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Abstract

We study some novel approaches to risk-averse stochastic optimization. Our

goal is to numerically evaluate whether these methods result in an improved decision

making under conditions of uncertainty. The methodology used relies on the financial

portfolio optimization model used as a testing framework. We track the behavior of

trading strategies made based on Conditional-Value-at-Risk (CVaR), Higher Moment

Coherent Risk (HMCR) measure and Log-Exponential Convex Risk (LogExpCR)

measures, three of the approaches recently proposed to deal with risk in stochastic

operations research problems. We use historical data from S&P 100 assets during the

period from 2006 to 2015, which includes the Global Financial Crisis. In our analysis

we have observed that more advanced HMCR and LogExpCR measures result in

better performance compared to CVaR portfolios, especially in the case of heavy-

tailed distributions of the uncertainties. While this is in accordance with most of

the previous findings presented in the literature this work represents an attempt at

a more comprehensive comparative study of risk measures. We have also observed

some behaviors that go against general expectations, and hence require additional

attention in the future research.
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Chapter 1

INTRODUCTION

Risk, understood as a potential for losses, is inevitably present whenever decisions

have to be made under conditions of uncertainty. Intuitively, as long as the decision

maker cannot accurately predict the future, the decision making process is risky.

Furthermore, anticipation of risk is not enough. Indeed, although we can expect

the risks, quantifying them is required to measure and manage the performance of

uncertain operation. For that reason, mainly in the area of the operations research

and the finance, efforts on designing tools for quantifying and modeling risk have

been made. While various risk measures have been presented, the study of reliability

and accuracy of such tools should be considered as a separate research question.

Therefore, to generate a coherent and reliable result, it will be important to

develop better risk measures and to supplement their weaknesses based on the as-

sessment of existent risk measures. The ultimate goal here is to identify certain

properties and characteristics of the problems under consideration that would favor

one risk measurement approach over another, thus letting the decision maker choose

the one best suited for the particular model.

1.1 Background

Historically, the Mean-Variance model(MV) pioneered the area of quantifying

the risk. Yet, very quickly it was understood that it does not have certain properties

that would be required from a practical risk measure. For example, variance equally

penalizes positive and negative outcomes that deviate from the average, which is

clearly not ideal. Another widely used approach is known as the Value at Risk (VaR),
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which is equivalent to so-called chance constraints. Still, there exists a large body of

literature documenting issues and limitations associated with this approach.

Recently, a number of approaches have been proposed in the literature, that are

aimed at identifying both rigorous ways of defining measures of risk and particular

candidates for practically useful measures. Conditional Value at Risk (CVaR), pro-

posed by Rockafellar and Uryasev (2000), is suggested as more reliable and alternative

risk measure than the VaR. It has been shown to possess most of the important prop-

erties required from a measure of risk, and is slowly becoming a de-facto standard in

stochastic optimization. Further, Krokhmal (2007) and Vinel and Krokhmal (2015)

proposed a novel approach to generate so-called coherent risk measures more easily.

Higher Moment Coherent Risk measure (HMCR) is one of the results following this

advance. Furthermore, the Convolution Representation is presented for generating

suitable risk measures for math programming. By adding utility function to the Con-

volution Representing, the Log-Exponential Convex Risk (LogExpCR) measure was

defined.

Although these coherent and suitable for optimizing risk measures are presented,

finding pros and cons of the risk measure and comparing each other still remain to

study. To observe the performance of risk measure, Rockafellar and Uryasev(2000)

suggested the portfolio optimization problem. Since the portfolio is selected based

on random variables which have rate of returns with probability and the result can

explain numerically, it is a suitable tool for comparison. Not only in this case, HMCR

and LogExpCR also use the portfolio optimization for the verification and comparing

with existent risk measures.

These former studies lead us to examine three coherent and convex risk measures

stated above and compare them. To compare the performance of risk measure, we

will also use the portfolio optimization problem suggested by many researchers.
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1.2 Problem Statement

The purpose of our research is as follows. First, we will examine historical risk

measure development footstep. Next, we will choose risk measures which can present

a coherent and reasonable result. Since our research is focused on making decisions

based on stochastic programming, mathematical suitability will be also considered.

Secondly, we will observe how the risk measures quantify and expect the future

risk, and how the quantified risk reduces the worst case in the future. To satisfy our

purpose, the decision that yields the most minimized risk should be made under the

uncertainty. After making a decision, the decision should be realized in the future.

According to the decision procedure, we could observe how the risk measure control

risk.

Finally, we will evaluate the observing data objectively further, and we intend

to find the characteristic of risk measures and analyze their behavior under various

conditions.

Note that partially due to the relative novelty of the considered approaches, to

the best of our knowledge, there has not been a rigorous study of risk measures in

the literature. Hence, the aim of this research is to provide a comprehensive analysis

comparing some recent developments using a practical real-world application area

and data.

1.3 Research Methodology

As we noted above, we need a suitable stochastic problem that makes a decision

under risk distribution and the problem is able to quantify risk. In this study, we

will employ financial portfolio optimization model for the following reasons. First,

the financial market has always been a major driving force behind research in risk-

averse stochastic operations research. While other application areas constantly arise,
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financial optimization remains a standard test model for novel results in the field.

Second, there exists an abundance of publicly available real-life historical data on the

performance of financial assets. There are thousands of stocks traded daily throughout

the world and information on real-time prices can be easily accessed. Finally, we

expect that so-call heavy-tailed behavior of the uncertainty plays a major role in the

relative performance of risk measures, and financial data is known to exhibit such

behavior. Moreover, by adjusting the time frame of the assets’ returns we can change

the “heavy-tailness” of the uncertainty, and hence, control for it in our study.

In this thesis, the portfolio optimization problem is defined as a minimizing

risk with portfolio return constrained by the threshold. Additionally, Risk function

of the problem will take the CVaR, HMCR, LogExpCR or VaR respectively. The

portfolio optimization problem will be solved by the following procedure. 1,000 rate

of return random variable sets are generated by the historical stock market data

from the past to one day before the rebalancing date. By using this scenario set,

the portfolio optimization problem will be solved. Then, the portfolio return will be

realized according to the optimal solution over the next few days. We will repeat

this procedure a hundred times. This procedure will be coded in C++ software, and

solved by CPLEX (a commercially available solver).

The S&P 100 historical stock market data from January 2006 to December 2015

will be used in our research. However, for the research purpose, we will select 50

stocks from S&P 100. This is done in order to limit the number of decision variables,

and thus reduce the computational effort. Additionally, we select for the more heavy-

tailed distributions according to their kurtosis. To illustrate different risk conditions,

we will conduct an experiment changing various parameter values within the same

historical data set.

The average portfolio returns and the Sharpe ratio will be used for evaluating the

performance of the portfolios. Average portfolio return is the primary measure for an
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investor, since it directly corresponds to the gain from trading. Since the Sharpe ratio

adjusts the expected portfolio return by the standard deviation of return, the Sharpe

ratio is well known standard measure evaluating the relative risk of a portfolio.

Not only are we comparing risk measures by the performance of the generating

portfolio, but we also intend to find stock selecting tendency by tracking the optimal

solution and solution stock’s kurtosis and skewness.

We would like to emphasize here that our goal here is to study the novel tools

proposed in the operations research literature, and not to use the presented portfolio

optimization problem for making a good invest model or obtaining an economical

result.

1.4 Research Plan

This research proceeds as follows, Chapter 2 describes the literature review of

the general risk measures and the portfolio optimization. Chapter 3 constructs the

portfolio optimization problem implemented by three types of risk measures. Chapter

4 analyzes the result of the portfolio problem model from Chapter 3. Here we separate

the analysis within and between the historical data set. Furthermore, we examine the

tendency of selecting stocks of each risk measure. Chapter 5 summarizes and presents

conclusions.
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Chapter 2

LITERATURE REVIEW

Since Markowitz set up portfolio’s risk as the variance of return in his modern

optimization problem, many other risk measures have been researched. Thus, we will

review studies that focused on the characteristic of well-known risk measurements

and coherency. Then, we will review portfolio optimizing with risk measures being

used in our research. In our literature review, we follow ”Modeling and Optimization

of Risk” review paper presented in Krokhmal et al. (2011).

2.1 Review of Risk Measures

As mentioned above, Markowitz (1952, 1959) presented the foundations of the

modern theory of risk management. In his mean-variance (MV) model, he set the

risk as the variance of the portfolio σ2 (X (x, ω)) under scenario ω and wanted to

minimize it under the condition that expected portfolio return exceeds a predefined

threshold r0.

min
x∈s
{σ2 (X (x, ω)) |E [X (x, ω)]} ≥ r0 (1)

Intuitively, given equal expected return an investor is assumed to prefer the outcomes

with less variance, i.e., with the more sure realization of the expected reward. How-

ever, the variance is clearly not ideal for this purpose. To begin with, the decision

maker should not penalize a deviation from the average if this deviation is positive,

i.e., brings in a better reward, which is not the case in MV model.

Hence, Markowitz (1987) redeemed this theoretical weakness by replacing the

variance with the lower standard semi-deviation and these types of risk measures
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were called as the Downside Risk Measures. The Downside Risk Measures are also

seen in more recent works by Ogryczak and Ruszczyński (1999, 2001, 2002).

One of the most popular risk measurement, also a downside risk measurement, is

the Value at Risk JP Morgan (1994); Jorion (1997); Duffie and Pan (1997). The Value

at Risk (VaR) is denoted as V aRα(X) and this notation means that the value of X is

the highest loss with probability α. If we assume X is $10,000 and α is 95%, it means

that we have less than 5% of probability of losing over $10,000. Mathematically,

V aRα(X) is defined as

V aRα (X) = sup {z |P {X ≤ z} < α} (2)

However, because of non-convexity, minimization of risk using the VaR is not efficient.

Moreover, lack of convexity results in counter-intuitive behavior in some application

leading to sub-optimal performance. Hence, while the definition of VaR is easily

explained and is widely used in practice, it is also generally agreed that it is not

methodologically sound approach to risk-averse stochastic optimization.

While a number of alternative candidates to downside measures of risk have been

proposed in the literature, many have been shown to lack in one aspect or another.

Artzner et al. (1999) proposed a standard for constructing “good” risk measures.

Artzner et al. (1999) and Delbaen (2002) presented four axioms for being a good

risk measure and called risk measures satisfying these four requirements as coherent

measures of risk. The coherent measure of risk is defined as mapping ρ : X 7→ R that

satisfies the following four axioms:

(A1) monotonicity: X ≤ 0⇒ ρ ≤ 0 for all X ∈ X,

(A2) sub-additivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X, Y ∈ X,

(A3) positive homogeneity: ρ(λX) = λρ(X) for all X ∈ X, λ > 0
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(A4) translation invariance : Tρ(X + a) = ρ(X) + a for all X ∈ X, a ∈ R.

The Conditional Value at Risk(CVaR), Higher Moment Coherent Risk Mea-

sures(HMCR), and Log-Exponential Convex Measures of Risk(LogExpCR) that we

will discuss on our thesis satisfy all four axioms.

Rockafellar and Uryasev (2000, 2002) designed Conditional Value at Risk (CVaR)

measure to remedy VaR, mainly non-convexity. They defined CVaR as the average

of loss that exceeds V aRα(X) in a confidence level α:

CV aRα(X) = −E{X|X < −V aRα(X)} (3)

They also proved that the CVaR optimization problem can draw optimal value by

this function,

CV aRα(X) = min
η∈R

η + (1− α)−1E(X − η)+ (4)

and this result helps to implement coherent risk measurement to the stochastic opti-

mization problem.

To generate coherent risk measures more easily, Krokhmal (2007) proposed the

stochastic optimization problem which can draw a coherent measure of risk as the

optimal value.

ρ(X) = inf
η∈R
{η + φ(X + η)} (5)

Krokhmal (2007) also introduced the family of Higher Moment Coherent Risk mea-

sures (HMCR) by using equation (5). HMCR designed to accumulate exceeding loss

by the use of higher moment. Krokhmal defined HMCR with certain value of p( ≥

1) and confidence level of α:

HMCRp,α(X) = min
η∈R

η + (1− α)−1‖(X − η)+‖p (6)
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Another advanced method that can present risk measure is the convolution represen-

tation, further, by summing up utility function, the Certainty Equivalent Measures

are presented.

ρ(X) = min
η
η + (1− α)−1ν−1Eν([X − η]+) (7)

More recently, Vinel and Krokhmal (2015) presented Log Exponential Convex Risk

Measure (LogExpCR).

ρ(X) = min
η
η + (1− α)−1 logλEλ

[X−η]
+ (8)

Since LogExpCR implements the deutility function which has a rational preference,

this risk measure gives a higher penalty to extreme loss than a moderate one.

As seen above, recent risk measure developments have a tendency to focus on

the tail of the risk distribution. The reason for this tendency is that tail parts of

the heavy-tailed risk distribution have the probability as much as we might ignore it.

However, losses or damages that came from the probability of the tail parts can be

much more tremendous than our expectation. Kousky and Cooke (2009) presented

evidence that the notion of fat (or heavy) tails plays a crucial role in evaluating risk.

These properties can make risk measures neglect catastrophes even if much more risk

can be made when they happen together. For this reason, researchers design risk

measures to emphasize the tails of the respective distribution.

2.2 Portfolio Optimization

In order to assess the performance of risk measurement, the portfolio optimization

has been widely used by many researchers. The portfolio optimization problem can be

solved by either maximizing profit under constraining risk measure or the minimizing

risk measure under the constraining profit level.
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Rockafellar and Uryasev (2000) show that the portfolio optimization problem

under the CVaR measure constraints can be solved by linear programming, which

can minimize the CVaR. Furthermore, they solved the portfolio optimization with

historical data under the CVaR constraints and compared this result with the MV

model of Markowitz. They concluded that the difference between them was not

significant but this result was drawn by close to normal historical data.

Krokhmal (2007) compared the HMCR (p = 3) with the MV, CVaR and SMCR

(p = 2) by using the portfolio optimization problem. He tried to remedy shortcomings

of the previous research by picking a high kurtosis historical data set. The experiment

was conducted under various conditions by changing the threshold returns and the

risk measure’s alpha level. In the result, he concluded HMCR and SMCR were well

performed compared to the Mean-Variance and CVaR.

Vinel and Krokhmal (2015) conducted the portfolio optimization problem anal-

ysis with LogExpCR and CVaR measures and compared its portfolio. This paper

used three types of the historical data set that are corresponding to 2-day, 10-day,

and 1-month return. They stated that these changes were the key in the comparison

and LogExpCR over performed in more heavy-tailed distribution.

A few other case studies have been performed in the literature evaluating the

performance of various risk measures in portfolio optimization model, to name a

few, Rockafellar et al. (2006b,a); Pastor and Stambaugh (2000); ORTOBELLI et al.

(2005); Rachev et al. (2009); Allen et al. (2016) among others. For example, Allen

et al. (2016) emphasized the influence of the global financial crisis and showed that

in some cases even a naive “equal distribution” approach can yield best results.

2.3 Summary

Historically, there have been many attempts at quantifying and controlling risk.

Although Markowitz presented a pioneering method to measuring the risk, it had an
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obvious weakness. Many follow-ups, which mitigate some of the drawbacks of previous

measures, also have certain issues. This led the researchers to propose axioms of

relatively good risk measures and the risk measure satisfying all four axioms defined

as the coherent measurement of risk. Since CVaR, SMCR, and LogExpCR satisfy

axioms of coherent measures of risk, we will choose these three measures for comparing

them. Furthermore, they also have convexity which is the important property in the

stochastic programming area.

For comparing risk measures, we will use the portfolio optimization problem

as conducted many times in previous studies. From the previous research, we have

found important points of research method. First, heavy-tailed distribution of his-

torical data set can lead to the significant difference between risk measures. Second,

according to the change of parameter, risk measures behaved differently. Finally

changing scenario set could have an effect on managing extreme losses. Thus we will

use high kurtosis historical data with different types of return calculation and change

parameters for comparison.
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Chapter 3

RESEARCH MODEL DESCRIPTION

In this research, we will examine the general portfolio optimization problem.

Then, we will show the implementation of the Conditional Value at Risk(CVaR)

measure, the Higher Moment Coherent Risk Measure(HMCR), and Log-Exponential

Convex Risk(LogExpCR) measure. Furthermore, we will also present the historical

data set and its statistical properties. Finally, we will explain the realization proce-

dure of the decision that is made by the past scenarios expected value.

3.1 General Portfolio Optimization Problem

The portfolio optimization problem is, basically, the stochastic programming

problem that seeks the portfolio that has the highest expected return while the risk

is minimized. The decision variables of the problem are the asset proportion of

the portfolio and values are defined without any future realizations. The random

variables are the historical rate of return set. In this problem, the random variables

are distributed according to a set of discrete scenarios for each asset. The general

formulation considered here is following Krokhmal (2007):

min
x

ρ(−r>x) (1)

s.t. −I>x = 1 (2)

E(r>xi) ≥ R (3)

xi ≥ 0. (4)
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where x = (x1, . . . , xn)> is the vector of stock proportion in the portfolio, r =

(r1, . . . , rn)> is the random vector of assets’ returns, and I = (1, . . . , 1)>. In the real

life, a balancing portfolio has many considerations. However, we will only constrain

budget and return value, because the purpose of this research is not the development

of a practical financial tool.

Loss function

First of all, since this problem is designed to find minimum risk, we need loss

function that will be decided by decision variables and random variables. According

to risk function, this loss will be quantified and compared. In this problem, reward

function can be recognized intuitively as the return of portfolio and also, in the same

sense, loss function will be negative of it., X(x, ω) = −r>xi.

Objective function

According to Rockafellar and Uryasev (2000), if the reward function is concave

and risk measure is convex, the maximizing reward under risk constraints and the

minimizing risk under reward constraints generate the same efficient frontier. Based

on this study, although the portfolio optimization problem is made for maximizing

profit, we can define our objective function as minimize risk function to satisfy our

purpose. Furthermore, our risk function ρ(x) will implement the CVaR, HMCR, and

LogExpCR.

Budget Constraints

In constraints (2), sum of xi is limited by one and this means that stocks are

selected under the limited budget.

Value Constraints

Since we minimize our risk measures under required reward, constraints should

be imposed on the minimum required level. Therefore, constraints (3) defined the

predetermined return R as the minimum requirement for the expected return of

portfolio. Furthermore, in our study R is calculated as the highest average return of
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stocks according to the scenario data set multiplied by a predetermined parameter

r0, R = r0maxi{Eωri(ω)}.

Generating historical data set

Each random return ri of stock i has 1000 discrete scenario realizations according

to

rij =
Priceij+d − Priceij

Priceij
, j = 1, . . . , 1000 (5)

and we assumed all scenarios have equal probability, p(ω) = 1/1000. The prices are

understood as the close price of the selected assets.

3.2 Conditional Value at Risk Model

Conditional Value at Risk(CVaR) is defined as the average of loss that exceeds

V aRα(X) in a confidence level α. If we assumed f(x, y) as loss function with decision

vector x and random vector y, the probability Ψ(x, η) where f(x, y) is not exceeding

η is

Ψ(x, η) =

∫
f(x,y)≤η

p(y)dy (6)

and Ψ(x, η) becomes the cumulative distribution function as a function of η for

fixed x.

According to Ψ(x, η) distribution, we can define VaR(x) with confidence level α,

V aRα(X) = min{η ∈ R : ψ(x, η) ≥ α} (7)

and CVaR(x) with the confidence level α,

CV aRα(X) = (1− α)−1
∫
f(x,y)≥V aRα(X)

f(x, y)p(y)dy (8)

However, we need to obtain the value of VaR for calculating CVaR value.
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Alternatively, CVaR can be calculated by the optimization problem,

CV aRα(X) = min
η∈R

φ(x, η) = min
η∈R

η + (1− α)−1E(f(x, y)− η)+ (9)

where [x]+ = max{x, 0}.

For implementing CVaR into the portfolio problem, it can be shown that

min
(x,η)∈X×R

φ(x, η) = min
x∈X

CV aRα(X) (10)

Although we can find our objective function as minη∈R η + (1− α)−1E(f(x, y)− η)+,

we still need to implement E(f(x, y)− η)+ function to linear programming. We can

rewrite the objective function as below.

η + (1− α)−1E(f(x, y)− η)+

= η + (1− α)−1p(y)(f(x, y)− η)+ (11)

= η + (1− α)−1
m∑
j=1

pjmax{(f(x, y)− η), 0}.

We can further linearize objective function by adding constraints

f(x, y)− η ≤ zj, zj ≥ 0, j = 1, . . . , 1000 (12)

where zj = max{(f(x, y)− η), 0}.
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Therefore our portfolio problem with CVaR risk measure can be defined as,

min η + (1− α)−1
m∑
j=1

pjzj (13)

s.t. zj ≥ −
m∑
j=1

n∑
i=1

rijxi − η, zj ≥ 0, j = 1, . . . ,m (14)

n∑
i=1

xi = 1,
1

m

m∑
j=1

n∑
i=1

rijxi ≥ R, xi ≥ 0, (15)

which is a linear programming problem.

3.3 Higher Moment Coherent Risk Measure Model

Higher Moment Coherent Risk(HMCR) family is derived from an earlier study

which claimed that if function φ satisfies monotonicity, sub-additivity, positive ho-

mogeneity and φ(η) > η, then the optimal value of the ρ(X) = infη∈R η + φ(X − η)

is a coherent risk measure.

For generating HMCR, function φ(X) is defined as (1− α)−1‖(X − η)+‖p, where

‖(X)+‖p = (E|X|+)1/p and this satisfies the conditions stated above (Krokhmal,

2007). Therefore, family of HMCR can be defined as,

HMCRp,α(X) = min
η∈R

η + (1− α)−1‖(X − η)+‖p (16)

Since the first moment is E|X| and the case where p is 1 results in minη∈R η + (1 −

α)−1E(f(x, y)− η)+, the special case where p=1 is the same as CVaR.
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In our research, we will use Second Moment Coherent Risk (SMCR) measure,

i.e., HMCR with p = 2. Similarly to the previous case,

η + (1− α)−1‖(f(x, y)− η)+‖2

= η + (1− α)−1[E{(f(x, y)− η)2}2]+1/2

= η + (1− α)−1[Emax{f(x, y)− η)2, 0}]1/2 (17)

= η + (1− α)−1p(y)1/2max{f(x, y)− η)2, 0}.

Further,

t ≥ (w2
1 + · · ·+ w2

j )
1/2

wj ≥ −
m∑
j=1

n∑
i=1

rijxi − η, wj ≥ 0, j = 1, . . . ,m. (18)

Finally, we can derive our portfolio optimization problem with SMCR as

min η + (1− α)−1
1

m1/2
t (19)

s.t. t ≥ (w2
1 + · · ·+ w2

j )
1/2 (20)

wj ≥ −
m∑
j=1

n∑
i=1

rijxi − η, wj ≥ 0, j = 1, . . . ,m (21)

n∑
i=1

xi = 1,
1

m

m∑
j=1

n∑
i=1

rijxi ≥ R, xi ≥ 0. (22)

This is an instance of the so-called second-order cone programming problem and there

exists an extensive body of literature discussing such problems. For more details on

the computational aspects of the general HMCR optimization problem, see Krokhmal

(2007), Vinel and Krokhmal (2014a), Morenko et al. (2013) and Vinel and Krokhmal

(2014b).
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3.4 Log Exponential Convex Risk Measure Model

The certainty equivalent risk measure is the theoretical base of the Log-Exponential

Convex Measures of Risk(LogExpCR). With the one-sided deutility function v(t),

convolution-based measure of risk, ρ(X) = infη η + φ(X − η) can derive class of

certainty equivalent risk measure:

ρ(X) = min
η
η + (1− α)−1ν−1Eν([X − η]+) (23)

Log-Exponential Convex Measures of Risk(LogExpCR) is defined by taking exponen-

tial one-sided deutility function ν(t) = −1 + λ[t]
+

:

ρ(λ)α (X) = min
η
η + (1− α)−1 logλEλ

[X−η]
+ (24)

Furthermore, since exponential deutility function is designed to give a higher value

to the more extreme point, the LogExpCR measure puts additional emphasis on the

tail of the distribution on the random vector.

Therefore, our portfolio problem with the LogExpCR is defined as,

minη + (1− α)−1 logλEλ
[X−η]
+ (25)

s.t.
n∑
i=1

xi = 1,
1

m

m∑
j=1

n∑
i=1

rijxi ≥ R, xi ≥ 0. (26)

This model can be classified as a convex optimization problem. It can be difficult to

solve in general, so in our work we employ an approximation procedure described in

Vinel and Krokhmal (2016, 2015).
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3.5 Dataset Description

S&P 100 stocks from January 2006 to December 2015 were used to generate the

rate of return scenario set. Since the CVaR, HMCR and LogExpCR are suitable to

quantify risk by implementing heavy-tailed loss distribution, we select 50 stocks from

S&P 100 list according to their kurtosis.

Generally, kurtosis greater than 3 indicates a fatter tail than the normal distri-

bution. For research purpose, we select 40 heavy-tailed stocks (kurtosis ≥ 6) and 10

normal distributed stocks (kurtosis ≈ 3) based on 10-day term return calculation.

By computing kurtosis of scenario set we can also get the average kurtosis of 9.40

with 56.86 and 3.51 being the maximum and minimum. Thus we can conclude this

scenario set is not normally distributed. Figure 3.1 illustrates the actual movement

of the rate of return and the probability plot for a sample asset.

(a) Movement of a stock (b) Probability plot

Figure 3.1: The graphical description of scenario set
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3.6 Portfolio rebalancing

Our basic portfolio optimization problem has a ten-day rebalancing period. First

the problem is solved based onm historical scenarios and optimal portfolio is obtained.

Next, for the next ten time periods, the value of the portfolio is tracked. After that,

the historical scenario set is updated with the newly realized information and a new

optimal portfolio is determined. The procedure is repeated until the end of the

planning horizon. Figure 3.2 illustrates this process. Note that at any moment,

the decisions are made based on historical data, while the quality of the outcomes is

judged based on the future outcomes.

Figure 3.2: Timeline of the portfolio rebalancing
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Chapter 4

ANALYSIS RESULT

As mentioned above, we find an optimal portfolio based on historical stock market

data set. After finding optimal portfolio composition, we realized portfolio during a

10-day period with stock’s own “future” rate of return. Furthermore, we repeated

this process over 100 times. For the research purpose, within the same historical data

set, we changed r0 and confidence level α of risk measures. We also use 3 types of

historical data for the purpose of finding different behavior between various data set.

To compare risk measures, we will consider the average portfolio return and the

Sharpe ratio. As the portfolio is realized a hundred periods, we can observe a hundred

portfolio returns. Thus we can average those portfolio returns. However, if we observe

only the return of portfolio, analysis can have a weakness to ignore the high deviation

of return value. Since high deviation can be highly undesirable, we need a different

tool that implements both expected return and deviation. The Sharpe ratio could be

suitable assessment tool for comparison of generated portfolios because it is the ratio

of the excess return and the standard deviation. It is calculated as follows

Sharpe ratio =
E[Returnportfolio −Retunrnbenchmark]√
var[Returnportfolio −Retunrnbenchmark]

(1)

We defined the benchmark return as the average return of 50 stocks which is used in

the problem. As per the definition, having higher ratio represents a better portfolio.

4.1 Research Hypotheses

Hypothesis 1.
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In the previous study Krokhmal (2007) and Vinel and Krokhmal (2015), it was

observed that HMCR and LogExpCR can generate portfolios that are more profitable

than CVaR in most cases. Therefore, we expect that the portfolio returns based on

HMCR and LogExpCR will be higher than CVaR for some of the parameter settings.

Hypothesis 2.

We expect that as r0 increases, the differences in performance between the risk

measures will be reduced.

Hypothesis 3.

We expect that HMCR and LogExpCR measures will achieve better Sharpe ratios

compared to CVaR.

Hypothesis 4.

Since the HMCR and the LogExpCR model are designed to emphasize the tail

part of loss distribution more so than CVaR, we expect that HMCR and LogEx-

pCR will show better performances in the heavy-tailed distribution compared to the

normally distributed cases.

Hypothesis 5.

We expect that the difference in performance between the measures will be mir-

rored in the composition of the optimal portfolios found. Moreover, we expect that

HMCR and LogExpCR will produce more diverse portfolios that is composed of more

stocks.

4.2 Discussion of Result Within the Same Rebalancing Parameter Value

In the first set of experiments, we have considered various values for parameters

r0, and α. First, the rate of return threshold for selected portfolio parameter ‘R’,

which is calculated by r0, R = r0maxi{Eωri(ω)}, is defined by setting r0 as 1, 10, 30,

50, and 80%. Secondly, the Confidence level of each risk measurement is selected as
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α = 99, 90, 80 and 70%. Furthermore, historical data is fixed as the 10-day rate of

return historical data.

Obtained results are summarized in the table 4.1 and behavior of each risk

measurements are presented in the figure from 4.1 to 4.9. In the table 4.1, we

exhibit average returns of the portfolio and sharp ratios under various parameter r0

and α.
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Exp. return Sharpe ratio

α r0 CVaR LogExp HMCR CVaR LogExp HMCR

99% 0.01 0.00494 0.00830 0.00831 -0.10395 0.03690 0.03713

0.1 0.00493 0.00830 0.00831 -0.10424 0.03693 0.03713

0.3 0.00746 0.00876 0.00885 0.01105 0.05692 0.06019

0.5 0.01083 0.01209 0.01204 0.12661 0.14748 0.14545

0.8 0.01462 0.01481 0.01475 0.16619 0.17128 0.17014

90% 0.01 0.00607 0.00824 0.00831 -0.05280 0.03509 0.03723

0.1 0.00607 0.00824 0.00831 -0.05280 0.03509 0.03723

0.3 0.00694 0.00876 0.00885 -0.01368 0.05688 0.06027

0.5 0.00946 0.01191 0.01204 0.09899 0.14275 0.14558

0.8 0.01341 0.01486 0.01474 0.15661 0.17234 0.17014

80% 0.01 0.00574 0.00823 0.00831 -0.07081 0.03491 0.03723

0.1 0.00574 0.00823 0.00831 -0.07081 0.03491 0.03724

0.3 0.00675 0.00875 0.00885 -0.02356 0.05632 0.06023

0.5 0.00900 0.01194 0.01204 0.08057 0.14357 0.14565

0.8 0.01313 0.01487 0.01474 0.15223 0.17260 0.17013

70% 0.01 0.00567 0.00823 0.00831 -0.07414 0.03486 0.03721

0.1 0.00567 0.00823 0.00831 -0.07414 0.03486 0.03720

0.3 0.00655 0.00874 0.00885 -0.03436 0.05612 0.06024

0.5 0.00865 0.01197 0.01204 0.06499 0.14452 0.14563

0.8 0.01321 0.01487 0.01474 0.15896 0.17252 0.17011

Table 4.1: The table of average portfolio return and the Sharpe ratio under various
condition

24



Figures from 4.1 to 4.5 present a different performance according to changing

r0.

Figure 4.1: The behavior of portfolio value under r0 = 1%, α = 90%

Figure 4.2: The behavior of portfolio value under r0 = 10%, α = 90%
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Figure 4.3: The behavior of portfolio value under r0 = 30%, α = 90%

Figure 4.4: The behavior of portfolio value under r0 = 50%, α = 90%
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Figure 4.5: The behavior of portfolio value under r0 = 80%, α = 90%

Figures from 4.6 to 4.9 present a different performance according to changing

α.

Figure 4.6: The behavior of portfolio value under r0 = 50%, α = 70%
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Figure 4.7: The behavior of portfolio value under r0 = 50%, α = 80%

Figure 4.8: The behavior of portfolio value under r0 = 50%, α = 90%
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Figure 4.9: The behavior of portfolio value under r0 = 50%, α = 99%

4.2.1 Changing Parameter r0

As we expected in Hypothesis 1, generally, both LogExpCR and HMCR portfo-

lios exhibit a higher average returns compared to CVaR. Furthermore, we recognize

that the average return of the HMCR is slightly higher than the LogExpCR in the

lower threshold situation but in the higher threshold, the opposite result was observed.

However, since the difference between them is not significant, we can conclude Log-

ExpCR and HMCR have a similar performance in all situations. This might imply

that the two risk measures generated a similar portfolio, and further they quantify

risk as a similar value in this loss distribution.

All three portfolios have higher average returns at higher values of r0. This is

due to the fact that every risk measure is forced to compose the portfolio based on the

stocks capable of achieving the target return value. Moreover, the difference between

the approaches diminishes as the value of r0 grows.(Hypothesis 2)

Lastly, since the Sharpe ratios for the portfolios generated with HMCR and

LogExpCR are larger than for the ones due to CVaR in all cases, which indicates

that the use of more advanced risk measures does lead to a reduced riskiness of the

portfolios (Hypothesis 3).
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4.2.2 Changing Parameter α

Observe that CVaR portfolio shows more noticeable changes compared to Log-

ExpCR and HMCR portfolios when varying the value of α. In all three cases this

parameter regulates the “cut-off point”, i.e., the part of the distribution that should

be considered risky. In case of CVaR this relationship is straightforward as evident

from the definition. For HMCR and LogExpCR it is harder to analyze. The fact

that the portfolios in this case are less affected by the changes in parameter α may

indicate that the range of α used here is insufficient to adequately illustrate the whole

variability of these approaches. Hence, a more thorough analysis could be performed

here in the future.

4.3 Discussion of Result Between The Different Rebalancing Parameter

Values

By varying the rebalancing period duration we can observe the effect that the

heaviness of the tails of the loss distributions has on the performance of the risk

measures. Indeed, it is well-documented that short-term price of an asset is usually

much more noisy than long-term. Similarly, relatively high swings in price in either

direction are more likely if the price is tracked on a daily basis, compared to say,

monthly changes. Hence, we expect that the one-day return will be more volatile

than the 20-day return.

Obtained results are summarized in the table 4.2 and 4.3. The table 4.2 shows

the average returns of the portfolios, and the table 4.3 gives the Sharpe ratios.
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1-day 10-day 20-day

α r0 CVaR LogExp HMCR CVaR LogExp HMCR CVaR LogExp HMCR

99% 0.01 0.00483 0.0061 0.00613 0.00494 0.0083 0.00831 0.00548 0.00594 0.00231

0.1 0.00483 0.0061 0.00613 0.00493 0.0083 0.00831 0.00548 0.00594 0.00231

0.3 0.00525 0.00649 0.00653 0.00746 0.00876 0.00885 0.00745 0.00909 0.00322

0.5 0.00837 0.00776 0.00772 0.01083 0.01209 0.01204 0.00956 0.01078 0.00415

0.8 0.01238 0.01438 0.01448 0.01462 0.01481 0.01475 0.01449 0.01347 0.00689

90% 0.01 0.00455 0.006 0.00613 0.00607 0.00824 0.00831 0.00509 0.00587 0.00231

0.1 0.00457 0.006 0.00613 0.00607 0.00824 0.00831 0.00509 0.00587 0.00231

0.3 0.00538 0.00646 0.00653 0.00694 0.00876 0.00885 0.00676 0.00906 0.00322

0.5 0.00803 0.00795 0.00773 0.00946 0.01191 0.01204 0.00948 0.0109 0.00415

0.8 0.01325 0.01429 0.01448 0.01341 0.01486 0.01474 0.01245 0.01347 0.00689

80% 0.01 0.00435 0.006 0.00613 0.00574 0.00823 0.00831 0.00558 0.00588 0.00231

0.1 0.0044 0.006 0.00613 0.00574 0.00823 0.00831 0.00558 0.00588 0.00231

0.3 0.0056 0.00645 0.00653 0.00675 0.00875 0.00885 0.00648 0.00906 0.00322

0.5 0.00827 0.00793 0.00772 0.009 0.01194 0.01204 0.00872 0.01091 0.00415

0.8 0.01307 0.01429 0.01448 0.01313 0.01487 0.01474 0.01287 0.01347 0.00689

70% 0.01 0.00461 0.006 0.00613 0.00567 0.00823 0.00831 0.00539 0.00588 0.00231

0.1 0.00465 0.006 0.00613 0.00567 0.00823 0.00831 0.00539 0.00588 0.00231

0.3 0.00588 0.00645 0.00653 0.00655 0.00874 0.00885 0.00634 0.00907 0.00322

0.5 0.00861 0.00792 0.00772 0.00865 0.01197 0.01204 0.00846 0.01092 0.00415

0.8 0.01302 0.01429 0.01448 0.01321 0.01487 0.01474 0.013 0.01347 0.00689

Table 4.2: The table of average portfolio return under between different historical
data set
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1-day 10-day 20-day

α r0 CVaR LogExp HMCR CVaR LogExp HMCR CVaR LogExp HMCR

99% 0.01 -0.1047 -0.051 -0.0499 -0.104 0.0369 0.0371 -0.0774 -0.058 -0.1934

0.1 -0.1047 -0.051 -0.0499 -0.1042 0.0369 0.0371 -0.0774 -0.058 -0.1934

0.3 -0.0965 -0.0333 -0.0317 0.0111 0.0569 0.0602 0.0083 0.0721 -0.1647

0.5 0.0504 0.0241 0.0222 0.1266 0.1475 0.1455 0.0738 0.1194 -0.1151

0.8 0.1366 0.1741 0.1759 0.1662 0.1713 0.1701 0.1515 0.1323 -0.0089

90% 0.01 -0.1131 -0.0551 -0.0497 -0.0528 0.0351 0.0372 -0.0927 -0.0606 -0.1932

0.1 -0.1122 -0.0551 -0.0497 -0.0528 0.0351 0.0372 -0.0927 -0.0606 -0.1932

0.3 -0.0874 -0.0353 -0.0314 -0.0137 0.0569 0.0603 -0.0213 0.0707 -0.1647

0.5 0.037 0.0326 0.0225 0.099 0.1428 0.1456 0.0911 0.1233 -0.115

0.8 0.1568 0.1721 0.176 0.1566 0.1723 0.1701 0.132 0.1322 -0.0088

80% 0.01 -0.1202 -0.0552 -0.0498 -0.0708 0.0349 0.0372 -0.0742 -0.0605 -0.1933

0.1 -0.1186 -0.0552 -0.0497 -0.0708 0.0349 0.0372 -0.0742 -0.0605 -0.1934

0.3 -0.0794 -0.0355 -0.0314 -0.0236 0.0563 0.0602 -0.0366 0.071 -0.1647

0.5 0.0483 0.0318 0.0224 0.0806 0.1436 0.1456 0.0645 0.1237 -0.1151

0.8 0.1567 0.1721 0.176 0.1522 0.1726 0.1701 0.1463 0.1323 -0.0088

70% 0.01 -0.1114 -0.0552 -0.0498 -0.0741 0.0349 0.0372 -0.0871 -0.0604 -0.1934

0.1 -0.1101 -0.0552 -0.0499 -0.0741 0.0349 0.0372 -0.0871 -0.0603 -0.1934

0.3 -0.0673 -0.0357 -0.0314 -0.0344 0.0561 0.0602 -0.0453 0.0711 -0.1647

0.5 0.0658 0.0312 0.0223 0.065 0.1445 0.1456 0.0555 0.1241 -0.1151

0.8 0.1557 0.172 0.176 0.159 0.1725 0.1701 0.1528 0.1323 -0.0088

Table 4.3: The table of the Sharpe ratio under between different historical data set
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From figure 4.10 to figure 4.12 show the behavior of each risk measure.

Figure 4.10: The behavior of portfolio value using one-day historical data under
r0 = 30%, α = 90%

Figure 4.11: The behavior of portfolio value using 10-day(two weeks) historical data
under r0 = 30%, α = 90%
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Figure 4.12: The behavior of portfolio value using 20-day(one month) historical data
under r0 = 30%, α = 90%

First of all, we expect that the short-term historical rate of returns set is dis-

tributed more closely to heavy tailed while the long-term historical rate of returns

set is close to the normal distribution. Therefore, one-day return will be the short-

term historical data set and the 20-days return will be the long-term historical rate

of return.

However, although we expected (Hypothesis 3) the LogExpCR and the HMCR

portfolios show better average returns and Sharpe ratios compared to CVaR in the

one-day and 10-day return data, we could not observe a significant difference be-

tween short-term rate of return scenario set and long-term rate of return scenario set.

Therefore, we can not conclude that the LogExpCR and the HMCR measures risk

more effectively than the CVaR in the heavy-tailed distribution.

However, in the 20-day return scenario, we observed an unexpected result. The

HMCR exhibits the lowest average portfolio return and Sharp ratio. The difference

in Sharpe ratios between the CVaR and the LogExp is not regular. At this point,

this observation remains unexplained and we intend to study it more closely in the

future.
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4.4 Discussion of The Optimal Portfolio Composition

We have focused on kurtosis and skewness of the selected stocks to find whether

the distributions were heavy tailed or normal. For this research, we arranged the

optimal solution data from the portfolio problem with the 10-day return over 50

periods and calculated the kurtosis and skewness by using the 1,000 rate of return

scenario set.

To present tendencies of risk measures intuitively, we used bubble plots where

the bubbles represent the selected stocks. The bubbles are scattered on the plain

which has X axis as the kurtosis and Y axis as skewness. Furthermore, bubble sizes

are determined by the proportion in the optimal portfolio.

Obtained plots are presented in the figure 4.13, 4.14 and 4.15 for r0 = 10, 50

and 80%, respectively. In the plot, each color presents selection due to each of the

risk measure.

(a) CVaR (b) LogExp

(c) HMCR (d) All together

Figure 4.13: The bubble plot of stock composition under r0 = 10%, α = 90%
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(a) CVaR (b) LogExp

(c) HMCR (d) All together

Figure 4.14: The bubble plot of stock composition under r0 = 50%, α = 90%

(a) CVaR (b) LogExp

(c) HMCR (d) All together

Figure 4.15: The bubble plot of stock composition under r0 = 80%, α = 90%
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We assumed that the stock selecting tendency of the risk measure will be related

to the tail of the distribution. Since the kurtosis greater than three means that the

distribution is more heavy tailed, the stock on the right side indicates that the stock

has heavy tailed scenario sets.

According to the plot, the bubbles are located mostly on the left side. Therefore,

we can conclude the risk measure prefer to select comparatively normally distributed

stocks.

Observe that the assets selected by HMCR and LogExpCR do not differ much,

and are more diverse compared to CVaR. In other words, we can conclude that

higher values of Sharpe ratio achieved by HMCR and LogExpCR are accompanied

by a higher level of diversification, which is in accordance with the general assumption

that diversification leads to better performance.(Hypothesis 5)

A weakness of this approach is the fact that kurtosis and skewness of stocks were

not varied evenly. Hence, if we can generate multivariate random variables based on

selected mean, kurtosis, and skewness, this research could derive more reliable results.
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Chapter 5

SUMMARY AND CONCLUSION

In this research, we have studied Conditional Value at Risk(CVaR), Higher Mo-

ment Coherent Risk(HMCR), and Log Exponential Convex Risk(LogExpCR) mea-

sures. These risk measures have a number of common characteristics: the axioms of

coherency (or convexity)are satisfied, they are convex functions that are well-suited

for stochastic programming, and risk is quantified based on the tail of the distribution.

However, the difference between them is the way that the tails are handled. Both

HMCR and LogExpCR involve a nonlinear approach, which complicates the defini-

tion, yet promises a less risky performance due to a better penalization of excessive

losses.

We have used a financial portfolio optimization model in order to evaluate the

properties of these approaches. This model lets us perform computational experi-

ments with real-life data and is flexible enough to allow for variation of parameters

and different uncertainty types. In order to consider various risk condition, we set

five different values of the parameter r0, four different confidence levels within the

same scenario set, and we also generated three different scenario sets based on rebal-

ancing periods. The average of the portfolio returns and the Sharpe ratios are used

to compare between risk measures.

Chapter 2 introduced the previous work on the risk measure development. We

surveyed the relevant literature and justified the choice of the of three measures

identified above.

Chapter 3 constructed the portfolio optimization models which is defined as the

minimizing risk which will take the CVaR, HMCR, and LogExpCR respectively, with
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portfolio return constrained by the threshold. We also presented the implementation

of each risk measures by proceeding some mathematical procedures. Furthermore, we

examined our scenario set whether expected value of the whole scenario set distributed

as heavy tailed or normally, then shows how the portfolio is rebalanced.

Chapter 4 analyzed the result derived from the model described in Chapter 3.

Before the analysis, we presented our hypotheses based on the definition of each risk

measure. The result based on these two values was as following. First of all, both the

HMCR and LogExpCR exhibit similar performances in most cases but performed bet-

ter than CVaR. Secondly, parameter changes were significantly affected the optimal

portfolios selected. Furthermore, changing the scenario set also yielded different be-

haviors of risk measures, with more heavy-tailed distributions resulting in the better

relative performance of both nonlinear approaches.

For this research, our contribution is that first, we presented the CVaR, HMCR

and LogExpCR comparison that is not studied yet in various situations. We compared

them not only in terms of portfolio performance but also based on the tendency of the

optimal portfolio composition. In addition, we re-verified that the portfolio optimizing

problem is suitable to compare between risk measures in the sense that we can change

risk conditions by changing constraints or parameters and also can observe behaviors

of risk measure in the manipulated scenario set.

The following future research directions are anticipated. First, we have observed

an unexpected discrepancy between HMCR and LogExpCR portfolios in the case of

light-tailed distribution of returns. A careful analysis of this phenomenon could yield

additional insights into the relative performance of the risk measures. Secondly, a sim-

ilar analysis could be performed with other decision making models. While portfolio

optimization is widely used as a testing model for risk-averse stochastic optimization,

other interesting models include natural disaster related decisions, insurance premium
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evaluation, military applications, etc. Finally, a computational study involving even

more approaches to uncertainty quantification could be performed.
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