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Abstract

Numerical extended MHD simulations are used to gain insight into the effect of three-

dimensional shaping from the Compact Toroidal Hybrid (CTH) stellarator field on sawteeth.

Numerical solutions having repeated sawtooth relaxations are obtained for a sequence of

configurations with increasing helical stellarator field strength. The experimentally observed

trend of the sawtooth period τsaw decreasing as the helical field strength is increased is

recovered in the simulations. The linear growth rate of the visco-resistive internal kink

mode, which drives the sawteeth, increases as the helical field strength is increased.

The NIMROD code was used to compute the numerical solutions. Careful attention

to numerical convergence was required to obtain accurate numerical solutions. Increased

spatial resolution, especially in the toroidal direction, was required to resolve the reconnection

current layer during relaxations for non-axisymmetric cases. Temporal convergence issues

were identified and an improved semi-implicit operator, having better convergence properties

for non-axisymmetric cases, was implemented. The numerical convergence considerations

needed to obtain the results may be relevant to simulations of other phenomena in devices

with non-axisymmetric plasmas such as perturbed tokamaks, RFPs and stellarators.

Experimental soft x-ray data of sawtooth relaxations was analyzed with computed to-

mography. A novel variation on the Fourier-Bessel method was used. The basis functions

are functions of VMEC flux coordinates, so that known information about the structure of

the magnetic field is used in the reconstructions.
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Chapter 1

Introduction

When a gas is heated to a sufficiently high temperature, molecules break down and

electrons dissociate from their atoms. A heated gas that has reached such a state is called a

plasma. A useful property of plasmas is that they can be manipulated with magnetic fields.

In a uniform magnetic field a single charged particle orbits a field line at the Larmor radius,

which is inversely proportional to the strength of the field, but moves with constant velocity

in the direction parallel to the field. Charged particles in a strongly magnetized plasma

tend to travel parallel to field lines, so it is possible to confine a plasma to a region of space

with magnetic fields. There are several exciting possibilities for technological application

of magnetic plasma confinement in the future. This work is concerned with magnetically

confined nuclear fusion [1], but another possible application is efficient space propulsion

concepts like the VASIMR rocket [2]. Magnetic fusion involves confining a plasma to a region

with magnetic fields and heating it until nuclear reactions occur because collisions between

ions are energetic enough to overcome the Coulomb barrier. There are many concepts for

producing plasmas with the properties needed for nuclear fusion and several fuels have been

identified.

Most magnetically confined nuclear fusion concepts are based on a fuel that is a mixture

of deuterium and tritium (DT), because the plasma conditions needed for DT reactions are

the least severe. The fusion of a deuterium nucleus with a tritium nucleus produces an

energetic alpha particle and neutron. A DT plasma with the right properties may reach

an ignited state [3]. An ignited plasma is heated by high energy alpha particles produced

from nuclear reactions, maintaining the high temperature necessary for continued nuclear

reactions and alpha particle production without any external heating [1]. The high energy
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neutrons, having no electric charge, escape the plasma. The neutrons may be thermalized

and the energy used for some purpose like driving a steam turbine to produce electricity.

The JET and TFTR experiments have successfully created conditions that resulted in several

megawatts of fusion power [4,5]. However, experimental observation and study of an ignited,

magnetically confined plasma is presently beyond the state of the art. The ITER experiment,

currently under construction, is intended to study strongly self-heated plasmas. It is a

possiblility that ITER may reach ignited DT plasma conditions [6].

Two successful concepts, the tokamak and the stellarator, emerged from the early work

on magnetic fusion energy (MFE). Presently the tokamak is the most evolved concept for

magnetically confined fusion, but progress continues on stellarators. In contrast to earlier

cylindrical pinch concepts, tokamaks and stellarators are both topologically toroidal. A

simple toroidal coordinate system, (r, θ, φ) where r is the radial coordinate, θ poloidal and φ

toroidal, is commonly used to study these devices. The transformation equations for these

coordinates are
r =

√
(R−R0)2 + (Z − Z0)2

tan(θ) = Z − Z0

R−R0

tan(φ) = y

x
,

(1.1)

where R,Z, φ are cylindrical coordinates, x, y, z are Cartesian coordinates and R0, Z0 are

constants, which are often chosen to be the location of the magnetic axis in cylindrical

coordinates. This coordinate system is distinct from proper toroidal coordinates in which

Laplace’s equation is separable.

The magnetic field of both the tokamak and the stellarator is in the toroidal direction

with a weak poloidal component and they differ principally in how the poloidal component

of the magnetic field is generated [7]. In tokamaks, the poloidal component is produced by

driving an electric current the long way around the torus. There are a number of ways to

drive this current but the most ubiquitous way is by magnetic induction using a transformer

coil in the middle of the torus. A stellarator produces the poloidal field with carefully shaped
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magnet coils that surround the vacuum vessel. Often a helically deformed vacuum vessel is

needed in stellarators. It follows that the tokamak is traditionally axisymmetric, having no

variations in the toroidal direction, while the stellarator is necessarily non-axisymmetric.

Sawtoothing is a commonly observed phenomenon in tokamaks, first reported in [8]. It

is a repeated relaxation in the core of the plasma that effectively limits the amplitude of

the current density. The relaxations are called sawteeth because a soft x-ray pinhole camera

pointed toward the plasma core during sawtooth activity will produce a sawtooth-like signal.

It is worthwhile to note that another type of repeated relaxation, called an edge localized

mode (ELM), is seen in tokamaks. ELMs effectively limit the pressure gradient at the edge of

the plasma. The first numerical simulation of repeated ELM relaxations was only conducted

recently [9].

It has been found that two-dimensional shaping in the poloidal plane (φ = const.) of

the plasma in tokamaks can be used to control a number of properties of a plasma discharge.

Two-dimensional shaping has been used to control the properties of sawtoothing in several

experiments including TCV and DIII-D [10, 11]. It was also found that confinement of

thermal energy in TCV and DIII-D can be optimized with two-dimensional shaping [12,13].

More recently control coils with non-axisymmetric fields have proven useful in controlling

ELMs [14].

Consideration of three-dimensional equilibrium shaping in tokamak design would allow

many more degrees of freedom than are possible if axisymmetry is required. This flexibil-

ity may prove valuable in finding solutions to future challenges [15]. The NCSX [16] design

study considered a quasiaxisymmetric stellarator with a significant amount of toroidal plasma

current generated by the bootstrap effect. The design was optimized with the effect of the

plasma current included in the optimization. Although NCSX is usually referred to as a com-

pact stellarator, it can also be accurately described as a quasiaxisymmetric tokamak [15].

The Compact Toroidal Hybrid (CTH) [17] is a small stellarator-tokamak hybrid at Auburn
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Figure 1.1: Signal from central chord of a CTH soft x-ray camera, shot 14110630. Sawteeth
can be clearly seen.

University. Most recent studies on CTH consider regimes of operation that are more accu-

rately described as tokamak-stellarator hybrid operation, where tokamak-like phenomena in

the plasma are studied. Several CTH publications have reported on ways of controlling the

behavior of tokamak-like phenomena such as disruptions and vertical displacement events

by using shaping from the CTH stellarator field [18–20].

Although sawtoothing is typically associated with tokamaks, it has long been known

that sawteeth can be observed in current carrying stellarators under certain conditions. For

example, sawtoothing has been reported in the W7-AS, Heliotron E and L-2 stellarators

[21–23]. Sawtoothing is often seen in CTH. A soft x-ray signal from CTH is shown in

Fig. 1.1 and sawteeth can be clearly seen. In CTH, three-dimensional shaping from the

helical stellarator magnet coil can be used to control the properties of sawteeth.

In this work, the effect of three-dimensional shaping from CTH’s stellarator magnet coil

on sawteeth is studied with numerical solutions to a set of extended magnetohydrodynamic

(MHD) equations. In the remainder of chapter 1, theory and history relevant to the task at

hand are introduced. The NIMROD code [24] is used to compute the numerical solutions. In

chapter 2 the model equations to be solved and the numerical methods used by NIMROD are

introduced. Experimental observations are briefly discussed in chapter 3 and in chapter 4 we
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go on a slight digression to introduce a novel method of tomographic emissivity reconstruc-

tion. Experimental soft x-ray signals are reconstructed to provide insight into the dynamics

of sawtoothing in CTH. In chapter 5, MHD solutions of repeated sawtooth relaxations in

a CTH-like tokamak, and some key challenges in obtaining these solutions, are described.

Then MHD simulations of sawteeth in CTH stellarator-tokamak hybrid configurations are

considered in chapter 6. The effect of the helical stellarator field on the sawtoothing is stud-

ied by considering at a sequence of configurations having increasing strength of stellarator

field. Some of the experimentally observed trends are captured by the solutions. Numeri-

cal convergence issues in obtaining the solutions are discussed. The numerical convergence

properties of the non-axisymmetric hybrid configurations were different from the axisym-

metric tokamak configuration. The discussion of numerical convergence may be relevant to

other NIMROD simulations of non-axisymmetric configurations. The convergence challenges

motivated an improvement to NIMROD’s numerical method by including non-axisymmetric

fields in the semi-implicit operator.

1.1 Basic Tokamak and Stellarator Concepts

In magnetic fusion, the structure of the magnetic fields is the single most important

aspect of confinement. The efficiency with which a configuration confines thermal energy is

quantified with the energy confinement time τE. It is computed during thermal equilibrium

by taking the ratio of the total thermal energy Eth over the total heating power Q,

τE = Eth´
V
Q dV

. (1.2)

The field of energy and particle transport in magnetized plasmas is extensive and many

of the most important frontiers in magnetic fusion research are presently in this field. The

starting point is often to describe the plasma in terms of a distribution function f(~r,~v, t)

that evolves according to the Boltzmann transport equation [25]. This approach of solving
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a partial differential equation (PDE) with seven independent variables is usually intractable

and reduced models such as the gyrokinetic model are often used [26]. However, in some

cases the very simple single particle view can be extremely useful. In this model the hot

magnetized plasma is considered to be a collection of non-interacting charged particles. The

path of the guiding center of a particle, over which the high frequency Larmor gyration of

the particle is averaged out, is computed.

Consider, in cylindrical coordinates, a toroidal configuration like a tokamak or a stel-

larator. The center of the torus is at R = Z = 0 and the axis of the torus is given by

R,Z = R0, 0. A toroidal magnetic field, ~B = µ0I/(2πR)φ̂ may be generated by a wire with

current I along the line R = 0. Although the guiding centers of charged particles follow

field lines in a uniform magnetic field, the guiding centers will drift across field lines in an

inhomogeneous magnetic field. Particle drifts arise in inhomogeneous fields due to the finite

Larmor radius that particles orbit field lines with. This toroidal magnetic field will not pro-

vide good particle and energy confinement because of guiding center drifts. The solution to

this problem is to add a poloidal component to the fields so that particles revolve between

the inboard and outboard sides of the device as their guiding centers follow the field line.

Particle drift motion across field lines, which is quite slow compared to the motion along the

field lines, averages out and confinement is greatly enhanced.

The amount of twist the fields have due to the poloidal field is quantified with the

rotational transform ι- and its inverse, the safety factor q,

ι- = ∆θ
2π

q = 1
ι- ,

(1.3)

where ∆θ is the poloidal angle traveled by the field line in one toroidal revolution. A q = 2

fieldline in a tokamak is illustrated in Fig. 1.2. Typically, the rotational transform is used

in discussions about stellarators and the safety factor in discussions about tokamaks.
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Figure 1.2: A magnetic field line (black) makes a poloidal revolution every two toroidal
revolutions (q = 2) due to the poloidal field from a toroidal plasma current (blue).

In a stellarator, ι-(r) generally increases monotonically with r and in a tokamak ι-(r)

decreases with increasing r as suggested by Fig. 1.3. The shape of ι-(r) is important for the

stability of a confined plasma. To see this, one can consider a cylindrical plasma with a

circular cross section as a conducting fluid with the magnetohydrodynamic (MHD) model.

A periodic cylinder geometry is often used instead of toroidal geometry as an approximation,

and in these cases a polar cylindrical coordinate system is used (r, θ, z) where z is the axial

coordinate. For such a plasma, all equilibrium quantities are only a function of the radial

coordinate r. A stability analysis gives the following criterion called Suydam’s criterion,

p
′ + rB2

z

8

(
ι-′

ι-

)2
> 0, (1.4)

where ′ denotes differentiation. A cylindrical MHD equilibrium that does not satisfy Suy-

dam’s criterion everywhere will have unstable interchange modes. The radial gradient of the

pressure p′ , which is typically negative, is destabilizing while the shear ι-′ is stabilizing. This

criterion has been generalized to toroidal geometry by Mercier, where unstable ballooning

modes will be present if Mercier’s criterion is not meet. In a tokamak this situation usually

leads to a disruption and termination of the discharge [27]. The limit on radial pressure

gradient in a stellarator is somewhat higher than that given by an MHD model and the

consequences for exceeding the limit is not as disastrous as in a tokamak [7]. Stellarators

are generally less susceptible to instabilities and disruptions than tokamaks.
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(a) Tokamak (b) Stellarator

Figure 1.3: Safety factor profiles for a tokamak (left) and stellarator (right) are plotted
along a chord going from the center to the edge of the plasma. These particular tokamak
and stellarator profiles come from equilibria computed using CTH magnet coils.

The volume inside tokamaks and stellarators may be broken up into regions where the

magnetic field has different structural properties. Magnetic fields may form closed, nested

flux surfaces, where field lines trace out toroidal tubular surfaces (flux tubes) that surround

the magnetic axis at the center of the plasma. Regions of closed nested flux surfaces are

generally associated with good energy and particle confinement. Field lines may trace out

surfaces that bifurcate and enclose volumes containing nested flux surfaces. These regions of

nested flux surfaces do not enclose the magnetic axis and are called islands. There may also

be regions of stochasticity, where field lines do not conform to flux tubes at all and instead

fill the entire stochastic region. Due to the rapid motion of hot plasma particles parallel to

field lines, heat transport is enhanced across islands and stochastic regions.

1.2 Magnetohydrodynamics

It is often productive to describe tokamak or stellarator plasmas with a fluid model.

Fluid equations may be rigorously obtained from first principles by defining velocity moments
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of the Boltzmann particle distribution function f(~r,~v, t) and then obtaining equations that

describe the evolution of these moments by integrating the Boltzmann transport equation.

Usually, only equations for the first two or three moments are obtained. Then a set of closure

relations, which describe higher moments appearing in the equations in terms of the first few,

are chosen to get a closed set of equations. If an exact closure is used, the fluid equations

will describe the exact evolution of the moments.

The simplest fluid model for fusion plasmas is ideal MHD [28]. Ideal MHD describes a

single, inviscid, perfectly conducting fluid. Interestingly, some of the approximations made

in arriving at the ideal MHD equations from the Boltzmann equation are not valid for

fusion plasmas. One approximation is that of high collisionallity. Plasma particles must

have a short mean free path length compared to the length scales of interest. Tokamak

and stellarator plasmas are highly collisionless and particles can have mean free paths of

several kilometers. Nevertheless, ideal MHD gives qualitatively correct descriptions of some

tokamak phenomena. This is because the small gyroradius size of tokamak plasma particles

leads to localization in the direction perpendicular to field lines, so that the plasma has a

collisional-like behavior in the perpendicular direction [29].

One may arrive at the equations of ideal MHD by postulating them as a set of con-

servation laws instead of starting with the Boltzmann equation in the process summarized

above:

∂ρ

∂t
+∇ · (ρ~V ) = 0 Conservation of Mass

ρ(∂
~V

∂t
+ (~V · ∇)~V ) +∇p− ∇×

~B × ~B

µ0
= 0 Conservation of Momentum

∂p

∂t
+ ~V · ∇p+ 5p

3 ∇ ·
~V = 0 Conservation of Entropy

∂ ~B

∂t
−∇× (~V × ~B) = 0 Conservation of Magnetic F lux

∇ · ~B = 0.

(1.5)
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Conservation of flux is an essential feature of ideal MHD. The flux through a surface S

that is co-moving with the fluid,
´
S
~B · n̂ dS, remains constant. It follows from this that the

magnetic field lines are "frozen in" to the plasma. The motion of magnetic field lines follows

the fluid motion of the plasma exactly. Because of the frozen in field property, it makes

sense to show plots derived from the magnetic fields, such as Poincaré plots, when discussing

the fluid displacement of the plasma. A consequence of the frozen in property is that the

topology of the magnetic field lines cannot change during the evolution of the plasma.

More complicated fluid equations than ideal MHD may be needed to describe certain

phenomena such as sawtoothing. For example, the generalized Ohm’s law of ideal MHD

is ~E = −~V × ~B. An additional term is often added to Ohm’s law to account for finite

resistivity. In the ideal MHD model a simple adiabatic closure for the heat flux, ~q = 0, is

used so that entropy is conserved. However it is sometimes necessary to choose a heat flux

closure that incorporates some information about the dynamics of the plasma parallel to the

magnetic field. Two-fluid models are sometimes needed where the electron and ion species

are described with two separate, interacting fluids.

1.3 MHD Equilibrium

The global configuration of tokamak and stellarator plasmas is usually quite accurately

described by equilibrium solutions to the ideal MHD equations. Computer programs like

EFIT [30] and V3FIT [31] exist to find the MHD equilibrium that best matches data from

experimental sensors. If an ideal plasma is in static equilibrium, we have ~V → 0, ∂/∂t→ 0

and the equations for static equilibrium are obtained by substituting these facts into the

equations of ideal MHD:
∇p = ~J × ~B

∇× ~B = µ0 ~J

∇ · ~B = 0.

(1.6)
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Note that the condition of an equilibrium being static with ~V = 0 is usually just a simplifying

assumption and there exist dynamic equilibria with ~V 6= 0.

Due to the magnetic divergence equation, an axisymmetric equilibrium must have nested

flux surfaces everywhere with no islands or regions of stochasticity. Axisymmetric ideal

equilibria may be efficiently computed by numerically solving the Grad-Shafranov equation.

Obtaining three-dimensional (3D) equilibria however, is more difficult. A 3D equilibrium

will, in general, have magnetic islands and regions of magnetic stochasticity as well as nested

flux surfaces. In this work, we make use of the ideal MHD three-dimensional equilibrium

code VMEC [32]. VMEC assumes that equilibria have nested flux surfaces, which is not

a bad approximation in many cases of interest. More complete 3D equilibrium codes are

available that allow changes in the magnetic topology, but these often use VMEC equilibria

as a starting point.

1.4 Linearized MHD

To find the waves and instabilities of an equilibrium, the evolution of small perturbations

to the equilibrium fields must be considered

~V (~r, t) = ~V1(~r, t)

~B(~r, t) = ~B0(~r) + ~B1(~r, t)

p(~r, t) = p0(~r) + p1(~r, t)

ρ(~r, t) = ρ0(~r) + ρ1(~r, t).

(1.7)

The equilibrium fields are denoted with a 0 subscript and perturbed fields with a 1 subscript.

These expressions are substituted into Eq. 1.5, and then Eqs. 1.6 are invoked. Terms of

second order in the perturbation are eliminated because they are vanishingly small. This
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process yields the following linearized equations of MHD,

ρ0
∂~V1

∂t
= −∇p1 + ~J0 × ~B1 + ~J1 × ~B0

∂ ~B1

∂t
= ∇× (~V1 × ~B0)

∂p1

∂t
= −~V1 · ∇p0 −

5p0

3 ∇ ·
~V1

∂ρ1

∂t
= −∇ · (ρ0~V1)

~J1 = ∇× ~B1

∇ · ~B1 = 0.

(1.8)

Eigenfunctions and eigenvalues of the linearized MHD equations can be obtained given

an equilibrium and the boundary conditions. To this end, one often seeks to "uncouple" the

momentum equation from the other equations, so that only ~V1 appears. After one solves for
~V1, the other perturbed quantities can be easily computed [25]. This may be accomplished

by first differentiating both sides of the momentum equation,

∂2~V1

∂t2
= 1
µ0ρ0

[
(∇× ∂ ~B1

∂t
)× ~B0 −

∂ ~B1

∂t
× (∇× ~B0)− µ0∇

∂p1

∂t

]
. (1.9)

Now invoke Eq. 1.8 to express occurrences of ∂ ~B1/∂t, ∂p1/∂t and ∂ρ1/∂t in terms of v1. The

result is the following decoupled velocity equation, which will be of interest later in this work

∂2~V1

∂t2
= 1
µ0ρ0

[
~B0 ×∇×∇× ( ~B0 × ~V1)− (∇× ~B0)×∇× ( ~B0 × ~V1)+

µ0∇(~V1 · ∇p0) + µ0∇(5p0

3 ∇ ·
~V1)
]
.

(1.10)

If ~V1(~x, t) is an eigenfunction then ∂2~V1

∂t2
= −ω2~V1(~x, t). When ω is real-valued, ~V1(~x, t)

is said to be a wave having frequency ω. An eigenfunction with a complex-valued frequency

with a positive imaginary part, ω = ωr + iγ, grows in amplitude exponentially with time and
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is said to be an instability with growth rate γ. If an equilibrium has at least one unstable

eigenfunction the equilibrium is said to be unstable.

Familiarity with the waves of ideal MHD in a uniform equilibrium is essential for work

concerning numerical calculations in MHD. Given uniform and constant equilibrium fields
~B0, p0, ρ0 and ~V0 = 0, there are three distinct types of MHD waves. Each type of wave has a

different dispersion relation. The phase speeds of these waves is strongly dependent on the

angle the wave vector ~k makes with the equilibrium magnetic field. The sound wave and the

Alfvén wave propagate fastest in the direction of ~B0 with parallel phase speeds of vs,‖ and

vA,‖ respectively. The fast wave propagates fastest in the direction perpendicular to ~B0 with

perpendicular phase speed vf,⊥. Expressions for these phase speeds given by

vs,‖ =
√

5p0

3ρ0

vA,‖ = B0√
µ0ρ0

vf,⊥ =
√
v2
A,‖ + v2

s,‖.

(1.11)

1.4.1 Instabilities

Instabilities are possible when the equilibrium is inhomogeneous in space. They can be

thought of as waves with an imaginary component in the frequency so that they grow in

amplitude exponentially with increasing time. Magnetic or thermodynamic energy is taken

from the equilibrium and converted to kinetic energy as the instability grows. It should be

noted that in tokamaks and stellarators, instabilities are usually nearly incompressible in the

poloidal plane with ∇⊥ · ~V1 ≈ 0. In these devices, the toroidal magnetic field is dominant

and a large amount of energy is needed to compress toroidal field lines [33].

When the condition that the plasma be perfectly conducting is relaxed, and non-zero

plasma resistivity η is allowed, new types of unstable eigenfunctions may exist in the equi-

librium. An equilibrium which is ideally stable or only weakly unstable may be resistively

unstable. Sawteeth and disruptions are often driven by resistive modes. When resistivity is
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included it is assumed to be very small so that it only needs to be considered in the thin

region around the resonant surface.

A vast amount of early work has been done in investigating the ideal and resistive

MHD stability of simple, parameterized equilibrium profiles in a periodic cylinder geometry.

Analytic and semi-analytic study of these idealized cases can be very tedious and can be

found in the literature. There will not be a detailed discussion of them here. However, a

brief discussion of some key results and considerations is in order.

When speaking of instabilities in tokamaks, it is common to refer to the poloidal and

toroidal "mode numbers" denoted m and n respectively. This follows from the fact that in a

periodic cylinder geometry, which is meant to approximate a very low aspect ratio torus, an

equilibrium with circular flux surfaces has eigenmodes with the form ~V1 = ~̂V1(r, t)ei(γt+mθ−nφ).

When a toroidal geometry or non-circular equilibrium flux surfaces are considered, the com-

plex valued eigenfunction ~̂V1 will have a spatial dependence on both r and θ, and the mode

will not be characterized by a definite value of m. In this work, as we will see later, modes

will not be characterized by a definite value of n when there is three-dimensional shaping of

the equilibrium.

Another thing commonly mentioned regarding unstable modes in a tokamak is the

resonant surface of a mode. The resonant surface is a surface on which F = ~k · ~B = 0. In

the straight tokamak approximation, this condition can be written as follows,

F = nqBz

R0

(
q + m

n

)
= 0, (1.12)

where Bz is the axial field. The resonant surface of a mode with m,n is therefore a flux tube

having the value of the safety factor q = −m/n located at minor radius rs. One way to explain

the significance of the resonant surface is to note that solving the eigenfunction problem for

a circular straight tokamak comes down to solving an ordinary differential equation (ODE).
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The ODE will have a singular point at r = rs. One can consult Goedbloed [34] for a very

thorough introduction to one-dimensional ideal MHD stability.

Internal Instability with m = 1

The m = 1 internal kink instability is often implicated in driving sawtooth relaxations.

The eigenfunction represents a rigid displacement of the plasma column inside q = 1 with

a n = 1 toroidal variation in the direction of displacement. Early analytical work using

a simple resistive MHD model with a periodic cylinder geometry recovered three distinct

regimes of the m = 1 mode; the ideal internal kink, the resistive internal kink and the m = 1

resistive tearing mode [35]. The shapes of the eigenfunctions for these instabilities differ in

a thin region around the resonant surface at q = 1. The scaling of growth rates with the

Lundquist number S also differ across these regimes, where S is the ratio of the characteristic

Alfvén transit time over the characteristic resistive diffusion time,

S =
√
µ0

ρ0

B0a
2

ηR
. (1.13)

While the ideal internal kink growth rate is independent of S, the resistive internal kink has

a growth rate γ ∝ S−1/3 and the m = 1 resistive tearing mode has a growth rate γ ∝ S−3/5.

In [36] the m = 1 tearing mode instability was discovered and a dispersion relation for the

m = 1 instability was derived that gives the ideal, resistive and tearing growth rates in the

appropriate limits.

It was seen by Hastie [37] that in a toroidal geometry the m = 1 mode transitions from

a resistive internal kink like mode to a tearing like mode at large S. This was also seen in the

course of the present work. In Fig. 1.4 a resistive internal kink like eigenfunction at S = 105

and anm = 1 tearing like eigenfunction at S = 107 are pictured. The pictured eigenfunctions

were computed by NIMROD, for the same equilibrium, in a CTH-like axisymmetric tokamak.

Besides having a different scaling for γ vs. S, the resistive internal kink eigenfunction has
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an interchange parity and the tearing mode has a tearing parity. A brief and enlightening

explanation of the parity of resistive linear modes can be found in [38]. If the resistive

solution for V1,r that is matched to the ideal solutions outside the resonant layer is an even

function (in the coordinate system with x = 0 in the middle of the resonant layer), the mode

is said to have interchange parity, and if it is an odd function the mode is said to have tearing

parity.

Tearing and Ideal External Kink Instabilities with m > 1

Tokamaks are susceptible to ideal external kink modes and resistive tearing modes.

These modes are driven by gradients in the toroidal plasma current and their non-linear

evolution and interaction can lead to major disruptions of the plasma confinement [39].

They are sometimes referred to as global modes because their eigenfunctions are not well

localized to the vicinity of the resonant surface q = m/n, and their stability criteria and

growth rates depend on the overall profile shape not just the conditions at the resonant

surface. The ideal external kink arises in an ideal MHD analysis of the tokamak in which

there is a non-conducting vacuum region surrounding the plasma and the resonant surface

q = m/n is located in this vacuum region. Tearing modes arise in a resistive MHD analysis

of the tokamak when the resonant surface q = m/n is located inside the plasma.

In [40] there are several graphs showing the stability of equilibria having a parameterized

toroidal current density profile J = J0(1 − (r2/a2))ν . Broad, square-like, current density

profiles are generally more susceptible to both tearing and kink instabilities than peaked

profiles. The result is of interest in the problem at hand as sawtooth relaxations tend to

broaden the current profile.
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(a) Resistive kink, S = 105 (b) Resistive kink, S = 105

(c) Tearing, S = 107 (d) Tearing, S = 107

Figure 1.4: As S is increased, the character of the unstable m = 1 mode transitions from a
resistive internal kink to a tearing mode. In (a) and (c), the perturbed flow ~V1 computed
by NIMROD is shown for a CTH-like tokamak, with color indicating the magnitude of the
R component. In (b) and (d), the radial component of the flow is plotted along a chord
running from the magnetic axis towards the inboard side of the torus.
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1.5 Magnetic Reconnection

In a perfectly conducting solid, magnetic fields are frozen in the material for all time.

This is evident when we consider Faraday’s law and Ohm’s law in the center of mass frame,

~E = η ~J = 0

∂ ~B

∂t
= −∇× ~E = 0.

(1.14)

If non-zero resistivity is allowed, diffusion of the magnetic fields will occur. That a diffu-

sion equation describes the evolution of the magnetic field can be seen by also considering

Ampere’s Law,
∇×∇× ~B = −∇2 ~B = µ0∇× ~J

∂ ~B

∂t
= −η∇× ~J

∂ ~B

∂t
= η∇2 ~B

µ0
.

(1.15)

We can figure an approximate timescale τr on which this process occurs in the conductor,

∂

∂t
→ 1

τr
, ∇× → 1

L

τr = µ0L
2

η
.

(1.16)

Now consider, instead, a perfectly conducting fluid. In this case, magnetic field lines are

constrained to move with the fluid. Field lines may only deform continuously, so that the

topology of the magnetic structure is frozen for all time. From the study of fluids, it is well

known that viscous flows have a general tendency to develop vortices. In MHD, there is a

general tendency for flows in a conducting fluid to form discontinuities in the magnetic field

along sheet like structures. When small, non-zero resistivity is allowed, these lead to localized

regions of intense current density where field line breaking and "reconnection" occurs. This

phenomenon is called reconnection and allows reorganization of the magnetic topology in a

highly conducting fluid much faster than the characteristic diffusion time τr. In this work,
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we are interested in "spontaneous reconnection", in which the fluid motions that lead to

formation of current sheets and reconnection are driven by internal instabilities. It should

be noted that both the ideal and resistive m = 1 instabilities may drive reconnection [41].

The classical model for studying the resistive saturation of a current sheet is the Sweet-

Parker model [42]. Pictured in Fig. 1.5 is a reconnection layer of length 2L and width 2δ.

The inflow and outflow velocities are u0 and v0 respectively and the strength of the magnetic

field in the inflow region, which is oppositely sheared on either side of the reconnection layer,

is B0.

Because this work involves the numerical simulation of reconnection, it will be of in-

terest to see how the dimensions of the Sweet-Parker current sheet depend on the plasma

parameters and to obtain a time-scale on which the reconnection occurs. First we must

obtain some relations between the quantities that describe the current sheet. By considering

Ohm’s law,
~E = −~V × ~B + η ~J, (1.17)

we see that there is an electric field pointing out of the paper in Fig. 1.5. Outside of the

current sheet we have ~J = 0, while at the center of the current sheet we must have ~V = 0

by symmetry. This gives relations for the electric field outside the current sheet and at the

center of the current sheet,
Eoutside = u0B0

Ecenter = ηjcenter.

(1.18)

Now consider Faraday’s law. Because the current sheet is stationary, the electric field must

have a constant value everywhere giving

u0B0 = ηjcenter. (1.19)
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Furthermore, by using ∇× → 1
δ
in Ampere’s law we have

B0

µ0δ
≈ jcenter. (1.20)

From Eq. 1.19 and Eq. 1.20 we obtain an expression for the inflow velocity in terms of current

sheet parameters,

u0 = η

µ0δ
. (1.21)

Now from conservation of mass we must have,

u0L = v0δ. (1.22)

And from conservation of energy we have,

ρv2
0

2 = B2
0

2µ0
. (1.23)

The outflow velocity v0 is therefore equal to the upstream Alfvén speed uA,

v0 = B0√
µ0ρ
≡ uA. (1.24)

Using equations 1.21, 1.22 and 1.24 the Sweet-Parker reconnection rate M can be found

M ≡ u0

v0

=
√

η

µ0LuA
=
√

1
S
.

(1.25)

The
√

1/S scaling for reconnection leads to a much faster process at large S compared to

the 1/S scaling for resistive diffusion.

Also consider the inverse aspect ratio of a Sweet-Parker sheet A = L/δ. From Eq. 1.22

and Eq. 1.25 we have A =
√
S. As the Lundquist number increases, the current sheet
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Figure 1.5: Sweet-Parker reconnection current sheet, characterized by width δ, length L,
inflow velocity and upstream magnetic field u0, B0 and outflow velocity v0

becomes more nearly singular. An important consequence of this is that simulations of

plasmas with higher Lundquist numbers require a higher spatial resolution to resolve a

reconnection event.

1.6 Sawteeth

Sawtooth relaxations, sometimes called crashes, or their absence affects the operation

of tokamaks in several ways. The relaxations quickly eject thermal energy and particles

inside the mixing radius into the outer region of the plasma. The ejected energy then

diffuses outward to the plasma edge. This affects the energy and particle confinement of the

configuration, and a larger mixing radius implies a more badly degraded confinement.

Sawtoothing can play an important role in determining tokamak profile shapes and the

regions of parameter space that permit disruption free operation. Current density profiles

that have a broad square-like shape, with a large flat region in the middle and steep gradients

at the edge, tend to be more unstable to global MHD kink and tearing modes. Sawtooth

relaxations tend to make current density profiles broad as they limit the central value of | ~J |.
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Sawtooth relaxations may even be useful in controlling reactor plasmas to prevent buildup

of helium ash in the core.

An insightful qualitative description of the sawtooth relaxation using the resistive MHD

model was proposed by Kadomtsev [43] and is described here. The Kadomtsev model is a

classic example of magnetic reconnection. When the current density increases to the point

where q0 drops below unity in the plasma core, the linear mode that drives the sawtooth

becomes unstable and grows exponentially with growth rate γ. After the mode grows to a

large size and distorts the equilibrium fields enough to influence further evolution, the mode

is said to be in its non-linear phase of evolution. The non-linear evolution of the sawtooth

mode is to drive spontaneous reconnection. The plasma core inside the q = 1 surface is driven

into a Sweet-Parker like resistive reconnection layer and an m/n = 1/1 island grows rapidly

on the side of the core opposite the reconnection layer. The island continues to grow rapidly

even after it becomes large in contrast to the evolution of, for example, the islands that

form due to an unstable m/n = 2/1 tearing mode. The process ends in a state with closed

nested flux surfaces and q ≥ 1. All of the flux in the core is completely reconnected and the

center of the island becomes the new magnetic axis. Kadomtsev’s qualitative description of

sawtooth relaxations explains the observed drops in temperature and density in the plasma

core. The relaxation ejects thermal energy and mass density from the core by advection and

rapid parallel heat conduction.

After a relaxation, the flattened profile becomes peaked again as the core reheats on

the energy confinement time scale τE, and q0 drops below unity again as the current density

resistively diffuses back into the core on the resistive diffusion time scale τr. In this way, the

sawtooth relaxation occurs repeatedly with average period τsaw.

Them = 1 resistive kink mode is often implicated in sawtoothing. As mentioned earlier,

the eigenfunction of this mode represents a nearly incompressible rigid displacement of the

plasma column inside q = 1 with an n = 1 toroidal variation in the direction of displacement.

Despite being commonly referred to as a m = 1 mode, this mode is not characterized by a
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particular value of m when the equilibrium cross section is non-circular or the geometry is

toroidal. The eigenfunction is m = n = 1 only for a plasma with a circular cross section in

a periodic cylinder geometry.

The Kadomtsev picture of sawtoothing in a resistive MHD model was very successful

at describing many properties of the sawtooth in early tokamak experiments. However as

measurements became more accurate and tokamak plasmas got hotter, discrepancies between

the model and experimental observations appeared. First, relaxations cause a much more

rapid drop in the central plasma temperature of hot tokamaks than predicted. Wesson

offered an explanation for these fast sawtooth crashes using a resistive MHD model [44].

Wesson’s model describes a sawtooth relaxation based on the non-linear evolution of the

quasi-interchange (QI) mode. The QI mode eigenfunction is not a rigid displacement of the

core, and is sometimes described as a convection cell. The nonlinear evolution of the QI

does not involve much reconnection, so it does not have Sweet-Parker scaling and the crash

can proceed much faster in high temperature, low resistivity plasmas given a resistive MHD

model. However, more accurate experimental methods for measuring q profiles in tokamaks

were developed later. It was found that the profiles during sawtoothing discharges are not

necessarily flat with q ≈ 1 as needed by Wesson’s description of the sawtooth. Nevertheless,

Wesson-like relaxations have been observed experimentally on occasion [45]. Eventually

it was found that two-fluid model equations or non-ideal terms in Ohm’s law (Eq. 1.17)

besides the resistive term ηJ , such as the Hall and electron inertia terms, can account for

the fast crashes [46, 47]. These terms in Ohm’s law can allow much faster reconnection at

low resistivity.

Another discrepancy is that the central safety factor was found to be well below unity

q0 < 1 after a relaxation. At this time, the most accepted explanation is that there is only

partial reconnection of the core. The process of reconnection is halted sometime during the

relaxation. Large, hot tokamaks with significant populations of fast particles sometimes see

so called "giant sawteeth" [48]. Giant sawteeth are much larger relaxations and may cause
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disruptions. They are a concern for ITER. In hot tokamaks, under some circumstances,

minority hot particle species can stabilize the sawtooth instability. The central safety factor

q0 drops well below unity during the long period of stabilization, until instability is triggered,

and the resulting crash is very large.

There have been many previous numerical studies of sawtooth oscillations in tokamaks.

In the mid 70s, there was success in validating Kadomtsev’s model by the simulation of

a single sawtooth relaxation with a reduced MHD model in a periodic cylinder geometry

[49]. Later, simulations using strongly anisotropic temperature diffusion were successful in

demonstrating periodic sawtooth relaxations [50]. Strong heat conduction parallel to the

magnetic field was found to suppress a convection cell that forms after relaxations and

causes the solution to reach a helical steady state that does not oscillate. MHD simulations

have been shown to give realistic crash times and sawtooth period times for small Ohmically

heated tokamaks with Lundquist numbers S < 107 [51].

Many recent works focus on sawtooth relaxations in large, hot tokamaks with S >

107. In these cases more sophisticated model equations such as two-fluid MHD are needed.

Simulations of periodic MHD sawtoothing have been useful as a benchmark problem recently

in [52]. In [53], MHD problems formulated to reach a non-oscillating helical steady-state,

that maintain q0 ≈ 1 without relaxing, were used to explain certain experimentally observed

sawtooth-free discharges in tokamaks.

There have also been some numerical studies of sawteeth in current carrying stellarators.

The first non-linear numerical studies of sawteeth in current carrying stellarators are due to

Wakatani. These simulations used a model based on a low-β, large aspect ratio expansion

[54], where β is the ratio of thermodynamic pressure to magnetic pressure. The effect of the

helical stellarator field was accounted for by representing the flux function ψ = ψvac + ψσ,

where ψvac is due to the stellarator field and ψσ is due to the plasma current. Relaxations

conforming to Kadomtsev’s description of the sawtooth relaxation were recovered in [55].
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1.6.1 Effect of Shaping on Sawteeth

It has long been known that two-dimensional shaping of tokamak profiles can affect the

properties of sawteeth including τsaw. Early observations noted the effect of triangularity the

on sawtooth period [56]. Studies of sawtoothing in TCV attribute a β trigger for ideal MHD

instability as the reason for correlation between τsaw and profile shaping [10, 57]. Variation

of τsaw in DIII-D with shaping was attributed to a transition from a resistive internal kink

like mode to a quasi-interchange like mode [11].

This chapter briefly introduced many basic tokamak and stellarator concepts which

the reader will need to be aware of in subsequent discussions. Much of this introduction

focused on simple ideal or resistive MHD model equations. In the next section introduces

NIMROD the numerical methods used by NIMROD, which will also be needed in subsequent

discussions. The model equations used for the numerical study will also be introduced.

Although these model equations use a more sophisticated closure than resistive MHD, the

considerations presented in the present chapter are still relevant.
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Chapter 2

NIMROD Numerical Methods and Model Equations

Analytic methods are often preferred for studying problems in linear ideal MHD, es-

pecially when there are singularities in the solution. However, when seeking solutions for

nonlinear problems or problems with extended MHD model equations or realistic geometry

numerical calculations on a computer are usually required.

In this section the model equations used to study CTH sawteeth are introduced. For

many MHD problems in magnetic fusion, especially axisymmetric tokamak problems, the

numerical methods of NIMROD allow efficient computation of an approximate solution.

However, it was found in the course of this work that some of the numerical convergence

properties are different for MHD problems having fields that are not nearly axisymmetric.

Some improvements, which are described later, were made so that non-axisymmetric MHD

problems may be solved with more ease and efficiency. To facilitate these discussions, several

aspects of the numerical method are summarized in this section. Note that while NIMROD

is generally applied to problems in magnetic fusion, it has the flexibility to be applied to

other problems in MHD. In appendix C NIMROD is successfully used to compute solutions

to fluid shocktube problems.

2.1 Model Equations

In this work a set of extended resistive MHD equations are evolved with NIMROD,

which has been applied to study CTH previously [58, 59]. Because CTH is a small, rela-

tively low temperature experiment, historical precedent suggests that an extended resistive

MHD model with anisotropic temperature diffusion and sources is appropriate for this study.

The equations, which will be solved in a toroidal geometry, are formulated in terms of the
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magnetic field ~B, temperature T , number density n and flow velocity ~V :

ρ
(
∂~V

∂t
+ (~V · ∇)~V

)
= ~J × ~B −∇p−∇ ·

←→Π

3n
2

(
∂T

∂t
+ ~V · ∇T

)
= −p4∇ ·

~V −∇ · ~q +Q

∂n

∂t
+∇ · (n~V ) = −∇ · (D∇∇2n)

∂ ~B

∂t
= ∇× (~V × ~B − η ~J) + κdivb∇∇ · ~B

p = nkB(T + Te)

~J = ∇×
~B

µ0

~E = −~V × ~B + η ~J.

(2.1)

Although this is a single fluid model, the temperature T is actually considered to be an

ion temperature. The electron temperature, used in the calculations for pressure p and

resistivity η, is given by Te = 3T . This definition is motivated by the fact that the electron

temperature is higher than the ion temperature in CTH plasmas. The Boltzmann constant is

kB = 1.6×10−19 J/eV . Several non-ideal dissipation, diffusion and source terms are included

in these model equations. A hyperdiffusivity controlled with the parameter D is used to keep

spurious oscillations from forming in the density. An error diffusion term proportional to

κdivb is used to maintain nearly zero magnetic divergence in the solution fields. The heat

flux, viscous stress tensor, resistivity and heat source are given by

~q = −n
(
χ‖b̂b̂+ χ⊥

(←→
I − b̂b̂

))
· ∇T

χ⊥ = χ⊥,0
B2

√
Tref
T

Q = ηJ2

←→Π = −νρ
(
2∇~V + (∇~V )T − 2

3∇ ·
~V
)

η = η0

(
Tref
Te

)3/2
.

(2.2)
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The heat flux ~q is highly anisotropic. Heat conduction parallel to the magnetic field is several

orders of magnitude larger than in the perpendicular direction. While the parallel heat

conduction coefficient χ‖ has a constant value, the perpendicular heat conduction coefficient

χ⊥ is coupled to the temperature and magnetic field. The heat source Q is Ohmic. The

viscous stress tensor←→Π is proportional to the coefficient of viscosity ν and the mass density

ρ = min, where mi is the ion mass. η has a Spitzer temperature dependence η ∝ T−3/2
e .

2.2 Time Discretizations

Understanding the temporal convergence properties of non-axisymmetric NIMROD sim-

ulations was perhaps the most critical obstacle to getting correct results. Therefore, tempo-

ral discretization and time stepping methods will be described in some detail. Consider the

equations solved by NIMROD written in the following form,

∂~u

∂t
= ~L(~u) (2.3)

where ~L is a differential operator and ~u is the solution vector. Given the boundary condi-

tions and initial conditions ~un at time tn, we would like to know the solution ~un+1 at time

tn+1. Given that ∆t ≡ tn+1 − tn is small, a naive and straightforward approach to obtain

an approximate solution would be to use the following truncated expansion to obtain an

approximate expression for the time derivative,

~un+1 ≈ ~un + ∆t
(
∂~u

∂t

)n
~un+1 = ~un + ~L(~un)∆t.

(2.4)

If ∆t is very large, it does not make sense to use a series expansion for the approximation.

In this case the time interval may be broken up into many small time steps and the above

process can be followed repeatedly to obtain an approximate solution at the desired time.

Retaining more terms in the series expansion would allow larger step sizes, so that fewer
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steps must be taken. However, accuracy of the truncated series approximation is not the

only consideration in determining the largest possible time step ∆t. The above procedure is

an example of an explicit method sometimes called the forward Euler method. When using

an explicit method, the size of the time step ∆t is limited by the Courant-Friedrichs-Lewy

(CFL) condition for numerical stability,

C = v∆t
∆x ≤ Cmax, (2.5)

where v is the speed of the fastest wave or flow in the system and ∆x is the spacing of the

spatial computational grid. If the CFL condition is violated, one will arrive at a spurious

numerical solution that does not approximate the real solution.

When Cmax = 1, the CFL condition can be interpreted as a statement that waves or flows

may not travel a distance longer than the spacing of the computational grid ∆x in one time

step ∆t. This is extremely restrictive when finding numerical MHD solutions for tokamak or

stellarator problems because they are very stiff. In stiff problems the phenomena of interest

occur much more slowly than the fastest normal modes in the system. The propagation of

fast waves and Alfvén waves is many orders of magnitude faster than the evolution of resistive

tearing modes or the global resistive diffusion of the magnetic field. A very large number

of time steps would need to be taken to study such problems with an explicit numerical

method. The Lundquist number S, defined as the ratio of the characteristic times of Alfvén

wave propagation and resistive diffusion, is a measure of how separated these time scales

are. In this work we consider problems having Lundquist numbers S ≈ 105. The definition

for Alfvén transit time used in this work is τA = R/vA,‖. Resistive diffusion of the magnetic

fields is an essential part of the expected solution.

NIMROD uses an implicit method for the advection and diffusion terms that appear

in the equations. When an implicit method is used, time step size ∆t is not limited by

the CFL condition and the solution may be computed with fewer time steps. For very stiff
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problems, implicit methods may offer a way to obtain a numerical solution that is more

computationally efficient than an explicit method. The backwards Euler method is a simple

example of an implicit method. The time derivative is approximated using a backwards

Taylor series expansion,
~un ≈ ~un+1 −∆t

(
∂~u

∂t

)n+1

~un+1 = ~un + ~L(~un+1)∆t.
(2.6)

The drawback of the implicit method is that computing ~un+1 at each time step is more

difficult. In the above example, the differential operator must be evaluated at the advanced

time tn+1. This can be formulated as a large matrix inversion problem. The size and form of

the matrix to be inverted depend on the spatial discretization. For example, suppose high

order finite differences are used, where many terms are kept in the truncated Taylor series,

for the spatial derivatives. Computing the spatial derivative at a particular point will involve

the values of the solution field at many grid points along the direction of differentiation. The

resulting matrix is less diagonally dominant and more poorly conditioned than if only the

first order term was kept for the spatial finite differences. In general, higher order spatial

discretizations lead to more poorly conditioned implicit time advance matrices.

Note that while the implicit method is numerically stable with large ∆t, accuracy may

be bad with large ∆t. Step size should be not be too large with respect to the timescale

relevant to the physical phenomena of interest. Additionally, using second order or higher

finite differences in the time discretization may be necessary for accuracy with large ∆t [60].

Explicit methods are often limited to a very small time step so that a finite difference that

is only first order accurate in ∆t may be used effectively.

2.2.1 Semi-Implicit Methods

NIMROD uses a semi-implicit method that removes the CFL condition on time step

size for MHD waves. Semi-implicit methods are intended to have the strengths of both

explicit and implicit methods. A large ∆t is possible while retaining numerical stability, but
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the matrix inversion problem of finding ~un+1 should be easier than a fully implicit method.

Additionally, semi-implicit methods are sometimes easier to implement than a fully implicit

method. The idea is to effectively modify the temporal truncation error with an implicit

term that introduces a phase error. The phase error slows down the fastest normal modes

of the system at large ∆t so that the CFL condition is not violated [61]. For accuracy at

large ∆t, semi-implicit operators should have eigenmodes similar to fast normal modes in

the physical system.

One of the first applications of the semi-implicit method to MHD was by Harned and

Kerner [62]. Subsequent improvements to this method lead to the semi-implicit method

used in NIMROD. The Harned and Kerner method will be introduced and the historical

progression to the semi-implicit operator used by NIMROD followed. First, consider the

MHD momentum equation written in the following form, where ~F is the MHD force operator,

ρ
∂~V

∂t
= ~F ( ~B, ~V , p, ρ). (2.7)

Now consider an explicit method to solve this equation,

~V n+1 = ~V n + ∆t
ρn

~F ( ~Bn, ~V n, pn, ρn). (2.8)

The following truncated Taylor series expansion was used to approximate the time derivative,

(
∂~V

∂t

)n
=
~V n+1 − ~V n

∆t −∆t
(
∂2~V

∂t2

)n
+ ...︸ ︷︷ ︸

Truncation Error

. (2.9)

The truncated terms are said to be part of the truncation error.

For tokamak problems, the size of the time step ∆t is severely limited by fast waves

traveling in the radial direction. The method developed by Harned and Kerner effectively

modifies the truncation error to treat fast wave behavior implicitly. Time steps are then no

longer subject to the fast wave CFL restriction. Consider the uncoupled linearized MHD
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velocity equation Eq. 1.10, restated here for convenience,

∂2~V1

∂t2
= 1
µ0ρ0

[
~B0×∇×∇×( ~B0×~V1)−(∇× ~B0)×∇×( ~B0×~V1)+µ0∇(~V1·∇p0)+µ0∇(5p0

3 ∇·
~V1)
]
.

Now rewrite this equation for the case where the equilibrium fields are uniform, so that terms

having gradients of equilibrium fields vanish.

∂2~V1

∂t2
= 1
µ0ρ0

[
~B0 ×∇×∇× ( ~B0 × ~V1) + µ0

5p0

3 ∇∇ ·
~V1

]
. (2.10)

We would like to keep only terms involved in representing fast waves traveling perpendicular

to the magnetic field. These waves satisfy ~k · ~B0 = 0. First consider the following expression

∇× ( ~B0 × ~V1) = ~B0∇ · ~V1 − ( ~B0 · ∇)~V1. (2.11)

Given that normal modes in a homogeneous equilibrium have a spatial dependence ~V1 ∝ ei
~k·~x,

we can invoke ∇ → i~k. Terms having a factor of ~k · ~B0 are eliminated

∇× ( ~B0 × ~V1)→ i ~B0~k · ~V1 −����
�:0

i( ~B0 · ~k)~V1. (2.12)

Now rewrite the first term in 2.10 using 2.12 and ~k · ~B0 = 0

~B0 ×∇×∇× ( ~B0 × ~V1) = ~B0 ×∇× ( ~B0∇ · ~V1),

= ~B0 × (∇∇ · ~V1 × ~B0),

= ∇∇ · ~V1( ~B0 · ~B0)− ~B0( ~B0 · ∇∇ · ~V1),

→ −~k~k · ~V1( ~B0 · ~B0) + ~B0(��
��*

0
~B0 · ~k~k · ~V1).
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Therefore, after invoking assumptions that the equilibrium fields are uniform and only modes

with ~k · ~B0 = 0 are excited, Eq. 1.10 can be written

∂2~V1

∂t2
=
[
B2

0
µ0ρ0

+
5p0

3
ρ0

]
∇∇ · ~V1. (2.13)

We arrive at the semi-implicit method by modifying the explicit scheme of Eq. 2.8.

Terms having the same form as Eq. 2.13 are added to the perpendicular part of Eq. 2.8

~V n+1
⊥ − (∆t)2A0∇(∇ · ~V n+1

⊥ ) = ~V n
⊥ + ∆t

ρn
~F⊥( ~Bn, ~V n, pn, ρn)− (∆t)2A0∇(∇ · ~V n

⊥ ), (2.14)

while the parallel part of Eq. 2.8 is left unchanged

~V n+1
‖ = ~V n

‖ + ∆t
ρn

~F‖( ~Bn, ~V n, pn, ρn). (2.15)

Eq. 2.14 can be written using a more compact notation

~V n+1
⊥ − (∆t)2A0∇(∇ ·∆~V⊥) = ~V n

⊥ + ∆t
ρn

~F⊥( ~Bn, ~V n, pn, ρn), (2.16)

where ∆~V⊥ ≡ ~V n+1
⊥ − ~V n

⊥ .

Equations Eq. 2.16 and 2.15 constitute a semi-implicit method. They are consistent

in the sense that the original PDE, Eq. 2.7, is recovered in the limit ∆t → 0 and it can

be shown that it is numerically stable with time steps ∆t larger than the fast wave CFL

limit given a sufficiently large semi-implicit factor A0. ~L ≡ A0∇∇ · ∆~V⊥ is said to be the

"semi-implicit operator".

The subsequent improvement to the above semi-implicit method allowed time steps

∆t larger than the Alfvén CFL limit to be taken. This semi-implicit operator is based on
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Eq. 2.10, but without using ~k · ~B0 = 0

~L = ~C0 ×∇×∇× (~C0 ×∆~V ) + Ciso∇2(∆v),

terms with CiCj, i 6= j are set to zero.

(2.17)

Because ~C0 is a uniform vector field it cannot be aligned with the magnetic field in most

problems of interest. It can be shown that when ~C0 is not parallel to ~B, the terms CiCj with

i 6= j are destabilizing [60]. These terms i 6= j are therefore set to zero in the operator.

Reference [63] introduced a semi-implicit operator having a form that is not motivated

by Eq. 1.10,
~L = C0∇2(∆v). (2.18)

This semi-implicit operator is commonly called the isotropic operator. While the isotropic

operator provides numerical stability, it was found that accuracy is bad for tearing mode

problems if a large ∆t is used. The growth rates of the tearing modes were artificially

lowered.

The next improvement to the semi-implicit operator Eq. 2.17 was introduced by Lerbinger

and Luciani [64],

~L = Clin
µ0ρeq

[
~Beq ×∇×∇× ( ~Beq ×∆~V )− (∇× ~Beq)×∇× ( ~Beq ×∆~V )

+ µ0∇(∆~V · ∇peq) + µ0∇(5peq
3 ∇ ·∆

~V )
]

+ Cnl∇2(∆v). (2.19)

Lerbinger’s operator is based on Eq. 1.10 with the actual equilibrium fields of the problem

under consideration, instead of assuming uniform equilibrium fields. A Laplacian term is

also added, however the coefficient of the Laplacian operator Cnl is very small. The isotropic

operator prevents numerical instability during highly nonlinear periods of evolution when

deviation from the equilibrium fields is significant. Because only a small amount of isotropic

operator is used, accuracy is not degraded.
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NIMROD uses a semi-implicit method that is very similar to Lerbinger’s method,

~L = 1
µ0ρsi

[
Cmhd ~Bsi ×∇×∇× ( ~Bsi ×∆~V )− Cj0(∇× ~Bsi)×∇× ( ~Bsi ×∆~V )

+ Cpresµ0∇(∆~V · ∇psi) + Cpresµ0∇(5psi
3 ∇ ·∆

~V )
]

+ Cnlpnl∇2(∆~V ). (2.20)

However, instead of using equilibrium fields in Eq. 1.10, the entire n = 0 part of the solution

fields is used. This makes for better applicability to simulations occurring over long time

intervals in which the equilibrium fields can change significantly. The coefficients Cmhd, Cpres,

Cj0 and Cnl are specified by the user and generally at least one of these coefficients must be

greater than or equal to unity for numerical stability at large ∆t.

When the fields used in the NIMROD semi-implicit operator, denoted with the subscript

si, deviate from the solution fields the isotropic term is necessary for numerical stability at

large ∆t. Typically the semi-implicit operator fields are taken to be the n = 0 component

of the solution fields. When considering an axisymmetric device such as a tokamak, a small

isotropic coefficient Cnlpnl provides stability during deep nonlinear phases of the evolution.

NIMROD dynamically adjusts the size of the isotropic term using the non-axisymmetric

pressure pnl(R,Z) = max
φ

∣∣∣∣(B2 − B2
0)/µ0 + 5(p− p0)/3

∣∣∣∣. The non-axisymmetric equilibrium

fields considered in this work lead to a large value for pnl and a large isotropic coefficient is

known to affect temporal convergence properties. The capability to use the full 3D solution

fields in the semi-implicit operator was added in this work. With the full solution fields

in the semi-implicit operator, a large isotropic term is not needed for numerical stability

for problems with non-axisymmetric equilibria. Convergence properties and implementation

details of the 3D semi-implicit operator are discussed in sections 6.3.2 and 6.3.2, and the

source code is given in appendix B.
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2.3 Spatial Discretization

NIMROD represents the solution fields in a basis function expansion, f = ∑
i,nCi,nfi,n,

where Ci,n are the expansion coefficients and fi,n are the basis functions. The basis functions

are 2D Lagrange C0 finite elements [65] of degree p in the poloidal plane with harmonic

dependence in the toroidal direction, so they may be written fi,n = f̂pi (x1, x2)einφ. This

discretization often enables high accuracy and good computational efficiency for magnetic

fusion problems.

A 2D Lagrange C0 finite element of degree p is a two-dimensional piecewise polynomial

of degree p. The values of the polynomial coefficients are constrained so that the function

they represent in a basis function expansion has C0 continuity over the poloidal plane. Note

that poloidal basis functions f̂pi (x1, x2) are complex valued, with separate Lagrange finite

elements for the real and imaginary parts. Coordinates x1, x2 are logical coordinates, and

elements with different i subscripts have different mappings from R,Z to x1, x2 allowing for

arbitrary geometric shapes of the poloidal cross-section of the domain.

When solution fields are smooth, p-type numerical refinement, accomplished by increas-

ing the finite element order p and max Fourier number n, results in exponential convergence.

It can be shown for a simple elliptic problem (that doesn’t not involve time derivatives), the

norm of the error is |ε| ∝ hp, where h is the spacing between finite elements and p is the

degree of the elements [66]. The exponential convergence from p-type refinement is crucial

for efficiently solving the extremely anisotropic thermal diffusion that is essential for simula-

tions in magnetic confinement fusion [67]. H-type refinement, while less efficient than p-type

refinement for smooth solutions, is needed to handle solutions with near discontinuities such

as those found in the fields when resolving an unstable tearing mode. H-type refinement in

NIMROD can be accomplished by increasing the number of finite elements in the poloidal

plane or packing them near discontinuities. Reference [66] provides a detailed explanation

of finite elements and hp convergence.
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Fourier spectral methods can be very powerful, because it is sometimes the case that

only a few harmonics are needed to represent the solution. However, it should be noted

that Fourier spectral discretizations lead to dense and poorly conditioned matrix inversion

problems when advancing the solution fields with an implicit method [68]. Finite difference,

finite volume or finite element discretizations typically lead to sparse matrices with better

conditioning (losing sparseness as the order of the method is increased).

2.4 Galerkin Method

The Galerkin method is used in evolving the the model equations. This involves taking

inner products of the residual with a set of test functions, and choosing the solution which

minimizes these quantities. This set of integrals is referred to as a weak form of the original

PDEs. The test functions are the complex conjugates of the basis functions f ∗i,n. The solution

fields are advanced by computing the coefficients Ci,n so that each inner product has a value

of zero. NIMROD solves this linear system with a GMRES [69] iterative solver. Two-

dimensional solutions for each Fourier number n are computed and used for preconditioning.

A sparse direct solver is effective in computing the 2D solutions since they constitute much

smaller problems [70].

Because a Fourier representation is used, the solution fields at any point in the domain

are represented with several overlapping basis functions. Computing the residual when ad-

vancing the solution fields requires the computation of Fourier convolutions. This is handled

efficiently by approximating the Fourier series with a discrete Fourier transform. Solution

fields are computed in configuration space at toroidally spaced collocation points. Multi-

plication and division of solution fields is performed in configuration space, and the result

is transformed back to Fourier space with a fast Fourier transform (FFT). Three times the

maximum Fourier number n is used in the FFT to reduce aliasing error in approximating

the Fourier series. This is sometimes said to be a pseudo-spectral method. Note that some

sources have a different definition for pseudo-spectral method, holding that a pseudo-spectral
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method is a collocation method so that the test functions are not the basis functions as in

the Galerkin method, but rather have Dirac delta functions to pick out the contribution of

the residual at collocation points [66].

The integrand routines in NIMROD, which numerically compute the integrand for the

inner product of the test functions with the residual, are broken into "right hand side" (RHS)

and "dot" routines. The RHS routines compute the contributions to the inner product by the

explicit terms which are evaluated using solution fields from the previous time step. The dot

routines compute the contributions from terms requiring evaluation of the solution fields at

the advanced time, such as time derivatives and implicit terms. Therefore when the GMRES

solver is called to minimize the inner product, which gives the solution at the advanced time,

the dot routines are called at every GMRES step. It is therefore crucial for performance that

the dot routines have an efficient implementation.
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Chapter 3

Sawtoothing in CTH

The CTH experiment is a hybrid between a stellarator and a tokamak. The vacuum

vessel is a circular cross section torus having a major radius R0 = 0.75 m and minor radius

a = 0.3 m. The typical toroidal field strength during a discharge is Bφ = 0.5 T at the

magnetic axis. It has a helical L = 2 stellarator magnet coil with five field periods (Nfp = 5).

The CTH magnet coils are illustrated in Fig. 3.1. A detailed description of the device may

be found in reference [71]. CTH plasmas have a low β < 0.01 and the plasmas are limited,

not diverted. It can be operated as a pure stellarator with 20 eV ECRH plasmas, or a

large plasma current can be driven inductively so that most of the rotational transform

comes from the plasma current and the profiles are tokamak-like. Note that discharges in a

pure tokamak configuration with a toroidal field of Bφ = 0.5 T are not possible with CTH

at the time of writing. One reason for this is that the toroidal field magnet coils are not

rated for the current required for such a discharge. When a large plasma current is driven

for tokamak-like operation, the plasma temperature is estimated to be around 150 eV and

MHD activity characteristic of tokamaks such as disruptions may be observed. Perhaps the

most reproducible plasma event observed in CTH are sawtooth relaxations.

Soft x-ray cameras enable observation of sawtoothing. On CTH there are three SXR

cameras looking into the φ = 252◦ plane, each having 20 two-color detectors shown in

figure 3.2 [72]. The camera is placed here because the flux surfaces are the least elongated

at angles φ = 36◦, 108◦, 180◦, 252◦, 324◦. Sawtoothing can be seen clearly in the signals from

the middle camera at θ = 0◦ shown in Fig. 3.3. Besides SXR cameras, CTH has a large

number of sensors which measure the properties of the magnetic fields at the vacuum vessel.

However, observing sawteeth by measuring magnetic fields outside of the plasma is typically
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Figure 3.1: Three-dimensional rendering of a wire model for the CTH magnets. This wire
model is used in computing the CTH magnetic field for the VMEC equilibrium code.

extremely difficult because the relaxation is localized inside the plasma core. The amount

of information about the sawteeth that can be recovered from the magnetics is limited.

A clear correlation between the sawtooth repetition time τsaw and the strength of the

helical stellarator field is observed experimentally (Fig. 3.4). In the figure, it can be seen that

τsaw decreases as ι-vac increases. The quantity ι-vac, called the vacuum rotational transform,

is used to describe the strength of the perturbing stellarator field. The vacuum transform

is defined to be the rotational transform at the limiter when there is no plasma given the

currents in the magnet coils, so ι-vac tends to increase in value as the current in the stellarator

field magnet coil is increased. According to [54] the effect of the stellarator field in a low-β

current carrying stellarator can be considered, to first order in a low β large aspect ratio

expansion, by including the vacuum rotational transform profile. The ι- profile of an L = 2

stellarator field is often taken to be constant, as in [73] which considered linear stability in

current carrying stellarators.

Although the focus of this work is on numerical simulations, signals from the CTH

soft x-ray cameras will be interpreted with tomography techniques in the following chapter.

These are the first tomographic reconstructions of sawteeth in CTH. Additionally, a variation

on the Fourier-Bessel method is presented that may be more suitable for studying highly

shaped plasmas.
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(a)

Figure 3.2: Three SXR cameras are positioned at poloidal angles θ = 0◦ (red), 60◦ (blue),
300◦ (black) and toroidal angle φ = 252◦. Each camera has 20 two-color detectors which
are effectively pinhole cameras. The chords along which each pinhole camera is oriented are
pictured.
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(a) (b)

Figure 3.3: Each pinhole camera chord from θ = 0◦ SXR camera is pictured in (a). In
(b), the signals from the SXR camera at θ = 0◦ are shown during sawtooth activity. Each
SXR signal corresponds to the pinhole camera having a chord of the same color. Note that
signals with a larger average amplitude are from sensors pointing closer to the center of the
plasma core where the temperature and density are higher. Seven relaxations can be seen,
corresponding to the sudden drops of the signal from the central chords.
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(a)

Figure 3.4: A correlation between τsaw and ι-vac is observed experimentally. Experimental
data provided by Jeffery Herfindal.
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Chapter 4

Soft x-ray Tomography of CTH Sawteeth

One method for efficiently interpreting data from SXR cameras is by tomographic re-

constructions. Tomographic reconstructions use the signals from all cameras at a given time

to reconstruct the two-dimensional emissivity profile ε(r, θ) of the plasma at the toroidal

cross-section where the cameras are located. An effective, simple and popular technique for

SXR tomography in tokamaks is the Fourier-Bessel method [74]. This method represents

the emissivity in a basis function expansion

ε(r, θ) =
∑
m,l

(
am,lcos(mθ) + bm,lsin(mθ)

)
Jm(λl+1

m r). (4.1)

The basis functions have harmonic dependence on the poloidal angle θ and the minor radius

r dependence is given by Bessel functions.

The coefficients am,l, bm,l are chosen to make the signals computed from the emissivity

profile s(c)
i agree with the measured SXR signals si in a least-squares sense. The model for

the computed SXR signals is simply the emissivity integrated over the chord of the pinhole

camera ci,

s
(c)
i =

ˆ
ci

ε ds. (4.2)

In most cases, the number of basis functions does not match the number of SXR signals

so a singular value decomposition (SVD) is used for the least-square fit. In the least squares

calculation, singular values less than the cutoff Ccutoff are not used. By specifying Ccutoff >

0, spurious features in the reconstructions can be removed. The choice of the number of

basis functions used also has a significant effect on the reconstructions.
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The implementation that has been developed in this work allows the user to select a

shot from the database and a time interval over which reconstructions are to be computed.

It is written in python and makes extensive use of the SciPy library [75]. Experimental SXR

signals are automatically downloaded from the MDSplus [76] database used for CTH. Re-

constructed emissivity profiles can be output as VTK files to facilitate efficient visualization

and quantitative analysis.

4.1 Modified Fourier-Bessel Method using Equilibrium Flux

A problem with using the Fourier-Bessel method for stellarators is that the surfaces of

constant toroidal flux are not necessarily nearly circular, but the radial coordinate of the

basis functions has circular coordinate curves. Because the equilibrium does not conform

to the basis functions in this sense, the quality of reconstructions can be affected. This has

been previously addressed by using MHD equilibrium data in the tomography algorithm in

order to incorporate information about the stellarator magnetic fields into the interpretation

of the SXR signals [77].

Here, a novel variation on the Fourier-Bessel method is considered. The radial coordinate

used is the normalized toroidal flux s from a VMEC equilibrium instead of the minor radius

r. This shapes the basis functions to conform to the flux surfaces. Known information about

the magnetic field is effectively incorporated into the reconstruction since the emissivity is

approximately a function of the flux. In the next section, improvements to some aspects of

tomography reconstructions are apparent when this modified Fourier-Bessel method is used.

The flux surfaces of CTH are not too strongly shaped at φ = 252◦, but it is probable that

the benefits of this method would be even more apparent given a more strongly shaped cross

section.
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4.2 Tomographic Reconstructions of Test Data

To demonstrate that the tomography implementation is correct, some test cases are

considered. In the first test case, only the 20 chords from the SXR camera at θ = 0◦ are

used. The SXR signals are assigned the values sin(4πn/19) where n is the chord number with

n = 0 being the top chord and n = 19 being the bottom chord. Reconstructed emissivities

obtained using the standard Fourier-Bessel method with Ccutoff = 0 are shown in Fig. 4.1. As

the number of basis functions used in the reconstructions is increased, the solution converges

to "beams" of positive and negative emissivity along the chords. The beams of positive

emissivity are aligned along the chords which have the highest signal values and the beams

of negative emissivity lie along the chords with the lowest signal values. Since there are more

basis functions than signals for the cases in Fig. 4.1, signals computed from the reconstructed

emissivities match the input signals.

Next, test cases which are more representative of intended usage cases are considered.

These test cases use data from the NIMROD simulations that are described in subsequent

chapters. The ith signal Si is computed using

Si =
ˆ
ci

Tnim(s) ds, (4.3)

where ci is the ith pinhole camera chord and s is the distance along the chord. A potential

problem in tomography of NIMROD data is that the temperature of the numerical solution

is not zero at the boundary, Te(a) 6= 0. However, Fourier-Bessel method reconstructions are

always zero at the boundary. Instead of attempting to reconstruct the numerical solution

for the electron temperature Te, a quantity Tnim defined as

Tnim(r, θ) =


Te(r, θ)− Tlcfs r ≤ rlcfs(θ)

0 r > rlcfs(θ)
(4.4)
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(a) m=5,l=15 (b) m=10,l=5 (c) m=10,l=10 (d) m=20,l=20

(e) Signals

Figure 4.1: Test cases for the Fourier-Bessel tomography implementation. Chords from the
SXR camera at θ = 0◦ are assigned the values sin(4πn/19) where n is the chord number. In
(a) - (d), plots of the chords are overlaid on top of plots the reconstructed emissivities. The
number of basis functions is scanned. The value of each chord’s signal is indicated by the
color of each plotted chord, with black corresponding to a value of 1 and white corresponding
to a value of -1. As the number of basis functions is increased, the reconstructions converge
to alternating "beams" of positive (red) and negative (blue) emissivity. In (e), the test signals
are compared to signals computed from the reconstructed emissivity in (d).
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is reconstructed. Because contours of Te are nearly aligned with contours of magnetic flux,

Tnim is nearly zero on the LCFS boundary and is nearly a smooth and continuous function

over the domain.

The two test cases based on the NIMROD numerical solutions are to reconstruct the

temperature profile at φ = 252◦ before a relaxation and "after" (when the relaxation is nearly

finished). The cases will be called Before and After. Contour plots of Tnim for both cases are

shown in Fig. 4.2. An SVD cutoff of 0.1 is used while the number of basis functions is scanned

over three cases. In the standard Fourier-Bessel reconstructions, a minor radius of a = 0.24

is used while the modified reconstructions use a VMEC equilibrium having an LCFS that

closely conforms to the LCFS of the NIMROD solution. Reconstructed temperature profiles

for the Before and After cases, using both tomography methods, are shown in Fig. 4.3 and

Fig. 4.4. An error Etom for tomographic reconstructions is defined as a percent difference

averaged over the area inside the NIMROD LCFS,

Etom =

˜
r<rlcfs(θ)

√(2(Tnim(r, θ)− Ttom(r, θ))
Tnim(r, θ) + Ttom(r, θ)

)2
r drdθ

˜
r<rlcfs(θ) r drdθ

. (4.5)

The error of each reconstruction is tabulated in Table 4.3.

The modified Fourier-Bessel method is significantly more accurate in an average error

sense for both cases. However, the modified FB method solution for the Before case is not

peaked enough in the center unless many basis functions are used, while the regular FB

method solution is quite accurate in the center for the lowest resolution case. Preliminary

testing has shown that using
√
s instead of s as the radial coordinate for the modified method

may eliminate the tendancy for reconstructions to be overly broadened in the center. Both

methods, but especially the standard FB method, see the introduction of spurious features

into the reconstructions as the number of basis functions is increased. It is therefore not

immediately clear from these tests which method is better for studying sawtoothing, which

is localized to the center of the plasma. When trying to develop an opinion of experimental
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(a) Before (b) After (c) LCFS

Figure 4.2: Tnim for the Before and After cases are shown in (a) and (b) respectively. The
black chord is a diagnostic chord along which quantities will be plotted for comparison. A
comparison of the LCFS computed from the NIMROD solution and the VMEC LCFS is
shown in (c).

phenomena with tomography, reconstructions using both methods and several values of m,

l and Ccutoff should be considered and compared.

Table 4.1: Results for the Before test case,
using both methods, are tabulated.

m, l Fourier-Bessel Modified FB
5, 12 0.137 0.0723
5, 15 0.138 0.0647
8, 15 0.183 0.113

Table 4.2: Results for the After test case, using
both methods, are tabulated.

m, l Fourier-Bessel Modified FB
5, 12 0.137 0.0502
5, 15 0.137 0.0487
8, 15 0.160 0.0550

Table 4.3: Error Etom of solutions to test cases Before and After. The modified Fourier-Bessel
method solutions have a smaller error.
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(a) Standard FB, m = 5,l = 12 (b) Standard FB, m = 5,l = 15 (c) Standard FB, m = 8,l = 15

(d) Modified FB, m = 5,l = 12 (e) Modified FB, m = 5,l = 15 (f) Modified FB, m = 8,l = 15

(g) Diagnostic Chord, m = 5,l = 12 (h) Diagnostic Chord, m = 5,l = 15 (i) Diagnostic Chord, m = 8,l = 15

Figure 4.3: Tomographic reconstruction results for the Before test case. The top row contains
contour plots of reconstructions using the standard Fourier-Bessel method for three cases
having different numbers of basis functions. The middle row contains contour plots using
the modified Fourier-Bessel. The last row contains plots of the reconstructed Te for both
methods versus the test data along the diagnostic chord for each case.
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(a) Standard FB, m = 5,l = 12 (b) Standard FB, m = 5,l = 15 (c) Standard FB, m = 8,l = 15

(d) Modified FB, m = 5,l = 12 (e) Modified FB, m = 5,l = 15 (f) Modified FB, m = 8,l = 15

(g) Diagnostic Chord, m = 5,l = 12 (h) Diagnostic Chord, m = 5,l = 15 (i) Diagnostic Chord, m = 8,l = 15

Figure 4.4: Tomographic reconstruction results for the After test case. The top row contains
contour plots of reconstructions using the standard Fourier-Bessel method for three cases
having different numbers of basis functions. The middle row contains contour plots using
the modified Fourier-Bessel. The last row contains plots of the reconstructed Te for both
methods versus the test data along the diagnostic chord for each case.
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4.3 Tomographic Reconstructions of CTH Sawteeth

When signals from SXR cameras on CTH are used for tomographic reconstructions,

distinct sawtooth relaxations can be clearly seen. The relaxations typically appear as an

outward radial displacement and counter-clockwise poloidal rotation of the emissivity peak.

The observed poloidal rotation may be due to the predominately n = 1 toroidal dependence of

the sawtooth relaxation combined with the toroidal plasma flow in the experiment. After the

relaxation is complete, the emissivity profile is broadened with a lower amplitude compared

to before the relaxation. During the ramp period that follows a relaxation, the emissivity is

seen to increase in intensity and become more peaked.

In Fig. 4.5, tomography reconstructions using the standard Fourier-Bessel method dur-

ing a single sawtooth crash observed in shot 14112125 are shown. It should be noted that

one of the central pinhole cameras in the θ = 300◦ camera was not functioning and this may

affect the reconstructions. The choice of an SVD cutoff Ccutoff = 0.10 withm = 5 and l = 12

poloidal and radial basis numbers was informed by the test cases based on NIMROD data.

However, there are many apparent artifacts in these reconstructions and they do not provide

a clear picture of the sawtooth activity. When the SVD cutoff is raised to Ccutoff = 0.15 as

shown in Fig. 4.6, reconstructed emissivities are smoother and the sawtooth relaxation can

be clearly seen as a radial displacement and poloidal rotation of the core. In the last frames,

reheating of the core after the relaxation is complete can be seen.

In Fig. 4.8 and Fig. 4.9 reconstructions of the crash using the modified Fourier-Bessel

method, with two different values of Ccutoff are shown. The VMEC equilibrium used for

these reconstructions was obtained using V3FIT. Magnet coil current values and the plasma

current were set using the experimentally measured values. The equilibrium has a magnetic

axis that runs through the location of maximum emissivity computed from just before the

sawtooth crash by the standard Fourier-Bessel method and the edge of the equilibrium

conforms to the limiters. Although the cameras are reportedly located at φ = 252◦, it

is evident in Fig. 4.7 that the VMEC flux surfaces at φ = 256◦ better conform to the
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reconstructed emissivity profiles in Fig. 4.6. Reconstructions using the flux surfaces at φ =

252◦ have many spurious features compared to reconstructions using flux surfaces at φ =

256◦. Therefore, the equilibrium flux surfaces at φ = 256◦ are used in the modified FB

reconstructions.

Sawteeth are highly reproducible in CTH, so one should consider reconstructions of

many relaxations from different experimental shots when informing an opinion of CTH saw-

teeth with tomographic reconstructions. In Figs. 4.10 and 4.11 modified FB reconstructions

of a relaxation observed in shot 14110629 are shown for Ccutoff = 0.1 and 0.15 respectively.

The result is remarkably similar to the sawtooth relaxation in shot 14112125 we considered.

This chapter considered some experimental observations of sawteeth in CTH. In the

following chapters, CTH sawteeth with be explored by numerical simulation. Numerical

sawteeth in an axisymmetric tokamak configuration will be explored first, as many of the

considerations needed in obtaining solutions of repeated sawtooth relaxations for axisym-

metric cases are also needed for non-axisymmetric configurations with a non-zero helical

field.
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(a) 0 ms (b) 0.04 ms (c) 0.06 ms (d) 0.08 ms

(e) 0.10 ms (f) 0.12 ms (g) 0.16 ms (h) 0.20 ms

Figure 4.5: Tomographic reconstructions of a sawtooth crash from shot 14112125 using the
standard Fourier-Bessel method. A minor radius of a = 0.2 was used with m = 5 and l = 12
poloidal and radial numbers and an SVD cutoff of 0.10. There are apparently many spurious
features in the reconstructed emissivity profile.

(a) 0 ms (b) 0.04 ms (c) 0.06 ms (d) 0.08 ms

(e) 0.10 ms (f) 0.12 ms (g) 0.16 ms (h) 0.20 ms

Figure 4.6: Compared to the reconstructions in figure 4.5, these reconstructions used an
SVD cutoff of 0.15. With the larger SVD cutoff value, most of the spurious features are
apparently removed. The radial shift and poloidal rotation of the hot core can be clearly
seen.
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(a) φ = 252◦ (b) φ = 256◦

Figure 4.7: Flux surfaces of VMEC equilibrium used for tomography of shot 14112125 at
φ = 252◦ and φ = 256◦. The surfaces at φ = 256◦ better conform to the emissivity profiles
of Fig. 4.6.

(a) 0 ms (b) 0.04 ms (c) 0.06 ms (d) 0.08 ms

(e) 0.10 ms (f) 0.12 ms (g) 0.16 ms (h) 0.20 ms

Figure 4.8: Reconstruction of the relaxation during shot 14112125. The modified Fourier-
Bessel method with m = 5, l = 15 and Ccutoff = 0.1.
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(a) 0 ms (b) 0.04 ms (c) 0.06 ms (d) 0.08 ms

(e) 0.10 ms (f) 0.12 ms (g) 0.16 ms (h) 0.20 ms

Figure 4.9: Reconstruction of the relaxation during shot 14112125. The modified Fourier-
Bessel method with m = 5, l = 15 and Ccutoff = 0.15.

(a) 0 ms (b) 0.02 ms (c) 0.04 ms (d) 0.06 ms

(e) 0.08 ms (f) 0.10 ms (g) 0.12 ms (h) 0.14 ms

Figure 4.10: Reconstructions of a relaxation during shot 14110629. The modified Fourier-
Bessel method is used with m = 5, l = 15 and Ccutoff = 0.10.
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(a) 0 ms (b) 0.02 ms (c) 0.04 ms (d) 0.06 ms

(e) 0.08 ms (f) 0.10 ms (g) 0.12 ms (h) 0.14 ms

Figure 4.11: Reconstructions of a relaxation during shot 14110629. The modified Fourier-
Bessel method is used with m = 5, l = 15 and Ccutoff = 0.15.
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Chapter 5

Simulations of Sawteeth in a Tokamak

Simulations of CTH with no stellarator field, so that it is operating as a tokamak, are

considered. There are a few reasons for considering the axisymmetric case before cases repre-

sentative of CTH experimental discharges. First, axisymmetric MHD simulations of repeated

sawteeth are well documented in the literature so this represents a natural starting point. In-

creasing the stellarator field represents a smooth transition from known to unknown. From

a numerical point of view, which is discussed in detail later, the convergence properties

become significantly different as the stellarator field is added. Obtaining numerically re-

solved solutions for the axisymmetric case is much less computationally demanding, making

troubleshooting easier. From a practical point of view, NIMROD has features specifically

intended for studying axisymmetric MHD problems, making troubleshooting even easier.

When considering an axisymmetric equilibrium, NIMROD can be run in a linear mode.

In nonlinear runs, axisymmetric diffusive sources can be used to maintain the equilibrium

profile shapes over long time scales.

The mathematical problem to be solved is fully specified by the initial conditions, bound-

ary conditions and model equations. The boundary conditions used are,

n(a) = na

T (a) = Ta

~V (a) = 0

δ ~B(a) · n̂ = 0˛
~E · d~l = Vloop(t)

(5.1)
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Magnetic boundary conditions are such that the normal component of the magnetic field

at the boundary is fixed, which corresponds to a perfectly conducting wall with fields from

external magnet coils frozen in. If the total plasma current is changed, eddy currents in

the perfect conducting wall produce a vertical magnetic field that keeps the plasma roughly

centered. A no-slip boundary condition is enforced for the velocity field. Dirichlet boundary

conditions are applied to temperature and number density. A time varying loop voltage

boundary condition Vloop = V (t) is applied to the electric field to control the total plasma

current Iplasma. A loop voltage, which is an EMF going the long way around the torus,

is necessary to maintain constant Iplasma in the presence of electric resistivity since these

simulations take place over a time interval comparable to the characteristic resistive diffusion

time τr = µ0a
2/η.

Because the sawtooth instability and its nonlinear evolution is almost completely local-

ized to the core of the plasma, use of these simple boundary conditions is justified [78]. Some

other phenomena require more sophisticated boundary conditions. For example, simulation

of a vertical displacement event requires a resistive wall boundary condition [79,80].

Ideal MHD equilibria from the 3D equilibrium code VMEC are used for initial condi-

tions. Refer to appendix A for more information on VMEC and the details of how these

equilibria are loaded into NIMROD. The initial VMEC temperature profile is chosen so that

T ∝ j3/2. The temperature profile is offset by the amount Ta everywhere in the domain.

If a temperature offset is not added secondary activity after relaxations, described later in

this section, tends to destroy flux surfaces in the outer region of the plasma. A uniform

initial density profile n = na is used. The initial current density profile is chosen somewhat

arbitrarily with q0 > 1, so that there is initially no sawtooth instability. It should be noted

that the steady state behavior of MHD simulations of repeated sawtoothing is known to be

somewhat insensitive to initial conditions.
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na 1019 m−3

Ta 30 eV
Tref 150 eV
ν 10 m2/s
χ⊥,0 10 m2/s
χ‖ 107 m2/s
κdivb 5 · 104 m2/s
η0 3.14× 10−6 Ωm

Iplasma 105 kA
Vloop(t→∞) 11.6 V

Table 5.1: Values of the model parameters used for the tokamak case.

The values for the model equation (Eq. 2.1) parameters are shown in Table 5.1. These

parameters lead to self-consistent MHD profiles having plasma parameters that should be

roughly consistent to those of CTH plasmas.

Starting from initial conditions, the total plasma current is ramped up to the appropriate

value at the beginning of the simulation. There is a long, quiescent "ramp phase" at the

beginning with no sawtooth activity. The temperature profile quickly relaxes to a thermal

equilibrium that is consistent with the transport model being used. The central safety

factor q0 begins slowly falling below unity on the resistive diffusion time scale. That the

relaxation of the temperature profile occurs much more rapidly than the relaxation of the

current density profile is explained by noting that the characteristic energy confinement time

τE ≈ 0.29 ms is much shorter than the characteristic resistive diffusion time τr = 55 ms.

The approximate value for τE was computed by using Visit [81] to integrate the thermal

energy density ρE = 3nkB(Te + T )/2 and the volumetric heating power ηJ2 over the region

inside the LCFS and taking the ratio of these quantities.

After q0 < 1, the sawtooth mode becomes unstable, gets excited at a low amplitude and

grows exponentially until it reaches the non-linear phase of evolution. The eigenfunction

(Fig. 5.1) represents a rigid displacement of the central part of the plasma core with a n = 1

variation in the direction. There are several types of such instabilities which drive sawteeth.
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(a) (b)

Figure 5.1: (a) Projection of the velocity field onto the plane at φ = 0◦ during the linear
phase of evolution. This flow at φ = 0◦ can be described as an outward, incompressible, rigid
displacement. (b) The kinetic energy of the n = 1 Fourier component of the solution fields
grows exponentially with a nearly constant slope after the mode is excited. The growth rate
of the mode can be figured by finding the slope, where slope = 2γ.

It was determined that this sawtooth mode is a toroidal generalization of the m = 1 visco-

resistive internal kink mode. The determination was made by confirming that the growth

rate has the correct scaling with S and by looking at the form of the eigenfunction at the

resonant surface (see Fig. 1.4). Finding the scaling of the growth rate was accomplished

by taking the n = 0 profiles of the solution at times during the linear growth phase of the

sawtooth mode. Then, these profiles are used as equilibria for running NIMROD in linear

mode. The resistivity coefficient η0 was scanned in a series of linear runs, and the scaling

of the growth rate versus Lundquist number found to be nearly γ ∝ S−2/3, as illustrated in

Fig. 5.2, which is the scaling for the visco-resistive internal kink [82].

The nonlinear phase of evolution begins when the mode eigenfunction grows sufficiently

large compared to the equilibrium fields. It is well described by the Kadomtsev relaxation

process. The core inside the q = 1 surface is radially displaced outward into a helical recon-

nection current layer. The near singular current layer and reconnection flows are pictured in

Fig. 5.3. A series of Poincaré plots are shown in Fig. 5.4 that illustrate the core reconnecting
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(a)

Figure 5.2: In simulations of a tokamak similar to CTH, the sawtooth instability has ap-
proximately visco-resistive internal kink growth rate scaling γ ∝ S−2/3.

and being replaced by a growing island. Recall that the resistivity is very small so that the

magnetic field lines are nearly frozen into the plasma in regions outside of the reconnecting

current layer. After the process is complete, the central current density is flattened and

reduced in amplitude so that q > 1. The temperature profile also becomes somewhat flat-

tened with a lower central amplitude. The relaxation ejects thermal energy from the core to

the outer region of the plasma. A comparison of the safety factor and temperature profiles

before and after the relaxation is shown in Fig. 5.5.

The solution we obtained for the tokamak configuration undergoes 16 nearly periodic

relaxations. Presumably, relaxations would continue for as long as the numerical solution

is advanced. The energies of each toroidal Fourier number are shown in Fig. 5.6. These

quantities serve as a proxy for the amplitude of each Fourier component’s contribution to

the solution fields. Although the linear mode is represented with only the n = 1 fields, all

Fourier numbers are involved in representing the nonlinear relaxation. Also, Te is plotted
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(a) (b)

Figure 5.3: (a) The non-linear evolution of this mode is the formation of a Sweet-Parker like
reconnection layer and reconnection of flux inside the core. The arrows indicate the flow,
with the relative magnitude given by the size of the arrows. In (b), the toroidal current
density is plotted along a chord passing through the plasma core and reconnection layer.
The near discontinuity at the reconnection layer can be clearly seen.

versus time at points increasingly distant from the center of the plasma core. In the core, the

temperature rapidly drops at relaxations but the region away from the core is rapidly heated

by heat being ejected from the core. Experimentally, the mixing radius can be determined by

looking at which SXR signals are inverted. SXR signals from sensors pointed into the central

core show a slow ramp up with a sharp drop, but signals from sensors pointing to regions

outside the mixing radius are inverted with crashes appearing as a sharp upward spike. We

note that the temperature trace of the central chord does not really have a sawtooth shape

in simulations. In fact, the temperature trace at the center looks more like a square wave.

This may be explained by noting that the sawtooth period, approximately τsaw = 0.56 ms,

is a considerably longer than the energy confinement time τE ≈ 0.29 ms. Therefore the

core re-establishes thermal equilibrium quickly, well before the next relaxation. A more

sawtooth-like signal is expected for τE & τsaw [10].
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(a) 0 ms (b) 0.22 ms

(c) 0.28 ms (d) 0.34 ms

Figure 5.4: Poincaré plots showing the evolution of a sawtooth relaxation. An island at the
q = 1 surface grows rapidly, pushing the plasma core into a resistive reconnection layer on
the other side of the q = 1 surface. The final state is shown in (d), where the entire plasma
core has completely reconnected and the center of the island has become the new magnetic
axis.
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Figure 5.5: The q profile shortly before and shortly after the relaxation is shown in (a).
After the relaxation, q > 1 and the q profile has a broader, more square-like shape. In (b),
the temperature is shown before and after the relaxation.

(a) (b)

Figure 5.6: (a) The energies of each toroidal Fourier number of the magnetic field is plotted
vs. time. These quantities are a proxy for the relative contribution of each Fourier component
to the solution fields. (b) The temperature is plotted vs. time at points increasingly distant
from the magnetic axis. The temperature in the core sees repeated crashes that coincide
with spikes in the temperature outside the core. This is a classic experimental characteristic
of sawteeth that is recovered in the simulations.
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The loop voltage asymptotically approaches a steady value of 11.5 V . This is greater

than the loop voltage in CTH, which is around 4 V during sawtooth activity. This suggests

that the resistivity of CTH plasmas may be somewhat lower than that of the simulated

plasma. The central value of the Lundquist number during this simulation is approximately

S0 ≈ 1.7× 105.

A number of challenges were overcome in seeking MHD solutions with repeated saw-

toothing. First, considerations were made to prevent islands from growing large in the outer

region of the plasma. The growth of these islands coincides with a relaxation. The broad

profile shape after a relaxation is conducive to tearing modes. The islands overlap and cause

much of the domain outside of the mixing radius to have stochastic magnetic fields (Fig. 5.7).

This gets worse as the total current is increased, leading to a broader q profile after a re-

laxation. A large m/n = 2/1 island is especially notable. This stochasticity outside the

mixing radius has been seen in many previous works on the simulation of repeated sawteeth

and is often not addressed. It has been noted that stochasticity outside the mixing radius

may not occur after a relaxation when the two-fluid equations are used [83]. Because we

are only interested in studying sawtoothing with resistive MHD here, sources and boundary

conditions are adjusted to give profile shapes that are not susceptible to this tearing mode

activity. Te(a) is set to 30 eV and the total plasma current is chosen so that the q = 2 surface

is near the perfectly conducting wall. The change in profile shapes, with a lower value of η

at the q = 2 surface and wall stabilization are effective in suppressing the tearing modes.

Obtaining solutions that reach an oscillating steady state requires careful selection of

dissipation, diffusion and source parameters, including χ⊥, χ‖, ν and Iplasma. We see in

Figure 5.8 that the solution with a smaller Iplasma undergoes a couple of relaxations but

quickly reaches a helical equilibrium that does not oscillate. When Iplasma is increased

slightly, the solution reaches a steady state with repeated Kadomtsev relaxations. Some

amount of trial and error is necessary to get numerical solutions with oscillating steady

states. However, many past studies have sought to characterize the regions of parameter
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(a) t = 0 ms (b) t = 0.035 ms (c) t = 0.063 ms

(d) t = 0.12 ms (e) t = 0.23 ms (f) t = 0.26 ms

Figure 5.7: Poincaré plots over an interval having two relaxations are shown. The boundary
condition Ta = 0.5 eV was used. After a relaxation, islands grow and overlap causing
stochasticity over large parts of the domain. Increasing the electron temperature at the
boundary Ta to 30 eV and setting Iplasma changes profile shapes to have shallower gradients
and significantly increases the resistivity at rational surfaces near the edge.
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(a) (b)

Figure 5.8: MHD solutions of sawtoothing will only reach a steady state having repeated
relaxations in certain regions of parameter space. The pictured solution was obtained by
reducing the total plasma current from Iplasma = 105 kA to Iplasma = 102.5 kA. Oscillations
decay as seen in (a) and the system reaches a helical steady state. A Poincaré plot of the
helical steady state is shown in (b).

space where solutions reach an oscillating steady state. As a rule, oscillating solutions are

found for small χ⊥ and poloidal beta βp [84]. The poloidal beta is defined βp ≡ 2µ0〈p〉/B2
θ (a),

where 〈p〉 is the volume averaged pressure, and in this study it is useful to think of it as a

proxy for the total plasma current Iplasma. When larger values of χ⊥ or βp are used, solutions

will tend to relax to a non-oscillating helical steady state. Also, cases without a sufficiently

strong parallel thermal conductivity were found to reach a helical steady state that does not

oscillate.

In a simulation where the plasma current was 115 kA instead of 105 kA, rapid rear-

rangement of flux surfaces was observed immediately after relaxations. This sort of secondary

activity leading to a rearrangement of flux surfaces was noted in several other simulations

including simulations having a non-zero stellarator field. The secondary activity always
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disappears when the plasma current is decreased under some threshold value. No model pa-

rameters besides plasma current were changed. See figure 5.9 for Poincaré plots showing how

the flux rearranges. In trying to identify this phenomena, it was noted that the evolution

of the flux tubes resembles what is pictured in reference [85] which explains the observation

that q0 < 1 after sawtooth relaxations in terms of a rapid rearrangement of flux after a

Kadomtsev-like reconnection. However, these simulations do not see a significant change in

q0 from the rearrangement.

To investigate the flux rearrangement phenomenon, the n = 0 profiles corresponding

to plot (b) in fig. 5.9 were taken as an equilibrium and NIMROD was run in linear mode

as various model parameters were changed. An n = 1 unstable mode was found with an

eigenfunction that resembles the quasi-interchange mode. The equilibrium and mode eigen-

function are shown in Fig. 5.10. It was found that there is no instability if an axisymmetric

model is used for the resistivity η. This motivated exploring how the growth rate γ varies

with the parallel thermal conductivity, since with a Spitzer model a large parallel thermal

conductivity has the effect of equalizing variations in η along field lines. Indeed it was found

that as χ‖ is increased, the growth rate decreases. Therefore, this instability may be related

to the rippling instability [86].

In conducting sawtooth simulations, it was noticed that first relaxation is sometimes

larger than successive relaxations. This is because, for the first relaxation, the unstable

n = 1 mode is excited with only a small amount of energy. Linear mode growth then occurs

for a considerably longer period of time than following cycles before reaching the non-linear

phase of evolution. q0 continues to drop below unity during the extended period of linear

growth, so the first relaxation starts with a lower value of q0.

The discussion in this chapter presented how numerical solutions of repeated relaxations

are obtained for an axisymmetric case. This general procedure will be followed in the next

chapter where solutions of repeated relaxations with a non-zero helical field. Several con-

siderations were necessary in obtaining solutions that reach a steady state with repeated
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(a) 0 ms (b) 0.063 ms

(c) 0.094 ms (d) 0.14 ms

Figure 5.9: Poincaré plots showing rapid rearrangement of flux surfaces immediately after
complete reconnection. This occured every relaxation when the plasma current was increased
from 105 kA to 115 kA.
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(a) (b)

(c)

Figure 5.10: The q profile of the equilibrium used to study the flux rearrangement phe-
nomenon (a) and the projection of the eigenfunction of the unstable n = 1 mode, that
resembles a quasi-interchange mode, onto the poloidal plane (b). The size and direction of
the arrows corresponds to the magnitude and direction of the flow (units are arbitrary since
this is a linear eigenmode). In (c), the growth rate is plotted as a function of parallel heat
conductivity χ‖.
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relaxations. For example, it was seen that the solution will reach a steady state having

repeated relaxations only in certain regions of parameter space. The same considerations

must be taken for non-axisymmetric cases.
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Chapter 6

Simulations of Sawteeth in CTH

Numerical solutions of sawtoothing in cases with three-dimensional, non-axisymmetric

shaping from the CTH stellarator field are described in this chapter. These results provide

insight into the qualitative differences and similarities between sawtooth relaxations in the

non-axisymmetric and axisymmetric cases. It should be noted that the goal is not exact

quantitative agreement with observations from the experiment. A key experimental finding

is that τsaw is correlated with ι-vac. These results provide insight into the first principles

behind this correlation.

A family of four configurations with increasing helical stellarator field strength are con-

sidered. The configurations range from zero stellarator field with CTH operating as an

axisymmetric tokamak to a case representative of an experimental sawtoothing shot with a

high amount of stellarator field. In Fig. 6.1, three-dimensional plots of temperature isosur-

faces which roughly correspond to the LCFS are shown for each configuration. Increased

shaping of the plasma is evident as ι-vac is increased.

In all cases the plasma current provides most of the rotational transform as in a tokamak.

The safety factor profiles are tokamak-like in the sense that q monotonically increases as

one moves radially outward from the magnetic axis. For these configurations, the vacuum

stellarator fields needed to compute ι-vac are obtained by running V3FIT to compute a VMEC

equilibrium that has zero plasma current and pressure. V3FIT varies two parameters, the

vertical field coil current Itvf and the toroidal flux at the plasma-vacuum interface phiedge,

to obtain an equilibrium that conforms to the limiters and is horizontally centered with an

average location for the magnetic axis at R = 0.75 m. The horizontal position is controlled

with Itvf and phiedge controls the minor radius.
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ι-vac = 0 ι-vac = 0.0134 ι-vac = 0.0333 ι-vac = 0.0970

Figure 6.1: Plots of the electron temperature isosurface corresponding to the average tem-
perature of the last closed flux surface for each configuration immediately after a sawtooth
relaxation. The standard deviation of the electron temperature within the LCFS is quite
small for each case. The color indicates with strength of the magnetic field.

Besides helically deforming the magnetic topology, the stellarator field has the effect of

creating chains of small equilibrium islands that tend to become larger with increasing ι-vac.

Also it can be seen from Table 6.1 that the generalized minor radius of the last closed flux

surface tends to decrease with increasing ι-vac. There are several definitions one may use for

the generalized minor radius of a flux surface, but in this work the following definition is

used, where v is the volume enclosed by the flux surface and as is the surface area of the

flux surface.

rlcfs = 2v
as

To make the calculation more convenient, the volume and surface area of the temper-

ature isosurface corresponding to the average temperature of the last closed flux surface is

used. The last closed flux surface is well approximated by this temperature isosurface because

of the large parallel thermal conduction used in the simulation. With this approximation,

calculating r can be easily accomplished with Visit.
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ι-vac 0 0.0134 0.0333 0.0970
v (m3) 1.05 0.922 0.665 0.643
as (m2) 11.5 11.6 10.3 11.0
rlcfs (m) 0.184 0.159 0.129 0.117

Table 6.1: The generalized minor radius gets smaller as the strength of the helical field is
increased.

Both the equilibrium islands and the reduced minor radius will decrease the energy con-

finement time τE given the transport model under consideration. The rapid parallel thermal

conduction allows thermal energy to efficiently flow across island chains. Given an equilib-

rium having closed nested flux surfaces, the energy confinement time will be proportional to

the square of the generalized minor radius because of the diffusive model for perpendicular

heat transport as shown here,
τE = Eth

Ploss

=
˝

r<rlcfs
ρE dv‚

r=rlcfs
~q · n̂ da

=〈ρE〉rlcfs2q⊥,lcfs

≈
〈ρE〉r2

lcfs

2χ⊥,lcfsT

τE ∝ r2
lcfs,

(6.1)

where 〈ρE〉 is the volume averaged thermal energy density and q⊥,lcfs is the perpendicular

heat flux at the LCFS. To simplify the calculation, the perpendicular heat flux was considered

to be q⊥,lcfs = χ⊥,lcfs
∣∣∣∇T ∣∣∣ where χ⊥,lcfs is a constant having the appropriate units.

6.1 Sawtooth Relaxation in Helical ι-vac = 0.0333 Configuration

For the helically perturbed case with ι-vac = 0.0333, boundary conditions and initial

conditions were prescribed as discussed for simulations in a tokamak. The simulation used

900 finite elements for the poloidal representation with 30 in the radial direction and 30 in

the θ direction, 43 Fourier numbers and a maximum time step of ∆tmax = 10−7 s = 0.31τA
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where τA is the Alfvén toroidal transit time. Transport and diffusion coefficients set to

obtain self-consistent equilibria having a Lundquist number S ≈ 105, which is believed to be

representative of the plasmas in CTH discharges. From initial conditions with q0 > 1, the

total plasma current is ramped from Iplasma,0 = 60 kA to Iplasma = 90 kA, and q0 falls below

unity after a few milliseconds.

Like the tokamak cases, a visco-resistive internal kink mode becomes unstable after q0

is driven below unity. The growth rate has a scaling that is approximately γ = γ0S
−2/3 as

shown in Fig. 6.2, and the eigenfunction has resistive kink behavior at the resonant surface.

The magnitude of the growth rate is also larger than for the axisymmetric tokamak case,

with a 20% difference in growth rate at S = 105. Finding how the growth rate of the

linear mode scales with S for helically perturbed cases is made complicated by the fact that

NIMROD currently cannot be run in linear mode when 3D fields are part of the equilibrium.

To get around this, a time during the initial ramp up after the growth rate of the unstable

mode reaches a steady value is chosen. The loop voltage Vloop,0 is recorded at this time.

The simulation is then restarted with an adiabatic model for the temperature evolution

and without the Ohmic heating source. This fixes the temperature, pressure and resistivity

profiles. The resistivity coefficient η0 is changed to adjust the value of S, and the loop voltage

is adjusted to Vloop = Vloop,0η0,new/η0,old so that the plasma current remains constant. The

solution is advanced until the new growth rate stabilizes. When using this process to capture

a growth rate for different values of S, the current density profile will resistively evolve so

the q profile will not remain fixed. However, for the tokamak case where running in linear

mode is possible, the correct growth rates are recovered with high accuracy.

With the addition of the helical stellarator field, modes are not characterized by a

particular value of n as they are in a tokamak. It can be said that n is no longer a good

quantum number [87]. The unstable internal kink mode in CTH is represented with Fourier

numbers n = 1, Nfp ± 1, 2Nfp ± 1, 3Nfp ± 1, ..., consistent with the Nfp = 5 field period of
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Figure 6.2: Growth rates vs. Lundquist number S for the ι-vac = 0.0333 case. The equilibrium
used comes from the initial ramp up, after the growth rate gets close to its maximum value
for the rampup.
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Figure 6.3: Energies of the n = 1, Nfp±1, 2Nfp±1, 3Nfp±1, ..., components of the magnetic
field are plotted during the growth of the linear instability in the ι-vac = 0.0333 case. The
energies exponentiate at the same rate because they are all involved in representing the
unstable linear mode. Unlike the axisymmetric case, instabilities in non-axisymmetric cases
are not characterized by any particular value of n.

the CTH stellarator field [87]. During the linear growth phase, the energies of these Fourier

numbers see exponential growth at the same rate (Fig. 6.3).

The nonlinear evolution of the relaxation for this configuration bears a striking similarity

to that of the tokamak case. An island at q = 1 grows and the hot core undergoes a radial

displacement, with a n = 1 toroidal variation in the direction of the displacement (Fig. 6.4).

The center of the island becomes the new magnetic axis after the plasma core is completely

reconnected, and the safety factor is greater than unity everywhere (Fig. 6.5). Compared to

the tokamak case, the island and core are both helically deformed (Fig. 6.6).
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φ = 0◦ φ = 90◦

φ = 180◦ φ = 270◦

Figure 6.4: Poincaré plots at different toroidal angles during a relaxation for the ι- = 0.033
case. The core is undergoing a radial displacement with a n = 1 toroidal variation in the
direction of displacement.
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Figure 6.5: After a relaxation in the ι-vac = 0.033 case, the q profile is flat with q ≥ 1
everywhere.

ι-vac = 0 (tokamak) ι-vac = 0.033

Figure 6.6: Flux tubes are plotted during a relaxation for two of the configurations. Com-
pared to the axisymmetric case, the growing island (black) and reconnecting core (red) in
the ι-vac = 0.033 case are helically deformed.
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6.2 Repeated Sawtooth Relaxations

Numerical solutions having repeated sawtooth relaxations are obtained for each con-

figuration. The numerical parameters for these simulations and the convergence properties

are discussed in the next section. Most of the values for model parameters used for the

tokamak solution described earlier, tabulated in Table 5.1, were used. However, the param-

eters χ⊥ and Iplasma were varied to maintain reasonable profile shapes and roughly constant

Lundquist number (Table 6.2). Total plasma current Iplasma is decreased as ι-vac is increased

to maintain a reasonable edge safety factor q(a) that is not nearly or below unity. This is

done experimentally as well. Since an approximate Spitzer resistivity is used, temperature

is coupled to S. Due to the larger confinement degrading equilibrium islands and reduced

minor radius seen as ι-vac is increased, χ⊥ must be reduced as ι-vac is increased to maintain

constant S. It should also be noted that reducing Iplasma would result in a somewhat lower

plasma temperature given a fixed τE.

Poincaré plots at different toroidal angles during a crash are shown for each case in

Fig. 6.7. For non-axisymmetric cases, the overall picture of the relaxation process is the

same as for the axisymmetric case but with a helically distorted geometry. Also, the reduced

minor radius and increased equilibrium island width as ι-vac is increased are immediately

apparent in these images.

Plots of the magnetic energies of each Fourier component for each case are shown in

Fig. 6.8. It is apparent from these plots that Fourier components which are multiples of the

ι-vac 0 0.0134 0.0333 0.0970
τsaw (ms) 0.52 0.48 0.37 0.28
χ⊥,0 (m2/s) 17.75 15 10 10
Iplasma (kA) 117.5 107.5 90 88
S0 (×105) 1.3 1.2 1.3 1.0
Sq=1 (×105) 1.3 1.2 1.3 1.0

Table 6.2: Values of χ⊥,0 and Iplasma used to obtain sawtoothing solutions for each configu-
ration. The average value of S during the run is also tabulated.
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ι-vac = 0, φ = 0◦ ι-vac = 0.0134, φ = 0◦ ι-vac = 0.0333, φ = 0◦ ι-vac = 0.0970, φ = 0◦

ι-vac = 0, φ = 90◦ ι-vac = 0.0134, φ = 90◦ ι-vac = 0.0333, φ = 90◦ ι-vac = 0.0970, φ = 90◦

ι-vac = 0, φ = 180◦ ι-vac = 0.0134, φ = 180◦ ι-vac = 0.0333, φ = 180◦ ι-vac = 0.0970, φ = 180◦

ι-vac = 0, φ = 270◦ ι-vac = 0.0134, φ = 270◦ ι-vac = 0.0333, φ = 270◦ ι-vac = 0.0970, φ = 270◦

Figure 6.7: Poincaré plots for different configurations at several toroidal angles during a
relaxation. The rapidly growing island at q = 1 and the plasma core being driven into
a resistive reconnection layer on the other side of the q = 1 surface can be seen. While
the flux surfaces are helically distorted for non-axisymmetric configurations, the direction of
displacement of the core has a n = 1 toroidal variation in all cases.
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(a) ι-vac = 0 (b) ι-vac = 0.013

(c) ι-vac = 0.033 (d) ι-vac = 0.097

Figure 6.8: Repeated relaxation oscillations are seen in the magnetic energies of the Fourier
numbers in the simulations. In the tokamak case, the equilibrium is represented with n = 0.
When the stellarator field is turned on, Fourier numbers n = 0, 5, 10, 15, ... are involved in
representing the equilibrium.
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(a)

Figure 6.9: A correlation between τsaw and ι-vac is seen in the numerical solutions and the
values of τsaw are quite close to what is seen experimentally. Experimental data provided by
Jeffery Herfindal.

stellarator field period Nfp are involved in representing the equilibrium. As ι-vac is increased,

the spacing between the magnetic energies is closer indicating that Fourier convergence is

slower. A correlation between τsaw and ι-vac from these simulations is apparent from Fig. 6.9.

As ι-vac is increased, the sawtooth period becomes shorter which is the trend seen in the CTH

experiment. Both the values of τsaw and the variation of τsaw with ι-vac are in line with what

is seen experimentally, however the values of τsaw from the simulation are systematically

shorter than experimental values by approximately 30%. This may, in part, be due to the

fact that the simulation resistivity is apparently lower than the experimental resistivity as

discussed earlier.

In a resistive MHD model such as the one under consideration, several interacting phe-

nomena are involved in a first principles consideration of τsaw [56, 88]. During the ramp up

phase that precedes the next relaxation, q0 drops as the magnetic fields resistively diffuse

back into the core. The diffusion of the fields is coupled to ohmic reheating in the core.
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As the profile in the core evolves, the sawtooth mode becomes unstable. Given that the

sawtooth mode is related to the visco-resistive kink mode, the growth rate depends on the

evolving magnetic shear at the q = 1 surface and is proportional to S−2/3. The nonlinear

evolution of the tearing mode is to drive magnetic reconnection of the flux inside the core.

Sweet-Parker reconnection proceeds at a rate proportional to S−1/2.

When the n = 1 energies of each solution are plotted together, it is apparent that during

the ramp phase, the n = 1 energy exponentiates faster for configurations with larger ι-vac

(Fig. 6.10). This indicates that faster linear growth rates on ramp phase profiles with larger

ι-vac account for at least part of the variation in τsaw observed in the simulations. Note

that the ramp phase of the numerical sawteeth is considerably longer than the non-linear

relaxation phase so a modest increase γ, so that the mode exponentiates faster and is more

robustly unstable, will have a larger effect on τsaw than some modest change to non-linear

relaxation.

To investigate the effect of helical shaping on the growth rates, approximate linear

growth rates were computed for each configuration using the same method as was used for

the ι-vac = 0.033 case. The equilibrium profiles on which the growth rates were computed

come from the initial rampup, after the growth rate stabilizes near the maximum value

but well before the nonlinear phase is reached. Growth rates for several values of S were

computed to facilitate a comparison of the growth rates between cases and to confirm that the

visco-resistive kink scaling γ ∝ S−2/3 approximately holds for all cases. For this comparison

it is better to use Sq=1 for the Lundquist number values instead of the Lundquist number at

the center of the plasma S0 because Sq=1/S0 is different for each configuration. The result,

illustrated in figure 6.11, is that γ is significantly larger for configurations with larger ι-vac

for a given value of S. This evidence further suggests that increased linear growth rates in

more strongly shaped configurations accounts for much of the correlation between τsaw and

S.
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Figure 6.10: The n = 1 part of the magnetic energies for three configurations over several
relaxations. Configurations with larger ι-vac have a shorter sawtooth period. It is apparent
that the n = 1 energy of configurations with larger ι-vac exponentiates faster, which suggests
that a faster linear growth rate at least partially accounts for the difference in τsaw.
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Figure 6.11: Growth rates vs. Lundquist number Sq=1 for each configuration on equilibria
taken during the initial rampup after the growth rate stabilizes to near the maximum value.
Configurations with a larger ι-vac have larger γ given constant S.
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Besides increased linear growth rates with stronger shaping, experimental plasmas with

stronger shaping may have reduced electron temperature and therefore smaller S due to the

reduced τE as discussed earlier. A smaller S is associated without further increased linear

growth rates, faster reconnection and faster magnetic field diffusion. Data from the soft x-ray

cameras does not suggest a large correlation between Te and ι-vac, however a more accurate

measurement of temperature from the newly installed Thompson scattering diagnostic would

be needed to rule this out.

6.3 Numerical Convergence and Stability

It is convenient that, in the past, sawtooth problems in MHD have been a popular

subject for convergence studies and benchmarking efforts. These past works have provided

guidance in conducting the simulations. Introducing the non-axisymmetric stellarator field

significantly changed the spatial, temporal and algebraic solver convergence properties of

the sawtooth simulations. The poor convergence properties of cases with three-dimensional

shaping was perhaps the principal obstacle to overcome in conducting the simulations and

obtaining accurate numerical solutions. The experience may be valuable for future work on

devices having non-axisymmetric equilibria including stellarators, RFPs in a single helicity

state and perturbed tokamaks.

6.3.1 Spatial Convergence

The primary consideration in obtaining spatially converged numerical solutions of saw-

teeth is proper resolution of the reconnection current layer [89]. The non-axisymmetric con-

figurations require considerably more toroidal resolution for convergence. While the axisym-

metric configuration is well resolved with nmax = 10, the configuration with ι-vac = 0.0970

requires at least nmax = 85.

For this convergence study, the toroidal resolution was scanned by restarting a converged

simulation with a reduced resolution before a relaxation and advancing the solution into the
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(a)

Figure 6.12: The toroidal resolution is scanned for plots of current density along Z = 0, φ =
0◦, which passes through the reconnection current layer for the ι-vac = 0.097 configuration.
Plots for under-resolved cases see poor resolution of the reconnection current layer with
Gibbs-like oscillations.

relaxation. Plotting the current density across a chord which passes through the reconnection

current layer provides a helpful visualization of the situation (Fig. 6.12). A spurious wiggling

in the current density is seen when there are not enough Fourier numbers. This is likely

related to the Gibbs phenomenon, as a Fourier series is involved in representing the nearly

discontinuous magnetic field at the reconnection layer. In Fig. 6.13, deformed flux surfaces

and spurious stochasticity are apparent in toroidally under-resolved cases.

Another consideration is having sufficient spatial resolution for accurate anisotropic heat

conduction [90]. In Fig. 6.14, plots of Te for the ι-vac = 0.0970 case are shown. In under-

resolved cases, the central temperature drops compared to the converged solution as the time

is advanced. This is attributed to poorly resolved anisotropic heat conduction.
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nmax = 21 nmax = 42

nmax = 85

Figure 6.13: Poincaré plots are shown during a relaxation of the ι-vac = 0.097 configuration
for different toroidal resolutions. In the low resolution case nmax = 21, which is more than
twice the resolution needed for convergence of the axisymmetric configuration, artificial
deformation of the flux surfaces and spurious stochasticity is observed. With nmax = 42,
there is spurious stochasticity near the reconnection layer.
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(a)

Figure 6.14: The toroidal resolution is scanned for plots of temperature along Z = 0, φ = 0◦
for the ι-vac = 0.097 configuration. In the low resolution nmax = 21 plot, artificially reduced
confinement is apparent due to poorly resolved anisotropic heat conduction.

6.3.2 Temporal Convergence

Special considerations are also needed for temporal convergence of non-axisymmetric

configurations. Typically, NIMROD simulations use the n = 0 part of the solution fields

in the semi-implicit operator. For the axisymmetric tokamak configuration, this approach

gives numerical stability and good accuracy at large ∆t in the linear phase of evolution.

However for non-axisymmetric configurations a large isotropic operator is required for nu-

merical stability if only the n = 0 part is used. This results in bad convergence properties,

with the tearing mode having an artificially reduced growth rate unless ∆t is very small

compared to the characteristic Alfvén transit time τA ≈ 3× 10−7 s. The artificially reduced

growth rate can affect whether the numerical solution reaches an oscillating steady state or

a non-oscillating helical steady state. With a slower growth rate, the ramp time preceding

each relaxation is longer and q0 reaches a lower value before the relaxation. Relaxations in
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temporally unconverged solutions are therefore more strongly driven than in the converged

solution.

NIMROD has been modified so that the user may choose to use the full 3D solution fields

in the semi-implicit operator. With the 3D semi-implicit operator, accuracy can be recovered

at large ∆t for non-axisymmetric configurations. When the 3D semi-implicit operator is used

and significant non-axisymmetric fields are present, the velocity advance matrix is poorly

conditioned. It was found that setting the isotropic semi-implicit operator coefficient, Cnl,

to a very small value dramatically improves the conditioning of the velocity matrix without

any appreciable loss in accuracy (Fig. 6.15). Improvements in computational efficiency are

seen when using the 3D semi-implicit operator and a small Cnl over using a large isotropic

Laplacian operator for stability and a small ∆t for convergence.
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Figure 6.15: Approximate growth rates are shown for the ι-vac = 0.033 case at some time
during the initial ramp up after the tearing mode has become unstable. The size of the time
step ∆t is scanned for two different semi-implicit operators. When only the n = 0 fields
are used in the semi-implicit operator, a large isotropic operator is required for numerical
stability. This leads to artificially reduced growth rates at large ∆t. When the full 3D
fields are used, with a small isotropic term for better algebraic convergence, the temporal
convergence properties are much better.
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Implementation Details of 3D Semi-Implicit Operator

Here we consider the details and implementation of the semi-implicit operator term

proportional to the coefficient Cmhd in Eq. 2.20. For convenience and clarity the term is

restated here,
(∆t)2Cmhd

µ0ρ0

(
~B0 ×∇×∇× ( ~B0 ×∆~V )

)
. (6.2)

A Fortran implementation of this operator term with full 3D fields is listed in appendix B.

For the simulations under consideration, only this term is required for numerical stability if

the full 3D fields are used in the operator.

The Galerkin method is used by NIMROD to advance the solution fields, so the contri-

bution of this term to the weighted residual ~Ri,n must be computed,

~Ri,n =
˚

~f ∗i,n · ~B0 ×∇×∇×
(
~B0 ×∆~V

)
dV, (6.3)

where ~f ∗i,n are the test functions, i is an index that runs over finite element basis functions and

n indexes Fourier components. It is necessary to integrate by parts to reduce the maximum

order of derivative in the equations. Because the continuity of the finite elements is only

C0, the weak form cannot have derivatives higher than first order. Integration by parts also

allows the use of natural boundary conditions which simplifies implementation [65]. The

integration by parts is accomplished by applying the following identity

~a · (~b× (∇× ~c)) = ∇× ~c · (~a×~b) (6.4)

and divergence theorem corollary,

˚ [
~b · (∇× ~a)− ~a · (∇×~b)

]
dV =

˛
(~a×~b) · n̂ dS. (6.5)
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The result of this integration by parts has only first derivatives, and because a no-slip

boundary condition for the velocity is used, the surface integral is taken to be zero

~Ri,n =
˚ [

∇×(~f ∗i,n× ~B)·∇×(∆~V × ~B)
]
dV −

���
���

���
���

���
���

��:0˛
(~f ∗i,n × ~B)×∇× (∆~V × ~B) · n̂ dS. (6.6)

Define ~ri,n to be the Fourier transformed weighted residual integrand,

~Ri,n =
˚ [

∇× (e−inφ(f̂pi êR + f̂pi êZ + f̂pi êφ)× ~B) · ∇ × (∆~V × ~B)
]
R dRdZdφ

~Ri,n ≡
¨

~ri,nR dRdZ.

(6.7)

Implementation involves, at a minimum, adding code to compute ~ri,n and adding these quan-

tities to the total weighted residuals. The semi-implicit operator term Eq. 6.2 is an implicit

term because it contains the solution fields at the advanced time. Therefore, ~ri,n should be

computed in the appropriate velocity "dot" routine, where the value of ∆~V is updated every

GMRES step. When only the axisymmetric solution fields are used, so that ~B = ~B0, this

is straightforward because of Fourier orthogonality. We go through the steps to implement

the term with only axisymmetric fields as an example before considering implementation of

the 3D operator. First the following two quantities,

(dbe)n = ∇× (∆~Vn × ~B0)

(crl)i,n = ∇× (~f ∗i,n × ~B0),
(6.8)

are computed, where ∆~Vn is the nth Fourier component of ∆~V . The dot product of these

quantities is computed and the values are added to the integrand array. The NIMROD

framework provides tools to easily compute poloidal derivatives of ∆~Vn, ~f ∗i,n and ~B0, but

not the poloidal derivatives of products of these quantities. Therefore, the following vector
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calculus identity is used to compute (dbe)n and (crl)i,n,

∇× (~c× ~B) = ( ~B · ∇)~c− (~c · ∇) ~B − ~B(∇ · ~c), (6.9)

where the equation ∇ · ~B = 0 was invoked.

Implementation with the 3D solution fields is somewhat more challenging. The solution

field ~B and its derivatives are inverse transformed to configuration space before the integrand

routine is called for the first time and is stored in an array. The change in the solution field

over the current time step, ∆~V , and its derivatives are inverse transformed in the integrand

routine because this quantity changes every GMRES step.

The factors ~al, ~blj of the test function and its derivatives are then computed and Fourier

transformed. Consider the contribution from the lth-component of the test function vector,

[
∇× (fpi êle−inφ × ~B) · ∇ × (∆~V × ~B)

]
j

=

=
[
al1f̂

p
i + blj,1

∂f̂pi
∂R

+ blj,2
∂f̂pi
∂Z

+ blj,3(−inf̂pi )
]
e−inφ. (6.10)

We then have the quantities ~ri,n by multiplying the transformed factors by the test function

or appropriate derivative,

~ri,n = f̂pi
∑
l

ˆ
~ale−inφ dφ+ ∇̃fi ·

∑
l,j

ˆ
~blje
−inφ dφ, (6.11)

where

∇̃fi ≡
(
∂f̂pi
∂R

,
∂f̂pi
∂Z

,−inf̂pi
)
. (6.12)

The values of all factors ~al, ~blj are in the fortran implementation. The first step to

finding the values of these factors is to factor the test function from ∇× (~f ∗i,n × ~B), and as

96



an example the result is shown below for only the R component test function,

∇× (f̂pi e−inφêR × ~B)R = ∂(f̂pi e−inφ)
∂φ

Bφ +
(
∂f̂pi
∂Z

BZ − f̂pi (∂BR

∂R
+ BR

R
)
)
e−inφ

∇× (f̂pi e−inφêR × ~B)φ =
(
− f̂pi

∂Bφ

∂R
− ∂f̂pi
∂R

Bφ

)
e−inφ

∇× (f̂pi e−inφêR × ~B)Z =
(
− f̂pi (∂BZ

∂R
+ BZ

R
)− ∂f̂pi

∂R
BZ

)
e−inφ.

(6.13)

The contributions of the Z and φ components of the test function also have seven terms

each.

6.3.3 Algebraic Convergence

Non-axisymmetric configurations can have significantly slower GMRES convergence

compared to axisymmetric configurations. As mentioned earlier, when the 3D semi-implicit

operator is used, the velocity advance matrix becomes more poorly conditioned as stellarator

field strength is increased. A very small isotropic term in the semi-implicit operator dra-

matically improves the conditioning of the velocity matrix without any appreciable loss in

accuracy. It should also be noted that when strongly anisotropic thermal diffusion is used,

the temperature advance matrix is poorly conditioned for non-axisymmetric cases. Configu-

rations with increasing stellarator field strength see increasingly worse matrix conditioning.

This makes non-axisymmetric problems less computationally efficient.
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Chapter 7

Conclusions

In this work, numerical solutions of repeated sawteeth were obtained for a family of

configurations with increasing CTH helical field strength. Although the sawtooth periods

τsaw seen in the numerical solutions are systematically shorter than experimental values

by approximately 30%, the trend in τsaw vs. ι-vac was recovered remarkably well. It was

found that the CTH helical field enhances the linear growth rate of the visco-resistive kink

mode that drives the sawtooth relaxation, and that this is a first principle reason behind the

correlation between τsaw and ι-vac. Another effect of the helical field on the linear mode was to

make n no longer a mode number, as expected. In the axisymmetric case, an n = 1 resistive

internal kink mode drives the relaxation. However in non-axisymmetric cases, the unstable

mode is represented by toroidal Fourier numbers n = 1, Nfp ± 1, 2Nfp ± 1, 3Nfp ± 1, .... The

process of non-linear relaxation does not change from fundamentally from the Kadomtsev

description as ι-vac is increased. The plasma core is radially displaced and reconnected as

an island grows to eventually replace the core. The relaxations in non-axisymmetric cases

differ from relaxations of the axisymmetric case in the helical deformation of the growing

island and reconnecting core. Because the correlation between τsaw and ι-vac is apparently

largely due to enhanced linear growth rates, future work on the effect of the CTH helical

field on sawteeth might involve doing actual linear calcluations to find the eigenmodes and

growth rates on profiles that resemble experimental ramp phase profiles. Values for growth

rate γ were computed in this work by nonlinear calculations, before the mode nonlinearly

saturates, on the profiles before the first sawtooth relaxation. It also may be fruitful to

conduct simulations of repeated sawteeth using more sophisticated model equations and

closures.
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The numerical convergence properties of cases having non-axisymmetric stellarator fields

are different from the axisymmetric case. The standard NIMROD semi-implicit operator,

which uses only the axisymmetric solution fields, has bad temporal convergence proper-

ties for non-axisymmetric cases. Given a large time step size (approaching the size of the

characteristic Alfvén transit time), the resistive internal kink mode will have an artificially

reduced growth rate. The standard NIMROD semi-implicit operator was modified to in-

clude the full solution fields and this allowed for improved temporal convergence properties

of non-axisymmetric cases. Temporally unconverged solutions may appear to be stable or

only weakly unstable due to artificially reduced growth rates. The nonlinear evolution of

an unconverged solution may be qualitatively different from the converged solution. Spatial

convergence was also more challenging for non-axisymmetric cases. Finer spatial resolution,

especially in the toroidal direction is needed to resolve the reconnection current layer dur-

ing nonlinear evolution. Numerical solutions with insufficient toroidal spatial resolution will

have a Gibbs-like oscillation in the current density near the reconnection layer leading to

spurious stochasticity.

Besides the numerical solutions of sawteeth, a novel variation on the Fourier-Bessel

method was introduced. In this variation, the argument of the Bessel function is not the

distance from the axis of the torus r, but the normalized toroidal flux s from a VMEC

equilibrium. This allows known information about the magnetic fields to be used in the

interpretation of the soft x-ray signals. The result is that, compared to the standard Fourier-

Bessel method, the modified method gives much better accuracy for benchmark cases with

realistic data in a average error sense. However, the modified method gives reconstructions

that are overly broadened in the center so that it is not clear which method is better for

studying sawteeth which are localized in the center. From preliminary testing, it appears that

using
√
s instead of s for the radial coordinate may eliminate this tendency for reconstructions

to be overly broadened in the center.
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Appendix A

VMEC

The VMEC model breaks the domain into a plasma region and surrounding vacuum

region (Fig. A.1). Equilibria are constrained to have closed nested flux surfaces, even though

3D equilibria do not necessarily have nested flux surfaces. In practice, this turns out to

be a reasonable approximation for many applications. The solution fields are represented

in flux coordinates, which results in reduced resolution requirements and therefore better

computational efficiency. An issue in loading VMEC fields into NIMROD is that the output

from VMEC only includes fields in the plasma region of the domain. Loading VMEC fields

into NIMROD’s computational domain typically requires computation of magnetic fields in

the vacuum region.

A.1 Non-orthogonal Coordinates

In an orthogonal coordinate system such as rectangular coordinates or cylindrical coor-

dinates, one describes a given vector ~A in terms of its projections onto the basis vectors,

~A = A1~e1 + A2~e2 + A3~e3

A1 = ~A · ~e1, A2 = ~A · ~e2, A3 = ~A · ~e3.

(A.1)

This is convenient, because the basis vectors are orthogonal,

~ei ≡

∂~r

∂xi∣∣∣∣ ∂~r∂xi
∣∣∣∣

~ei · ~ej = δij.

(A.2)
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Pressure

Figure A.1: The VMEC model breaks the domain into a plasma region and a surrounding
vacuum region.
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If we would like to use a coordinate system in which the magnetic field lines are straight,

the basis vectors as defined above will generally not be orthogonal. Such a coordinate system

is a non-orthogonal coordinate system. A problem with such a coordinate system is how to

represent vectors. The system of representing vectors in terms of their projections onto basis

functions as shown above, used for orthogonal coordinate systems, cannot be used because

the components of the vector cannot be recovered by projection onto the basis functions.

The solution is to use two sets of basis functions which are said to be mutually dual,

~ei · ~ej = δij (A.3)

The contravariant basis vectors (having superscripted indices) are defined

~e1 = ∇x1

~e2 = ∇x2

~e3 = ∇x3.

(A.4)

The covariant basis vectors (having subscripted indices) are defined,

~e1 = ∂~r

∂x1 = J∇x2 ×∇x3 = J~e2 × ~e3

~e2 = ∂~r

∂x2 = J∇x3 ×∇x1 = J~e3 × ~e1

~e3 = ∂~r

∂x3 = J∇x1 ×∇x2 = J~e1 × ~e2,

(A.5)

where J is the determinant of the Jacobian matrix,

J = det
(
∂xi

∂x̄j

)
= 1
~e1 · (~e2 × ~e3) . (A.6)

The "barred" coordinates are often taken to be rectangular Cartesian coordinates.

Each vector is represented with two sets of components. A contravariant set of compo-

nents which can be obtained by projection onto the contravariant basis, Ai = ~A · ~ei, and a
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covariant set of components which can be obtained by projection onto the covariant basis

vectors Ai = ~A · ~ei. It can be convenient to know that the covariant and contravariant

components can be computed directly from the rectangular Cartesian vector components

wherever the Jacobian matrix is known by the transformation equations

Ai = ∂xi

∂x̄j
Āj

Ai = ∂x̄j

∂xi
Āj,

(A.7)

where the "hatted" components are the rectangular Cartesian vector components, and sum-

mations are implied over repeated indices (Einstein notation). The basis vectors can also be

computed from the rectangular Cartesian basis vectors using a similar set of transformation

rules involving the Jacobian and inverse Jacobian.

A.1.1 Root Finding for Coordinate Transformations

The transformation from the field aligned coordinates used by VMEC (s, u, v) to cylin-

drical coordinates (R, φ, Z) is given by a Fourier series,

φ = v

R(s, u, v) =
∑
n,m

R
(c)
is,n,mcos(mu− nv) +R

(s)
is,n,msin(mu− nv)

Z(s, u, v) =
∑
n,m

Z
(c)
is,n,mcos(mu− nv) + Z

(s)
is,n,msin(mu− nv),

(A.8)

where is is an integer index that corresponds to a value of the radial coordinate s. The

coefficients R(c)
is,n,m, R

(s)
is,n,m, Z

(c)
is,n,m, Z

(s)
is,n,m can be found in the VMEC output file which has a

".wout" extension. The inverse transformation, going from cylindrical coordinates to VMEC

coordinates, can be accomplished by employing a root-finding algorithm. This inverse trans-

formation is necessary for both loading initial data into NIMROD and for the soft x-ray

tomography program when flux aligned coordinates are used. One might expect the two-

dimensional Newton’s method to work. However, the pathology at s = 0 and the periodic

111



nature of the u coordinate cause a naive implementation of Newton’s method to fail for

some points near the origin. A robust root-finding algorithm for this particular problem

is given in [91] and is implemented in the VMEC utility library LIBSTELL. It should also

noted that, given good initial guesses, some root-finding algorithms included in the SciPy

python package work adequately and this approach is used in the modified Fourier-Bessel

tomography program.

A.2 Computing Vacuum Magnetic Fields

NIMROD simulations of sawteeth in this work have initial data loaded from VMEC wout

files. Typically, the NIMROD domain includes both the VMEC plasma and vacuum regions.

In the plasma region part of the domain, one must do an inverse coordinate transformation

from cylindrical coordinates to VMEC coordinates at every NIMROD configuration-space

grid point. Computing the equilibrium quantities at NIMROD configuration-space grid

points typically involves a spline interpolation of the Fourier coefficients for each quantity

between VMEC radial grid points. However, VMEC does not have a grid point at the mag-

netic axis for the magnetic field. Computing the magnetic field at NIMROD grid points

near the magnetic axis involves an extrapolation. The routines in LIBSTELL were used to

perform all these functions including the inverse transformation, interpolation and extrapo-

lation. It was found that a relatively large VMEC radial resolution, at least 100 points, was

necessary for the loaded magnetic fields to be well behaved near the axis.

In the vacuum region part of the NIMROD domain, the magnetic fields must be com-

puted. There are two established methods for computing the magnetic fields in the vacuum

region: using a Biot-Savart volume integral and virtual casing [92,93]. The volume integral is

easier to implement and the virtual casing offers a more computationally efficient technique

to compute the vacuum fields as it only involves a surface integral over the plasma-vacuum

interface. In this work, both methods were implemented. The Biot-Savart volume integral

implementation uses a simple Riemann integration. For the virtual casing implementation, a
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Figure A.2: Poincaré plots (colored dots) of the initial data in NIMROD compared to surfaces
of constant toroidal flux from the VMEC data (black lines).

simple Riemann integration over the plasma-vacuum interface does not work well for points

near the interface. An efficient, adaptive multidimensional numerical integration routine was

needed, so the CUBA library was used [94]. The results of the virtual casing calculations

could not be distinguished from converged volume integral calculations.
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Figure A.3: Rotational transform computed from initial data in NIMROD (red) compared
to the rotational transform from the VMEC data.
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Appendix B

Fortran Implementation of Semi-Implicit Operator

A Fortran implementation of the semi-implicit operator Eq. 6.2 is listed here. It should

be noted that the more optimized implementation of the 3D semi-implicit operator currently

in NIMROD is due to Carl Sovinec and includes all the terms from Eq. 1.10. The subroutine

compute_3dsi shown here is called from v_aniso_dot.
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBROUTINE compute_3dsi ( s iop , ncx , ncy , nvc , bigr , rb , tb , mps)

USE i o

! Parameters

REAL( r8 ) , DIMENSION ( : , : ) , INTENT( IN ) : : b i g r

COMPLEX( r8 ) , INTENT(OUT) , DIMENSION( 3 , ncx , ncy , nvc , nmodes ) : : s i o p

TYPE( rblock_type ) , INTENT(INOUT) , TARGET : : rb

TYPE( tblock_type ) , INTENT(INOUT) : : tb

INTEGER( i 4 ) , INTENT( IN ) : : mps , ncx , ncy , nvc

! Local v a r i a b l e s and c o n s t a n t s

COMPLEX( r8 ) , DIMENSION( 3 , ncx , ncy , nmodes ) : : ve , ver , vez , vep

REAL( r8 ) , DIMENSION ( : , : , : ) , POINTER : : alpha , dalpdr , dalpdz

INTEGER( i 4 ) : : ix , iy , im , iv , i1 , i 2

COMPLEX( r8 ) , DIMENSION( 7 , ncx , ncy , nmodes ) : : a f a c r , a facz , a facp

REAL( r8 ) , DIMENSION( 7 , mps , nphi ) : : r e a l _ a f a c r , r e a l _ a f a c z , r e a l _ a f a c p

REAL( r8 ) , DIMENSION( 3 , mps , nphi ) : : real_ve , real_ver , real_vez , real_vep

REAL( r8 ) , DIMENSION( 3 ) : : real_dbe

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Set p o i n t e r s

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! alpha , a l p h a r and alphaz are the p o l o i d a l part o f the t e s t f u n c t i o n s

! ( and b a s i s f u n c t i o n s s i n c e the p o l o i d a l dependece i s the same ) and

! t h e i r p o l o i d a l d e r i v a t i v e s .

CALL gener ic_alpha_eval ( rb , tb%tgeom , 1 0 _i4 , ’ rhs ’ , alpha , dalpdr , &

& dalpdz , 1 _i4 , poly_degree )

! ve , ver and vez are Delta V and i t s p o l o i d a l d e r i v a t i v e s .

CALL g e n e r i c _ a l l _ e v a l ( rb%work4 , tb%work4 , rb%dxdr , rb%dydr , &

& rb%dxdz , rb%dydz , rb%xg , rb%yg , tb%tgeom , tb%ng ,&

& ve , ver , vez , 1 _i4 )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! 3D semi−i m p l i c i t o p e r a t o r has form ,

! c u r l ( c o n j ( alpha ) x B ) . c u r l ( v x B )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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! Compute phi−d e r i v a t i v e s ( d i v i d e d by R f o r t o r o i d a l geometry )

IF ( geom==’ t o r ’ ) THEN

DO im=1,nmodes

DO i y =1, ncy

DO i x =1, ncx

IF ( k e f f ( im)==0) THEN

vep ( : , ix , iy , im ) = 0

ELSE

vep ( : , ix , iy , im ) = ve ( : , ix , iy , im ) ∗ ( 0 , 1 )∗ k e f f ( im ) / b i g r ( ix , i y )

ENDIF

ENDDO

ENDDO

ENDDO

ELSE

DO im=1,nmodes

DO i y =1, ncy

DO i x =1, ncx

IF ( k e f f ( im)==0) THEN

vep ( : , ix , iy , im ) = 0

ELSE

vep ( : , ix , iy , im ) = ve ( : , ix , iy , im ) ∗ ( 0 , 1 )∗ k e f f ( im )

ENDIF

ENDDO

ENDDO

ENDDO

ENDIF

! Transform q u a n t i t i e s to r e a l space

CALL fft_nim ( ’ i n v e r s e ’ , ncx∗ncy , mps , nphi , 3 _i4 , ve , real_ve , d e a l i a s e )

CALL fft_nim ( ’ i n v e r s e ’ , ncx∗ncy , mps , nphi , 3 _i4 , ver , real_ver , d e a l i a s e )

CALL fft_nim ( ’ i n v e r s e ’ , ncx∗ncy , mps , nphi , 3 _i4 , vez , real_vez , d e a l i a s e )

CALL fft_nim ( ’ i n v e r s e ’ , ncx∗ncy , mps , nphi , 3 _i4 , vep , real_vep , d e a l i a s e )

! real_dbe = c u r l ( v x B )

! Compute by u s i n g c u r l ( v x B ) = (B. d e l ) v − ( v . d e l )B − B∗div ( v )

! This a l l o w s us to avoid e x p l i c i t l y t a k i n g p o l o i d a l d e r i v a t i v e o f vxB

! Note that b e f o r e v_ansio_dot i s c a l l e d f o r the f i r s t time ,

! the magnetic f i e l d and i t s d e r i v a t i v e s from the p r e v i o u s time s t e p

! a re transformed to c o n f i g u r a t i o n space and s t o r e d i n the a r r a y s

! real_be , real_ber , real_bez , real_bep .

DO i 2 =1, nphi

DO i 1 =1,mps

! −−−−− (B. d e l ) v −−−−− ( without symmetric term that c a n c e l s )

real_dbe ( 1 ) = rb%real_be ( 1 , i1 , i 2 )∗ r e a l _ v e r ( 1 , i1 , i 2 ) + &

& rb%real_be ( 2 , i1 , i 2 )∗ rea l_vez ( 1 , i1 , i 2 ) + rb%real_be ( 3 , i1 , i 2 )∗ real_vep ( 1 , i1 , i 2 )

real_dbe ( 2 ) = rb%real_be ( 1 , i1 , i 2 )∗ r e a l _ v e r ( 2 , i1 , i 2 ) + &

& rb%real_be ( 2 , i1 , i 2 )∗ rea l_vez ( 2 , i1 , i 2 ) + rb%real_be ( 3 , i1 , i 2 )∗ real_vep ( 2 , i1 , i 2 )

real_dbe ( 3 ) = rb%real_be ( 1 , i1 , i 2 )∗ r e a l _ v e r ( 3 , i1 , i 2 ) + &

& rb%real_be ( 2 , i1 , i 2 )∗ rea l_vez ( 3 , i1 , i 2 ) + rb%real_be ( 3 , i1 , i 2 )∗ real_vep ( 3 , i1 , i 2 )

! IF ( geom==’tor ’ ) THEN

real_dbe (3)= real_dbe (3)+ rb%real_be_over_r ( 3 , i1 , i 2 )∗ real_ve ( 1 , i1 , i 2 )

! ENDIF

! −−−−− −(v . d e l )B −−−−−

real_dbe ( 1 ) = real_dbe ( 1 ) − real_ve ( 1 , i1 , i 2 )∗ rb%r e a l _ b e r ( 1 , i1 , i 2 )− &
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& real_ve ( 2 , i1 , i 2 )∗ rb%real_bez ( 1 , i1 , i 2 ) − real_ve ( 3 , i1 , i 2 )∗ rb%real_bep ( 1 , i1 , i 2 )

real_dbe ( 2 ) = real_dbe ( 2 ) − real_ve ( 1 , i1 , i 2 )∗ rb%r e a l _ b e r ( 2 , i1 , i 2 )− &

& real_ve ( 2 , i1 , i 2 )∗ rb%real_bez ( 2 , i1 , i 2 ) − real_ve ( 3 , i1 , i 2 )∗ rb%real_bep ( 2 , i1 , i 2 )

real_dbe ( 3 ) = real_dbe ( 3 ) − real_ve ( 1 , i1 , i 2 )∗ rb%r e a l _ b e r ( 3 , i1 , i 2 )− &

& real_ve ( 2 , i1 , i 2 )∗ rb%real_bez ( 3 , i1 , i 2 ) − real_ve ( 3 , i1 , i 2 )∗ rb%real_bep ( 3 , i1 , i 2 )

! IF ( geom==’tor ’ ) THEN

real_dbe (3)= real_dbe (3)− rb%real_be_over_r ( 1 , i1 , i 2 )∗ real_ve ( 3 , i1 , i 2 )

! ENDIF

! −−−−− −B∗div ( v ) −−−−−

real_dbe ( 1 ) = real_dbe ( 1 ) − rb%real_be ( 1 , i1 , i 2 )∗ ( r e a l _ v e r ( 1 , i1 , i 2 ) + &

& real_vez ( 2 , i1 , i 2 ) + real_vep ( 3 , i1 , i 2 ) )

real_dbe ( 2 ) = real_dbe ( 2 ) − rb%real_be ( 2 , i1 , i 2 )∗ ( r e a l _ v e r ( 1 , i1 , i 2 ) + &

& real_vez ( 2 , i1 , i 2 ) + real_vep ( 3 , i1 , i 2 ) )

real_dbe ( 3 ) = real_dbe ( 3 ) − rb%real_be ( 3 , i1 , i 2 )∗ ( r e a l _ v e r ( 1 , i1 , i 2 ) + &

& real_vez ( 2 , i1 , i 2 ) + real_vep ( 3 , i1 , i 2 ) )

! IF ( geom==’tor ’ ) THEN

real_dbe ( 1 ) = real_dbe ( 1 ) − rb%real_be_over_r ( 1 , i1 , i 2 )∗ real_ve ( 1 , i1 , i 2 )

real_dbe ( 2 ) = real_dbe ( 2 ) − rb%real_be_over_r ( 2 , i1 , i 2 )∗ real_ve ( 1 , i1 , i 2 )

real_dbe ( 3 ) = real_dbe ( 3 ) − rb%real_be_over_r ( 3 , i1 , i 2 )∗ real_ve ( 1 , i1 , i 2 )

! ENDIF

! Compute f a c t o r s o f the t e s t f u n c t i o n alpha and i t s d e r i v a t i v e s

! f o r the e q u a t i o n c u r l ( alpha x B )

! r e a l _ a f a c r − alpha_R e q u a t i o n

! r e a l _ a f a c z − alpha_Z e q u a t i o n

! r e a l _ a f a c p − alpha_phi e q u a t i o n

! R−component

r e a l _ a f a c r ( 1 , i1 , i 2 ) = 0 − rb%r e a l _ b e r ( 1 , i1 , i 2 ) ! alpha

r e a l _ a f a c r ( 2 , i1 , i 2 ) = rb%real_be ( 2 , i1 , i 2 ) ! dalpdz

r e a l _ a f a c r ( 3 , i1 , i 2 ) = rb%real_be ( 3 , i1 , i 2 ) ! dalpdp

IF ( geom==’ t o r ’ ) THEN

r e a l _ a f a c r ( 1 , i1 , i 2 ) = r e a l _ a f a c r ( 1 , i1 , i 2 ) − rb%real_be_over_r ( 1 , i1 , i 2 )

ENDIF

! Z−component

r e a l _ a f a c r ( 4 , i1 , i 2 ) = 0 − rb%r e a l _ b e r ( 2 , i1 , i 2 ) ! alpha

r e a l _ a f a c r ( 5 , i1 , i 2 ) = 0 − rb%real_be ( 2 , i1 , i 2 ) ! dalpdr

IF ( geom==’ t o r ’ ) THEN

r e a l _ a f a c r ( 4 , i1 , i 2 ) = r e a l _ a f a c r ( 4 , i1 , i 2 ) − rb%real_be_over_r ( 2 , i1 , i 2 )

ENDIF

! phi−component

r e a l _ a f a c r ( 6 , i1 , i 2 ) = 0 − rb%r e a l _ b e r ( 3 , i1 , i 2 ) ! alpha

r e a l _ a f a c r ( 7 , i1 , i 2 ) = 0 − rb%real_be ( 3 , i1 , i 2 ) ! dalpdr

! R−component

r e a l _ a f a c z ( 1 , i1 , i 2 ) = 0 − rb%real_bez ( 1 , i1 , i 2 ) ! alpha

r e a l _ a f a c z ( 2 , i1 , i 2 ) = 0 − rb%real_be ( 1 , i1 , i 2 ) ! dalpdz

! Z−component

r e a l _ a f a c z ( 3 , i1 , i 2 ) = 0 − rb%real_bez ( 2 , i1 , i 2 ) ! alpha

r e a l _ a f a c z ( 4 , i1 , i 2 ) = rb%real_be ( 1 , i1 , i 2 ) ! dalpdr

r e a l _ a f a c z ( 5 , i1 , i 2 ) = rb%real_be ( 3 , i1 , i 2 ) ! dalpdp

! phi−component

r e a l _ a f a c z ( 6 , i1 , i 2 ) = 0 − rb%real_bez ( 3 , i1 , i 2 ) ! alpha

r e a l _ a f a c z ( 7 , i1 , i 2 ) = 0 − rb%real_be ( 3 , i1 , i 2 ) ! dalpdz
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! R−component

r e a l _ a f a c p ( 1 , i1 , i 2 ) = 0 − rb%real_bep ( 1 , i1 , i 2 ) ! alpha

r e a l _ a f a c p ( 2 , i1 , i 2 ) = 0 − rb%real_be ( 1 , i1 , i 2 ) ! dalpdp

! Z−component

r e a l _ a f a c p ( 3 , i1 , i 2 ) = 0 − rb%real_bep ( 2 , i1 , i 2 ) ! alpha

r e a l _ a f a c p ( 4 , i1 , i 2 ) = 0 − rb%real_be ( 2 , i1 , i 2 ) ! dalpdp

! phi−component

r e a l _ a f a c p ( 5 , i1 , i 2 ) = 0 − rb%real_bep ( 3 , i1 , i 2 ) ! alpha

r e a l _ a f a c p ( 6 , i1 , i 2 ) = rb%real_be ( 1 , i1 , i 2 ) ! dalpdr

r e a l _ a f a c p ( 7 , i1 , i 2 ) = rb%real_be ( 2 , i1 , i 2 ) ! dalpdz

IF ( geom==’ t o r ’ ) THEN

r e a l _ a f a c p ( 5 , i1 , i 2 ) = r e a l _ a f a c p ( 5 , i1 , i 2 )−rb%real_be_over_r ( 1 , i1 , i 2 )

ENDIF

! I nn e r product o f c u r l ( I x B ) with dbe

r e a l _ a f a c r ( 1 , i1 , i 2 )= r e a l _ a f a c r ( 1 , i1 , i 2 )∗ real_dbe ( 1 )

r e a l _ a f a c r ( 2 , i1 , i 2 )= r e a l _ a f a c r ( 2 , i1 , i 2 )∗ real_dbe ( 1 )

r e a l _ a f a c r ( 3 , i1 , i 2 )= r e a l _ a f a c r ( 3 , i1 , i 2 )∗ real_dbe ( 1 )

r e a l _ a f a c r ( 4 , i1 , i 2 )= r e a l _ a f a c r ( 4 , i1 , i 2 )∗ real_dbe ( 2 )

r e a l _ a f a c r ( 5 , i1 , i 2 )= r e a l _ a f a c r ( 5 , i1 , i 2 )∗ real_dbe ( 2 )

r e a l _ a f a c r ( 6 , i1 , i 2 )= r e a l _ a f a c r ( 6 , i1 , i 2 )∗ real_dbe ( 3 )

r e a l _ a f a c r ( 7 , i1 , i 2 )= r e a l _ a f a c r ( 7 , i1 , i 2 )∗ real_dbe ( 3 )

r e a l _ a f a c z ( 1 , i1 , i 2 )= r e a l _ a f a c z ( 1 , i1 , i 2 )∗ real_dbe ( 1 )

r e a l _ a f a c z ( 2 , i1 , i 2 )= r e a l _ a f a c z ( 2 , i1 , i 2 )∗ real_dbe ( 1 )

r e a l _ a f a c z ( 3 , i1 , i 2 )= r e a l _ a f a c z ( 3 , i1 , i 2 )∗ real_dbe ( 2 )

r e a l _ a f a c z ( 4 , i1 , i 2 )= r e a l _ a f a c z ( 4 , i1 , i 2 )∗ real_dbe ( 2 )

r e a l _ a f a c z ( 5 , i1 , i 2 )= r e a l _ a f a c z ( 5 , i1 , i 2 )∗ real_dbe ( 2 )

r e a l _ a f a c z ( 6 , i1 , i 2 )= r e a l _ a f a c z ( 6 , i1 , i 2 )∗ real_dbe ( 3 )

r e a l _ a f a c z ( 7 , i1 , i 2 )= r e a l _ a f a c z ( 7 , i1 , i 2 )∗ real_dbe ( 3 )

r e a l _ a f a c p ( 1 , i1 , i 2 )= r e a l _ a f a c p ( 1 , i1 , i 2 )∗ real_dbe ( 1 )

r e a l _ a f a c p ( 2 , i1 , i 2 )= r e a l _ a f a c p ( 2 , i1 , i 2 )∗ real_dbe ( 1 )

r e a l _ a f a c p ( 3 , i1 , i 2 )= r e a l _ a f a c p ( 3 , i1 , i 2 )∗ real_dbe ( 2 )

r e a l _ a f a c p ( 4 , i1 , i 2 )= r e a l _ a f a c p ( 4 , i1 , i 2 )∗ real_dbe ( 2 )

r e a l _ a f a c p ( 5 , i1 , i 2 )= r e a l _ a f a c p ( 5 , i1 , i 2 )∗ real_dbe ( 3 )

r e a l _ a f a c p ( 6 , i1 , i 2 )= r e a l _ a f a c p ( 6 , i1 , i 2 )∗ real_dbe ( 3 )

r e a l _ a f a c p ( 7 , i1 , i 2 )= r e a l _ a f a c p ( 7 , i1 , i 2 )∗ real_dbe ( 3 )

ENDDO

ENDDO

! Transform to F o u r i e r space

CALL fft_nim ( ’ forward ’ , ncx∗ncy , mps , nphi , 7 _i4 , a f a c r , r e a l _ a f a c r , d e a l i a s e )

CALL fft_nim ( ’ forward ’ , ncx∗ncy , mps , nphi , 7 _i4 , afacz , r e a l _ a f a c z , d e a l i a s e )

CALL fft_nim ( ’ forward ’ , ncx∗ncy , mps , nphi , 7 _i4 , afacp , real_afacp , d e a l i a s e )

! Mult ip ly by ( conjugated ) t e s t f u n c t i o n / t e s t f u n c t i o n d e r i v a t i v e

! f a c t o r s i n F o u r i e r space to compute the c o n t r i b u t i o n to the weighted

! r e s i d u a l i n t e g r a n d . F o u r i e r o r t h g o n a l i t y e x p l i c i t l y invoked here .

! The array s i o p must be added to the array i n t i n v_aniso_dot .

DO im=1,nmodes

DO i v =1, nvc

s i o p ( 1 , : , : , iv , im)=alpha ( : , : , i v )∗ ( a f a c r ( 1 , : , : , im)+ a f a c r ( 4 , : , : , im)+ a f a c r ( 6 , : , : , im ) )

s i o p ( 1 , : , : , iv , im)= s i o p ( 1 , : , : , iv , im)+ dalpdr ( : , : , i v )∗ ( a f a c r ( 5 , : , : , im)+ a f a c r ( 7 , : , : , im ) )

s i o p ( 1 , : , : , iv , im)= s i o p ( 1 , : , : , iv , im)+dalpdz ( : , : , i v )∗ a f a c r ( 2 , : , : , im )
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IF ( geom==’ t o r ’ .AND. k e f f ( im)/=0) THEN

s i o p ( 1 , : , : , iv , im)= s i o p ( 1 , : , : , iv , im )−(0 ,1)∗ alpha ( : , : , i v )∗ k e f f ( im )∗ &

& a f a c r ( 3 , : , : , im )/ b i g r ( : , : )

ELSE IF ( k e f f ( im)/=0) THEN

s i o p ( 1 , : , : , iv , im)= s i o p ( 1 , : , : , iv , im )−(0 ,1)∗ alpha ( : , : , i v )∗ k e f f ( im )∗ &

& a f a c r ( 3 , : , : , im )

ENDIF

s i o p ( 2 , : , : , iv , im)=alpha ( : , : , i v )∗ ( a f a c z ( 1 , : , : , im)+ a f a c z ( 3 , : , : , im)+ a f a c z ( 6 , : , : , im ) )

s i o p ( 2 , : , : , iv , im)= s i o p ( 2 , : , : , iv , im)+ dalpdr ( : , : , i v )∗ a f a c z ( 4 , : , : , im )

s i o p ( 2 , : , : , iv , im)= s i o p ( 2 , : , : , iv , im)+dalpdz ( : , : , i v )∗ ( a f a c z ( 2 , : , : , im)+ a f a c z ( 7 , : , : , im ) )

IF ( geom==’ t o r ’ .AND. k e f f ( im)/=0) THEN

s i o p ( 2 , : , : , iv , im)= s i o p ( 2 , : , : , iv , im )−(0 ,1)∗ alpha ( : , : , i v )∗ k e f f ( im )∗ &

& a f a c z ( 5 , : , : , im )/ b i g r ( : , : )

ELSE IF ( k e f f ( im)/=0) THEN

s i o p ( 2 , : , : , iv , im)= s i o p ( 2 , : , : , iv , im )−(0 ,1)∗ alpha ( : , : , i v )∗ k e f f ( im )∗ &

& a f a c z ( 5 , : , : , im )

ENDIF

s i o p ( 3 , : , : , iv , im)=alpha ( : , : , i v )∗ ( a facp ( 1 , : , : , im)+ afacp ( 3 , : , : , im)+ afacp ( 5 , : , : , im ) )

s i o p ( 3 , : , : , iv , im)= s i o p ( 3 , : , : , iv , im)+ dalpdr ( : , : , i v )∗ afacp ( 6 , : , : , im )

s i o p ( 3 , : , : , iv , im)= s i o p ( 3 , : , : , iv , im)+dalpdz ( : , : , i v )∗ afacp ( 7 , : , : , im )

IF ( geom==’ t o r ’ .AND. k e f f ( im)/=0) THEN

s i o p ( 3 , : , : , iv , im)= s i o p ( 3 , : , : , iv , im )−(0 ,1)∗ alpha ( : , : , i v )∗ k e f f ( im )∗ &

& ( afacp ( 2 , : , : , im)+ afacp ( 4 , : , : , im ) ) / b i g r ( : , : )

ELSE IF ( k e f f ( im)/=0) THEN

s i o p ( 3 , : , : , iv , im)= s i o p ( 3 , : , : , iv , im )−(0 ,1)∗ alpha ( : , : , i v )∗ k e f f ( im )∗ &

& ( afacp ( 2 , : , : , im)+ afacp ( 4 , : , : , im ) )

ENDIF

ENDDO

ENDDO

END SUBROUTINE compute_3dsi
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Appendix C

Shocktube Problems

One-dimensional shocktube problems are popular as benchmark cases for validating

numerical CFD and MHD codes. The initial conditions in a shocktube problem have a single

discontinuity in some of the solution fields at the middle of the domain. Shocktube problems

are sometimes said to be Riemann problems. There are a class of numerical solvers called

Riemann solvers, which essentially treat the solution as a series of piecewise discontinuities

and use the exact or an approximate solution to the Riemann problems to advance the

solution fields for each time step. Riemann solvers can work quite well for solutions having

shocks and rarefactions. Examples of Riemann solvers are the Godunov scheme which uses

the exact solution to the Riemann problem, and the Roe scheme which uses an approximate

solution to the Riemann problem [95]. Here, NIMROD is used to solve the Sod shocktube

and Brio-Wu MHD shocktube problems. This is believed to be the first time NIMROD was

used to solve these problems.

C.1 Sod Shocktube

The Sod shocktube is a classic problem for validating CFD codes [96]. The initial

conditions (Fig. C.1) are characterized by discontinuous pressure and density. It is customary

to use normalized units where the Boltzmann constant and the ion mass are unity kB = mi =

1. The ratio of specific heats used is Γ = 1.4 which approximates air, since air is composed

of mostly diatomic molecules. Although NIMROD was never intended for either non-MHD

CFD problems or for problems involving shocks and rarefactions, a numerical solution very

close to the exact solution is recovered. The exact solution is computed iteratively using a

program from the NASA website [97].
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Pressure Density Vx

Figure C.1: Initial conditions for the Sod shocktube.

Pressure Density Vx

Figure C.2: Exact solution (black) compared to the NIMROD solution (red) of the Sod
shocktube.
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Parameter Name Value
nd_dart_upw 0.01
t_dart_upw 0.01
iso_visc 0.1
elecd 105

be0 10−15

Table C.1: Values of key parameters in the NIMROD input file for the Sod shocktube. The
parameters be0 and elecd were set to turn off the electric field and make the fluid a poor
electrical conductor because this is not an MHD problem. The parameters nd_dart_upw
and t_dart_upw control the upwind smoothing.

C.2 Brio-Wu MHD Shocktube

The Brio-Wu shocktube problem is an ideal MHD generalization of the Sod shocktube

problem [98]. Normalized units are used in which the permeability of free space, the Boltz-

mann constant and the ion mass are unity, µ0 = kB = mi = 1. The ratio of specific heats

Γ = 2 is used which is different from the Sod shocktube. Additionally the initial conditions,

shown in Figure C.3, include discontinuous magnetic fields. The simulations of the Brio-Wu

shocktube conducted with NIMROD are two-dimensional, so only the n = 0 Fourier number

is used, in a rectangular geometry.

Unlike the Sod shocktube problem, the exact solution to the Brio-Wu shocktube problem

cannot be computed. Images of the solution from Brio and Wu’s original paper, which

is generally accepted as a good approximate solution, are situated next to images of the

NIMROD solution as a means of comparison in figures C.4 and C.5. The NIMROD solution

is surprisingly good, considering NIMROD was never intended to handle problems with

shocks and rarefactions. The key to getting good solutions of the shocktube problem is

using NIMROD’s upwind smoothing. In figure C.6, the NIMROD solution of the Brio-Wu

shocktube is shown when upwind smoothing is not used.
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Pressure Density Bx

By Vx Vy

Figure C.3: Initial conditions for the Brio-Wu shocktube.

Parameter Name Value
nd_dart_upw 10
t_dart_upw 10
iso_visc 0.1
elecd 0

poly_degree 3
∆x 1

CFLflow 0.9
lphi 1

Table C.2: Values of key parameters in the NIMROD input file for the Brio-Wu shocktube.
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Pressure, NIMROD Density, NIMROD

Pressure, Benchmark Density, Benchmark

Figure C.4: Brio-Wu shocktube solution from NIMROD (top) compared to the solution from
Brio and Wu’s original paper (bottom).
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By, NIMROD Vx, NIMROD Vy, NIMROD

By, Benchmark Vx, Benchmark Vy, Benchmark

Figure C.5: Brio-Wu shocktube solution from NIMROD (top) compared to the solution from
Brio and Wu’s original paper (bottom).
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Pressure Density

By Vx Vy

Figure C.6: Brio-Wu shocktube solution from NIMROD when upwind smoothing is not used.
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