since h is abelian and the underlying field C is algebraically closed,

the adjoint representation ad : g → End (g), restricted to h, splits g up as a direct

sum of one-dimensional subspaces. In other words, if α ∈ h∗ and if we set

g
α := {X ∈ g : [H, X] = α(H)X for all H ∈ h},

then g is a direct sum of the gα. Since g is finite dimensional, only finitely many of

the gα are nonzero. If α 6= 0 and gα 6= 0, then α is called a root of g with respect to

h. Members of gα are called root vectors for the root α. Let ∆ denote the set of all

roots, a finite subset of h∗. We now have the well known root space decomposition

of g with respect to h.

Proposition 3.8 [20, p.88] Let g be a complex semisimple Lie algebra and let h

be a Cartan subalgebra of g. Then

g = g
0+̇

∑̇
α∈∆

g
α. (3.2)

It satisfies
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(a) h = g0,

(b) [gα, gβ] = gα+β (with gα+β understood to be 0 if α + β is not a root),

(c) B|h×h is nondegenerate; consequently there is an vector space isomorphism

τ : h∗ → h such that Hα := τ(α), α ∈ h∗ satisfies α(H) = B(H,Hα) for all

H ∈ h,

(d) ∆ spans h∗, the dual space of h,

(e) dim gα = 1 for all α ∈ ∆.

The real span V =
∑

α∈∆Rα ⊂ h∗ is of dimension dim Ch. Since the Killing

form B(·, ·) remains nondegenerate in the restriction to h, hence defines an isomor-

phism α 7→ Hα (as in Proposition 3.8(c) via Riesz’s representation theorem) of h∗

onto h, and a bilinear form on the dual space h∗ of h by transporting via B(·, ·) in

the following fashion:

〈ϕ, ψ〉 = B(Hϕ, Hψ) = ϕ(Hψ) = ψ(Hϕ), ϕ, ψ ∈ h
∗, (3.3)

where Hϕ and Hψ are defined in Proposition 3.8(c).

It turns out that the restriction of the bilinear form on V , 〈·, ·〉|V×V , is real

and positive definite, i.e., a real inner product so that V acquires the structure of

an Euclidean space.

Theorem 3.9 [20, p.101] Let ∆ be the root system of (g, h). Let V =
∑

α∈∆Rα ⊂

h∗ and h0 =
∑

α∈∆RHα ⊂ h. Then
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1. The real space V is an Euclidean space with the inner product 〈·, ·〉|V×V ,

the restriction of the bilinear form defined by (3.3) to V × V . Moreover, the

members of V are exactly those linear functionals in h∗ that are real on h0

and the restriction of the operation of those linear functionals from h to h0 is

an R isomorphism of V onto h∗0. In particular V |h0
= h∗0.

2. h∗ = V ⊕ iV .

3. h = h0 ⊕ ih0.

Theorem 3.10 [20, p.99-103] Let ∆ be the root system of (g, h). Then

1. ∆ spans h∗0,

2. the orthogonal transformations sα(ϕ) := ϕ − 2〈ϕ,α〉
〈α,α〉 α, for all ϕ ∈ V where

α ∈ ∆, carry ∆ onto itself,

3. 2〈β,α〉
〈α,α〉 is an integer for any α, β ∈ ∆.

We now introduce a notion of positivity in V so that for any nonzero ϕ ∈ V

so that

1. exactly one of ϕ and −ϕ is positive,

2. the sum of positive elements is positive and any positive multiple of a positive

element is positive.

One way to define positivity is by means of a lexicographic ordering. Fix a basis

{ϕ1, . . . , ϕn} of V , define positivity as follows: We say that ϕ > 0 if there exists

an index k such that 〈ϕ, ϕi〉 = 0 for 1 ≤ i ≤ k − 1, and 〈ϕ, ϕk〉 > 0. We say
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that a root α is simple if α > 0 and if α does not decompose as α = β1 + β2 with

β1 and β2 both positive roots. Then there are n linearly independent simple roots

α1, . . . , αn such that if a root β is written as β = x1α1 + · · · + xnαn, then all the

xj’s are integers with the same sign (if 0 is allowed to be positive or negative).

Denote by ∆+ the set of of all positive roots which would uniquely determine a set

Π = {α1, . . . , αn} of simple roots and Π is called a simple system.

We know from Proposition 3.10 that sα : h∗0 → h∗0 defined by

sα(β) = β − 2〈β, α〉
〈α, α〉 α, β ∈ h

∗
0,

is a reflection of the space h∗0 that fixes ∆. The set {sα : α ∈ ∆} generates a finite

reflection group [19], denoted by W (g, h) or simply W , called the Weyl group of

(g, h). It is clearly a subgroup of O(h∗0), the orthogonal group of h∗0. The Weyl group

W can be generated by a smaller set of generators known as the simple reflections

{sα : α ∈ Π}. Notice that the Weyl group W can be viewed as a subgroup of O(h0)

since we analogously have the reflections on h0:

sH(L) = L− B(H, L)

B(H,H)
H, H, L ∈ h0,

and it is clear that

τ ◦ sα(β) = sτ(α)(τ(β)), α, β ∈ h
∗
0.

In other words

τ ◦ sα ◦ τ−1 = sτ(α),
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and thus sα is identified with sτ(α), where τ is given in Proposition 3.8 (c).

Let α ∈ ∆ and P ∗
α be the hyperplane in h∗0 defined by

〈α, ξ〉 = 0, ξ ∈ h
∗
0.

Let

C = h
∗
0 −

⋃
α∈∆

P ∗
α,

i.e., C is the complement of the union of all P ∗
α (α ∈ ∆). A component of C is

said to be a Weyl chamber of h∗0 with respect to ∆. The Weyl chamber

C0 = {ξ ∈ h
∗
0 : (αi, ξ) > 0, i = 1, . . . , n}

is called the fundamental Weyl chamber. The choice of one among ∆+, Π and C0

determines the others.

Let us consider some standard models of the classical simple Lie algebras an,

bn, cn and dn. We will look at their root space decompositions and Weyl groups.

Let Sn be the full symmetric group on {1, . . . , n} and Eij be the square matrix of

appropriate size with (i, j)th entry 1 and 0 elsewhere.

Example 3.11 [12, p.186] [20, p.80] A model for the simple Lie algebra an (n ≥ 1)

is g := sl(n+1,C), the algebra of all (n+1)× (n+1) complex matrices with trace

0. Let h be the set of all diagonal matrices in g. Then h is a Cartan subalgebra of
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g. Define ej ∈ h∗ for j = 1, . . . , n + 1 by

ej




h1

. . .

hn+1


 = hj.

Direct matrix computation yields

(ad H)Ejk = [H,Ejk] = (ej(H)− ek(H))Ejk for all H ∈ h.

Thus Ejk is a simultaneous eigenvector for all ad H, H ∈ h. The root system of

(g, h) is

∆ = {±(ej − ek) : 1 ≤ j < k ≤ n}.

The root space decomposition is

g = h+̇
∑̇

ej−ek∈∆
g
ej−ek ,

where

g
ej−ek = CEjk.

The simple roots are

Π = {ej − ej+1 : j = 1, . . . , n}.

Notice that ej − ek can be written as

ej − ek = (ej − ej+1) + . . . + (ek − ek+1) if j < k,
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and

ej − ek = −(ek − ek+1)− . . .− (ej−1 − ej) if j > k.

The Killing form of (complex) g is [12, p.187]

B(X, Y ) = 2(n + 1) tr XY, X, Y ∈ g.

For any α = ej − ek ∈ ∆, Hej−ek
= 1

2(n+1)
(Ejj −Ekk) (see Proposition 3.8 (c)). So

h0 is the space of real diagonal matrices which is identified with the hyperplane

{(h1, . . . , hn+1)
T ∈ Rn+1 :

n+1∑
j=1

hj = 0}

in Rn+1 naturally:

h0 3 diag (h1, . . . , hn+1) 7→ (h1, . . . , hn+1)
T ∈ Rn+1.

If α = ej − ej+1 ∈ Π, the reflection sα (identified with sHα) acts on H =

(h1, . . . , hn+1)
T ∈ h0 by

sα(H) = H − 2B(Hα, H)

B(Hα, Hα)
Hα

= H − (hj − hj+1)Hα

= diag (h1, . . . , hj−1, hj+1, hj, hj+2, . . . , hn+1).

So the action of sej−ej+1
on H = diag (h1, . . . , hn+1) is to switch the jth and

(j + 1)st entries. Thus the Weyl group is the full symmetric group Sn+1 on the set
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{1, . . . , n}. With the identification W acts on h0 by

(h1, . . . , hn+1)
T 7→ (hσ(1), . . . , hσ(n+1))

T , σ ∈ Sn+1.

Example 3.12 [20, p.83] A model of the simple Lie algebra bn (n ≥ 1) is g :=

so(2n + 1,C), the set of all (2n + 1)× (2n + 1) complex skew symmetric matrices.

The subalgebra

h =

{
H =

(
0 ih1

−ih1 0

)
⊕ · · · ⊕

(
0 ihn

−ihn 0

)
⊕ (0) : h1, . . . , hn ∈ C

}
.

is a Cartan subalgebra of g. Let

ej(above H) = hj, 1 ≤ j ≤ n.

The root system of (g, h) is

∆ = {±ej ± ek : 1 ≤ j 6= k ≤ n} ∪ {±ek : 1 ≤ k ≤ n}.

The root space decomposition is

g = h+̇
∑̇

α∈∆
g
α, g

α = CEα,

and with Eα as defined below. To define Eα, first let j < k and let α = ±ej ± ek.

Then Eα is 0 except in the sixteen entries corresponding to the jth and kth pairs
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of indices, i.e.,

j k

Eα =




0 Xα

−XT
α 0




j

k

with

Xej−ek
=




1 i

−i 1


 , Xej+ek

=




1 −i

−i −1


 ,

X−ej+ek
=




1 −i

i 1


 , X−ej−ek

=




1 i

i −1


 .

To define Eα for α = ±el, write

pair entry

l 2n + 1

Eα =




0 Xα

−XT
α 0




with 0’s elsewhere and with

Xel
=




1

−i


 , X−el

=




1

i


 .

The simple roots are

Π = {ej − ej+1 : 1 ≤ j ≤ n− 1} ∪ {en}.
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The Killing form of (complex) g is [12, p.189]

B(X, Y ) = (2n− 1) tr XY, X, Y ∈ g.

Notice that h0 = {H ∈ h : h1, . . . , hn ∈ R}. If we identify h0 with Rn in the natural

way,

h0 3




0 ih1

−ih1 0


⊕ · · · ⊕




0 ihn

−ihn 0


⊕ (0) 7→ (h1, . . . , hn)T ∈ Rn,

then

sej−ej+1
(h1, . . . , hn) = (h1, . . . , hj−1, hj+1, hj, hj+2, . . . , hn),

i.e., switching the j and the (j + 1)st entries, and

sen(h1, . . . , hn) = (h1, . . . , hn−1,−hn).

Thus the Weyl group W of (g, h) acts on h0 by

(h1, . . . , hn)T 7→ (±hσ(1), . . . ,±hσ(n))
T , σ ∈ Sn.

Example 3.13 [20, p.85] The simple Lie algebra cn (n ≥ 1) may be realized as

g := sp(n,C) = sp(n)⊕ isp(n), where is the set of 2n× 2n complex matrices of the

following form:

sp(n,C) = {X ∈ sl(2n,C) : XT J + JX = 0},
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where J = Jn,n is the 2n× 2n matrix

J =




0 In

−In 0


 .

So [12, p.447]

sp(n,C) = {
(

A1 A2

A3 −AT
1

)
: A2, A3 ∈ Cn×n complex symmetric, A1 ∈ Cn×n}

and

sp(n) = {
(

A −B

B A

)
: A,B ∈ Cn×n, A∗ = −A, BT = B}.

Now

h := {diag (h1, . . . , hn,−h1, . . . ,−hn) : h1, . . . , hn ∈ C}

is a Cartan subalgebra of g. Let ej ∈ h∗ be

ej(diag (h1, . . . , hn,−h1, . . . ,−hn)) = hj, 1 ≤ j ≤ n.

Then the root system of (g, h) is

∆ = {±ej ± ek : 1 ≤ j 6= k ≤ n} ∪ {±2ek : 1 ≤ k ≤ n}.
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The corresponding root spaces are

gej−ek = C(Ej,k − Ek+n,j+n), g2el = C(El,l+n),

gej+ek = C(Ej,k+n + Ek,j+n), g−2el = C(El+n,l),

g−ej−ek = C(Ej+n,k + Ek+n,j),

where 1 ≤ j 6= k ≤ n and 1 ≤ l ≤ n. The simple roots are

Π = {ej − ej+1 : 1 ≤ j ≤ n− 1} ∪ {2en}.

The Killing form of (complex) g is [12, p.190]

B(X, Y ) = (2n + 2) tr XY, X, Y ∈ g.

Notice that h0 = {H ∈ h : h1, . . . , hn ∈ R}. If we identify h0 with Rn in the natural

way,

h0 3 diag (h1, . . . , hn,−h1, . . . ,−hn) 7→ (h1, . . . , hn)T ∈ Rn,

then Weyl group W of (g, h) acts on h0 by

(h1, . . . , hn)T 7→ (±hσ(1), . . . ,±hσ(n))
T , σ ∈ Sn.

Example 3.14 [20, p.85] The simple Lie algebra dn (n ≥ 3) may be realized as

g := so(2n,C) = so(2n) + iso(2n), the algebra of 2n× 2n complex skew symmetric
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matrices. The subalgebra

h =





H =




0 h1

−h1 0


⊕ · · · ⊕




0 hn

−hn 0


 : h1, . . . , hn ∈ C





,

is a Cartan subalgebra of g. The root system of (g, h) is

∆ = {±ej ± ek : 1 ≤ j < k ≤ n},

where

ej(above H) = hj, 1 ≤ j ≤ n.

The corresponding root spaces g±ej±ek , ±ej ± ek ∈ ∆ are similar to those defined

for bn in Example 3.12. The simple roots are

Π = {ej − ej+1 : 1 ≤ j ≤ n− 1} ∪ {en−1 + en}.

The Killing form of g is [12, p.188]

B(X, Y ) = (2n− 2) tr XY, X, Y ∈ g.

Notice that h0 = {H ∈ h : h1, . . . , hn ∈ R}. If we identify h0 with Rn similar to

Example 3.12, i.e.,

h0 3




0 ih1

−ih1 0


⊕ · · · ⊕




0 ihn

−ihn 0


 7→ (h1, . . . , hn)T ∈ Rn,
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then

sej−ej+1
(h1, . . . , hn) = (h1, . . . , hj−1, hj+1, hj, hj+2, . . . , hn),

i.e., switching the jth and the (j + 1)st entries, and

sen−1+en(h1, . . . , hn) = (h1, . . . ,−hn,−hn−1).

Thus the The Weyl group W of (g, h) acts on h0 by

(h1, . . . , hn)T 7→ (±hσ(1), . . . ,±hσ(n))
T , σ ∈ Sn,

where the number of negative signs is even.
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Chapter 4

The complex semisimple case

In this chapter we assume that g is a complex semisimple Lie algebra and use

the notations in the previous chapter.

A complex Lie group is a Lie group G possessing a complex analytic structure

such that multiplication and inversion are holomorphic. For such a group the

complex structure induces a multiplication-by-i mapping in the Lie algebra g such

that g becomes a Lie algebra over C [20, p.55].

A semisimple Lie group G has a complexification GC if GC is a complex con-

nected Lie group such that G is Lie subgroup of GC and the Lie algebra of GC is

the complexification of the Lie algebra of G [20, p.404]. Not every semisimple Lie

group has a complexification. Even if G has a complexification, the complexifica-

tion is not necessarily unique up to isomorphism. But if G is compact, GC exists

and is unique [20, p.375].

Let K be a real compact connected semisimple Lie group, G its complexifica-

tion, and let k and g be their respective Lie algebras. Thus g = k ⊕ ik. We fix a

maximal torus T of K and denote its Lie algebra by t. Then h = t⊕ it is a Cartan

subalgebra of g (now it is h0 in Chapter 3). Let the root space decomposition of g

be

g = h⊕
⊕
α∈∆

g
α,
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where ∆ is the root system of (g, h) and gα is the root space of the root α ∈ ∆. Fix

a simple system Π for ∆. The set of positive roots (with respect to Π) is denoted

by ∆+. The Weyl group of (g, h) will be denoted by W . A subalgebra of g is called

a Borel subalgebra of g if it is a maximal solvable subalgebra of g. We introduce

the maximal nilpotent subalgebras n and n− of g:

n =
⊕

α∈∆+

g
α, n

− =
⊕

α∈∆+

g
−α.

Then

b = h⊕ n (4.1)

is a (standard) Borel subalgebra of g. Let B be the corresponding Borel subgroup

of G.

An automorphism of g is an invertible linear map L ∈ GL(g) that respects

bracket

[L(X), L(Y )] = L[X, Y ] for all X, Y ∈ g.

Denote by Aut g the group of automorphisms of g. The adjoint group Int (g) (see

the definition in Theorem 3.7) is a normal subgroup of Aut g. The adjoint group

Int (g) is generated by ead X (= Ad(eX) [12, p.128]), where X ∈ g. Its elements

are called inner automorphisms. Since the complexification G of K is connected,

Ad(G) = Int (g) [12, p.129] and is the identity component of Aut (g) [12, p.132].

We have the following facts about the Borel subalgebras of a complex Lie

algebra g.
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Theorem 4.1 [18, p.84] The Borel subalgebras of a complex semisimple Lie alge-

bra g are all conjugate under Int g.

The following is a recent generalization of the Schur triangularization theorem

(Theorem 2.1) in the context of complex semisimple Lie algebras by Djoković and

Tam [6].

Proposition 4.2 (Djoković and Tam) Let g be a complex semisimple Lie algebra.

1. The Borel subalgebras of g are all conjugate under AdK.

2. Let b be any Borel subalgebra of g. Then AdK(X) intersects b for each

X ∈ g.

Proof: (1) Let b′ be any Borel subalgebra and let b the standard Borel algebra

given in (4.1). By Theorem 4.1 all Borel subalgebras are conjugate under Int g =

AdG. So there is g ∈ G such that b′ = Ad(g)b. The global Iwasawa decomposition

[12, p.275] states that G = KAN (G is viewed as a real group), where K, A, and

N denote the analytic subgroups of G with Lie algebras k, it, and n, respectively.

Thus G = KB, where B ⊃ AN is the analytic subgroup of G with Lie algebra b.

Therefore there exist k ∈ K and b ∈ B such that g = kb. So

b
′ = Ad(g)b = Ad(k)Ad(b)b = Ad(k)b.

(2) Let b be any Borel subalgebra of g. For any X ∈ g, X is contained in some

Borel subalgebra b′ of g. Thus Ad(k)X ∈ Ad(k)b′ = b by the first part for some

k ∈ K.
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Let θ be the Cartan involution of g = k⊕ ik, i.e., θ is identity on k and negative

identity on ik. Then θ is semilinear, i.e., θ(λX + µY ) = λX + µY , X, Y ∈ g,

respects the bracket θ[X, Y ] = [θX, θY ] and is an involution, i.e., θ2 = 1. Moreover

Bθ(X, Y ) := 2Re B(X, θY ) is an inner product on g and k and ik are orthogonal

with respect to Bθ(·, ·).

Example 4.3 Consider g := sl(n,C). The Hermitian decomposition sl(n,C) =

su(n) + isu(n) suggests that k = su(n) and the corresponding Cartan involution

is θ(X) = −X∗, X ∈ g. Moreover θ(Eij) = −Eji, i 6= j and Bθ(X, Y ) =

−B(X, θ(Y )) = 2(n + 1)tr XY ∗.

Proposition 4.4 θ(h) = h and θ(gα) = g−α for all α ∈ ∆.

Proof: Clearly θ(it) = it and θt = t so that θh = h. Let X ∈ gα and H :=

iH1 + H2 ∈ t+̇it, H1, H2 ∈ it. Then [H, θX] = θ[θH,X] = θ[θ(iH1 + H2), X] =

θ[θiH1, X]+θ[θH2, X] = θ[iH1, X]+θ[−H2, X] = θiα(H1)X−α(H2)θX = −α(H)θX

since α takes real values on it.

We will use the following result of Kostant [22] to prove Theorem 4.6.

Theorem 4.5 (Kostant) Use the same notations of K, t and W as above. Let

π : k → t be the orthogonal projection with respect to the Killing form. If Z ∈ t,

then π(AdK(Z)) = conv WZ,

For any complex semisimple Lie algebra g whose connected Lie group is G, it

is known that [20, p.302] that g always has a compact real form k, i.e., g = k⊕ ik.

Let K be a connected subgroup of G corresponding to k.
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The following is an extension of Ky Fan-Amir-Moéz-Horn-Mirsky’s result in

the context of complex semisimple Lie algebras.

Theorem 4.6 Let g = k⊕ ik be a complex semisimple Lie algebra, where k is the

Lie algebra of a semisimple Lie group K. Let t be a Cartan subalgebra of k. Let

π : g → it be the orthogonal projection with respect to the Killing form of the

realification gR of g. If Z ∈ it, then

∪X∈k π(AdK(X + Z) ∩ b) = conv WZ, (4.2)

where b is given in (4.1) and W is the Weyl group of (g, h). Equivalently

π((k + AdK(Z)) ∩ b) = conv WZ. (4.3)

In particular, for each U ∈ g, π(AdK(U)∩ b) ⊂ conv WZ, where Z ∈ AdK(1
2
(U −

θU)) ∩ it.

Proof: Notice that

∪X∈k π(AdK(X + Z) ∩ b)

= π(∪X∈k AdK(X + Z) ∩ b)

= π([∪X∈k ∪k∈K (Adk(X) + Adk(Z))] ∩ b)

= π([∪k∈K ∪X∈k (Adk(X) + Adk(Z))] ∩ b))

= π(∪k∈K (k + Adk(Z)) ∩ b)) since AdG(k)|k = AdK(k) ∈ Aut (k)

= π((k + AdK(Z)) ∩ b)
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and Proposition 4.2 ensures that π((k + AdK(Z)) ∩ b) is nonempty.

We now give a proof of (4.2). Let Y ∈ k + AdK(Z). Then Y = X + Adk(Z)

for some X ∈ k and k ∈ K. Since k ⊥ it under Bθ(·, ·),

π(Y ) = π(X + Adk(Z)) = π(Adk(Z)).

By Theorem 4.5 π(AdK(Z)) = conv WZ. Thus π(Y ) ∈ conv WZ and

π((k + AdK(Z)) ∩ b) ⊂ π(k + AdK(Z)) ⊂ conv WZ. (4.4)

Conversely, let β ∈ conv WZ. By Theorem 4.5 again, there exists Y ∈

AdK(Z) such that π(Y ) = β. Recall the root space decomposition from Proposi-

tion 3.8

g = h+̇
∑̇

α∈∆+
(gα ⊕ g

−α).

The direct sum gα ⊕ g−α is not orthogonal. Write

Y = Y0 +
∑

α∈∆+

(Yα + Y−α),

where Y0 ∈ h, Yα ∈ gα and Y−α ∈ g−α. Since Y ∈ ik, ik is the −1 eigenspace of θ,

we have

−Y0 +
∑

α∈∆+

(−Yα − Y−α) = −Y = θY = θY0 +
∑

α∈∆+

(θYα + θY−α).
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Since the sums are direct and θgα = g−α (α ∈ ∆), it follows that Y0 ∈ h ∩ ik, i.e.,

Y0 ∈ it. Moreover Y−α = −θYα for all α ∈ ∆. Then

Y = Y0 +
∑

α∈∆+
(Yα − θYα),

and Y0 = π(Y ) = β. Set

X :=
∑

α∈∆+
(Yα + θYα) ∈ k.

Then

X + Y = Y0 + 2
∑

α∈∆+
Yα ∈ (X + AdK(Z)) ∩ b.

Clearly π(X + Y ) = π(Y ) = β. This proves

π((k + AdK(Z)) ∩ b) ⊃ conv WZ. (4.5)

Combining (4.4) and (4.5) we conclude

π((k + AdK(Z)) ∩ b) = conv WZ.

For U ∈ g, AdK(U) ∩ b is nonempty by Proposition 4.2. We decompose

U = 1
2
(U + θU) + 1

2
(U − θU). Clearly

π(AdK(U) ∩ b) = π(AdK(
1

2
(U + θU) +

1

2
(U − θU)) ∩ b)

⊂ ∪X∈kπ(AdK(X +
1

2
(U − θU)) ∩ b)
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= conv WZ,

where Z ∈ AdK(1
2
(U − θU)) ∩ it.

Remark 4.7 When g = sl(n,C), the theorem is simply Ky Fan-Amir-Moéz-Horn-

Mirsky’s result with an appropriate translation.

Remark 4.8 Let N(T ) denote the normalizer of t in K with respect to the adjoint

action of K, i.e., N(T ) = {k ∈ K : Ad(k) t = t}. Consider the group homomor-

phism ν : N(T ) → O(t), n 7→ (Ad n)|t, from N(T ) into O(t) which denotes the

group of orthogonal linear transformations of the real space t. The kernel of ν

is T and W is the image of ν. So ν defines a group isomorphism between the

group N(T )/T onto the Weyl group W of (g, h) if we identify ih0 and t. Knapp

calls N(T )/T the analytically defined Weyl group and W the algebraically defined

Weyl group [20, p.207].

Remark 4.9 The statement of Theorem 4.6 remains true when the Cartan sub-

space ik is replaced by k. But we need to change the projection π to π1 : g → t and

assume that Z ∈ t. This becomes the generalization of the Ky Fan-Amir-Moéz-

Horn-Mirsky’s result about the imaginary part of the eigenvalues and imaginary

singular values.

Remark 4.10 Notice that g is an inner product space equipped with the natural

inner product 〈X,Y 〉 := Bθ(X,Y ) = −B(X, θY ), and k and ik are orthogonal since

[k, ik] ⊂ ik, [k, k] ⊂ k and [ik, ik] ⊂ k. Thus

‖X‖2 = ‖1

2
(X + θX)‖2 + ‖1

2
(X − θX)‖2.
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When g = sl(n,C), it simply asserts that the square of the Frobenius norm of X

is the sum of squares of the real and imaginary singular values [1, Theorem 5].

The complex classical Lie algebras an (n ≥ 1), bn (n ≥ 1), cn (n ≥ 1) and dn

(n ≥ 2 and d1 is not semisimple) are semisimple. Indeed they are simple except

d2. So Theorem 4.6 holds for them. The following

a1 ≈ b1 ≈ c1, b2 ≈ c2, , a3 ≈ d3, d2 ≈ a1 ⊕ a1.

are the only isomorphisms [12, p.465] which hold between the complex classical Lie

algebras. All occur among low dimensional algebras. We now draw the pictures of

the convex hull conv Wβ for β ∈ it for several low dimensional cases.

Example 4.11 (1) a1: For g = sl(2,C), h =
{ (

h1 0

0 −h1

)
: h1 ∈ C

}
and the

only simple root is α1 = e1 − e2 ∈ h∗ (See the notations in Example 3.11),

where

α1

(
h1 0

0 −h1

)
= 2h1.

The Weyl group of (g, h) is W = {1, sα1}, where sα1(α1) = −α1 and sα1(−α1) =

α1. Thus W acts on h0 = it =
{ (

h1 0

0 −h1

)
: h1 ∈ R

}
:

(
h1 0

0 −h1

)
7→

(
h1 0

0 −h1

)
, or

(−h1 0

0 h1

)
.

So if β = diag (β1,−β1) ∈ h0, then

conv Wβ =
{ (

x 0

0 −x

)
: −β1 ≤ x ≤ β1

}
,
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which is identified with the line segment [−β1, β1].

(2) a2 : For g = sl(3,C), the simple roots are α1 = e1 − e2, α2 = e2 − e3 (See the

notations in Example 3.11). The Weyl group is generated by the reflections

{sα1 , sα2} with respective to the hyperplanes perpendicular to α1 and α2,

respectively. If we identify h0 = it with the hyperplane H0 := {x ∈ R3 :

x1 + x2 + x3 = 0} in R3. The Weyl group W of (g, h) acts on h0 by

(h1, h2, h3)
T 7→ (hσ(1), hσ(2), hσ(3))

T , σ ∈ S3,

where S3 is the full symmetric group on the set {1, 2, 3}. For any β ∈ it,

Wβ consists of six points on the hyperplane H0, hence conv Wβ is a hexagon

including its interior. The shaded region is the intersection of conv Wβ and

the (closed) fundamental Weyl chamber.

α
1
=e

1
−e

2
 

α
2
=e

2
−e

3
 

β 

Figure 4.1: The Convex Hull conv Wβ For a2
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(3) b2 : For g = so(5,C), the simple roots are α1 = e1− e2, α2 = e2 (See Example

3.12). The Weyl group is generated by the reflections {sα1 , sα2} and if we

identify h0 = it with R2 in the natural way, then the Weyl group acts on it

by

(h1, h2)
T 7→ (±hσ(1),±hσ(2))

T , σ ∈ S2.

For any β ∈ it, the convex hull conv Wβ is an octagon including its in-

terior. The shaded region is the intersection of conv Wβ and the (closed)

fundamental Weyl chamber.

α
1
=e

1
−e

2
 

α
2
=e

2
 β 

Figure 4.2: The Convex Hull conv Wβ For b2

(4) c2 : Similar to so(5,C), the simple roots of g = sp(2,C) are α1 = e1 − e2,

α2 = 2e2 (See Example 3.13). The graph of the convex hull is identical with

the one of g = so(5,C) since they have the same Weyl group.

(5) d2 : For g = so(4,C), the simple roots are α1 = e1 − e2, α2 = e1 + e2 (See

Example 3.14). The Weyl group is generated by the reflections {sα1 , sα2}
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α
1
=e

1
−e

2
 

α
2
=2e

2
 

β 

Figure 4.3: The Convex Hull conv Wβ For c2

and acts on h0 = it by

(h1, h2)
T 7→ ±(hσ(1), hσ(2))

T , σ ∈ S2,

if we identify it with R2. The graph of conv Wβ for β ∈ it is a rectangle

including its interior. The shaded region is the intersection of conv Wβ and

the (closed) fundamental Weyl chamber.
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α
1
=e

1
−e

2
 

α
2
=e

1
+e

2
 

β 

Figure 4.4: The Convex Hull conv Wβ For d2
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Chapter 5

The inequalities associated with an and cn

In Chapter 4 we obtained the extension of Ky Fan-Amir-Moéz-Horn-Mirsky’s

result in the context of complex semisimple Lie algebras. In this chapter and the

next we will analyze the result for the classical Lie algebras an, bn, cn and dn, which

are realized in matrix models. We obtain some interesting inequalities which are

similar to majorization. In this chapter, we use the same notations as we did in the

previous chapters. Let K be a real semisimple compact connected Lie group whose

complexification is G. Let g and k be the Lie algebras of G and K, respectively.

Let h = t ⊕ it be the Cartan subalgebra of g, where t is the Cartan subalgebra of

k. Let b be the (standard) Borel subalgebra of g:

b = h⊕
∑

α∈∆+

g
α,

where ∆+ is the set of positive roots in the root system ∆ of (g, h). Denote by

Π = {αj, j = 1, . . . , n} the set of simple roots and set V =
∑n

i=1Rαi. Let

ρ : g → h and π : g → it be the orthogonal projections with respect to the Killing

form. In this chapter, we use (·, ·) to denote the Killing form B(·, ·) of g restricted

to h0 = it, and identify (it)∗ with it under the identification defined by Proposition

3.8 (c) (τ : α 7→ Hα). Under this identification, the (closed) fundamental Weyl
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chamber of g is

(it)+ = {H ∈ it : αj(H) ≥ 0, j = 1, . . . , n}.

The vectors 2αi

(αi,αi)
, i = 1, . . . , n again form a basis of V . Let {λ1, . . . , λn} be the

dual basis:

2(λi, αj)

(αj, αj)
= δij, i, j = 1, . . . , n.

They are called the fundamental dominant weights [18, p.67].

Proposition 5.1 Let g be a complex semisimple Lie algebra. The (closed) fun-

damental Weyl chamber (it)+ for g is the cone C generated by the fundamental

dominant weights λj, j = 1, . . . , n, i.e., C = {∑n
j=1 ajλj : aj ≥ 0, j = 1, . . . , n}.

Proof: Denote by

〈δ, γ〉 :=
2(δ, γ)

(γ, γ)
.

Let α ∈ (it)+. Thus (α, αj) ≥ 0 for j = 1, . . . , n. We have

α =
n∑

j=1

〈α, αj〉λj,

hence α ∈ C. This proves (it)+ ⊂ C. Conversely, let α ∈ C. Then α =
∑n

j=1 ajλj

with aj ≥ 0, j = 1, . . . , n. Thus 〈α, αj〉 = aj ≥ 0 and hence (α, αj) ≥ 0 for

j = 1, . . . , n. This proves α ∈ (it)+. So C ⊂ (it)+. Therefore (it)+ = C.
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The dual cone dual it(it)+ ⊂ it of the fundamental Weyl chamber (it)+ is

defined as

dual it(it)+ := {X ∈ it : (X,Y ) ≥ 0, for all Y ∈ (it)+},

which may be written as

{X ∈ it : (X,λj) ≥ 0, j = 1, . . . , n}.

Kostant [22, Lemma 3.3] proved the following result which is very useful to derive

inequalities that completely describe conv WZ.

Lemma 5.2 (Kostant)

1. Let Z ∈ (it)+. For any w ∈ W , Z − wZ ∈ dual it(it)+.

2. Let Y, Z ∈ (it)+, then Y ∈ conv WZ if and only if Z−Y ∈ dual it(it)+, where

W is the Weyl group of (g, h).

Proof: (1) If Z−w0Z 6∈ dual it(it)+ for some id 6= w0 ∈ W , then there would exist

X ∈ (it)+ such that (Z − w0Z,X) < 0. Let us fix this X. Because W is finite,

there exist a id 6= w ∈ W so that (Z − wZ, X) = (Z,X) − (wZ,X) is minimal,

or equivalently (wZ,X) is maximal. Since W acts simply transitively on the Weyl

chambers, wZ /∈ (it)+ and there exists a simple root α ∈ Π such that α(wZ) < 0.

Let Hα be the be the corresponding element of α in it. Then we have

(sα(wZ), X) = (wZ − α(wZ)

|α|2 Hα, X)
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= (wZ, X)− (
α(wZ)

(Hα, Hα)
Hα, X)

= (wZ, X)− α(wZ)

(Hα, Hα)
α(X)

> (wZ, X)

since α(X) > 0 and α(wZ) < 0. This contradicts the maximality of (wZ, X).

(2) If Y, Z ∈ (it)+ and Y ∈ conv WZ, then there exist aw ≥ 0, w ∈ W such

that

Y =
∑
w∈W

awwZ,
∑
w∈W

aw = 1.

Thus

Z − Y =
∑
w∈W

awZ −
∑
w∈W

awwZ

=
∑
w∈W

aw(Z − wZ).

Since Z − wZ ∈ dual it(it)+ by the first part and aw ≥ 0 for all w ∈ W , Z − Y ∈

dual it(it)+.

Conversely, let Y, Z ∈ (it)+ and suppose that Y /∈ conv WZ Then Y and

conv WZ lie on different sides of some hyperplane in it. Then there exists X ∈ it

such that (Y, X) > (wZ, X) for all w ∈ W . Since W ∈ O(it), (Z,w−1X) =

(wZ,X) < (Y, X). Choose w ∈ W such that w−1X ∈ (it)+. Since Z, w−1X ∈ (it)+,

we have (Z − w−1Z,w−1X) ≥ 0 by the first part, or equivalently,

(Z, w−1X) ≥ (w−1Z,w−1X) = (Z,X).
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Thus (Z − Y, X) < 0, i.e., Z − Y 6∈ dual it(it)+.

The following picture illustrate the geometric meaning of Lemma 5.2 for

sl(3,C) in which C := dual it(it)+ is the dual cone generated by α1 and α2.

Z 

Y 

C 

α
1
=e

1
−e

2
 

α
2
=e

2
−e

3
 

Figure 5.1: Z − Y in C := dual it(it)+ for sl(3,C)

The shaded region is the intersection of the fundamental Weyl chamber (it)+

and the backward cone, −C + Z, centered at Z.

Lemma 5.3 Given Y, Z ∈ it, Y ∈ conv WZ if and only if Y+ − Z+ ∈ dual it(it)+,

where W is the Weyl group of (g, h), where Y+ denotes the element in the singleton

set WY ∩ (it)+.

Proof: The Weyl group W acts transitively on Weyl chambers, i.e., WY ∩ (it)+

is nonempty [18, p.51] for each Y ∈ (it)+, which is a singleton set since W is a

group.

Clearly each ω ∈ W fixes conv WZ, i.e., ω(conv WZ) = conv WZ and hence

WY ⊂ conv WZ if and only if Y ∈ conv WZ. Thus Y ∈ conv WZ if and only
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if Y+ ⊂ conv WZ+. By Lemma 5.2, Y ∈ conv WZ if and only if Y+ − Z+ ∈

dual it(it)+.

Example 5.4 Referring to Example 3.11 concerning the simple Lie algebra an (n ≥

1), we still use the model g = sl(n + 1,C). Let K = SU(n + 1). Then k = su(n + 1)

and θ(X) = −X∗, X ∈ g. Denote h by the set of all diagonal matrices in g, which

is a Cartan subalgebra. The root space decomposition of g with respect to h is

g = h+̇
∑̇

α∈∆+
g
α ⊕ g

−α,

where ∆ = {±(ej − ek) : 1 ≤ j < k ≤ n + 1} and gej−ek = CEjk. Identify h0 = it

with the hyperplane {x ∈ Rn+1 : x1 + . . . + xn+1 = 0} in Rn+1:

diag (h1, . . . , hn+1) 7→ (h1, . . . , hn+1)
T .

The Weyl group W of (g, h) acts on it by

(h1, . . . , hn+1)
T 7→ (hσ(1), . . . , hσ(n+1))

T , σ ∈ Sn+1.

The positive roots in ∆ are

ej − ek, 1 ≤ j < k ≤ n + 1,

and the simple roots are

αj = ej − ej+1, j = 1, . . . , n.
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The fundamental dominant weights are [18, p.69] [20, p.289]

λk =
n− k + 1

n + 1

k∑
j=1

ej − k

n + 1

n+1∑

j=k+1

ej, k = 1, . . . , n.

The (closed) fundamental Weyl chamber it+ is

{(h1, . . . , hn+1)
T ∈ it : h1 ≥ ... ≥ hn+1}.

The dual cone of (it)+ in it is

dual itit+ = {(x1, ..., xn+1)
T ∈ it :

k∑
j=1

xj ≥ 0, k = 1, ..., n, and
n+1∑
j=1

xj = 0}.

Since W = Sn+1, α+ = (α[1], . . . , α[n+1]) ∈ (it)+, i.e., rearrangement of α ∈ it in

nonincreasing order. By Lemma 5.3, given α, β ∈ it, α ∈ conv Wβ if and only if

β+ − α+ ∈ dual it(it)+, i.e.,

k∑
j=1

α[j] ≤
k∑

j=1

β[j], k = 1, . . . , n, (5.1)

n+1∑
j=1

α[j] =
n+1∑
j=1

β[j] = 0, (5.2)

In other words, α ≺ β, i.e., majorization.

Theorem 4.6 holds for the simple g = sl(n + 1,C), n ≥ 1. Let us consider the

inequalities associated with g = sl(n + 1,C). It is easy to see that the projections

ρ : b → h and π : b → it amount to taking the eigenvalues and the real part of the

eigenvalues, respectively, of the matrices in b. We know that AdK(Y ) ∩ b ⊂ it for
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any Y ∈ ik, hence AdK(Y ) ∩ b are the eigenvalues of Y ∈ ik (essentially spectral

theorem on Hermitian matrices). For any X ∈ sl(n+1,C), if α = (α1, . . . , αn+1)
T ∈

π(AdK(X) ∩ b), and β = (β1, ..., βn+1)
T is the eigenvalues of 1

2
(X + X∗) = 1

2
(X −

θ(X))(∈ ik), then by Theorem 4.6 we know that α ∈ Wβ. By (5.1) and (5.2) we

have

k∑
j=1

α[j] ≤
k∑

j=1

β[j], k = 1, ..., n,

n+1∑
j=1

α[j] =
n+1∑
j=1

β[j] = 0,

where (α[1], . . . , α[n+1])
T , (β[1], . . . , β[n+1])

T ∈ (it)+ are the rearrangements of the

entries of α and β, respectively, in nonincreasing order. Notice that the rearrange-

ment of α, say, is simply to map α to its representative in the fundamental Weyl

(it)+ via the Weyl group action. The result is essentially Ky Fan. If we change

the projection π to π1 : g → t, by similar argument, we get the result of Ky Fan’s

result about the imaginary part of eigenvalues and imaginary singular values. Con-

versely, if α ≺ β, where α, β ∈ Rn+1, i.e., (5.1) and (5.2) hold for α and β, then

Theorem 4.6 on g = sl(n + 1,C) asserts that there exists X ∈ g such that the

real part of the eigenvalues of X is majorized by the real singular values of X,

i.e., the result of Amir-Moeź-Horn and Mirsky up to a translation. Therefore Ky

Fan-Amir-Moeź-Horn-Mirsky’s result is a special case of Theorem 4.6.
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Example 5.5 [20, p.85] Consider the simple complex Lie algebra cn, which is

realized as g = sp(n,C) = sp(n)⊕ isp(n) and θ(X) = −X∗. Recall that

sp(n,C) = {X ∈ sl(2n,C) : XT J + JX = 0},

where J = Jn,n is the 2n× 2n matrix

J =




0 In

−In 0


 .

Recall

sp(n,C) = {
(

A1 A2

A3 −AT
1

)
: A2, A3 ∈ Cn×n complex symmetric, A1 ∈ Cn×n}.

If λ ∈ C is an eigenvalue of A =

(
A1 A2

A3 −AT
1

)
∈ sp(n,C) with eigenvector

x =

(
u

v

)
∈ C2n,

i.e., Ax = λx, then (−v

u

)
∈ C2n

is also an eigenvector of A corresponding to the eigenvalue −λ. Thus the eigen-

values of A ∈ sp(n,C) occur in pair but opposite in sign. So do the real singular

values of A. We will see that again when we discuss the projection ρ : b → h.
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The symplectic group K = Sp(n) consists of the matrices of the form




U −V

V U


 ∈ U(2n),

and k = sp(n). Thus θ(X) := −X∗ ∈ g.

The group G = Sp(n,C) = {g ∈ GL(2n,C) : gT Jg = J}, i.e., the group of

matrices g that preserves the bilinear form

〈x, y〉 := x1yn+1 + x2yn+2 + · · ·+ xny2n, x, y ∈ Cn.

Matrices in Sp(n,C) are called symplectic matrices. Indeed Sp(n,C) ⊂ SL(2n,C)

by considering the Pfaffian (See Remark 6.6). As we did in Example 3.13, let

h = {diag (h1, . . . , hn,−h1, . . . ,−hn) : h1, . . . , hn ∈ C}.

Let us identify h0 = it with Rn in the natural way:

diag (h1, . . . , hn,−h1, . . . ,−hn) 7→ (h1, . . . , hn)T .

The positive roots are

{ej ± ek : 1 ≤ j < k ≤ n} ∪ {2el : 1 ≤ l ≤ n}.
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The Weyl group W of (g, h) acts on it:

(h1, . . . , hn)T 7→ (±hσ(1), . . . ,±hσ(n))
T , σ ∈ Sn.

The simple roots are

αj = ej − ej+1, j = 1, . . . , n− 1, αn = 2en,

and the fundamental dominant weights [18, p.67] [20, p.289] are

λk =
k∑

j=1

ej, k = 1, . . . , n.

The (closed) fundamental Weyl chamber (it)+ is

(it)+ = {(h1, . . . , hn)T : h1 ≥ · · · ≥ hn ≥ 0}.

The dual cone of (it)+ in it is

dual it(it)+ = {(h1, . . . , hn)T ∈ it :
k∑

j=1

hj ≥ 0, k = 1, . . . , n}.

The condition that β − α ∈ dual it(it)+ is equivalent to

k∑
j=1

αj ≤
k∑

j=1

βj, k = 1, . . . , n. (5.3)
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Because of the Weyl group action, if α = (α1, . . . , αn) ∈ it, then

α+ = (|α|[1], . . . , |α|[n]) ∈ (it)+,

where |α| = (|α1|, . . . , |αn|). In other words, α+ is the rearrangement of the ab-

solute values of α’s in nonincreasing order. By Lemma 5.3, if α, β ∈ it, then

α ∈ conv Wβ if and only if

k∑
j=1

|α|[j] ≤
k∑

j=1

|β|[j], k = 1, . . . , n.

We remark that the orthogonal projection ρ : b → h with respective to the Killing

form of g amounts to taking eigenvalues and π : b → h is equivalent to taking the

real part of the eigenvalues, since

b =
{




A1 A2

0 −AT
1


 , A1 is upper triangular, A2

T = A2

}
.

and h consists of diagonal matrices.

Definition 5.6 Let a, b ∈ Rn. We say that a is weakly majorized by b, denoted

by a ≺w b, if

k∑
i=1

a[i] ≤
k∑

i=1

b[i], k = 1, . . . , n,

where a[1] ≥ a[2] ≥ · · · ≥ a[n] and b[1] ≥ b[2] ≥ · · · ≥ b[n] are the rearrangements of

the entries of a and b, respectively, in nonincreasing order.
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Thus we have the following result which basically asserts that majorization

plays the same role sp(n,C) as in sl(n,C).

Proposition 5.7 The n largest nonnegative real parts of the eigenvalues of an

A ∈ sp(n,C) are weakly majorized by the n largest nonnegative real singular

values of A. Conversely given two nonnegative n-tuples α = (α1, . . . , αn) and β =

(β1, . . . , βn), if α ≺w β, then there exists an A ∈ sp(n,C) such that ±α1, . . . ,±αn

are the real parts of the eigenvalues of A and ±β1, . . . ,±βn are the real singular

values of A.
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Chapter 6

The inequalities associated with bn and dn

As we already noticed in Chapter 1, eigenvalues of a skew symmetric matrix

occur in pair, opposite in sign, since A and AT = −A have the same characteristic

polynomial. We now proceed to investigate the relation between the real parts of

eigenvalues of A and the real singular values of A.

Example 6.1 [18, p.3] In Example 3.12, we used the model so(2n + 1,C) for bn.

In the model g = so(2n+1,C), G = SO(2n+1,C), K = SO(2n+1), k = so(2n+1),

θ(X) = −X∗, X ∈ g. Unlike sl(n,C) and sp(n,C), the form of the Borel subalgebra

b does not make it transparent that ρ(Ad(K)X ∩ b) and π(Ad(K)X ∩ b) amount

taking the eigenvalues and the real parts of the eigenvalues of X, respectively. In

order to see that we switch to another model.

Notice that

G = SO(2n + 1,C) := {g ∈ SL(2n + 1,C) : gT g = I2n+1},

is the group of matrices preserving the symmetric bilinear form [20, p.70]

〈x, y〉 := x1y1 + · · ·+ x2n+1y2n+1, x ∈ C2n+1.
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If we change the quadratic form to

〈x, y〉 := x1y1 + x2yn+1 + · · ·+ xny2n+1, x ∈ C2n+1,

then the group becomes

G̃ := {g ∈ SL(2n + 1,C) : gT Jg = J},

where

J :=




1 0 0

0 0 In

0 In 0


 .

The two groups G and G̃ are isomorphic via the isomorphisms

iS(S) : G̃ → G, iS(g) := SgS−1, (6.1)

where

ST S = J. (6.2)

Such S ∈ GL(2n+1,C) exists by Takagi’s factorization [16, p.204-205], for example,

S = (1)⊕ e−iπ/4

√
2

(
iIn In

In iIn

)
. (6.3)

It may be view as the restriction of the automorphism iS ∈ GL(2n + 1,C) defined

by iS(g) := SgS−1, g ∈ GL(2n + 1,C). Obviously S ∈ GL(2n + 1,C) but not in

G := SO(2n + 1) nor G̃. By matrix differentiation, the Lie algebra g̃ is the set
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of matrices A such that JA = −AT J . Direct computation [18, p.3] leads to the

explicit form of g̃:

g̃ =
{




0 −bT −aT

a A1 A2

b A3 −AT
1




: A1, A2, A3 ∈ Cn×n, A2 = −AT
2 , A3 = −AT

3 , a, b ∈ Cn
}

,

which can also be deduced from the Lie algebra isomorphism of g̃ onto g:

Ad(S) : g̃ → g, (6.4)

in which Ad(S) (abuse of notation) is identified with the restriction of Ad(S) :

gl(2n + 1,C) → gl(2n + 1,C) onto g̃. We will see that the change of model enables

us to see that the projection ρ̃ : b̃ → h̃ amounts to taking eigenvalues, where

h̃ := {diag (0, h1, . . . , hn,−h1, . . . ,−hn) : h1, . . . , hn ∈ C},

a Cartan subalgebra of g̃. To describe b̃, consider the root space decomposition of

g̃ with respect to h̃:

g̃ = h̃+̇
∑̇

α∈∆+
g̃
α ⊕ g̃

−α,

where ∆̃ is the set of all roots of (g̃, h̃). Notice that

b̃ := h̃+̇
∑̇

α∈∆̃+
g̃
α
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is a Borel subalgebra, where the positive roots in ∆̃+ are

{ẽj − ẽk : 1 ≤ j < k ≤ n} ∪ {el : 1 ≤ l ≤ n},

where

ẽj(diag (0, h1, . . . , hn,−h1, . . . ,−hn)) = hj, j = 1, 2, . . .

The root spaces are [34, p.7]

g̃
ẽj−ẽk = C




0

Ejk

−Ekj


 , g̃

−ẽj+ẽk = C




0

Ekj

−Ejk


 ,

g̃
ẽj+ẽk = C




0

0 Ejk − Ekj

0


 , g̃

−ẽj−ẽk = C




0

0

−Ejk + Ekj 0


 ,

where 1 ≤ j < k ≤ n, and

g̃
ẽl = C




0 0 εl
T

−εl 0 0

0 0 0


 , g̃

−ẽl = C




0 −εT
l 0

0 0 0

εl 0 0


 ,

where {εl : 1 ≤ l ≤ n} is the standard basis of Rn. So

b̃ =
{




0 0 −uT

u A1 A2

0 0 −AT
1


 : A1, A2 ∈ Cn×n, A1 upper triangular, A2 = −AT

2 , u ∈ Cn
}

.
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Clearly the diagonal elements of each matrix in b̃ are its eigenvalues in which the

nonzero ones appear in pair but of opposite signs. Thus the projection ρ̃ : b̃ → h̃

amounts to taking the eigenvalues of the elements in b̃. Decompose

h̃ = t̃⊕ ĩt,

where

ĩt = {diag (0, h1, . . . , hn,−h1, . . . ,−hn) : h1, . . . , hn ∈ R}

and we identify ĩt with Rn in the natural way that

diag (0, h1, . . . , hn,−h1, . . . ,−hn) 7→ (h1, . . . , hn)T ,

then the Weyl group W of (g̃, h̃) acts on ĩt by

(h1, . . . , hn)T 7→ (±hσ(1), . . . ,±hσ(n))
T , σ ∈ Sn.

The simple roots are

αj = ej − ej+1, j = 1, . . . , n− 1, αn = en.

The fundamental dominant weights [18, p.69] [20, p.289] are

λk =
k∑

j=1

ej, k = 1, . . . , n− 1, λn =
1

2

n∑
j=1

ej.
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The (closed) fundamental Weyl Chamber (ĩt)+ is identified as

(ĩt)+ = {(h1, . . . , hn)T ∈ ĩt : h1 ≥ . . . ≥ hn ≥ 0}.

The dual cone of (ĩt)+ in ĩt is identified as

dual ĩt(ĩt)+ = {(h1, . . . , hn)T ∈ ĩt :

j∑

k=1

hk ≥ 0, j = 1, . . . , n}.

By Lemma 5.2, given α, β ∈ (ĩt)+, i.e., α and β are identified as nonnegative

vectors in Rn, the condition α ∈ conv Wβ is equivalent to β−α ∈ dual
ĩt(ĩt)+, i.e.,

k∑
j=1

αj ≤
k∑

j=1

βj, k = 1, . . . , n, (6.5)

i.e., α ≺w β.

Lemma 6.2 Let σ : g1 → g2 be a Lie algebra isomorphism of g1 onto g2. If g1 is

semisimple, then g2 is semisimple. Moreover,

1. if h1 is a Cartan subalgebra in g1, then σ(h1) is a Cartan subalgebra in g2,

2. if b1 is a Borel subalgebra in g1, then σ(b1) is a Borel subalgebra in g2.

Proof: Since ad g2
(σX) = σ ◦ ad g1

X ◦ σ−1, X ∈ g1 and tr AB = tr BA, we have

[12, p.131]

Bg2
(σ(X), σ(Y )) = Bg1

(X,Y ), X, Y ∈ g2.

By Cartan’s criterion of semisimplicity (Theorem 3.4), g2 is semisimple.
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(1) Clearly σ(h1) is a subalgebra of g2. We need to prove that σ(h1) is maximal

abelian and ad h2 diagonalizable. First h2 is abelian since isomorphisms respect

bracket:

[σ(h1), σ(h1)]g2
= [h1, h1]g1

= 0.

If H2 ∈ g2 such that [H2, σ(h1)]g2
= 0, then

0 = [H2, σ(h1)]g2
= σ[σ−1(H2), h1]g1

.

Since h1 is maximal abelian, σ−1(H2) ∈ h1, i.e., H2 ∈ σ(h1). So σ(h1) is maximal

abelian. Since ad h1 is diagonalizable, σ : g1 → g2 is an isomorphism of g1 onto g2,

and

ad (σ(h1)) = σ ◦ ad h1 ◦ σ−1,

ad (σ(h1)) is diagonalizable. Therefore h2 = σ(h1) is a Cartan subalgebra of g2.

(2) Let b2 := σ(b1). Since b1 is a Borel subalgebra, the kth derived subalgebra

b1
k = 0 for some positive integer k. By induction the jth derived algebra of σ(b1)

is

[σ(b1)]
j = σ(bj

1), j = 1, 2, . . .

Thus bk
2 = [σ(b1)]

k = σ(bk
1) = 0, i.e., b2 = σ(b1) is solvable. If b′2 ⊃ b2 is a maximal

solvable subalgebra of g2, then σ−1(b′2) ⊃ b1 is solvable subalgebra of g1. Thus

σ−1(b′2) = b1. Hence b′2 = σ(b1) = b2, i.e., b2 = σ(b1) is a Borel subalgebra of g2.

Lemma 6.3 Let g, b, h be given in Example 3.12. There exists a matrix similarity

σ : g̃ → g such that
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1. σ(h̃) = h and σ(b̃) = b,

2. σ(h̃
⊥
) = h⊥,

3. ρ ◦ σ = σ ◦ ρ̃, where ρ : g → h and ρ̃ : g̃ → h̃ are the projections,

4. ρ|b : b → h amounts to take eigenvalues of X ∈ b.

Proof: (1) Recall from (6.4) that Ad(S) : g̃ → g defined by Ad(S)X = SXS−1, X ∈

g̃. By Lemma 6.2 Ad(S)h̃ is a Cartan subalgebra of g and Ad(S)b̃ is a Borel sub-

algebra of g containing Ad(S)h̃. By Theorem 4.1, there exists ξ ∈ Ad(g) such that

ξ(Ad(S)b̃) = b. Now ξ(Ad(S)h̃) and h are both Cartan subalgebras of the solvable

algebra b, so [18, Theorem 16.2] there exists τ ′ ∈ Int (b) for which τ ′◦ξ(Ad(S)h̃) = h.

But τ ′ is the restriction to b of some τ ∈ Int g [18, p.84] so that τ ◦ ξ(Ad(S)h̃) = h.

Then σ := τ ◦ ξ ◦ Ad(S) : g̃ → g is a matrix similarity (thus a Lie algebra isomor-

phism from g̃ onto g) satisfying

σ(g̃) = g, σ(h̃) = h, σ(b̃) = b. (6.6)

(2) Since ad g(σX̃) = σ ◦ ad g̃X ◦ σ−1 and tr AB = tr BA, we have [12, p.131]

Bg(σ(X̃), σ(Ỹ )) = Bg̃(X̃, Ỹ ),

where Bg(·, ·) and Bg̃(·, ·) are the respective Killing forms of g and g̃. Let X̃ ∈ h̃
⊥
.

For each Y ∈ h, there exists Ỹ ∈ h̃ such that σ(Ỹ ) = Y . Thus

Bg(σ(X̃), Y ) = Bg(σ(X̃), σ(Ỹ )) = Bg̃(X̃, Ỹ ) = 0.
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So σ(X1) ∈ h⊥. This proves that σ(h̃
⊥
) ⊂ h⊥. For dimension reason, σ(h̃

⊥
) = h⊥.

(3) Each X̃ ∈ g̃ can be decomposed as X̃ = X̃h̃ + X̃
h̃
⊥ , where X̃h̃ ∈ h̃ and

X̃
h̃
⊥ ∈ h̃

⊥
. So

ρ ◦ σ(X̃) = ρ ◦ σ(X̃h̃ + X̃
h̃
⊥) = ρ(σ(X̃h̃)) = σ(X̃h̃) = σ(ρ̃(X̃h̃ + X̃

h̃
⊥)) = σ ◦ ρ̃(X̃).

Thus ρ ◦ σ = σ ◦ ρ̃.

(4) We have the following commuting diagram.

b̃
σ //

ρ̃
²²

b

ρ

²²
h̃

σ // h

The projection ρ̃|b̃ : b̃ → h̃ amounts to taking eigenvalues of X̃ ∈ g̃ and σ is a

matrix similarity which of course preserves eigenvalues. For each X ∈ b, there

exist X̃ ∈ b′ such that σ(X̃) = X. So ρ(X) = ρ◦σ(X̃) = σ ◦ ρ̃(X̃). Since ρ(X) ∈ h

and ρ̃(X̃) ∈ h̃ is a diagonal matrix having eigenvalues as the diagonal elements. So

ρ : b → h amounts to taking eigenvalues because of the form of h.

Proposition 6.4 With the notations in Example 3.12 and given X ∈ so(2n+1,C),

ρ(Ad(K)X ∩ b) and π(Ad(K)X ∩ b) amount taking the eigenvalues and the real

parts of the eigenvalues of X, respectively.

Proof: Let σ : g̃ → g be in Lemma 6.3. Let g ∈ GL(2n + 1,C) such that

σ(X̃) = gX̃g−1 = Ad(g)X̃, X ∈ g̃ since the groups under discussion are matrix

groups. Let K̃ := g−1Kg = ig−1(K). For each X ∈ g, set X̃ = Ad(g−1)X ∈ g̃.
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Then

h 3 ρ(Ad(K)X ∩ b) = σ ◦ ρ̃ ◦ σ−1(Ad(gK̃g−1)Ad(g)X̃ ∩ Ad(g)b̃)

= Ad(g) ◦ ρ̃ ◦ Ad(g−1)(Ad(g)Ad(K̃)X̃ ∩ Ad(g)b̃)

= gρ̃(Ad(K̃)X̃ ∩ b̃)g−1

Now Ad(K̃)X̃ ∩ b̃ yields the eigenvalues of X̃ = g−1Xg, i.e., the eigenvalues of X.

We conclude that ρ(Ad(K)X ∩ b) yields the eigenvalues of X because of the form

of h. The argument for π is similar.

So we have the following result for so(2n + 1,C) by using Theorem 4.6.

Proposition 6.5 The n nonnegative real parts of the eigenvalues of a (2n +

1) × (2n + 1) complex skew symmetric matrix A are weakly majorized by the

n nonnegative real singular values of A. Conversely given two nonnegative n-

tuples α = (α1, . . . , αn) and β = (β1, . . . , βn), if α ≺w β, then there exists a

(2n + 1) × (2n + 1) skew symmetric matrix A such that ±α1, . . . ,±αn, 0 are the

real parts of the eigenvalues of A and ±β1, . . . ,±βn, 0 are the real singular values

of A.

Remark 6.6 To facilitate further discussion we introduce a notion known as Pfaf-

fian [10, Appendix D] of a complex skew symmetric matrix. Let X = (xij) be a

complex skew-symmetric matrix, i.e., XT = −X. If X ∈ so(2n + 1,C), then

det (X) = det (−XT ) = (−1)ndet X = 0.
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On the other hand, if X ∈ so(2n,C), then its determinant is a perfect square:

det X = Pf (X)2,

where

Pf (X) :=
∑

σ∈S2n

sgn(σ)xσ(1)σ(2) · ... · xσ(2n−1)σ(2n)

such that σ(2r − 1) < σ(2r) for 1 ≤ r ≤ n, and σ(2r − 1) ≤ σ(2r + 1) for

1 ≤ r ≤ n − 1. There are (2n − 1) · (2n − 3) · ... · 3 · 1 terms in this sum.

Equivalently,

Pf (X) =
1

2nn!

∑
sgn(σ)xσ(1)σ(2) · ... · xσ(2n−1)σ(2n).

Example 6.7

Pf




0 x12

−x12 0


 = x12,

Pf




0 x12 x13 x14

−x12 0 x23 x24

−x13 −x23 0 x34

−x14 −x24 −x34 0




= x12x34 − x13x24 + x14x23,

and

Pf

[(
0 x1

−x1 0

)
⊕ · · · ⊕

(
0 xn

−xn 0

)]
= x1 · · ·xn.

The following are some properties of Pfaffian.

Proposition 6.8 For any A ∈ so(2n,C).
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1. Pf (A)2 = det (A).

2. Pf (BABT ) = det (B)Pf (A), B ∈ C2n×2n.

3. Pf (λA) = λnPf (A), λ ∈ C.

4. Pf (AT ) = (−1)nPf (A)

5. Pf (A1 ⊕ A2) = Pf (A1)Pf (A2).

6. For any M ∈ Cn×n,

Pf

(
0 M

−MT 0

)
= (−1)n(n−1)/2det M.

It follows from Proposition 6.8 (2) that the determinant of any symplectic matrix

A, i.e., AT JA = J , is 1:

Pf (J) = Pf (AT JA) = det (A)Pf (J).

If X ∈ so(2n,C) and A ∈ C2n×2n, then AXAT ∈ so(2n,C) and

Pf (AXAT ) = (det A) · Pf (X).

For any Y ∈ g = so(2n,C) and any k ∈ SO(2n), then k−1 = kT , det k = 1 and

hence Adk(Y ) = kY k−1 = kY kT , we have

Pf (Y ) = Pf (Adk(Y )). (6.7)
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So the Pfaffian is an invariant polynomial of a skew-symmetric matrix and is

invariant under under special orthogonal similarity. It is important in the theory

of characteristic classes. In particular, it can be used to define the Euler class of a

Riemannian manifold which is used in the generalized Gauss-Bonnet theorem.

Example 6.9 [20, p.85] Similar to the Lie algebra g̃ in Example 6.1, we choose

another model g̃ for Lie algebra dn, which is equivalent to the model g = so(2n,C)

in Example 3.14. Let

g̃ =
{




A1 A2

A3 −AT
1


 : A1, A2, A3 ∈ Cn×n, AT

2 = −A2, A
T
3 = −A3

}
.

Then

h̃ = {diag (h1, . . . , hn,−h1, . . . ,−hn) : hj ∈ C, j = 1, . . . , n}

is a Cartan subalgebra. The positive roots are

{ej ± ek : 1 ≤ j < k ≤ n}.

The root spaces are

g̃ej−ek =




Ejk 0

0 −Ekj


 , g̃−ej+ek =




Ekj 0

0 −Ejk


 ,

g̃ej+ek =




0 Ejk − Ekj

0 0


 , g̃−ej−ek =




0 0

−Ejk + Ekj 0


 ,
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where 1 ≤ j < k ≤ n. Identify h̃0 = ĩt with Rn in the natural way. The Weyl

group W of (g̃, h̃) acts on h̃0:

(h1, . . . , hn)T 7→ (±hσ(1), . . . ,±hσ(n))
T , σ ∈ Sn,

where the number of negative signs is even. The simple roots are

αj = ej − ej+1, j = 1, . . . , n− 1, αn = en−1 + en,

and the fundamental dominant weights [18, p.69] [20, p.289] are

λj =
k∑

j=1

ej, k = 1, . . . , n− 2, λn−1 =
1

2
(
n−1∑
j=1

ej − en), λn =
1

2

n∑
j=1

ej.

The (closed) fundamental Weyl chamber (ĩt)+ is

(ĩt)+ = {(h1, . . . , hn)T : h1 ≥ . . . ≥ hn−1 ≥ |hn|}.

The dual cone of (ĩt)+ in ĩt is

dual ĩt(ĩt)+ = {(h1, . . . , hn)T ∈ ĩt :
k∑

j=1

hj ≥ 0, k = 1, . . . , n− 1,
n−1∑
j=1

hj − hn ≥ 0}.

The condition that β − α ∈ dual
ĩt(ĩt)+ amounts to the following inequalities.

k∑
j=1

αj ≤
k∑

j=1

βj, k = 1, . . . , n− 2,
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n−1∑
j=1

αj − αn ≤
n−1∑
j=1

βj − βn

n∑
j=1

αj ≤
n∑

j=1

βj

The inequalities are equivalent to

k∑
j=1

αj ≤
k∑

j=1

βj, k = 1, . . . , n, (6.8)

n−1∑
j=1

αj − αn ≤
n−1∑
j=1

βj − βn. (6.9)

When α, β ∈ (it)+, i.e., α1 ≥ · · · ≥ αn−1 ≥ |αn| and β1 ≥ · · · ≥ βn−1 ≥ |βn|, (6.8)

and (6.9) are equivalent to

α ≺w β, i.e.,

k∑
j=1

αj ≤
k∑

j=1

βj, k = 1, . . . , n,

n−1∑
j=1

αj − αn ≤
n−1∑
j=1

βj − βn

The above condition is clearly stronger than weakly majorization.

Similar to the simple Lie algebra bn, there is an matrix similarity σ between

the two models g̃ in Example 6.9 and so(2n,C) of dn which preserves eigenvalues.

Moreover we have the following commuting diagram.

b̃
σ //

ρ̃
²²

b

ρ

²²
h̃

σ // h

74



Proposition 6.10 With the notations in Example 3.14 and given X ∈ so(2n,C),

ρ(Ad(K)X ∩ b) and π(Ad(K)X ∩ b) amount taking the eigenvalues and the real

parts of the eigenvalues of X, respectively.

Let Y ∈ ik = isp(n) have eigenvalues ±β1, . . . ,±βn such that β1, . . . , βn are

nonnegative. There exists k ∈ SO(2n) [16, p.107] such that

Adk(Y ) =

(
0 iβ1

−iβ1 0

)
⊕ · · · ⊕

(
0 iβn−1

−iβn−1 0

)
⊕

(
0 δiβn

−δiβn 0

)
∈ it,

where δ = ±1. So by (6.7) and Example 6.7

Pf (Y ) = δinβ1 · · · βn−1βn,

and δ = sign[(−i)nPf (Y )] is uniquely determined by Y .

Proposition 6.11 Let A ∈ so(2n,C) and let ±β1, . . . ,±βn be the real singular

values of A with βj ≥ 0, j = 1, . . . , n. Suppose

(
0 iα1

−iα1 0

)
⊕ · · · ⊕

(
0 iαn−1

−iαn−1 0

)
⊕

(
0 iαn

−iαn 0

)
∈ π(AdK(A) ∩ b),

so that±α1, . . . ,±αn are the real part of the eigenvalues of A. Set |α| = (|α1|, . . . , |αn|).

Then

k∑
j=1

|α|[j] ≤
k∑

j=1

β[j], k = 1, . . . , n− 2,

n−1∑
j=1

|α|[j] + sign (α1 · · ·αn)|α|[n] ≤
n−1∑
j=1

β[j] + [sign {(−i)nPf (
1

2
(A + A∗))}] β[n],
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n−1∑
j=1

|α|[j] − sign (α1 · · ·αn)|α|[n] ≤
n−1∑
j=1

β[j] − [sign {(−i)nPf (
1

2
(A + A∗))}] β[n],

(the sign of zero may be taken 1 or−1). Conversely, suppose (α1, . . . , αn)T , (β1, . . . , βn)T ∈

Rn satisfying the inequalities,

k∑
j=1

|α|[j] ≤
k∑

j=1

|β|[j], k = 1, . . . , n− 2,

n−1∑
j=1

|α|[j] + sign(α1 · · ·αn)|α|[n] ≤
n−1∑
j=1

|β|[j] + sign (β1 · · · βn) |β|[n],

n−1∑
j=1

|α|[j] − sign(α1 · · ·αn)|α|[n] ≤
n−1∑
j=1

|β|[j] − sign (β1 · · · βn) |β|[n],

or equivalently

k∑
j=1

|α|[j] ≤
k∑

j=1

|β|[j], k = 1, . . . , n− 2,

n−1∑
j=1

|α|[j] + |α|[n] ≤
n−1∑
j=1

|β|[j] + sign (Πn
j=1(αjβj)) |β|[n],

n−1∑
j=1

|α|[j] − |α|[n] ≤
n−1∑
j=1

|β|[j] − sign (Πn
j=1(αjβj)) |β|[n],

where |α|[j] and |β|[j], j = 1, . . . , n, are the rearrangements of the entries of |α| and

|β|, respectively, in nonincreasing order. Then we can find A ∈ so(2n,C) such that

±α’s are the real part of the eigenvalues of A, ±β’s are the real singular values of

A and

sign [(−i)nPf (
1

2
(A + A∗))] = sign (β1 · · · βn).
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Proof: Since

Y :=

(
0 iα1

−iα1 0

)
⊕· · ·

(
0 iαn−1

−iαn−1 0

)
⊕

(
0 iαn

−iαn 0

)
∈ π(AdK(A)∩ b),

the element Y+ ∈ (it)+ ∩WY is of the form

Y+ =

(
0 i|α|[1]

−i|α|[1] 0

)
⊕· · ·⊕

(
0 i|α|[n−1]

−i|α|[n−1] 0

)
⊕

(
0 δi|α|[n]

−δi|α|[n] 0

)
,

where δ = sign (α1 · · ·αn). Similarly, there exists Z+ ∈ AdK(1
2
(A + A∗) ∩ (it)+

such that

Z+ =

(
0 i|β|[1]

−i|β|[1] 0

)
⊕· · ·⊕

(
0 i|β|[n−1]

−i|β|[n−1] 0

)
⊕

(
0 δ′i|β|[n]

−δ′i|β|[n] 0

)
,

where δ′ = sign {Pf ((−i)n 1
2
(A + A∗))}. Now Y+ ∈ conv WZ+ by Theorem 4.6 and

Lemma 5.3. So Z+ − Y+ ∈ dual it(it)+ by Lemma 5.2. Under the identification

(|α|[1], . . . , |α|[n−1], δ|α|[n]) and (|β|[1], . . . , |β|[n−1], δ
′|β|[n]) satisfy (6.8) and (6.9),

i.e.,

(|α|[1], . . . , |α|[n−1], δ|α|[n])
T ≺w (|β|[1], . . . , |β|[n−1], δ

′β[n])
T ,

n−1∑
j=1

|α|[j] − δ|α|[n] ≤
n−1∑
j=1

β[j] − δ′|β|[n],

which are equivalent to the first set of inequalities.

Conversely, if α, β ∈ Rn satisfy the second set of inequalities, then

(|α|[1], . . . , |α|[n−1], sign (α1 · · ·αn)|α|[n])
T ≺w (|β|[1], . . . , |β|[n−1], sign (β1 · · · βn)β[n])

T ,
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n−1∑
j=1

|α|[j] − δ|α|[n] ≤
n−1∑
j=1

β[j] − δ′|β|[n].

Thus

(|α|[1], . . . , |α|[n−1], sign (α1 · · ·αn)|α|[n])
T ∈ conv W (|β|[1], . . . , |β|[n−1], sign (β1 · · · βn)β[n])

T .

Then by Theorem 4.6 and Proposition 6.12 there exists A ∈ so(2n,C) such that

the real parts of the eigenvalues are ±α1, . . . ,±αn and the real singular values

are ±β1, . . . ,±βn, and by the invariance of the Pfaffian under adjoint action of

K = SO(2n) we have

sign [(−i)nPf (
1

2
(A + A∗))] = sign (β1 · · · βn).

Notice that sign (ab) = sign (a)sign (b) for any real numbers a and b. If δ1 = 1,

the second set of inequalities is exactly the third set of inequalities. If δ1 = −1,

the last two inequalities are identical to the last two inequalities in the second set.

Thus the last set of three inequalities is equivalent to the second set. Hence if the

last three equations are true, then there exists A ∈ so(2n) satisfying the required

conditions.

Proposition 6.12 Let A ∈ so(2n,C) and let α1, . . . , αn be the largest n nonnega-

tive real part of the eigenvalues of A and let β1, . . . , βn be the largest n nonnegative

real singular values of A. Then either

1. (α1, . . . , αn−1, αn)T ∈ conv W (β1, . . . , βn)T , or
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2. (α1, . . . , αn−1,−αn)T ∈ conv W (β1, . . . , βn)T .

Conversely if α, β ∈ Rn have the above relationship, then there exists A ∈ so(2n,C)

such that ±α1, . . . ,±αn are the real parts of the eigenvalues of A and ±β1, . . . ,±βn

are the real singular values of A.

Proof: Since α1, . . . , αn are the largest n nonnegative real part of the eigenvalues

of A and β1, . . . , βn are the largest n real singular values of A, by considering the

action of the Weyl group on A, either (α1, . . . , αn)T or (α1, . . . , αn−1,−αn)T (but

usually not both) is in π(AdK(A)∩b) under the identification, where K = SO(2n).

Similarly either (β1, . . . , βn)T or (β1, . . . , βn−1,−βn)T is in AdK(1
2
(A + A∗)) ∩ it.

By Theorem 4.6 we have the following four possibilities

(α1, . . . , αn−1, δ1αn)T ∈ conv W (β1, . . . , βn−1, δ2βn)T ,

where δ1 = ±1 and δ2 = ±1. But

(α1, . . . , αn−1, δ1αn)T ∈ conv W (β1, . . . , βn−1,−βn)T

is the same as

(α1, . . . , αn−1,−δ1αn)T ∈ conv W (β1, . . . , βn−1, βn)T .

Thus either

1. (α1, . . . , αn−1, αn)T ∈ conv W (β1, . . . , βn)T , or

2. (α1, . . . , αn−1,−αn)T ∈ conv W (β1, . . . , βn)T .
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Conversely, if either of the conditions is true, then Theorem 4.6 and Proposition

6.12 guarantee the existence of the required A.

Remark 6.13 Proposition 6.5 is no longer true for dn. We can see this clearly

from the following example for n = 2. Let α = (1/2, 0)T and β = (1, 1)T . Ob-

viously α ≺w β. By Proposition 6.12, there is no A ∈ so(2,C) with the real

part of the eigenvalues ±α’s and real singular values ±β’s. See the following fig-

ure: L1 = conv W (1, 1)T , L2 = conv W (1,−1)T , and the square with vertices

(1, 1), (1,−1), (−1, 1), (−1,−1) (the shaded area) is the set of all the vectors, in

particular α = (1/2, 0)T , weakly majorized by β = (1, 1)T . But the union of L1

and L2 is a “cross” which is clearly not convex.

β=(1,1) 

      (1,−1) 

α=(1/2,0) 

L
1
 

L
2
 

x

Figure 6.1: The Union of the Convex Hulls: L1 ∪ L2
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Chapter 7

The real semisimple case

The proof [1] given by Amir-Moéz and Horn for the converse of Ky Fan’s result

also works for sl(n,R), a normal real form of sl(n,C). However the study would

be intricate for real semisimple Lie algebras. Theorem 4.6 concerns a complex

semisimple Lie algebra g, a Cartan subalgebra h and a Borel subalgebra b. In the

complex semisimple case g, all maximal solvable subalgebras in g are conjugate via

the adjoint group AdG of g [18, Section 16.4] (it is also true for Cartan subalgebras).

The Borel subalgebra b in Section 2 and 3 is the “standard” one with respect to

the chosen Cartan subalgebra h = t⊕ it and the basis Π for the root system ∆.

One may consider the real semisimple case. From now on g denotes a real

semisimple Lie algebra with Killing form B(·, ·). A subalgebra h is called a Car-

tan subalgebra of g if the complexification hC of h is a Cartan subalgebra of the

complexification gC of g [20, p.318]. It is well known [21] [31, p.397] that Cartan

subalgebras of a real semisimple Lie algebra are not conjugate in general (un-

less g is compact). But there are only finitely many conjugacy classes of Cartan

subalgebras [31, p.395].

Example 7.1 Let g = sl(2,R) and let

a = R

(
1 0

0 −1

)
, b = R

(
0 1

−1 0

)
.
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Then a and b are Cartan subalgebras of g. They cannot be conjugate in g since

ea = {diag ((eλ, e−λ) : λ ∈ R} is not compact, but eb = SO(2) is compact.

Borel subalgebras in a complex Lie algebra are (complex) maximal solvable

algebras and there is only one conjugacy class since all Borel subalgebras are con-

jugate. However, in the real case, there are different conjugacy classes of maximal

solvable subalgebras [25, 26, 27]. The conjugacy classes of maximal solvable sub-

algebras may be obtained via the non-conjugate Cartan subalgebras [25] and the

procedure will be outlined.

A decomposition

g = k⊕ p

into a direct sum is called a Cartan decomposition if

1. the map θ : X + Y 7→ X − Y (X ∈ k, Y ∈ p) is an automorphism of g, i.e.,

θ ∈ Aut (g).

2. The bilinear form Bθ(X, Y ) = −B(X, θY ) is positive definite on g.

Since θ2 = 1, Bθ is a symmetric bilinear form. The first condition amounts to the

following:

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

So k and p are orthogonal to each other under B(·, ·) and under Bθ(·, ·). Since

Bθ(·, ·) is positive definite, B(·, ·) is negative definite on k and positive definite on

p. The subspace p ⊂ g is called a Cartan subspace of g and k is a subalgebra of g.

An involutory automorphism θ ∈ Aut (g) such that the symmetric bilinear

form Bθ(X, Y ) = −B(X, θY ) is positive definite is called a Cartan involution. A
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Cartan involution determines a Cartan decomposition of g and vice versa. The

importance of the Cartan decomposition is that it is unique up to conjugacy, i.e.,

if g = k′ ⊕ p′ is another Cartan decomposition, there exists ϕ ∈ Int (g) such that

k′ = ϕ(k) and p′ = ϕ(p) [20, p.301].

For a complex semisimple Lie algebra u, the only Cartan involutions of its

realification uR are the conjugations with respect to the compact real forms of u

[20, p.302].

Let g = k+̇p be the Cartan decomposition associated with the Cartan involu-

tion θ, that is, k is the +1 eigenspace of θ and p is the −1 eigenspace of θ. Since

the adjoint of ad X is [20, p.304]

(ad X)∗ = −ad θX, X ∈ g,

ad X is represented by a symmetric matrix if X ∈ p, and by a skew symmetric

matrix if X ∈ k. Fix a maximal abelian subspace ap in p. For any H ∈ ap ⊂ p,

(ad H)∗ = ad H,

and hence ad ap is a commuting family of self-adjoint transformations of g. So [16,

p.103] g is the orthogonal direct sum of the subspaces

g
α = {X ∈ g : (ad H)X = α(H)X for all H ∈ ap}, α ∈ a

∗
p

If α 6= 0 and gα 6= 0, we call α a restricted root of (g, ap). The set of all restricted

roots is denoted by Σ. Any nonzero gα is called a restricted root space, and each
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member of gα is called a restricted root vector for the restricted root α. The

decomposition of g,

g = g
0+̇

∑̇
α∈Σ+

(gα ⊕ g
−α), (7.1)

is called the restricted root space decomposition of g relative to ap [20, p.313], where

Σ+ is the set of restricted positive roots (with respect to a fixed base Π of Σ) of

the root system Σ of (g, ap). Unlike the root system for a complex semisimple

Lie algebra, the restricted root system of (g, ap) need not be reduced, i.e., it may

happen that α ∈ Σ and 2α ∈ Σ. Moreover dim gα may be larger than 1 and usually

g0 is bigger than ap. We also have the orthogonal sum [20, p.313]

g
0 = ap+̇m,

where m = Zk(ap), the centralizer of ap in k. Hence

k ∩ g
0 = m, p ∩ g

0 = ap.

The root system Σ does not of itself determine g up to isomorphism. The Weyl

group of (g, ap) which may be defined as the normalizer of ap in K modulo the

centralizer of ap in K, will be denoted by W .

Since Ad(K) preserves the Killing form and k, Ad(K)ap ⊂ p. The following

is the original Kostant’s convexity theorem [22] and Theorem 4.5 is a particular

case.

Theorem 7.2 (Kostant) Let Z ∈ ap, then π(Ad(K)Z) = conv WZ where π : p →

ap is the orthogonal projection with respect to the Killing form.
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Since θ is−1 on p and thus on ap, and [H, θX] = θ[θH, X] = −θ[H, X] = −α(H)θX

for all X ∈ gα, H ∈ ap, we have [20, 313]

Proposition 7.3 θ(ap) = ap and θ(gα) = g−α for all α ∈ Σ.

Let

n =
∑

α∈Σ+

g
α

which is a nilpotent subalgebra of g. Let a be a maximal abelian subalgebra of g

containing ap. Then a is a Cartan subalgebra. We have ap = a ∩ p and if we put

ak := a ∩ k, then a = ak ⊕ ap. Let

b := a+̇n = a+̇
∑̇

α∈Σ+
g
α

which is a maximal solvable subalgebra of g.

Theorem 7.4 Let g = k+̇p be a Cartan decomposition associated with the Cartan

involution θ. Let ap be a maximal abelian subspace of p. Let g = g0+̇
∑̇

α∈Σ+(gα ⊕

g−α) be the restricted root space decomposition of the real semisimple Lie algebra

g with respect to ap and set b = a+̇
∑̇

α∈Σ+gα. Let π : g → ap be the orthogonal

projection with respect to Bθ(·, ·). Then for each β ∈ ap,

π((k + AdK(β)) ∩ b) = conv Wβ.

Proof: Notice that

π((k + AdK(β)) ∩ b)) ⊂ π(k + AdK(β)) = π(AdK(β)) = conv Wβ
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by Theorem 7.2.

Suppose γ ∈ conv Wβ, where γ, β ∈ ap. By Theorem 7.2 again, there exists

Y ∈ AdK(β) such that π(Y ) = γ. Let Y = Y0 +
∑

α∈Σ+(Yα + Y−α), where

Y0 ∈ ap = g0 ∩ p, Yα ∈ gα, Y−α ∈ g−α for α ∈ Σ+. Since Y ∈ p, p is the −1

eigenspace of θ, and θgα = g−α by Proposition 7.3, we have

−Y0 +
∑

α∈Σ+

(−Yα − Y−α) = −Y = θ(Y ) = θY0 +
∑

α∈Σ+

(θYα + θY−α).

Since the sums are direct, Y−α = −θYα. Then Y = Y0 +
∑

α∈Σ+(Yα − θYα), and

Y0 = π(Y ) = γ. Similar to the proof of Theorem 4.6, set X := Y0 +2
∑

α∈Σ+Yα ∈ b.

Clearly π(X) = Y0 = γ, 1
2
(X − θX) = Y , and β ∈ AdK(Y ) ∩ ap.

Remark 7.5 Theorem 7.4 provides Amir-Moéz-Horn-Mirsky’s type result for the

real semisimple Lie algebras. The algebra b := a+̇
∑̇

α∈Σ+gα will be called the

standard maximal solvable subalgebra of g containing ap. For example, when

g = sl(n,R), a = ap may be chosen as the space of real diagonal matrices and

ak = 0.

Unlike the complex case, given X ∈ g, the adjoint orbit AdK(X) may not

intersect b; in this case Ky-Fan’s type result would be trivial. For example, consider

g = sl(2,R), b the algebra of upper triangular matrices, X =

(
a b

−b a

)
(b 6= 0)

whose eigenvalues are in complex conjugate pair. In general, in sl(n,R) one would

encounter the same problem and the following result in matrix theory is well known

[17, p.82].
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Proposition 7.6 For any X ∈ sl(n,R), there exists k ∈ SO(n) such that kXk−1

is of block upper triangular form where the (main diagonal) blocks are either 1×1

or 2× 2: 


A1 ∗

A2

. . .

As




,

with zero trace, where Ak =

(
ak bk

−bk ak

)
, or Ak = (ck), ak, bk, ck ∈ R, k = 1, . . . , s.

Indeed the above forms in Proposition 7.6 are associated with the so called standard

maximal solvable subalgebras of sl(n,R). Since each conjugacy class is uniquely

determined by (deg A1, deg A2, . . . , deg As) where Ak = 1 or 2, k = 1, . . . , s. There

are

Nn =
1√
5

[(
1 +

√
5

2

)n

−
(

1−√5

2

)n]

(the Fibonacci number defined by Nn = Nn−1 + Nn−2, N1 = 1, N2 = 2) conjugacy

classes of maximal solvable subalgebras [26, p.1032] of sl(n,R).

Motivated by Proposition 4.2 and the case sl(n,R) in Proposition 7.6, we now

ask whether for any element X ∈ g, AdK(X) intersects some standard maximal

solvable subalgebra s.

To be specific, we introduce some notions. Fix a Cartan decomposition of the

real semisimple Lie algebra g = k+̇p and let θ be the associated Cartan involution.

Fix a maximal abelian subspace ap in p .
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A Cartan subalgebra c is called a standard Cartan subalgebra (relative to θ

and ap) [28, p.405]. If c = ck+̇cp, where ak ⊂ ck := c∩ k and cp := c∩ p ⊂ ap. In this

case ck is called the toral part, and cp is called the vector part [31, p.379].

Sugiura [31, Theorem 2, Theorem 3] proved that

Theorem 7.7 (Sugiura) Let g be a real semisimple Lie algebra.

1. Every Cartan subalgebra of g is conjugate to a standard Cartan subalgebra

via Int (g).

2. Two standard Cartan subalgebras are conjugate via Int (g) if and only if their

vector parts are conjugate under the Weyl group W of (g, ap).

Therefore it is sufficient to consider standard Cartan subalgebras in order to

find the conjugacy classes of Cartan subalgebras. Rothschild [28, p.405] showed

that two standard Cartan subalgebras are conjugate if and only if their toral parts

are conjugate.

The idea of (1) in Theorem 7.7 is as follow: If c is any Cartan subalgebra of g,

there exists a conjugate of c which is θ-stable, i.e., c = ck+̇cp such that ck = c∩ k and

cp = c ∩ p. The vector part cp is an abelian subalgebra of p and hence is contained

in some maximal abelian subalgebra in p. By conjugating c via K, we may arrange

that cp ⊂ ap, and then by conjugating again, leaving cp fixed, we can also arrange

that ak ⊂ ck. One has [12, p.259]

Proposition 7.8 (Sugiura) Any maximal abelian subalgebra a of g that contains

ap is a Cartan subalgebra of g and ap = a ∩ p and ak = a ∩ k.
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A result of Mostow [25, Theorem 4.1] asserts that each maximal solvable

subalgebra s of g contains a Cartan subalgebra c, for example, compact Cartan

subalgebra of g is maximal solvable [25, Lemma 4.1]. If c is a standard Cartan

subalgebra, such s is called a standard maximal solvable subalgebra (with respect

to ap and θ). Each G-conjugate of s is still a maximal solvable subalgebra, due to

Cartan’s criterion of solvability [20, Proposition 1.43], i.e., Theorem 3.5 remains

true for real case, and the adjoint action of G respects the bracket and preserves the

Killing form. Thus each conjugacy class of maximal solvable subalgebras under the

adjoint action of G contains a standard maximal solvable subalgebra s by Theorem

7.7.

Let c = ck+̇cp be a standard Cartan subalgebra of a real semisimple Lie algebra

g. Since cp ⊂ ap, ad cp is a family of commuting self adjoint linear transformations

of g. So g has a root space decomposition with respect to cp:

g = g
0+̇

∑
α∈R

g
α,

where gα := {X ∈ g : [H, X] = α(H)X for all H ∈ cp} and R ⊂ cp
∗ is the

set of roots which do not vanish identically on cp. An element H ∈ cp is called

cp-singular if there exists α ∈ R such that α(H) = 0, otherwise H is called cp-

general. A connected component in the set of cp-general elements of cp is called a

cp-chamber. For any H ∈ cp, α ∈ Σ, set

g
α(H) := {X ∈ g : (ad H − α(H))X = 0}.
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Let C be a cp-chamber in cp. Then gα(H) is independent of the choice of H in C

and thus may be written as gα(C). Set

g
+(H) :=

∑
α>0

g
α(H) =

∑
α>0

g
α(C)

which is also independent of the choice of H in C so it may be denoted by g+(C).

The following is Mostow’s result [23, Theorem 4.1].

Theorem 7.9 (Mostow) Let g be a real semisimple Lie algebra.

1. Any maximal solvable subalgebra of g contains a Cartan subalgebra. Hence

it is conjugate via Int (g) to a standard maximal solvable subalgebra.

2. Any maximal solvable subalgebra of g containing a standard Cartan subal-

gebra c = ck+̇cp is of the form c + g+(C) for some cp-chamber C.

Let N := {g ∈ G : Ad(g)cp = cp} and NK := {k ∈ K : Ad(k)c = c}. Then the

cp-restrictions of N and NK coincide [23, p.515]. Notice that g+(C1) and g+(C2)

are conjugate for two different cp-chambers C1 and C2 if and only if the chambers

are conjugate under the cp-restriction of NK .

Example 7.10 For the special case cp = ap, the cp-chambers are the Weyl cham-

bers which are permuted transitively by the Weyl group. So all standard maximal

solvable subalgebras containing the standard Cartan subalgebra a = ak+̇ap are

conjugate. One may pick b = (ak+̇ap)+̇
∑

α>0 gα in Theorem 7.4.
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To list all non-conjugate standard maximal solvable subalgebras of g, we first find

the standard Cartan subalgebras c = ck+̇cp. Then find the non-conjugate cp-

chambers of c, which yields all the standard maximal solvable subalgebras of g

containing c via Theorem 7.9.

Example 7.11 When g = sl(3,R), there are two conjugacy classes of Cartan

subalgebras [20] represented by the standard Cartan subalgebras:

c1 =
{




a 0 0

0 b 0

0 0 −a− b


 : a, b ∈ R

}
, c2 =

{



a b 0

−b a 0

0 0 −2a


 : a, b ∈ R

}
.

However there are three conjugacy classes of maximal solvable subalgebras [26,

p.1032] represented by the standard maximal solvable subalgebras:

s1 :=
{




a c e

0 b d

0 0 −a− b


 : a, b, c, d, e ∈ R

}
,

s2 :=
{




a b c

−b a d

0 0 −2a


 : a, b, c, d ∈ R

}
,

s3 :=
{




−2a c d

0 a b

0 −b a


 : a, b, c, d ∈ R

}
.
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Notice that s2 and s3 contain conjugate standard Cartan subalgebras corresponding

to c2.

We now address the question whether for any X ∈ g, AdK(X) ∩ s 6= φ for

some standard maximal solvable subalgebra s of g.

Proposition 7.12 If g is a compact semisimple Lie algebra, then for any X ∈ g,

AdK(X) ∩ s 6= φ for some standard maximal solvable subalgebra s of g.

Proof: When g is compact we have g = k, p = 0, ap = 0 and ak = t which is a

Cartan subalgebra. By [25, Lemma 4.1] t is a maximal solvable subalgebra of k.

Since maximal tori are conjugate in compact Lie group [20, p.202], AdK(X)∩t 6= φ

for any X ∈ k.

In this case Theorem 7.4 is reduced to Theorem 5.2.

Proposition 7.13 In general it is not true that given arbitrary X ∈ g, AdK(X)

intersects s for some standard maximal solvable subalgebra s of g.

Proof: Consider the real simple Lie algebra g = su1,1. We consider the group:

SU(1, 1) =
{ (

α β

β α

)
: |α|2 − |β|2 = 1

}
,

whose Lie algebra is a real form of sl(2,C):

su1,1 =
{ (

ia c

c −ia

)
: a ∈ R, c ∈ C

}
,

K =
{

diag (eiθ, e−iθ) : θ ∈ R
}

,
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k =
{ (

ia 0

0 −ia

)
: a ∈ R

}
,

p =
{ (

0 c

c 0

)
: c ∈ C

}
,

ap =
{ (

0 b

b 0

)
: b ∈ R

}
.

There are two non-conjugate standard Cartan subalgebras: k and ap [31, p.401].

They are also the two [27, p.518] standard maximal solvable subalgebras of su1,1.

Since k is a compact Cartan subalgebra of su1,1, it is maximal solvable [25, Lemma

4.1]. We know that all maximal solvable subalgebras containing ap are conjugate.

Let us consider the root space decomposition of g = su(1, 1) with respect to ap.

The roots are R = {α,−α} [20, p.314], where

α




0 b

b 0


 = 2b, b ∈ R, g

α = R



−i i

−i i


 , g

−α = R



−i −i

i i


 .

Let

H =




0 1

1 0




(indeed any cp-general element H in cp works). By Theorem 7.9,

s = ap + g
α(H) = R




−ia ia + b

−ia + b ia


 , a, b ∈ R.
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is the only standard maximal solvable subalgebra containing ap. Let

X =



−i ε

ε i


 , 0 < ε < 1.

Clearly k ∩ AdK(X) = φ. Now s ∩ AdK(X) = φ, otherwise let

Ad




eiθ 0

0 e−iθ


 X =




−i εe−i2θ

εei2θ i




=




−ia ia + b

−ia + b ia


 ∈ s, for some a, b, θ ∈ R.

Thus a = 1, and εe−i2θ = ia + b = i + b. Then ε = |i + b| ≥ 1, a contradiction.

Proposition 7.14 Let c = ck+̇cp be a standard Cartan subalgebra of g. Let

πcp : g → cp be the orthogonal projection onto cp ⊂ ap. Then for any β ∈ cp,

conv Wβ ∩ cp = πcp(AdK(β)) = πcp(conv Wβ),

Proof: The second equality follows immediately from Theorem 7.2. If γ ∈ conv Wβ∩

cp, by Theorem 7.2 there is k ∈ K such that γ = πap(Ad(k)β). Now γ ∈ cp implies

γ = πcp(γ) = πcp(πap(Ad(k)β)) = πcp(Ad(k)β). So we have

conv Wβ ∩ cp ⊂ πcp(AdK(β)).
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To establish the converse inclusion, we will show that conv Wβ is symmetric

with respect to cp, i.e., if γ ∈ conv Wβ such that γ = γ1 + γ2, where γ1 ∈ cp and

γ2 ∈ c⊥p ∩ ap, then γ1 − γ2 ∈ conv Wβ.

Let a be the maximal abelian subalgebra containing ap. By Proposition 7.8

a = ak + ap is a Cartan subalgebra of g, where ak = a ∩ k and ap = a ∩ p. Let

h := aC and gC be the complexifications of a and g respectively. The root space

decomposition of gC with respect to h is

g
C = h +

∑
α∈∆

(gC)α,

where ∆ ⊂ h∗0 is the root system of (gC, h) and h0 := ap + iak is spanned by Hα,

α ∈ ∆ (see Proposition 3.8). Let ρ : h∗0 → a∗p be the restriction to ap. Then for

each α ∈ ∆, either ρ(α) is zero or is an element of Σ (that is why Σ is called the

restricted root system of (g, ap)) [12, p.260-263].

Since cp is the vector part of some standard Cartan subalgebra c, by [31,

Theorem 5], there exist ` roots α1, . . . , α` ∈ ∆ such that

1. αi ± αj 6∈ ∆, 1 ≤ i, j ≤ ` and αi ± αj 6= 0 if i 6= j.

2. c⊥p ∩ ap =
∑`

i=1RHαi
.

In particular Hαi
∈ c⊥p ∩ ap ⊂ ap and thus ρ(α1), . . . , ρ(α`) are in Σ. By [12, p.457]

α1, . . . , α` are orthogonal.

Extend {Hα1 , . . . , Hα`
} to an orthogonal basis {Hα1 , . . . , Hα`

, X1, . . . , Xm} of

ap. To show that conv Wβ is symmetric about cp, it suffices to show the symmetry

for Wβ. Let λ = λ1 + λ2 ∈ Wβ, where λ1 ∈ cp and λ2 ∈ c⊥p ∩ ap. Then λ1 =
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∑m
i=1 ηiXi and λ2 =

∑`
i=1 ξiHαi

. Then apply the reflection s := sρ(α1) · · · sρ(α`) ∈ W

on λ ∈ conv Wβ ⊂ ap:

sλ = sρ(α1) · · · sρ(α`)λ1 + sρ(α1) · · · sρ(α`)λ2 = sα1 · · · sα`
λ1 − sα1 · · · sα`

λ2 = λ1 − λ2,

to have the desired symmetry. Now if γ ∈ conv Wβ with γ = γ1 + γ2, γ1 ∈ cp

and γ2 ∈ c⊥p ∩ ap, then πcp(γ) = γ1. But γ1 − γ2 ∈ conv Wβ by the symmetry of

conv Wβ with respect to cp. So γ1 ∈ conv Wβ and thus γ1 ∈ conv Wβ ∩ cp.

Suppose s is a standard maximal solvable subalgebra containing the standard

Cartan subalgebra c. Since cp ⊂ ap ⊂ p, cp ⊥ k so that

πcp((k + AdK(β)) ∩ s) ⊂ πcp(k + AdK(β)) = πcp(AdK(β)) = conv Wβ ∩ cp.

Due to Theorem 7.4 and Proposition 7.12, one may ask whether the set equality

holds. The following example shows that the set inclusion is strict, even for some

normal real Lie algebras. (A real semisimple Lie algebra g is called normal [31,

p.392] if g has a Cartan subalgebra whose toral part is zero).

Example 7.15 Consider g = sl(3,R) in Example 7.15. Choose the Cartan decom-

position g = k+̇p, where k is the set of all real skew symmetric matrices and p is

the set of all real symmetric matrices in g. Let ap = {diag (a, b,−a− b) : a, b ∈ R}.

Consider the Cartan subalgebra c = ck+̇cp of g corresponding to

s2 =
{




a b c

−b a d

0 0 −2a


 : a, b, c, d ∈ R

}
,
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such that

cp = {diag (a, a,−2a) : a ∈ R}.

Let β = diag (1, 1,−2) ∈ cp. Then Wβ = S3β = {H1, H2, H3} where

H1 = diag (1, 1,−2), H2 = diag (1,−2, 1), H3 = diag (−2, 1, 1).

Then

H =
1

2
(H2 + H3) = diag (−1

2
,−1

2
, 1) ∈ conv Wβ ∩ cp.

We now claim H /∈ πcp{(k + AdK(β)) ∩ s2}. Otherwise, let H = πcp(Y + Adk(β))

for some Y ∈ k and k ∈ K and Y + Adk(β) ∈ s2. Since diag Y = 0, the diagonal

of Adk(β) must be

diag (Adk(β)) = diag (−1

2
,−1

2
, 1).

That is to say, there exists

k =




u1 u2 u3

v1 v2 v3

w1 w2 w3



∈ SO(3)

such that

diag (k(diag β)kT ) = diag (u2
1 + u2

2 − 2u2
3, v

2
1 + v2

2 − 2v2
3, w

2
1 + w2

2 − 2w2
3)

= (−1

2
,−1

2
, 1).
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So

u2
1 + u2

2 − 2u2
3 = −1/2,

v2
1 + v2

2 − 2v2
3 = −1/2,

w2
1 + w2

2 − 2w2
3 = 1.

Because k ∈ SO(3), we have

u2
1 + u2

2 + u2
3 = 1,

v2
1 + v2

2 + v2
3 = 1,

w2
1 + w2

2 + w2
3 = 1.

So

u3 = ±
√

2

2
, v3 = ±

√
2

2
, w3 = 0.

Let w1 = cos γ, w2 = sin γ. Because u and v are perpendicular to w, we can

assume that

u = (u1, u2, u3) = (δ1

√
2

2
sin γ,−δ1

√
2

2
cos γ, δ2

√
2

2
),

where δ1, δ2 = ±1. Similarly, we can assume that

v = (v1, v2, v3) = (ε1

√
2

2
sin γ,−ε1

√
2

2
cos γ, ε2

√
2

2
),

where ε1, ε2 = ±1. By direct computation, the (1, 2) and (2, 1) entries of Adk(β)

are equal to 1
2
δ1ε1− δ2ε2 6= 0. Thus no X ∈ k (skew symmetric matrices) can make
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X + Adk(β) an element of s2. Therefore we cannot find k ∈ K and X ∈ k such

that X + Adk(β) ∈ s2 and

πcp(X + Adk(β)) = diag (−1

2
,−1

2
, 1) ∈ conv Wβ ∩ cp.

One can get the same conclusion on s2 similarly, but not on s1 due to Theorem

7.4.

Remark 7.16 In Example 7.15, sl(3,R) is the simplest nontrivial example. Con-

sider g := sl(2,R) = k+ p where k is the set of all real skew symmetric matrices and

p is the set of all real symmetric matrices in g. Let ap = {diag (a,−a) : a ∈ R}.

Now g has two standard Cartan subalgebras

c1 := ap =
{ (

a 0

0 −a

)
: a ∈ R

}
, c2 := so(2) =

{ (
0 b

−b 0

)
: b ∈ R

}
,

and the corresponding standard maximal solvable subalgebras are

s1 :=
{ (

a b

0 −a

)
: a, b ∈ R

}
, s2 := so(2) =

{ (
0 b

−b 0

)
: b ∈ R

}
,

respectively. Now Theorem 7.4 implies

πcp((k + AdK(β)) ∩ s1) = conv Wβ ∩ (c1)p, β ∈ (c1)p.

Since (c2)p = 0, the statement

πcp((k + AdK(β)) ∩ s2) = conv Wβ ∩ (c2)p, β ∈ (c2)p
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is then trivial.

We conclude this chapter by asking whether Ad(K)X ∩ s 6= φ for some stan-

dard maximal solvable subalgebra s of g, if g is a normal real semisimple Lie algebra.

The question is motivated by Proposition 7.6.
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Chapter 8

The eigenvalues and the real and imaginary singular values for

sl(2,C) and sl(2,R)

Ky Fan-Amir-Moéz-Horn-Mirsky’s result asserts that the real part of the

eigenvalues of a matrix is majorized by the real singular values, and conversely

if there exist λ ∈ C, β ∈ Rn such that β ≺ Re λ, then there is a matrix with

eigenvalues λ’s and real singular values β’s. A similar result for the imaginary part

of the eigenvalues and the imaginary singular values is also given. Then we may

ask the following question: what is the necessary and sufficient condition on the

given vectors λ ∈ C, α, β ∈ Rn so that a matrix A ∈ Cn×n exists with eigenvalues

λ’s, real singular values α’s and imaginary singular values β’s? Condition stronger

than majorization is expected. The following is the simplest case and it shows that

the norm condition in Remark 4.10 is not sufficient.

Proposition 8.1 Let α, β ∈ R and a + ib ∈ C. Then there exists A ∈ sl(2,C)

whose eigenvalues, real singular values, and imaginary singular values are ±(a+ib),

±α, and ±β, respectively, if and only if (−a, a) ≺ (−α, α), (−b, b) ≺ (−β, β), and

β2 − b2 = α2 − a2.

Proof: Let A ∈ sl(2,C) whose eigenvalues, real singular values, and imaginary

singular values are ±(a + ib), ±α, and ±β, respectively. After an appropriate
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unitary similarity, we may assume that A is in upper triangular form:

A =

(
a + ib c

0 −a− ib

)
.

Then

(A + A∗)/2 =

(
a c/2

c/2 −a

)
, (A− A∗)/2i =

(
b c/2i

−c/2i −b

)
.

The eigenvalues of the matrices are ±(a + ib), ±α = ±(a2 + 1
4
|c|2)1/2, and ±β =

±(b2 + 1
4
|c|2)1/2. So (−a, a) ≺ (−α, α), (−b, b) ≺ (−β, β) and β2 − b2 = α2 − a2 =

1
4
|c|2. Conversely, if the conditions are satisfied, the above triangular matrix A

(thus not unique) is the required one with α2 − a2 = 1
4
|c|2,

The following is the corresponding result for the real case.

Proposition 8.2 Let α, β ∈ R and a + ib ∈ C. Then there exists A ∈ sl(2,R)

whose eigenvalues, real singular values, and imaginary singular values are ±(a+ib),

±α, and ±β, respectively, if and only if (1) b = 0, (−a, a) ≺ (−α, α), and β2 =

α2 − a2, or (2) a = α = 0, b = ±β.

Proof: If the eigenvalues of A ∈ sl(2,R) are complex, they must be conjugate to

each other, that is, ±ib, b ∈ R. Otherwise, they must be of the form ±a, a ∈ R. By

Proposition 8.1, or by observing each A ∈ sl(2,R) is (special) orthogonally similar

to one of the forms:

(a)

(
a c

0 −a

)
, a, c ∈ R, (b)

(
0 b

−b 0

)
, b ∈ R,
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accordingly, we have the necessary conditions. Conversely, (1) let A be in the form

(a) whose eigenvalues, real singular values, and imaginary singular values are ±a,

±α = ±(a2 + 1
4
c2)1/2, and ±β = ±(1

4
c2)1/2. Thus set c = ±2|β|; (2) let A be in

the form (b) and it is obvious.

But for the case n ≥ 3, the problem becomes much more complicated. The

problem is similar to the recently settled Horn’s problem on the eigenvalues of sum

of Hermitian matrices [8, 9]. Further research is needed for a clear understanding.
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