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Abstract 
 
 

Manufacturing processes require not only physical operation capabilities but also non-

physical management policies. When designing a new product or manufacturing a customer’s new 

unique design, the focal point is to establish a price which maximizes customer value while still 

being profitable. Since an irreversible and large amount of capital is tied up in production elements, 

estimating manufacturing costs accurately is critical. Therefore, final decisions about the product 

price should be based on analytical approaches, instead of intuitive expectations. Poorly 

established product prices that are a function of product cost may cause two unfavorable 

consequences: (1) A potential loss of profit due to the gap between the expected cost and the actual 

cost, (2) A loss of customers and goodwill due to higher prices than necessary. In this research, we 

investigate ways of using clustering and spline methods to predict the manufacturing cost of 

products in the presence of complex numeric and categorical design attributes (cost drivers). The 

accuracy of the methodology presented in this work is assessed in comparison to a traditional 

approach, a polynomial regression model. The main concern behind this research is to predict the 

manufacturing cost of a product quickly and accurately without making assumptions on statistical 

distributions or estimating model parameters to simplify the complex relationship between 

categorical and numeric product design attributes and the manufacturing cost. 
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Chapter 1 

Introduction 

 

Regardless of the scale of a manufacturing facility, customers check catalogs and ask price 

quotes for some specific quantity of products. They even bring their unique product design to 

manufacturers and ask for an estimate. This even ends up with fierce price negotiation sessions. 

But, what is the negotiation power of a manager over a product? How much can she/he discount 

from the regular price tag? It is possible to measure the actual cost of an ongoing product, but is it 

possible to know the cost of a new and unique design when it has not been actually manufactured? 

In economics, we assume that people behave rationally and their aim is to maximize their 

benefits. If decision makers in a manufacturing factory act parallel to this idea, they identify cost 

drivers and find the cost of a specific product before they establish its final price. Remember that 

the basic mathematical expression of the profit is the sale price minus the cost. Since the sale price 

of a product is determined as a margin of its manufacturing cost, the profit turns out to be a function 

of the product cost. This is the proof of the dependency and the direct connection of a product 

price on its actual manufacturing cost.  

 Manufacturing processes require not only physical operation capabilities but also non-

physical management policies. Executives allocate a big investment in machines, raw material and 

people, who directly and indirectly run the factory. Even though these capital expenditure 

decisions are made through a series of careful steps, there is still a possibility to observe deviations 
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on the factory floor from what was planned or expected. Therefore, final decisions about the 

product price should be based on actual cost, instead of ad hoc expectations. Poorly established 

product prices (remember that it is a function of product cost) may cause two unfavorable 

consequences: (1) A potential loss of profit due to the gap between the expected cost and the actual 

cost, (2) A loss of customers and goodwill due to higher prices than competitors in the market.  

As time goes on, factories develop new manufacturing skills or improve their current 

systems. This highly ambitious business environment pushes the boundaries of manufacturers to 

reduce their manufacturing costs and, eventually, product prices. Manufacturing a product is not 

only about considering the design details, functionality and style but also considering its monetary 

attractiveness. This monetary attractiveness can be achieved when the cost of a product is 

established accurately. Since the profit depends on manufacturing cost, an accurate estimation of 

manufacturing cost of a product is crucial.  

Additionally, when designing a new product or manufacturing a customer’s new unique 

design, the focal point is to establish a price which maximizes the customer satisfaction while 

being profitable. Since an irreversible and large amount of capital (with respect to the scale of the 

facility) is tied up in production elements, decision makers in manufacturing systems should be 

aware of the significance of estimating manufacturing costs accurately before any action  is taken. 

That could be an explanation of why cost estimation efforts have gained substantial attention since 

the beginning of the modern industrial era. Accurately estimating manufacturing cost of a product 

is imperative to survive in this highly technological and challenging environment.  
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1.1   Problem Definition 

 Statistical tools have always been popular among executive planners when cost estimation 

effort takes place. Before proceeding forward into statistics, we need to know the cost structure of 

a product which consists of a collection of cost drivers. A cost driver is defined as any factor which 

changes the cost of an activity*. From a statistical perspective, cost drivers are explanatory 

variables that have a contribution to the manufacturing cost of products. That is, the manufacturing 

cost is the dependent variable which is influenced by cost drivers. Through this dissertation, term 

analogies for cost drivers are cost variables, design variables, design attributes or, simply, variables 

and attributes. The variables which have influence on product cost begin from the early product 

design stage. Shape complexity, main material type, manufacturing tolerances, manufacturing 

schedule are some of these variables. However, there are other cost drivers, as well as uncertainties, 

existing in the nature of production systems. Inflation, cost of capital, failure of tooling and 

machines, local and global regulations and other similar factors cannot be adjusted directly by 

manufacturing operation planners. Considering these uncertainties, assigning probability density 

or mass functions to cost drivers while taking correlations into account can be a good start to mimic 

cost behavior. Along with a point estimate, confidence intervals for the cost of a particular product 

can be derived as an output of this Monte Carlo simulation. Even though assigning stochastic 

distributions to cost drivers and then using the Monte Carlo simulation is a practical way to handle 

uncertainty, is it necessarily realistic? How accurate are these distribution assignments? Or more 

specifically, is a cost variable coming from the same probability density or mass functions for all 

products? In addition, many other questions have to be answered confidently before using Monte 

Carlo simulation.  

                                                 
* According to Chartered Institute of Management Accountants (CIMA) 
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Similar to the simulation idea just discussed, it is possible to use empirical distributions 

instead of well-known parametrical distributions for cost variables. No matter how complicated 

the actual distribution is, we may use Efron’s bootstrapping [1] tool to simulate the product cost 

behavior. One of the questions that arises with bootstrapping is whether we can diagnose the failure 

of a non-parametric simulation.  If a well-known parametric model is fitted to a dataset, 

consistency of non-parametric bootstrap sampling from the same dataset can be monitored by 

comparing the consistency of the results with the parametrical benchmark. However, absence of 

such a parametric model may leave us clueless when the impact of outliers is investigated [2]. 

Additionally, it may fail to provide appropriate results when the fundamental assumption is not 

fulfilled. That is, non-parametrical bootstrap samples should be independent and identically 

distributed from an unknown distribution [1]. 

The main concern of our research is to predict the manufacturing cost of a product without 

dealing with probability density or mass function assignments or making strong assumptions on 

parameters. We will convert physical similarities of products into meaningful mathematical 

similarities and make product-by-product comparisons. When making product-by-product 

comparisons, the number of analogies is likely to grow as the number of products grows. 

Therefore, over a diverse product family, establishing only a single accurate estimation model is 

challenging and doubtful. This motivates us making comparisons by dividing the whole database 

of products into neighborhoods until these neighborhoods become sufficiently homogenous. Using 

statistical terminology, we can call these neighborhoods, groups or clusters. We develop cost 

estimation models for each cluster. That is, a polynomial regression model is built for each cluster. 

Since every current and historical product can be represented as points in multidimensional space 

with respect to their variables, we will investigate in which cluster a new product falls. After 
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assigning the new product to the best cluster, we will use the cluster-specific model to predict its 

manufacturing cost.  

For an illustration, see Figures 1.2, 1.3 and 1.4. Assume that there are only two variables 

associated with a family of products. The first variable, “Manufacturing Cost”, is the outcome 

variable, while the second one, “Design Variable”, is the independent. In each figure, black dots 

represent products on two-dimensional space which are scattered according to the change in the 

design variable (horizontal axis) and the manufacturing cost (vertical axis). In Figure 1.1, 

establishing a single linear estimation model (the red colored trend line with the 𝐸𝐸𝐸𝐸 label) over a 

diverse product family may not be as accurate as possible. For product 𝐴𝐴 in the same figure, 

observing high deviation in the predicted cost (𝐶𝐶𝐴𝐴′ ) from the actual cost value (𝐶𝐶𝐴𝐴) is very likely 

when a single estimation model is used.  

Figure 1.1: Scatter plot of products over Manufacturing Cost vs. Design Variable 
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However, as shown in Figure 1.2, we may partition points into three meaningful and fairly 

homogenous clusters according to their design similarities (or dissimilarities). Note that in this 

figure clusters are formed based on visual observations with respect to the measurement 

differences between the design variable for each pair of objects. All red dots are the representative 

objects which are the centers of their corresponding clusters and specifically called “medoids”. As 

in Figure 1.3, for each cluster, separate estimation models can be developed for a higher predicted 

cost accuracy than the performance of the original single model 𝐸𝐸𝐸𝐸. 𝐸𝐸𝐸𝐸1, 𝐸𝐸𝐸𝐸2 and 𝐸𝐸𝐸𝐸3 are the 

models which are specifically established to estimate the cost of products in their underlying 

clusters. By using the model 𝐸𝐸𝐸𝐸2, the gap between the predicted cost (𝐶𝐶𝐴𝐴′ ) and the actual cost value 

(𝐶𝐶𝐴𝐴) for product 𝐴𝐴 is relatively smaller than the single model case (as in Figure 1.1). The desired 

value of the gap between the predicted cost and the actual cost is zero, but in practice, it is very 

hard to achieve for all products.  

 

 

 

 

 

 

 

Figure 1.2: Representation of the product family in three clusters 
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Figure 1.3: Establishing individual cost estimation models for each cluster 
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advance of computer technology, using spline models has become a popular approach to produce 

smooth curves in computer graphics [4]. Spline functions project a high degree of smoothness at 

the points that segments connect. These connection points are called knots. Figure 1.4 shows a 

piecewise spline function with two interior knots. That is, the three segments in the function 

represent three clusters for a single design attribute. Using splines is a potential improvement in 

the cost estimation process and a powerful candidate to compare the performance of the clustering 

approach.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Establishing a spline cost estimation model with three segments 
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We can summarize our research with the following three questions. 

 

Problem 1. How accurately can the cost of a product be predicted by using a clustering method? 

Our main purpose is to establish the cost of a product as simply and accurately as possible. 

We decompose the problem into two phases: (1) Grouping similar products together by using the 

𝑘𝑘-medoids algorithm and establishing cost estimation regression models for each group, (2) 

Assessing the best cluster to assign a new unique product and then predicting the manufacturing 

cost of the new product with the corresponding cost estimation regression model.  

According to the Jain and Dubes [5] definition, clustering analysis is the process of 

grouping objects into meaningful subsets. Clustering has been very popular among biologists, 

social scientists, engineers and many other occupations to find significant taxonomies behind data. 

There are several clustering methods applicable to manufacturing cost estimation problems. Two 

main categories are hierarchical (HA) and non-hierarchical (NHA) techniques. Selection of the 

clustering method depends on the specific dataset because of feasibility concerns. Using a HA or 

NHA technique may not be possible for every instance. That is, some clustering methods are not 

applicable to some problems because of method limitations.  

We investigated ways of using clustering methods to predict the manufacturing cost of a 

product without actually manufacturing it. We only focused on clustering methods which are 

applicable to the majority of manufacturing cost estimation problems. Due to the limitations of 

clustering algorithms on mixed numeric and categorical data, instead of using calculated virtual 

reference points as cluster centers, using real objects (medoids) is preferred. This is why our 

starting basis is partitioning according to medoids, specifically the 𝑘𝑘-medoids algorithm. We need 

to supply as good as possible clustering content to build estimation models because poorly-
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constructed clusters would not provide the true and necessary information to calculate a valid and 

robust estimation model. There are several ways to build estimation models for manufacturing 

costs estimation purposes. Certainly, the simplest and the most prevalent way is to fit data to a 

regression model because and this is typically the most sophisticated way used in practice. A more 

primitive cost estimation approach using experiential knowledge is the dominant method used in 

practice.  

We assess if our prediction is more precise than the prediction in absence of a clustering 

method. In addition, we also inquire if our prediction is reasonable compared with the actual cost. 

Constructing regression models is one of the focal points in this research. However, it is necessary 

to emphasis that other modeling approaches can be used such as neural networks, regression trees, 

or fuzzy logic techniques. We leave this part open for future research.  

 

Problem 2. How can the appropriate number of clusters be determined to obtain the most precise 

estimate in the presence of categorical and numeric design attributes?  

In this study, we considered several approaches to find an appropriate number of clusters 

which satisfies a certain amount of homogeneity among groups. Even though there is no strictly, 

statistically binding constraint for the maximum number of clusters, it is preferred to employ the 

smallest number of clusters while maximizing the inter-cluster variability relative to the within-

cluster variability [6]. Our methodology of selecting the appropriate number of clusters is neither 

deterministic nor arbitrary.  We look for consensus among three statistics through plots of the 𝐶𝐶-

index, Gamma and silhouette width, where local peaks of the Gamma and silhouette width 

combined with local troughs of the 𝐶𝐶-index is our choice for the number of clusters. Note that this 

choice may not be unique. If every product forms an individual cluster, it would be pointless to 
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use a clustering method in order to estimate the manufacturing cost.  With a similar idea, using a 

single cluster for the entire product database would be exactly same as not using any clustering 

method.  

The possible number of allocations of products (totally 𝑁𝑁 products) among a fixed number 

of clusters (𝑘𝑘 clusters) can be expressed as a combinatorial problem. In mathematical terminology, 

this is called the pigeonhole principle [7]. It is the placement problem of 𝑁𝑁 pigeons into 𝑘𝑘 

pigeonholes, where 𝑁𝑁 is greater than 𝑘𝑘 and at least one pigeonhole must contain more than one 

pigeon. The most important point in this combinatorial clustering problem is that the products are 

not identical and transfer of a product to another cluster may violate the assignment principle. 

Choosing 𝑘𝑘 representative points out of 𝑁𝑁 observations with a combination gives the exact number 

of assignment possibilities. However, the strategy is not randomly assigning observations to 

clusters but partitioning them according to the smallest distance from each cluster center (medoid). 

That is, every possible allocation of 𝑁𝑁 products into 𝑘𝑘 clusters is not meaningful (feasible) because 

products are assigned only to the closest cluster center. The distance between a product and a 

cluster center is determined by a similarity (or dissimilarity) measure. A further discussion about 

similarity measures can be found under section 2.  

 Figure 1.5 illustrates the feasible allocation strategy with a closer snapshot of Cluster #2 

and Cluster #3 in Figures 1.2 and 1.3. The distance between object 𝐵𝐵 and Medoid #2 or in other 

words, the dissimilarity of object 𝐵𝐵 with Medoid #2, and the distance between object 𝐵𝐵 and Medoid 

#3 are marked 𝑑𝑑1 and 𝑑𝑑2, respectively. The smaller the distance between two objects gets, the 

higher the level of similarity obtained. That is, object 𝐵𝐵 and Medoid #2 are more dissimilar than 

are object 𝐵𝐵 and Medoid #3. In other words, object 𝐵𝐵 and Medoid #3 are more similar to each 
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other than are object 𝐵𝐵 and Medoid #2.  The distance 𝑑𝑑1 is larger than the distance 𝑑𝑑2 and, 

therefore, the assignment of object 𝐵𝐵 to Cluster #3 is preferred (or necessary).  

  

Figure 1.5: Assignment mechanism of objects into clusters 

 

Problem 3. How accurately can the cost of a product be predicted by using splines? 

 We investigated whether implementation of a spline approach provides accurate estimates 

of manufacturing costs. At the same time, the performance of the underlying splines approach is 

compared with the clustering approach to discern a possible superiority relationship between them. 

Predictably, the benchmark cost estimation performance assessment is made with a single 

regression model built with the entire data that does not consider clustering or piecewise functions. 

  Splines constitute a reasonable approach for the nonparametric estimation of 

manufacturing cost functions. Unfortunately, the commonly known splines are restricted to 

continuous predictors (numeric attributes). This is a disadvantage when it comes using splines on 
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manufacturing cost estimation problems since it is not unexpected to encounter categorical 

predictors (categorical attributes) in real life cases. However, with some modifications on the 

traditional continuous-only predictor splines approach, it is possible to accommodate the presence 

of categorical design attributes without artificial dataset manipulations such as splitting the dataset 

into continuous and categorical attributes subsets [8]. Tensor product B-splines for numeric design 

attributes along with kernel-weighting for categorical design attributes are used to handle mixed 

data to overcome this limitation of standard splines. Further details about establishing non-

parametric splines for continuous and categorical predictors can be found in Chapter 3.  

 

1.2   Complexity of Variables 

 There are two issues rendering this cost estimation problem more complicated: (1) 

incorporating qualitative and quantitative variables in a dataset simultaneously, (2) the number of 

variables in a dataset being less than the number of products but still large relative to the number 

of products. We address the first issue by using applicable clustering and spline techniques and the 

second issue by removing irrelevant variables. Please refer to Chapters 3 and 4 to read further 

details about these issues and our approach.  

  We can classify the variable types into two main categories: continuous (quantitative) 

variables and discrete (qualitative) variables. Quantitative variables provide information of 

numerical magnitude. They mainly consist of interval-scaled and ratio-scaled variables. Interval 

scaled variables are either on positive or negative axes and measured over linear equal intervals. 

On the other hand, ratio-scaled variables take positive values on a non-linear scale. This might be 

a transformation of the original continuous variable by an exponential or a logarithmic function. 

Unlike quantitative variables, qualitative variables provide information of categories. They may 



14 
 

take finite discrete numerical values or categorical labels including names. We can categorize the 

qualitative variables as nominal, ordinal and binary variables. Nominal variables are categorical 

classifications where ranking among categories does not exist or is not important. However, for 

ordinal variables, ranking among categories is important and has a meaningful sequence. The 

transition between categories for ordinal variables is not necessarily distinct or equal but must be 

logical. Binary variables are a special case of qualitative variables where there are only two 

possible outcomes (or states). They can either take a value of 0 or 1 where 0 usually represents the 

absence of a property and at the same time, 1 represents the presence of a property. If the states of 

a binary variable have equal importance, it is called symmetric binary; otherwise asymmetric 

binary [9]. Ranking issues among categories, non-distinct borders between transition of categories, 

and asymmetrical properties of binary variables are challenging aspects of handling categorical 

variables when mathematical operations are required for further analysis.  

In this study, the datasets of the application problems contain at least one kind from each 

variable type (categorical or numeric). To the best of our knowledge, none of the existing similarity 

measures (metrics) can handle mixed type of variables in their original form. Using Gower’s index 

[9] is a good alternative for the clustering analysis because it enables us to transform outcomes of 

different types of variables into a single mathematical value. With the help of Gower’s index, an 

objects-to-objects (products-to-products) distance matrix can be derived. The upper and lower 

parts of this matrix are symmetrical to each other around the diagonal and the diagonal elements 

have values of zero. The logical interpretation of a zero-valued diagonal element is the distance 

from a product to itself is zero. Further discussion about Gower’s index is available in the literature 

review section.  
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In this study, we have collected four datasets from three manufacturing industries.  The 

representative features have been selected according to the cost drivers for these specific 

manufacturing processes. The diversity of the manufacturer datasets shows that this study can be 

extended over different industries by including industry specific design variables. 

 

1.3   Limitations of the Research 

 We assume that new products are based on some modifications or variations to existing or 

historical products. That is, introduction of a new product beyond the universe of past products is 

not advisable because these statistical approaches are strictly interpolation processes. If an 

estimation model is built based on a categorical universe of small, medium and large, then it is not 

possible to predict the manufacturing cost of a new design with a categorical design variable value 

of extra-large. However, for numerical attributes, it is possible to predict costs out of the past range 

of values because based on an interval scale or ratio scale, there is a logical increment between 

two different values to determine the relationship between them. However, this is not advisable as 

these models are designed for interpolation not extrapolation. 

 The second limitation of this research is that the clustering content is not necessarily 

optimized. That is, it is not necessary to find the best clustering algorithm to group objects but to 

find well-constructed clusters. There is a large literature for evaluating the performance of 

clustering algorithms. Thus, we are not evaluating the performance of multiple clustering 

algorithms but chose a clustering technique that can handle mixed categorical and numeric design 

attributes, is not affected by outliers and noisy data, and is already proven to be a robust and 

powerful method. 
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 This research is strictly limited to non-parametrical approaches to avoid making 

assumptions concerning statistical distributions. Continuous predictors are not normalized and we 

assume that all variables come from empirical distributions.  

 Note that this work assumes commodity production where the size of a batch is not 

important. All datasets come from mass production facilities. A future extension might consider 

economies of scale and batch sizing when predicting cost.  

 

1.4   Organization of the Dissertation 

We summarize the previous work in the literature in Chapter 2. This chapter consists of 

four main aspects of the literature, namely the survey of manufacturing cost estimation efforts, 

clustering methods and similarity measures, splines, and the most specific related work to our 

research. We propose the framework of our methodologies in Chapter 3. This chapter provides the 

information about our suggested approaches for clustering, splines, estimation, and result 

validation efforts. In Chapter 4, we demonstrate a variety of applications of our suggested cost 

estimation methodologies for four real life datasets, namely socks, electrical grounding elements, 

lightening protection parts and plastic household products. The last chapter highlights the 

conclusions of this research and the direction of future research. 
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Chapter 2 

Literature Review 

 

 This literature review chapter explores three main topics and the most related aspects of 

previous work: (1) Manufacturing cost estimation, (2) Clustering methods and similarity measures, 

(3) Splines and (4) Relevant work. In the first part, manufacturing cost estimation efforts and 

different classifications of manufacturing cost estimation techniques are discussed. The second 

part of the literature review gives an extensive review of clustering techniques and their possible 

advantages. In addition, to complement clustering techniques, the most prevalent similarity 

measures are summarized. Potential uses of these measures with their benefits and drawbacks are 

presented under the second part. The third part shows the literature review for splines and the last 

part consists of the most related publications to our proposed cost estimation methodologies. 

  

2.1   Manufacturing Cost Estimation 

 Estimating product cost is an inseparable part of manufacturing processes. Even though a 

manufacturing process is a physical operation, cost estimation has a principal role in all parts of it. 

Layer et al. [10] point out that manufacturing cost calculations are classified based on the timing 

of calculations: (1) Pre-calculation, (2) Intermediate calculation and (3) Post-calculation.  Pre-

calculation estimates the potential costs before actually manufacturing the item. The price of a 

product is usually declared based on the pre-calculation values when a new unique design has been 
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requested by a customer for a future manufacturing agreement. As a result, higher accuracy in the 

pre-calculation step is crucial to generate designs where low-cost and high-quality are maintained. 

On the other hand, actual cost is the interest of the post-calculation phase. Instead of estimated 

cost drivers, incurred costs are included in the post evaluation step. In the first chapter, we 

mentioned some of these cost drivers, specifically in Section 1.1. Our research interest is the pre-

calculation phase where we seek establishing the cost of a product accurately before actual 

production takes place. However, we still need historical data of product costs previously recorded 

based upon the post-calculation. The capability of estimating the cost of a product accurately 

increases the confidence of a business. Any hesitation during the price establishment phase may 

result in loss of customers or profit. These are the reasons why cost estimation efforts have been 

important for all kinds of manufacturers. 

 There are many publications in the cost estimation area employing empirical and analytical 

techniques. These techniques provide solutions for chemistry, manufacturing, construction and 

computer programming applications. Manufacturing cost estimation techniques are classified 

under two main categories consistently by authorities. Dai et al. [11] and Layer et al. [10] termed 

these two main categories qualitative and quantitative techniques. However, second-level 

classifications vary according to subjective opinions.  Figure 2.1 has been regenerated from a 

literature survey of product cost estimation [11] and gives an overview of the key advantages and 

limitations of the underlying product cost estimation techniques. A total of twelve different product 

cost estimation techniques were identified by Dai et al. [11]. In their survey, case-based systems, 

rule-based systems, fuzzy logic systems, expert systems, regression analysis models and 

backpropagation neural network models are grouped under qualitative techniques, while 

parametric techniques, operation-based models, break-down models, cost-tolerance models, 
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feature-based models and activity-based models are classified under quantitative techniques. 

Although, Layer et al. [10] constructs the first level classification of cost estimation the same as 

Dai et al., they did not include second-level qualitative techniques classification in their work. 

Therefore, they provided the classification of quantitative cost estimation techniques given in 

Figure 2.2. Their definition of quantitative techniques includes only three subdivisions: (1) 

Statistical models, (2) Analogous models and (3) Generative-analytical models. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 2.1:  Overview of product cost estimation techniques with advantages and limitations [11] 
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According to Dai et al. [11], case-based systems utilize a database of previously 

manufactured parts by detecting the most relevant items to the new design with respect to the 

similarities of their design features. If there are some differences between old designs and the new 

design, necessary modifications in both design and operational levels should be done. Finally, cost 

of the new design can be estimated by revising the cost of the benchmark products (old designs) 

according to the magnitude of change in these modifications. Linear regression analysis models 

also require some historical data to construct cost trends. This is basically taking the linear 

correlations into account and building the model with respect to the relationships of independent 

variables with the dependent variable (product cost). The regression analysis can be extended by 

identifying more cost drivers and their linear and non-linear relationships. A parametrical cost 

function can be derived by using these cost drivers with their algebraic relations to mimic the 

actual cost behavior. This parametric cost estimation technique is claimed to be superior to a simple 

regression analysis [12]. On the other hand, operation-based cost estimation techniques devise an 

approach which is the summation of the manufacturing time of individual operations as well as 

non-value-added activity times. Feature-based cost estimation approaches use a similar idea with 

operation-based approaches but there is a small difference. That is, instead of identifying solely 

the value-added and non-value added operations, this method deals with all cost related features 

including product design geometry, machining requirements and other cost drivers which might 

have an influence on the total cost. However, identification of these features is subject to the 

expertise of the person in charge and is limited to his/her information extraction capabilities.  

As we discussed above, unlike Dai et al. [11], Layer et al. [10] divided quantitative cost 

estimation techniques into three categories: statistical, analogous and generative-analytical 

models. According to their classification, statistical models include regression analysis, neural 
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networks and other optimization techniques. These techniques also require historical data and 

empirical examination skills. The required historical data usually covers some shape-describing 

variables as well as semantic product characteristics. Analogous models consider geometrical 

similarities but also take functional similarities into account. Analogous approaches are similar to 

statistical models and do not need to be classified differently because both approaches process cost 

related features in identical ways.      

                                                                                                                                                                                                                                    

 

Figure 2.2: Classification of product cost estimation approaches from Layer et al. [10]  

 

Our clustering based cost estimation approach fits none of these classifications strictly but 

can be considered as a combination of several approaches, namely case-based systems, analogical 

parametric cost estimation techniques, operation and feature-based models. From the perspective 

of Layer et al. [10], our approach is also considered an analogous model. In our study, 

manufacturing cost estimation uses historical data of similarities among previously manufactured 

products. Therefore, we have identified all cost related features associated with these products and 

recorded categorical/mathematical values of these features as variables in our data. Lack of such a 
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hybrid comprehensive statistical method in the literature which uses clustering techniques to 

establish cost models for similar product streams is one of our research motivations.  

 On the other side, spline functions has never been used as a manufacturing cost estimation 

tool in the literature. Our curiosity in using such a model motived us developing spline cost 

estimation models that can accommodate mixed categorical and numeric design attributes. Our 

spline based cost estimation approach can also be considered a combination of several approaches, 

namely analogical non-parametric regression analysis along with operation and feature-based 

models.  

 

2.2   Clustering Methods 

There are many applications of clustering in very different science branches. Jain et al. 

published a review of clustering methods which explicitly covers the most common techniques 

available at that time. Even though they grouped clustering methods into two main categories with 

six sub topics, with currently available information, it is possible to extend this classification with 

a broader aspect. Please refer to the Figure 2.4 for a comprehensive illustration of clustering 

classification.  The main categories of clustering have been preserved but new subcategories are 

added to the original representation of Jain et al. [13]. Under this larger clustering umbrella, there 

are still two main categories: (1) Hierarchical clustering and (2) Non-hierarchical clustering.  

Along with the clustering methods mentioned above, Jain et al. [13] discussed alternative 

techniques for computational clustering implementations. Figure 2.3 gives an overview of these 

implementations. These approaches are agglomerative vs. divisive, monothetic vs. polythetic, hard 

vs. fuzzy, deterministic vs. stochastic and incremental vs. non-incremental. In agglomerative 

approaches, observations of a dataset are merged into groups until all observations form a single 
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cluster. Divisive ones follow the same rule but go backwards by dividing an initial one big group 

into subgroups. Monothetic vs. polythetic approaches are closely related to serial or simultaneous 

processing of features, respectively. While serial implementations process features one at a time, 

simultaneous approaches handle all features at once. According to the hard vs. fuzzy aspect, each 

object is assigned to a cluster strictly, or with a degree of membership. Therefore, in fuzzy 

clustering, an object might be a member of several groups with some degrees but the highest value 

of membership may determine its ultimate assignment. Partitioning clustering techniques can be 

implemented in two ways: deterministic vs. stochastic, where either a deterministic method or a 

stochastic search algorithm is used. In Figure 2.3, meta-heuristics are considered as stochastic 

optimization algorithms. These meta-heuristics have become popular with the development of 

computational power to handle large datasets. Due to lack of this computational power at the time 

of early clustering applications, incremental vs. non-incremental approaches were devised. 

Constraints on processing capabilities and computer memory issues pushed practitioners reduce 

the dimension of data or handle patterns partially by updating the affected parts instead of re-

computing the entire dataset.   

 

2.2.1   Hierarchical Clustering 

In terms of computational power, it might be very expensive even for today’s computers 

to examine all possible clustering combinations. However, many clustering algorithms aim to find 

satisfactory results without considering all combinations. From its name hierarchical clustering 

methods build a hierarchy of observations by either a series of successive mergers (agglomerative 

hierarchical clustering) or a series of successive divisions (divisive hierarchical clustering) [6] in 

a greedy manner.  
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One of the biggest advantages of hierarchical methods is the dendrogram. That is, a 

graphical representation of similarity levels among observations that connects them as branches of 

a tree. Figure 2.5 is an illustration of a dendrogram for ten observations. In this figure, similarity 

level is described by distances among these observations. However, these similarities are not 

limited to distances but correlations, similarity coefficients* or even some other measures can be 

used to group observations.  With the help of a hierarchical clustering method, an entire dataset 

can be summarized with a single visual output (dendrogram) where possible cluster formations 

can easily be detected. However, it might be very hard to track connections between observations 

on a dendrogram due to its chaotic appearance for large datasets. That is a downside of 

dendrograms. Similarity levels and connections among observations come from a distance matrix 

and these connection levels may be altered according to which hierarchical method is used. In this 

research, as can be seen from Figure 2.4, we have discussed five hierarchical methods; however, 

the most common ones are single linkage, complete linkage, average linkage and Ward’s method 

[14]. Later in the chapter, distance matrices and corresponding similarity measures will be 

explained in detail.  

 

 

 

 

 

 

 

Figure 2.3: Classification of clustering implementations independent of the clustering method 
                                                 
* Please refer to the similarity coefficients on page 42. 
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Figure 2.4: Extended classification of clustering methods 
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minimum distance between entities in a greedy way, it may not be able to detect true connection 

links among poorly separated clusters [6].  

 

 

 

 

 

 

 

 

 

Figure 2.5: A dendrogram for distances among ten objects (observations) 

 

Even though complete linkage method was studied by McQuitty [16] and also by Sokal 

and Sneath [17] approximately in the same decade, the method was first introduced by Sørenson 

[18]. In Sørenson’s work, the complete linkage method is demonstrated with a non-numerical 

grouping example. The algorithm works in a similar manner to the single linkage method but with 

a small nuance. Rather than considering all possible nearest pairs of subjects as in the single 

linkage criterion, the method considers the furthest neighbors approach. The algorithm guaranties 

that the most dissimilar items are separated in different clusters. There is a problem of using the 

complete linkage method when there are more than one equally distant entity to merge with. It is 

recommended to choose the entity with the highest average similarity coefficient in such a case 

[17].  

0 

2 

4 

6 

8 

10 

Di
st

an
ce

 

3 8 10 1 6 2 5 4 9 7 

Observations 



27 
 

Not long after Sneath introduced the single linkage method, Sokal and Michener [19] 

presented the average linkage method in a university science bulletin. They have categorized bees 

according to correlation among species. A detailed correlation coefficient selection procedure can 

be found in their original study. The same logic as in the single and complete linkage methods is 

applied here with a slight difference. In the average linkage method, the distance between two 

clusters can be obtained by comparing the average distance between all pairs of items within these 

two clusters rather than seeking the furthest or nearest neighbors.  

Ward [14] has approached the hierarchical clustering problem as a variance minimization 

problem. Instead of using similarity or correlation coefficient matrices, the method tries to 

minimize the error sum of squares from cluster means. Unfortunately, Ward’s method can only 

take quantitative variables into account. The method fails when the dataset includes binary or 

categorical variables. It also has a binding assumption of the multivariate distribution. Existence 

of non-normally scattered observations may cause the algorithm to provide poor results. This is an 

important handicap that we cannot neglect when a dataset contains non-numerical values or 

numerical but non-normal values. 

 

2.2.2   Non-Hierarchical Clustering 

Non-hierarchical clustering methods would be preferable and more efficient to use than 

hierarchical ones when a large dataset is analyzed. The reason behind that preference is because 

of the extensive data storage requirement of hierarchical methods. A large amount of data is stored 

and used for consecutive iterations in hierarchical clustering algorithms. This data may include 

similarity matrices obtained in every iteration, relationship connection levels and interim 

dendrograms. Also, as mentioned in the hierarchical methods, dendrogram connections are very 
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hard to follow visually when too many nested sequence of groups exist. While non-hierarchical 

methods are being used in engineering applications, hierarchical methods are frequently found in 

biological, social and behavioral science applications [5].This is basically because the ultimate 

interest of engineering applications is the final content of clusters. On the other hand, the interest 

for biological, social and behavioral sciences is building taxonomical ranks. We can categorize the 

non-hierarchical methods into four main topics: (1) Partitioning, (2) Model-based, (3) Graph 

theoretic, (4) Exact methods, from most to least frequently used.  

Without a doubt, the leading algorithm is the 𝑘𝑘-means (or 𝑐𝑐-means) clustering method. It 

was first introduced by MacQueen [20] to allocate observations in a dataset into a pre-determined 

number of clusters – 𝑘𝑘.  The logic behind the 𝑘𝑘-means algorithm is to find the content of 

𝑘𝑘 partitions by minimizing within cluster variances. That is a reason why the 𝑘𝑘-means algorithm 

falls within the squared error category. Recall the name of the algorithm, 𝑘𝑘-means, notice that 𝑘𝑘 

stands for the number of partitions. Also, mean stands for the center point of a cluster where an 

average is taken for all observation points within a cluster. Overall, 𝑘𝑘-means refers to 𝑘𝑘 number of 

center points – centroids. Many modifications to the original work exist in the clustering literature. 

Even though in the original study, MacQueen suggested to start with 𝑘𝑘 single random points as 

initial clusters, it is practical to start with an initial partition of the items into 𝑘𝑘 groups. 

Unfortunately, the final cluster contents obtained by running the 𝑘𝑘-means algorithm can depend 

on the initial starting point. Every new 𝑘𝑘-means run, the algorithm has a possibility to give different 

results. This issue may significantly impact clustering analysis. To overcome that possible 

problem, the 𝑘𝑘-means algorithm should be rerun several times or even compared with results 

obtained by a different algorithm.  
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Besides MacQueen’s hard 𝑘𝑘-means clustering algorithm, a fuzzy version was developed 

by Dunn [21]. However, Bezdek et al. [22] improved Dunn’s fuzzy clustering approach to use in 

pattern recognition clustering applications. Bezdek et al.’s fuzzy 𝑘𝑘-means algorithm is the most 

commonly used one in fuzzy clustering applications. Unlike the hard 𝑘𝑘-means, fuzzy 𝑘𝑘-means 

clustering (also known as fuzzy 𝑐𝑐-means or FCM) does not assign observations to clusters during 

interim steps. Through iterations of fuzzy 𝑘𝑘-means, the algorithm updates the membership values 

for each observation that identify the degree of belonging to each cluster. The stopping criterion 

is same as for the 𝑘𝑘-means, which is when the percentage of improvement is less than a threshold 

value. Fuzzy k-means is a computationally intensive algorithm because along with cluster 

centroids and objects’ distances to each centroid, fuzzy membership values are computed. Fuzzy 

𝑘𝑘-means may overcome the clustering issue when the borders of clusters are not precisely 

separated. That is, observations may belong to more than one cluster with degrees of membership. 

Therefore, in the final iteration, observations can be assigned to clusters according to their highest 

value of membership.  

Two decades after the introduction of the k-means algorithm, the partitioning around 

medoids (PAM) paradigm was developed by Kaufman and Rousseeuw [23]. They called this 

method, the 𝑘𝑘-medoids algorithm.  The objective of the method is not about minimizing within 

cluster variability as in k-means. Unlike 𝑘𝑘-means approach, the method uses real observations as 

cluster centers and partitions the whole data around these cluster medoids. In other words, instead 

of devising the error sum of squares approach, the algorithm seeks cluster contents around 

representative objects based upon average dissimilarity. Allocating the observation points to the 

nearest medoid is advantageous in many aspects. Since the cluster centers are picked from 

appropriate elements in the actual dataset, the variables in that dataset do not solely need to be on 
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an interval scale. Kaufman and Rousseeuw also proved that the 𝑘𝑘-medoids approach gives more 

robust results than methods based on variance minimization, as with 𝑘𝑘-means. Additionally, the 

existence of outliers does not perturb the 𝑘𝑘-medoids clustering progress.  

The 𝑘𝑘-means algorithm became very handy for clustering large datasets because of its 

computational efficiency, but unfortunately it is limited to numerical data only.  Huang [24] 

proposed a new clustering method called 𝑘𝑘-modes to shift the use of 𝑘𝑘-means method to 

categorical data. It is a frequency-based algorithm and uses a simple matching similarity 

coefficient (see similarity coefficients in Section 2.2.3) to deal with categorical variables. The 𝑘𝑘-

modes algorithm replaces the cluster centroids with modes. The working logic of the algorithm is 

very similar to 𝑘𝑘-means and stops iterating when the same convergence criterion is met. Similar 

to 𝑘𝑘-means, the 𝑘𝑘-modes algorithm generates locally optimum cluster contents and does not 

guarantee global optimum solutions. Additionally, 𝑘𝑘-modes may have some misclassification 

issues when within-cluster similarities are weak. To address this issue, He et al. [25] suggested 

adding weights to attribute value matches in the simple matching similarity computations to avoid 

undesired classifications of objects. 

 Huang [26] also proposed another algorithm called 𝑘𝑘-prototypes by integrating the 

principles of 𝑘𝑘-means and 𝑘𝑘-modes to expand the applicability of partitioning algorithms to 

observations which have mixed numerical and categorical attributes. It specifically devises an 

objective function which is a combination of 𝑘𝑘-means and 𝑘𝑘-modes. Remember that, while the k-

means algorithm is based on the Euclidean distances for continuous variables, the latter uses simple 

matching coefficients for categorical variables. A weighted summation of these two expressions, 

Euclidean distance and the simple matching coefficient, constitutes the framework of the 𝑘𝑘-
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prototypes algorithm. The 𝑘𝑘-prototypes algorithm works slightly slower than 𝑘𝑘-means but it is still 

an efficient alternative to cluster mixed type of data.   

Recall that the information about the impractically of enumerating all possible cluster 

combinations to find the best clusters. Many adaptive algorithms have been deployed to solve this 

optimization problem for that specific reason. Naturally inspired clustering applications can be 

found in the literature such as artificial neural networks [27], evolutionary approaches [28], 

simulated annealing [29], particle swarm [30] and ant colony optimization [31]. Also, a tabu search 

algorithm was devised to solve the clustering problem as a discrete optimization problem [32]. 

Since all of these methods are heuristics, they do not guarantee the optimal allocation of objects 

into clusters. However, some of these meta-heuristics are robust to the specific initial starting 

clusters, unlike the 𝑘𝑘-means algorithm.  

Most clustering problems can be solved by these adaptive techniques which can 

specifically handle solely continuous, solely combinatorial problems, or either. Table 2.1 provides 

an overview of these adaptive techniques and their applicability among types of clustering 

problems. In the table, a plus sign (+) represents the possibility of using the underlying adaptive 

tool for the specific clustering problem. For example, while the simulated annealing algorithm can 

solve clustering problems in both a continuous and combinatorial sense, the ant colony 

optimization heuristic is applicable only for combinatorial clustering problems. Because the 

partitioning around medoids paradigm is a combinatorial case, its applications can be solved by 

the following adaptive optimizers: simulated annealing, genetic algorithm, tabu search and ant 

colony. There are several publications which devise these heuristics for PAM clustering problems 

except for simulated annealing. There is an opportunity to fill the gap with a PAM simulated 

annealing approach and compare the performance of it with other approaches.  
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Table 2.1: Overview of meta-heuristics and their applicability for clustering problems 

 
 Compatibility with Problems  
 Continuous Combinatorial PAM 

Simulated Annealing + +  
Genetic Algorithm + + Lucasius et al. [33] 

Evolutionary Algorithm + N/A N/A 
Tabu Search N/A + Ng and Wong [34] 
Ant Colony N/A + Boryczka [35] 

Particle Swarm + N/A N/A 
 

Koontz et al. [36] introduced a branch and bound approach for combinatorial hierarchical 

clustering problems where 𝑁𝑁 objects are grouped into 𝑘𝑘 classes. The other clustering efforts 

mentioned before are techniques to find sufficient results, usually local optimal clusters. However, 

the branch and bound method was developed to provide an exact solution to such combinatorial 

problems with globally optimal clusters. Unfortunately, the branch and bound method is not 

practical in terms of the computational effort compared with other partitioning methods. However, 

the time efficiency of the modified branch and bound method [36] for non-hierarchical clustering 

problems is in comparable time units with other previously mentioned clustering techniques. As a 

drawback to the branch and bound method, observations in a given dataset are required to be real 

numbers.  

As discussed before, objects in a dataset can be represented as points in multidimensional 

space. According to the nearest neighborhood approach, these points can be linked to each other 

if some assumptions hold. This linkage procedure is called the minimal spanning tree (MST) 

approach in graph theory. Zahn [37] introduced the MST method to detect cluster structures. Even 

though the MST approach is classified here under non-hierarchical methods, it can be counted as 

a hierarchical clustering approach since it uses the nearest neighborhood as in the single linkage 

method. Overall, the MST approach is based on building a tree for 𝑁𝑁 objects in a dataset with 

(𝑁𝑁 − 1) connections [38]. Even though the algorithm minimizes the sum of these (𝑁𝑁 − 1) 
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connections (similarities), it still requires the same computational time as the other hierarchical 

linkage methods.   

 As a preliminary step to the model based clustering, Wolfe [39] introduced multivariate 

mixture analysis based on two density mixtures: (1) Mixtures of multivariate normal distributions, 

and (2) Mixtures of multivariate Bernoulli distributions. Regardless of the clustering method, 

similarity measures used in clustering problems are often subjective or arbitrary. Wolfe devised a 

maximum likelihood estimation method to avoid arbitrary similarity measure assignment. Since 

elements in a cluster are different from elements in another one, it would be appropriate to assume 

that every cluster comes from a probability distribution. In order to represent the whole population, 

these probability distributions can be combined into one mixture density with underlying mixture 

weights. There are many parameters required to be estimated in model based clustering algorithms: 

𝑘𝑘 − 1 mixing probabilities (weights, where 𝑘𝑘 is the number of clusters), 𝑘𝑘𝑑𝑑 means (where 𝑑𝑑 is the 

number of variables), and 𝑘𝑘𝑑𝑑(𝑑𝑑 + 1)/2 variances and covariances [6]. With accessibility to 

computational power, the method has gained more use in clustering applications, even though the 

estimation of a model is very complicated. Everitt [40] extended Wolfe’s study by combining 

categorical and continuous variables into a single joint density function. There are even more 

extensions to Everitt’s work in the model based clustering field. Within the last decade, Moustaki 

and Papageorglou [41] devised a class mixture model to handle binary, nominal, ordinal and 

continuous variables in the same dataset by using their appropriate distribution representations: 

Bernoulli, multinomial, cumulative multinomial and normal, respectively. Our main research 

concern it to predict the manufacturing cost of a product without assuming statistical distributions 

or making assumptions about underlying distributions. Therefore, using a model based clustering 

approach is not appropriate. 
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2.2.3   Similarity Measures 

Most clustering techniques require an assignment of a similarity (or dissimilarity) measure 

in the very initial step. Selection of a similarity measure should be based on application appropriate 

logic and in consideration of functional requirements. Poorly chosen measures may lead clustering 

algorithms to undesired directions. This is also an arbitrary assignment process where many 

distance measures might be considered; however, only one or a few of them fits the data available 

and results in the best discrimination between clusters. Higher discrimination power is also what 

practitioners seek from a similarity measure. A similarity measure should increase as the 

dissimilarity between two objects increases.  

Besides the discrimination power of a similarity measure, there is another important point 

we should discuss. In practical applications, categorical and numerical variables may exist in the 

same dataset. If there are more than one type of variable associated with observation points, it 

would be impractical to separate variables and assess them with individual cluster analyses. The 

hard part is to reconcile cluster content obtained by these separate analyses if they are different 

from each other [9]. However, Strehl and Ghosh [42] introduced the cluster ensemble approach, 

which utilizes this idea. That is, synthesizing the results of several clustering algorithms to achieve 

final partitions. Within a short time frame after Strehl and Ghosh’s study, He et al. [43] adopted 

the cluster ensemble idea to treat heterogeneous data. Their research consists of two consecutive 

phases: (1) In the first phase, they divide the mixed data into two classes of solely categorical 

variable and solely numerical variable subsets. For each class, they run a cluster analysis which is 

exclusively specified to treat that kind of underlying variable. At the end of the first phase, they 

label objects with a new attribute that represents the clusters in which they fall. (2) In the second 

stage, the algorithm uses a categorical clustering approach based on only the new attributes to find 
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the ultimate cluster contents. Every variable may not contribute equally to form the final partitions. 

Therefore, the cluster ensemble approach may need modification if the individual variable 

contributions are not equally weighted. Figure 2.6 is regenerated from He et al. [43] and 

summarizes the framework of the cluster ensemble approach for mixed numeric and categorical 

data.  

 

 

Figure 2.6: Overview of the cluster ensemble approach for mixed variables [43] 

 

Rather than using a cluster ensemble approach, it would be more straight-forward to cluster 

once with the full dataset. That is, instead of synthesizing the results of separate cluster analysis 

for different variable types, performing a single cluster analysis [9]. This is possible in two ways: 

(1) Reduce all variables into binary variables, (2) Reduce all variables into interval-scaled values. 

The first one is possible if the underlying numerical variable planes are cut into two parts with 

some specific threshold values. Unfortunately, this sacrifices information [9]. The second 

approach is practical if there are at most two states for nominal variables. When more than two 

states exist for a nominal variable, the second approach would fail due to improper discrimination 

among states of it. That is, the numerical coding for each nominal state may not represent the actual 

distinction among the states. Additionally, asymmetrical binary variables are treated 

Original Dataset 

Clustering Output 

Clustering Output Numeric Dataset 

Categorical Data Clustering 

Categorical Dataset 

Numeric Data Clustering Splitting Cluster Ensemble 
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symmetrically according to this approach which would cause a scaling issue [9].  However, 

combining different type of variables into a single proximity matrix is found to be more convenient 

than these two approaches [9, 44, 45, 46, 47].  

Let us return to our original subject, similarity measures. We provide the ten most 

commonly used similarity measures in clustering applications below. We summarize examples 

and applicable fields of these similarity measures in Table 2.2. 

Here are these similarity measures: 

i. Euclidean Distance 

ii. Scaled Euclidean Distance 

iii. Mahalanobis Distance 

iv. Minkowski Metric 

v. Canberra Metric 

vi. Czekanowski Coefficient 

vii. Chebyshev Distance 

viii. Pearson Correlation 

ix. Cosine Similarity 

x. Similarity Coefficients for binary variables 

Table 2.2: Some application areas of the similarity measures 

Similarity Measure Area of Application 
Euclidean Distance mostly with k-means clustering method [20] 
Scaled Euclidean Distance mostly when the variation of variables are very different 
Minkowski Metric mostly with fuzzy k-means clustering with different weights [22] 
Mahalanobis Distance to handle correlated data (in elliptical shape) 
Canberra Metric to detect computer intrusions [48] 
Czekanowski Coefficient mostly for biological taxonomy [49] 
Chebychev Distance mostly with fuzzy k-means clustering with sup norm [50] 
Pearson Correlation widely used for analyzing gene expression data [51] 
Cosine Similarity to compare documents in text mining / document clustering [52] 
Similarity Coefficients to handle binary type of variables / scientific taxonomy [6] 
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Euclidean Distance 
This is a straight line distance between two points. Even though it is the most common 

distance measure and very easy to apply, when data points in multidimensional space are scattered 

like an elliptical cloud (that is, the variables have high correlations with each other), then usage of 

that measure is not appropriate. Euclidean distance becomes meaningful when the data cloud has 

a circular shape without any significant correlations among variables (See Figure 2.7 where 𝑣𝑣1 and 

𝑣𝑣2 represent variables one and two, respectively).  Additionally, the Euclidean distance works well 

for two or three dimensional data when clusters are isolated [13]. The formulation of the Euclidean 

distance is given in Equation 2.1. The lower case letter 𝑑𝑑 is the distance between objects 𝑥𝑥 and y. 

The superscript letter 𝑇𝑇 is the transpose operation for the underlying vector. Throughout the 

following distance measure descriptions, the notation 𝑑𝑑 and 𝑑𝑑(𝑥𝑥,𝑦𝑦) serve the same purpose.  

 

𝑑𝑑(𝑥𝑥,𝑦𝑦) = �(𝑥𝑥 − 𝑦𝑦)𝑇𝑇(𝑥𝑥 − 𝑦𝑦) (2.1) 

 

 

Scaled Euclidean Distance 

Individual variables in a dataset might have very different variances and ranges with 

incomparable units of measures. If so, all variables need to be scaled by their individual standard 

deviations because Euclidean distance gives equal emphasis to each variable. This normalization 

amplifies the contribution of relatively small averaged variables to the main response variable. 

This overall adjusted metric is called scaled Euclidean distance. The formulation of scaled 

Euclidean distance is given in Equation 2.2. 𝑆𝑆 is a diagonal matrix where its elements consist of 
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corresponding variable variances. 𝑆𝑆−1 is the algebraic notation of the inverse of matrix S and the 

superscript letter T is the transpose operation for the underlying vector. 

 

𝑑𝑑(𝑥𝑥,𝑦𝑦) = �(𝑥𝑥 − 𝑦𝑦)𝑇𝑇𝑆𝑆−1(𝑥𝑥 − 𝑦𝑦) (2.2) 

 

 

Mahalanobis Distance 

The Euclidean distance and scaled versions of it neglect covariance terms between 

variables. When variation in each axis is vastly different and linear relationships exist among these 

variables, using an elliptical distance would be more appropriate than using other distance 

measures. The most prevalent elliptical distance is the Mahalanobis distance which takes 

covariance terms (correlations) into account. The formulation of Mahalanobis distance is given in 

Equation 2.3 below. 𝛴𝛴 represents a covariance matrix and 𝛴𝛴−1 is the inverse of it. The superscript 

letter 𝑇𝑇 is the transpose operation for the underlying vector. When 𝛴𝛴 is an identity matrix, 

Mahalanobis distance is equivalent to Euclidean distance.  

 

𝑑𝑑(𝑥𝑥,𝑦𝑦) = �(𝑥𝑥 − 𝑦𝑦)𝑇𝑇 Σ−1 (𝑥𝑥 − 𝑦𝑦) (2.3) 

 

 

Minkowski Metric 

This is a generalized distance metric. When its weighting parameter 𝑚𝑚 is 1, the Minkowski 

metric becomes a linear expression and it is called taxicab geometry (also known as city block 

distance, rectilinear distance, Manhattan distance, or 𝐿𝐿1 norm). When 𝑚𝑚 is 2, the metric becomes 
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the Euclidean distance. Changing the parameter 𝑚𝑚 in the Minkowski metric changes the weight of 

differences between data points. The formulation of the generalized Minkowski Metric is given in 

Equation 2.4 where the lower case letter p is the total number of variables.  

𝑑𝑑(𝑥𝑥,𝑦𝑦) = ��|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑚𝑚
𝑝𝑝

𝑖𝑖=1

�

1/𝑚𝑚

 (2.4) 

 

 

Canberra Metric 

This can only handle non-negative variables. For multivariate data analysis applications, it 

does not suffer from normality assumptions [48]. The metric normalizes the rectilinear distance 

between two points with respect to the summation of corresponding measurements. The 

formulation of the Canberra Metric is given in Equation 2.5 where 𝑝𝑝 is the total number of 

variables. 

𝑑𝑑(𝑥𝑥,𝑦𝑦) = �
|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|
(𝑥𝑥𝑖𝑖 + 𝑦𝑦𝑖𝑖)

𝑝𝑝

𝑖𝑖=1

 (2.5) 

 

 

Czekanowski Coefficient 

This also requires non-negativity assumption of data variables. The Czekanowski 

coefficient also normalizes the distance between two objects with respect to the summation of 

corresponding measurements. When individual variables in a dataset have very different variances 

or are in incomparable units of measure, using the Czekanowski Coefficient may not be 
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appropriate. The formulation of the Czekanowski coefficient is given in Equation 2.6 below where 

the lower case letter 𝑝𝑝 is the total number of variables. 

 

𝑑𝑑(𝑥𝑥,𝑦𝑦) = 1 −
2∑ min (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)

𝑝𝑝
𝑖𝑖=1
∑ (𝑥𝑥𝑖𝑖 + 𝑦𝑦𝑖𝑖)
𝑝𝑝
𝑖𝑖=1

 (2.6) 

 

 

Chebyshev (Tchebychev) Distance 

This is not a unitless measure but a metric. Chebyshev distance is a special case of the 

Minkowski metric when the weighting exponent 𝑚𝑚 goes to infinity. It is also known as the sup 

distance, the supremum (sup) norm, the uniform norm or 𝐿𝐿∞ norm. It would not be appropriate to 

use for elliptical shaped data because it does not scale for variable variances or covariances. As a 

practical sense, when the largest variance is greater than four times the smallest variance, we may 

consider that the individual variances are divergent. In that case, Chebyshev distance becomes 

meaningless. Formulation of Chebyshev distance is given in Equation 2.7 where 𝑝𝑝 is the total 

number of variables. 

 

𝑑𝑑(𝑥𝑥,𝑦𝑦) = max
1≤𝑖𝑖≤𝑝𝑝

|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖| (2.7) 

 

Pearson Correlation Distance 

This is derived from the most common measure of correlation which is the degree of linear 

correlation among two variables. Its full name is “Pearson product moment correlation coefficient” 

[53]. Its range is within [−1, 1] interval where -1 represents a perfect negative correlation and +1 
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represents a perfect positive correlation between two variables. The formulation of the Pearson 

correlation distance is given in Equation 2.8 where 𝑛𝑛 is the total number of observations. In this 

case 𝑥𝑥 and 𝑦𝑦 are not observation pairs in a dataset but they are variable pairs.  

 

𝑑𝑑(𝑥𝑥,𝑦𝑦) =
1 − 𝑟𝑟𝑥𝑥𝑥𝑥

2
 (2.8) 

𝑟𝑟𝑥𝑥𝑥𝑥 =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2 ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

  

 

Cosine Similarity 

This is derived from the inner (dot) product of two vectors. Cosine similarity is closely 

related with the angle between two vectors. If the angle between two vectors is relatively small, 

they roughly point in the same direction. This can be considered as similarity of these vectors. 

Even though the original representation is not for distance of pairs – 𝑑𝑑(𝑥𝑥,𝑦𝑦), for consistency, we 

used the same distance notation as in other measures. The formulation of cosine similarity is given 

below in Equation 2.9 where 𝜃𝜃 is the angle between vectors 𝑋𝑋 and 𝑌𝑌. When 𝜃𝜃 is 180°, 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) 

equals to -1 and when 𝜃𝜃 is 0°, 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) equals to 1. The resulting distance ranges from -1 to 1 which 

correspond perfect dissimilarity and perfect similarity, respectively.  

𝑑𝑑(𝑥𝑥,𝑦𝑦) = cos�𝜃𝜃𝑥𝑥𝑥𝑥� =
𝑋𝑋 ∙ 𝑌𝑌
𝐿𝐿𝑋𝑋 𝐿𝐿𝑌𝑌

 

𝑋𝑋 ∙ 𝑌𝑌 = �𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

𝑝𝑝

𝑖𝑖=1

         𝑎𝑎𝑛𝑛𝑑𝑑        𝐿𝐿𝑋𝑋 = (𝑋𝑋 ∙ 𝑋𝑋)
1
2 

(2.9) 
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Similarity Coefficients 

When observations in a dataset cannot be represented by meaningful quantitative 

continuous variables, then pairs of points need to be compared by a different method. Similarity 

characteristics between pairs can be mathematically represented by binary values. The following 

table and coefficient expressions are taken from Johnson and Wichern [6]. The original tables have 

been slightly modified to maintain consistency of notation. Lower case letters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑 

represent the frequency of the binary match, (1-1), (1-0), (0-1) and (0-0), respectively, in Table 

2.3. The most commonly used eight similarity coefficients are given in Table 2.4. These quantify 

the resemblance between objects 𝑥𝑥 and 𝑦𝑦 considering the weighting emphasis on the match type. 

For the following two tables below, 𝑝𝑝 is the total number of binary variables used to compare 

objects (items) in a dataset.  

 

Table 2.3: Frequency of matches for item x and item y 

  Item y  
  1 0 Total 

Item x 1 a b a + b 
0 c d c + d 

Totals a + c b + d a + b + c + d = p 
 

 
 

Combining one or more of these similarity measures with some of the similarity 

coefficients with weighting factors to treat mixed numeric and categorical data might be an 

effective approach. Thus, the objective function of the 𝑘𝑘-prototypes algorithm is a weighted 

summation of the Euclidean distance (for continuous variables) and the simple matching 

coefficient (for categorical variables). That is, the objective function of k-prototypes attempts to 
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integrate a quadratic expression with a linear expression. Instead, consolidating two linear or two 

quadratic similarity expressions might be more mathematically appropriate. 

 

Table 2.4: The most commonly used similarity coefficients 
 

 
# Similarity Coefficient Explanation 

1 
𝑎𝑎 + 𝑑𝑑
𝑝𝑝  

Equal weights for 1-1 matches and 0-0 matches 

Simple matching coefficient [54] 

2 
2(𝑎𝑎 + 𝑑𝑑)

2(𝑎𝑎 + 𝑑𝑑) + 𝑏𝑏 + 𝑐𝑐 Double weight for 1-1 matches and 0-0 matches [6] 

3 
𝑎𝑎 + 𝑑𝑑

𝑎𝑎 + 𝑑𝑑 + 2(𝑏𝑏 + 𝑐𝑐) Double weight for unmatched pairs [55] 

4 
𝑎𝑎
𝑝𝑝 No 0-0 matches in numerator [6] 

5 
𝑎𝑎

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 
0-0 matches are treated as irrelevant 

The Jaccard coefficient [56] 

6 
2𝑎𝑎

2𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 Double weight for 1-1 matches and no weight for 0-0 matches [57] 

7 
𝑎𝑎

𝑎𝑎 + 2(𝑏𝑏 + 𝑐𝑐) Double weight for unmatched pairs and no weight for 0-0 matches [17] 

8 
𝑎𝑎

𝑏𝑏 + 𝑐𝑐 Ratio of matches to mismatches excluding 0-0 matches [6] 

 

Table 2.5 gives a comprehensive summary of these ten similarity measures discussed 

above.  The attributes included in the table are specifically chosen considering the scope of our 

application problems. These are the aspects of correlation consideration, handling only numeric 

data, handling only categorical data, handling mixed numeric and categorical data, non-negativity 

requirement, scaling for ranges of variable and elliptical shaped data, modifiable weights, 

sensitivity to outliers, unitless measure and metric properties, and, lastly, but most importantly, 

compatibility of these measures with our application problems. As you can see from this table, 

none of the existing similarity measures are completely compatible with our requirements in their 
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original forms. Notice that, a plus sign (+) points out the presence of the feature for a particular 

similarity measure.   

 

 

Table 2.5:  Summary of the most common similarity measures 
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 Euclidean Distance  +       +  +  
Scaled Euclidean Distance  +    +   + + +  

Minkowski Metric  +      + +  +  
Mahalanobis Distance + +    +    + +  

Canberra Metric  +   +  +   +   
Czekanowski Coefficient  +   +  +   +   

Chebychev Distance  +         +  
Pearson Correlation + +    +    +   

Cosine Similarity  +    + +      
Similarity Coefficients   +    +   +   

 

 

As we discussed earlier in this chapter, combining different types of variables into a single 

proximity matrix is found to be more convenient than using a cluster ensemble technique [9, 44, 

45, 46, 47]. Unfortunately, the existing similarity measures cannot handle mixed numeric and 

categorical variables. Using Gower’s index [9] to construct a proximity matrix is a good alternative 
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for the clustering analysis because it enables us to transform outcomes of different types of 

variables into a single mathematical value including categorical and numeric variables. The 

original form of Gower’s index handles interval, nominal and binary data as a similarity coefficient 

between 0 and 1. Kaufmann and Rousseeuw [9] described a slight generalization of this coefficient 

which covers ordinal and ratio variables in addition to the ones mentioned for the original index. 

With a simple transformation, Gower’s original similarity coefficient [47] can be converted into a 

dissimilarity value between 0 and 1. Kaufmann and Rousseeuw [9] transformed the similarity 

coefficients into dissimilarities by using the simple expression given in Equation 2.10. Note that 

the similarity to dissimilarity transformation is possible with this expression because the similarity 

coefficient is within [0,1] where 0 represents no similarity and 1 represents perfect similarity. In 

Equation 2.10, 𝑐𝑐(𝑖𝑖, 𝑗𝑗) is the similarity between objects 𝑖𝑖 and 𝑗𝑗, and 𝑑𝑑(𝑖𝑖, 𝑗𝑗) is the dissimilarity 

between same objects. After the transformation of the equation, 𝑑𝑑(𝑖𝑖, 𝑗𝑗) lies within the same interval 

but this time 0 and 1 switch their roles to perfect similarity and no similarity between objects, 

respectively. These improvements to the original index enable us to build a dissimilarity matrix 

which can be used later as an input for cluster analysis. The only downside for Gower’s index is 

that the index is linear. The discrimination capacity of the index might not be as powerful as a 

quadratic or a higher degree polynomial expression.  

 

𝑑𝑑(𝑖𝑖, 𝑗𝑗) = 1 − 𝑐𝑐(𝑖𝑖, 𝑗𝑗) (2.10) 
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A generalization of Gower’s index* [9] represented by 𝑑𝑑(𝑖𝑖, 𝑗𝑗) is provided below. 

𝑑𝑑(𝑖𝑖, 𝑗𝑗) =
∑ 𝛿𝛿𝑖𝑖𝑖𝑖

(𝑓𝑓) 𝑑𝑑𝑖𝑖𝑖𝑖
(𝑓𝑓)𝑝𝑝

𝑓𝑓=1

∑ 𝛿𝛿𝑖𝑖𝑖𝑖
(𝑓𝑓)𝑝𝑝

𝑓𝑓=1

 

𝛿𝛿𝑖𝑖𝑖𝑖
(𝑓𝑓) = �

 1 𝑖𝑖𝑖𝑖 𝑏𝑏𝑐𝑐𝑏𝑏ℎ 𝑋𝑋𝑖𝑖𝑓𝑓𝑎𝑎𝑛𝑛𝑑𝑑 𝑋𝑋𝑖𝑖𝑓𝑓 𝑎𝑎𝑟𝑟𝑎𝑎 𝑛𝑛𝑐𝑐𝑏𝑏 𝑚𝑚𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑛𝑛𝑚𝑚
 0 𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑓𝑓 𝑎𝑎𝑛𝑛𝑑𝑑/𝑐𝑐𝑟𝑟 𝑋𝑋𝑖𝑖𝑓𝑓 𝑚𝑚𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑛𝑛𝑚𝑚
 0 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑖𝑖𝑐𝑐 𝑎𝑎𝑛𝑛 𝑎𝑎𝑐𝑐𝑦𝑦𝑚𝑚𝑚𝑚𝑎𝑎𝑏𝑏𝑟𝑟𝑖𝑖𝑐𝑐 𝑏𝑏𝑖𝑖𝑛𝑛𝑎𝑎𝑟𝑟𝑦𝑦 𝑎𝑎𝑛𝑛𝑑𝑑 𝑋𝑋𝑖𝑖𝑓𝑓& 𝑋𝑋𝑖𝑖𝑓𝑓 ℎ𝑎𝑎𝑐𝑐 𝑎𝑎 0 − 0 𝑚𝑚𝑎𝑎𝑏𝑏𝑐𝑐ℎ†

 

 

If 𝑖𝑖 is a binary or nominal variable: 

𝑑𝑑𝑖𝑖𝑖𝑖
𝑓𝑓 = �

 1 𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑓𝑓 ≠ 𝑋𝑋𝑖𝑖𝑓𝑓
 0 𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑓𝑓 = 𝑋𝑋𝑖𝑖𝑓𝑓

 

 

If 𝑖𝑖 is an interval-scaled or ordinal variable: 

𝑑𝑑𝑖𝑖𝑖𝑖
𝑓𝑓 =

�𝑋𝑋𝑖𝑖𝑓𝑓 − 𝑋𝑋𝑖𝑖𝑓𝑓�
𝑅𝑅𝑓𝑓

 

𝑅𝑅(𝑓𝑓) = 𝑋𝑋𝑚𝑚𝑚𝑚𝑥𝑥
(𝑓𝑓) − 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛

(𝑓𝑓)  

 

2.3   Splines 

 The word “spline” comes from the East Anglian dialect with a meaning of a thin wood or 

metal piece [3] that was used by shipbuilders and draftsmen to build smooth curves. With 

developments in computer technology, using spline models has become a popular approach to 

                                                 
* 𝑑𝑑(𝑖𝑖, 𝑗𝑗), 𝑝𝑝, 𝑖𝑖, 𝑋𝑋𝑖𝑖𝑓𝑓, and 𝑅𝑅(𝑓𝑓) are the dissimilarity between objects 𝑖𝑖 and 𝑗𝑗 (Gower’s dissimilarity index),  the number of variables, the index of a 
variable, the value of object 𝑖𝑖 for variable 𝑖𝑖, the range of variable 𝑖𝑖 (if 𝑖𝑖 is an ordinal or an interval-scaled variable), respectively. 
† For further details about 0-0 match, please refer to the similarity coefficients on page 42. 
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produce smooth curves in computer graphics [4].  It is widely accepted that the first mathematical 

reference to the word “spline” in polynomial piecewise approximation is Schoenberg’s article of 

1946 [58]. However, the ideas have their roots in the aircraft and ship-building industries [4].  

Let 𝑚𝑚 be the spline order where the polynomial degree 𝐷𝐷 is 𝑚𝑚− 1. A spline of degree 𝐷𝐷 

is a continuous function formed by connecting polynomial segments of degree 𝐷𝐷 so that: (1) the 

function has 𝐷𝐷 − 1 continuous derivatives, and (2) the 𝐷𝐷𝑡𝑡ℎ derivative is constant between knots. 

The points where the segments connect are called knots of the spline and spline functions project 

high degree of smoothness at these points. Let 𝜉𝜉0 < 𝜉𝜉1 < ⋯ < 𝜉𝜉𝑁𝑁 < 𝜉𝜉𝑁𝑁+1 be the sequence of knots 

where 𝑁𝑁 is the number of interior knots, and 𝜉𝜉0 and 𝜉𝜉𝑁𝑁+1 are end (boundry) knots. A spline degree 

of 𝐷𝐷 can be represented as a power series in Equation 2.11 with the truncated power function 

notation given in Equation 2.12. In Equation 2.11, 𝛼𝛼𝑖𝑖 and 𝛾𝛾𝑖𝑖 are spline coefficients.  

 

𝑆𝑆(𝑥𝑥) = �𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖 + �𝛾𝛾𝑖𝑖(𝑥𝑥 − 𝜉𝜉𝑖𝑖)+𝐷𝐷
𝑁𝑁+1

𝑖𝑖=0

𝐷𝐷

𝑖𝑖=0

 (2.11) 

(𝑥𝑥 − 𝜉𝜉𝑖𝑖)+𝐷𝐷 = � (𝑥𝑥 − 𝜉𝜉𝑖𝑖)𝐷𝐷 𝑥𝑥 > 𝜉𝜉𝑖𝑖
0 𝑐𝑐𝑏𝑏ℎ𝑎𝑎𝑟𝑟𝑒𝑒𝑖𝑖𝑐𝑐𝑎𝑎

 (2.12) 

 

Splines constitute a reasonable approach for the nonparametric estimation of 

manufacturing cost functions. Unfortunately, the commonly known splines are restricted to 

continuous predictors (attributes). This is a disadvantage when it comes to the generalization of 

using splines for manufacturing cost estimation problems since we may encounter mixed 

categorical and numeric predictors. In this research, as can be seen from Figure 2.7, we discussed 

three main spline approaches: univariate, multivariable models. Univariate approaches consist of 

four spline functions, namely interpolating splines, smoothing splines, basis splines (B-splines) 
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and penalized B-splines (P-splines). These can be extended to multivariable cases with tensor 

product and additive models.  

 

  

 

 

 

 

Figure 2.7: Classification of spline models in terms of variable complexity 

  

Interpolating splines [59] is a sophisticated form of interpolation where the interpolant is a 

piecewise polynomial spline. It is a popular technique for designing planar curves [60] and is 

preferred over regular polynomial interpolation because the interpolation error is relatively small 

even for low order of spline functions because it creates less possibility of wild oscillations 

between data points [61]. The most common spline interpolation is cubic interpolating splines 

because they produce an interpolated function that is continuous through to the second derivative. 

That is, cubic interpolating splines produce a curve that appears to be smooth and seamless. The 

interpolation interval is first divided into small subintervals. Each of these subintervals is 

interpolated by using a 𝐷𝐷𝑡𝑡ℎ degree polynomial. The polynomial coefficients are chosen carefully 

to satisfy certain conditions depending on the interpolation method but generic requirements are 

function continuity at the knots and passing through all data points.  

 The smoothing spline is a technique to fit a smooth curve to a noisy set of data by placing 

knots at all observation points. It is introduced [62] and generalized [63] by Reinsch. Smoothing 

(1) Univariate (2) Multivariable 

Splines 

Interpolating 
Splines 

[59] 

Smoothing 
Splines 

[62] 

B-Splines 
[64] 

P-Splines 
[69] 

Tensor Product Additive 
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splines circumvent the knot selection problem since they just use all input points as knots. 

Smoothing splines considers two main key factors: (1) the goodness-of-fit to the data, and (2) the 

roughness penalization (smoothing parameter). The most important concern for smoothing splines 

is choosing this smoothing parameter and it can be done through cross-validation. If a smoothing 

spline is needed to fit non-uniformly shaped noisy data, the results can be unsatisfactory due to 

visiting every data point.  

 The truncated power function representation is not well suited for computational efficiency 

because successive terms tend to be highly correlated. A numerically more stable representation 

of splines can be written as linear combinations of a set of basis functions called B-splines. B-

splines was a major development in spline theory and is now the most used in spline applications 

and software. The term “B-spline” was introduced by Curry and Schoenberg [64]. B-spline is a 

generalization of the Bézier curves using the de Boor recursion formula [65].  The B-spline 

function 𝐵𝐵(𝑥𝑥) of degree 𝐷𝐷 is a parametric curve composed of a linear combination of basis B-

splines 𝐵𝐵𝑖𝑖,𝐷𝐷(𝑥𝑥) and is given in Equation 2.13 where the 𝛽𝛽𝑖𝑖 terms are called “control points” or “de 

Boor” points. Notice that in the equation we use the same notation as in Equation 2.11. The de 

Boor recurrence relation formula is given in Equation 2.14 where the 𝐵𝐵𝑖𝑖,𝑖𝑖 functions are called the 

“𝑖𝑖𝑡𝑡ℎ B-spline basis functions of order 𝑗𝑗”. Notice that, the index of the knots 𝑖𝑖 = 0, … ,𝑁𝑁 + 2𝑚𝑚 − 1 

is from the augmented knots after resetting the first element of the augmented knot set where 

𝜉𝜉−(𝑚𝑚−1) = ⋯ = 𝜉𝜉0 < 𝜉𝜉1 < ⋯ < 𝜉𝜉𝑁𝑁 < 𝜉𝜉𝑁𝑁+1 = ⋯ = 𝜉𝜉𝑁𝑁+𝑚𝑚. For the recursive calculations, any 

division to zero is defined as zero.  

 

𝐵𝐵(𝑥𝑥) = � 𝛽𝛽𝑖𝑖𝐵𝐵𝑖𝑖,𝐷𝐷(𝑥𝑥),      𝑥𝑥 ∈ [𝜉𝜉0, 𝜉𝜉𝑁𝑁+1]
𝑁𝑁+𝐷𝐷

𝑖𝑖=0

 (2.13) 
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𝐵𝐵𝑖𝑖,0(𝑥𝑥) = � 1 𝑖𝑖𝑖𝑖 𝜉𝜉𝑖𝑖 ≤ 𝑥𝑥 < 𝜉𝜉𝑖𝑖+1
 0 𝑐𝑐𝑏𝑏ℎ𝑎𝑎𝑟𝑟𝑒𝑒𝑖𝑖𝑐𝑐𝑎𝑎

 
(2.14) 

𝐵𝐵𝑖𝑖,𝑖𝑖+1(𝑥𝑥) =
𝑥𝑥 − 𝑏𝑏𝑖𝑖

𝑏𝑏𝑖𝑖+𝑖𝑖+1 − 𝑏𝑏𝑖𝑖
𝐵𝐵𝑖𝑖,𝑖𝑖(𝑥𝑥) +

𝑏𝑏𝑖𝑖+𝑖𝑖+2 − 𝑥𝑥
𝑏𝑏𝑖𝑖+𝑖𝑖+2 − 𝑏𝑏𝑖𝑖+1

𝐵𝐵𝑖𝑖+1,𝑖𝑖(𝑥𝑥) 

  

Penalized B-splines (P-splines) is an intermediate solution between regression and 

smoothing splines proposed by Eilers and Marx [66]. B-splines are attractive for non-parametric 

modelling but choosing the appropriate number of knots with their locations is a significant issue. 

Eilers and Marx proposed a roughness penalization procedure by starting with a relatively large 

number of knots but still less than one per observation. This method combines the reduced knots 

of regression splines with the roughness penalty of smoothing splines where the coefficients are 

determined partly by the data to be fitted and partly by an additional penalty function that aims to 

avoid over fitting. 

Tensor product splines is an extension to the one-dimensional spaces of polynomial splines 

over a space of multi-dimensional splines by taking tensor products. Because of the outer product 

nature of the multi-dimensional space, many properties of polynomial splines in one dimension 

are retained, such as working with single dimension B-spline functions [67]. Tensor product 

models consider interaction terms between univariate spline functions. We will use an approach 

which takes the tensor products of spline functions into account to handle multiple predictors. For 

further details about tensor products, please see the next chapter.  

Hastie and Tibshirani [68] proposed using additive models with separate smoothers to 

accommodate non-linear covariate effects. Additive models can also be used with spline functions 

that can extend univariate spline models over multidimensional space. It is a blend of generalized 
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linear models with additive models and provides the potential for better fit to data than parametric 

models but with some loss of interpretability. Unfortunately, unlike tensor product spline models, 

additive models lack interaction terms but are very easy to implement with multiple linear 

regression or regression splines. We discuss the performance of additive models compared to 

tensor product splines in sections 4.3 and 4.4.  

Multivariate adaptive regression splines (MARS) is a non-parametric regression technique 

generalization of spline methods for function fitting introduced by Freidman [69]. Freidman 

extended the univariate properties of splines to multiple variables considering complex 

relationships between predictors. However, according to the non-parametric regression procedure, 

no assumption is required for the underlying functional relationships between the dependent 

variable and predictors. That is, MARS employs the tensor product representation with a very large 

number of eligible knot locations on each variable. The MARS model is a weighted sum of 

truncated power basis functions (as in B-splines). It can handle both continuous and categorical 

data [70], but requires a discretization of continuous data into ordinal categories. This is called 

recursive partitioning where continuous data is partitioned into disjoint regions. MARS has a 

tendency to perform better for only numeric data. This is one of the downsides that makes us seek 

a better alternative to accommodate mixed categorical and numeric design attributes. Furthermore, 

MARS restricts the maximum degree of interaction terms to one.  

 

2.4   Related Work  

The first two parts of the literature review chapter focused on the possible cost estimation 

and clustering techniques and an overview of their basic applications; however, this section is a 

concentration of the most relevant work with our research. In this section, we present applications 
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of clustering techniques alone, cost estimation techniques alone and their combination for 

numerical data, categorical data or both.  

In this dissertation, our aim is to distinguish appropriate clustering methods or similarity 

measures that can handle heterogeneous types of data. That is, a clustering technique (or a 

complementary similarity measure) that can process a dataset with both categorical and numerical 

variables. Any specific clustering technique or similarity measure which fails to satisfy our 

variable treatment requirements would be inadmissible in this study. Due to this constraint, we are 

able to eliminate most of the methods discussed earlier in the chapter. However, it is necessary to 

consider more information about the selection of clustering methods and/or similarity measures. 

We provide a summary of the most common clustering techniques with their computational 

complexities in Table 2.6 which highlights the clustering techniques which can process mixed 

categorical and numerical variables. Even though enumerations of the whole search space are not 

quite clustering techniques, they are included in the table as a benchmark to illustrate the 

complexity of search space. The information in Table 2.6 is a snapshot of our clustering technique 

selection reasoning and it is discussed in the next chapter in further detail.  

One of the most relevant studies that have been conducted so far is the work of Angelis 

and Stamelos [71] concerning software cost estimation. That is, the estimation of the required 

effort to develop specific software based on analogies with previously undertaken projects. Even 

though this is not a manufacturing cost estimation attempt, it is relevant to our research. Angelis 

and Stamelos developed a non-parametric bootstrap simulation tool to investigate the accuracy of 

the underlying estimation methodology which is constructed on Euclidean, Manhattan and 

Chebyshev distances between an active project and historical projects. The idea of software cost 

estimation based on analogies existed in the literature previously but the study of Angelis and 
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Stamelos is the most comprehensive and illustrative work. Although this work specifically uses 

similarities between historical projects and an active project in the development phase with an 

emphasis on Gower’s index, it does not employ any clustering technique or an estimation model 

such as regression models or neural networks.  

 

Table 2.6: Overview of the most common clustering methods 

Clustering 
Technique 

Computational Complexity* Type of Data† Sensitivity  
to Outliers 

Best Data  
Set Size‡ 

Initial Seed 
Dependence 

Comments 
Time Space C N M 

Enumeration§  𝐶𝐶(𝑁𝑁,𝐾𝐾) + + + No S No Impractical / prohibitive 
Enumeration**  𝐾𝐾𝑁𝑁/𝐾𝐾! - + - No S No Impractical / prohibitive 
Single Linkage 𝑂𝑂(𝑁𝑁2) 𝑂𝑂(𝑁𝑁2) + + - Yes S No Good for taxonomy 
Complete Linkage 𝑂𝑂(𝑁𝑁2) 𝑂𝑂(𝑁𝑁2) + + - No S No Not sensitive to outliers 
Average Linkage 𝑂𝑂(𝑁𝑁2) 𝑂𝑂(𝑁𝑁2) + + - No S No Good for taxonomy 
Ward’s Method 𝑂𝑂(𝑁𝑁2) 𝑂𝑂(𝑁𝑁2) - + - Yes S No Sensitive to normality 
𝑘𝑘-means 𝑂𝑂(𝑁𝑁𝐾𝐾𝑑𝑑) 𝑂𝑂(𝑁𝑁 +𝐾𝐾) - + - Yes L Yes Easy to implement 
𝑘𝑘-medoids 𝑂𝑂(𝐾𝐾𝑑𝑑(𝑁𝑁 −𝐾𝐾)2) 𝑂𝑂(𝑁𝑁 +𝐾𝐾) + + + No S No Relatively complex 
𝑘𝑘-modes 𝑂𝑂(𝑁𝑁𝐾𝐾𝑑𝑑) 𝑂𝑂(𝑁𝑁 +𝐾𝐾) + - - No S – L Yes Best for binary data 
𝑘𝑘-prototypes 𝑂𝑂(𝑁𝑁𝐾𝐾𝑑𝑑) 𝑂𝑂(𝑁𝑁 +𝐾𝐾) + + + Yes S – L Yes Efficient as k-means 
Branch & Bound N/A Varies - + - No S No Gives exact solution 
Model Based 𝑂𝑂(𝑁𝑁 log𝑁𝑁) N/A + + + No S – L No Non-arbitrary similarity 
Graph Theoretic 𝑂𝑂(𝑁𝑁2) 𝑂𝑂(𝑁𝑁2) - + - No S No For irregularly-shaped clusters 
Meta-Heuristics Varies Varies + + + No L Possibly Gives solutions fast 
Cluster Ensemble Varies Varies + + + No S Varies Consolidation issues 

 

 

Lee et al. [72] proposed a two-phase software cost estimation method which is based on 

clustering analysis and neural networks for mixed numerical and categorical data. For quantitative 

attributes, they used average Euclidean distance. On the other hand, for nominal attributes, the 

Jaccard coefficient†† is calculated. Finally, the value of the Jaccard coefficient and the average 

Euclidean distance which represent the similarity between two objects (software projects) for their 

                                                 
* N: Number of objects, K: Number of clusters, d: Number of variables (dimension) 
† C: Categorical, N: Numerical, M: Mixed Categorical and Numerical 
‡ S: Small, L: Large  
§ Enumeration expression is written for combinatorial problems where K objects are chosen out of N observations as cluster centers 
** Enumeration expression is written for combinatorial problems where N observations are allocated into K clusters with the nearest mean 
†† Please refer to the similarity coefficient #5 on page 43. 
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corresponding variable type are consolidated into a single resemblance coefficient. After repeating 

this combining process for all object pairs, a matrix of resemblance coefficients is obtained which 

later becomes the main feed to hierarchical clustering analysis. The output of the clustering 

analysis is the input to the neural network training phase. A neural network which is trained using 

the output of clustering analysis promises higher accuracy than a non-cluster-integrated neural 

network. This is another motivation for us to devise clustering-based manufacturing cost 

estimation models. As a downside, their work was limited to single linkage hierarchical clustering 

without the existence of ordinal and binary variables.  

Khoshgoftaar and Xu [73] extended software cost estimation efforts with a fuzzy c-means 

(𝑘𝑘-means) clustering approach. Because software experts define the level of complexity according 

to their subjective opinions, using cost associated variables which take certain numerical values 

does not reflect the true nature of software cost estimation efforts. Hence, this research accounts 

for the imprecision and vagueness of expert knowledge with linguistic variables and fuzzy rules. 

In the data pre-processing phase, all linguistic and numerical variables are transformed into 

software cost attributes which determine multiplying factors. These multiplying factors take only 

numerical values and show the complexity of development effort for their corresponding attribute. 

The fuzzy c-means approach devised by Khoshgoftar and Xu is an intra-cluster variance 

minimization algorithm and has similar disadvantages as does the 𝑘𝑘-means algorithm. Although 

the whole method appears to handle mixed numerical and categorical variables, in fact, the 

clustering module itself is unfortunately limited to numerical data. Additionally, cost attributes 

which are specifically defined for software cost estimation efforts are not equivalent to 

manufacturing cost variables. Therefore, software cost estimation applications do not substitute 

for a study in the manufacturing cost estimation field.  
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The performance of multivariate adaptive regression splines (MARS) for software cost 

estimation efforts was investigated by Pahariya et al. [74]. It has a similar aim to our methodology 

to establish cost estimation models based on historical data because with MARS, continuous and 

categorical variables can be modeled [70] but with the downsides of MARS that were discussed 

in the previous chapter. In their analysis, the majority of software project attributes have been 

eliminated. That is, slightly more than two thirds of the attributes were removed from the dataset 

including the categorical variables. The real challenge in our methodology is dealing with mixed 

numeric and categorical variables, and Pahariya et al.’s work is not very helpful considering 

unreasonable simplifications in the data preparation phase.  

Wolfe et al. [75] conducted research on estimating total direct medical costs of people with 

rheumatoid arthritis. These medical costs include physician and healthcare worker visits, 

medications, diagnostic tests and procedures, and hospitalization. It is an extensive 3-year study 

on more than 7,500 patients (data observations) using demographic variables such as age, ethnic 

origin, education level, medical history. According to their statistical findings, the effect of age on 

total costs indicated a V-shaped scatter. To model this relatively complex age vs. cost relationship, 

they used linear splines with a single interior knot. Even though, Wolfe et al. implemented an 

approach to estimate the cost based on categorical and numeric demographic predictors, they only 

used an integer scale numeric variable, age, to develop spline models. Their approach is primitive 

relative to our manufacturing cost estimation methodology and it does not account for mixed 

categorical and numeric data.  

 Another cost estimation related research was done by Almond et al. [76] about the 

hospitalization costs of low birth weight on heavier and lighter infants from twin pairs born in the 

United States. In this study, health of a newborn is modeled using categorical and numeric 
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variables, namely birth weight, race, education, age, and maternal smoking during pregnancy. To 

quantify the health status of a newborn, among these five variables, only birth weight factor is used 

to build a piecewise linear spline model. Unfortunately, none of the categorical factors have been 

considered in the spline model. Moreover, the outcome of the parametric model they devised is 

the health of a newborn, not the hospital cost because actual cost values associated with these 

hospitalization cases did not exist in the dataset. That is, there is no corresponding actual cost data 

to assess the performance of the estimation model. Almond et al. calculated hospital cost by adding 

generic expenses for each treatment performed on a newborn. The research lacks two aspects 

compared with our cost estimation methodology: (1) Not utilizing categorical variables in the 

spline model, and (2) Not using actual cost values to evaluate the performance of the underlying 

parametric model.  

 Deploying a spline approach has been prevalent for estimating medical costs incurred by 

treating diseases, especially in real clinical trials. Carides et al. [77] presented a procedure for 

estimating the mean cumulative cost of long-term treatment on two clinical studies: (1) Heart 

failure clinical trial of left ventricular dysfunction, and (2) Ulcer treatment. A two stage estimator 

of survival cost with parametric regression, and a non-parametric regression with cubic smoothing 

splines are devised to exploit the underlying relationship between total treatment cost and survival 

time. The results of the parametric and non-parametric approaches are dominant in performance 

compared with commonly used two cost estimation methods in medical industry. However, only 

continuous covariates are used in the two-stage model and the effect of both categorical and 

numeric attributes associated with each of these clinical studies were not considered.  

 Valverde and Humphrey [78] developed translog, Fourier, and cubic spline models to 

predict the cost effects of 20 individual bank mergers. The motivation behind this research was to 
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accurately estimate the decrease in unit costs due to the merger. The underlying performance 

metric was the actual cost changes affecting all merging banks. Unfortunately, the proposed 

models were able to identify the sign of the merger-associated cost change only in one-third of the 

cases. Only two numeric variables were under consideration in the cubic spline models: (1) Value 

of loans, and (2) Value of securities (and other assets). Accuracy of predicting the sign of the cost 

change suffered from the limited number of data observations in this research. Also, categorical 

merger bank attributes were not implemented in the cost estimation efforts.  

 Table 2.7 highlights the most relevant cost estimation literature using clustering 

techniques/splines and type of data. A “+” sign indicates that the underlying research is in which 

specific area of application, what kind of approach is devised, and what type of data is used. For 

instance, Carides et al. [77] implemented spline models to estimate clinical costs by using numeric 

data. As you notice, clustering techniques or spline models have not been used in manufacturing 

cost estimation efforts because of the complex relationships between categorical and numeric 

design attributes. It is our motivation in this research to evaluate performance of the mentioned 

techniques and models in manufacturing. 

 

Table 2.7 Overview of the most relevant research 

 Area of Application* Estimation Approach Type of Data† Comments 
Article SCE CCE MCE Clustering Splines C N M  

Angelis and Stamelos [71] +       + Analogical relationships used 
Lee at al. [72] +   +    + No ordinal or binary variables 
Khoshgoftaar and Xu [73] +   +   +  Subjective attribute assignments 
Pahariya et al. [74] +    +  +  Omitted majority of variables 
Wolfe et al. [75]  +   +  +  Considered one variable in splines 
Almond et al. [76]  +   +  +  Used estimated medical costs 
Carides et al. [77]  +   +  +  Promising estimation results 
Valverde and Humphrey [78]     +  +  Limited data with poor accuracy 

 

                                                 
* SCE: Software Cost Estimation, CCE: Clinical Cost Estimation, MCE: Manufacturing Cost Estimation 
† C: Categorical, N: Numeric, M: Mixed Categorical and Numerical 
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Chapter 3 

Methodology 

 

 In this chapter, we propose the cost estimation approach in detail. The purpose of this 

chapter is to discuss the main components of the proposed cost estimation methodologies. The 

chapter consists of three parts: (1) Clustering based cost estimation approach, (2) Spline based cost 

estimation approach, (3) Validation of manufacturing cost estimation models. The first part 

discusses the clustering technique and dissimilarity measure we employ to handle mixed 

categorical and numeric data. Also, it focuses on how to build cost estimation models for each 

cluster along with how to determine the appropriate number of clusters. The second part discusses 

which spline model we use to address complex relationships between mixed numeric and 

categorical design attributes. Furthermore, this section specifically shows the kind of parameters 

we used in the spline model building phase. The last part shows the validity of the corresponding 

estimation models for each approach, cluster specific models and spline models.  

 

3.1   Clustering Cost Estimation Approach 

3.1.1   Grouping Products 

 Our clustering cost estimation approach is a two-phase process. In the first phase, we use 

all historical products to evaluate possible clustering formations and to build a cost estimation 

model for each cluster. There are several clustering techniques that we can use with combinations 
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of dissimilarity measures. However, the main question is if they can handle mixed numeric and 

categorical data. The second phase is the cost prediction phase in which a new design is assessed 

for the best cluster fit and then the corresponding cost estimation model is used. According to 

design similarities between a new design and the existing clusters established in the first phase, we 

select the best cluster to which the new design should be assigned. Once the best cluster is found, 

the remaining part is to use the cluster specific cost estimation model to predict the manufacturing 

cost of the new design. Figures 3.1 and 3.2 are illustrations of proposed methodology for the first 

and second phases, respectively. 

 

 

 

 

 

 

Figure 3.1: The first stage of the methodology: cluster analysis and calculating estimation model 
for each cluster 
 

 

3.1.2   Determining the Number of Clusters 

 Determining the number of clusters is a minor mathematical problem. Nevertheless, it is 

significant and has the capability of causing the prediction accuracy to be either very satisfactory 

or very poor. Unfortunately, there is no definitive methodology for determining the number of 

clusters [79]. In a practical sense, graphically assessing the data scatter is a good start but when 

there are more than two or three dimensions (i.e., variables), this is not as practical as it first 
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appears. Also, when the data is mixed with categorical and numeric values, it is very hard to 

identify clusters visually. 

 

 

 

  

 

 

 

 

Figure 3.2: The second stage of the methodology: finding the best cluster and predicting the 
manufacturing cost of a new design 

 

 

Even though it is possible to have an idea of how many product groups exist in a database 

based on experts’ opinions in a company, the groups are usually not distinct or the given opinions 

do not represent the similarities among products perfectly. Opinions of experts may be misleading 

during this cost estimation process because there are many possible logical classifications of 

products such as according to physical appearance, material similarities, or even similar 

manufacturing stages. The distinction power of a similarity measure becomes very crucial in this 

phase because it forms the basis of these comparisons among products or products with clusters. 

Since opinions of experts are subjective, they may not lead to proper product groupings. 

Additionally, there are no labels in the product database which indicate the cluster category for 

each product. Absence of labels for product groups makes the whole clustering process 
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unsupervised. That is, no target clusters are known for products and the proper number of groups 

is not known a priori. During the cluster analysis stage, we need to choose the appropriate number 

of clusters. This is directly linked with how many cost estimation models are required to be built 

at the end of the first phase.  

Many techniques have been developed and a number of statistics devised by statisticians 

to determine the appropriate number of clusters. According to Milligan and Cooper’s extensive 

investigation [80] on 30 statistics for four hierarchical clustering methods, the top five performers 

are Calinski and Harabasz’s pseudo F (PSF) [81], Duda and Hart’s 𝐽𝐽𝑒𝑒(2)/𝐽𝐽𝑒𝑒(1) ratio [82] which 

can be transformed into pseudo 𝑇𝑇2 (PST2) statistics, Dalrymple-Alford’s 𝐶𝐶-index [83], Baker and 

Hubert’s Gamma [84] which was adopted from Goodman and Kruskal’s gamma (𝛾𝛾) [85], and 

Beale’s F-ratio [86]. Sarle’s cubic clustering criterion (CCC) [87] also has competitive 

performance and identifies the usage of too many clusters at the highest rate among these 30 

statistics. Unfortunately, these statistics are specifically built for hierarchical clustering methods, 

but they may still provide some useful information about the appropriate number of clusters for 

non-hierarchical clustering. Since Milligan and Cooper’s study is based on a series of simulated 

datasets with two to five distinct non-overlapping clusters, it is not appropriate to draw a 

generalized framework from their results. This is because the performance of a statistic (or a 

method) can depend on the clustering algorithm used and the structure of the clusters [88]. 

 The pseudo F statistic is the ratio of inter-cluster variance to within cluster variance [81]. 

The intention of the statistic is to capture the tightness of clusters [89]. Large values of PSF are an 

indication of well separated clusters and a correct number of partitions [79]. However, when the 

dataset that is being analyzed consists of discrete variables, PSF can be expected to increase when 

the number of partitions increase, so sudden jumps or local peaks are more meaningful than the 
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global maximum value [79]. Equation 3.1 is the formulation of PSF where 𝑘𝑘 is the number of 

clusters and 𝑛𝑛 is the total number of observations. Also, 𝐵𝐵𝑘𝑘 is the between-cluster sum of squares 

matrix and 𝑊𝑊𝑘𝑘 is the within-cluster sum of squares matrix for 𝑘𝑘 partitions. The trace of a square 

matrix is the sum of its main diagonal elements.  

 

𝑃𝑃𝑆𝑆𝑃𝑃(𝑘𝑘) =
𝑏𝑏𝑟𝑟𝑎𝑎𝑐𝑐𝑎𝑎(𝐵𝐵𝑘𝑘) (𝑘𝑘 − 1)⁄
𝑏𝑏𝑟𝑟𝑎𝑎𝑐𝑐𝑎𝑎(𝑊𝑊𝑘𝑘) (𝑛𝑛 − 𝑘𝑘)⁄  (3.1) 

 

 Duda and Hart’s 𝐽𝐽𝑒𝑒(2)/𝐽𝐽𝑒𝑒(1) ratio [82] proposes a criterion to assess whether an existing 

cluster (𝑚𝑚𝑡𝑡ℎ cluster) should be divided into two subclusters (clusters 𝑘𝑘 and 𝑙𝑙), or not. According 

to the ratio, 𝐽𝐽𝑒𝑒(2) is the sum of squared errors within the cluster when the data are divided into two 

clusters and 𝐽𝐽𝑒𝑒(1) is the sum of squared errors when there is only one cluster present. It requires a 

hypothesis testing procedure where a suboptimal partition is rejected if the ratio is smaller than an 

approximate critical value [82]. The correct number of clusters can be obtained when the 

hypothesis is first rejected. The critical value is a function of a standard Normal score (𝑧𝑧), the 

number of variables (𝑝𝑝), and the number of observations (𝑛𝑛). The formulation of the ratio and the 

critical value are given in Equations 3.2 and 3.3, respectively. 𝑊𝑊𝑘𝑘, 𝑊𝑊𝑙𝑙  and 𝑊𝑊𝑚𝑚 are the sums of the 

squared errors within clusters 𝑘𝑘, 𝑙𝑙 and 𝑚𝑚, respectively.  The 𝐽𝐽𝑒𝑒(2)/𝐽𝐽𝑒𝑒(1) ratio is closely related to 

PST2 [90] and this relationship is clearly shown in Equation 3.4 where 𝑛𝑛𝑘𝑘  and 𝑛𝑛𝑙𝑙  are the number 

of observations in clusters 𝑘𝑘 and 𝑙𝑙. The difference between two clusters that are being merged at a 

given step is quantified by PST2. Hence, a smaller PST2 value indicates more distinct clusters. 

Since PST2 is computed for several different numbers of clusters, it would be better to plot PST2 

with respect to the number of clusters and read the plot from right to left. The correct number of 
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clusters is the previous number (if we read from right to left) to where a distinct jump is observed 

in the PST2 value [79]. 

 

𝐽𝐽𝑒𝑒(2)
𝐽𝐽𝑒𝑒(1) =

𝑊𝑊𝑘𝑘 + 𝑊𝑊𝑙𝑙

𝑊𝑊𝑚𝑚
 (3.2) 

𝐶𝐶𝑟𝑟𝑖𝑖𝑏𝑏𝑖𝑖𝑐𝑐𝑎𝑎𝑙𝑙 𝑉𝑉𝑎𝑎𝑙𝑙𝑉𝑉𝑎𝑎 = 1 −
2
𝜋𝜋𝑝𝑝

− 𝑧𝑧�
2(1 − 8 𝜋𝜋2𝑝𝑝⁄ )

𝑛𝑛𝑝𝑝
 (3.3) 

𝐽𝐽𝑒𝑒(2)
𝐽𝐽𝑒𝑒(1) =

1
1 + (𝑃𝑃𝑆𝑆𝑇𝑇2) (𝑛𝑛𝑘𝑘 + 𝑛𝑛𝑙𝑙 − 2)⁄  (3.4) 

  

Sarle developed the cubic clustering criterion (CCC) to test the hypothesis that the data has 

been sampled from a uniform distribution on a hyperbox* [87]. When this hyperbox is divided into 

clusters, these clusters are shaped roughly like hypercubes. The CCC value is very accurate in 

determining the existence of too many clusters [80]. While positive values of CCC (values 

exceeding 2 or 3) can be interpreted as the presence of good clusters, large negative values indicate 

the existence of outliers that should be removed before further analysis [87]. Also, Sarle pointed 

out the failure of CCC when variables are highly correlated or cluster structures are irregularly 

shaped. This is because of the violation of the main assumption of hypercubical clusters. The 

formulation of CCC is given in Equation 3.5 where 𝑅𝑅2 is the observed value for the proportion of 

the sum of squares explained by the clusters and 𝐸𝐸(𝑅𝑅2) is the expected 𝑅𝑅2 that is obtained by 

clustering uniformly distributed points into hypercubes. The letter 𝐾𝐾 represents a variance 

stabilizing transformation and detailed information about it can be found in Sarle’s technical report 

[87].  

                                                 
* A p-dimensional right parallelepiped 
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𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑙𝑙𝑛𝑛 �
1 − 𝐸𝐸(𝑅𝑅2)

1 − 𝑅𝑅2
�𝐾𝐾 (3.5) 

  

The user manual of the SAS statistical software [79] suggests monitoring consensus among 

PSF, PST2 and CCC, where each statistic designates a particular number of clusters according to 

its individual decision criteria. Even though these statistics assume that all variables are ratio or 

interval scaled continuous values, it is still possible to find the appropriate number of clusters for 

purely categorical or mixed categorical and continuous data by monitoring some other statistics 

such as Dalrymple-Alford’s 𝐶𝐶-index [83], Baker and Hubert’s Gamma [84] or Rousseeuw’s 

silhouette width [91]. These three statistics operate on a dissimilarity matrix and a vector of 

integers indicating the cluster number to which each observation is assigned. Since a part of our 

research is clustering mixed categorical and numeric data, we can simply derive a dissimilarity 

matrix and then use it to calculate the 𝐶𝐶-index, Gamma and silhouette width statistics. Monitoring 

these three statistics are more relevant than the others for mixed categorical and numeric datasets.  

 Dalrymple-Alford’s 𝐶𝐶-index [83] was assessed by Dimitriadou et al. [92] on artificially 

created high-dimensional binary datasets that were clustered by two different algorithms. Since 

the index operates on a distance matrix, all pairwise distances in a dataset must be computed and 

stored. Computation of all pairwise distances was found to be prohibitive for large datasets [92] 

before the early 2000’s but this is not the case anymore. The 𝐶𝐶-index is expressed in Equation 3.6 

where 𝑑𝑑𝑤𝑤 is the sum of all within cluster distances. The number of clusters which minimizes the 

𝐶𝐶-index should be chosen. The index varies within the [0,1] interval.  

 

𝐶𝐶-𝑖𝑖𝑛𝑛𝑑𝑑𝑎𝑎𝑥𝑥 =
𝑑𝑑𝑤𝑤 − min(𝑑𝑑𝑤𝑤)

max(𝑑𝑑𝑊𝑊) − min(𝑑𝑑𝑤𝑤) (3.6) 
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Baker and Hubert devised an index called Gamma [84] which was adopted from Goodman 

and Kruskal’s gamma (𝛾𝛾) [85] to use in clustering applications. The index basically compares 

within cluster distances with between cluster distances [80] where a pair of distances is considered 

consistent (inconsistent) if the within cluster distance is less (greater) than the between cluster 

distance [88]. The main question concerning Gamma is whether the assignment quality of a 

clustering algorithm can be reasonably achieved by grouping objects arbitrarily [5]. Gamma was 

found to be one of the best performing statistics among the 30 considered by Milligan and Cooper 

[80]. The expression of Gamma is given in Equation 3.7 where 𝑐𝑐(+) and 𝑐𝑐(– ) represent the 

number of consistent and inconsistent comparisons, respectively. Since the numerator of the 

Gamma index is normalized with respect to the total number of consistencies and inconsistencies, 

it takes a value within [−1, 1]. The number of clusters should be chosen as the one which 

maximizes the index in the positive region.   

 

𝛾𝛾 =
𝑐𝑐(+)− 𝑐𝑐(−)
𝑐𝑐(+) + 𝑐𝑐(−)

 (3.7) 

 

 Another index which is applicable for mixed numeric and categorical data is Rousseeuw’s 

silhouette width [91]. It was devised to assess how well each object lies within its assigned cluster. 

Even though the silhouette width was first developed for partitioning around medoids, it is possible 

to use it in any context for which a distance matrix can be derived. Unfortunately, neither Milligan 

and Cooper’s study [80] nor Dimitriadou et al.’s study [92] evaluated and compared the 

performance of the silhouette width with other indexes or statistics. The fundamental procedure 

behind this approach is plotting the average silhouette widths for the entire dataset that are obtained 

from different choices for the number of clusters, and selecting the number of clusters which 
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maximizes the index. The silhouette width has a range of -1 to 1 where the positive region indicates 

a better classification. A value in the negative region indicates a poor classification. A value above 

0.5 is interpreted as the existence of a strong cluster structure depending on how close it is to 1 [9]. 

That is, the value of the index approaches 1 when the quality of classification increases. The 

expression of the silhouette width 𝑐𝑐(𝑖𝑖) is given in Equation 3.8. In the expression, 𝑎𝑎(𝑖𝑖) is the 

average dissimilarity of the 𝑖𝑖𝑡𝑡ℎ observation with all other observations within its assigned cluster, 

and 𝑏𝑏(𝑖𝑖) is the minimum average dissimilarity of the same observation with all other observations 

in each cluster which the observation 𝑖𝑖 is not a member of. According to the intrinsic logic of the 

silhouette width, the index is not defined when the number of clusters is 1.  

 

𝑐𝑐(𝑖𝑖) =
𝑏𝑏(𝑖𝑖) − 𝑎𝑎(𝑖𝑖)

max {𝑎𝑎(𝑖𝑖),𝑏𝑏(𝑖𝑖)}
 (3.8) 

 

There are several other indexes and statistics that are either less meaningful or not 

meaningful for mixed categorical and numeric data such as including Davies and Bouldin index 

[93], Tibshirani et al.’s gap index [94], Krzanowski and Lai index [95], and the Hartigan index 

[96]. Thus, we will not benefit from such indexes. Our methodology of selecting the appropriate 

number of clusters is neither deterministic nor arbitrary, but it is consistent with and also as simple 

as the one defined in the user manual of SAS for numeric data [79]. We look for consensus among 

three statistics, namely 𝐶𝐶-index, Gamma and silhouette width, and these statistics can be applied 

regardless of the type of data. We seek local peaks of the Gamma and silhouette width combined 

with local troughs of the 𝐶𝐶-index to choose the number of clusters. Note that this choice may not 

be unique.  
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3.1.3   Choice of Clustering Algorithms 

 One of the most important aspects of this research is choosing a clustering algorithm which 

satisfies the requirements. That is, to devise a clustering technique which can handle mixed 

numeric and categorical data and can provide the most satisfactory cluster assignment. As we 

mentioned earlier in the first chapter, a complementary similarity measure with high discriminating 

power is crucial; however, the choice of clustering algorithm is more important than the choice of 

similarity measure [5]. Most of the hierarchical and non-hierarchical clustering techniques are 

eliminated due to the limitation of those algorithms on the type of data. To conduct a cluster 

analysis for mixed data in terms of variable types, the applicable clustering algorithms are 

narrowed down to two partitioning algorithms, namely 𝑘𝑘-medoids and 𝑘𝑘-prototypes.  

The final cluster contents obtained by running the 𝑘𝑘-prototypes algorithm can depend on 

the initial starting point. In each 𝑘𝑘-prototypes run, the algorithm may give similar but different 

results. To overcome this issue, the 𝑘𝑘-prototypes algorithm should be run several times or even 

compared with results obtained by a different algorithm such as 𝑘𝑘-medoids. Similar to the 𝑘𝑘-means 

algorithm, it is also sensitive to outliers because it works based on the similar error minimization 

principle. Recall that a weighted summation of Euclidean distance and the simple matching 

coefficient constitutes the framework of the 𝑘𝑘-prototypes algorithm. That is, the objective function 

of 𝑘𝑘-prototypes attempts to integrate a quadratic expression with a linear expression. Instead, 

consolidating two linear or two quadratic similarity expressions might be more mathematically 

appropriate. That is the reason why the weighting coefficient in the objective function determines 

the contribution of each variable type. The main purpose of the weight is to avoid favoring any 

type of variable, categorical or numeric. However, there is no exact or definitive heuristic to 
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calculate the appropriate weighting coefficient. Thus, 𝑘𝑘-prototypes has some drawbacks when 

grouping products with mixed categorical and numeric design attributes. 

The 𝑘𝑘-medoids algorithm was found to be more robust than any clustering technique that 

uses the error sum of squares [23]. To clarify, the 𝑘𝑘-medoids algorithm is not based on minimizing 

the error sum of squares. Instead, it finds a set of representative observations (medoids) for each 

cluster and then allocates all other remaining observations to these clusters according to the closest 

distance to each medoid. Recall that a medoid is an observation from the dataset and represents 

the center of a cluster.  This is advantageous in three aspects: (1) Possibility of clustering mixed 

data when a dissimilarity matrix can be derived, (2) Possibility of handling outliers, and (3) 

Elimination of making assumptions about underlying distributions such as multivariate normality.  

 We employ the 𝑘𝑘-medoids clustering algorithm as described in Kaufmann and Rousseeuw 

[9]. They implemented the 𝑘𝑘-medoids algorithm in a program called “PAM”. According to 

Kaufmann and Rousseeuw’s “PAM”, the algorithm consists of two phases. These phases are called 

BUILD and SWAP. The first phase, BUILD, constructs an initial solution of 𝑘𝑘 representative 

objects and the second phase, SWAP, attempts to improve the set of representative objects. The 

objective function of the algorithm is to minimize the sum of distances (dissimilarities) of each 

object to their closest representative object. Figure 3.3 and Figure 3.4 show the steps of the BUILD 

and SWAP phases, respectively. These steps are taken from Kaufmann and Rousseeuw [9] without 

any modifications. Note that, the process of building an initial solution continues until 𝑘𝑘 objects 

are found. The first two steps of the SWAP phase (steps 1 and 2) are carried out to calculate the 

effect of a swap between objects 𝑖𝑖 and ℎ on the value of clustering. Additionally, the last two steps 

of the same phase (steps 3 and 4) decide whether a swap is accepted. The algorithm considers all 

potential swaps. Notice that once the cluster centers (medoids) are determined during an iteration, 
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all other remaining observations are allocated to the clusters according to the closest distance to 

each medoid. 

 

  
1 Consider an object 𝑖𝑖 which has not yet been selected. 

 
2 Consider a non-selected object j and calculate the difference between its dissimilarity 𝐷𝐷𝑖𝑖  with the most similar 

previously selected object, and its dissimilarity 𝑑𝑑(𝑗𝑗, 𝑖𝑖) with object 𝑖𝑖. 
 

3 If this difference is positive, object 𝑗𝑗 will contribute to the decision to select object 𝑖𝑖. Therefore we calculate: 
 

𝐶𝐶𝑖𝑖𝑖𝑖 = max (𝐷𝐷𝑖𝑖 − 𝑑𝑑(𝑗𝑗, 𝑖𝑖), 0) 
 

4 Calculate the total gain obtained by selecting object 𝑖𝑖: 
 

�𝐶𝐶𝑖𝑖𝑖𝑖
𝑖𝑖

 

 
5 Choose the not yet selected object 𝑖𝑖 which  

 
maximizes

𝑖𝑖
�𝐶𝐶𝑖𝑖𝑖𝑖
𝑖𝑖

 

  

Figure 3.3: The steps of the BUILD phase in “PAM” [9] 

 

 

Reynolds et al. proposed a medoid based clustering algorithm [97] and compared its 

performance with 𝑘𝑘-medoids. However, they named the actual 𝑘𝑘-medoids algorithm PAM and 

their algorithm 𝑘𝑘-medoids. To clarify the ambiguity, we do not call Reynolds et al.’s algorithm 𝑘𝑘-

medoids.  Reynolds et al.’s algorithm and 𝑘𝑘-medoids differ according to their move operators and 

the construction of initial solutions. Since Reynolds et al.’s algorithm is an adaptation of 𝑘𝑘-means, 

it has similar drawbacks to the 𝑘𝑘-means algorithm. Recall that the performance of 𝑘𝑘-means can be 

dependent on the choice of the initial solution. Reynolds et al.’s algorithm chooses 𝑘𝑘 objects at 

random to be the initial cluster medoids. However, the 𝑘𝑘-medoids algorithm carefully selects the 

initial representative objects with the BUILD phase of “PAM”. Therefore, the final cluster 



70 
 

structure does not depend on a randomized initial solution, but it may require more computational 

power. The 𝑘𝑘-medoids algorithm moves from one solution to another one with the SWAP phase 

of “PAM”. According to the move operator of Reynolds et al.’s algorithm, in every iteration 

medoids for each cluster are calculated by finding object 𝑖𝑖 within the cluster that minimizes 

Equation 3.9.  In the equation, 𝐶𝐶𝑝𝑝 is the 𝑝𝑝𝑡𝑡ℎ cluster ( 𝑝𝑝 = 1,2, … ,𝑘𝑘 ) and 𝑑𝑑(𝑖𝑖, 𝑗𝑗) is the dissimilarity 

of objects 𝑖𝑖 and 𝑗𝑗. We will use the actual 𝑘𝑘-medoids algorithm in this research, since it outperforms 

Reynolds et al.’s algorithm by every performance measure except the execution time [97].  

 

 

� 𝑑𝑑(𝑖𝑖, 𝑗𝑗)
𝑖𝑖∈𝐶𝐶𝑝𝑝

 (3.9) 

 

 

3.1.4   Regression Models 

 Regression analysis is used to predict a dependent variable from one or more independent 

variables (predictors). One of the main purposes of regression analysis is to predict an unknown 

variable based on a regression function established with historical data on the predictors. 

Regression models are very easy to implement for developing predictive models in different 

application areas. Especially for manufacturing cost prediction, it is one of the methods that comes 

first to mind because it is the most sophisticated and frequently used way according to our 

observations on multiple manufacturing facilities. Manufacturing cost of a product is influenced 

by some independent factors (product design attributes or, simply, cost drivers). If we look at the 

linear relationship between the manufacturing cost and only one cost driver at a time, these figures 

may not represent a realistic analysis. Some of these cost drivers may have complementary, 

competitive or even more complex relationships with each other. For instance, printing a pattern 



71 
 

on a modal Lycra material can be more laborious than printing on a cotton material for socks 

manufacturing. That is why the manufacturing cost is likely to increase relatively more when a 

pattern is printed on modal Lycra fabric rather than on cotton fabric. Thus, we should consider all 

cost relations at the same time. In a regression model for the manufacturing cost estimation 

problem, the outcome (or dependent) variable is the manufacturing cost, and independent 

(explanatory) variables are the cost drivers (design attributes in this case). While the manufacturing 

cost is a numeric continuous value, independent variables can be either categorical labels or 

numeric values. We assume a 5% confidence level for determining the significance of independent 

variables and their interactions. Checking interactions between variables is crucial because some 

variables create antagonistic or synergetic effects which may significantly impact the cost of a 

product. Some of the variables and interaction terms are eliminated if these are irrelevant or have 

statistically non-significant contribution on the cost value.  

To reduce the computational load and also to avoid over parameterization issues we 

developed linear models. However, the performance of quadratic regression models is also 

assessed along with linear models. We develop cluster specific estimation models with the output 

of the cluster analysis. In other words, we constructed 𝑘𝑘 regression models where 𝑘𝑘 represents the 

number of clusters. That is, one regression model is developed for each cluster. To compare the 

true prediction performance of our clustering based cost estimation approach, we develop a 

regression model for the entire data that is built without any cluster analysis. 
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1 Consider a non-selected object 𝑗𝑗 and calculate its contribution 𝐶𝐶𝑖𝑖𝑖𝑖ℎ to the swap: 

 
 a If 𝑗𝑗 is more distant from both 𝑖𝑖 and ℎ than from one of the other representative objects, 𝐶𝐶𝑖𝑖𝑖𝑖ℎ  is zero. 

 
 b If 𝑗𝑗 is not further from 𝑖𝑖 than from any other selected representative object (𝑑𝑑(𝑗𝑗, 𝑖𝑖) = 𝐷𝐷𝑖𝑖), two situations must be 

considered: 
 

  b1 𝑗𝑗 is closer to ℎ than to the second closest representative object 
 

𝑑𝑑(𝑗𝑗, ℎ) < 𝐸𝐸𝑖𝑖  
 
where 𝐸𝐸𝑖𝑖  is the dissimilarity between 𝑗𝑗 and the second most similar representative object. In this case the 
contribution of object 𝑗𝑗 to the swap between objects 𝑖𝑖 and ℎ is 
 

𝐶𝐶𝑖𝑖𝑖𝑖ℎ = 𝑑𝑑(𝑗𝑗, ℎ) − 𝑑𝑑(𝑗𝑗, 𝑖𝑖) 
 

  b2 𝑗𝑗 is at least as distant from ℎ than the second closest representative object 
 

𝑑𝑑(𝑗𝑗, ℎ) ≥ 𝐸𝐸𝑖𝑖  
 
In this case the contribution of object 𝑗𝑗 to the swap is 
 

𝐶𝐶𝑖𝑖𝑖𝑖ℎ = 𝑑𝑑(𝑗𝑗, ℎ) −𝐷𝐷𝑖𝑖  
 

  It should be observed that in situation b1 the contribution 𝐶𝐶𝑖𝑖𝑖𝑖ℎ can be either positive or negative depending on the 
relative position of objects 𝑗𝑗, ℎ and 𝑖𝑖. Only if object 𝑗𝑗 is closer to 𝑖𝑖 than to ℎ is the contribution is positive, which 
indicates that the swap is not favorable from the point of view of object 𝑗𝑗. On the other hand, in situation b2 the 
contribution is always positive because it cannot be advantageous to replace 𝑖𝑖 by an object ℎ further away from 𝑗𝑗 
than from the second closest representative object. 
 

 c 𝑗𝑗 is more distant from object 𝑖𝑖 than from at least one of the other representative objects but closer to ℎ than any 
representative object. In this case the contribution of 𝑗𝑗 to the swap is  
 

𝐶𝐶𝑖𝑖𝑖𝑖ℎ = 𝑑𝑑(𝑗𝑗, ℎ) − 𝐷𝐷𝑖𝑖 
 

2 Calculate the total result of a swap by adding contributions 𝐶𝐶𝑖𝑖𝑖𝑖ℎ: 
 

𝑇𝑇𝑖𝑖ℎ = �𝐶𝐶𝑖𝑖𝑖𝑖ℎ
𝑖𝑖

 

 
3 Select the pair (𝑖𝑖, ℎ) which 

 
minimizes

𝑖𝑖,ℎ
𝑇𝑇𝑖𝑖ℎ 

 
4 If the minimum 𝑇𝑇𝑖𝑖ℎ is negative, the swap is carried out and the algorithm returns to step 1. If the minimum 𝑇𝑇𝑖𝑖ℎ is positive 

or 0, the value of the objective cannot be decreased by carrying out a swap and the algorithm stops.  
  
 

Figure 3.4: The steps of the SWAP phase in “PAM” [9] 
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3.2   Spline Cost Estimation Approach 

Our spline cost estimation approach is also a two-phase process. In the first phase, we use 

all historical products to build a spline cost estimation model. There are a number of different 

spline functions available for practitioners to use for estimation purposes. However, the main 

concern is handling mixed numeric and categorical data. The second phase is the cost prediction 

phase in which the manufacturing cost of a new design is assessed. Figure 3.5 illustrates the 

proposed spline methodology for the first and second phases. The first phase shows the preliminary 

steps, including data collection and variable pre-processing, then the spline model building step. 

Once the desired spline model is established, the cost of a new product can be predicted using the 

underlying model.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Building spline models and predicting the manufacturing cost of a new design 
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3.2.1 Choice of Spline Model 

 Racine et al. [98] considered the problem of estimating relationships using regression 

splines when categorical and continuous predictors are present. As we mentioned earlier in the 

review of clustering techniques, one alternative to accommodate mixed design attributes is 

splitting the categorical and continuous variables into two separate subsets. The same approach 

can be pursued for splines but there may be a consolidation as with the cluster ensemble 

techniques, as discussed in the literature review section. Instead of sample splitting, Racine et al. 

[98] devised a spline approach by combining the regression splines with kernel functions to handle 

existence of categorical variables.  

 In this research, we need to model complex relationships of categorical and numeric 

variables. A range of kernel regression methods have been proposed to model such relationships 

[99]. We used the same approach as described in Racine et al. [98] to accommodate the existence 

of categorical and numeric design attributes since the method demonstrates robust performance on 

both simulated and real world data without breaking the data into subsets of continuous only and 

categorical only variables.  

Racine et al. [98] proposed tensor-product polynomial splines weighted by kernel functions 

method to estimate the unknown conditional mean in the location-scale model given in Equation 

3.10. In the model, 𝑚𝑚(∙) is an unknown function, 𝜎𝜎(𝐗𝐗,𝐙𝐙) is the standard deviation function, ε 

represents noise, 𝐗𝐗 = �𝑋𝑋1, … ,𝑋𝑋𝑞𝑞�
𝑇𝑇
 is a q-dimensional vector of continuous predictors and 𝐙𝐙 =

(𝑍𝑍1, … ,𝑍𝑍𝑟𝑟)𝑇𝑇 is an r-dimensional vector of categorical predictors. Tensor products constitute the 

framework of interaction terms in regression spline models. 

 



75 
 

𝑌𝑌 = 𝑚𝑚(𝐗𝐗,𝐙𝐙) + 𝜎𝜎(𝐗𝐗,𝐙𝐙)ε  (3.10) 

 

The notation used in their study [98] is listed in the five items below without any modification: 

1. 𝐳𝐳 = (𝑧𝑧𝑠𝑠)𝑠𝑠=1𝑟𝑟  where 𝑧𝑧𝑠𝑠 takes 𝑐𝑐𝑠𝑠 (a finite positive constant) different values in  

𝐷𝐷𝑠𝑠 ≡ {0, 1, … , 𝑐𝑐𝑠𝑠 − 1}, 𝑐𝑐 = 1, … , 𝑟𝑟 

2. (𝑌𝑌𝑖𝑖,𝐗𝐗𝑖𝑖𝑇𝑇 ,𝐙𝐙𝑖𝑖𝑇𝑇)𝑖𝑖=1𝑛𝑛  is an i.i.d. copy of (𝑌𝑌,𝐗𝐗𝑇𝑇 ,𝐙𝐙𝑇𝑇) where n is the number of observations. 

3. ℬ(𝐱𝐱) is the tensor-product polynomial spline basis. ℬ(𝐱𝐱) = 𝐵𝐵1(𝑥𝑥1) ⊗ … ⊗𝐵𝐵𝑞𝑞�𝑥𝑥𝑞𝑞� 

where 𝐵𝐵𝑖𝑖 is the B-spline basis matrix for the predictor j and ⊗ is the Kronecker product. 

4. 𝐿𝐿(𝐙𝐙, 𝐳𝐳, 𝜆𝜆) is a product categorical kernel function where 𝜆𝜆 = (𝜆𝜆1,𝜆𝜆2, … , 𝜆𝜆𝑟𝑟)𝑇𝑇 is the vector 

of bandwidths for each of the categorical predictors. 

5. 𝛽𝛽(𝐳𝐳) is a 𝐊𝐊𝑛𝑛 × 1 vector, where 𝐊𝐊𝑛𝑛 = ∏ 𝐾𝐾𝑙𝑙
𝑞𝑞
𝑙𝑙=1  and 𝐾𝐾𝑙𝑙 = 𝑁𝑁𝑙𝑙 + 𝑚𝑚𝑙𝑙, 𝑁𝑁𝑙𝑙 is the number of 

interior knots, and 𝑚𝑚𝑙𝑙 is the spline order assuming 1 ≤ 𝑙𝑙 ≤ 𝑞𝑞 

 

The non-parametric function 𝑚𝑚(𝐱𝐱, 𝐳𝐳) can be approximated by ℬ(𝐱𝐱)𝑇𝑇𝛽𝛽(𝐳𝐳), where 𝛽𝛽(𝐳𝐳) can 

be estimated by minimizing the weighted least squares criterion given in Equation 3.11. In the 

equation, 𝐿𝐿(𝐙𝐙𝑖𝑖, 𝐳𝐳, 𝜆𝜆) is a variant of Aitchison and Aitken’s [100] univariate categorical kernel 

function and shown in Equation 3.12. For ordinal categorical variables, 𝑙𝑙(𝑍𝑍𝑠𝑠, 𝑧𝑧𝑠𝑠, 𝜆𝜆𝑠𝑠) = 𝜆𝜆𝑠𝑠
|𝑍𝑍𝑠𝑠−𝑧𝑧𝑠𝑠| is 

used to offset with the estimation bias [101] in Equation 3.11. 

 

�̂�𝛽(𝐳𝐳) = arg min
𝛽𝛽𝛽𝛽ℝ𝐊𝐊𝑛𝑛

�{𝑌𝑌𝑖𝑖 − ℬ(𝐗𝐗𝑖𝑖)𝑇𝑇𝛽𝛽(𝐳𝐳)}2 𝐿𝐿(𝐙𝐙𝑖𝑖, 𝐳𝐳, 𝜆𝜆) 
𝑛𝑛

𝑖𝑖=1

  (3.11) 
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𝑙𝑙(𝑍𝑍𝑠𝑠, 𝑧𝑧𝑠𝑠, 𝜆𝜆𝑠𝑠) = � 1,
𝜆𝜆𝑠𝑠,

𝑒𝑒ℎ𝑎𝑎𝑛𝑛 𝑍𝑍𝑠𝑠 = 𝑧𝑧𝑠𝑠
 𝑐𝑐𝑏𝑏ℎ𝑎𝑎𝑟𝑟𝑒𝑒𝑖𝑖𝑐𝑐𝑎𝑎

  
 

𝐿𝐿(𝐙𝐙, 𝐳𝐳, 𝜆𝜆) = �𝑙𝑙(𝑍𝑍𝑠𝑠, 𝑧𝑧𝑠𝑠, 𝜆𝜆𝑠𝑠) = �𝜆𝜆𝑠𝑠
1(𝑍𝑍𝑠𝑠≠𝑧𝑧𝑠𝑠)

𝑟𝑟

𝑠𝑠=1

𝑟𝑟

𝑠𝑠=1

 

(3.12) 

 

 

Let 𝐁𝐁 = [{ℬ(𝐗𝐗𝟏𝟏), … ,ℬ(𝐗𝐗𝐧𝐧)}𝑇𝑇]𝑛𝑛×𝐊𝐊𝑛𝑛. Let ℒ𝑧𝑧 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑚𝑚{𝐿𝐿(𝐙𝐙𝟏𝟏, 𝐳𝐳, 𝜆𝜆), … , 𝐿𝐿(𝐙𝐙𝐧𝐧, 𝐳𝐳, 𝜆𝜆)} be a 

diagonal matrix where 𝑖𝑖 𝜖𝜖 [1,𝑛𝑛]. If 𝐘𝐘 = (𝑌𝑌1, … ,𝑌𝑌𝑛𝑛)𝑇𝑇, then �̂�𝛽(𝐳𝐳) defined in Equation 3.11 can be 

written as Equation 3.13.  

 

�̂�𝛽(𝐳𝐳) = (𝑛𝑛−1𝐁𝐁𝑇𝑇ℒ𝑧𝑧𝐁𝐁)−1(𝑛𝑛−1𝐁𝐁𝑇𝑇ℒ𝑧𝑧 𝐘𝐘)  (3.13) 

 

 

Racine et al. [98] implemented their work in R with a package called “crs”. The package 

is appealing for applied researchers because it uses a framework for nonparametric regression 

splines to address the existence of categorical and numeric variables as it was proposed in their 

study. We used the same package in R and applied it on our cost estimation problems. The package 

provides the convenience of automatic parameter tuning as well as the flexibility of manual 

parameter adjustment for each input.  

 

3.2.2 Knot Placement and Smoothing Parameters 

 Choosing the number of knots with their locations has also been in the center of attention 

for researchers since it affects the smoothness and eventually the performance of spline models. 

There are two common approaches to determine the location of knots [102]: (1) Knots can be 
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placed based on equally spaced quantiles where the number of observations in each segment is 

equal, (2) Knots can be places at equally spaced intervals. The “crs” package has the flexibility to 

use the desired option but most significantly, it chooses the knot placement strategy automatically 

based on whichever method provides better output. That is, the package does not require any extra 

effort from the user for the decision of knot placement.  

 There are many approaches available in the literature to find the appropriate number of 

knots for splines such as Bayesian curve-fitting with using a reversible-jump Markov chain Monte 

Carlo approach [103], devising various criteria to choose a penalty parameter [66], using a 

roughness penalty to adjust the locations of knots in penalized splines [104]. However, the 

common sense for parameter optimization in splines is adopting a cross-validation approach [66, 

69, 104, 105, 106, 107, 108]. These parameters include selection of bandwidths (smoothing 

parameters), number of interior knots, and spline orders. Hall and Racine [108] utilized cross-

validation to select the values of both polynomial degree and bandwidths for polynomial kernel 

regression. Racine et al. [98] adopted the same tradition and extended Hall and Racine’s work one 

step further by minimizing the cross-validation function, 𝐶𝐶𝑉𝑉(𝑁𝑁, 𝜆𝜆), given in Equation 3.14 for 

choosing the number of knots and smoothing parameters. The notation in the equation is consistent 

with their notation presented earlier. In addition to that, 𝑁𝑁 is the vector of the number of interior 

knots, 𝜆𝜆 is the vector of smoothing parameters (bandwidths), and �̂�𝛽−𝑖𝑖(𝑍𝑍𝑖𝑖) denotes the leave-one-

out estimate of 𝛽𝛽. Parameters 𝑁𝑁 and 𝜆𝜆 are not used in the cross-validation function directly but are 

used to calculate the current tensor product spline model coefficients during cross-validation 

iterations.  

𝐶𝐶𝑉𝑉(𝑁𝑁, 𝜆𝜆) = 𝑛𝑛−1��𝑌𝑌𝑖𝑖 − 𝐵𝐵𝑚𝑚(𝑋𝑋𝑖𝑖)𝑇𝑇�̂�𝛽−𝑖𝑖(𝑍𝑍𝑖𝑖)�
2

𝑛𝑛

𝑖𝑖=1

  (3.14) 
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 The package “crs” offers two search options to optimize the number of interior knots along 

with the value of bandwidths: (1) Exhaustive search, (2) Nonsmooth optimization by mesh 

adaptive direct search, NOMAD [109]. The number of interior knots for each continuous predictor 

is an integer value and the bandwidths for each categorical predictor is a value between [0,1]. That 

is, the optimization problem is a mixed-integer model. Clearly, using an enumeration based 

method such as exhaustive search might be computationally expensive for large datasets 

considering the number of categorical and numeric variables. In the “crs” package, the NOMAD 

approach was adopted to leverage recent advances in mixed-integer problems and also to avoid 

the computational burden of using a brute-force method like exhaustive search. As a summary, the 

“crs” package optimizes the combination of spline degrees in given intervals and knot placement 

strategy along with number of interior knots and the bandwidths with using a cross-validation 

function. There are three available cross-validation functions in the package, namely generalized 

cross-validation [110], expected Kullback-Liebler cross-validation [111], and least-squares cross-

validation. We used the default approach, least-squares cross-validation, since it is 

computationally less time consuming with sufficient results. Note that in some cases, the optimal 

spline degree is found to be zero, and also the bandwidth is one. It means the corresponding 

variables are automatically removed from the model. To achieve better performance from the cost 

estimation spline model and to develop a parsimonious model, we do not include these removed 

(redundant or non-value adding) variables in the final model, because these are irrelevant. For 

details about other fine tuning parameters and further reading please refer to the R “crs” package 

[8].  
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3.3   Validation of the Methodologies 

 Without a validation tool, the prediction of manufacturing costs would be incomplete or 

meaningless because the ultimate purpose of this research is to predict the cost of a new and unique 

product (a future product). There are three commonly used non-parametric techniques for 

estimation of bias. In our research, the bias is the difference between actual cost and the estimated 

cost. These techniques are Quenouille’s jackknife [112], Efron’s bootstrapping [1] and cross-

validation. Since the jackknife is closely related as a special case of cross-validation and 

bootstrapping, we present only the latter two methods with further detail.  

 

Non-parametrical Bootstrapping 

 Chernick defines bootstrapping as a large group of resampling procedures from the original 

dataset [113]. Efron, who is known as the inventor of the simple non-parametric bootstrap, defines 

bootstrap as a computer-based method for estimating the standard error of a parameter that is 

estimated from an unknown distribution. Efron suggests putting equal probabilities on all observed 

values in an empirical distribution and drawing random bootstrap samples with replacement from 

that population [1]. It is possible to use Efron’s non-parametric bootstrap procedure by drawing 

random samples to validate the performance of our manufacturing cost estimation methodologies.   

Efron’s bootstrapping is easy and simple to apply compared with other resampling methods 

[115]. It is also straightforward to derive standard errors and even confidence intervals for complex 

parameters of interest or complex probability distributions. Furthermore, an analytic expression of 

the estimator is not required [113]. There are three major factors may lead bootstrapping to fail to 

provide consistent results [2]: (1) Incomplete data: Missing observations may determine the 

accuracy of the parameter that we are estimating. (2) Dependent data: Since there is a need to 
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adjust estimation of the variance of distribution for correlated data, actual variance and estimated 

variance with bootstrapping may differ because there is no apparent way to find a general joint 

distribution for dependent data. (3) Noisy data: If there is a parametric density function, it can be 

used to compare as a benchmark with results of non-parametric bootstrapping. However, if data is 

coming from an empirical distribution, there is no benchmark performance measure. In such case, 

noise cannot be easily discerned. 

In resampling methods, there are two sources of errors, and often a combination of these 

two occurs [2]: (1) statistical error and (2) simulation error. Statistical error depends on the 

magnitude of the difference between the actual distribution and the fitted distribution. It can be 

reduced or even removed entirely by choosing a better estimator. However, simulation error 

depends totally on sampling from the fitted distribution due to using empirical estimates rather 

than exact properties [2]. Simulating the system for a nearly infinite time may eliminate the 

simulation error but this is practically impossible. There is an easier way to deal with simulation 

error by choosing an appropriate number of Monte Carlo replications. To find the necessary 

number of replications for a desired level of accuracy, a three-step method is suggested by 

Andrews and Buchinsky [116]. However, we do not need to consider these steps because using 

leave-one-out cross-validation would overcome these issues without extra effort. Although we 

consider the non-parametric bootstrap as a validation tool, cross-validation is more meaningful for 

our application because in a real world example, we predict the manufacturing costs of products 

one at a time. Since cross-validation replicates the whole process for the total number of 

observations, the cost of each product is predicted once rather than predicted several times due to 

random bootstrap samples with replacement. Furthermore, the datasets that are being analyzed 

may not be large enough to apply a non-parametrical resampling technique for validation purposes. 
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Thus, leave-one-out cross-validation is a better choice for such cases. Unfortunately we do not 

know which validation method is superior but we infer cross-validation adequately validates the 

predictive power of the models within a reasonable error level considering the reasons mentioned 

above. 

 

Cross-Validation 

Cross validation can be a useful statistical tool to evaluate model validation when fitting 

an estimation model to a set of data [2]. That is, cross-validation is a model testing technique, not 

a model construction method. In the cross-validation procedure, there are two easy steps to follow: 

(1) Divide the dataset into two equal parts randomly and use the first half for model fitting (training 

subset), and (2) Predict the second half according to the fitted model based on the first half 

(validation subset). After developments in computer technology, the cross-validation procedure 

has been improved by leaving out only one data point at a time then fitting the model for the rest 

of the data points and finally computing the bias for the point being left out.  

Quenouille [112] introduced a non-parametric approach based on sequentially deleting 

observation points and recomputing the estimation of the parameter of interest [1]. This non-

parametric estimate of bias method was later called jackknife and it is also known as leave-one-

out cross-validation. After Quenoullie intoduced this powerful tool for statistical analysis, Tukey 

[117] suggested a formula for non-parametric estimate of variance that was derived from the 

recomputed statistics. For further details and mathematical expressions about the jackknife 

estimate of bias, please refer to Efron’s study [1]. It is worthwhile to mention that the jackknife 

estimate of variance (leave-one-out cross-validation) is biased and usually greater than the true 

variance [115].  
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Because of the reasons discussed in non-parametrical bootstrapping, we use the leave-one-

out cross-validation tool in our study to validate the performance of the estimation models that are 

being constructed with or without cluster analysis. An observation is left out to test a cost 

estimation model that is built or trained with the remaining observations in the dataset. The 

observation being left out for every replication can be considered as an external test data point 

since it is not used in the cluster analysis nor model building phases. To clarify, the left out 

observation does not participate in any part of the cluster analysis nor for constructing estimation 

models but is used for testing the accuracy of the methodologies. First, we conduct a cluster 

analysis and then build cluster specific cost estimation models based on the entire data except the 

left out observation. Second, we find the cluster in which the left out observation falls. Finally, we 

test the corresponding cluster specific estimation model with the left out data point. With the same 

logic, first we build a spline model leaving one product out of the data sample. Second, we evaluate 

the spline model validity with the left out observation point.  

 

3.4   Summary of the Suggested Methodologies 

 In summary, we consider three different ways to predict the manufacturing cost of 

products, namely clustering analysis, splines, and the conventional way. The conventional way is 

the benchmark comparison method that is based on a simple regression model built with the entire 

product stream. This comparison helps us to evaluate the degree of improvement when a clustering 

algorithm or a spline model is devised.  As an extension to Figures 3.1, 3.2 and 3.5, we summarize 

and illustrate our methodologies with the chart given in Figure 3.6. All alternatives are named with 

labels on the right top corners and we call them manufacturing cost estimation 1 (MCE 1), 
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manufacturing cost estimation 2 (MCE 2) and manufacturing cost estimation 3 (MCE 3), 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Summary of the proposed manufacturing cost estimation methodologies 
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Chapter 4 

Real World Cost Estimation Applications 

  

In this chapter, we apply our manufacturing cost estimation methodology on four datasets 

from three different industries. We discuss these real world problems from least to most 

complexity according to their sizes in terms of number of numeric and categorical variables and 

observations. The data was collected from socks, electromagnetic parts and plastic tools 

manufacturing factories in Ankara and Konya, Turkey. Mixed numeric and categorical design 

attributes, cost drivers or other variables comprise in these datasets. Due to the confidentiality 

agreements that were signed with these companies, we cannot state any brand names or product 

codes. Further information about these industries and datasets are given under each application 

problem. 

 

4.1   Company and Dataset Descriptions 

4.1.1   Socks Manufacturing Data 

 The first application problem dataset was collected from a socks manufacturer which 

produces copyrighted and licensed socks for some major brands in Europe and USA. They also 

produce the merchandise for the local market. Germany, Australia, Belgium, Denmark, France, 

Spain, Sweden, Italy, Lithuania and Poland are some of the primary countries in the European 

region to which their products are being imported. The company launched their production in 
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1996. Since that time the company has been operating with advanced technological machinery and 

a professional staff in a 100,000 square feet indoor factory and a 325,000 square feet outdoor area. 

Their range of products consists of sports, casual and formal/dress socks for women, men, children 

and infants. The pictures of sample socks from the most recent collection for women, men and 

children are shown in Figure 4.1 from left to right, respectively. The products are kept in separate 

warehouses for raw materials, spare parts, semi-products and finished socks. The manufacturing 

processes include pattern design, knitting, toe seam, washing-softening, pattern printing, final 

quality control and packaging. Steam, silicon and antibacterial washing are the types of washing-

softening operations. In the printing department, the company is capable of applying lithographs, 

holograms, and also heat transfer, embroidery, rubber, acrylonitrile butadiene styrene (ABS), and 

caviar bead prints. Pairing and quality control, labeling, assortment and packaging are usually the 

final operations in the facility. 

 

 

 

Figure 4.1: Some sample socks from the most recent collection of the company 
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The dataset that we collected from the company’s database contains information for 76 

products of women and men’s socks. There are nine variables associated with these products, and 

eight of these variables are qualitative (categorical), namely raw material, pattern, elasticity, 

woven tag, heel style, leg style, fabric type and gender. The only quantitative variable measured 

on a continuous scale in this dataset is the actual cost which is recorded in Turkish Lira (TL) money 

units. Table 4.1 is the summary of the dataset and associated attributes. The columns of the table 

are variable name, data type, variable type, and categories (for categorical data) or range (for 

numeric data) from left to right, respectively. For nominal variables, the order of categories is not 

important since there is no logical transition between categories. However, for ordinal variables, 

categories represent the order of the labels from the lowest to the highest category in its ordinal 

scale. For instance, elasticity is an ordinal variable that can take a value from “None” to “Double”. 

In this case, “None” represents the lowest elasticity level and “Double” represents the highest 

possible elasticity level of the sock material.  

The R script we developed creates the dissimilarity matrix, cluster contents, regression 

models and splines models based on an input vector of variable types. Interval-scaled continuous, 

ratio-scaled continuous, nominal, ordinal, symmetric binary and asymmetric binary predictors are 

coded as 1, 2, 3, 4, 5 and 6, respectively. The dependent variable, actual cost, is coded as 0. For 

instance, the input vector for the socks production data is [3 5 4 5 5 4 5 5 0]. This vector 

represents the type of each predictor, raw material (nominal), pattern (symmetric binary), elasticity 

(ordinal), woven tag (symmetric binary), heel (symmetric binary), leg style (ordinal), fabric type 

(symmetric binary), gender (symmetric binary), and actual cost (dependent variable), respectively.  
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Table 4.1: Summary of the socks manufacturing dataset 

Variable Name Data Type Variable Type Categories/Range 

Raw Material Categorical Nominal 

Bamboo Lycra 
Cotton Lycra 

Cotton Coolmax Lycra 
Organic Cotton Lycra 

Modal Lycra 

Pattern Categorical Symmetric Binary 
Yes 
No 

Elasticity Categorical Ordinal 

None 
Plain 
Derby 
Curly 

Double 

Woven Tag Categorical Symmetric Binary 
None 
Label 

Heel Categorical Symmetric Binary 
None 
Plain 

Leg Style Categorical Ordinal 

None 
Short 

Medium 
Long 

Fabric Type Categorical Symmetric Binary 
Plain 

Towel 

Gender Categorical Symmetric Binary 
Women 

Men 
Actual Cost Numeric Interval Scale [0,∞) 

 

 

4.1.2   Electrical Grounding Parts Data – Tubular Cable Lugs 

The second application problem dataset was collected from an electromagnetic parts 

manufacturer which produces lightening protection elements, grounding materials, metal masts for 

various purposes and cabins for specific purposes. The company manufactures these products for 

both local and foreign markets. They also provide project services including installation of 

lightening conductor and grounding systems, and also maintenance of this equipment. 

Furthermore, the company evaluates existing systems on site for protection performance and 
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international standards fulfillment. Since its establishment in 1953, the company has been 

following world-wide standards with the most recent techniques and high tech equipment. Steel, 

copper, stainless steel, aluminum, brass, bronze, cast iron, plastic and concrete are the primary raw 

materials used to manufacture these static grounding systems. In the facility, they are able to coat 

these materials with electro galvanization, hot deep galvanization, electro copper coating, electro 

tin coating, electro Chromium-Nickel (Cr-Ni) coating, black insulation and green-yellow 

insulation.  

 The dataset that we collected from the company’s database contains information for 

various tubular cable lugs of 68 observations. The pictures of some of these cable lugs are shown 

in Figure 4.2. There are 12 variables associated with these 68 observations, namely lug type, cross-

section, hole diameter, number of holes, gap between holes, material weight, process time, inner 

diameter, outer diameter, coating type, coating time and the actual cost. Ten of these variables are 

quantitative attributes and nine of them are recorded on continuous scales. These nine continuous 

valued variables are cross-section, hole diameter, gap between holes, material weight, process 

time, inner diameter, outer diameter, coating time and the actual cost, and their units are recorded 

in mm2, mm, mm, kg, mm, mm, minutes and TL, respectively. The remaining one quantitative 

variable takes integer values. The label of the strictly integer valued quantitative variable is the 

number of holes, and it does not have any measurement units. There are at most two holes on a lug 

and the minimum number of holes is zero. DIN, forend, long, standard and forend standard are the 

categories of the variable lug type. In Figure 4.2, the groups of four pieces, from left to right, 

represent various sizes of DIN, forend standard and long type of tubular lugs. Coating type has 

two categories, tin and none, where none indicates that there is no coating on the piece. Since only 

one cable lug has been labeled with none in the dataset, there are not sufficient observations to 
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reveal the true contribution of the coating type variable on the actual cost values. Table 4.2 is the 

summary of the dataset and its associated attributes. The input vector for the tubular cable lugs 

production data is [3 1 1 1 1 1 1 1 1 3 1 0]. 

 

 

 

Figure 4.2: Sample tubular cable lugs for electrical grounding 
 

 

 

Table 4.2: Summary of the tubular cable lugs manufacturing dataset 

Variable Name Data Type Variable Type Categories/Range 

Lug Type Categorical Nominal 

DIN 
Forend 

Forend Standard 
Long 

Standard 
Cross-section Numeric Interval Scale [0,∞) 
Hole Diameter Numeric Interval Scale [0,∞) 

Number of Holes Numeric Interval Scale 0, 1, 2, … 
Gap b/w Holes Numeric Interval Scale [0,∞) 

Material Weight Numeric Interval Scale [0,∞) 
Process Time Numeric Interval Scale [0,∞) 

Inner Diameter Numeric Interval Scale [0,∞) 
Outer Diameter Numeric Interval Scale [0,∞) 

Coating Categorical Nominal 
None 
Tin 

Coating Time Numeric Interval Scale [0,∞) 
Actual Cost Numeric Interval Scale [0,∞) 
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4.1.3   Lightening Protection Parts Data – Air Rods 

The third application problem dataset was collected from the same electromagnetic parts 

manufacturer as in the second problem and includes information about 197 air rods for lightening 

protection purposes. The pictures of some of these protective air rods are shown in Figure 4.3. In 

this figure from left to right, respectively, the types of air rods are long, tube, multiple points and 

Eratec* types. In the dataset, there are 10 variables associated with these 197 observations. Five of 

these variables take continuous numeric values and the remaining five are categorical labels. The 

numeric variables are rod diameter, rod length, screw size, material weight and the actual cost. The 

values of these variables are measured with these units, respectively: mm, mm, mm, kg and TLs. 

The screw size takes a value of zero when there is no screw used, and the actual minimum screw 

size is 8.5 mm. The categorical variables are screw type, main material, coating, raw material and 

screw nut coating. In Table 4.3 the summary of the dataset and its associated attributes are shown. 

The input vector for the air rods production data is [1 1 1 3 1 3 3 3 3 0]. 

 

 

 

                                                 
* “Eratec” is a type of air rod made from four pieces of thermo-welded conductive material. 

 

 

Figure 4.3: Sample air rods for lightening protection 
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Table 4.3: Summary of the air rods manufacturing dataset 

Variable Name Data Type Variable Type Categories/Range 
Rod Diameter Numeric  Interval Scale  [16,∞) 
Rod Length Numeric Interval Scale [150, 6000] 
Screw Size Numeric Interval Scale [8.5, 16] 

Screw Type Categorical Nominal 
None 

Interior Screw 
Exterior Screw 

Material Weight Numeric  Interval Scale [0,∞) 

Main Material Categorical Nominal 

Aluminum 
Copper 

Iron-Steel 
Bronze 

Gray Cast Iron 
Stainless Steel 

Brass 
Plastic 

Coating Categorical Nominal 

No Coating 
Electro-Galvanizing 
Hot Dip Galvanizing 

Electrodeposited Copper 
Electrodeposited Tin 

Electrodeposited Cr-Ni 
Black Insulation 

Yellow Green Insulation 

Raw Material Categorical Nominal 

Aluminum Rod Ø16 
Aluminum Rod Ø20 

Brass Rod Ø16 
Brass Rod Ø20 

Copper Rod 16 x 3000 
Copper Rod 16 x 3500 
Copper Rod 20 x 3000 
Copper Rod 20 x 6000 

Stainless Rod Ø16 
Stainless Rod Ø20 
Transmission Ø16 
Transmission Ø20 

Screw Nut Coating Categorical Nominal 

No Screw Nut 
Non-Coated 
Galvanized 

Stainless 
Brass 

Actual Cost Numeric Interval Scale [0,∞) 
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4.1.4   Plastic Products Data 

 The last dataset was taken from a plastic parts manufacturer which produces kitchenware, 

food and non-food storage containers, and salad, pastry, bathroom, and hanger accessorizes for 

foreign markets across four continents such as Argentina, Turkmenistan, Russia, South Africa, 

Spain and Kuwait.  The company is also in close collaboration with markets, malls, chain 

purchasers and wholesalers of the local Turkish market. They have been in the plastic industry 

since 1989 with an indoor facility of 55,000 square feet. They hold several international standard 

certificates for production quality, safety and environmental sustainability.  

 In this dataset, there are many products with completely different physical shapes. 

However, we may group them according to their raw material types, manufacturing 

processes/operations or some other factors. Some of these products are spoons, vegetable peelers, 

containers and paper towel racks, as can be seen in Figure 4.4. The dataset covers 51 variables for 

130 plastic products. Actually, there are 10 main categories of variables, raw material, press, 

vacuum, paint, sticker, wall plug, labor complexity, and actual cost. There are 13 variables under 

the raw material category where 12 of them are binary and one is numeric. These 12 variables 

represent the type of raw material such as anti-shock, acrylonitrile butadiene styrene (ABS), poly 

carbon and carbon fiber. If a material is used in the main material mixture for a particular product, 

the value of the underlying material variable takes one, otherwise zero. The only variable measured 

on a continuous scale is mixture weight under the raw material subject. It is recorded in grams. 

The second variable category is press which actually stands for the pressing process. There are 

three machine groups in the company that can perform press operations. Tederic, TSP and Haitian 

are the names of these machine groups. There are eleven, eight and four different machines under 

the Tederic, TSP and Haitian groups, respectively. Every machine corresponds to a variable in the 
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dataset. There can be multiple alternative machines to perform the same operation; however, if a 

machine is used for any step of production for a particular product, its variable takes a numeric 

value representing the machining time. If the underlying machine is not used for that product, the 

value of that machine’s variable takes a value of zero. The next variable category is for the 

vacuuming process. There are two variables under the vacuum topic: (1) Poly vinyl chloride (PVC) 

type for the vacuuming process, and (2) the number of vacuums required. The PVC type is a 

categorical variable and the number of vacuums takes discrete numeric values. Under the boxing 

category, there are seven variables. Six of these variables are numeric variables and one of them 

is a categorical variable. These variables are number of items in a box, net weight, gross weight, 

length, width, depth of the box and the type of the boxing material. Each remaining category 

corresponds to a single variable. Package, paint material weight, sticker, wall plug, labor 

complexity and actual cost are, respectively, binary, numeric, binary, binary, ordinal and numeric 

variables. The unit of the paint material weight is grams. Also, the actual cost is recorded in TLs. 

Furthermore, the labor complexity is tracked according to the complexity of the manufacturing 

and assembly operations and ranked from 1 (easiest) to 3 (most complex) sequentially. In Table 

4.4, the summary of the dataset and its associated attributes are shown. 

We used acronyms to represent each of these four datasets. We named the application 

problems dataset 1 (DS 1), dataset 2 (DS 2), dataset 3 (DS 3) and dataset 4 (DS 4) for the socks 

manufacturing, the tubular cable lugs, the air rods, and the plastic products problem sets, 

respectively.    
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Table 4.4: Summary of the plastic products manufacturing dataset 

 

 

Variable Name Data Type Variable Type Categories/Range 
Cristal Categorical Symmetric Binary Yes, No 

Anti-Shock Categorical Symmetric Binary Yes, No 
PP Categorical Symmetric Binary Yes, No 

ABS Categorical Symmetric Binary Yes, No 
Poly Carbon Categorical Symmetric Binary Yes, No 
NAT ABS Categorical Symmetric Binary Yes, No 
Randum Categorical Symmetric Binary Yes, No 

ESM Categorical Symmetric Binary Yes, No 
i20 Categorical Symmetric Binary Yes, No 

Carbon Fiber Categorical Symmetric Binary Yes, No 
Stainless Steel Categorical Symmetric Binary Yes, No 

PVC Categorical Symmetric Binary Yes, No 
Weight Numeric Interval Scale [0,∞) 

Tedeceric 100_1 Numeric Interval Scale [0,∞) 
Tedeceric 100_2 Numeric Interval Scale [0,∞) 
Tedeceric 110 Numeric Interval Scale [0,∞) 
Tedeceric 120 Numeric Interval Scale [0,∞) 
Tedeceric 140 Numeric Interval Scale [0,∞) 

Tedeceric 188_1 Numeric Interval Scale [0,∞) 
Tedeceric 188_2 Numeric Interval Scale [0,∞) 
Tedeceric 188_3 Numeric Interval Scale [0,∞) 
Tedeceric 230_1 Numeric Interval Scale [0,∞) 
Tedeceric 230_2 Numeric Interval Scale [0,∞) 
Tedeceric 280 Numeric Interval Scale [0,∞) 

TSP 120_1 Numeric Interval Scale [0,∞) 
TSP 120_2 Numeric Interval Scale [0,∞) 
TSP 150_1 Numeric Interval Scale [0,∞) 
TSP 150_2 Numeric Interval Scale [0,∞) 
TSP 220 Numeric Interval Scale [0,∞) 
TSP 250 Numeric Interval Scale [0,∞) 

TSP 360_1 Numeric Interval Scale [0,∞) 
TSP 360_2 Numeric Interval Scale [0,∞) 
Haitian 110 Numeric Interval Scale [0,∞) 

Haitian 150_1 Numeric Interval Scale [0,∞) 
Haitian 150_2 Numeric Interval Scale [0,∞) 

Haitian 250 Numeric Interval Scale [0,∞) 

PVC Type Categorical Ordinal 
0  

15 
20 

# of Vacuums Numeric Interval Scale [0,∞) 
 # in box Numeric Interval Scale 1, 2, 3, … 

Net Weight Numeric Interval Scale [0,∞) 
Gross Weight Numeric Interval Scale [0,∞) 

Length Numeric Interval Scale [0,∞) 
Width Numeric Interval Scale [0,∞) 
Depth Numeric Interval Scale [0,∞) 

Type Categorical Nominal 

Blister 
Polybag 

Display Box 
Bound Card 
PVC Shrink 

Sticker 
Box 

Package Categorical Symmetric Binary Yes, No 
Paint Weight Numeric Interval Scale [0,∞) 

Sticker Categorical Symmetric Binary Yes, No 
Wall Plug Categorical Symmetric Binary Yes, No 

Labor 
Complexity 

Categorical Ordinal 
1 
2 
3 

Actual Cost Numeric Interval Scale [0,∞) 
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Figure 4.4: Sample plastic products including kitchen tools, food containers and towel holders 
 

 

4.2   Cluster Analysis and the Number of Clusters 

 As discussed earlier in Chapter 3, we used Kaufmann and Rousseeuw’s 𝑘𝑘-medoids 

algorithm as it was implemented in “PAM” [9]. We coded the manufacturing cost estimation 

models in R, and for the cluster analysis, the package “cluster” with its contingent packages were 

utilized. In the cluster analysis and cost estimation phases, the actual cost of a product is the 

dependent variable and all other variables are predictive ones. The first target is to determine the 

appropriate number of clusters. The 𝐶𝐶-index, the Gamma and the average silhouette width graphs 

are the primary tools to choose the appropriate number of clusters. We plotted the values of the 

underlying indices from 2 to 20 clusters. As expected the value of Gamma and the average 

silhouette width increase as the number of clusters increase. The value of the 𝐶𝐶-index decreases as 

the number of clusters increases which is consistent with the pattern of the other two indices. The 

graphs of these three indices with respect to the number of clusters are given in Figure 4.5, 4.6, 4.7 

and 4.8 for the application problems DS 1, DS 2, DS 3 and DS 4, respectively.  
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Remember that our policy is to seek a consensus among these three graphs. For DS 1, a 

settlement point of the indices is seven clusters as shown in Figure 4.5 with the black points where 

a local trough is observed right before a dramatic jump in the 𝐶𝐶-index. Furthermore, at the point 

of seven clusters, local peaks can be observed one step before the sudden drops in Gamma and 

silhouette width trends. For DS 2, the silhouette width does not have any value higher than 0.5. 

However, a local peak is observed at 11 clusters. When we compare the performance of the other 

two indices with the silhouette width, 11 is a reasonable value as the appropriate number of 

clusters. Furthermore, after 11 clusters, the cluster contents become unbalanced where too many 

observations accumulated in some groups. For DS 3, we picked the point where the silhouette 

width goes above 0.5 for the first time because a value above 0.5 indicates robust clustering 

structure. After 14 clusters, the value of silhouette width stagnates right below the 0.5 line. If we 

check the consistency of silhouette width with the other two statistics, we can see that 14 clusters 

is a good choice. For DS 4, the silhouette width never moves higher than 0.5, but there is a sudden 

drop in the 𝐶𝐶-index value at 10 clusters. When the Gamma index is considered, the value increases 

slowly to the point at 10 clusters and after that it becomes stable. Combining the information 

derived from these statistics, we can conclude that 10 is a proper value. There are several other 

possible points that these indices suggest, but 7, 11, 14 and 10 are the most conspicuous points for 

DS 1, DS 2, DS 3 and DS 4, respectively, when we monitor these graphs from left to right 

simultaneously. Table 4.5 shows the number of observations allocated to each cluster using 𝑘𝑘-

medoids based on the best number of clusters for each application dataset. When we analyze the 

individual observations in each cluster, it is easy to see that categorical variables play an important 

role in forming the cluster contents. Also, we plotted the minimum (min), maximum (max) and 

average (mean) actual cost values of products allocated in each cluster in Figures 4.9, 4.10, 4.11, 
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and 4.12 for DS 1, DS 2, DS 3 and DS 4, respectively. These graphs are provided to illustrate how 

actual cost values strongly overlap among clusters for the most cases. It is interesting to observe 

that the similarity of products does not necessarily follow the same similarity pattern of the actual 

cost values. Since multiple cost drivers contribute to product cost, there is no single factor 

determining the cluster contents. The interaction of a collection of cost drivers are more influential 

than a single variable for each product.  

 

   
 

Figure 4.5: 𝐶𝐶-index, Gamma and silhouette width plots for DS 1 of 76 products 
 

 

   
 

Figure 4.6: 𝐶𝐶-index, Gamma and silhouette width plots for DS 2 of 68 products 
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Figure 4.7: 𝐶𝐶-index, Gamma and silhouette width plots for DS 3 of 197 products 
 

 

 

 

   
 

Figure 4.8: 𝐶𝐶-index, Gamma and silhouette width plots for DS 4 of 130 products 
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Table 4.5: The number of observations in each cluster for the application problems 

Cluster No DS 1 DS 2 DS 3 DS 4 
1 37 10 26 24 
2 11 9 23 20 
3 11 8 23 17 
4 6 8 17 16 
5 5 7 16 15 
6 3 5 16 10 
7 3 5 14 8 
8  5 13 8 
9  4 9 7 
10  4 9 5 
11  3 8  
12   8  
13   8  
14   7  

 

 

 

 
 
Figure 4.9: The minimum (min), maximum (max) and average (mean) actual cost values of 
objects allocated in each cluster for DS 1 
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Figure 4.10: The minimum (min), maximum (max) and average (mean) actual cost values of 
objects allocated in each cluster for DS 2 
 

 

 
 
Figure 4.11: The minimum (min), maximum (max) and average (mean) actual cost values of 
objects allocated in each cluster for DS 3 
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4.3   Spline Model Parameters 

 As discussed in Chapter 3, we used the R package called “crs” to build spline models in 

the presence of categorical and numeric design attributes. The “crs” function input parameters used 

in our computer code are provided in Table 4.6. 

 “degree.max” and “degree.min” indicate the maximum and the minimum polynomial 

degree of each continuous predictor, respectively. We used the default value, 10, as the maximum 

polynomial degree because increasing the degree of the piece-wise functions will obviously 

increase the prediction accuracy for the current data but will likely result in overfit models. 

According to our observations, none of the continuous predictors came out to be a higher degree 

than cubic splines considering the cross-validated set of parameters.  When the polynomial degree 

 
 
Figure 4.12: The minimum (min), maximum (max) and average (mean) actual cost values of 
objects allocated in each cluster for DS 4 
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of a predictor is zero, the variable is automatically removed from the spline model due to its 

irrelevance.  

“segments.max” and “segments.min” represent the maximum and minimum number of 

segments for each of the continuous predictors. The number of segments corresponds to the 

number of pieces in the spline model and is closely related to the number of knots where the 

number of knots minus one is the number of segments. We used the default value, 10, because the 

performance of spline models significantly declined beyond 5 segments when we ran the script for 

all of the datasets on hand.  

 “cv” shows what kind of search is used to optimize the mathematical spline parameters 

such as number of knots or categorical predictor bandwidths. We used “NOMAD” because it is 

the suggested optimization module for the “crs” package due to the reasons mentioned in the 

previous chapter. “cv.func” indicates which cross-validation method should be used to select 

predictor bandwidths. We used the least squares approach, “cv.ls”, by default because according 

to the preliminary runs, the function provided consistent result. Even though computational 

efficiency is not an issue for the datasets we worked on, for generalization of the spline cost 

estimation method, using the least squares approach is a promising choice since it requires modest 

computational effort. 

“complexity” indicates  whether the model complexity is determined by the polynomial 

degree of the spline, “degree”, or by the number of knots, “knots”, or both, “degree-knots”. In each 

optimization iteration, a different combination of spline degree and number of knots for each 

variable is assessed along with the categorical predictor bandwidths to minimize the underlying 

cross-validation function. If “degree” is chosen for the model complexity, the “crs” function 

requires a numerical value to be entered for the number of knots for each continuous variable 
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because the cross-validation does not consider the number of knots in the optimization process. 

Similarly, if “knots” is chosen for the model complexity, a vector of integer values should be 

entered. This vector specifies the spline degree for each continuous predictor. We used “degree-

knots” as the model complexity since ultimate goal is establishing the most suitable spline models 

to achieve an accurate cost estimation model. Also, we assumed that there is no further information 

available for the datasets. In manufacturing cost estimation applications in general, the degree 

complexity and the number of knots are not known a priori. 

“basis” indicates whether interaction terms in the spline model should be included. That is, 

to include interaction terms “tensor” should be entered as the basis and “additive” otherwise. We 

ran the spline model script with both “additive” and “tensor” inputs initially. The results show that 

using tensor products (that is, including interaction terms) provided slightly more accurate results. 

Using tensor products is supposed to be computationally costly but even for the two big application 

problems (DS 3 and DS 4) in terms of number of variables and number of observations, the tensor 

product spline model generated results in a reasonable time. Thus, computational efficiency is not 

a concern for the size of data in the application problems, or indeed for most cost estimation tasks.  

For the final input parameter, “knots”, we let the cross-validation decide the best knot 

placement strategy. Knot placement is an art by itself and there is considerable research done in 

this area as we discussed in the previous chapter. “quantiles” specifies knots placed equally spaced 

quantiles where an equal number of observations lies in each segments. On the other hand, 

“uniform” specifies knots placed at equally spaced intervals in the continuous range of a variable. 

We used “auto” as the “knots” input parameter value. The “crs” model output consistently 

demonstrated that the automatic knot placement module locates the knots for each continuous 

predictor based on a “quantiles” placement strategy because it provided better results than the 
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“uniform” strategy according to the minimization of the cross-validation function (Equation 3.14). 

However, to keep the manufacturing cost estimation methodology as general as possible, using the 

“auto” function seems to be the best alternative rather than limiting it to either “quantiles” or 

“uniform”.  

 

Table 4.6: The “crs” function input parameters used to build the spline models 

Parameter Value 
degree.max 10 
degree.min 0 

segments.max 10 
segments.min 1 

cv NOMAD 
cv.func cv.ls 

complexity degree-knots 
basis tensor 
knots auto 

 

 

4.4   Results and Discussion 

 As we discussed in Chapter 3, we devised a leave-one-out cross-validation tool to leverage 

the data for both validation and model building. That is, an observation is left out to predict its 

manufacturing cost based on MCE 1, MCE 2 and MCE 3 that are built from the remaining 

observations in a dataset. This process is replicated for the number of observations in a dataset to 

complete one full turn for the entire data. Without a validation tool, our methodology would not 

have credibility to be used in a real life business environment. This validation module is fully 

integrated in the same R script.  

 For each product, the performance criteria we considered are absolute relative error (ARE) 

and squared error (SE). Due to the size of the datasets, it is not practical to provide these two error 
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values for each data point. Instead, providing the error graphs for each dataset and generating a 

summary of these key factors is more efficient. In this research, we refer to the error as the 

difference between actual cost and the predicted cost. ARE and SE are calculated according to 

Equations 4.1 and 4.3, respectively. ARE and SE are computed for each observation where 𝑖𝑖 

represents the observation number and 𝑛𝑛 is the total number of observations. Mean absolute 

relative error (MARE) is the average absolute percentage deviation from the actual cost over all 

observations and given in Equation 4.2. Mean squared error (MSE) is the average squared 

deviation from the actual cost values for each observation point and given in Equation 4.4. Root 

mean squared error (RMSE) is the square root of MSE and its mathematical expression is provided 

in Equation 4.5. 

 

𝐴𝐴𝑅𝑅𝐸𝐸𝑖𝑖 =
(𝐴𝐴𝑐𝑐𝑏𝑏𝑉𝑉𝑎𝑎𝑙𝑙 𝐶𝐶𝑐𝑐𝑐𝑐𝑏𝑏)𝑖𝑖 − (𝐸𝐸𝑐𝑐𝑏𝑏𝑖𝑖𝑚𝑚𝑎𝑎𝑏𝑏𝑎𝑎𝑑𝑑 𝐶𝐶𝑐𝑐𝑐𝑐𝑏𝑏)𝑖𝑖

(𝐴𝐴𝑐𝑐𝑏𝑏𝑉𝑉𝑎𝑎𝑙𝑙 𝐶𝐶𝑐𝑐𝑐𝑐𝑏𝑏)𝑖𝑖
 (4.1) 

𝐸𝐸𝐴𝐴𝑅𝑅𝐸𝐸 =
1
𝑛𝑛

 �𝐴𝐴𝑅𝑅𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (4.2) 

𝑆𝑆𝐸𝐸𝑖𝑖 = [(𝐴𝐴𝑐𝑐𝑏𝑏𝑉𝑉𝑎𝑎𝑙𝑙 𝐶𝐶𝑐𝑐𝑐𝑐𝑏𝑏)𝑖𝑖 − (𝐸𝐸𝑐𝑐𝑏𝑏𝑖𝑖𝑚𝑚𝑎𝑎𝑏𝑏𝑎𝑎𝑑𝑑 𝐶𝐶𝑐𝑐𝑐𝑐𝑏𝑏)𝑖𝑖]2 (4.3) 

𝐸𝐸𝑆𝑆𝐸𝐸 =
1
𝑛𝑛

 �𝑆𝑆𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (4.4) 

𝑅𝑅𝐸𝐸𝑆𝑆𝐸𝐸 = √𝐸𝐸𝑆𝑆𝐸𝐸 (4.5) 

 

 

 

In Table 4.7, we present the performance metrics of each cost estimation approach, termed 

MCE 1, MCE 2, and MCE 3 for the application problems, DS 1, DS 2, DS 3, and DS 4. These 
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metrics include MARE, RMSE, the minimum ARE (Min ARE), and the maximum ARE (Max 

ARE) over the validated predictions for each product. Notice that MCE 2 does not have error 

defined for DS 1 in the table since this dataset does not contain any continuous predictors to form 

a spline basis. Thus, MCE 2 is not applicable (N/A) for DS 1. The minimum values of MARE, 

RMSE and Max ARE are depicted in bold in Table 4.7 for each dataset. According to MARE 

values, the most accurate cost estimation approach is MCE 1 based on overall performance. 

However, MCE 2 generates slightly more accurate predictions for DS 3 compared to MCE 2. 

Clearly, MCE 3 was outperformed by MCE 1 and MCE 2. It is certainly consistent with our 

suggestion that over a diverse product family, building a single regression model is doubtful. To 

capture complex relationships between cost drivers and the manufacturing cost requires a more 

complex methodology than a simple regression. It is really hard to decide which cost estimation 

method is superior between MCE 1 and MCE 2 because first, MCE 2 is not applicable to the first 

dataset (DS 1) since there are no continuous predictors to build a spline basis. The second and the 

most important reason is MCE 1 was bettered by MCE 2 for DS 2 in terms of MARE and RMSE 

values. Also, when we consider Max ARE values, MCE 2 did better than MCE 1. The Max ARE 

gap for DS 4 is more than 100% on MCE 1 and MCE 2. It is worthwhile to mention that MCE 1 

and MCE 2 were able to predict the manufacturing cost of products with very good accuracy. 

Figure 4.13 shows the performance of the cost estimation methods over the four data application 

problems in terms of the MARE values given in Table 4.7.  
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Table 4.7: Performance metrics of each cost estimation model for the application problems 

MARE   
  MCE 1 MCE 2 MCE 3 
 DS 1 6.25% N/A 8.54% 
 DS 2 4.98% 38.70% 49.82% 
 DS 3 5.81% 4.08% 15.42% 
 DS 4 12.39% 17.55% 33.83% 

 

RMSE   
  MCE 1 MCE 2 MCE 3 
 DS 1 5.75% N/A 6.51% 
 DS 2 8.86% 104.29% 140.26% 
 DS 3 355.72% 138.07% 615.92% 
 DS 4 17.71% 23.95% 34.20% 

 

Min ARE   
  MCE 1 MCE 2 MCE 3 
 DS 1 0.00% N/A 0.00% 
 DS 2 0.00% 0.00% 0.00% 
 DS 3 0.00% 0.00% 0.00% 
 DS 4 0.00% 0.00% 0.00% 

 

Max ARE   
  MCE 1 MCE 2 MCE 3 
 DS 1 49.12% N/A 49.82% 
 DS 2 46.67% 162.01% 429.52% 
 DS 3 56.04% 26.23% 64.36% 
 DS 4 203.54% 94.73% 233.79% 
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Figure 4.13: Performance of the cost estimation approaches in terms of MARE 

 

 

We also evaluated the performance of spline models by setting the maximum polynomial 

degree to 1 to make a fair comparison between MCE 2 and MCE 1, and MCE 2 and MCE 3 because 

MCE 1 and MCE 3 are basically linear models. Furthermore, we removed the interaction terms in 

the spline models by setting the “basis” input as “additive” because MCE 1 and MCE 3 do not 

consider interaction terms. The performance difference between the default tensor product MCE 

2 model and the linear additive MCE 2 model was minimal and these changes did not affect its 

overall accuracy. The linear additive MCE 2 model still outperformed MCE 3 by far. We can 

conclude that even considering suboptimal spline model parameters, MCE 2 is a better alternative 

than MCE 3.  
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used a paired t-test to evaluate the significance of the mean of the differences in AREs. This is 

done by first subtracting the ARE of a MCE approach from another one and then using the t-

distribution to test the null hypothesis where the mean of the differences is equal to zero. In Table 

4.8, p-values for the paired t-tests on the mean of the differences are given. For instance, let us 

consider DS 2 for the pair of MCE 1 and MCE 2. First, the ARE of MCE 2 is subtracted from 

MCE 1 and then a paired t-test is performed to check the significance of the mean of the differences 

between these two cases. The associated p-value for this test is dramatically less than 0.001. 

Therefore, at a confidence of 95%, this value is significant where the p-value proves that these two 

approaches produce significantly different results. When we combine it with the known 

information about the MARE values, we can conclude that MCE 1 finds better results than MCE 

2 for the second application problem. 

Considering all pair-wise manufacturing cost estimation hypothesis test results in Table 

4.8, based on the p-values, we reject all of the null hypotheses where the null hypothesis suggests 

the mean of the differences is zero. That is, all cost estimation approaches, MCE 1, MCE 2 and 

MCE 3 produce significantly different ARE results than each other at a 95% confidence level. 

Therefore, we can conclude that there is a clear dominance in the performance of MCE 1 compared 

to MCE 3 and MCE 2 compared to MCE 3. However, for the MCE 1 and MCE 2 pair, we could 

not conclude if one of them is superior method over the other one because for only DS 2, MCE 1 

demonstrates a clear dominance when MARE values are considered. For DS 3, MCE 2 turns out 

to be the best approach but very close in performance to MCE 1. For the last application dataset, 

DS 4, MCE 1 finds slightly more accurate estimated values than MCE 2.  
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Table 4.8: p-values for the paired t-tests of the pairs of MCE approaches 

DS 1 MCE 3 MCE 2 

MCE 1 9.12 × 10−8 N/A 

MCE 2 N/A  

 

DS 2 MCE 3 MCE 2 

MCE 1 6.65 × 10−9 2.68 × 10−9 

MCE 2 0.0003  

 

DS 3 MCE 3 MCE 2 

MCE 1 2.52 × 10−17 3.44 × 10−15 

MCE 2 3.62 × 10−18  

 

DS 4 MCE 3 MCE 2 

MCE 1 1.50 × 10−22 1.33 × 10−18 

MCE 2 2.58 × 10−25  

 

 

We also considered the sensitivity of MARE with respect to the number of clusters for 

MCE 1. As expected, MARE decreases as the number of clusters increases and finally it converges 

to a limit value. The limit MARE values are around 5%, 3%, 4% and 11% for the application 

problems DS 1, DS 2, DS 3 and DS 4, respectively. That is, increasing the number of clusters does 

not much affect the accuracy of the estimated cost values beyond the values that we established 

for datasets 1 to 4 of 7, 11, 14 and 10 clusters, respectively. Figure 4.14 shows this change in 

MARE values when the number of clusters increases for each application dataset. Recall that the 

choice of the number of clusters may not be unique. Even though increasing the number of clusters 

results in more accurate estimates, it might be over parameterized.  
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DS 1 DS 2 

  

DS 3 DS 4 

  

Figure 4.14: MARE vs. number of clusters of each application problem for MCE 1 
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4, respectively. In these figures, the actual cost values are sorted in ascending order to enhance the 

visibility of the error values. Existence of categorical predictors certainly influences the prediction 

precision due to the ranking issues among categories and non-distinct borders between transitions 

of categories. It is a challenge especially for problems DS 1 and DS 4. The Max ARE, MARE and 

RMSE values indicate that MCE 1 performed the best on all datasets compared to MCE 2 and 

MCE 3. On the other hand, MCE 2 demonstrated very good performance on DS 3 but only 

acceptable performance on DS 2 and DS 4. Notice that there is no graph provided for the predicted 

values from MCE 2 for DS 1 because, MCE 2 is not applicable due to lack of a continuous predictor 

to form the basis of the spline function. The appropriate statistic to measure the proportion of total 

variance explained by an estimation model is the coefficient of determination and it is termed 𝑅𝑅2. 

That is, the coefficient of variation provides a measure of how well the actual cost of products are 

predicted by the cost estimation models. We provide the  𝑅𝑅2 values for each MCE model in Table 

4.9. The maximum  𝑅𝑅2 value for each data set is in bold to show the best model fit among MCE 

1, MCE 2 and MCE 3. The 𝑅𝑅2 values of MCE 1 and MCE 3 from the table show that finding a 

well suited model for DS 1 is challenging due to lack of relevant continuous predictors in the 

dataset. Adding more variables to the MCE models for DS 1 might increase the true explanatory 

power of the models but unfortunately the dataset was strictly limited to only eight categorical 

predictors. However, this dataset is atypical as most manufactured products include both numeric 

and categorical cost drivers. For the other datasets, each MCE approach is able to explain the total 

variability with a high 𝑅𝑅2. Thus, none of the MCE models suffer from low prediction accuracy 

except in the instance for DS 1. For a better illustration of 𝑅𝑅2 (R-sq) values, we plotted the fitted 

values (predicted cost) by observed values (actual cost) in Figures 4.19, 4.20, 4.21, and 4.22 for 

DS1, DS 2, DS 3 and DS 4, respectively.  
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Table 4.9: Coefficient of determination (𝑅𝑅2) values for the MCE approaches 

𝑹𝑹𝟐𝟐   
  MCE 1 MCE 2 MCE 3 
 DS 1 63.49% N/A 53.19% 
 DS 2 99.94% 91.50% 84.63% 
 DS 3 96.83% 99.52% 90.49% 
 DS 4 93.69% 88.46% 76.47% 

 

 

 

 
 

Figure 4.15: Performance of the MCE models: Actual vs. Predicted Cost for DS 1 
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Figure 4.16: Performance of the MCE models: Actual vs. Predicted Cost for DS 2 
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Figure 4.17: Performance of the MCE models: Actual vs. Predicted Cost for DS 3 
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Figure 4.18: Performance of the MCE models: Actual vs. Predicted Cost for DS 4 
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Figure 4.19: Fitted values (predicted cost) vs. observed values (actual cost) along with the R2 
values (R-Sq) for DS 1 
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Figure 4.20: Fitted values (predicted cost) vs. observed values (actual cost) along with the R2 
values (R-Sq) for DS 2 
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MCE 1 MCE 2 MCE 3 

   
 
Figure 4.21: Fitted values (predicted cost) vs. observed values (actual cost) along with the R2 
values (R-Sq) for DS 3 
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Figure 4.22: Fitted values (predicted cost) vs. observed values (actual cost) along with the R2 
values (R-Sq) for DS 4 
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errors in the [−2.48, 3.74] TL interval and MCE 3 predictions deviate from the actual cost with 

±4.29 TL. It clearly shows that MCE 1 dominates the other two cost estimation methods based on 

smaller prediction error intervals in general. The error values fluctuate within [-36.26, 9.34], [-

13.26, 4.36] and [-44.98, 21.21] for DS 3 according to MCE 1, MCE 2 and MCE 3, respectively. 

MCE 2 certainly demonstrates the best performance among these three approaches in terms of 

overall error precision. For the last application problem, DS 4, [-0.65, 0.76], [-0.52, 0.83] and [-

0.71, 1.23] error spreads have been observed for MCE 1, MCE 2 and MCE 3, respectively. Please 

refer to Figures 4.23, 4.24 and 4.25 for a better understanding in the error distributions. Notice that 

observations are sorted in ascending order for the actual cost values and these observations are in 

the same order as they are in Figures 4.15, 4.16, 4.17 and 4.18. As you can clearly see from these 

graphs, manufacturing cost estimation models 1, 2 and 3 either overestimate the cost, perfectly 

locate the actual cost, and sometimes underestimate it. The distribution of errors are not skewed to 

the negative or positive regions but the magnitude of error increases as the actual cost increases. 

Therefore, there is not enough evidence to conclude that the estimation models are biased. The 

minimum, the maximum and percentile distributions of the error values generated by the cost 

estimation approaches are provided in Figure 4.26 for DS 1 to DS 4. For MCE 1 in the DS 2 and 

DS 4 graphs, the boxes are not visible because the upper and lower 25th percentile and the median 

values are all zeros. Notice that in Figures from 4.23 to 4.26 the error values are given in the 

original units, Turkish Lira (TL). The spread between the maximum and the minimum error values 

does not explain much because the most important measures for the prediction accuracy are the 

relative percentage errors. That is, instead of the magnitude of the error itself, the relative error 

values like the maximum ARE, the minimum ARE and MARE provide more valuable information.  
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Our cost estimation methodologies, MCE 1 and MCE 2, can be replicated as long as an 

identical R code is used. The performance of the clustering technique we employed, 𝑘𝑘-medoids, is 

not contingent on the random number seed because of the reasons discussed in Chapters 2 and 3. 

Also, NOMAD carefully optimizes the underlying spline parameters within the given interval. If 

one of these parameters is altered, the resulting spline model would be different than the original 

one. However, the “crs” package can identify a good parameter combination [98] including the 

number of segments, the knot placement strategy, and the categorical predictor bandwidth values 

with respect to the minimization of the underlying cross-validation function (Equation 3.14). 

We extended the analysis by increasing the order of the linear regression models for MCE 

1 and MCE 3 to observe the effect of polynomial degree on the major performance factor, MARE. 

Second degree (quadratic) predictors of the continuous design variables are included in the 

regression models. It is not logical to take the second degree of categorical predictors except 

ordinal ones. Even for the ordinal variables, there is no distinctive transition between categories. 

Let us consider the variable “Leg Style” in the socks manufacturing dataset. Leg Style has four 

categories, none, short, medium and long. There are no defined values for the upper and lower 

bounds of short, medium and long length for the leg style. Thus, adding a quadratic term to the 

regression model is not analytical. That is the reason why the categorical predictors are kept linear 

and only quadratic terms are added for the continuous predictors. In Table 4.10, we present the 

performance metrics for the second degree regression models of MCE 1 and MCE 3 for the 

application problems, DS 2, DS 3, and DS 4. We call the quadratic models MCE 1Q and MCE 3Q, 

respectively, in the table. Notice that DS 1 is not included in the second degree regression analysis 

because there are no continuous predictors in the dataset.  
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Figure 4.23: Observed prediction errors based on the performance of MCE 1 
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Figure 4.24: Observed prediction errors based on the performance of MCE 2 
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Figure 4.25: Observed prediction errors based on the performance of MCE 3 
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Figure 4.26: Box and whisker plots of error values generated by the MCE approaches 
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Table 4.10: Performance metrics of the quadratic estimation models for the application problems 

DS 2    
  MCE 1Q MCE 3Q 
 MARE 4.37% 43.22% 
 Min ARE 0.00% 0.00% 
 Max ARE 81.12% 440.98% 
 MSE 0.42% 93.49% 
 RMSE 6.50% 96.69% 

 

DS 3    
  MCE 1Q MCE 3Q 
 MARE 2.31% 12.22% 
 Min ARE 0.00% 0.00% 
 Max ARE 23.26% 44.41% 
 MSE 188.45% 1537.48% 
 RMSE 137.28% 392.11% 

 

DS 4    
  MCE 1Q MCE 3Q 
 MARE 9.69% 36.68% 
 Min ARE 0.00% 0.00% 
 Max ARE 250.10% 399.26% 
 MSE 1.34% 6.80% 
 RMSE 11.60% 26.08% 

 

 

 

 Compared with the linear models, as expected, there are slight improvements in the MCE 

1 model fit and MARE values for DS 2, DS 3 and DS 4. There is considerable improvement for 

DS 2 and DS 3 MARE performances when the quadratic terms are included. For DS 4, MSE and 

RMSE values are improved but the MARE value deteriorated from the linear MCE 3 model. 

Adding quadratic terms is expected to increase the overall prediction accuracy, but it may result 
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in overfit models for the cross-validated (that is, new) observations. Even though increasing the 

polynomial degree of the regression models seems like a good alternative to improve prediction 

accuracy, the models may become over parameterized. Considering the DS 4 MARE values, for 

even only one case, we proved that the improvement is not consistent as the polynomial degree 

increases. As a good illustration of the MARE (given in the y-axis) performances of MCE 1 (linear) 

vs. MCE 1Q (quadratic) and MCE 3 (linear) vs. MCE 3Q (quadratic) regression models for DS 2, 

DS 3 and DS 4, refer to Figures 4.27 and 4.28, respectively.  

Regardless of what parametric or non-parametric approach is chosen, manager and 

customer confidence in these methods is a known challenge. When designing a new product or 

manufacturing a customer’s new unique design, the focal point is to establish a price which 

maximizes customer value while still being profitable. Since an irreversible and large amount of 

capital is tied up in production elements, predicting manufacturing costs accurately is significant. 

Poorly established product prices may cause a loss of profit due to the gap between the expected 

cost and the actual cost or a loss of customers due to higher prices than competitors in the market. 

Our sophisticated cost estimation methodologies consistently demonstrated significantly better 

accuracy than a traditional regression approach. The cross-validated prediction results fortify the 

credibility of our suggested methodologies. There is no clear dominance between the categorical 

spline regression based approach and the cluster based cost estimation approach, but we can 

observe that the latter method is relatively more reliable when its performance on MARE is 

considered over four application problems as a whole.  
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DS 2 DS 3 DS 4 

   
 

Figure 4.27: MARE values for linear (MCE 1) vs. quadratic (MCE 1Q) regression models 
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Figure 4.28: MARE values for linear (MCE 3) vs. quadratic (MCE 3Q) regression models 
 

 

4.98%

4.37%

3.5%

4.5%

5.5%

Linear Quadratic

M
AR

E

5.81%

2.31%

1%

4%

7%

Linear Quadratic

M
AR

E

12.39
%

9.69%

8%

11%

14%

Linear Quadratic

M
AR

E

49.82
%

43.22
%

40%

46%

52%

Linear Quadratic

M
AR

E

15.42
%

12.22
%

10%

14%

17%

Linear Quadratic

M
AR

E

33.83
%

36.68
%

32%

35%

38%

Linear Quadratic

M
AR

E



128 
 

4.5   Manufacturing Cost Estimation User Interface 

One of the most important post analysis tasks is to generalize the R code to solve any 

problem with different sizes of datasets. It is a milestone to enable the technology transfer of the 

cost estimation approaches, clustering and spline based, with an end user graphical interface. We 

built an interface using the R package called “shiny” [119]. It is a web application framework to 

turn R scripts into interactive web applications. It has two main components: (1) Server side 

component that is responsible for the computational tasks and rendering plots and tables, (2) User 

interface component that is the actual interactive web interface with input entering elements such 

as check boxes, radio and action buttons, and other numeric and text input boxes. The interface is 

a web based application and we plan to publish it online in the future for cost estimation 

practitioners. It consists of four main tabs: (1) Load Data, (2) MCE 1, (3) MCE 2, and (4) MCE 3.  

The “Load Data” tab is for uploading a dataset to the system in a comma separated values 

format. In this tab, the user enters a vector representing the variable types as discussed in section 

4.1. A screenshot of the data loading tab is given in Figure 4.29. When the data upload is complete, 

user is notified with a success message and a table form of the dataset as shown in Figure 4.30.  

The “MCE 1” tab is for the clustering based cost estimation approach. It has two main 

parts. The first part has three inputs, namely the minimum number of clusters, the maximum 

number of clusters and a red dot to mark the selected number of clusters on the graphs. The second 

part has two inputs, the best number of clusters and the polynomial regression model degree: linear, 

quadratic or a higher degree. A screenshot of the clustering based cost estimation tab is given in 

Figure 4.31. The interface passes the given information to the server and the server side application 

renders the C-index, Gamma and silhouette width graphs based on the minimum and maximum 

number of clusters. The user is required to enter the best number of clusters to proceed to the cost 
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estimation step. The number of clusters can be determined by following the simple heuristic 

described in section 3.1.2. When the best number of clusters is entered, the application builds the 

final cluster contents and cluster specific estimation models and then produces the actual cost vs. 

predicted cost graph along with a table of predicted values (the column name is y_hat) for each 

data point. In this table, there is an extra column called “cluster” that shows in which cluster the 

specific data point is classified. A screenshot of the MCE 1 tab after solving a cost estimation 

problem is given in Figure 4.32. 

The “MCE 2” tab is for the spline based cost estimation approach. It has seven main input 

elements as discussed in section 4.3. The spline model inputs are maximum and minimum spline 

degrees, maximum and minimum number of segments, optimization complexity, knot placement 

strategy, spline basis, optimization algorithm, and the cross-validation function. A screenshot of 

the spline based cost estimation tab is given in Figure 4.33. All inputs are passed to the “crs” 

package and then a categorical spline regression model is constructed to predict manufacturing 

costs. The output is similar to the “MCE 1” tab’s output. It generates a graph of the actual vs. 

predicted costs and also a table of predicted values. A screenshot of the MCE 2 tab after solving a 

cost estimation problem is given in Figure 4.34. 

The last tab, “MCE 3”, represents the traditional cost estimation approach, a single 

polynomial regression model. It only has a single input for the regression degree. A screenshot of 

the single regression cost estimation tab is provided in Figure 4.35. Once the regression degree is 

determined (selected) a similar output is generated where the actual vs. predicted cost graph and 

the table of predicted values are shown. A screenshot of the MCE 3 tab after solving a cost 

estimation problem is given in Figure 4.36. 
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Figure 4.29: Data loading tab of the manufacturing cost estimation user interface 
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Figure 4.30: Data loading tab of the user interface after uploading a comma separated data file 
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Figure 4.31: Clustering based cost estimation (MCE 1) application tab in the user interface 
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Figure 4.32: Clustering based cost estimation (MCE 1) application tab after analysis  

 

 

 

 

 

 



134 
 

 

 

Figure 4.33: Splines based cost estimation (MCE 2) application tab in the user interface 
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Figure 4.34: Splines based cost estimation (MCE 2) application tab after analysis  
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Figure 4.35: Polynomial regression based cost estimation (MCE 3) application tab in the user 
interface 
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Figure 4.36: Polynomial regression based cost estimation (MCE 3) application tab after analysis 
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Chapter 5 

Conclusions and Future Research 

 

5.1   Conclusions 

In this research, we investigated ways of using clustering methods and splines to predict 

the manufacturing cost of a product without actually manufacturing it. The accuracies of the two 

methodologies presented in this work are assessed in comparison to each other and also a simple 

regression model with the absence of clustering approaches. The main concerns behind this 

research are to predict the manufacturing cost of a product without dealing with arbitrary 

assignments of statistical distributions to cost related attributes and without stating strong 

assumptions about parametric distributions. In real production systems often a variety of products 

are being manufactured under a single facility roof. Therefore, over a diverse product family, 

establishing only a simple accurate estimation model is challenging and even questionable. This 

motivated us grouping products according to their design features, common manufacturing 

operations or some other factors by dividing the whole database of products into neighborhoods. 

Then for each group of products (clusters), a cost estimation model is developed to predict the 

manufacturing cost of new product with using the cluster specific model. Also, we investigated 

whether implementation of a spline approach provides accurate predictions of manufacturing costs 

where splines constitute a reasonable approach for the nonparametric estimation of manufacturing 

cost functions. 
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In real applications, the most likely scenario is to have a set of data about products and 

their cost related attributes where these attributes are mixed categorical and numerical. 

Unfortunately, not every clustering algorithm is compatible with all types of data. As a result, we 

used the best possible clustering algorithm that can fulfill the requirements, namely 𝑘𝑘-medoids, 

and implemented an approach to handle mixed type of data. We developed cluster-specific 

regression models to predict the manufacturing cost of a new unique product design. We also 

suggested using another methodology, namely non-parametric regression splines, to overcome the 

limitations of cost estimation efforts for continuous predictors. In this process, implementation of 

kernel weighting in regression splines as suggested by Racine et al. [98] helped us to establish 

robust piecewise spline models. Finally, the leave-one-out cross-validation is integrated into the 

cost estimation module to assess the quality of these two methodologies for predicting the cost of 

prospective products.  

Our research intends to make the following contributions to practice:  

 

Contribution 1. We implemented the first manufacturing cost estimation approach using 

clustering techniques.  

We are the first to introduce a manufacturing costs estimation approach for mixed type of 

variables using clustering methods. To distinguish our work from others, this research is the first 

attempt in the manufacturing cost estimation literature that investigates the possibility of using 

partitioning methods to establish the price of a product before it is actually manufactured. Over a 

diverse product family, establishing only a single and simple but accurate estimation model is 

challenging. This motivated us to divide the whole database of products into neighborhoods until 

these neighborhoods become sufficiently homogenous. Using statistical terminology, we call these 
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neighborhoods, groups or clusters. We developed cost estimation regression models for each 

cluster. Since every current and historical product can be represented as points in multidimensional 

space with respect to their design attributes, we investigated in which cluster a new product falls. 

After assigning the new product to the best cluster, we used the cluster-specific estimation model 

to predict its manufacturing cost.  

 

 

Contribution 2. We implemented the first manufacturing cost estimation approach using splines.  

 In the literature, there are a number of different statistical models devised to predict the 

manufacturing cost of a product. However, using spline models has not been done since there is a 

limitation for building models based on only continuous predictors. However, in reality it is very 

likely to encounter mixed categorical and numeric design attributes in manufacturing processes. 

Categorical design attributes are inseparable or, in other terms, integral to estimation efforts due 

to their important contribution to the actual cost. In this research, we captured the complex 

relationships of categorical and numeric design attributes using categorical regression splines 

proposed by Racine et al. [98]. The recent developments in kernel weighting for categorical 

predictors along with tensor product regression splines have enabled us to deploy an efficient 

spline model to accommodate the existence of mixed categorical and numeric variables. It is 

expected that spline models will be used with accelerated frequency as a better substitute for linear 

regression by the non-parametric cost estimation community. 
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Contribution 3. In the presence of categorical and numeric design attributes, we implemented a 

simple heuristic procedure to determine the appropriate number of clusters when there is no prior 

knowledge about the number of product groups.  

 Existence of categorical and numeric design attributes in a dataset also constrains the 

applicability of a very common and effective procedure described in the user manual of SAS [79]. 

The procedure aims to derive the appropriate number of clusters by monitoring the consensus 

among three statistics, namely Sarle’s cubic clustering criterion, pseudo T2, and Calinski and 

Harabasz’s pseudo F. In the case of mixed design attributes, this approach is incompatible due to 

its limitation to continuous variables only. For 𝑘𝑘-medoids clustering, Rousseeuw’s silhouette 

width is recommended to check the novelty of the clustering content and the number of clusters. 

Since there is no definitive rule for the number of clusters, restricting the study only using one 

statistic may be inferior. Implementing a heuristic which is similar to the one devised in SAS is a 

logical approach because a consensus among multiple powerful statistics gives more leverage to a 

single value.  

Recall Milligan and Cooper’s investigation that assesses the performances of 30 statistics, 

the top five statistics are pseudo F, pseudo 𝑇𝑇2, 𝐶𝐶-index, Gamma and F-ratio, respectively [90]. In 

this list, only two out of five statistics are applicable for our general cost estimation approach. We 

combined these two statistics along with the silhouette width and implemented a procedure to 

establish the appropriate number of clusters. We monitor plots of the 𝐶𝐶-index, Gamma and 

silhouette width, where local peaks of the Gamma and silhouette width combined with local 

troughs of the 𝐶𝐶-index is our choice for the number of clusters.  
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5.2   Future Work 

 As we discussed earlier in the literature review section, most clustering techniques require 

a similarity measure to operate. The selection of similarity measure is important since a poorly 

chosen one may not locate the clusters correctly. Assignment of the similarity measure is usually 

made based on expertise in the application area where the requirements of the specific real-world 

problem is considered. Higher discrimination power is desired by practitioners to isolate the 

clusters that eventually maximize the inter-cluster variability relative to the within-cluster 

variability. No existing similarity measure can operate with the presence of mixed numeric and 

categorical design attributes in the same dataset. To overcome this issue, a robust alternative 

approach has been illustrated recently with the k-prototypes clustering algorithm where a weighted 

summation of the Euclidean distance (for continuous variables) and the simple matching 

coefficient (for categorical variables) is used as the objective function [26]. Unfortunately, the 

objective function attempts to integrate a quadratic expression with a linear expression based on a 

weighting factor assigned according to an ad hoc logic. Instead, consolidating two linear or two 

quadratic dissimilarity expressions might be mathematically more meaningful. Our approach 

combines numeric and categorical design attributes with a linear expression, namely Gower’s 

index. Even though using linear expressions for each variable type seems consistent, there might 

be a lack of discrimination power. A direction of future research should be in developing a 

comprehensive similarity measure that demonstrates high inter-cluster variability (high 

discrimination power) while being able to handle mixed categorical and numeric design attributes. 

 The ultimate goal of the clustering algorithms is to find the optimum cluster contents. 

However, most of these algorithms are heuristics and may end up finding effective but suboptimal 

groups. A deterministic model such as a mixed integer programming model can be implemented 
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to obtain the optimal cluster results for the cost estimation models building phase. Furthermore, 

an adaptive heuristic such as simulated annealing or genetic algorithm may be used for clustering 

to improve the clustering analysis. Additionally, extending this research to the k-prototypes 

algorithm mentioned in the literature review chapter is a promising alternative to handle the 

existence of both numeric and categorical design attributes. 

 Another possible future research is to focus on using regression trees. A regression tree is 

a variant of decision trees where real-valued functions are approximated. The regression tree 

methodology may be generalized to manufacturing cost estimation since it is not limited to 

continuous predictors only. That is, using mixed numeric and categorical data is allowed in the 

regression tree building process.  

 In this research, irrelevant predictors are removed from the MCE 1, MCE 2 and MCE 3 

models as described in Chapters 3 and 4. Future research may consider the information gain 

criterion when deciding on the inclusion of a candidate predictor in the cost estimation model. This 

approach could yield an information rich but parsimonious set of cost drivers to be used in 

predicting cost using our clustering or spline approach. 

 As a final point, a more efficient splines approach should be developed to handle larger 

datasets since calculating tensor products for the piecewise spline functions and optimization of 

bandwidths are computationally costly operations. According to our observations on the 

application problems, the current approach might have difficulties for high dimensional datasets 

running on computers with lower memory and processor specifications. To fulfill the expectations 

about improved accuracy in cost estimation with an effective quick price quote delivery, a 

compressive but less resource consuming splines approach could be developed.  
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