
Design and Simulation of Cryogenic Test Circuits

by

Kyle Vickers Owen

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 6, 2016

Keywords: electronics, integrated circuit, ring oscillator, multiply-accumulate, SRAM

Copyright 2016 by Kyle Vickers Owen

Approved by

Michael C. Hamilton, Chair, Associate Professor of Electrical and Computer Engineering
Mark L. Adams, Assistant Professor of Electrical and Computer Engineering

Victor P. Nelson, Professor of Electrical and Computer Engineering
Charles D. Ellis, Research Associate

Abstract

New technologies are being introduced in anticipation of the end of Moore’s Law, such

as quantum computing, in hopes that the speed gains from the different topologies will offset

the increase in size of the devices. Fast digital logic families have also evolved, including

reciprocal quantum logic, rapid single flux quantum logic, and several more, that operate

using quantum effects while being founded on conventional digital logic. One main issue with

these logic families, and quantum computing for that matter, is their reliance on cryogenic

temperatures to operate. Though these logic families are viable technologies, they are not

very efficient in terms of data throughput unless the bandwidth in and out of the cryogenic

dewar is sufficiently high. This requires high speed level shifters and generally protocol

translators, such as serializer/deserializers, in order to interface to current generation digital

logic. Thus, there is much interest in the operation of currently available low power CMOS

circuits at cryogenic and near-cryogenic temperatures. Test circuits in a variety of current

generation CMOS processes have been designed and simulated, in hopes to show functioning

circuits at cryogenic temperatures. Test circuits range from simple ring oscillators to static

and dynamic memory structures to more complicated synthesized ALU-like circuits, such as

a multiply-accumulate unit.

ii

Acknowledgments

I would like to thank Dr. Michael Hamilton for his encouragement and guidance as my

professor, advisor, and mentor during the past two years.

I would also like to thank Dr. Charles Ellis for his several years of mentoring me in the

microfabrication lab and helping me develop a career path that is both rewarding and fun.

I would like to thank Drs. Victor Nelson and Mark Adams for their review of this thesis.

I would like to thank the individuals at Lincoln Laboratory, especially Drs. Peter Gross-

mann and Phillip Bailey, for their insight into the intricacies of Cadence Virtuoso, Encounter,

and other related tools.

I would like to thank my undergraduate research assistants, including SueAnne Griffith,

Hunter Burch, Andrew McCrabb, Thomas Seitz, Hayden Burch, Shane Williams, and Robert

Christiansen. Their efforts in the research group have been truly invaluable.

I would like to also thank Dr. Thomas Burch and Patti Burch, for helping me stay

motivated, and for being my family away from home.

Finally, I am very thankful for my own family, Dr. John Owen, Nancy Owen, and Evan

Owen, for their words of encouragement throughout the years, particularly in pursuing higher

education.

This thesis is dedicated to my grandmother, Ann Jackson, who has always believed in

me, but may not understand most of this thesis.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . ix

List of Abbreviations . x

1 Introduction . 1

2 Ring Oscillators . 3

2.1 Background . 3

2.2 32 nm Ring Oscillators . 5

2.2.1 Schematic . 6

2.2.2 Layout . 7

2.2.3 DRC and LVS . 9

2.2.4 Parasitic Extraction . 10

2.3 90 nm Ring Oscillators . 12

2.3.1 Schematic . 12

2.3.2 Layout . 14

2.3.3 DRC and LVS . 18

2.3.4 Parasitic Extraction . 18

3 32-bit Multiply-Accumulate Unit . 20

3.1 Background . 20

3.2 Hardware Description Language . 20

3.3 Simulation . 20

3.4 Layout . 21

iv

3.5 DRC and LVS . 23

4 Static Random Access Memory . 24

4.1 Background . 24

4.2 Schematic . 25

4.3 Simulation . 29

4.4 Layout . 32

4.5 DRC and LVS . 33

5 Conclusion and Future Work . 34

5.1 Conclusion . 34

5.2 Future Work . 34

Bibliography . 35

Appendices . 36

A MATLAB Code . 37

A.1 SRAM Static Noise Margin Analysis . 37

A.1.1 Parser . 37

A.1.2 Grapher . 39

A.1.3 Analyzer . 40

A.1.4 Inscribed Square - Read . 41

A.1.5 Inscribed Square - Write . 42

B IC Manage Tutorial . 44

B.1 Adding a new user . 45

B.2 Adding a new PDK project . 48

B.3 Add variant to existing project . 51

B.4 Add libraries to existing variant . 55

B.5 Adding unmanaged libraries . 59

B.6 Adding a new workspace . 62

B.7 Adding library properties . 65

v

B.8 Managed vs. unmanaged libraries . 68

B.9 Editing a view . 70

B.10 Canceling a checkout . 79

B.11 Reverting to an older version . 82

C Plotting Schematics Tutorial . 87

C.1 .cdsplotinit Contents . 87

C.2 schematic_beautify.sed Contents . 88

D ADE Tutorial . 92

E LVS Tutorial . 114

E.1 lvs.runset Contents . 121

F DRC Tutorial . 123

F.1 cell_noden.runset Contents . 130

F.2 chip_den.runset Partial Contents . 132

G PEX Tutorial . 133

G.1 90 nm PEX Setup . 134

G.2 32 nm PEX Setup . 139

G.3 pex.runset Contents . 145

H Encounter Tutorial . 147

H.1 Behavioral Verilog . 147

H.1.1 mac32_dual_wrapper.v Contents . 147

H.2 Tcl Scripts . 149

H.2.1 rtl_rvt.tcl Contents . 149

H.2.2 top_level.tcl Contents . 149

H.2.3 pr.tcl Contents . 150

vi

List of Figures

2.1 One of sixteen ROs in the 32 nm core. 6

2.2 The completed 16-RO chip. 7

2.3 The completed 16-RO core. 8

2.4 A single RO with schematic overlay. 9

2.5 A single RO extracted from the core, used for PEX. 10

2.6 The measured RO frequency vs. PEX frequency from simulation at RT. 11

2.7 The RO schematic as used for the 90 nm chip. 12

2.8 The divider schematic as used for the 90 nm chip. 12

2.9 The completed 90 nm RO chip. 14

2.10 One of two full speed ROs on the 90 nm chip. 15

2.11 One of two divided ROs on the 90 nm chip. 16

2.12 “Plaid” capacitor used for bypass across power rails. 17

2.13 The 90 nm layout used for PEX. 18

2.14 Expected frequencies of the 90 nm RO chip at 4.2K. 19

3.1 The completed 32 nm 32-bit MAC chip. 21

vii

3.2 The completed 32 nm 32-bit MAC core. 22

4.1 The 14 nm butterfly test schematic. 25

4.2 The 14 nm 3, 2, 2 bit cell schematic. 26

4.3 The 14 nm sense amplifier schematic. 27

4.4 The 14 nm top level SRAM circuits schematic. 28

4.5 The 14 nm SRAM simulation results showing successful reads and writes. 29

4.6 Static noise margin for “322” bit cell. 30

4.7 Static noise margin for “332” bit cell. 30

4.8 Static noise margin for “542” bit cell. 31

4.9 The completed 14 nm SRAM test chip. 32

4.10 The completed 14 nm SRAM test circuits. 33

viii

List of Tables

4.1 Read and Write SNM Summary (0.8 V) . 31

ix

List of Abbreviations

ADE Analog Design Environment

BEOL back end of line

CDL circuit design language

CDS Cadence Design Systems, Inc.

CSV comma-separated values

DRAM dynamic random access memory

DRC design rule checking

FD fully depleted

FEOL front end of line

GDSII graphical database system, version II

HVT high voltage threshold

IC integrated circuit

LFSR linear feedback shift register

LVS layout versus schematic

LVT low voltage threshold

MAC multiply-accumulate unit

x

PCell parameterized cell

PD partially depleted

PDK process design kit

PEX parasitic extraction

RO ring oscillator

RQL reciprocal quantum logic

RSFQ rapid single flux quantum

RT room temperature

RTL register-transfer level

RVT regular voltage threshold

SerDes serializer/deserializer

SNM static noise margin

SOI silicon on insulator

SRAM static random access memory

SVT super-high voltage threshold

xi

Chapter 1

Introduction

The state of current-generation electronics is truly staggering. Fifty years ago, the

mere thought of having the computational power of every computer in the world combined

could not be fathomed. Computers ran at a maximum of 1MHz, with little hope of parallel

processing. Some computers required massive amounts of power, but that was not near as

much of a concern as it is nowadays, as many of today’s computers are intended to be battery

powered. As technology proceeded to shrink, computers became faster and and required less

power to the point of even being portable, or perhaps luggable. With the silicon die shrinking

further as transistor sizes decrease, cooling the die becomes quite problematic. In some cases,

the power dissipated per unit area exceeds 1000Wcm−2; more power per unit area than a

rocket nozzle. [1] For advanced computing to continue at such a pace, other technologies

other than CMOS may need to be considered.

Quantum computing, for instance, relies on a probabilistic approach, versus conventional

digital computers which can perform one mathematical operation per CPU at a time. This

probabilistic nature requires new algorithms, and even though the processing of some quanta

of data is near instantaneous, it requires numerous cycles in order to have some level of

certainty of the right answer. Quantum computing relies on storing information in a very

low energy state, thus requiring superconducting electronics. To date, no room temperature

superconductors exist, and the superconductors that work well for such applications require

temperatures below 20K.

Fortunately, computer scientists can get some of the speed benefits without having to

understand and develop completely new algorithms for computing with qubits. Technologies

such as RQL, RSFQ, and other quantum-based digital logic families offer very high speeds

1

but still operate digitally, using ordinary bitwise operations. Thus, conventional computers

can be built, even if they don’t use a single silicon transistor. Such technologies rely on

superconducting lines and Josephson junctions, which still require cryogenic environments

to operate.

Large cryogenic cooling systems are very expensive, and cannot handle significant ther-

mal loads. For example, a fairly standard cryocooler, the SHI RP-082B2, has a heat capacity

of 1W at 4.2K. [2] This limits the types of devices or the number of devices in the system.

If a superconducting device begins to dissipate too much power, even if it’s not too much for

the cooling system, the temperature of the die may exceed the critical temperature of the

superconducting lines. This would result in a chip that is no longer superconducting. Thus,

keeping power dissipation very low is a necessity.

The speed of a cryogenically cooled superconducting computer is limited by the data

throughput to and from the computer. High speed coaxial cables add to the thermal load of

the system, so these are often kept to a minimum. The pulses used by RQL and RSFQ are

extremely small, both in amplitude and time, so level converters must be used. Thus, there

is a need for conventional CMOS devices that can operate at relatively low temperatures,

perhaps slightly warmer than the rest of the superconducting electronics.

Beyond simple level converters, having other (warmer) CPUs near the superconducting

computer would allow for added processing capability by moving more data back and forth

between the high speed superconducting computer and the outside world. Superconducting

memories have a relatively low density, meaning that the data would need to be swapped

fairly often to a slightly slower but larger memory; hence, the need for high density and low

power memory structures within the cooling system.

This thesis will cover such test circuits as ring oscillators, a multiply-accumulate unit,

and basic SRAM structures. Design information and simulation results are covered. A large

appendix provides more information on how these circuits were generated.

2

Chapter 2

Ring Oscillators

2.1 Background

Ring oscillators are a useful and simple devices for use as “canary” circuits, those that

can alert the foundry to problems and variations during the run, as well as providing suitable

test structures for characterizing new processes. They are able to provide data, depending

on construction, for gate capacitance, overlap capacitance, resistance, and other MOSFET

C-V characteristics and general parasitics. Since frequency and power measurements are

relatively straightforward, ring oscillators are a suitable choice for designers. The following

equations describe other common extracted parameters from ROs. [3]

The number of stages is an odd number, and thus, is represented by (2α + 1), where

α is an integer. α should be sufficiently high as to average out noise and variations in the

manufacturing process.

(2α + 1) = number of stages

The stage delay, τp, of an RO is calculated from the RO period, Tp, or the RO frequency,

f . The average of the pull-up (τpu) and pull-down (τpd) delay is also equal to the stage delay.

τp =
(τpu + τpd)

2
=

Tp

2(2α + 1)
=

1

2(2α + 1)f

The switching capacitance per stage, Csw, can be calculated from the current consumed

by the switching transistors, the number of stages, the voltage, and RO frequency, as seen

below. IDDA represents the measured active current, and IDDQ represents the measured

quiescent current.

3

Csw =
(IDDA− IDDQ)

(2α + 1)VDDf

From the switching capacitance per stage and stage delay, the switching resistance per

stage, rsw, can also be calculated.

rsw =
τp
Csw

The power per stage, Psw, can be calculated from the voltage and switching current.

Psw = VDD(IDDA− IDDQ)

Another parameter useful for characterizing processes is the power-delay product (PDP),

also known as the switching energy, which can be calculated by the product of the switching

power per stage and the stage delay.

PDP = τpPsw

These extracted parameters provide a good figure of merit to compare processes.

4

2.2 32 nm Ring Oscillators

Several RO designs have been taped out in a 32 nm process, including a 16-RO design

featuring decoding logic to enable exactly one RO, a multiplexer to select the output of the

enabled RO, and a divider, to scale down the frequency to allow less expensive test setups

to measure the device. Each RO in this configuration has 101 stages.

Twin 6-RO chips have also been taped out, differing only in threshold voltage. Each

RO has a separate enable and output pins, and each RO output is divided. Some ROs have

5 stages and others have 199 stages, hoping to yield more insight into reliability testing at

the very high frequencies (above 10GHz) generated by the 5 stage devices.

The 16-RO design will be covered in detail below.

5

2.2.1 Schematic

The initial core layout was developed from a custom-written Verilog netlist, but subse-

quent designs proved far easier to develop from schematics. Though the use of Encounter

Place and Route can save some time during the layout phase, Encounter does not easily

place components in the optimal position. The routing is also highly non-deterministic, so

from run to run, the design may look drastically different. This is not suitable for test cir-

cuits such as ROs that require parasitic elements per stage to be matched as accurately as

possible.

For parasitic extraction, a schematic was generated for a single ring oscillator in the

core. Figure 2.1 shows the sample schematic with 101 inverting stages.

Figure 2.1: One of sixteen ROs in the 32 nm core.

This particular RO is a 101 stage oscillator using 100 4x inverters and a NAND gate

for enable, with a 7.5x inverter providing a inverting buffered output. There consists several

other devices in the core that have very similar topologies, differing only in threshold voltage

and drive strength. The more complicated ring oscillators have load cells between stages to

measure other MOSFET parameters, which consist of transistor-based cells with the gates,

sources and drains tied in various manners to the power rails, each other, and the input and

output of the neighboring inverters.

6

2.2.2 Layout

The core for the 16-RO chip was generated using an Encounter-based flow, covered in the

Chapter 3. This is discouraged for new RO designs for the aforementioned reasons, notably

the lack of control of parasitic elements between stages. Once the core was completed, it

was manually wired up to the pad frame. Figure 2.2 shows the completed chip.

Figure 2.2: The completed 16-RO chip.

7

The core, expanded in Figure 2.3, is quite small in comparison to the rest of the chip,

and though bypass capacitors are distributed within the core, more could be done to improve

the power integrity, perhaps something closer to what was later done with the 90 nm RO

chip as covered in Section 2.3.

Figure 2.3: The completed 16-RO core.

Within the core, 16 ROs are partially visible, with six at the top, six at the bottom, and

two on either side in the middle. The rest of the logic, including a divider, multiplexer, and

demultiplexer/decoder, are distributed around the core, but tend to live near the center.

8

Figure 2.4: A single RO with schematic overlay.

Each RO was constructed using a complex script to create rectangular ROs with a

serpentine path. This was in an attempt to reduce parasitics within each RO while still

maintaining an Encounter-driven flow. Again, modern RO designs should avoid such a flow

to give even more control of such parasitics. Figure 2.4 shows the overlaid schematic on a

layout.

2.2.3 DRC and LVS

Design rule checking, as covered in Appendix F, passed at the top level, and the chip was

successfully taped out. Layout vs. schematic, as covered in Appendix E, was also performed

successfully. However, due to lack of simulation of the divider, it was not determined until

the chip was back from fabrication that the divider was held in a state of constant reset, due

to the use of a TIEHI cell on the active high reset input, instead of a TIELO cell. Simulating

would have immediately shown this fault. Thankfully, the chip included a full-speed output,

which bypasses the faulty divider entirely, and thus, the chip could still be measured as

intended.

9

It cannot be stressed enough that passing DRC and LVS is not a substitution for a

design review, especially without simulation results.

2.2.4 Parasitic Extraction

Parasitic extraction, or PEX, is covered in Appendix G, and was performed after fabri-

cation. A single RO was extracted from the core layout, as running PEX on the entire core

proved to be too time consuming and CPU intensive for both PEX and simulation. The

single RO took several minutes to extract, and several hours to sweep over a wide voltage

range.

Figure 2.5: A single RO extracted from the core, used for PEX.

As seen in Figure 2.5, the single RO still includes filler cells and partial power rings, in

an attempt to capture more of the original construction used within the core. The schematic

used for this PEX run can be seen in Figure 2.1. From PEX simulation and actual measure-

ments from the lab, the two were compared.

10

0.4 0.5 0.6 0.7 0.8 0.9 1

100

200

300

400

500

600

700

800

900

Voltage (V)

F
re

q
u

e
n

c
y
 (

M
H

z
)

32SOI 101−Stage 4x RVT RO Full Speed Frequency

PEX

Actual

Figure 2.6: The measured RO frequency vs. PEX frequency from simulation at RT.

As seen in Figure 2.6, the two are markedly similar. This shows that simulating with

parasitics can be a very good way of determining if the digital circuit will function as expected

in real life. Unfortunately, the PEX models do not work at cryogenic temperatures as the

models were not designed to operate over such a wide temperature range, but perhaps in

the future, such models can be extracted from test results through testing at cryogenic

temperatures.

11

2.3 90 nm Ring Oscillators

The 90 nm RO chip was constructed differently than the 32 nm RO chip. Instead of 16

ROs tied together with multiplexers, demultiplexers, and dividers, there are four total ROs

on the chip. Each RO is composed of 198 inverters and a single NAND gate for enable, with

a drive strength of 1x.

2.3.1 Schematic

The RO schematic can be seen in Figure 2.7, which resembles the 32 nm RO with

the exception of two inverters feeding the NAND gate, used to create a sharper rise when

enabling the device, as well as the lack of an inverting buffer on the full speed output. The

output buffer was moved to the divider schematic, but electrically, it is very similar to the

previous design.

Figure 2.7: The RO schematic as used for the 90 nm chip.

Figure 2.8: The divider schematic as used for the 90 nm chip.

12

Two ROs feature the divider, as seen in Figure 2.8, but two others are divider-less. The

full speed ROs are still buffered through the same inverting buffer arrangement as seen in

the bottom of the divider schematic.

The divider consists of eight D flip-flop stages, each dividing the frequency by two, for

a total scale factor of 256. The output frequency of each independent RO is delivered to a

pad driver to drive the highly-capacitive pad.

13

2.3.2 Layout

The layout differs highly from the previous 32 nm RO. Instead of an Encounter-driven

flow, every hierarchical layer was captured in both schematic and layout form, and LVS and

DRC were used at every level of the hierarchy.

Figure 2.9: The completed 90 nm RO chip.

14

The completed chip can be seen in Figure 2.9. The four ROs are located near the middle

of the chip. They divide the core into 9 separate sections. The blank-appearing places are

actually filled with vertical natural capacitors, seen in Figure 2.12. The pad frame uses wider

lines for power and ground connections, and thus, the power integrity of this chip would be

improved compared to the thinner lines found in the 32 nm version. The separate enable

lines allow the chip to be powered but not enabled for static power measurements; this was

not possible with the 32 nm chip.

Figure 2.10: One of two full speed ROs on the 90 nm chip.

15

The layout for the full speed RO, seen in Figure 2.10, shows a power ring for distributing

VDD and VSS within the core. Connections are made to the main power rails running

horizontally and vertically in green and blue, respectively, through many vias for lower

resistance. The buffer at the top left drives a wide line to eventually drive a pad driver.

Figure 2.11: One of two divided ROs on the 90 nm chip.

The layout for the divided RO, seen in Figure 2.11, is nearly identical to the full speed

version, with the exception of the D flip-flops added on top of the main RO.

16

One improvement to the power integrity of this chip was the introduction of a “plaid”

patterned capacitor.

Figure 2.12: “Plaid” capacitor used for bypass across power rails.

This “plaid” capacitor offers capacitance figures comparable to that of the vncap PCell

found within the technology, but offers lower resistance from end to end. Since it distributes

power horizontally and vertically on alternating metal layers, it ties in nicely to the main

power ring structure set up by the pad frame. This capacitor is also much more voltage

tolerant than a traditional MOSFET gate capacitor as the dielectric between metal layers

has a higher breakdown voltage than the thin gate oxide of a MOSFET, which is desirable

for stress and reliability testing.

17

2.3.3 DRC and LVS

The design passes DRC with the exception of density rules. As mentioned in the DRC

tutorial, failing density rules is acceptable if the manufacturer or aggregator runs their own

density fill algorithms, but do not assume this is always the case. The design also passes

LVS at the top level.

2.3.4 Parasitic Extraction

For the same reasons mentioned in the 32 nm RO PEX section, a subset of the chip was

used for parasitic extraction. The layout can be seen in Figure 2.13.

Figure 2.13: The 90 nm layout used for PEX.

The PEX layout again incorporates parts of the power ring structure, but does not

include bypass capacitance. Since perfect voltage sources are applied to the RO in simulation,

bypass capacitors would have little effect on the simulation results. The PEX results were

18

simulated, as seen in Figure 2.14, but at the moment, no measurements were taken from

actual chips since they are in fabrication.

0.4 0.5 0.6 0.7 0.8 0.9 1
50

75

100

125

150

175

200

Voltage (V)

F
re

q
u

e
n

c
y
 (

M
H

z
)

MITLL 199−Stage RO Full Speed Frequency

PEX

Figure 2.14: Expected frequencies of the 90 nm RO chip at 4.2K.

The frequencies follow a similar trend as the 32 nm chip, but are a good bit slower due

to added gate capacitance from increased transistor size and additional stages.

19

Chapter 3

32-bit Multiply-Accumulate Unit

3.1 Background

The multiply-accumulate operation is commonly used in digital signal processing. The

operation simply takes the product of two numbers and adds it to a third.

A = A+ (B × C)

The multiply-accumulate operation, though simple, can be quite complex in digital logic

form thanks to carry-lookahead adders and parallel multipliers. This particular MAC unit is

a two-phase 32-bit MAC and provides a relatively high activity factor for comparison across

technologies.

3.2 Hardware Description Language

This particular design flow required the use of an as-provided behavioral Verilog descrip-

tion of the 32-bit MAC. This was then synthesized into a Verilog netlist of standard cells

using a rudimentary script executed by the Cadence Encounter RTL Compiler. The netlists

were then turned into a digital core using another script to place and route the design using

Cadence Encounter Place and Route. Both scripts can be found in the Encounter tutorial.

3.3 Simulation

Simulation is handled by as-provided test benches written for the Cadence Incisive

simulator. This is again covered in detail in the Encounter tutorial.

20

3.4 Layout

The rest of the layout was accomplished using Cadence Virtuoso. The core was manually

placed within a pad frame and was manually routed to the pads. For future work, the width

of the wires should be increased to help with power integrity to the core.

Figure 3.1: The completed 32 nm 32-bit MAC chip.

21

As seen in Figure 3.1, the core is significantly larger than the RO chip. The pad frame

itself is rather anemic in that the power rings were not much larger than many of the signal

lines and was improved in later 32 nm designs by making the metal lines in the power rings

robust.

Figure 3.2: The completed 32 nm 32-bit MAC core.

The core was fully constructed using automated scripting techniques within Cadence

Encounter Place and Route. The two halves of the chip are identical except for threshold

22

version; thus, this chip provides two independent MAC units, but only one can be active at

a time.

3.5 DRC and LVS

This chip passed all design rule checks required by the foundry, but LVS was not per-

formed. It was assumed that what Encounter generates would be considered accurate. How-

ever, this is a poor assumption. In some cases, LVS can catch missing steps in the automated

place and route process. Thus, LVS should still be performed on the core and top level with

the assistance of the mixed-input mode that Calibre provides, handling both Verilog and

SPICE netlists.

23

Chapter 4

Static Random Access Memory

4.1 Background

SRAM is of particular interest in cryoelectronics, as memory technologies in alternative

electronic systems can be quite large. Conventional SRAM, if made to operate at cryogenic

temperatures, is very desirable. By packing more memory into the dewar with the super-

conducting supercomputer, information can be processed much faster without seeking an

external memory system.

Several bit cells, a sense amplifier, precharge, and a write buffer were designed and

simulated in a 14 nm technology, with three bit cells and a sense amplifier actually taped

out.

24

4.2 Schematic

One of the first steps in SRAM design is to choose an appropriate inverter and access

transistor size for the bit cell. In order to choose, the main figures of merit are size and static

noise margin. If the bit cell is too big, the SRAM may not provide the required memory

density. However, if the static noise margin of either read or write is too low, the SRAM

may simply fail to operate in real-world conditions. Thus, the static noise margin must be

analyzed using a butterfly structure. [4]

Figure 4.1: The 14 nm butterfly test schematic.

In Figure 4.1, the read and write SNM analyses were performed simultaneously using

ADE. Refer to the simulation section for more information.

25

Figure 4.2: The 14 nm 3, 2, 2 bit cell schematic.

Three individual bit cells were designed using the same basic schematic, only changing

the sizes of each transistor. The 3, 2, 2 bit cell can be seen in Figure 4.2.

26

Figure 4.3: The 14 nm sense amplifier schematic.

A sense amplifier, seen in Figure 4.3, was also designed, simulated and taped out with

three of the standard 6T bit cells. This sense amplifier is based on a traditional MOSFET

differential amplifier, with an n-type MOSFET for enabling the sense amplifier only during

a read to minimize static power.

27

Figure 4.4: The 14 nm top level SRAM circuits schematic.

The three bit cells and sense amplifier were joined together using the bit lines, with

separate word lines for enabling each bit cell independently, as seen in Figure 4.4.

28

4.3 Simulation

A simple read and write test was performed to exercise all blocks of a basic SRAM

structure, including the bit cell, write buffer, sense amplifier, and precharge circuit.

Figure 4.5: The 14 nm SRAM simulation results showing successful reads and writes.

As seen in Figure 4.5, the blocks all perform their intended function, with fast swings

provided by the bit cell, sense amplifier, and write buffer.

29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Input Voltage (V)

O
ut

pu
t V

ol
ta

ge
 (

V
)

Read Static Noise Margin

SNM:
161 mV

NFET: 3 fins
PFET: 2 fins
Access: 2 fins

Left inverter
Right inverter

(a) Read

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Input Voltage (V)
O

ut
pu

t V
ol

ta
ge

 (
V

)

Write Static Noise Margin

SNM:
350 mV

NFET: 3 fins
PFET: 2 fins
Access: 2 fins

Left inverter
Right inverter

(b) Write

Figure 4.6: Static noise margin for “322” bit cell.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Input Voltage (V)

O
ut

pu
t V

ol
ta

ge
 (

V
)

Read Static Noise Margin

SNM:
169 mV

NFET: 3 fins
PFET: 3 fins
Access: 2 fins

Left inverter
Right inverter

(a) Read

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Input Voltage (V)

O
ut

pu
t V

ol
ta

ge
 (

V
)

Write Static Noise Margin

SNM:
274 mV NFET: 3 fins

PFET: 3 fins
Access: 2 fins

Left inverter
Right inverter

(b) Write

Figure 4.7: Static noise margin for “332” bit cell.

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Input Voltage (V)

O
ut

pu
t V

ol
ta

ge
 (

V
)

Read Static Noise Margin

SNM:
200 mV

NFET: 5 fins
PFET: 4 fins
Access: 2 fins

Left inverter
Right inverter

(a) Read

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Input Voltage (V)

O
ut

pu
t V

ol
ta

ge
 (

V
)

Write Static Noise Margin

SNM:
216 mV

NFET: 5 fins
PFET: 4 fins
Access: 2 fins

Left inverter
Right inverter

(b) Write

Figure 4.8: Static noise margin for “542” bit cell.

An ADE environment was set up to sweep the three transistors to perform a static noise

margin test for both read and write. A MATLAB script was written to read in the exported

data and generate static noise margin graphs. See Appendix A for the scripts. Figures 4.7

through 4.8 show increasing read SNM and decreasing write SNM for larger transistors. A

summary of static noise margins can be found in Table 4.1.

Table 4.1: Read and Write SNM Summary (0.8 V)

(NFET, PFET, Access) Read SNM Write SNM

3, 2, 2 161mV 350mV
3, 3, 2 169mV 274mV
5, 4, 2 200mV 216mV

31

As seen in Table 4.1, the write static noise margin is higher than the read static noise

margin for all sizes of transistors chosen. Increasing the read SNM comes at a great cost to

the write SNM. The 5, 4, 2 bit cell was chosen to get the read SNM as close to the write

SNM as possible. The 3, 2, 2 and 3, 3, 2 sizes were chosen for their size. In SRAM bit cell

design, minimizing the size of the bit cell is critical for high memory density.

4.4 Layout

The top level chip differs not only in size but also in interconnects. The chip measures

2mm× 1mm, whereas most other chips are 1mm× 1mm. This chip also uses C4 (solder)

bumps instead of traditional wire bond pads.

Figure 4.9: The completed 14 nm SRAM test chip.

As seen in Figure 4.9, there is an array of 12 by 5 pads. The left 5 by 5 pads are devoted

entirely to the SRAM test structures, whereas the rest of the chip consists of individual

transistor test structures.

32

Figure 4.10: The completed 14 nm SRAM test circuits.

The individual structures designed were not optimized for area due to time constraints,

seen from the relative density of cells in Figure 4.10. By sharing diffusion regions, the

transistors could be much closer together to increase bit cell density.

4.5 DRC and LVS

The 14 nm SRAM test circuits chip passed all design rule checks. Density fill was

required by the foundry, resulting in many hours spent making those related checks pass due

to a relative lack of documentation. Part of the standard flow for this technology includes

an automated density fill step, but this was non-functional in the environment used.

LVS was used throughout the hierarchy and passed at the top level with all circuits,

both SRAM and single-transistor portions.

33

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Many areas within the field of cryoelectronics still await exploration. Being able to

develop better models for simulating SRAM bit cells and fast logic circuits at cryogenic

temperatures would allow designers to build more complicated circuits with confidence that

their designs will work when used in superconducting computing environments. As the static

power consumption continues to climb, new avenues will need to be pursued. With the use of

ring oscillators and other test circuits, it is possible to characterize existing CMOS processes

for relevancy in cryoelectronics. The RO chips covered in Chapter 2 will help extract process

information such as parasitics and MOSFET C-V characteristics, while the 32-bit MAC

unit and SRAM circuits covered in Chapters 3 and 4 will help to show performance of such

processes at cryogenic temperatures in both speed and data retention.

5.2 Future Work

The circuits designed here still await testing and analysis, and some are still away at

the foundry at the time of writing. A large stockpile of information remains on the servers

beyond what can be condensed into this thesis. By building off of the designs constructed

to date, better test circuits may be able to yield more accurate information for even more

technologies, beyond those used to design the existing test circuits.

34

Bibliography

[1] F. Pollack. (1999) New microarchitecture challenges in the coming generations of
CMOS process technologies. Intel. [Online]. Available: http://research.ac.upc.edu/
HPCseminar/SEM9900/Pollack1.pdf

[2] (2016) RP-082B2 4K pulse tube cryocooler series. Sumitomo Heavy Industries, Ltd.
[Online]. Available: http://www.shicryogenics.com

[3] M. Bhushan and M. Ketchen, Microelectronic Test Structures for CMOS Technology.
Springer, 2011.

[4] N. Rahman and B. P. Singh, “Static-noise-margin analysis of conventional 6T SRAM cell
at 45nm technology,” International Journal of Computer Applications, vol. 66, no. 20,
2013.

35

http://research.ac.upc.edu/HPCseminar/SEM9900/Pollack1.pdf
http://research.ac.upc.edu/HPCseminar/SEM9900/Pollack1.pdf
http://www.shicryogenics.com

Appendices

36

Appendix A

MATLAB Code

A.1 SRAM Static Noise Margin Analysis

A.1.1 Parser

% Cadence .matlab parser for static noise margin analysis
% Kyle Owen - 9 July 2016

nmos = [2:5]; % Finger sizes of NMOS of inverter
pmos = [2:5]; % Finger sizes of PMOS of inverter
access = [2:5]; % Finger sizes of NMOS of access transistor

% number of data points per graph
numPoints = 400;
% total number of sweeps
numRuns = size(nmos,2)*size(pmos,2)*size(access,2);

fid_read = fopen('H:\thesis\14LPP_SRAM\butterfly_read3.matlab');
fid_write = fopen('H:\thesis\14LPP_SRAM\butterfly_write3.matlab');
% ignore first line read to get rid of duplicate titles
top = fgetl(fid_read);
top = fgetl(fid_write);

% parse titles of plots to create 4D matrices later
expression = '\(([^\)]+)\)'; % only grab contents of parenthesis
titles = regexp(top,expression,'match');

% remove all non-numeric characters
for n = 1:numRuns

titles(n) = titles(n*2);
titles(n) = strrep(titles(n),'(','');
titles(n) = strrep(titles(n),')','');
titles(n) = strrep(titles(n),'nfin_','');
titles(n) = strrep(titles(n),'=','');
titles(n) = strrep(titles(n),'p','');
titles(n) = strrep(titles(n),'n','');

37

titles(n) = strrep(titles(n),'a','');
titles(n) = strrep(titles(n),',',' ');

end

% get rid of extraneous data
for n = 1:numRuns

titles(numRuns*2-n+1) = [];
end

% parse the rest of the (CSV) files
data_read = textscan(fid_read,'%f','delimiter',',');
data_write = textscan(fid_write,'%f','delimiter',',');
fclose(fid_read);
fclose(fid_write);

% reshape matrices into [numPoints, numRuns] size
data_read = reshape(data_read{1,1},[numRuns*2,numPoints+1]);
data_write = reshape(data_write{1,1},[numRuns*2,numPoints+1]);
data_read = rot90(data_read);
data_write = rot90(data_write);
x_val = data_read(:,1);
for n = 1:numRuns

data_read(:,n) = data_read(:,n*2);
data_write(:,n) = data_write(:,n*2);

end
data_read(:,[numRuns + 1 : numRuns*2]) = [];
data_write(:,[numRuns + 1 : numRuns*2]) = [];

% organize data into 4D matrices
for n = 1:numRuns

index = sscanf(char(titles(n)),'%d');
master_data_read(index(1),index(2),index(3),:) = data_read(:,n);
master_data_write(index(1),index(2),index(3),:) = data_write(:,n);

end

% data is now parseable with sizes of transistors
% plot data and read inverse
for i = pmos

for j = nmos
for k = access

for n = 1:numPoints+1
plot_data_read(n,1) = master_data_read(i,j,k,n);
plot_data_write(n,1) = master_data_write(i,j,k,n);

end
[x, y, w, h] = inscribed_square_write(x_val,plot_data_read, ...

38

plot_data_write);
snm_write(i,j,k) = w;

[x, y, w, h] = inscribed_square(x_val, plot_data_read);
snm_read(i,j,k) = w;

end
end

end

A.1.2 Grapher

% Cadence .matlab grapher for static noise margin analysis
% Kyle Owen - 9 July 2016

% list sizes to compare, aligned vertically
nmos = [3 3 5];
pmos = [2 3 4];
access = [2 2 2];

numPoints = 400; % number of data points per graph
numRuns = 192; % total number of sweeps

% plot data and read inverse
for n = 1:size(nmos,2)

i = pmos(n);
j = nmos(n);
k = access(n);
for m = 1:numPoints+1

plot_data_read(m,1) = master_data_read(i,j,k,m);
plot_data_write(m,1) = master_data_write(i,j,k,m);

end
[x, y, w, h] = ...

inscribed_square_write(x_val,plot_data_read,plot_data_write);
figure(1);
clf;
plot(x_val(:),plot_data_read(:),x_val(:),plot_data_write(:), ...

'LineWidth',3);
set(gca, 'FontSize', 16);
hold on;
rectangle('Position', [x,y,w,h], 'EdgeColor','k', 'LineWidth', 2);
xlabel('Input Voltage (V)','FontSize',18,'FontName','Arial');
ylabel('Output Voltage (V)','FontSize',18,'FontName','Arial');
legend({'Left inverter','Right inverter'},'FontSize',18, ...

'FontName','Arial');

39

legend('boxoff');
title('Write Static Noise Margin','FontSize',20,'FontName','Arial');
text(x+(w/2), y+(h/2), {'SNM:', [num2str(round(w*1000)) ' mV']}, ...

'FontSize',16,'FontName','Arial','HorizontalAlignment','center');
str = sprintf('NFET: \t\t %d fins \n' ...

'PFET: \t\t %d fins \nAccess: \t %d fins', ...
nmos(n), pmos(n), access(n));

text(.55, .55, str, 'FontSize',18,'FontName','Arial');
set(1, 'Position', [100, 100, 800, 800]);
set(1,'PaperPositionMode','auto');
print([num2str(nmos(n)) '_' num2str(pmos(n)) ...

'_' num2str(access(n)) '_write'], '-depsc', '-fillpage');

[x, y, w, h] = inscribed_square(x_val, plot_data_read);
figure(2);
clf;
plot(x_val(:),plot_data_read(:),plot_data_read(:),x_val(:), ...

'LineWidth', 3);
set(gca, 'FontSize', 16);
hold on;
rectangle('Position', [x,y,w,h], 'EdgeColor','k', 'LineWidth', 2);
xlabel('Input Voltage (V)','FontSize',18,'FontName','Arial');
ylabel('Output Voltage (V)','FontSize',18,'FontName','Arial');
legend({'Left inverter','Right inverter'},'FontSize',18, ...

'FontName','Arial');
legend('boxoff');
title('Read Static Noise Margin','FontSize',20,'FontName','Arial');
text(x+(w/2), y+(h/2), {'SNM:', [num2str(round(w*1000)) ' mV']}, ...

'FontSize',16,'FontName','Arial','HorizontalAlignment','center');
text(.55, .55, str, 'FontSize',18,'FontName','Arial');
set(2, 'Position', [100, 100, 800, 800]);
set(2,'PaperPositionMode','auto');
print([num2str(nmos(n)) '_' num2str(pmos(n)) ...

'_' num2str(access(n)) '_read'], '-depsc', '-fillpage');
end

A.1.3 Analyzer

% Cadence .matlab tool for static noise margin analysis
% Kyle Owen - 9 July 2016

% for comparing SNM, do you favor read over write, and by how much?
read_percent_over_write = 0;

40

nmos = [3];
pmos = [3];
access = [2];

numPoints = 400; % number of data points per graph
numRuns = 192; % total number of sweeps

snm_read_normal=snm_read/(max(snm_read(:)));
snm_write_normal=snm_write/(max(snm_write(:)));

for n=access
figure(3);
subplot(2,2,n-1);
surf(snm_read_normal(pmos,nmos,n));
hold on;
surf(snm_write_normal(pmos,nmos,n));
title(['Access Transistor with ' num2str(n) ' Fins']);
zlabel('Normalized SNM');
xlabel('PMOS Fins');
ylabel('NMOS Fins');

end

for i = pmos
for j = nmos

for k = access
diff(i - pmos(1) + 1, j - nmos(1) + 1, k - access(1) + 1) = ...

abs(((1 - read_percent_over_write) * snm_read(i,j,k)) - ...
snm_write(i,j,k));

end
end

end

[M,I] = min(diff(:));
[x,y,z] = ind2sub(size(diff),I);
disp(['Read percentage over write: ' ...

num2str(read_percent_over_write*100) '%']);
disp(['PMOS: ' num2str(x+pmos(1) - 1)]);
disp(['NMOS: ' num2str(y+nmos(1) - 1)]);
disp(['Access: ' num2str(z+access(1) - 1)]);

A.1.4 Inscribed Square - Read

function [x, y, w, h] = inscribed_square(dataSet1,dataSet2)

41

if ~isequal(size(dataSet1), size(dataSet2))
return

end

w = 0;
h = 0;
x = 0;
y = 0;

for idx_1 = 2:size(dataSet1,1)
for idx_2 = size(dataSet1,1):-1:2

a = dataSet2(idx_1);
b = dataSet1(idx_1);
c = dataSet2(idx_2);
d = dataSet1(idx_2);
if(a > d)

if(c < b)
temp_l = b - c;
temp_h = a - d;
q = abs(temp_l - temp_h);
if(q < .001)

if(temp_h > h)
w = temp_l;
h = temp_h;
x = c;
y = d;

end
end

end
end

end
end

A.1.5 Inscribed Square - Write

function [x, y, w, h] = inscribed_square_write(dataSet1,dataSet2,dataSet3)

if ~isequal(size(dataSet1), size(dataSet2), size(dataSet3))
return

end

w = 0;

42

h = 0;
x = 0;
y = 0;

for idx_1 = 2:size(dataSet1,1)
for idx_2 = 1:size(dataSet1,1)

a = dataSet2(idx_1); %voltage of high
b = dataSet3(idx_2); %voltage of low
c = dataSet1(idx_1); %x of high
d = dataSet1(idx_2); %x of low
if(a > b)

if(c > d)
temp_l = c - d;
temp_h = a - b;
q = abs(temp_l - temp_h);
if(q < .001)

if(temp_h > h)
w = temp_l;
h = temp_h;
x = d;
y = b;

end
end

end
end

end
end

43

Appendix B

IC Manage Tutorial

IC Manage provides version control and configuration management with direct support

for Cadence. With IC Manage installed and properly configured, the Cadence-provided

library manager is replaced with a different one, allowing access to version control options

that Cadence does not provide by default. Once IC Manage is configured, using it is fairly

straightforward.

This tutorial will cover the maintenance and general usage of IC Manage how it pertains

to the current setup. For more specific inquiries, it is best to consult the documentation

provided by IC Manage.

44

B.1 Adding a new user

The user list can be found under Users .

45

Right click on the site, then click on Add User .

46

Fill in the required information. The login name must match the user name of the new

user exactly. The rest of the information should be as accurate as possible.

47

B.2 Adding a new PDK project

Under the Projects tab, right click on the site in which you want to add a new project

to. For our case, there is only one site, ICM . Then, click on Add Project .

48

Next, give the project a name. Typically, this will be the name of the PDK you wish

to use. For this example, we are adding support for the MITLL_PDK_CRYO kit.

49

The new project should now appear in the list.

50

B.3 Add variant to existing project

Right click on the newly created project to add a variant. This will typically be the

name of a particular tapeout. Click on Add Variant .

51

In this example, this is for a tapeout called CRYO3, but other options may look like

32SOI_16A, for example.

52

Next, right click on the newly created variant to add a library type. Click on Add Library Type .

The default library types have already been added.

53

The default library types are OA and OA_adv . For nodes above 14 nm, use OA .

54

B.4 Add libraries to existing variant

Now that the library type has been added, right click on it and click Add Library .

55

You can add multiple managed libraries at this point. It is recommended to have

separate libraries per chip, to keep files separate. Managed libraries should generally only

be created for working libraries, such that version control can be used. There is no need to

create libraries here for read-only libraries such as vendor-provided standard cell libraries.

These will be added later. It is worth noting that you can add more libraries later if needed.

Also, names should be descriptive enough so that a description would not be necessary.

56

Once you have added the required libraries, you can create a configuration which will

allow you to select which libraries will be used. Generally, one configuration should be

enough, but if one group is to work on something completely separate from another, two

configurations can be created to ensure that one group cannot modify the other files. Click

on Add Configuration .

57

For a basic configuration, click the Include box next to all libraries you created. Then,

click Modify Library Includes to select the default cds.lib for a specific technology.

If libraries were added after the configuration was created, these will need to be ex-

plicitly added. You must have administrator privileges to remove included libraries from a

configuration.

58

B.5 Adding unmanaged libraries

The default location is home mch0021 mch0021_pdk setup [technology] for the

cds.lib of any given technology.

59

Select the appropriate cds.lib for the technology, and click Open , then Ok , and Ok

again to get back to the Project Manager window.

60

The Project Manager window should now look similar to this. Right click on the Workspaces

under OA and click Add Workspace .

61

B.6 Adding a new workspace

Ensure the Workspace Location is set to the appropriate directory. There should be a

tapeout directory under the technology directory under home mch0021 mch0021_group

lowtemp_group. It is generally a good idea to keep like workspaces in the same place so that

it is easy to tell who all is working on a particular project; however, this does not impact

the functionality whatsoever. Ensure that Sync Workspace is checked and click Ok .

62

The newly created workspace should now appear under Workspaces .

63

The next step is to return to a terminal and run the cadence-setup script, which will

add the appropriate files to allow Virtuoso and IC Manage to run correctly. Select the desired

technology, and type y to copy the correct IC Manage-related files. If you examine the files

before and after running cadence-setup, your output should be fairly similar to the above.

64

B.7 Adding library properties

The libraries created by IC Manage only have the required IC Manage information and

are otherwise empty as far as Virtuoso is concerned. In order to design in these libraries,

they must refer to a technology library. There are several options here. First, if you wish to

take an existing unmanaged library and make it managed, it will already have the required

information, and you can skip this step. Otherwise, you will need to comment out the library

by the same name you wish to add the technology file to in the cds.lib, and then create a

new library by the same name and compile an ASCII technology file.

65

These files will generally end in .tf and are located under home mch00021 mch0021_pdk

[technology]. You must be sure to use the same technology file that the fabricator will

use. Once this library is created and a technology file is compiled, delete the new library

entry in your cds.lib so that Cadence has forgotten about it, and uncomment the library

created by IC Manage.

66

Once you have a library with the technology information loaded, right click on the

managed library in the Project Manager and click Populate . Select the library you created

before (and removed from cds.lib) to populate the managed library, resident on the IC

Manage server, with the technology information. The library should still appear blank,

but the technology information should be correctly loaded. If you only see the background

drawing layer within Virtuoso when editing layout views from the library, you have a

technology file issue that will need to be resolved.

67

B.8 Managed vs. unmanaged libraries

Managed libraries allow for versioning control. Views can be checked in and out. When

a cell is checked out, its previous version can be opened, in read mode only, by anyone else.

Managed libraries are very useful, as multiple people can work on components of the library

at the same time without fear of overwriting others’ work. When an error is discovered in a

layout, one can revert to a previous version to fix it.

68

Unmanaged libraries are very useful too, as for libraries that should not change during

the course of development, there is no need to take up extra space on the server. Everyone

has their own separate versions of managed libraries, creating a lot more space on a network

drive. Unmanaged libraries are centrally located, so everyone references the same unmanaged

library. Unmanaged libraries do not have to be read-only, but that is typically the case.

69

B.9 Editing a view

To open a view for edit, right click on the view you wish to edit and select Open... . By

default, double-clicking on a view will open for read-only if the view is checked in or checked

out by someone else, and will open for write if the view is checked out by you.

70

Newly-created views will appear with a' sign next to the view, and will have a version

count of 0.

71

The Checkout Manager window allows you to examine which views are checked out across

libraries and users. Items in black refer to your user, whereas red items are currently checked

out by other users.

72

By clicking on the drop down menu, you can view just a single library.

73

If you wish to add a newly-created view, you can select all related views and click the º

button. This will pull up the Checkin Message window. This is your opportunity to describe

the commit. For initial commits, the message “Initial commit” is probably good enough.

Click OK when done.

74

If your view is still open for edit, the Checkout Manager will still show the view as checked

out, but this time, for edit. If you wish, you can close the view or make it read only. This

will not automatically check it in, though. To remedy this, you can either check it in, in

which case IC Manage will notice there were no changes and alert you of this, or you can

cancel the checkout by pressing the � button.

75

Go to the view you wish to edit and make some changes. Here, a piece of metal was

added toward the right. Save the view.

76

Go back to the Checkout Manager and check in the view. This time, your commit message

should be descriptive enough for you to know what was changed. Click OK when you are

done.

77

The revision number should now be one greater than it was prior. If the view was not

closed or changed from edit mode to read-only mode, it will still be checked out, as seen

above.

78

B.10 Canceling a checkout

If the change you made was undesirable, as the case might be for accidentally drawing a

random piece of metal and accidentally saving, you may wish to cancel the checkout. Right

click on the view and choose Cancel Checkout .

79

This will cause a loss of data and cannot be undone. You should only do this if you are

sure of what you are doing. Click Discard data to continue with the process, or Abort operation

if you do not wish to lose the data.

80

Canceling the checkout does not affect the revision number, as seen above.

81

B.11 Reverting to an older version

Instead, if you wish to view the revision history to date, right click on the view and

select Revision History . This will show all revisions and the brief description from the commit.

82

If you wish to revert to an older revision, you can right click on the revision you wish

to revert to and select Revert Version .

Select Yes to revert. This does not cause a loss of data and can be undone.

83

The revision history is automatically updated to show that it was reverted. This causes

a new revision in the history, which is identical (in this case) to the first revision.

84

IC Manage may want to refresh the library and views. Click OK to do so. You should

see that the layout has been reverted.

85

Again, the revision count has been incremented after a revert. You can even revert a

revert by reverting back to a view prior to the revert.

86

Appendix C

Plotting Schematics Tutorial

This tutorial will show how to create prettier schematics from Cadence. These schemat-

ics will be free from aliasing effects, as they are rendered in vectors rather than pixels. First,

ensure that you have created a .cdsplotinit file in your home directory. This will tell

Cadence how to output schematics when plotting.

C.1 .cdsplotinit Contents

EPS|Encapsulated Postscript: \
:manufacturer=Adobe: \
:type=epsfC: \
:maximumPages#1: \
:resolution#300: \
:paperSize="Unlimited" 72000 72000:

The above .cdsplotinit will allow the creation of color Encapsulated PostScript (EPS)

files. With a little help from sed, a stream editor commonly used for manipulating files,

anyone can have nicer looking schematics from Cadence Virtuoso. Save the following sed

script in a convenient location.

87

C.2 schematic_beautify.sed Contents

/1 setlinewidth/c\
40 setlinewidth\
1 setlinejoin\
1 setlinecap
s/1000 0 0/500 0 0/g
s/0 800 400/0 400 0/g
s/224 749 1000/0 250 500/g
s/0 1000 1000/0 250 500/g
s/851 800 0/0 100 500/g

This “schematic beautifier” will take in crummy-looking EPS-format schematics and

output pretty schematics. It searches for a few key components of the EPS file and replaces

them. Namely, it looks for color and line width information and replaces them with values

that give the schematic more photogenic qualities.

Now open the schematic you wish to plot. Click on File Print... to pull up the Submit Plot

window.

88

As seen above, the window will, by default, select Full Size . Instead, use the Select

button to draw around the entirety of the schematic you wish to capture. The difference is

that the Full Size option is not aware of labels, and thus, will cut them off. Also, uncheck

the header box. Then, click on the Plot Options... button to continue.

89

The window should appear. By default, the EPS option should be selected. Change the

scale to 30 and select Center Plot . You can play around with the scale if your plot appears

too small still; decrease the scale number to increase the apparent size. The plotter does not

automatically adjust line width to compensate for scale. Uncheck the Mail Log To box, check

the Send Plot Only To File box, and fill in the text box with the file name you wish to give your

plot. Be sure to use the .eps extension so that other applications will know what it is.

90

This is what the schematic will look like by default:

The line width is very narrow and the colors are horrendous against a white back-

ground. After running sed -f schematic_beautify.sed [input EPS] > [output EPS],

the schematic should look something like this:

The lines are thicker, and the colors are more pleasing to the eye.

91

Appendix D

ADE Tutorial

The Analog Design Environment, or ADE, is a powerful simulation environment that

allows for easy analog simulation of schematics. ADE can use several different simulators,

such as Cadence Spectre and HSPICE, among others. With the proper configuration, ADE

can even perform hybrid analog and digital simulations, saving a lot of simulation time. For

a large SRAM, for instance, the address decoding logic can be simulated digitally, whereas

the individual bit cells remain fully analog.

To begin, start with a schematic that you’d like to simulate. For this example, a 199-

stage ring oscillator will be simulated.

The schematic includes ports for VDD, VSS, and any inputs and outputs. It is not

required to have a port for any signals that you wish to examine, but it is highly recommended

that for any nets that you do want to look at, they are at least named descriptively.

92

The next step is to launch ADE from the schematic view. This will allow the creation

of an ADE view where configuration information can be stored. Click on Launch ADE XL to

begin the process.

Select the Create New View option and click OK . A new window should pop up.

Go ahead and click OK and watch as the ADE XL window is generated.

93

The ADE XL window should pop up, as seen above. Then, click once (do not double-

click) on Click to add test below Tests on the left side of the window. Two new windows should

appear.

94

The Choosing Design window confirms what schematic you will simulate. You can open

for read or edit, depending on if you intend to make further changes during the course of

simulating. Click OK after you’ve made your selection.

The other window that appeared is the ADE XL Test Editor window, which allows for the

manipulation of a particular simulation. Quite a bit of setup is involved here in this window.

95

First, click on the Choosing Analyses button, top right in the ADE XL Test Editor window.

For a RO, we will look at voltage over time, so performing a transient analysis makes the

most sense. For a RO, you will want to examine several periods, so pick a simulation stop

time that makes sense for the expected frequency. 50 ns might be a good starting point. As

far as accuracy is concerned, moderate seems to be a good starting point as well. By default,

this analysis will be enabled. Click OK once you’re done.

96

Next, click on the Editing Design Variables button, right below the Choosing Analyses button.

For this RO, there is one voltage source, and we may want to easily sweep this source later

for comparing frequencies versus voltage. Fill in the variable name and value as shown. If

you want to sweep a variable, you can use the notation 0.4:0.05:1.0 to sweep from 0.4V to

1.0V in 0.05V increments, or a comma-separated list of specific voltages, such as 0.4,1.0,

to only simulate at 0.4V and 1.0V.

If you wish to make changes later to the design variable, it is recommended to edit

the Global Variables list in the main ADE XL window, as these values can override design

variables.

97

You can now select which outputs to plot by clicking the Setting Outputs button, below

the Editing Design Variables button. Then click From Design . This will cause ADE to pull up

your schematic and allow you to click on specific nets you wish to plot.

98

It may be useful for debugging purposes to plot vdd and enable as well as the desired

fs_out. You must press Esc immediately after you are done selecting nets in the schematic

window, else you may inadvertently add or remove outputs at a later time in the schematic

window.

99

Once you’re done adding outputs, click OK to proceed.

100

In the ADE XL Test Editor window, click Setup Model Libraries... to select which model

libraries the simulator references while running. If you are simulating anything with standard

cell libraries, you should ensure that you have an auCdl view alongside the symbol and

layout views, as well as include the CDL netlist as provided by the standard cell library

vendor. The auCdl view is simply a copy of the symbol view, renamed as auCdl, which

provides the netlister with the required pin information for netlist extraction.

101

Another problem with the default ADE XL setup is the multithreading options. Click

on Simulation Options Analog... and ensure that multithread is set to on and nthreads is set

to a reasonable number like 16.

102

Though we have defined vdd to 1V, the simulator does not know where to apply any

voltage sources; though vdd shares the same name as the port, we must either set up stimuli

or add voltage sources within the schematic. Since this schematic is also used for layout and

LVS purposes, setting stimuli is appropriate. Click on Setup Stimuli... to begin.

103

For vss, ensure that the stimuli is enabled, and select the function of dc . Then, set

the DC voltage field to 0, which will effectively ground the node through a 0V voltage source.

Be sure to click Apply after any changes.

For vdd, select the pulse function, which will allow the voltage applied to turn on grad-

ually. This will help initialize the ring oscillator in a manner that will produce oscillations.

Set the rise time to 100p for 100ps. Also, set Voltage 2 to vdd, which references the global

variable we set earlier. This will get replaced with the numeric value at the start of the

simulation automatically.

104

Lastly, for enable, we will again use the pulse function with the same parameters, but

will add 8 ns of delay. This will allow the RO to become initialized to its static disabled state

prior to enabling it. If this value is too short, some inverters will be in their inverted state;

due to the fast nature of the enable pulse, those states will encircle the ring continuously,

forming an undesirable output waveform. Click OK when you are done.

105

The last setup portion requires telling the netlister which views to use during netlisting.

Click on Setup Environment... to bring up the Environment Options window. Add auCdl before

schematic in the Switch View List and after spectre in the Stop View List . Click OK when

you are done.

106

Go back to the main ADE XL window and click the · button. This is not the same

as the similar-looking button in the test editor window. The simulation has now started

and may take a few seconds to many hours to complete depending on the complexity of the

circuit. For a RO with no parasitics and 199 stages, it will likely take several minutes to

generate 50 ns of data.

107

Once the simulation has completed, you should see a graph icon next to each output

under the Results tab. Click the graph icon button next to the Replace drop-down box to

bring up the graph window.

108

The graph window is now displayed with all signals on top of each other. If you wish,

you can right click on each signal and move it to a new strip. You can also toggle their

visibility by clicking on the eye symbol.

109

You can zoom in horizontally by moving the two sides of the view window above the

main graph. Now, move your mouse over one of the peaks of the output and press M .

This will create a marker. Do it again for the next peak, then press ctrl while clicking the

peaks to make sure they are both selected. Finally, press shift + D to get the delta value

between both peaks. As you can see, the period for this RO is approximately 1.23 ns, or

about 813MHz.

110

In order to properly save simulation data for use in other applications, right click on

the waveform you wish to save and click Send To Export... . Select the Matlab option, which

saves in a convenient format for importing into MATLAB.

111

M3: 11.14815ns 1.041798V M4: 12.38267ns 1.04173V /enable 1

 /vdd 1

 /fs_out 1

V
 (

V
)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
Name Vis vdd

time (ns)
10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2

Transient Response Sat Jul 16 12:56:19 2016 1

dx: 1.234519ns
dy: 68.0336uV
 s: 55.10944kV/s

If you wish to save just the plot, saving as an Encapsulated PostScript is not a very

good idea. Though many of the objects in the EPS are vectors, not all of them are, and it

just looks bad.

112

Saving as a Portable Network Graphics file looks somewhat better, but it is not pre-

sentable when scaled. The best option is to use the exported MATLAB data and plot it

externally.

113

Appendix E

LVS Tutorial

Layout versus Schematic, or LVS, is a powerful tool for design checking. It compares a

schematic, which has hopefully been simulated at this point to check for logical correctness,

to an extracted netlist from the layout. LVS takes the layout, flattens all of the shapes across

each layer, and constructs a new netlist based on this information. Thus, LVS can find errors

in connectivity, such as wires that are not connected as they should, or shorts across nets.

LVS is a vital component of the design process, even for “simple” designs. LVS goes hand in

hand with design rule checking, or DRC, which will check if the layout is fit for fabrication.

This tutorial will introduce LVS from the beginning, starting with a completed schematic

and layout.

The schematic is a simple 5-input AND gate constructed from 2-input AND gates.

Though this is a very simple schematic, LVS will happily handle much more complicated

designs, but may take a bit more time to process. LVS should be used from the beginning,

all of the way through the hierarchy to the top level. Waiting until the top level to try to

start running LVS is a recipe for disaster as it can be difficult to pinpoint where exactly the

design is failing. Likewise, breaking a big design up into smaller portions can make LVS a

much easier process for the same reason.

114

The layout is also relatively simple and is constructed from standard cells. All wiring has

been completed. Wiring can be assisted using connectivity information from the schematic if

you choose to launch Schematics XL and Layout XL ; launching one will typically automatically

launch the other. When routing in the layout, the netlist information is used to show where

pins are to be connected, and flashing markers alert you to when it is connected incorrectly.

This is still no substitute for LVS, as this only handles partial connectivity information; LVS

also checks for device parameters.

115

Another step during layout is to draw pins. Pins allow for easy routing in the next level

of the hierarchy using Layout XL as discussed previously. Pins also have an inherent label,

which is required for LVS. If a port is used in the schematic, a label must be drawn in the

layout. Pins give more information than labels alone and are recommended. If labels are

missing, LVS will generate an error saying it found a port in the source (schematic) but not

in the layout. Likewise, if extra labels are drawn in the layout, LVS will also generate an

error. Remember to draw labels on the same layer as the metal, but use the label purpose

instead of drawing.

As seen above, pins must be drawn over existing pins if they are deeper in the hierarchy,

as is the case with using standard cells. LVS will only read the pins from the top level layout

to match against the schematic ports of the top level schematic. The VDD and VSS pins are

not shown above and reside on another layer.

116

For some kits, there is a checking menu provided by the vendor. If so, launch Calibre

LVS from there. Otherwise, launch Calibre LVS from the Calibre menu. The BEOL_STACK

option will need to match the technology file used. The DESIGN_TYPE option should be

CELL for portions of the chip not containing the chip boundary layers, and should be CHIP

otherwise. CUSTOMER should be set to ASICS , and ORIENTATION should be set to whichever

orientation the gates of the transistors are drawn. In many processes, this can only be

117

HORIZONTAL or VERTICAL , not both. For most cases, this will take care of all of the initial

setup for LVS, but when in doubt, consult the LVS manual provided by the vendor. Click

OK when done.

Once Calibre LVS has launched, navigate to the Netlist tab under Inputs . Ensure that

the schematic will be exported. The file may be red if it does not exist or is not readable by

the current user. The former option is acceptable, as the export step will create it. If it is

not writable, ask the owner of the file to change its permission to allow you to write to it.

A green file means that it already exists, but still ensure that the schematic is exported, as

the current one may be out of date if the schematic was updated.

Click in the text box and add a new line. Then, use the ... button to browse for a

new file. You will need to locate the standard cell library’s CDL netlist as the standard cell

118

library does not typically come with schematic views. If this is not the case, you can skip

this step.

If you are trying to match a layout view under a different name than its schematic, you

can change the Top Cell and even Library Name here too. There is also support for using a

Verilog netlist instead of a SPICE netlist; you can experiment with this with the Format

menu.

If the LVS run was successful, you will be presented with multiple©, including an ASCII

version, as well as the CORRECT statement. If you did not pass, you will see INCORRECT as

well as Xs in several locations.

Common errors include:

• Forgetting a pin or label in the layout

119

• Putting too many labels in the layout

• Not connecting all nets of the same name, such as multiple VDD or VSS rails (this

generally generates a warning and may be acceptable at low levels of the hierarchy)

• Watching carefully for inherited connections (i.e., those ending in !)

• Incorrect parameters between schematic and layout

• Drawing into a device such that the parameters inadvertently change (i.e., drawing

more metal inside a capacitor)

• Shorting two nets together

• Not connecting two portions of a net

One good tip to improve the likelihood of finding errors is to break the schematic into

decreasingly smaller pieces until the error is found. Dividing the schematic in half to find

which half fails, over and over again, can be useful if the schematic is quite large. Some errors

can be cryptic at times, and it may be best to use the results window, called the RVE, to

open its schematic representation of both input netlists. Sometimes, further information can

be gained by looking at what it thinks is connected. However, the RVE can have a difficult

time interpreting multiple transistors as a single gate and may lead to more confusion.

120

E.1 lvs.runset Contents

1 *lvsRulesFile: /home/mch0021/mch0021_pdk/global_foundries/cmos14lpp/ c

REL_GF/CalibreLVS/LVS/ln14lpp.lvs.cal↪→

2 *lvsRunDir: ./calibre_run
3 *lvsLayoutPaths: test.calibre.db
4 *lvsLayoutPrimary: test
5 *lvsLayoutLibrary: test
6 *lvsLayoutView: layout
7 *lvsLayoutGetFromViewer: 1
8 *lvsSourcePath: test.src.net
9 *lvsSourcePrimary: test

10 *lvsSourceLibrary: test
11 *lvsSourceView: schematic
12 *lvsSourceGetFromViewer: 1
13 *lvsSpiceFile: test.sp
14 *lvsERCDatabase: test.erc.results
15 *lvsERCSummaryFile: test.erc.summary
16 *lvsReportFile: test.lvs.report
17 *cmnWarnLayoutOverwrite: 0
18 *cmnWarnSourceOverwrite: 0
19 *cmnRunMT: 1
20 *cmnRunHyper: 1
21 *cmnSlaveHosts: {use {}} {hostName {}} {cpuCount {}} {a32a64 {}} {rsh

{}} {maxMem {}} {workingDir {}} {layerDir {}} {mgcLibPath {}}
{launchName {}}

↪→

↪→

22 *cmnLSFSlaveTbl: {use 1} {totalCpus 1} {minCpus 1} {architecture {{}}}
{minMemory {{}}} {resourceOptions {{}}} {submitOptions {{}}}↪→

23 *cmnGridSlaveTbl: {use 1} {totalCpus 1} {minCpus 1} {architecture {{}}}
{minMemory {{}}} {resourceOptions {{}}} {submitOptions {{}}}↪→

24 *cmnFDILayoutLibrary: test
25 *cmnFDILayoutView: layout
26 *cmnFDIDEFLayoutPath: test.def
27 *cmnPromptSaveRunset: 0
28 *cmnSaveRunsetChanges: 0

It can be very useful to save a runset file, which gives Calibre enough information to set

up the run. Above is a sample runset file from a 14 nm kit. Loading this file at the start of

Calibre is preferable to setting all of the options by hand. In the case of other technologies,

the vendor’s custom menu can set most of these options, but may still require some tweaking

121

following the custom menu. With a runset file, you can load as many options in as you

would like, saving time in the long run.

Decomposing this runset file line by line, the first line sets where the LVS rules file

is located. This should be within the technology’s directory. Line 2 sets where Calibre

generates all of the run-related files. To simplify the directory structure, it can be useful

to make a new directory within the working directory and have Calibre use this instead, as

is the case here. Make sure this directory exists prior to running, as it will not create its

own. Lines 3 through 5, 8 through 10, 13 through 16, and 24 through 26 will be overridden

when starting Calibre LVS through the Calibre menu in the Virtuoso Layout window. Lines 7

and 12 tell Calibre to export the most recent layout and schematic views from the library

instead of using the (possibly) already exported database and netlist files. Lines 17 and 18

indicate that it is fine to overwrite the existing database and netlist files during export to

avoid additional pop up windows. Lines 19 through 23 tell Calibre that it is fine to run multi-

threaded and hyperscaled, which can tremendously speed up runs with certain technologies.

In other technologies, running multi-threaded can prevent Calibre from completing due to

a bug. Finally, lines 27 and 28 prevent Calibre from asking if you would like to save any

changes to the runset file. Only the maintainer of the Cadence-related files should have

permission to change such a file, so these prompts are disabled to prevent a user from trying

to make changes.

It is recommended that any LVS runset files should be modeled after this one, which

is fairly complete as far as such files go.

122

Appendix F

DRC Tutorial

Design rule checking, or DRC, checks the layout for any potential manufacturing prob-

lems. With node sizes getting increasingly advanced, the number of checks that the DRC

tool must perform is increasing as well. For some technologies, it is not uncommon to see

nearly twenty-thousand checks. Needless to say, even with parallel processing, the complete

DRC process may take several minutes to over an hour, depending on how large and complex

a design is.

The rules that the DRC tool checks are varied, but the simplest of rules can check the

spacing between objects, the widths of objects, and the enclosure of two objects. Of course,

DRC rules may also check for shapes that simply cannot be fabricated, such as a text or label

on a drawing layer. There are also minimum area rules, stating that shapes must be above

a certain size to be manufactured. Density rules are also important; failures can either be

too high or too low. In some cases, density rules can be waived, as the vendor or aggregator

may fill the design automatically during creation of the reticle. Antenna violations can also

be a concern; when too much metal is connected to a single gate, high voltage can build up

during processing and decrease the chances of the IC working. This can be mitigated by

putting more gates on the net, decreasing the amount of metal, or adding antenna diodes.

Consult the technology’s design manual for best practices.

The same layout as in the LVS tutorial will be used during the following steps.

123

Like the LVS tutorial, options must be set up for certain technologies when a cus-

tom menu is provided. The options should be the same, but DRC is pickier about the

IMAGE_TYPE , IOTYPE , IOTYPE_GRIND_SIDE , and ORIENTATION options. Recall that the

orientation must be set to HORIZONTAL or VERTICAL and that designs must not have both.

124

Under the Outputs section, you can choose to turn off the Write DRC summary report file

option, which will cut down on the amount of clutter generated when running DRC. However,

the summary report is useful when sharing with other people via email.

125

Under the Run Control section, set the Run Calibre options to Multi-Threaded and Hyperscale ,

which will vastly speed up run times.

126

You can prevent the Overwrite file? dialog from being generated a second time by marking

the appropriate box. Click Overwrite so that the latest layout file is used during DRC.

127

Depending on the technology, a “DRC-clean” design may contain some errors still. This

is because some of the rules can be waived without causing any penalty. For example,

some rules pertaining to density can be ignored if the manufacturer has an automated fill

procedure. In the case of the above results, the design is considered clean as it is a cell-level

layout and does not need to meet the first rule at this level of the hierarchy.

Some common DRC errors include:

• Metal shape too close to metal shape

• Metal shape not overhanging via far enough

• Too little metal per via

• Metal shape not wide enough

• Metal shape not large enough (i.e., too small of area)

128

• Metal shape forms too small of a notch

• Metal shape is off-grid (e.g., a circle does not lie on-grid)

In many cases, one error in a layout may lead to multiple DRC errors. For instance,

a metal shape that is too small may generate both minimum area and minimum width

violations. It is best to consult the technology’s design manual which contains not only

every design rule, but also helpful diagrams that indicate what the rule is talking about.

Though the rules are generally just boolean logic, the rules can be cryptic at times, especially

depending on the technology.

129

F.1 cell_noden.runset Contents

1 *drcRulesFile: /home/mch0021/mch0021_pdk/global_foundries/cmos14lpp/ c

REL_GF/CalibreDRC/DRC/cmos14lpp_xl.drc.cal↪→

2 *drcRunDir: ./calibre_run
3 *drcLayoutPaths: test.calibre.db
4 *drcLayoutPrimary: test
5 *drcLayoutLibrary: test
6 *drcLayoutView: layout
7 *drcLayoutGetFromViewer: 1
8 *drcResultsFile: test.drc.results
9 *drcEnvVars: { BATCH NO Runset } { TECHDIR /home/mch0021/mch0021_pdk/ c

global_foundries/cmos14lpp/REL_GF/CalibreDRC Runset } {
LAYOUT_SYSTEM GDSII Runset } { LAYOUT_OUT GDS Runset } { DP_OFF_ALL
NO Runset } { RDB_DIR ./RDB_RESULTS Runset } { DENSITY_RESULTS
density.results Runset } { ANTENNA_RESULTS antenna.results Runset }
{ BEOL_STACK 13M_3Mx_2Cx_4Kx_2Hx_2Gx_LB Runset } { DESIGN_TYPE
CELL_NODEN Runset } { IOTYPE 3ON6 Runset } { OUTLINE_CHECK YES
Runset } { FCPBGA NO Runset } { C_ORIENTATION VERTICAL Runset } {
P_DENSITY_CHECK NO Runset } { CHIP_DIE_COUNT OVER_5CHIP_SHOT Runset
} { CELL_BOUNDARY DB_EXTENT Runset } { ERROR_LIMITATION DEFAULT
Runset } { RECOMMENDED_RULES NO Runset } { OCD_OVL_RECOMMENDED_RULES
NO Runset } { CELL_FINE_SS NO Runset } { CUSTOM_CELL_SS NO Runset }
{ CELL_SS 10 Runset } { DO_SRULES YES Runset } { REMOVE_ELUP_BEVEL4
NO Runset } { MOB_OPTION NWMOB Runset } { BOOLEAN_DEBUG NO Runset }
{ STB_DEBUG NO Runset } { DP_CHECK_DESIGN_M1 YES Runset } {
DP_CHECK_DESIGN_M2 YES Runset } { DP_CHECK_DESIGN_M3 YES Runset } {
CA_COLORED NO Runset } { CB_COLORED NO Runset } { DP_LAYOUT_OUT OA
Runset } { DP_GENERATION_TOOL_M1 YES Runset } {
DP_GENERATION_TOOL_M2 YES Runset } { DP_GENERATION_TOOL_M3 YES
Runset } { DP_AUTO_STITCH_CA YES Runset } { DENSITY_FLATTEN_M NO
Runset }

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

10 *drcWriteSummary: 0
11 *drcSummaryFile: test.drc.summary
12 *drcIncrDRCSlaveHosts: {use {}} {hostName {}} {cpuCount {}} {a32a64 {}}

{rsh {}} {maxMem {}} {workingDir {}} {layerDir {}} {mgcLibPath {}}
{launchName {}}

↪→

↪→

13 *drcIncrDRCLSFSlaveTbl: {use 1} {totalCpus 1} {minCpus 1} {architecture
{{}}} {minMemory {{}}} {resourceOptions {{}}} {submitOptions {{}}}↪→

14 *drcIncrDRCGridSlaveTbl: {use 1} {totalCpus 1} {minCpus 1} {architecture
{{}}} {minMemory {{}}} {resourceOptions {{}}} {submitOptions {{}}}↪→

15 *cmnWarnLayoutOverwrite: 0
16 *cmnRunMT: 1
17 *cmnRunHyper: 1

130

18 *cmnSlaveHosts: {use {}} {hostName {}} {cpuCount {}} {a32a64 {}} {rsh
{}} {maxMem {}} {workingDir {}} {layerDir {}} {mgcLibPath {}}
{launchName {}}

↪→

↪→

19 *cmnLSFSlaveTbl: {use 1} {totalCpus 1} {minCpus 1} {architecture {{}}}
{minMemory {{}}} {resourceOptions {{}}} {submitOptions {{}}}↪→

20 *cmnGridSlaveTbl: {use 1} {totalCpus 1} {minCpus 1} {architecture {{}}}
{minMemory {{}}} {resourceOptions {{}}} {submitOptions {{}}}↪→

21 *cmnFDILayoutLibrary: test
22 *cmnFDILayoutView: layout
23 *cmnFDIDEFLayoutPath: test.def
24 *cmnPromptSaveRunset: 0
25 *cmnSaveRunsetChanges: 0

Like the LVS tutorial, the process of setting up Calibre for running DRC can be mini-

mized by using a runset file. Above is a very complete file from a 14 nm technology. Consult

the description of the lvs.runset file for the rest of the lines. Only the differences will be

discussed here.

Line 9 is perhaps the most different between runset files. This very long line sets up

a large number of environment variables for the DRC rule deck. These are all technology-

specific, but the syntax is the same. The only notable options here are the BEOL_STACK, which

must be set to the proper stack option as used in the layout, as well as the DESIGN_TYPE

option. Both of these options are typical of DRC rule decks across vendors and technologies.

The DESIGN_TYPE option here indicates whether or not full chip-level checking is to be run or

not, which would include checking such shapes as the chip edge, I/O pads, etc. The option

also enables or disables checking density, which as previously discussed, may be safely ignored

if the manufacturer takes care of density fill, or if you are running cell-level tests and do not

wish to consider density.

131

F.2 chip_den.runset Partial Contents

9 *drcEnvVars: { BATCH NO Runset } { TECHDIR /home/mch0021/mch0021_pdk/ c

global_foundries/cmos14lpp/REL_GF/CalibreDRC Runset } {
LAYOUT_SYSTEM GDSII Runset } { LAYOUT_OUT GDS Runset } { DP_OFF_ALL
NO Runset } { RDB_DIR ./RDB_RESULTS Runset } { DENSITY_RESULTS
density.results Runset } { ANTENNA_RESULTS antenna.results Runset }
{ BEOL_STACK 13M_3Mx_2Cx_4Kx_2Hx_2Gx_LB Runset } { DESIGN_TYPE CHIP
Runset } { IOTYPE 3ON6 Runset } { OUTLINE_CHECK YES Runset } {
FCPBGA NO Runset } { C_ORIENTATION VERTICAL Runset } {
P_DENSITY_CHECK NO Runset } { CHIP_DIE_COUNT OVER_5CHIP_SHOT Runset
} { CELL_BOUNDARY DB_EXTENT Runset } { ERROR_LIMITATION DEFAULT
Runset } { RECOMMENDED_RULES NO Runset } { OCD_OVL_RECOMMENDED_RULES
NO Runset } { CELL_FINE_SS NO Runset } { CUSTOM_CELL_SS NO Runset }
{ CELL_SS 10 Runset } { DO_SRULES YES Runset } { REMOVE_ELUP_BEVEL4
NO Runset } { MOB_OPTION NWMOB Runset } { BOOLEAN_DEBUG NO Runset }
{ STB_DEBUG NO Runset } { DP_CHECK_DESIGN_M1 YES Runset } {
DP_CHECK_DESIGN_M2 YES Runset } { DP_CHECK_DESIGN_M3 YES Runset } {
CA_COLORED NO Runset } { CB_COLORED NO Runset } { DP_LAYOUT_OUT GDS
Runset } { DP_GENERATION_TOOL_M1 YES Runset } {
DP_GENERATION_TOOL_M2 YES Runset } { DP_GENERATION_TOOL_M3 YES
Runset } { DP_AUTO_STITCH_CA YES Runset } { DENSITY_FLATTEN_M NO
Runset }

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Line 9 is the only line that differs between runset files from the same technology to

allow checking of the entire chip with density checks. DESIGN_TYPE is the only variable

changed.

The runset file presented here is the most complete DRC runset in terms of options

and should be emulated for other runset files in other technologies.

132

Appendix G

PEX Tutorial

Parasitic extraction, or PEX for short, is a powerful tool for extracting resistive, capac-

itive, and inductive parasitic components from a layout. This is very useful to a designer

who wants to ensure that the layout will function as well as the schematic has shown it

to through simulation. Parasitics may slow the circuit down enough to the point of fail-

ing at the desired frequency, for instance. PEX requires both an input layout as well as a

schematic, as the first step PEX performs is LVS, which is explained in detail in the LVS

tutorial. PEX can output a netlist of parasitics combined with the original schematic, as

well as a summary of parasitics. The netlist can also be turned into a separate schematic

view called a calibre view, named after the Calibre PEX tool that extracts the parasitics.

This view can be simulated using ADE, which is covered in the ADE tutorial.

This tutorial covers PEX for both a 90 nm technology and a 32 nm technology, which

differ slightly in setup. If you have not run LVS, it is advised to run that first, as PEX will

not successfully complete if LVS does not pass.

133

G.1 90 nm PEX Setup

To start Calibre PEX, navigate to the Calibre menu in the Virtuoso Layout window and

click on PEX . By default, Calibre will ask for a runset file. Load the file from home mch0021

mch0021_pdk setup [technology].

134

The runset file will pre-load many of the correct options, but you will need to ensure

the PEX Run Directory is set to a directory that you own. Otherwise, you are clear to click

Run PEX . Since PEX is dependent on LVS to run, you may confirm that the schematic

information is correct under Inputs before proceeding.

135

136

With many PEX runs, the desired output is a calibre view. The Calibre View Setup

window will pop up as soon as PEX has completed. Be sure to use the Cellmap File as

provided by the vendor of the technology. This is crucial to map the extracted components

from the layout back to the schematic view. Change the Calibre View Type to schematic , and

be sure to select Create all terminals . You will want to select Preserve Device Case as well, as

there may be mapping problems if this is not selected. The Device Placement option can be

set to Arrayed , which will force all of the ports at the top, followed by transistors, followed by

the dispersed resistive and capacitive parasitics. You will likely want to open the calibre

view for reading after, so set the Open Calibre CellView option to Read-mode , then click OK .

Depending on the number of parasitics, it may take a few seconds to many hours to complete.

Due to the nature of simulation, if it takes many hours to complete, the simulation may fail

to run altogether due to memory constraints. If this is the case, follow along in the 32nm

tutorial to learn how to reduce the number of parasitics.

137

The extracted schematic is not very readable. As mentioned before, the ports are at the

top, with the devices underneath. The transistors are labeled by their hierarchical instance

names from the initial schematic view, which makes identification possible, but not easy.

This can be useful if you wish to examine other nets during simulation that are not brought

out to a port.

138

G.2 32 nm PEX Setup

Running PEX in other vendors’ kits can be slightly different. For those vendors that

provide a custom Calibre menu, you may be disappointed to see that there is not a PEX

option. However, the environment variables that are used when running DRC and LVS are

still very pertinent to running PEX. Thus, running LVS immediately prior to running PEX

is a good idea, as this will preset the environment variables to their correct values. Once this

is done, you can start PEX from the Calibre menu and load the correct rules file from home

mch0021 mch0021_pdk [path to technology] Calibre xRC. There may be several rules

files to choose from, so be sure to choose the one that corresponds to the correct BEOL

stack.

139

If you are using a standard cell library that does not have schematic views, as is often

the case, be sure to include the CDL netlist. Refer to the LVS tutorial for details on how to

do this.

140

Under Outputs , select the CALIBREVIEW format. This will allow the creation of the

aforementioned calibre view. You may also want to change the extraction type to just

extract resistances and lumped capacitances, but no coupling capacitances, for instance.

This is to reduce the number of parasitic elements, which otherwise can be too large for

simulation. By reducing the number of elements to extract, the simulation may be less

accurate, but will simulate much faster. You can also choose to extract inductances as well.

141

If, when running PEX, you find that the number of parasitics generated is far too high,

you can enable MinCap reduction and MinRes reduction . This will remove or combine capaci-

tances or resistances based on their value. You can minimize the number of parasitics by

eliminating those that will not impact simulation much. Over 100,000 instances is probably

too many for a reasonable simulation time. If increasing the reduction parameters is not

possible, consider breaking the layout into smaller chunks and run PEX separately. For

instance, PEX on the entire chip may not be possible, but PEX on the important pieces of

the core, plus PEX run separately on the individual pads, might be quite feasible.

142

In order to cut down on the time spent extracting, be sure to enable the Multi-Threaded

option.

143

If you are seeing errors related to instances not found in the map file, there may be

an issue with the capitalization of such instance names. To remedy this, you will need to

force Calibre to be case sensitive. Click on Setup PEX Options to get the PEX Options button.

Then, under the Include tab, click on the Include Rule Statements and type SOURCE CASE YES

and LAYOUT CASE YES to keep the capitalization the same in both the schematic netlist and

the layout netlist. Some rules files may include those lines by default, but do not assume

that it is the case until you have checked.

144

G.3 pex.runset Contents

1 *pexRulesFile: /home/mch0021/mch0021_pdk/mitll_cryo/relCRYO/ c

90nmFdsoiRules/soi90nm_pex_top.rules↪→

2 *pexRulesFileLastLoad: 1467823017
3 *pexRunDir: /home/mch0021/mch0021_group/lowtemp_group/MIT_LL/CRYO3/ c

kvo0001+MITLL_PDK_CRYO+CRYO3+8↪→

4 *pexLayoutPaths: test.calibre.db
5 *pexLayoutPrimary: test
6 *pexLayoutLibrary: dram
7 *pexLayoutView: layout
8 *pexLayoutGetFromViewer: 1
9 *pexSourcePath: test.src.net

10 *pexSourcePrimary: test
11 *pexSourceLibrary: dram
12 *pexSourceView: schematic
13 *pexSourceGetFromViewer: 1
14 *pexEnvVars: {USE_MTK {} Unset} {TOPMETAL M5 Runset} {PEX_PROCESS

CRYO_4K Runset}↪→

15 *pexReportFile: test.lvs.report
16 *pexPexNetlistFile: test.pex.netlist
17 *pexPexNetlistFormat: CALIBREVIEW
18 *pexPexReportFile: test.pex.report
19 *pexStartRVE: 1
20 *cmnWarnLayoutOverwrite: 0
21 *cmnWarnSourceOverwrite: 0
22 *cmnResolution: 5
23 *cmnUseCBforRVE: 0
24 *cmnRunHier: 2
25 *cmnRunMT: 1
26 *cmnSlaveHosts: {use {}} {hostName {}} {cpuCount {}} {a32a64 {}} {rsh

{}} {maxMem {}} {workingDir {}} {layerDir {}} {mgcLibPath {}}
{launchName {}}

↪→

↪→

27 *cmnLSFSlaveTbl: {use 1} {totalCpus 1} {minCpus 1} {architecture {{}}}
{minMemory {{}}} {resourceOptions {{}}} {submitOptions {{}}}↪→

28 *cmnGridSlaveTbl: {use 1} {totalCpus 1} {minCpus 1} {architecture {{}}}
{minMemory {{}}} {resourceOptions {{}}} {submitOptions {{}}}↪→

29 *cmnFDILayoutLibrary: dram
30 *cmnFDILayoutView: layout

145

31 *cmnFDIDEFLayoutPath: test.def
32 *cmnTraceProperties: {1 { MP "W" "W" 0 0}} {1 { MP "L" "L" 0 0}} {1 { MN

"W" "W" 0 0}} {1 { MN "L" "L" 0 0}} {1 { MP5T "W" "W" 0 0}} {1 {
MP5T "L" "L" 0 0}} {1 { MN5T "W" "W" 0 0}} {1 { MN5T "L" "L" 0 0}}
{1 { D "A" "A" 0 0}} {1 { R "w" "w" 0 0}} {1 { R "l" "l" 0 0}} {1 {
C(vncap) "w" "w" 0 0}} {1 { C(vncap) "l" "l" 0 0}} {1 { C(vncap)
"fw" "fw" 0 0}} {1 { C(vncap) "fs" "fs" 0 0}} {1 { C(vncap) "nf"
"nf" 0 0}} {1 { C(vncap) "toplev" "toplev" 0 0}} {1 { C(vncap)
"botlev" "botlev" 0 0}}

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Here is a sample runset file from the 90 nm technology. After examining the LVS

runset and the DRC runset files, this should look very familiar. Improvements could be

made to prevent the runset from asking if you wish to save it upon closing Calibre, as well

as changing the run directory to a local directory within your workspace, or perhaps the

workspace itself.

146

Appendix H

Encounter Tutorial

H.1 Behavioral Verilog

H.1.1 mac32_dual_wrapper.v Contents

1 //mac32_dual_wrapper.v
2 //Kyle Owen
3 //21 September 2014
4 //Wraps two serial-wrapped MACs (one LVT, one RVT) into a single

instance↪→

5 //with a chip select line to pick the active MAC.
6

7 module mac32_dual_wrapper(
8 phi1,
9 phi2,

10 global_rstn,
11 mac_wait,
12 mac_wait_test,
13 serial_in,
14 serial_in_enable,
15 serial_clk_phi1,
16 serial_clk_phi2,
17 serial_out,
18 serial_out_enable,
19 chip_select
20);
21

22 input phi1;
23 input phi2;
24 input global_rstn;
25 input mac_wait;
26 input mac_wait_test;
27 input serial_in;
28 input serial_in_enable;
29 input serial_out_enable;
30 input chip_select;

147

31 output serial_clk_phi1;
32 output serial_clk_phi2;
33 output serial_out;
34

35 wire rstn_hvt, rstn_rvt;
36 wire serial_out_hvt, serial_out_rvt;
37 wire serial_clk_phi1_hvt, serial_clk_phi1_rvt;
38 wire serial_clk_phi2_hvt, serial_clk_phi2_rvt;
39

40 assign serial_out = (chip_select) ? serial_out_rvt : serial_out_hvt;
//select LVT when chip_select = 0; otherwise RVT↪→

41 assign serial_clk_phi1 = (chip_select) ? serial_clk_phi1_rvt :
serial_clk_phi1_hvt;↪→

42 assign serial_clk_phi2 = (chip_select) ? serial_clk_phi2_rvt :
serial_clk_phi2_hvt;↪→

43 assign rstn_rvt = global_rstn && chip_select; //reset RVT when
chip_select = 0↪→

44 assign rstn_hvt = global_rstn && ~chip_select; //reset LVT when
chip_select = 1↪→

45

46 mac32_serial_wrapper_hvt hvt_mac(
47 .phi1(phi1),
48 .phi2(phi2),
49 .rstn(rstn_hvt),
50 .mac_wait(mac_wait),
51 .mac_wait_test(mac_wait_test),
52 .serial_in(serial_in),
53 .serial_in_enable(serial_in_enable),
54 .serial_clk_phi1(serial_clk_phi1_hvt),
55 .serial_clk_phi2(serial_clk_phi2_hvt),
56 .serial_out(serial_out_hvt),
57 .serial_out_enable(serial_out_enable)
58);
59

60 mac32_serial_wrapper_rvt rvt_mac(
61 .phi1(phi1),
62 .phi2(phi2),
63 .rstn(rstn_rvt),
64 .mac_wait(mac_wait),
65 .mac_wait_test(mac_wait_test),
66 .serial_in(serial_in),
67 .serial_in_enable(serial_in_enable),
68 .serial_clk_phi1(serial_clk_phi1_rvt),
69 .serial_clk_phi2(serial_clk_phi2_rvt),
70 .serial_out(serial_out_rvt),

148

71 .serial_out_enable(serial_out_enable)
72);
73

74 endmodule

H.2 Tcl Scripts

H.2.1 rtl_rvt.tcl Contents

1 set_attribute lib_search_path /home/mch0021/mch0021_pdk/ c

support_digital/32soi/arm/ibm/32soi/sc9_base_rvt/r2p0/lib↪→

2

3 set_attribute library
{sc9_32soi_base_rvt_tt_nominal_max_0p90v_50c_mxs.lib}↪→

4

5 read_hdl ../hdl/mac32_serial_wrapper_rvt.v
6 read_hdl ../hdl/mac32_two_phase_pipelined_rvt.v
7

8 elaborate mac32_serial_wrapper_rvt
9

10 set_attribute max_fanout 8 designs/*
11

12 set_attribute avoid true [find / -libcell *]
13 set_attribute avoid false {AND2_X1M_A9TR BUFH_X1M_A9TR DFFQ_X1M_A9TR

LATNQ_X1M_A9TR INV_X1M_A9TR INV_X2M_A9TR INV_X4M_A9TR INV_X7P5M_A9TR
INV_X16M_A9TR MXT2_X1M_A9TR NAND2_X1M_A9TR NOR2_X1M_A9TR
OR2_X1M_A9TR XOR2_X1M_A9TR}

↪→

↪→

↪→

14

15 synthesize -to_mapped -effort high
16

17 write_hdl > ../hdl/mac32_serial_wrapper_rvt_synth.v
18

19 report gates

H.2.2 top_level.tcl Contents

1 set_attribute lib_search_path /home/mch0021/mch0021_pdk/ c

support_digital/32soi/arm/ibm/32soi/sc9_base_rvt/r2p0/lib↪→

2

3 set_attribute library
{sc9_32soi_base_rvt_tt_nominal_max_0p90v_50c_mxs.lib}↪→

4

149

5 read_hdl ../hdl/mac32_dual_wrapper.v
6

7 elaborate mac32_dual_wrapper
8

9 set_attribute max_fanout 8 designs/*
10

11 set_attribute avoid true [find / -libcell *]
12 set_attribute avoid false {AND2_X1M_A9TR BUFH_X1M_A9TR DFFQ_X1M_A9TR

LATNQ_X1M_A9TR INV_X1M_A9TR INV_X2M_A9TR INV_X4M_A9TR INV_X7P5M_A9TR
INV_X16M_A9TR MXT2_X1M_A9TR NAND2_X1M_A9TR NOR2_X1M_A9TR
OR2_X1M_A9TR XOR2_X1M_A9TR}

↪→

↪→

↪→

13

14 synthesize -to_mapped -effort high
15

16 write_hdl > ../hdl/mac32_dual_wrapper_synth.v
17

18 report gates

H.2.3 pr.tcl Contents

1 set basename top_level
2 set structure_name mac32_dual_wrapper
3 set init_gnd_net VSS
4 set init_pwr_net VDD
5 set init_design_uniquify 1
6 set init_lef_file {/home/mch0021/mch0021_pdk/support_digital/32soi/ c

5L1x_3L2x_1L4x_2T16x_LB/sc9_tech.lef
/home/mch0021/mch0021_pdk/support_digital/32soi/arm/ibm/32soi/ c

sc9_base_hvt/r3p0/lef/sc9_32soi_base_hvt.lef
/home/mch0021/mch0021_pdk/support_digital/32soi/arm/ibm/32soi/ c

sc9_base_rvt/r2p0/lef/sc9_32soi_base_rvt.lef}

↪→

↪→

↪→

↪→

↪→

7 set init_design_settop 0
8 set init_verilog ../hdl/${basename}.v
9 set pwr_global VDD

10 set pwr_pin VDD
11 set gnd_global VSS
12 set gnd_pin VSS
13 set pwr_nets [list ${pwr_global} ${gnd_global}]
14

15 set fp_width 214.89
16 set fp_height 215.10
17 set fp_bound_x 20.02
18 set fp_bound_y 20.00

150

19 set bb_to_edge_x 7.54
20 set bb_to_edge_y 4.20
21 set welltap_width 1.56
22

23 set welltap_interval [expr {$fp_width - $welltap_width}]
24

25 set bb_width [expr {$fp_width - 2 * $bb_to_edge_x}]
26 set bb_height [expr {$fp_height / 2 - 2 * $bb_to_edge_y}]
27

28 set bb1_bl_x [expr {$fp_bound_x + $bb_to_edge_x}]
29 set bb1_bl_y [expr {$fp_bound_y + $bb_to_edge_y}]
30 set bb1_tr_x [expr {$bb1_bl_x + $bb_width}]
31 set bb1_tr_y [expr {$bb1_bl_y + $bb_height}]
32

33 set bb2_bl_x $bb1_bl_x
34 set bb2_bl_y [expr {$bb1_tr_y + 2 * $bb_to_edge_y}]
35 set bb2_tr_x $bb1_tr_x
36 set bb2_tr_y [expr {$bb2_bl_y + $bb_height}]
37

38 init_design
39 clearGlobalNets
40 globalNetConnect ${pwr_global} -type pgpin -pin ${pwr_pin} -inst *
41 globalNetConnect ${gnd_global} -type pgpin -pin ${gnd_pin} -inst *
42 setNanoRouteMode -drouteUseMultiCutViaEffort high
43

44 ## M1 avoidance
45 setNanoRouteMode -routeWithViaInPin false
46 setNanoRouteMode -routeWithViaOnlyForStandardCellPin false
47 setNanoRouteMode -routeBottomRoutingLayer 1
48

49 puts "###"
50 puts "################### Specifying Floorplan ###################"
51 puts "###"
52 floorPlan -site SC9_32SOI -s $fp_width $fp_height $fp_bound_x

$fp_bound_y $fp_bound_x $fp_bound_y↪→

53

54 puts "###"
55 puts "################### Specifying Black Box ###################"
56 puts "###"

151

57 specifyBlackBox -cell mac32_serial_wrapper_rvt -size $bb_width
$bb_height -coreSpacing 0.0 0.0 0.0 0.0 -minPitchLeft 2
-minPitchRight 2 -minPitchTop 2 -minPitchBottom 2 -reservedLayer { 1
2 3 4 5 6 7 8 9 10 11 12} -pinLayerTop { 3 5 7 9 11} -pinLayerLeft {
2 4 6 8 10 12} -pinLayerBottom { 3 5 7 9 11} -pinLayerRight { 2 4 6
8 10 12} -routingHalo 0.0 -routingHaloTopLayer 12
-routingHaloBottomLayer 1 -placementHalo 0.0 0.0 0.0 0.0

↪→

↪→

↪→

↪→

↪→

↪→

58 specifyBlackBox -cell mac32_serial_wrapper_hvt -size $bb_width
$bb_height -coreSpacing 0.0 0.0 0.0 0.0 -minPitchLeft 2
-minPitchRight 2 -minPitchTop 2 -minPitchBottom 2 -reservedLayer { 1
2 3 4 5 6 7 8 9 10 11 12} -pinLayerTop { 3 5 7 9 11} -pinLayerLeft {
2 4 6 8 10 12} -pinLayerBottom { 3 5 7 9 11} -pinLayerRight { 2 4 6
8 10 12} -routingHalo 0.0 -routingHaloTopLayer 12
-routingHaloBottomLayer 1 -placementHalo 0.0 0.0 0.0 0.0

↪→

↪→

↪→

↪→

↪→

↪→

59

60 puts "###"
61 puts "################### Adding Power Rings ###################"
62 puts "###"
63 addRing -skip_via_on_wire_shape Noshape -use_wire_group_bits 2

-use_interleaving_wire_group 1 -skip_via_on_pin Standardcell -center
1 -stacked_via_top_layer LB -use_wire_group 1 -type core_rings
-jog_distance 4.0 -threshold 4.0 -nets {VDD VSS} -follow core
-stacked_via_bottom_layer M1 -layer {bottom M1 top M1 right M2 left
M2} -width 1.04 -spacing 2 -offset 4.0

↪→

↪→

↪→

↪→

↪→

64

65 puts "###"
66 puts "################### Adding Well Taps ###################"
67 puts "###"
68 addWellTap -cell BITIE_A9TR -cellInterval $welltap_interval -fixedGap

-skipRow 1 -prefix WELLTAP↪→

69

70 puts "###"
71 puts "################### Placing Pins ###################"
72 puts "###"
73 editPin -pinWidth 0.1 -pinDepth 0.22 -fixedPin 1 -fixOverlap 1 -unit

MICRON -spreadDirection clockwise -side Top -layer 3 -spreadType
center -spacing 10.0 -pin {serial_out serial_clk_phi2
serial_clk_phi1 chip_select}

↪→

↪→

↪→

74 editPin -pinWidth 0.1 -pinDepth 0.22 -fixedPin 1 -fixOverlap 1 -unit
MICRON -spreadDirection counterclockwise -side Bottom -layer 3
-spreadType center -spacing 10.0 -pin {serial_out_enable
serial_in_enable serial_in}

↪→

↪→

↪→

152

75 editPin -pinWidth 0.1 -pinDepth 0.22 -fixedPin 1 -fixOverlap 1 -unit
MICRON -spreadDirection counterclockwise -side Left -layer 3
-spreadType center -spacing 10.0 -pin {mac_wait_test mac_wait
global_rstn}

↪→

↪→

↪→

76 editPin -pinWidth 0.1 -pinDepth 0.22 -fixedPin 1 -fixOverlap 1 -unit
MICRON -spreadDirection clockwise -side Right -layer 3 -spreadType
center -spacing 10.0 -pin {phi2 phi1}

↪→

↪→

77

78 puts "###"
79 puts "################### Placing Cells ###################"
80 puts "###"
81 setPlaceMode -fp false
82

83 placeDesign
84

85 puts "###"
86 puts "################### Moving Black Boxes ###################"
87 puts "###"
88 setObjFPlanBox Instance rvt_mac $bb1_bl_x $bb1_bl_y $bb1_tr_x $bb1_tr_y
89 setObjFPlanBox Instance hvt_mac $bb2_bl_x $bb2_bl_y $bb2_tr_x $bb2_tr_y
90

91 puts "###"
92 puts "################### Trial Routing ###################"
93 puts "###"
94 trialRoute -maxRouteLayer 6 -floorplanMode
95

96 puts "###"
97 puts "################### Loading Netlists ###################"
98 puts "###"
99 loadBlackBoxNetlist ../hdl/mac32_serial_wrapper_rvt_synth.v

100 loadBlackBoxNetlist ../hdl/mac32_serial_wrapper_hvt_synth.v
101

102 puts "###"
103 puts "################### Placing Cells ###################"
104 puts "###"
105 placeDesign
106

107 puts "###"
108 puts "################### Moving Black Boxes ###################"
109 puts "###"
110 setObjFPlanBox Instance rvt_mac $bb1_bl_x $bb1_bl_y $bb1_tr_x $bb1_tr_y
111 setObjFPlanBox Instance hvt_mac $bb2_bl_x $bb2_bl_y $bb2_tr_x $bb2_tr_y
112

113 puts "###"
114 puts "################### Converting to Fence ###################"

153

115 puts "###"
116 convertBlackBoxToFence -cell mac32_serial_wrapper_rvt
117 convertBlackBoxToFence -cell mac32_serial_wrapper_hvt
118

119 puts "###"
120 puts "################### Placing Cells ###################"
121 puts "###"
122 placeDesign -inPlaceOpt
123

124 puts "###"
125 puts "################### Adding Filler ###################"
126 puts "###"
127

128 set fillercap_cells [list FILLSGCAP128_A9TH FILLSGCAP64_A9TH
FILLSGCAP32_A9TH FILLSGCAP16_A9TH FILLSGCAP8_A9TH FILLSGCAP4_A9TH]↪→

129 set filler_cells [list FILL128_A9TH FILL64_A9TH FILL32_A9TH FILL16_A9TH
FILL8_A9TH FILL4_A9TH FILL2_A9TH FILL1_A9TH]↪→

130

131 foreach fill_cell $filler_cells fillcap_cell $fillercap_cells {
132 set fill_cells [list $fill_cell $fillcap_cell]
133 addFiller -cell ${fill_cells} -prefix FILLER
134 }
135

136 puts "###"
137 puts "################### Special Route ###################"
138 puts "###"
139 sroute
140 puts "###"
141 puts "################### Detail Route ###################"
142 puts "###"
143 globalDetailRoute
144 puts "###"
145 puts "################### Verifying Geometry ###################"
146 puts "###"
147 verifyGeometry
148

149 puts "###"
150 puts "################ Write Post-route Verilog ################"
151 puts "###"
152

153 saveNetlist ../hdl/postroute/${basename}.v
154

155 puts "###"
156 puts "#################### Write SDF File ###################"

154

157 puts "###"
158

159 write_sdf ../sdf/${basename}.sdf
160

161 puts "###"
162 puts "################### Streaming Out GDSII ###################"
163 puts "###"
164 streamOut ../gds/${basename}.gds -mapFile ../tech.map -libName DesignLib

-structureName ${structure_name} -stripes 1 -units 2000 -mode ALL↪→

165 #exit

155

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Ring Oscillators
	Background
	32 nm Ring Oscillators
	Schematic
	Layout
	DRC and LVS
	Parasitic Extraction

	90 nm Ring Oscillators
	Schematic
	Layout
	DRC and LVS
	Parasitic Extraction

	32-bit Multiply-Accumulate Unit
	Background
	Hardware Description Language
	Simulation
	Layout
	DRC and LVS

	Static Random Access Memory
	Background
	Schematic
	Simulation
	Layout
	DRC and LVS

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices
	MATLAB Code
	SRAM Static Noise Margin Analysis
	Parser
	Grapher
	Analyzer
	Inscribed Square - Read
	Inscribed Square - Write

	IC Manage Tutorial
	Adding a new user
	Adding a new PDK project
	Add variant to existing project
	Add libraries to existing variant
	Adding unmanaged libraries
	Adding a new workspace
	Adding library properties
	Managed vs. unmanaged libraries
	Editing a view
	Canceling a checkout
	Reverting to an older version

	Plotting Schematics Tutorial
	.cdsplotinit Contents
	schematic_beautify.sed Contents

	ADE Tutorial
	LVS Tutorial
	lvs.runset Contents

	DRC Tutorial
	cell_noden.runset Contents
	chip_den.runset Partial Contents

	PEX Tutorial
	90 nm PEX Setup
	32 nm PEX Setup
	pex.runset Contents

	Encounter Tutorial
	Behavioral Verilog
	mac32_dual_wrapper.v Contents

	Tcl Scripts
	rtl_rvt.tcl Contents
	top_level.tcl Contents
	pr.tcl Contents

