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Abstract

All graphs in this paper are both finite and simple. α(G) is the vertex independence of

a graph, G. The Hall ratio of G is defined as ρ(G) = max[n(H)
α(H)

| n(H) = |V (H)| and H ⊆ G]

where H ⊆ G means that H is a subgraph of G. The chromatic number of G, denoted χ(G),

is the smallest number of colors needed to label the vertices of G such that no two adjacent

vertices receive the same color.

A b-fold coloring of G is an assignment to each vertex of G a set of b colors so that

adjacent vertices receive disjoint sets of colors. We then say that G is a:b-colorable if it has

a b-fold coloring in which the b colors come from a palette of a colors. The least a for which

G has a b-fold coloring from {1, ..., a} is the b-fold chromatic number of G and is denoted

χb(G). We can now define the fractional chromatic number of G to be χf (G) = infb
χb

b
. It is

known that χ(G) ≥ χf (G) ≥ ρ(G) for all G.

It is known that, on the class of Kneser graphs, the ratio of the chromatic number

to the Hall ratio is unbounded. However, if K is a Kneser graph, then it happens that

χf (K) = ρ(K). This begs the question, ”Is
χf

ρ
bounded on the domain of all finite simple

graphs?” In Chapter 2, we define a function that should help to identify the Hall ratio of a

given graph and we discuss general properties of said function. In Chapter 3, we give results

toward answering the question above by considering the lexicographic and disjunctive powers

of the graph, W5. In Chapter 4, we give results toward answering the question above by

considering the Mycielski graphs.
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Chapter 1

Introduction

1.1 Preliminary Definitions

All graphs in this dissertation are finite and simple. Unless otherwise specified, G and

H stand for graphs.

Definition 1.1.1. The vertex independence number of G, denoted α(G), is the size of a

maximum independent set of vertices in G.

Definition 1.1.2. A clique in a graph G is a complete subgraph of G.

Definition 1.1.3. The clique number of G, ω(G), is the maximum number of vertices in a

clique of G.

Definition 1.1.4. The matching number of G, denoted α′(G), is the size of a maximum

independent set of edges in G.

Definition 1.1.5. β(G) denotes the vertex cover number of G and is the size of a minimum

set of vertices of G such that each edge in G is incident to at least one vertex in the set.

Definition 1.1.6. Assuming G has no isolated vertices, β′(G) is the edge cover number of

G and is the size of a minimum set of edges of G such that each vertex of G is incident with

at least one edge in the set.

Definition 1.1.7. n(G) = |V (G)|.

Definition 1.1.8. ρ(G) = max[n(H)
α(H)

| H is an induced subgraph of G] is the Hall ratio of

G. Deletion of the word ”induced” gives an equivalent definition of ρ(G).
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Definition 1.1.9. The chromatic number of G, denoted χ(G), is the smallest number of

colors needed to label the vertices of G such that adjacent vertices receive distinct colors.

Alternatively, χ(G) is the smallest number of independent sets of vertices into which it is

possible to partition V (G).

Definition 1.1.10. A b-fold coloring of G is an assignment to each vertex of G a set of b

colors so that adjacent vertices receive disjoint sets of colors.

Definition 1.1.11. G is a:b-colorable if it has a b-fold coloring in which the b colors come

from a palette of a colors. Such a coloring is an a:b coloring of G.

Definition 1.1.12. The least a for which G has an a:b coloring is the b-fold chromatic

number of G and is denoted χb(G).

Definition 1.1.13. The fractional chromatic number of G is χf (G) = inf
b

χb(G)

b
.

Definition 1.1.14. The lexicographic product of G and H, denoted here as GLexH, is a

graph such that V (GLexH) = V (G)×V (H) and (x1, y1), (x2, y2) ∈ V (GLexH) are adjacent

if and only if either x1 is adjacent to x2 in G or x1 = x2 and y1 is adjacent to y2 in H.

Definition 1.1.15. The disjunctive product of G and H, denoted GDisjH, is a graph such

that V (GDisjH) = V (G) × V (H) and (x1, y1), (x2, y2) ∈ V (GDisjH) are adjacent if and

only if either x1 is adjacent to x2 in G or y1 is adjacent to y2 in H.

1.2 History

Several years ago, Dr. Peter Johnson proffered the following conjecture: ”the ratio of

the chromatic number of a graph to its Hall ratio is bounded on the domain of finite simple

graphs.” However, this conjecture was shown to be false; this ratio is unbounded on the class

of Kneser graphs [4]. It is interesting to note, though, that if K is a Kneser graph, then the

fractional chromatic number of K is equal to the Hall ratio of K. With this fact in mind,

Johnson went on to pose the question, ”Is
χf

ρ
bounded?” This question has remained open
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for more than a decade. The following results relate the Hall ratio and chromatic numbers

of a graph.

Proposition 1.2.1. [3] ρ(G) ≤ χf (G) ≤ χ(G).

Theorem 1.2.2. (Johnson 2009) χf − ρ is unbounded.

Although the previous theorem tells us the difference between χf and ρ can be arbitrarily

large, an interesting fact is that, prior to this research, the largest known value of
χf

ρ
known

to us was 6
5
. This record was achieved by a graph of A. Daneshgar’s appearing in [1]. One

of the results of this paper will be to provide a graph in Chapter 3 for which this ratio is

equal to 343
282

> 6
5
.
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Chapter 2

Two New Functions

In this chapter we define two new functions whose jobs are to help determine the Hall

ratio of a given graph. We then give some properties of these functions as well as provide

examples of these functions in action.

2.1 The w-Function

H ⊆ G means that H is a subgraph of G.

Definition 2.1.1. w(a,G) = max[n(H) | H ⊆ G and α(H) = a], 1 ≤ a ≤ α(G).

We can now express the Hall ratio of G as ρ(G) = max{w(a,G)
a
} where the maximum is

taken over all a ∈ {1, 2, ..., α(G)}. We almost immediately get the following results concern-

ing this new function:

Proposition 2.1.2. w(1, G) = ω(G) where ω(G) denotes the clique number of G.

Proof. This fact follows from the simple observation that a graph has a vertex inde-

pendence number of 1 if and only if the graph is complete. The size of a largest complete

subgraph is, by definition, the clique number of a graph.

Proposition 2.1.3. w(α(G), G) = n(G).

Proof. This result follows from the fact that no subgraph of G can have more vertices

than G.
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Proposition 2.1.4. For a < α(G), w(a,G) < w(a+ 1, G).

Proof. To prove this, let H ⊆ G be such that α(H) = a and n(H) = w(a,G). Let

v ∈ V (G)\V (H) and now consider H ∪ v. It follows from the definition that α(H) + 1 ≥

α(H ∪ v) > α(H) = a since H contains the maximum number of vertices of any subgraph of

G with independence number a. Thus, w(a+ 1, G) ≥ n(H ∪ v) = n(H) + 1 = w(a,G) + 1.

Corollary 2.1.5. For all a ∈ {1, ..., α(G)}, w(a,G) = n(H) for some induced subgraph H

of G such that α(H) = a.

Proof. The claim holds for a ∈ {1, α(G)} by Propositions 2.1.2 and 2.1.3, so suppose

1 < a < α(G). Suppose that H ′ is a subgraph of G such that α(H ′) = a and n(H ′) = w(a,G).

Let H be the subgraph of G induced by V (H ′). Then n(H) = n(H ′) and α(H) ≤ α(H ′) = a.

If α(H) < a, then n(H) = n(H ′) = w(a,G) ≤ w(α(H), G) < w(a,G), by Proposition 2.1.4.

This contradiction implies that α(H) = a. �

Theorem 2.1.6. If G is a bipartite graph with no isolated vertices, then w(a,G) = 2a for

1 ≤ a ≤ α′(G) and w(a,G) = a+ α′(G) for α′(G) < a ≤ α(G).

Proof. The proof of this theorem relies on the following well known results [5] which are

true for bipartite graphs containing no isolated vertices:

(i) α(G) + β(G) = n(G)

(ii) α′(G) + β′(G) = n(G) (Gallai)

(iii) α′(G) = β(G) =⇒ α(G) = β′(G) (König)

(iv) α(G) ≥ α′(G)

Suppose 1 ≤ a ≤ α(G) and letH be an induced subgraph ofG such that n(H) = w(a,G)

and α(H) = a. This implies that H has no isolated vertices. To see this, assume that v is an

isolated vertex in H. Then we can find u ∈ V (G)\V (H) to which v is adjacent in G since, by
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supposition, G has no isolated vertices. Then, letting H ′ be the graph induced by V (H)∪{u},

α(H ′) = a and n(H ′) = n(H) + 1 thus contradicting α(H) = a and n(H) = w(a,G).

So, using (i)-(iv) with H replacing G, we have

w(a,G) = n(H) = α(H) + β(H) = a + α′(H) ≤ a + α(H) = 2a. If a ≤ α′(G), then we

can find an H with α′(H) = α(H) = a and n(H) = 2a. To do this, consider a matching

in G with a edges as well as the subgraph H of G induced by those 2a vertices. Then

a ≤ α′(H) ≤ n(H)
2

= a and α(H) ≥ α′(H) = a, while any subset of V (H) with more

than a elements must contain two vertices on the same edge from the original matching. So

α(H) = a. Thus w(a,G) = 2a if a ≤ α′(G).

If a > α′(G), then, as above, w(a,G) = a + α′(H) ≤ a + α′(G), for some H. We can

find an H with α(H) = a and α′(H) = α′(G), which will show that w(a,G) = a + α′(G)

in this case, by taking a maximum matching M of G. Let H̃ be the graph induced by the

vertices of our matching, M . By the argument above, α(H̃) = α′(H̃) = α′(G) < a ≤ α(G).

Now, add vertices to H̃ to obtain a subgraph H of G with α(H) = a and α′(H̃) = α′(G) ≤

α′(H) ≤ α′(G) =⇒ α′(H) = α′(G). �

Theorem 2.1.7. Let G = Kp1,p2,...,,pk , 1 ≤ p1 ≤ p2 ≤ ... ≤ pk, be a complete multipartite

graph with k parts. Then

(i) if 1 ≤ a ≤ p1, then w(a,G) = ka.

(ii) if pi ≤ a < pi+1 for some i ∈ {1, 2, ..., k − 1}, then w(a,G) =
i∑

j=1

pj + (k − i)a.

(iii) if a = pk, then w(a,G) = n(G).

Proof. Every induced subgraph H of G is a complete multipartite graph Kq1,q2,...,qr , 1 ≤

r ≤ k with α(H) = a = max[qi : 1 ≤ i ≤ r]. To maximize n(H) with α(H) = a, we

can take r = k. If 1 ≤ a ≤ p1 then let H = Ka,a,...,a =⇒ (i). If pi ≤ a ≤ pi+1 for some

i ∈ {1, 2, ..., k − 1}, let H = Kp1,p2,...pi,a,a,...,a =⇒ (ii). If a = pk = α(G), then let H = G =⇒

(iii). �
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Definition 2.1.8. The join of graphs G and H, denoted G ∨ H, is a graph obtained from

disjoint copies of G and H by joining each vertex of G to each vertex of H.

Theorem 2.1.9. Suppose that α(G) ≤ α(H). Then for 1 ≤ a ≤ α(G ∨H) = α(H),

w(a,G ∨H) =

 w(a,G) + w(a,H), 1 ≤ a ≤ α(G)

n(G) + w(a,H), α(G) ≤ a ≤ α(H)

Proof. The proof of Theorem 2.1.9 follows from some simple observations. We know

that we can find an X1 ⊆ G and X2 ⊆ H such that n(X1) = w(a,G), α(X1) = a,

n(X2) = w(a,H), and α(X2) = a for 1 ≤ a ≤ α(G) ≤ α(H). It is elementary that

α(X1 ∨ X2) = max[α(X1), α(X2)] = a. Since X1 ∨ X2 ⊆ G ∨ H, we have n(X1 ∨ X2) =

n(X1) + n(X2) = w(a,G) + w(a,H) ≤ w(a,G ∨H).

On the other hand, suppose that X is an induced subgraph of G∨H, α(X) = a ≤ α(G),

and n(X) = w(a,G∨H). Let X1 = X∩G and X2 = X∩H. Since X is induced, X = X1∪X2.

Since a = α(X) = max[α(X1, X2], by Proposition 2.1.3, we have n(X) = w(a,G ∨ H) =

n(X1) + n(X2) ≤ w(a,G) + w(a,H). Thus we have w(a,G ∨H) = w(a,G) + w(a,H).

Now assume that α(G) ≤ a ≤ α(H). Then let X1 = G and we have n(X1 ∨ X2) =

n(X1) +n(X2) = n(G) +w(a,H) ≤ w(a,G∨H). The reverse inequality follows easily by an

argument similar to that in the preceding paragraph. �

At this point, we can also point out that Theorem 2.1.7 can be derived from Theo-

rem 2.1.9 since Kp1 ∨ ... ∨Kpk
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Below are two examples of the w-function in action.

Example 2.1.10.

Figure 2.1: Petersen Graph

Figure 2.1 above is a typical representation of the Petersen graph. Let it be denoted by

P . Note that it is triangle free and contains at least one edge. Thus, by Proposition 2.1.2,

w(1, P ) = ω(P ) = 2. Additionally, by Proposition 2.1.3., we have w(4, P ) = w(α(P ), P ) =

n(P ) = 10. Although less trivial, it is not hard to prove to oneself that w(2, P ) = 5 and

w(3, P ) = 7. Relating this back to our goal of finding the Hall ratio of a given graph, we

find that ρ(P ) = max{2
1
, 5
2
, 7
3
, 10

4
} = 5

2
. Furthermore, this ratio is achieved by P itself and

any of the subgraphs of P that are 5-cycles.
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Example 2.1.11.

Figure 2.2: W5

Figure 2.2 above is W5 - the wheel with five spokes. With a quick check, it can be

confirmed that ω(W5) = w(1,W5) = 3 and w(2,W5) = n(W5) = 6. ρ(W5) is thus equal to 3

and is achieved by W5 itself and any of its triangles.

2.2 The b-function

Definition 2.2.1. Let b(t, G) = min[α(H) | H ⊆ G and n(H) = t], 1 ≤ t ≤ n.

Proposition 2.2.2. b(w(a,G), G) = a for 1 ≤ a ≤ α(G)

Proof. Note that b(w(a,G), G) ≤ a by the definitions of w and b. Now assume

b(w(a,G), G) = c < a and let H ⊆ G be a subgraph of order t = w(a,G) with α(H) = c.

Then w(c,G) ≥ n(H) = w(a,G) while c < a, which contradicts the result of Proposition

2.1.4. �
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Proposition 2.2.3. For 1 ≤ t ≤ n(G), w(b(t, G), G) ≥ t.

Proof. Let H ⊆ G be a subgraph of order t such that α(H) = b(t, G). Then t ≤

w(α(H), H) ≤ w(α(H), G). �

Example 2.2.4. Let Kn denote the complete graph on n > 1 vertices. By definition,

α(Kn) = 1 and thus b(t,Kn) = 1 for all t ∈ {1, ..., n}.

The above example may seem a bit trivial, but it stands to highlight the fact that b(t, G)

is not necessarily increasing with t if G has even one edge.
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Chapter 3

The Lexicographic and Disjunctive Products of W5

It is our belief that the ratio of the fractional chromatic number to the Hall ratio is

unbounded on some class of graphs. In this chapter, we discuss two potential candidates for

which this might occur: the lexicographic and disjunctive powers of W5.

3.1 Lexicographic Products

Lemma 3.1.1. [3] Suppose that X is a subgraph of GLexH. For each u ∈ V (G), let H(u,X)

be the subgraph of H induced by {v ∈ V (H) | (u, v) ∈ V (X)}. Then

α(X) = max[
∑
u∈I

α(H(u,X)) | I ⊆ V (G) is independent in G]

The following results by Johnson, Sheinerman, and Ullman provide useful information

involving the independence number, Hall ratio, and fractional chromatic number of graphs

formed by lexicographic products.

Corollary 3.1.2. [3] α(GLexH) = α(G)α(H).

Theorem 3.1.3. [3] ρ(GLexH) ≥ ρ(G)ρ(H).

Theorem 3.1.4. [4] χf (GLexH) = χf (G)χf (H).

Theorem 3.1.5. [3] ρ(GLexH) ≤ χf (G)ρ(H).

11



We now expand on the topic by looking at how the w-function behaves on GLexH.

Proposition 3.1.6. w(1, GLexH) = ω(GLexH) = ω(G)ω(H).

Proof. Assume KG and KH are maximum cliques in G and H respectively. Then it

should be obvious that the graph induced in GLexH by V (KG) × V (KH) is a clique in

GLexH. Thus we have ω(GLexH) ≥ ω(G)ω(H). Now consider a maximum clique, K, in

GLexH. Considering the vertices of this clique as ordered pairs, it must be the case that the

first coordinates induce a clique in G while for each first coordinate x ∈ V (G), the set {y ∈

V (H) | (x, y) ∈ V (K)} induces a clique in H. Therefore, we have ω(GLexH) ≤ ω(G)ω(H).

Combining the two inequalities gives the desired result. �

Proposition 3.1.7. w(α(GLexH), GLexH) = n(GLexH) = n(G)n(H).

Proof. This follows directly from the definition of the lexicographic product of two

graphs as well as Proposition 2.1.3.

Theorem 3.1.8. Suppose that a, b, and c are positive integers. Then w(a,GLexH) ≥

w(b,G)w(c,H) wherever b ≤ α(G), c ≤ α(H), and a = bc.

Proof. Let G′ be a subgraph of G such that α(G′) = b and n(G′) = w(b,G). Let H ′ be

a subgraph of H such that α(H ′) = c and n(H ′) = w(c,H). We have G′LexH ′ ⊆ GLexH.

By [1], α(G′LexH ′) = α(G′)α(H ′) = bc. Thus, if bc = a, then we have the above theorem.

�

W5 is the wheel with 5 spokes, pictured in Figure 2.2. Let W n
5 denote the graph formed by

W5LexW5Lex...LexW5 where Lex appears n − 1 times. By use of the above theorem and

propositions, we have the following corollaries:

12



Corollary 3.1.9. χf (W
n
5 ) = χf (W5)

n = (7
2
)n.

Corollary 3.1.10. (i) w(1,W n
5 ) = ω(W5)

n = 3n;

(ii) w(2n,W n
5 ) = n(W n

5 ) = n(W5)
n = 6n;

(iii) w(a,W n
5 ) ≥ w(b,W x

5 )w(c,W y
5 ), whenever n, a, b, c, x, and y are positive integers satis-

fying 1 ≤ b ≤ 2x, 1 ≤ c ≤ 2y, bc = a, and x+ y = n.

Proposition 3.1.11. w(a,W n
5 ) ≤ 6n − 5n + ba(5

2
)nc.

Proof. Let V (W5) = {0, 1, 2, 3, 4, 5}, with 0 being the vertex of degree five, and 1, ..., 5

being the vertices, in natural order, on the 5-cycle. Notice that there are 5 distinct inde-

pendent sets of vertices on the 5-cycle of cardinality 2: {1,3}, {1,4}, {2,4}, {2,5}, {3,5}. It

should then be obvious that there are 5n distinct maximum independent sets of vertices in

W n
5 and, by Corollary 3.1.2, each set has cardinality 2n. If V = {0, ..., 5}n is the vertex set

of W n
5 , then observe that each v ∈ V is in exactly 2n of the 5n maximum independent sets

in W n
5 .

Thus, to obtain a graph X ⊆ W n
5 with n(X) = w(a.W n

5 ) and α(X) = a, we must

remove at least (α(W n
5 )− a) = (2n − a) vertices from each of the 5n sets. And since each of

these vertices are in 2n of those sets, we get the following result:

w(a,W n
5 ) ≤ 6n − (2n−a)5n

2n
= 6n − 5n + a(5

2
)n. �

Lemma 3.1.12. w(2,W n
5 ) ≥ 1

2
(5 ∗ 3n − 3).

Proof. Let V (W5) = {0, 1, 2, 3, 4, 5}, with 0 being the vertex of degree five, and 1, ..., 5

being the vertices, in natural order, on the 5-cycle. Consider the case when n = 1. Because

2 = α(W5), we know that w(2,W5) = n(W5) = 6. Now, let us assume that n > 1 and

X ⊆ W n
5 such that α(X) = 2 and n(X) = w(2,W n

5 ). Then S = (V (X) × {0, 1, 2}) ∪

{(0, ..., 0, 3), (0, ..., 0, 4), (0, ..., 0, 5)} is a set of vertices inW n+1
5 which induces a subgraph with

vertex independence number 2. As such, we know that n(S) = 3n(X)+3 = 3w(2,W n
5 )+3 ≤

13



w(2,W n+1
5 ).

Let bn = 3bn−1 + 3 for n > 1 and b1 = 6. By standard difference equation techniques,

we obtain bn = 5
2
∗ 3n − 3

2
. Therefore, w(2,W n

5 ) ≥ 5
2
∗ 3n − 3

2
= 1

2
(5 ∗ 3n − 3). �

Theorem 3.1.13. w(2,W n
5 ) = 1

2
(5 ∗ 3n − 3)

Proof. Let V (W5) = {0, 1, 2, 3, 4, 5}, with 0 being the vertex of degree five, and 1, ..., 5

being the vertices, in natural order, on the 5-cycle. Let {0, ..., 5}n be the vertex set of W n
5 .

We proceed by induction on n. The theorem claim holds for n = 1. Suppose that n > 1

and let X be an induced subgraph of W n
5 such that α(X) = 2 and n(X) = w(2,W n

5 ). We

have n(X) =
∑5

i=0 |Vi| where Vi = {v ∈ {0, ..., 5}n−1 | iv ∈ V (X)}. Let Xi be the subgraph

of W n−1
5 induced by Vi, i = 0, ..., 5. By Lemma 3.1.1, we have 2 = α(X) = max[α(X0),

α(X1) + α(X3), α(X1) + α(X4), α(X2) + α(X4), α(X2) + α(X5), α(X3) + α(X5)].

We may as well assume α(X0) = 2 and n(V0) = w(2,W n−1
5 ). (If α(X0) < 2, then we can

replace X0 by a larger subgraph of W n−1
5 with independence number 2 and thus enlarge X

without increasing α(X) = 2.) If, say, α(X1) = 2, then α(X3) = α(X4) = 0. i.e., V3, V4 = ∅.

So there are essentially only the following possibilities for X1, ..., X5:

(i) α(Xi) = 1, i = 1, ..., 5

Then we may as well have n(Vi) = w(1,W n−1
5 ) = ω(W n−1

5 ) = 3n−1, i = 1, ..., 5. With n(V0)

= w(2,W n−1
5 ) = 1

2
(5 ∗ 3n−1 − 3) by the induction hypothesis, this gives

n(X)=5*3n−1 + w(2,W n−1
5 ) = 1

2
(5 ∗ 3n − 3).

(ii) α(X1) = 2, α(X3) = α(X4) = 0, α(X2) = α(X5) = 1.

This gives n(X) = 2 ∗ 3n−1 + 2w(2,W n−1
5 ) = 7 ∗ 3n−1 − 3

(iii) α(X1) = α(X2) = 2, α(Xi) = 0, i = 3, 4, 5
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This gives n(X) = 3w(2,W n−1
5 ) = 3

2
(5 ∗ 3n−1 − 3).

From here, it is easy to see that the maximum of the possible values of n(X) in these

three cases occurs in case (i), and by induction on n we find that w(2,W n
5 ) = 1

2
(5 ∗ 3n − 3).

�

Notice that the proof of Theorem 3.1.13 does not use Lemma 3.1.12. The value of

Lemma 3.1.12 is that its proof can be used to construct a particular subgraph X of W n
5 with

α(X) = 2 and n(X) = 1
2
(5 ∗ 3n − 3).

Using the result of Theorem 3.1.11 and arguments parallel to those above, we pro-

duce the following results; the beginnings of a recursive approach to finding w(a,W n
5 ) for

any given a and n.

Theorem 3.1.14. w(3,W n
5 ) = 4 ∗ 3n − 3(n+ 1) for n ≥ 2.

Let V (W5) = {0, 1, 2, 3, 4, 5}, with 0 being the vertex of degree five, and 1, ..., 5 be-

ing the vertices, in natural order, on the 5-cycle. Let {0, ..., 5}n be the vertex set of W n
5 .

Suppose that n > 2 and let X be an induced subgraph of W n
5 such that α(X) = 3 and

n(X) = w(3,W n
5 ). Now, n(X) =

∑5
i=0 |Vi| where Vi = {v ∈ {0, ..., 5}n−1 | iv ∈ V (X)}.

Let Xi be the subgraph of W n−1
5 induced by Vi, i = 0, ..., 5. By Lemma 3.1.1, we have

3 = α(X) = max[α(X0), α(X1) + α(X3), α(X1) + α(X4), α(X2) + α(X4), α(X2) + α(X5),

α(X3) + α(X5)]. We will proceed by induction on n ≥ 2. When n = 2, we may as well

suppose that α(X0) = 2 = α(X1) = α(X2), α(X3) = α(X4) = α(X5) = 1, n(Xi) = 6 for

i = 0, 1, 2, and n(Xi) = 3 for i = 3, 4, 5. Then w(3,W 2
5 ) = 3∗6+3∗3 = 27 = 4∗32−3(2+1).

Now suppose that n ≥ 3.

We may as well assume α(X0) = 3 and n(V0) = w(3,W n−1
5 ). (If α(X0) < 3, then we can
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replace X0 by a larger subgraph of W n−1
5 with independence number 3 and thus enlarge X

without increasing α(X) = 3.) If, say, α(X1) = 3, then α(X3) = α(X4) = 0. i.e., V3, V4 = ∅.

So there are essentially only the following possibilities for X1, ..., X5:

(i) α(Xi) = 1, i = 1, 2, 3 and α(Xi) = 2, i = 4, 5.

We may as well have n(Vi) = w(1,W n−1
5 ) = ω(W n−1

5 ) = 3n−1, i = 1, 2, 3 and n(Vi) =

w(2,W n−1
5 ) = 1

2
(5 ∗ 3n−1 − 3), i = 4, 5 . With n(V0) = w(3,W n−1

5 ) = 4 ∗ 3n−1 − 3n, this

gives n(X) = w(3,W n−1
5 )+3n+(5∗3n−1−3) = 4∗3n−1−3n+3n+5∗3n−1−3 = 4∗3n−3(n+1).

(ii) α(X1) = α(X2) = 3, α(X3) = α(X4) = α(X5) = 0.

This gives n(X) = 3w(3,W n−1
5 ) = 12 ∗ 3n−1 − 9n = 4 ∗ 3n − 9n

(iii) α(X1) = 3, α(X2) = 2, α(X3) = α(X4) = 0, α(X5) = 1

This gives n(X) = 8 ∗ 3n−1 − 6n+ 1
2
(5 ∗ 3n−1 − 3) + 3n−1 = 23

6
3n − 3(2n+ 1

2
).

From here, it is easy to see that the maximum of the possible values of n(X) in these

three cases occurs in case (i), and by induction on n we find that w(3,W n
5 ) = 4∗3n−3(n+1).

�

Theorem 3.1.15. w(4,W n
5 ) = 1

4
(25 ∗ 3n − 30n− 21) for n ≥ 2.

Let V (W5) = {0, 1, 2, 3, 4, 5}, with 0 being the vertex of degree five, and 1, ..., 5 be-

ing the vertices, in natural order, on the 5-cycle. Let {0, ..., 5}n be the vertex set of W n
5 .
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Suppose that n ≥ 2 and let X be an induced subgraph of W n
5 such that α(X) = 4 and

n(X) = w(4,W n
5 ). Now, n(X) =

∑5
i=0 |Vi| where Vi = {v ∈ {0, ..., 5}n−1 | iv ∈ V (X)}.

Let Xi be the subgraph of W n−1
5 induced by Vi, i = 0, ..., 5. By Lemma 3.1.1, we have

4 = α(X) = max[α(X0), α(X1) + α(X3), α(X1) + α(X4), α(X2) + α(X4), α(X2) + α(X5),

α(X3) + α(X5)].

We proceed by induction on n ≥ 2. Since 4 = α(W 2
5 ),

w(4,W 2
5 ) = 36 = 1

4
(25 ∗ 32 − 30 ∗ 2− 21).

Now suppose that n > 2. We may as well assume α(X0) = 4 and n(V0) = w(4,W n−1
5 ).

(If α(X0) < 4, then we can replace X0 by a larger subgraph of W n−1
5 with independence

number 4 and thus enlarge X without increasing α(X) = 4.) If, say, α(X1) = 4, then

α(X3) = α(X4) = 0. i.e., V3, V4 = ∅. So there are essentially only the following possibilities

for X1, ..., X5:

(i) α(Xi) = 2, i = 1, 2, 3, 4, 5.

We may as well have n(Vi) = w(2,W n−1
5 ) = 1

2
(5 ∗ 3n−1 − 3), i = 1, 2, 3, 4, 5. With n(V0) =

w(4,W n−1
5 ) = 1

4
(25 ∗ 3n−1− 30(n− 1)− 21), this gives n(X) = w(4,W n−1

5 ) + 5w(2,W n−1
5 ) =

1
4
(25 ∗ 3n−1 − 30(n− 1)− 21) + 5

2
(5 ∗ 3n−1 − 3) = 1

4
(25 ∗ 3n − 30n− 21).

(ii) α(X1) = α(X2) = 4, α(X3) = α(X4) = α(X5) = 0.

This gives n(X) = 3w(4,W n−1
5 ) = 3

4
(25 ∗ 3n−1 − 30n+ 9).

(iii) α(X1) = α(X2) = 3, α(X3) = α(X4) = α(X5) = 1.

This gives n(X) = 1
4
(25 ∗ 3n−1 − 30n+ 9) + 8 ∗ 3n−1 − 6n+ 3n = 1

4
(23 ∗ 3n − 54n+ 9).

(iv) α(X1) = 3, α(X2) = 2, α(X3) = α(X4) = 0, α(X5) = 1.

This gives n(X) = 1
4
(25 ∗ 3n−1 − 30n + 9) + 4 ∗ 3n−1 − 3n + 1

2
(5 ∗ 3n−1 − 3) + 3n−1 =

1
4
(55 ∗ 3n−1 − 42n+ 3).

17



(v) α(X1) = 4, α(X2) = 3, α(W3) = α(X4) = 0, α(X5) = 1.

This gives n(X) = 2
4
(25∗3n−1−30(n−1)−21)+4∗3n−1−3n+3n−1 = 1

2
(35∗3n−1−36n+9).

(vi) α(X1) = 4, α(X2) = α(X5) = 2, α(X3) = α(X4) = 0.

This gives 2
4
(25 ∗ 3n−1 − 30(n− 1)− 21) + 2

2
(5 ∗ 3n−1 − 3) = 1

2
(35 ∗ 3n−1 − 30n+ 3).

From here, it is easy to see that the maximum of the possible values of n(X) in these six

cases occurs in case (i), and by induction on n we find that w(4,W n
5 ) = 1

4
(25∗3n−30n−21).

�

The proofs for the above three theorems are very similar, but we include them to high-

light two observations. The first is that we have essentially developed a recursive approach

to find w(a,W n
5 ) for any values of a and n, 1 ≤ a ≤ 2n. This means we have a method of

finding ρ(W n
5 ) for a specified n. The second observation is that in each of the three theorems

above, n(X) = w(a,W n
5 ) = w(a,W n−1

5 ) + 3w(ba
2
c,W n−1

5 ) + 2w(da
2
e,W n−1

5 ). Finding out

whether this is true for all a would be an excellent task for future research.

Proposition 3.1.16. ρ(W 3
5 ) = 141

4

Proof. Recall that ρ(W n
5 ) = max[

w(a,Wn
5 )

a
], 1 ≤ a ≤ α(W n

5 ) = 2n. By Corollary 3.1.10

and Theorems 3.1.13-3.1.15, we know w(1,W 3
5 ) = 33 = 27, w(2,W 3

5 ) = 1
2
(5 ∗ 33 − 3) = 66,

w(3,W 3
5 ) = 4 ∗ 33 − 3(3 + 1) = 96, and w(4,W 3

5 ) = 1
4
(25 ∗ 33 − 30(3) − 21) = 141. Ad-

ditionally, by Proposition 3.1.11, we have the following: w(5,W 3
5 ) ≤ 169, w(6,W 3

5 ) ≤ 184,

w(7,W 3
5 ) ≤ 200, and w(8,W 3

5 ) = 216.

We thus have ρ(W 3
5 ) ≤ max[27

1
, 66

2
, 96

3
, 141

4
, 169

5
, 184

6
, 200

7
, 216

8
] = 141

4
. Since this maximum

is achieved for a = 4, we actually have equality by Theorem 3.1.15. �
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The significance of Proposition 3.1.16 is that we now know
χf (W

3
5 )

ρ(W 3
5 )

=
(7
2
)3

141
4

=
343

282
>

6

5

which was the previously known record high for this ratio. A subgraph X of W 3
5 such that

n(X)
α(X)

= 141
4

= ρ(W 3
5 ) is the graph induced by the vertices ({1, 2, 3, 4, 5} × {1, 2, 3, 4, 5} ×

{2, 3}) ∪ {v = (v1, v2, v3) ∈ {0, ..., 5}3 | vi = 0, for some i ∈ {1, 2, 3}}.

3.2 Disjunctive Products

We now shift our focus to the disjunctive product of graphs. Although it is entirely

possible for the ratio,
χf

ρ
, to be unbounded on a class of graphs defined by the disjunctive

product, do note that any graph obtained by the disjunctive product will potentially contain

more edges than the corresponding graph formed by the lexicographic product. This means

that it is likely the case that
χf

ρ
will be smaller for a graph obtained by the disjunctive

product of two graphs than it will be for the graph obtained by the lexicographic product of

the same two graphs. We thus only consider this product because it may be the case that

finding the value of certain graph parameters may prove easier under the disjunctive product

than the lexicographic product.

Theorem 3.2.1. [4] χf (GDisjH) = χf (G)χf (H).

Let (W n
5 )D = (W5DisjW5Disj...DisjW5) where the product is taken (n− 1) times.

Corollary 3.2.2. χf ((W
n
5 )D) = (7

2
)n.

Proof. We know that χf (W5) = 7
2
. Using Theorem 3.2.1, we find that χf ((W

n
5 )D) =

χf (W5)χf ((W
n−1
5 )D). Repeated application of the theorem gives χf ((W

n
5 )D) = (χf (W5))

n =

(7
2
)n. �

Theorem 3.2.3. w(a,GLexH) ≤ w(a,GDisjH).

Proof. LetX be an induced subgraph of (GLexH) such that αGLexH(X) = a, w(a,GLexH) =

n(X). Let Y be the subgraph of GDisjH induced by V (X). Then αGDisjH(Y ) = b ≤ a. So

w(a,GLexH) = n(X) = n(Y ) ≤ w(b,GDisjH) ≤ w(a,GDisjH). �
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Proposition 3.2.4. ω((W 2
5 )D) ≥ 10 > ω(W5)

2.

Proof. Let V (W5) = {0, 1, 2, 3, 4, 5}, as before. Consider the subgraph of W5DisjW5

induced by the following set of vertices:

S = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (2, 4), (3, 2), (4, 5), (5, 3)}. Note that |S| = 10 and

that the subgraph is a complete graph. Thus ω(W5)
2 = 32 = 9 < 10 ≤ ω((W 2

5 )D). �

Figure 3.1: A clique of order 10 in W 2′
5

Theorem 3.2.5. For all a ∈ {1, ..., 2n}, w(a,W n
5 ) ≤ w(a, (W n

5 )D)

≤
dlog2(a)e−1∑

k=0

(
n

k

)
5k + a

n∑
k=dlog2(a)e

(
n

k

)
(
5

2
)k.

Proof. Let V = {0, ..., 5}n be the vertex set for both W n
5 and (W n

5 )D. For S ⊆ {1, ..., n},

let V0(S) = {w ∈ V | wt = 0 ⇐⇒ t ∈ S}. Note that S1, S2 ⊆ {1, ..., n}, S1 6= S2 =⇒

V0(S1) ∩ V0(S2) = ∅. Also, |V0(S)| = 5n−|S|.

Suppose k ∈ {0, ..., n} and let S ⊆ {1, ..., n}, |S| = n− k. The subgraph G(S) induced
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in (W n
5 )D by V0(S) is isomorphic to (Ck

5 )D and has vertex independence number 2k.

By arguments given in the proof of Proposition 3.1.11, there are 5k different independent

sets I ⊆ V0(S) such that |I| = 2k, and every w ∈ V0(S) is in 2k of those I. Let I(S) = {I ⊆

V0(S) | I is an independent set of vertices in G(S) and |I| = 2k}.

Suppose 1 ≤ a ≤ 2k, which holds if and only if k ≥ dlog2(a)e. Let Q be a smallest set of

words in V0(S) such that |(V0(S)\Q)∩I| = |I\Q| = |I\(I∩Q)| = |I|−|I∩Q| = 2k−|I∩Q| ≤ a

for all I ∈ I(S). Let M be the number of ordered pairs (u, I), u ∈ I ∩ Q, I ∈ I(S). Let

qk = |Q|. Because each u ∈ Q is in 2k different I ∈ I, it follows that M = qk ∗ 2k. On

the other hand, since |I ∩ Q| ≥ 2k − a for each I ∈ I(S), qk ∗ 2k = M ≥ (2k − a)|I(S)| =

(2k − a)5k =⇒ qk ≥ (1− a
2k

)5k.

Suppose X is a subgraph of (W n
5 )D such that α(X) = a and n(X) = w(a, (W n

5 )D).

For each k ∈ {dlog2(a)e, ..., n} and each S ⊆ {1, ..., n}, |S| = n − k, V (X) can contain

no more than a elements of I for each I ∈ I(S). Therefore, |V0(S)\(V (X) ∩ V0(S))| =

|V0(S)| − |V (X) ∩ V0(S)| = 5k − |V (X) ∩ V0(S)| ≥ qk =⇒ |V (X) ∩ V0(S)| ≤ 5k − qk ≤

5k − (1− a
2k

)5k = a
2k

5k.

As k ranges from 0 to n and, for each k, S ranges over the
(
n
k

)
(n−k)-subsets of {1, .., n},

the sets V (X)∩V0(S) range over pairwise disjoint subsets of V (X) which cover all of V (X).

Therefore, |V (X)| = w(a, (W n
5 )D) =

n∑
k=0

∑
S⊆{1,...,n}
|S|=n−k

|V (X) ∩ V0(S)| ≤

dlog2(a)e−1∑
k=0

(
n

k

)
5k + a

n∑
k=dlog2(a)e

(
n

k

)
(
5

2
)k. �
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Chapter 4

The Mycielski Graphs

In this chapter, we discuss another class of graphs for which we believe the ratio,
χf

ρ
,

may be unbounded. We bgein, however, with a well-known construction and some results

pertaining to the construction.

4.1 The Mycielskian Construction

Definition 4.1.1. Let V (G) = {x1, x2, ..., xn}. We define the Mycielskian of G, denoted

M(G), to be the graph whose vertex set is V (M(G)) = {x1, ..., xn, y1, ..., yn, z} and whose

adjacency is as follows:

(i) xi is adjacent to xj if and only if xi is adjacent to xj in G

(ii) xi is adjacent to yj if and only if xi is adjacent to xj in G

(iii) yi is adjacent to z for all i ∈ {1, 2, ..., n}.

At this point, we typically denote V (M(G)) = X ∪ Y ∪ {z} where X = {x1, ..., xn} and

Y = {y1, ..., yn}.
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Example 4.1.2.

Figure 4.1: A graph and its Mycielskian

Notice that if G has n vertices, then M(G) has 2n + 1 vertices. Additionally, the set

of vertices in Y is an independent set. This means that α(M(G)) ≥ n. Because the inde-

pendence number is at least roughly half the total number of vertices in any given M(G), it

seems a possibility that a class of graphs built around this Mycielskian construction could

result in a scenario in which
χf

ρ
tends to infinity. The following are some important and

well-known results concerning this construction.

Proposition 4.1.3. If G has at least one edge, then ω(M(G)) = ω(G).

Proof. First, we note that G is always isomorphic to a subgraph of M(G). Thus we

know immediately that any clique of G will be isomorphic to a clique in M(G). So we have

ω(M(G)) ≥ ω(G). To prove ω(M(G)) ≤ ω(G), we consider cliques in M(G) in the following

cases:

(i) Assume the given clique contains the vertex z.

Because z is only adjacent to yi, i = {1, ..., n} and because none of the vertices in Y

are adjacent to each other, we get that the size of such a clique is at most 2.
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(ii) Assume given clique contains the vertex yi and not z.

We already know that such a clique cannot contain 2 vertices from Y . Thus every

other vertex in the clique must belong to X. However, those vertices in X that are

adjacent to yi are exactly the same vertices that are adjacent to xi. Thus the order of

a clique containing yi and not z is equal to the order of a clique entirely contained in

X and containing xi. Since the graph induced by the vertices of X is isomorphic to G,

we then have the order of any clique containing yi is at most the clique number of G.

Together, these two cases give us ω(M(G)) ≤ ω(G) since ω(G) is at least 2 due to G

containing an edge. Combining the inequalities above gives us the result of the proposition.

�

One of the more significant results concerning this construction is given in the following

well-known theorem:

Theorem 4.1.4. χ(M(G)) = χ(G) + 1.

Proof. Suppose χ(G) = k and define f : V (G)→ {1, ..., k} to be a proper k coloring of

G. We can define a proper k+1 coloring of M(G), g : V (M(G))→ {1, ..., k, k+1}, as follows:

set g(xi) = g(yi) = f(xi) for each i ∈ {1, ..., n} and set g(z) = k + 1. By construction, we

see that this is a proper k + 1 coloring of M(G). Thus we have proven χ(M(G)) ≤ k + 1.

Now consider a proper coloring, g, of M(G). We define a coloring, f , on G as follows:

set f(xi) = g(xi) if g(xi) 6= g(z) and f(xi) = g(yi) if g(xi) = g(z). f thus colors G properly

without the use of the color g(z). We have then proven that χ(M(G)) − 1 ≥ χ(G) = k or

equivalently χ(M(G)) ≥ k + 1.

Combining these two results gives χ(M(G)) = χ(G) + 1 as desired. �

Theorem 4.1.5. [4] χf (M(G)) = χf (G) + 1
χf (G)

.
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4.2 The Mycielski Graphs

Applying the Mycielskian construction repeatedly, starting with the graph of a single

edge, gives rise to a sequence of graphs known as the Mycielski graphs. By convention, we

typically denote the nth graph in this sequence as Mn+1. The reason for this potentially con-

fusing labeling is due the result of Theorem 4.1.4 above. The first graph in the sequence, M2,

is a single edge with 2 vertices and χ(M2) = 2. By Theorem 4.1.4, we then have χ(Mn) = n.

Thus the subscript simply refers to the Mycielski graph with a specified chromatic number.

Figure 4.2: M2, M3, and M4

As with the lexicographic and disjunctive powers of W5, another benefit of working with

the Mycielski graphs is that we already know how the fractional chromatic number behaves

for this class of graphs. In addition to Theorem 4.1.5, we have the following result:

Theorem 4.2.1. χf (Mn) is asymptotically equivalent to
√

2n.

Proof. For n ≥ 3, let Xn = Xn−1 + 1
Xn−1

with X2 = 2. Let Un = X2
n = (Xn−1 + 1

Xn−1
)2 =

2 +Un−1 + 1
Un−1

. Then we claim that, for all n ≥ 2, Un ≥ 2 +Un−1 ≥ 2 + 2(n− 1). The first

inequality follows from before. To show the second, first note that U2 = (X2)
2 = 22 = 4 ≥

2 + 2(2− 1) = 4. Thus the inequality holds for n = 2. We now proceed by induction on n.

Assume Uk ≥ 2k, 2 ≤ k ≤ n−1. We then have that Uk+1 = 2+Uk+
1
Uk
≥ 2+2k+ 1

Uk
≥ 2(k+1).

So n ≥ 2 =⇒ Un ≥ 2n (i).

So, for n > 2,
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Un = 2 + Un−1 + 1
Un−1

≤ 2 + Un−1 + 1
2n−2

≤ 4 + Un−2 + 1
2(n−2) + 1

2(n−1)

.

.

.

≤ 2(n− 2) + U2 + 1
2
[1
2

+ ...+ 1
n−1 ]

= 2n+ 1
2
[1
2

+ ...+ 1
n−1 ]

≤ 2n+ c ∗ ln(n) (ii)

for some constant c. Combining (i) and (ii) gives

2n ≤ X2
n ≤ 2n+ c ∗ ln(n) =⇒

√
2n ≤ Xn ≤

√
2n+ c ∗ ln(n) =⇒

1 ≤ Xn√
2n
≤
√

1 + ln(n)
2n
−→ 1 as n −→∞ �

Proposition 4.2.2. For k ≥ 2, n(Mk) = 3 ∗ 2k−2 − 1.

Proof. By the construction, we know that |V (Mk)| = 2|V (Mk−1)| + 1 for k > 2. Let

ak = 2ak−1 + 1, k > 2 and a2 = 2. By standard difference equation techniques, we obtain

ak = 3
4
∗ 2k − 1 = 3 ∗ 2k−2 − 1. Therefore, n(Mk) = 3

4
∗ 2k − 1 = 3 ∗ 2k−2 − 1. �

For S ⊆ V (Mn), let Nk(S) be the open neighbor set of S in Mk and Nk[S] be the

closed neighbor set of S in Mk. For k > 2, define the function, Yk : V (Mk−1) −→ V (Mk),

and let zk be the added vertex such that Nk(zk) = Yk(V (Mk−1)).

Lemma 4.2.3. For all k ≥ 2 and all S ⊆ V (Mk), |S| ≤ |Nk(S)|.

Proof. The proof is by induction on k. The case in which k = 2 is straightforward. Now

suppose that k > 2. Suppose that S ⊆ V (Mk).

26



If S ∩ V (Mk−1) = ∅, then the conclusion is easily obtained. First, if S = {zk}, then

|S| = 1 < 2 ≤ |Yk(V (Mk−1))| = |Nk(z)| = n(Mk−1). Otherwise, if S ∩ V (Mk−1) = ∅ but

S ∩ Yk(V (Mk−1)) = Yk(U) 6= ∅ for some U ⊆ V (Mk−1), then Nk(S) = {zk} ∪ Nk−1(U). So

|Nk(S)| = 1 + |Nk−1(U)| ≥ 1 + |U | ≥ |S|.

Now suppose that T = S ∩ V (Mk−1) 6= ∅. Let T1 = {v ∈ T | Yk(v) ∈ S}, T2 = {v ∈ T

| Yk(v) /∈ S}, and U = {v ∈ V (Mk−1) | v /∈ S and Yk(v) ∈ S}. Note that T1, T2, and U are

pairwise disjoint subsets of V (Mk−1). We have S = T1 ∪ Yk(T1) ∪ T2 ∪ Yk(U) ∪R where

R =

 {z k} if zk ∈ S

∅ otherwise
.

Therefore, |S| = 2|T1|+ |T2|+ |U |+ |R|. Also, Nk(S) = Nk−1(T1)∪Yk(Nk−1(T1))∪Nk−1(T2)∪

Yk(Nk−1(T2)) ∪Nk−1(U) ∪Nk(R) ∪Q, where Q =

 {zk} if T1 ∪ U 6= ∅

∅ otherwise
.

Rewriting the previous, we have Nk(S) = Nk−1(T1∪T2∪U)∪Yk(Nk−1(T1∪T2))∪Nk(R)∪Q.

By the induction hypothesis,

|Nk(S)| ≥ |Nk−1(T1 ∪ T2 ∪ U) ∪ Yk(Nk−1(T1 ∪ T2))|+ |Nk(R)|

≥ |Nk−1(T1 ∪ T2 ∪ U)|+ |Yk(Nk−1(T1 ∪ T2))|

= |Nk−1(T1 ∪ T2 ∪ U)|+ |Nk−1(T1 ∪ T2)|

≥ |T1 ∪ T2 ∪ U |+ |T1 ∪ T2|

≥ 2(|T1|+ |T2|) + |U |

≥ 2|T1|+ |T2|+ |U |+ |R|

= |S|

unless T2 = ∅ and R = {zk}. But if T2 = ∅, then T1 6= ∅ (because S ∩ V (Mk−1) 6= ∅). And if

R = {zk}, then Nk(R) = Nk(zk) = Yk(V (Mk−1)). So

|Nk(S)| = |Nk−1(T1 ∪ U)| ∪ |Yk(V (Mk−1))|+ |Q|

≥ |T1|+ |U |+ |V (Mk−1)|+ 1

≥ 2|T1|+ 2|U |+ 1

27



≥ 2|T1|+ |U |+ 1

= |S|. �

Theorem 4.2.4. α(Mk) = n(Mk)−1
2

= n(Mk−1) for k ≥ 3.

Proof. Obviously, α(Mk) ≥ |Yk(V (Mk−1))| = n(Mk−1). Now suppose I is a maximum

independent set of vertices in Mk. We want to show that |I| ≤ n(Mk−1). If I∩V (Mk−1) = ∅,

we are done. So suppose that ∅ 6= I ∩ V (Mk−1) = S. Let U = V (Mk−1)\Nk−1[S]. Then

V (Mk−1) is the disjoint union (since S is independent) of S, Nk−1(S), and U . Clearly

I ∩ Yk(V (Mk−1)) ⊆ Yk(S) ∪ Yk(U). And if zk /∈ I, then

I = S ∪ Yk(S) ∪ Yk(U)

=⇒ |I| = 2|S|+ |U |

= |S|+ (n(Mk−1)− |Nk−1(S)|)

≤ n(Mk−1)

by Lemma 4.2.3. If zk ∈ I, then |I| = 1+ |S| ≤ 1+α(Mk−1) and the last is clearly no greater

than n(Mk−1). �

Although the Mycielski graphs are technically the first class of graphs we considered,

not much attention has been given to the graphs in recent months due to the difficulty in

determining the Hall ratio of Mn. Future research will include a refocusing on these graphs.

Specifically, we need to try and observe how the w-function behaves on Mn since this function

was not yet defined when we considered this class of graphs. However, by theorem 4.2.4, we

know w(a,Mn) to be defined for 1 ≤ a ≤ n(Mn−1) = 3 ∗ 2n−3 − 1. We also get the following

quick results from Proposition 2.1.2 and Proposition 2.1.3:

Corollary 4.2.5. w(1,Mn) = 2 for all n.

Corollary 4.2.6. w(α(Mn),Mn) = w(3 ∗ 2n−3 − 1,Mn) = 3 ∗ 2n−2 − 1.
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