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Abstract

Computational chemistry is a standard tool to understand chemical phenomena at the

electronic and molecular levels, and is a rapidly growing branch of chemistry. In this thesis,

three distinct computational chemistry projects about dispersion interaction between small

molecules and models of nanotubes are investigated: (1) An accurate benchmark description

of the interactions between carbon dioxide and polyheterocyclic aromatic compounds con-

taining nitrogen; (2) Evaluation of DFT-D variants suitable for nanotube adhesion forces;

(3) Description of the interactions between carbon dioxide and polyheterocyclic aromatic

compounds containing nitrogen via local methods.

Chapter 1 presents a brief introduction to these subjects. Chapter 2 explains the

methodologies used in this work. Chapter 3 presents the performance of a large variety of

modern density functional theory approaches for the adsorption of carbon dioxide on molec-

ular models of pyridinic N-doped graphene. The benchmark interaction energies were estab-

lished at the complete-basis-set limit MP2 level plus a CCSD(T) coupled-cluster correction

in a moderate but carefully selected basis set. Using a set of 96 benchmark CCSD(T)-level

interaction energies as a reference, the performance of various DFT+D variants was exam-

ined. It turns out that several schemes such as B2PLYP-D3 and M05-2X-D3 exhibit average

errors on the entire benchmark data set in the 5–10% range. The top DFT+D variants were

then used to investigate the energy profile for a carbon dioxide transition through model N-

doped graphene pores. The results obtained from these methods indicated that the largest,

N4H4 pore allows for a barrierless CO2 transition to the other side of a graphene sheet. In

Chapter 4, three sets of benchmark CCSD(T)/CBS data, all involving a coronene molecule

(flat or curved away from the adsorbate), interacting with 1 methane, 2 carbon dioxide,

and 3 ethylene are combined to determine the performance of various DFT approaches for
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describing interactions of solubilizer molecules with nanotubes. The combined data show

that the simple PBE-D3(BJ)refit variant emerges as an optimal combination of accuracy and

efficiency for weakly interacting complexes of this kind. Finally, Chapter 5 reports the re-

sults for various local methods on investigation of the dispersion interaction between carbon

dioxide and polyheterocyclic aromatic compounds containing nitrogen. Unfortunately, so

far no single local method could yield benchmark-level accuracy for the models of interest.

Therefore, more detailed study is needed to generate acceptable results for local treatments.
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Chapter 1

Introduction

Computational chemistry is a standard tool to understand chemical phenomena at the

electronic and molecular levels, and is a rapidly growing branch of chemistry. It has very

broad applications, from spectroscopy investigation, reaction pathways, drug design and de-

livery, hydrogen storage, to catalysis. In this present work, we will utilize quantum chemistry

tools to investigate the properties of small molecule adsorption on pristine, doped, and per-

forated graphene. To begin with, we need to have an idea about adsorption. There are

two types of adsorption: chemisorption and physisorption. Chemisorption, a.k.a chemical

adsorption, is adsorption in which the forces involved are valence forces of the same kind as

those functioning in the formation of chemical compounds, defined by IUPAC.1 Thus, the

distinction between chemisorption and physisorption and is the same as between chemical

and physical interaction in general. Different from chemisorption, physisorption (or physical

adsorption) is adsorption in which the forces involved are intermolecular forces, such as van

der Waals forces, which do not involve a significant change in the electronic orbital patterns

of the species involved. In this work, we are only interested in the harder to study, the

physisorption phenomenon.

In this thesis, we are particularly interested in non-covalent interactions (NCI) between

small molecules and carbon nanostructures. The question here is why are people interested

in NCI? The reason for that is these interactions are involved in many aspects of chem-

istry such as drug binding, protein folding, supramolecular assembly, and reaction pathways.

Particularly, we are interested in the NCI between small molecules and carbon nanostruc-

tures; these interactions are a hot topic of many theoretical and experimental investigations.
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Specifically, we have studied carbon dioxide and ethylene physisorption onto pristine, doped,

and perforated graphene.

Carbon-based nanomaterials such as carbon nanotubes and graphene have a broad range

of applications in nanotechnology, electronics, optics and making high strength composite

materials. Nanomaterials often have unusual mechanical strength and unique electrical prop-

erties, optical and chemical properties that can be modified by chemical doping and by non-

covalent interactions with other adsorbed molecules.2 More importantly, nanostructures can

be used as a medium for separation of different gases through adsorption. This application

is particularly significant for capturing carbon dioxide from exhaust gases, a vital molecule

in this research as well. This separation is a crucial task on the way towards greener energy.

An ab initio description of the physical adsorption3 of various molecules on carbon

nanostructures is highly desirable since the accuracy of empirical adsorption potentials is

limited. However, this physisorption is significantly difficult for ab initio electronic structure

methods, especial for density functional theory (DFT), since many noncovalent interactions

are dominated by London dispersion forces,4 which are not well described by many popu-

lar theoretical methods. Thus, numerous approaches have been developed to describe the

noncovalent interactions. Researches have also proposed various techniques to speed up

computations so that larger systems may be studied. New DFT methods have been exten-

sively benchmarked5 against databases of accurate wavefunction-based interaction energies.

The accuracy obtained by the best approaches (on average, about 0.3-0.5 kcal/mol at the

minima), while much better than the original DFT, varies dramatically between different

systems and can not guarantee an accurate description of adsorption energies that amount

to a few kilocalories per mole. Therefore, it is necessary to validate the accuracy of different

DFT functionals against wavefunction-based interaction energies for carefully chosen model

systems before picking any DFT method to compute the noncovalent interaction energies.

Only approaches that adequately pass this validation can be expected to yield accurate ad-

sorption properties for extended nanostructures. Such a validation, and the subsequent use of
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the optimal DFT method(s) to achieve accurate graphene and nanotube adsorption energies,

are the foundations of this research. The central purpose of this research is to obtain

precise ab initio interaction potentials for several small molecules (CO2, C2H4,

CH4) adsorbed onto models of pristine and N-doped graphene and single-walled

carbon nanotubes. To this end, we will first carefully choose a large number of relevant

weakly interacting dimers as representatives. Then we are going to apply high-level ab initio

methods on these models to generate benchmark interaction energies that are accurate to

0.1 kcal/mol or even better. These benchmark data will enable us to evaluate the accuracy

of various DFT functionals in the next step and to pick the best approach that will then be

applied to compute interaction energies between the adsorbate molecules and large nanotube

fragments as well as infinite periodic nanotubes. The interaction energies obtained in this

manner for different distances and orientations of the adsorbate molecules can be utilized to

construct highly accurate potential energy surfaces. Finally, these potentials can be com-

bined with ab initio adsorbate-adsorbate interaction potentials to build reliable adsorption

isotherms for pure gases and binary mixtures as well as to explore the vibrational dynamics

of adsorbed molecules.

The specific objectives of this study are:

• Firstly, to obtain accurate coupled-cluster [CCSD(T)]-level benchmarks for the lowest-

energy structures of dimers of CO2, C2H4, CH4 with polycyclic aromatic hydrocarbons

(PAH) and nitrogen-containing polyheterocyclic aromatic compounds (N-PHACs) con-

taining one or more pyridinic nitrogen atoms.

• Secondly, to pick a DFT variant that recovers benchmark interaction energies accu-

rately and consistently throughout the entire range of intermolecular distances by using

the DFT-D3 scheme and then to apply this approach to compute accurate interaction

energies between the chosen adsorbates and finite and infinite fragments of carbon

nanotubes and N-doped nanotubes.
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• Finally, in order to obtain benchmark CCSD(T)-level results for larger systems, the

local coupled cluster methods will be tested.

The importance of the research in this thesis will be in several aspects. To begin with, it

will provide new precise benchmarks for approximate and efficient ab initio approaches. Fur-

thermore, it will contribute to the development of DFT with a proper account of dispersion.

Additionally, it will lead to more reliable potential energy surfaces for molecular simulations

involving carbon nanostructures and gas-phase small molecules. Finally, it will strengthen

our knowledge of the physisorption phenomenon in general. As far as the energy-related re-

search is concerned, the developments proposed here are likely to help in the design process

of carbon-based nanomaterials for hydrogen and hydrocarbon storage, molecular sensing,

and selective CO2 capture for a cleaner and more efficient utilization of fossil fuels.
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Chapter 2

Methods and theoretical background

Computational chemistry has developed into a standard tool to understand chemical

phenomena by applying mathematical approximations and equations as well as computa-

tional software. It has broad applications. One can use it to optimize the structures and

calculate properties for molecules. It can be used to simulate reactions in order to inter-

pret and predict chemical phenomena. The fundamental basis of computational chemistry

is quantum mechanics. Among many different methods, the ones that do not include any

empirical or semi-empirical factors in their equations and also do not incorporate any ex-

perimental data are called ab initio methods. In other words, the solutions of these methods

are directly derived from theoretical principles.

There are many properties that can be obtained by applying computational chemistry.

Here we only name a few important ones:

• Equilibrium and transition structures

• Reaction rates and pathways

• Thermochemical properties such as bond dissociation energies and enthalpies of for-

mation

• Polarizabilities and hyperpolarizabilities

• NMR, IR, Raman, and UV spectra
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2.1 Schrödinger equation

The Schrödinger equation is the centerpiece of quantum mechanics.6,7 This second-

order partial differential equation describes how a physical system evolves with time. Its

importance in quantum mechanics is an analogy of Newton’s law in classical mechanics.

The Schrödinger equation can be divided into two subcategories: time-dependent and

time-independent.

The time-dependent Schrödinger equation is:

ĤΨ = i~
∂

∂t
Ψ (2.1)

where i is the square root of -1, ~ is Planck’s constant divided by 2π, t is the time coordinate,

Ψ is the wavefunction of the system and characterizes the position and momenta of the

particles involved in the system,8 and finally Ĥ is the Hamiltonian operator.

The time-independent Schrödinger equation has the form:

ĤΨ = EΨ (2.2)

For this thesis, all the solutions are within the time-independent subcategory. The

exact solutions of the many-electron Schrödinger equation cannot be obtained, even for a

two-electron hydrogen molecule (H2). Therefore, we have to use several approximations to

derive the solutions for the Schrödinger equation.

2.2 Born-Oppenheimer Approximation

The Born-Oppenheimer (BO) approximation is indispensable in quantum chemistry.

The many electron wavefunction is a function of nuclear and electronic coordinates: Ψ(R, r).

Here R is nuclear coordinates while r is electronic coordinates. The motions of nuclei and

electrons are coupled with each other. The BO approximation originates from the significant

mass difference between nuclei and electrons: the mass of a proton is approximately two
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thousand times larger than the mass of an electron. Thus, as the nuclei are much heavier,

their velocities are much smaller. In this way, nuclei are almost stationary compared to

electrons. In other words, the nuclei appear fixed compared to the electrons. Therefore,

intuitively, the motion of electrons can be considered as circling mass points around the fixed

nuclei. This is called “the Born-Oppenheimer approximation”.9 Hence, we can separate the

total wavefunction into a nuclear function ΨN and electronic function Ψel without losing the

accuracy:

Ψ(r, R) = ΨN(R)Ψel(r;R) (2.3)

where Ψel(r;R) is an electronic wavefunction that depends parametrically on the nuclear

positions and ΨN(R) is a nuclear wavefunction. Now, we can solve the electronic part of the

Schrödinger equation separately.

ĤelΨel = EelΨel (2.4)

Eel represents the potential energy surface which depends on the nuclear configuration. The

BO approximation is ubiquitous in quantum chemistry.

2.3 Hartree-Fock Theory (HF theory)

As one of the basic fundamental theories of quantum chemistry, the solution of the HF

equations is the building block for most of the advanced ab initio methods which provide a

more accurate description of a many-electron system.6–8 However, one of the crucial missing

pieces of the HF theory is that it neglects the electron correlation in multi-electron systems.

In the HF theory, electron-electron interaction is treated in an average way, in other words,

each electron only interacts with a static electron cloud of all the other electrons, instead

of an interaction with real electrons. In this way, the lowest energy obtained from the HF

theory will be always greater than the true energy of the system in the sense of the variational

principle.
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The working form for the HF theory is the Roothaan-Hall equations.8 They can be

simply written as matrix equations:

FC = SCE (2.5)

where F is the Fock matrix, which plays the role of the Hamiltonian in the Schrödinger

equation, E is the diagonal matrix of orbital energies, C is the coefficient matrix for the

expansion of the molecular orbitals in terms of the basis functions, and S is the overlap

matrix.9

The Roothaan-Hall equations can be solved by the self-consistent field (SCF) method.

The procedure for SCF is: First, all one- and two-electron integrals are calculated followed

by generation of an initial starting guess for the MO coefficients. Second, the initial density

matrix is formed and then the formation of the Fock matrix using the core integrals and the

density matrix times two-electron integrals follows. Third, the Fock matrix is diagonalized,

and the eigenvectors contain the new MO coefficients. Last, the new density matrix is

formed and if it is sufficiently close to the previous density matrix, then the self-consistency

is achieved. Otherwise, a new Fock matrix is formed and the same procedure is repeated

until the density matrix reaches convergence.

2.4 Basis set approximation

Mathematically, any set of functions can be used as a basis set.6–8,10,11 In theoretical

and computational chemistry, basis set is defined as a set of functions (called basis functions)

whose linear combinations are used to create molecular orbitals (ψj),

ψj =
n∑
i=1

cijχi (2.6)

where the coefficients cij are also called the molecular orbital expansion coefficients, which

can be determined numerically by using the variational principle. χi denotes an arbitrary

function. Larger basis sets provide more accurate approximations to the orbitals by imposing
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fewer restrictions on the locations of the electrons in space. At the same time, the energy

converges towards the HF limit of the method more closely.

Slater-type orbitals (STO) and Gaussian-type orbitals (GTO)7,10,12 are the types of

orbitals used in quantum chemistry. The STOs have the functional form:

ψζ,n,l,m(r, θ, φ) = NYl,m(θ, ψ)rn−1e−ζr (2.7)

where N is the normalization constant and Yl,m are the typical spherical harmonic functions.

The parameter ζ refers to the orbital exponent determining the size of orbitals. STO orbitals

are important historically. However, their application is now limited for two main reasons.

A major deficiency of STOs is that they are not appropriate for numerical computations

of multi-centered integrals while solving the Schrödinger equation due to the high cost in

computer time. Most quantum chemistry codes use GTOs as basis functions, and they have

the general form:

ψα,n,l,m(r, θ, φ) = Nxlymzne−αr
2

(2.8)

where the sum of l,m, and n determines the type of orbital. In this function, the dependence

on r2 in the exponential makes GTOs inferior to STOs in two ways: First of all, a GTO

has zero slope at the nucleus while an STO has a cusp. As the consequence, GTOs have

difficulty in describing the proper behavior near the nucleus. Secondly, GTOs fall off too

rapidly far from the nucleus compared to STOs, and the whole wavefunction is therefore

represented poorly, which indicates that more GTOs are needed for obtaining a certain

accuracy compared to STOs. Nevertheless, GTOs have the important advantage over STOs

that a GTO integral evaluation is computationally cheaper than that for STO especially

for two-electron integrals. Thus, GTOs are preferred and generally used in calculations.

Fortunately, a linear combination of GTOs could be used to better mimic the behavior of
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an STO. This combination has the following form:

Φµ =
L∑
i=1

diµΦi(αiµ) (2.9)

diµ is the expansion coefficient of the primitive Gaussian function Φi, which has an exponent

αiµ. L is the number of functions in the expansion. Actually the GTOs are not orbitals. They

are just simpler functions and are called primitive Gaussians. For molecular calculations,

these gaussian primitives have to be contracted. In other words, certain linear combinations

of them will be used as basis functions. In quantum chemistry contraction means “a linear

combination of gaussian primitives to be used as basis function.”12 Such a basis function

will have fixed coefficients and exponents. The contractions are sometimes called Contracted

Gaussian Type Orbitals. Contracted Gaussians are used most often in quantum mechanics

calculations.

There are several terms associated with basis sets. The minimal basis set7,10,12 means

that one basis function is applied per occupied atomic orbital. In other words, a minimal

basis set is a representation that only consists of these functions required to accommodate

all of the electrons in each atom. Quantum chemists found out that as least three Gaussians

are needed to properly mimic one STO. This combination is named as STO-3G. Therefore,

in quantum chemistry, the minimal basis set for a calculation is STO-3G. Minimal basis

sets cannot describe the wavefunction sufficiently since the number and size of the orbitals

are fixed for all systems. To improve the performance of the minimal basis set, the number

of basis functions for each orbital with different orbital exponents has been doubled and

tripled, called Double-Zeta and Triple-Zeta, respectively. In chemical bonding, the core

orbitals only weakly affect bonding properties while valence orbitals are very important.

Furthermore, split valence bases are used to add additional flexibility for describing valence

orbitals. On the other hand, diffuse basis functions are added to deal with systems that

allow electrons to flow away from the nucleus, for instance, for excited states and anions.
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Another modification of basis sets is to make the atomic orbitals polarized by the influence

of their surroundings. The polarization functions in basis sets are usually denoted as * or

(d), for example, 6-31G(d). Finally, one should mention Dunning’s correlation-consistent

basis sets.13 Thom Dunning pointed out that basis sets optimized at the HF level might not

be sufficient for correlated computations. Dunning’s basis sets are used dominantly in this

thesis. The first group of them is the cc-pVXZ family, which means a Dunning correlation-

consistent, polarized valence, X-zeta basis; where X=D,T,Q,5,6,7. When a prefix “aug” is

added, it means one set of diffuse functions is added for every angular momentum present in

the basis. The Dunning basis sets are designed to converge smoothly toward the complete

basis set (CBS) limit.

2.5 Electron correlation methods

The deficiency of the HF method is the lack of instantaneous correlation of the move-

ments of electrons, which in turn lowers the total electron-electron potential energy. In this

sense, the exact energy of the molecule will always be lower than that calculated by the HF

method.

Eexact = EHF + Ecorr (2.10)

Since the HF method does not include electron correlation, many theoretical methods

have been proposed in order to capture electron correlation properly. There are two cate-

gories of electron correlation. The first category is dynamical correlation, which is mainly

caused by the instantaneous repulsion of the electrons. In the HF method, electrons often

get too close to each other, because the electrostatic interaction is treated in only an average

manner. As a result, the electron-electron repulsion term is too large resulting in higher en-

ergy. It is called dynamical electron correlation because it is related to the actual movements

of the individual electrons. The dynamical correlation can be treated by perturbation the-

ory,7,10,12 coupled cluster (CC) theory,7,10,12,14 and density functional theory (DFT).15 The
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second one is non-dynamical or static correlation. It is related to the fact that in certain cir-

cumstances a single Slater determinant is not a good approximation to the true ground state,

because there are other Slater determinants with comparable energies. On the other hand,

non-dynamical correlation can be treated by the multi-configurational self-consistent field

(MCSCF) method16 via a linear combination of determinants. Electron correlation methods

are referred to as post-HF methods since the correlation correction terms are added to the

basic HF energy.

2.5.1 Full configuration interaction

The full configuration interaction (FCI) method is the most complete treatment of the

molecular system possible within the finite set of basis functions. In CI, the exact wavefunc-

tion is a linear combination of determinantal wavefunctions, each of which corresponds to

an electronic state of the molecule. In this way, the ground electronic state is represented as

a mixture of interacting electronic configurations.

Ψexact = c0Ψ0 + c1Ψ1 + c2Ψ2 + ... (2.11)

where Ψ0 is the ground electronic configuration of the Fock operator, Ψ1 the first electroni-

cally excited configuration, Ψ2 the second, etc., and the coefficients c refer to the contribution

of that particular electronic configuration to the full consideration of the wavefunction. These

coefficients are variationally optimized.

2.5.2 Møller-Plesset (MP) perturbation theory

Møller-Plesset (MP) perturbation theory is one of the most economical electron cor-

relation methods.7,10,12 In the MP scheme, the exact Hamiltonian operator is represented

as

H = H0 + λV (2.12)
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where H0 is the Fock operator and λV is a perturbation operator applied to H0. The

parameter λ may vary from 0 to 1. The Rayleigh-Schrödinger perturbation theory offers a

description of the perturbed system as:

HΨ = (H0 + λV )Ψ = EΨ. (2.13)

Here, the wave function and energy can be expanded in a power series of λ.

Ψλ = lim
n→∞

n∑
i=0

λiΨ(i) (2.14)

Eλ = lim
n→∞

n∑
i=0

λiE(i) (2.15)

The value of i determines the order of correction. Due to the formalism of the MP

method, the electron correlation energy is not included until n = 2, which is corresponding

to second-order Møller-Plesset perturbation theory (MP2). The wavefunction and energy

are therefore represented as a power series.

ΨMP2 = Ψ(0) + λΨ(1) (2.16)

EMP2 = E(0) + λE(1) + λ2E(2) (2.17)

Substitution of these terms into the Schrödinger equation gives:

H0Ψ(2) + VΨ(1) = E(0)Ψ(2) + E(1)Ψ(1) + E(2)Ψ(0) (2.18)

Premultiplying by Ψ(0) and integrating over all space yields the following forms for the energy.

E(0) =
〈
Ψ(0)|H0|Ψ(0)

〉
(2.19)

13



E(1) =
〈
Ψ(0)|V |Ψ(0)

〉
(2.20)

E(2) =
〈
Ψ(0)|V |Ψ(1)

〉
(2.21)

E(0) + E(1) is the Hartree-Fock energy. E(2) is the first approximation to the electron

correlation energy, expanded into the following form:

E
(2)
0 = −1

4

virt∑
ab

occ∑
ij

|〈ab||ij〉 |2

εa + εb − εi − εj
(2.22)

where i and j are the occupied orbitals, a and b are the unoccupied virtual orbitals, ε

denotes the orbital energy, and 〈ab||ij〉 are the antisymmetrized electron repulsion integral

in physicist’s notation, defined as:

〈ab||ij〉 =

∫ ∫
ψ∗a(1)ψ∗b (2)

1

r12

[ψi(1)ψj(2)− ψj(1)ψi(2)]dτ1dτ2 (2.23)

2.5.3 Coupled cluster theory

The central equation of coupled cluster (CC) theory is

Ψ = eT̂Φ0 (2.24)

where Ψ is the exact ground state wavefunction, Φ0 is the ground state HF reference wave-

function. CC theory uses the exponentiated T̂ excitation operator

T̂ = T̂1 + T̂2 + T̂3 + ... (2.25)

where the subscript represents the number of electrons each operator will excite. As the

complexity of the CC expansion is N2n+2, where N is the number of total basis functions

and n is the largest possible excitation level, it is intuitive to limit the overall number of the

excitations. This truncation leads to a hierarchy of CC methods, for example, T̂ ≡ T̂1 →
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CCS and T̂ ≡ T̂1 + T̂2 → CCSD. Where “S”, “D”, “T”, “Q”, ... denotes the singles (T̂1),

doubles (T̂2), triples (T̂3), and quadruples (T̂4), etc. When the number of excitations n is the

number of electrons in the system, then the CC method is identical to FCI, for instance, for

a four electron system CCSDTQ ≡ FCI.

A set of non-linear equations produced from the CC method must be solved iteratively.

If CCn is obtained iteratively, CC(n + 1) can be computed perturbatively. This leads to

the famous CCSD(T) method where CCSD is solved iteratively and then (T) is achieved

perturbatively.

2.5.4 Density functional theory

So far, all the methods we have been covering are called wavefunction methods. The

energies and properties obtained are based on solving for the electron wavefunction. Another

strategy for treating electron correlation is the popular density functional theory (DFT).

DFT is based on the theorem by Hohenberg and Kohn,15 which states that the ground state

molecular properties can be obtained from the ground state electron probability density ρ.

The electron density corresponding to a normalized N -electron wavefunction can be defined

as

ρ(r) = N
∑
s1

...
∑
s1

∫
dr2...

∫
drN |Φ(r1, s1, r2, s2, ...rN , sN)|2, (2.26)

where r and s are the spatial and spin variables, respectively.

Because there is a one-to-one mapping between the ground state ρ and the ground state

energy, the latter is obtained once the former is found. The primary molecular property

of interest in these studies is the energy and nuclear geometry of stationary points on the

potential energy surface (PES). The ground state energy E is a functional of ρ and the total

energy can be described as:

E[ρ] = Ts[ρ] + Vext[ρ] + J [ρ] + Exc[ρ]. (2.27)
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Where Ts[ρ] is the kinetic energy of a set of n independent electrons, moving in an effective

electron potential which leads to the density ρ(~r), Vext[ρ] is the potential energy in the field

of the nuclei plus any other external perturbation, and J [ρ] is the total Coulomb interaction

energy. The last term is the exchange-correlation energy (Exc[ρ]). This term is the key prob-

lem in DFT,17 since the exact form of the Exc[ρ] functional is unknown, thus approximations

must be used. Various approximate functionals for Exc[ρ] exist in DFT calculations. How-

ever, the electron correlation in DFT is not systematically improvable.10 Approximations to

the Exc[ρ] are discussed below.

The simplest approximation is the local density approximation (LDA). LDA assumes

that individual volume elements of the system have the density of a uniform electron gas

and that the electron density varies smoothly throughout the entire volume. In the scheme

of LDA, the Exc[ρ] term is represented as the interaction between the electron density ρ(r)

and εxc[ρ(r)], the per-electron exchange-correlation energy, integrated over the whole space.

ELDA
xc [ρ(r)] =

∫
ρ(r)εxc[ρ(r)]dr (2.28)

Every point r is surrounded by a volume element dr of constant electron density. While

this approximation is credited for the early success of DFT, it often gives unsatisfactory

results in chemical applications. Thus, several corrections for the non-uniformity of atomic

and molecular density have been constructed. For instance, LDA performs well for metallic

systems, but overbinds organic compounds.18

The local spin density approximation (LSDA) divides the density into spin-up and spin-

down and defines the net spin density as the difference between the two.19

σ(r) = ρ↑(r)− ρ↓(r) (2.29)

LSDA is good for bond lengths and vibrations, however, it overestimates dipole moments

and molecular binding energies while underestimating reaction barrier heights.8,20,21

16



The next generation of exchange-correlation approximations is the generalized gradient

approximation (GGA). This approximation has been embraced due to its simplicity. In this

approximation, not only the electron density at a certain point but also its gradient are

taken into consideration. GGA functionals correct many of the drawbacks of the LSDA ap-

proximation and produce better thermochemical predictions but still underestimate reaction

barriers.17 In order to further improve the performance of GGA, the next step would be the

inclusion of second derivative corrections, which are termed as meta-GGA functionals. In

these methods, the exchange-correlation potential is dependent on the kinetic energy density,

τ , formulated as

τ(r) =
N∑
i=1

1

2
|∇ψi(r)|2 (2.30)

where ψi is solved from a Kohn-Sham calculation.

A further improvement kicks in by hybridizing HF and DFT methods,22 in which a

HF exchange term and DFT exchange functionals are mixed in conjunction with a correla-

tion functional. This model depends on a linear combination of HF exchange with density

functional exchange-correlation contributions:

Ehybrid
xc = ax0E

LDA
xc + (1− ax0)EHF

x + ax1∆EGGA
x + ELDA

c + ac∆E
GGA
c . (2.31)

Where the three semiempirical parameters ax0, ax1, and ac can be determined by fitting the

heats of formation of a standard set of molecules. A very famous example is the B3LYP23,24

method, which uses the Becke 88 (B)25 exchange functional together with the Lee-Yang-Parr

(LYP) correlation functional.

EB3LYP
xc = ax0E

LDA
xc + (1− ax0)EHF

x + ax1∆EB
x + ELDA

c + ac∆E
LYP
c . (2.32)

Due to the incorporation of non-local Hartree-Fock exchange into a semi-local exchange-

correlation of DFT, such functionals are referred to as hybrid functionals. These functionals
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are usually more accurate than the purely local functionals for main group thermochem-

istry.17

Finally, we have double-hybrid functionals, which include a portion of the MP2 corre-

lation energy as computed with Kohn-Sham (KS) orbitals. The example of a doubly-hybrid

functional in this thesis is B2PLYP.26 Among these DFT methods, only the double-hybrid

functionals include long-range correlation; that is the reason any GGA or hybrid-GGA is

lacking in dispersion.

2.6 Dispersion in DFT

DFT is popular and used in many quantum chemistry calculations, however, it has

a very poor description of dispersion.27,28 Therefore, a wide variety of new methods have

been proposed to overcome the inherent inability of DFT to tackle the lack of long-range

correlation17,29–35 and these new methods provide enormous improvement over standard

GGA or hybrid functionals when it comes to noncovalent interaction energies. These newly

developed methods reach well into the 0.2–0.3 kcal/mol range of accuracy,5 as averaged over

popular databases of weak interaction energies,36–38 in the van der Waals minimum region.

This performance has long surpassed chemical accuracy (1 kcal/mol). Nevertheless, this

accuracy (which corresponds to a relative accuracy of about 10% for the systems considered

here) is by no means consistent across either different systems or different intermolecular

separations. Therefore, careful benchmarking of different DFT functionals against accurate

wavefunction-based interaction energies for relevant models to choose an optimal variant on

a case-by-case basis is necessary.

There are four areas of approaches to treat dispersion in DFT, getting steadily more

accurate (and hence expensive) as we progress:27

• ground level. The ground level for DFT-based dispersion correction schemes is these

methods without long range asymptotics. In general, functionals without long-range

asymptotics cannot describe the dispersion interaction of well separated molecules.
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However, the “Minnesota functionals”39 are an example of a new breed of functionals

that are fitted to a dataset such that they can describe binding energies accurately at

separations around minima, but they cannot provide an accurate picture for a long

range separation.

• semi-empirical, pair-wise methods (excluding environment) employing the C6 terms,

DFT-D229 is among this group. For almost all these pair-wise methods, they introduce

scaling factors. A short-range scaling is applied to turn off dispersion when atoms are

close to each other. DFT-D2 is the most famous out of semi-empirical approaches.

They fit the C6 terms to ab initio or experimental data.

• approaches that go beyond semi-empirical and introduce environment-dependent C6

coefficients and also some ab initio information. DFT-D3,34 the Becke-Johnson (BJ)

model (XDM),40 and Tkatchenko-Scheffler (TS)32 are among this group. Including

the environment dependence and ab initio data makes these methods significantly

more transferable. The TS method begins with C6 coefficients found for interactions

between free atoms, computed with self-interaction corrected time-dependent density

functional theory.

• density functional approaches based on the vdW-DF-0441 method of Langreth and

Lundqvist (and co-workers), which is to take a double integral over a pair of points in

space, and at each point calculate the product of the charge densities at the two points

and a kernel which depends on both points. The recently developed vdW functional is

the VV1035 approach of Vydrov and Van Voorhis.

• and approaches which go beyond pair-wise additivity, such as many-body dispersion

(MBD)42 and the random-phase approximation (RPA).43 The TS method is extended

to include many-body dispersion by representing the interactions between atomic den-

sities in terms of quantum harmonic oscillators (QHO).44,45
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It should be noticed that for extended systems such as graphene and nanotubes, exper-

iments may provide useful information about the strength of noncovalent interactions like

dissociation energies (D0) and adsorption enthalpies, however, direct information on their

nature is often not available. Therefore, it is necessary to rely on theory and high accuracy

calculations to understand the noncovalent interactions among them. One of the promising

ways to generate a precise description of these interactions is the fixed-node diffusion Monte

Carlo (DMC/FN-DMC) method,46 which is a member of the quantum Monte Carlo (QMC)

class.47,48

2.7 Statistics

In this thesis, two most used statistics are mean unsigned error (MUE),

MUE =

∑N
i=1|Ei − Ei

ref |
N

(2.33)

and mean unsigned relative error (MURE)

MURE =

∑N
i=1(|E

i−Ei
ref

Ei
ref
|)

N
× 100%. (2.34)
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Chapter 3

An accurate benchmark description of the interactions between carbon dioxide and

polyheterocyclic aromatic compounds containing nitrogen

3.1 Abstract

We assessed the performance of a large variety of modern density functional theory

approaches for the adsorption of carbon dioxide on molecular models of pyridinic N-doped

graphene. Specifically, we selected eight polyheterocyclic aromatic compounds ranging from

pyridine and pyrazine to 1,6-diazacoronene and investigated their complexes with CO2 for a

large range of intermolecular distances and including both in-plane and stacked orientations.

The benchmark interaction energies were computed at the complete-basis-set limit MP2

level plus a CCSD(T) coupled-cluster correction in a moderate but carefully selected basis

set. Using a set of 96 benchmark CCSD(T)-level interaction energies as a reference, we

investigated the accuracy of DFT-based approaches as a function of the density functional,

the dispersion correction, the basis set, and the counterpoise correction or lack thereof. While

virtually all DFT variants exhibit some deterioration of accuracy for distances slightly shorter

than the van der Waals minima, we were able to identify several schemes such as B2PLYP-

D3 and M05-2X-D3 whose average errors on the entire benchmark data set are in the 5–10%

range. The top DFT performers were subsequently used to investigate the energy profile

for a carbon dioxide transition through model N-doped graphene pores. All investigated

methods confirmed that the largest, N4H4 pore allows for a barrierless CO2 transition to the

other side of a graphene sheet.

Reprinted with permission from Li, S.; Smith, D. G. A.; Patkowski, K.

Phys. Chem. Chem. Phys. 2015, 17, 16560. Copyright 2015 Royal Society of

Chemistry.
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3.2 Introduction

Novel carbon-based nanomaterials such as graphene and carbon nanotubes exhibit a

wide range of mechanical and electronic properties and have been proposed for a variety

of applications. Even more diversity, in particular, both n-type and p-type semiconductor

character, can be introduced by doping pristine nanostructures with heteroatoms such as

nitrogen, boron, or oxygen. The nitrogen-doped structures, the subject of this work, are of

particular importance. The microscopic structure of N-doped carbon nanotubes has been

studied using both experiment and molecular simulations49–54 and two local patterns around

dopant atoms have emerged. The first one, the “graphitic” structure, involves a simple sub-

stitution of a nitrogen atom in place of one of the carbon atoms. This structure involves

an unpaired electron that ends up in a delocalized π? state.52,55 The second, “pyridine-like”

pattern, which will be the focus of the present study, involves 2–4 sp2 nitrogen atoms in

pyridinic rings surrounding a vacancy. The three-nitrogen vacancy is a particularly popular

model and the presence of such vacancies has been confirmed by scanning tunneling mi-

croscopy.49 Slightly larger vacancies are interesting as potential “holes” for small molecules

to enter and exit the nanotubes or to pass through a porous graphene membrane.56–68

Noncovalent interactions of graphene and carbon nanotubes with adsorbed molecules are

of broad significance2 due to the proposed applications of nanotubes in chemical sensing69

and gas storage and separation70 as well as the possibilities of tuning nanotube properties

via noncovalent functionalization.71 In particular, the separation of carbon dioxide from flue

and exhaust gases through selective adsorption is one of the most promising ways to reduce

global carbon emissions, and carbon-nanotube based materials, while not as effective as the

most recent generations of metal organic frameworks,72 provide a viable medium for CO2

sequestration.73 It should be noted that the interaction of carbon nanotubes (pristine or

doped) with CO2 and other adsorbed small molecules is dominated by dispersion and thus

provides a difficult target for ab initio computational chemistry, most notably for methods

based on density functional theory (DFT). A wide variety of new methods have been devised
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to overcome the inherent inability of DFT to account for long-range correlation17,29–35 and

these new methods provide enormous improvement over standard generalized gradient ap-

proximation (GGA) or hybrid functionals when it comes to noncovalent interaction energies.

As averaged over popular databases of weak interaction energies,36–38 the novel DFT variants

have long surpassed chemical accuracy (1 kcal/mol) in the van der Waals minimum region,

reaching well into the 0.2–0.3 kcal/mol range.5 However, this accuracy, which corresponds

to a relative accuracy of about 10% for the systems considered here, is by no means consis-

tent across either different systems or different intermolecular separations, and one has to

select an optimal DFT variant on a case-by-case basis, through careful benchmarking against

accurate wavefunction-based interaction energies for relevant models. We have previously

performed such benchmarking and functional selection for models of graphene and pristine

carbon nanotubes interacting with methane74,75 and carbon dioxide.76

For the interaction of a CO2 molecule with N-doped graphene and carbon nanotubes, a

natural class of models are dimers of CO2 with nitrogen-containing polyheterocyclic aromatic

compounds (N-PHACs) containing one or more pyridinic nitrogen atoms. Such dimers, along

with similar 1- and 2-ring complexes (involving, e.g., the purine molecule) were the subject

of a high-level (up to the supermolecular coupled-cluster method with single, double, and

perturbative triple excitations, CCSD(T)) computational study of Vogiatzis et al.77 These

authors identified the global-minimum structures for 13 N-PHAC–CO2 dimers and obtained

benchmark interaction energies close to the CCSD(T) complete basis set (CBS) limit. The

study of Ref. 77 was later employed by Mackie and DiLabio78 as a benchmark for their

DFT-based study of the CO2 adsorption on N-doped carbon nanotubes. However, none of

the models considered in Ref. 77 had more than two aromatic rings, while our methane

adsorption study74 indicated that the one- and two-ring aromatic fragments provide quite

poor models of extended carbon nanostructures.

In this paper, we attempt to find the best-performing DFT variant for the CO2 ad-

sorption on graphene and carbon nanotubes N-doped into a pyridinic structure. To this
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end, we first select a set of sixteen benchmark N-PHAC–CO2 structures that cover both

the global-minimum, planar geometries and the three-dimensional stacked structures. The

N-PHACs present in the benchmark set range from one ring (pyridine, pyrazine) to seven

rings (1,6-diazacoronene). The coronene-sized models are the largest ones for which reli-

able benchmark interaction energies, accurate to below 0.1 kcal/mol at the van der Waals

minima, can be obtained using the composite MP2/CBS+∆CCSD(T) (CBS-extrapolated

second-order Møller-Plesset perturbation theory plus a CCSD(T) correction in a moder-

ately sized basis set) approach.74,75 Alternatively, one could use some approximate, local

coupled-cluster methods79–82 but we have not pursued this approach here as it is not clear

how the associated approximations affect the uncertainty of the benchmark. We consider

six different intermolecular separations along a one-dimensional cut through the potential

energy surface (PES) for each structure, resulting in 96 data points for which benchmark

MP2/CBS+∆CCSD(T) interaction energies are computed. A variety of DFT functionals

with different atom-pairwise dispersion corrections and basis sets are then compared to this

benchmark in order to find a top performer. This top performer is then used to obtain CO2

adsorption energies on larger N-PHAC models, in particular, to model the barrier to the

CO2 transition through three different vacancies in an N-doped graphene sheet.

3.3 Methods and Computational Details

The molpro83 program was used to obtain all conventional and explicitly correlated

MP2 and CCSD(T) interaction energies. The MP2 calculations employed density fitting

(DF-)84 and used standard orbital and auxiliary bases aug-cc-pVXZ≡aXZ13,85 and aug-cc-

pVXZ/MP2FIT,86,87 respectively. To keep the errors of the DF approximation under control,

we needed to resort to conventional, non-density-fitted Hartree-Fock calculations in the aDZ

and aTZ bases. Moreover, for the explicitly correlated MP2 (MP2-F12) calculations, the

df-basis-exch and ri-basis auxiliary bases were chosen as the aug-cc-pVXZ/JKFIT sets

instead of the molpro default non-augmented sets. We found that this change in auxiliary
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bases was critical for the accuracy of MP2-F12 but had a negligible effect on the ∆CCSD(T)

term so we kept the default auxiliary bases in the ∆CCSD(T)-F12 calculations. As the cost

of DF-MP2 is just a small fraction of that of conventional MP2, only DF-MP2 calculations

are feasible in the aQZ and a5Z bases for larger N-PHACs. The “DF-” qualifier will be

dropped from now on. Unless noted otherwise, all computations utilized the counterpoise

(CP) correction for the basis set superposition error (BSSE).88,89 The 1s carbon, nitrogen,

and oxygen electrons were not correlated.

3.3.1 Geometries of the Model Complexes

To obtain the lowest-energy geometry for each dimer, first, a geometry optimization

for all N-PHAC and CO2 monomers was performed at the MP2/aTZ level. The dimer

was then optimized at the MP2/aTZ level with only the intermolecular degrees of freedom

allowed (in other words, the intramolecular degrees of freedom were frozen). In order to

consider different modes of interaction between CO2 and N-PHACs, two arrangements, one

with CO2 stacked over the N-PHAC surface and parallel to it, and the other with the CO2

carbon in the same plane as the N-PHAC, are taken into consideration. The parallelity

of the CO2 molecule to the N-PHAC plane (stacked structures) as well as the maximum

point-group symmetry were forced during the optimization, but the intermolecular distance

and the angles that do not affect symmetry and parallelity were freely optimized. The

global minimum position for all complexes occurs when the CO2 carbon lies in the N-PHAC

plane. In addition to the minimum geometries, we computed interaction energies along

radial cross sections through the potential energy surfaces passing through the minimum

and lowest-energy stacked geometries. In other words, we shifted the distance z between the

monomers with all the angles fixed relative to the line connecting the monomers. The values

of z given throughout the rest of the text are the distances between the CO2 carbon and the

closest nitrogen for the in-plane dimers (except phenanthroline-CO2, where the z value is the

distance from the CO2 carbon to the midpoint between the two closest carbon atoms in the
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Figure 3.1: The structures of the model CO2–N-PHAC complexes. The in-plane configu-
rations represent the global minima, “stacked” are the related 3D stacked structures. The
bronze-colored carbon atoms in the N-PHAC molecule as well as the closest nitrogen atom
(blue) are those that have diffuse functions in the laDZ basis.

middle ring of phenanthroline). For all the stacked geometries, the z values are the distances

between the CO2 carbon and the N-PHAC plane. The lowest-energy in-plane and stacked

geometries for each dimer are displayed in Fig. 3.1. The stacked configuration was picked

to be parallel since all resulting geometries have at least Cs symmetry, lowering the overall

computational cost compared to other possible stacked structures. The only exception is the

quinoline-CO2 complex for which, as shown in Fig. 3.1, the stacked configuration cannot
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have Cs symmetry. However, we still forced the CO2 molecule to be parallel to the quinoline

plane to get a consistent set of sixteen geometries.

3.3.2 Benchmark Energies from Wave-Function Methods

Following the standard practice in the field,90 the benchmark interaction energy is com-

puted as

E benchmark
int = E MP2

int /(a(X–1)Z, aXZ) +

∆E
CCSD(T)
int /(a(X’–1)Z, aX’Z),

(3.1)

where EX
int = EX

AB − EX
A − EX

B is the supermolecular interaction energy at a given level of

theory, ∆E
CCSD(T)
int = E

CCSD(T)
int − EMP2

int is the CCSD(T) contribution missing at the MP2

level, and the notation (basis1, basis2) represents that the bases “basis1” and “basis2” have

been utilized in the standard X−3 extrapolation for the correlation part of the interaction

energy.91 The X−3 extrapolation has been employed for both the conventional and explicitly

correlated MP2 and CCSD(T) contributions.92,93 The self-consistent field (SCF) part of the

interaction energy was taken from the calculation employing the larger of the two bases and

not extrapolated. The notation ∆CCSD(T)/aXZ indicates a correction that is calculated in

the aXZ basis set without extrapolation. Moreover, MP2/(X−1, X) and ∆CCSD(T)/(X−

1, X) will be the short-hand notations for EMP2
int /(aug-cc-pV(X − 1)Z, aug-cc-pVXZ) and

∆E
CCSD(T)
int /(aug-cc-pV(X − 1)Z, aug-cc-pVXZ), respectively.

To investigate the basis set convergence of the ∆CCSD(T) contribution, explicitly cor-

related CCSD(T)-F12 calculations were performed for seven 1-ring and 2-ring dimers (except

for the C1 stacked quinoline-CO2 complex). The CCSD(T)-F12a and CCSD(T)-F12b ap-

proximations94,95 use the default molpro83 values for the explicitly correlated Ansätze,

geminal parameters, and auxiliary bases. Since the triples contributions to CCSD(T)-F12a

and CCSD(T)-F12b do not include explicit correlation (an explicitly correlated (T) cor-

rection has been derived96 but exhibits a steeper computational scaling), we employed the
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popular estimate of the missing F12 contributions to ∆E(T) = ECCSD(T)−F12 − ECCSD−F12

via scaling:

∆E(T∗∗) = ∆E(T) · E
MP2−F12
corr

EMP2
corr

, (3.2)

where the subscript “corr” represents the correlation energy at a given level of theory. To

ensure size consistency, the scaling factor calculated for the dimer was also employed in the

counterpoise-corrected calculations for the monomers.97 Throughout this work, the notations

“(T)” and “(T**)” will refer to the unscaled and scaled triples corrections in CCSD(T)-

F12, respectively. The CCSD(T)-F12 approach in its various approximate variants provides

greatly improved weak interaction energies in double- and triple-ζ basis sets compared to

conventional CCSD(T) results.97–99

3.3.3 DFT Calculations

Among the many new variants of DFT that include some form of dispersion, the three

groups tested in this work are the functionals specifically optimized for benchmark weak

interaction energies, the DFT+D approaches with an atom-pairwise dispersion correction

added on top of a standard density-functional calculation, and the double hybrid DFT func-

tionals. In this work, we examined a few representative members of each group. For the first

group, the interaction-optimized functionals, we included M05-2X100 and M06-2X.17 Among

the second group, DFT+D, we employed the widely popular B3LYP,23,24 BLYP,25 BP86,25

PBE,101 PBE0,102,103 and LC-ωPBE104 methods as well as Grimme’s reparameterization29 of

Becke’s B97 functional.89 These five functionals were augmented by Grimme’s atom-pairwise

dispersion terms in the -D2,29 -D3,34 -D3(BJ),105 -D3-E(3), and -D3(BJ)-E(3) variants. For

the last group, we tested the B2PLYP26 double hybrid functional.

All DFT interaction energies except for B2PLYP and LC-ωPBE were calculated using

molpro 2012.183 locally modified to include Grimme’s reparameterization of B97. The

requested energy convergence threshold for molpro calculations was at least 10−7 hartree

(10−8 for the M05-2X and M06-2X functionals which are known to exhibit particularly slow
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convergence with respect to the integration grid106,107), and the corresponding autogenerated

molpro grids were used. All calculations employed density fitting with the default auxiliary

basis sets108 in molpro 2012. The -D2, -D3, -D3(BJ), -D3-E(3), and -D3(BJ)-E(3) corrections

were computed using Grimme’s dftd3 program V3 Rev. 2. The LC-ωPBE and B2PLYP

interaction energies were calculated by the PSI4 code,109 employing density fitting with the

default PSI4 auxiliary basis sets. For the psi4 calculations, the default 10−6 hartree energy

convergence threshold and the Lebedev-Treutler (75,302) grid were utilized. As the CP

correction is by no means guaranteed to improve DFT results, all DFT variants were tested

both with and without this correction.

3.4 Results and Discussion

3.4.1 Benchmark Interaction Energies
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Table 3.1: The MP2 and ∆CCSD(T) interaction energy contributions (in kcal/mol) for the lowest-energy structures of the
pyrazine-CO2 and quinoxaline–CO2 complexes. The rows marked “ext.” display the CBS-extrapolated results — the value in
the aXZ column was obtained from the (X − 1, X) extrapolation.

in-plane pyrazine-CO2 stacked pyrazine-CO2 in-plane quinoxaline-CO2 stacked quinoxaline-CO2

method aDZ aTZ aQZ a5Z aDZ aTZ aQZ a5Z aDZ aTZ aQZ a5Z aDZ aTZ aQZ a5Z
MP2 -3.328 -3.667 -3.786 -3.838 -1.208 -1.544 -1.631 -1.672 -3.837 -4.221 -4.361 -4.420 -3.296 -3.765 -3.920 -3.987
ext. -3.811 -3.871 -3.886 -1.686 -1.698 -1.711 -4.388 -4.459 -4.474 -3.969 -4.032 -4.051
MP2-F12 -3.851 -3.902 -3.893 -3.896 -1.635 -1.696 -1.705 -1.711 -4.439 -4.481 -4.481 -4.482 -3.985 -4.029 -4.043 -4.055
ext. -3.925 -3.888 -3.898 -1.722 -1.712 -1.717 -4.501 -4.482 -4.483 -4.048 -4.053 -4.068

∆CCSD(T) 0.082 0.043 0.037 0.468 0.503 0.518 0.113 0.071 1.097 1.139
ext. 0.026 0.032 0.517 0.528 0.054 1.157
∆CCSD(T)-F12a 0.104 0.069 0.054 0.521 0.534 0.536 0.140 0.103 1.188 1.192
ext. 0.054 0.044 0.540 0.537 0.087 1.194
∆CCSD(T**)-F12a 0.011 0.033 0.038 0.374 0.480 0.511 0.018 0.057 0.947 1.104
ext. 0.043 0.041 0.525 0.533 0.073 1.170
∆CCSD(T)-F12b 0.198 0.107 0.075 0.644 0.580 0.557 0.254 0.148 1.400 1.270
ext. 0.069 0.051 0.554 0.540 0.104 1.215
∆CCSD(T**)-F12b 0.105 0.071 0.058 0.496 0.526 0.532 0.131 0.102 1.159 1.182
ext. 0.058 0.049 0.538 0.536 0.090 1.191
∆CCSD(T)-F12avg 0.104 0.070 0.056 0.509 0.530 0.534 0.135 0.102 1.173 1.187
ext. 0.056 0.046 0.539 0.537 0.088 1.193

CCSD(T)/aXZ -3.245 -3.623 -3.755 -0.735 -1.040 -1.118 -3.723 -4.149 -2.192 -2.624
CCSD(T)/(X − 1, X) -3.782 -3.850 -1.168 -1.174 -4.328 -2.806
CCSD(T)-F12avg/aXZ -3.747 -3.832 -3.837 -1.126 -1.166 -1.172 -4.303 -4.379 -2.811 -2.842
CCSD(T)-F12avg/(X − 1, X) -3.868 -3.841 -1.183 -1.175 -4.411 -2.855
MP2/(Q,5)+ ∆CCSD(T)/aXZ -3.804 -3.843 -3.850 -1.243 -1.209 -1.194 -4.361 -4.403 -2.955 -2.911
MP2/(Q,5)+ ∆CCSD(T)/(X − 1, X) -3.860 -3.854 -1.194 -1.183 -4.420 -2.894
MP2/(Q,5)+ ∆CCSD(T)-F12avg/aXZ -3.782 -3.816 -3.830 -1.203 -1.181 -1.178 -4.339 -4.372 -2.878 -2.864
MP2/(Q,5)+ ∆CCSD(T)-F12avg/(X − 1, X) -3.830 -3.840 -1.172 -1.175 -4.386 -2.859

MP2-F12/(Q,5)+ ∆CCSD(T)-F12avg/aXZ -3.794 -3.828 -3.842 -1.208 -1.187 -1.183 -4.347 -4.381 -2.894 -2.881
MP2-F12/(Q,5)+ ∆CCSD(T)-F12avg/(X − 1, X) -3.842 -3.852 -1.177 -1.180 -4.394 -2.876
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In this section we present how the benchmark wave-function-based N-PHAC–CO2 in-

teraction energies were obtained employing large-basis MP2 and CCSD(T) calculations. In

order to understand the effects of basis set size on the MP2 interaction energy and on the

∆CCSD(T) contribution, we first examined the seven 1- and 2-ring systems that have at

least Cs symmetry and obtained an extended set of conventional and explicitly correlated

MP2 and CCSD(T) interaction energies including results in basis sets up to a5Z and aTZ,

respectively. For the minimum geometry of the in-plane and stacked pyrazine-CO2 systems,

which are both small and highly symmetric, we computed the CCSD(T) results in an even

larger, aQZ basis. The results for four representative systems are presented in Table 3.1.

This table includes the estimates of the total interaction energy obtained by a straightfor-

ward CBS extrapolation of the CCSD(T) results or an augmentation of the MP2/CBS value

with the ∆CCSD(T) correction that is either computed or CBS-extrapolated. Table 3.1 il-

lustrates the accuracy to which the CBS limit can be determined when the system size limits

the CCSD(T) basis set choice to aTZ (as in the general case of the 1- and 2-ring systems) or

aDZ (for all N-PHACs larger than 2-ring, except for the planar phenanthroline-CO2 where

we ran aTZ since it has C2v symmetry). We examined the CCSD(T)-F12 approach with and

without the scaling of triples, and noted that the scaling is harmful for the CCSD(T)-F12a

variant but beneficial for CCSD(T)-F12b (the first observation indicates that the CCSD(T)-

F12a approach, formally more approximate than CCSD(T)-F12b,94 highly benefits from a

cancellation of errors between the CCSD part and the triples part93). Therefore, we use

the average of the ∆CCSD(T)-F12a and ∆CCSD(T**)-F12b results, further denoted as

∆CCSD(T)-F12avg, as the benchmark value for the ∆CCSD(T) contribution. These values

are listed in Table 3.1 along with the values of the ∆CCSD(T)-F12 and ∆CCSD(T**)-F12

interaction energy terms.

The nonextrapolated MP2 and MP2-F12 results in Table 3.1 all converge smoothly to

the CBS limit. The (T,Q) and (Q,5) extrapolated values agree to within 0.04 kcal/mol
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for each system. Furthermore, the non-extrapolated MP2-F12 results are better than non-

extrapolated MP2; however, after extrapolation both methods produce similar results.

The ∆CCSD(T) corrections shown in Table 3.1 exhibit a moderately fast convergence

with the basis set size. It is obvious that extrapolation does help in the convergence of

∆CCSD(T). The explicitly correlated coupled cluster methods, especially CCSD(T)-F12a,

exhibit faster convergence than traditional CCSD(T). The convergence of ∆CCSD(T)-F12a

and ∆CCSD(T**)-F12b is smooth and the extrapolations work well. For the stacked

pyrazine–CO2 complex, the results gathered in Table 3.1 provide benchmark values of

−1.717 ± 0.006 kcal/mol for MP2 and 0.537±0.003 kcal/mol for ∆CCSD(T). This leads

to the total MP2/CBS+∆CCSD(T) interaction energy of −1.180±0.007 kcal/mol, where

the uncertainties of the two contributions have been added quadratically.

It is not feasible to run CCSD(T)/aQZ for systems that contain more than one ring.

It is also preferable to avoid doing CCSD(T)/aTZ for systems that contain more than two

rings since these calculations are very demanding. If the CCSD(T)/aTZ calculations are

feasible, as in the case of the seven symmetric 1- and 2-ring systems as well as the in-plane

C2v phenanthroline-CO2 dimer, there are four sensible approaches to estimate the bench-

mark CCSD(T)/CBS limit from either conventional or explicitly correlated calculations:

CCSD(T)/(D,T), MP2/(Q,5) + ∆CCSD(T)/(D,T), MP2/(Q,5) + ∆CCSD(T)/aTZ, and

MP2/(Q,5) + ∆CCSD(T)/aDZ (note that the nonextrapolated CCSD(T)/aTZ values are

inferior to the extrapolated and/or composite results, cf. Table 3.1). For the in-plane and

stacked pyrazine-CO2 complexes, these combinations lead to absolute errors in the range

0.003–0.070 kcal/mol compared to the total interaction energy given by MP2-F12/(Q,5)

+ ∆CCSD(T)-F12avg/(T,Q). It is noted that the explicitly correlated CCSD(T)-F12 ap-

proach clearly improves the basis set convergence, and the CCSD(T)-F12a and CCSD(T**)-

F12b values become virtually identical upon extrapolation. Because of this, we will use

the average of ∆CCSD(T)-F12a and ∆CCSD(T**)-F12b as the final ∆CCSD(T) contri-

bution to the benchmark: that is, the benchmark interaction energy for the 1- and 2-ring
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systems will be MP2-F12/(Q,5)+∆CCSD(T)-F12avg/(D,T). Since the CCSD(T)/aQZ cal-

culations are very time-consuming, we will use the theory level defined above to produce

the benchmark potential energy curve also for pyrazine-CO2. For this system, the er-

rors resulting from the restriction of coupled-cluster calculations to the aTZ basis set are

0.003–0.010 and 0.008–0.014 kcal/mol for MP2-F12/(Q,5)+∆CCSD(T)-F12avg/(D,T) and

MP2/(Q,5)+∆CCSD(T)/(D,T), respectively. A further restriction to aDZ leads to errors of

0.028–0.058 and 0.048–0.063 kcal/mol for explicitly correlated and conventional CCSD(T),

respectively. Even this last error, corresponding to less than 6% of the total interaction

energy, is remarkably low.

The quinoxaline–CO2 results in Table 3.1 exhibit similar convergence patterns. The

conventional ∆CCSD(T) part shows smooth convergence and the aDZ and aTZ bases are

sufficient to narrow this term down to about 0.02 kcal/mol. The highest-level conventional es-

timates of the CBS limit, the MP2/(Q,5) + ∆CCSD(T)/(D,T) results, are too low by 0.018–

0.026 kcal/mol compared to the benchmark MP2-F12/(Q,5)+∆CCSD(T)-F12avg/(D,T)

value. The observed accuracy of the conventional MP2/(Q,5)+∆CCSD(T)/(D,T) estimate

is similar to that found for the pyrazine-CO2 dimer. The same trend is also true for the

MP2-F12/(Q,5)+∆CCSD(T)-F12avg/aDZ (errors of 0.02–0.05 kcal/mol) and MP2/(Q,5)

+∆CCSD(T)/aDZ (errors of 0.03–0.08 kcal/mol) estimates. Consequently, the satisfactory,

better than 0.1 kcal/mol accuracy of even the simplest approach, MP2/(Q,5) +∆CCSD(T)/aDZ,

is likely transferable to dimers that involve larger N-PHACs. Therefore, all benchmarks

for systems larger than two rings, and for the nonsymmetric stacked quinoline-CO2 com-

plex, will utilize the conventional MP2/(Q,5)+∆CCSD(T)/aDZ level except for the C2v

phenanthroline-CO2 system and the largest dimers, which will employ MP2/(Q,5)+ ∆CCSD(T)-

F12avg/(D,T) and MP2/(Q,5)+∆CCSD(T)/laDZ, respectively—see below. As seen from

Table 3.1, the F12 approach does greatly improve the calculated MP2 results. The conven-

tional MP2 results are nearly as accurate as long as the CBS extrapolation is performed,
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but the uncertainties of conventional MP2 (computed as differences between the extrapo-

lated MP2/(Q,5) energy and the calculated MP2/a5Z energy) are larger than those of the

MP2-F12 interaction energies. In the case of quinoxaline-CO2, the MP2 and MP2-F12 un-

certainties amount to 0.054 and 0.001 kcal/mol for the in-plane dimer and 0.064 and 0.013

kcal/mol for the stacked dimer, respectively. Nevertheless, all MP2 interaction energies for

three-ring and larger systems, and for the stacked quinoline-CO2 structure, will be obtained

from a conventional extrapolation at the (Q,5) level as the cost of MP2-F12/a5Z starts to

become prohibitive.
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Figure 3.2: Differences between the benchmark MP2-F12/(Q,5) + ∆CCSD(T)-
F12avg/(D,T) interaction energy and other CCSD(T)/CBS schemes as functions of η for
the in-plane pyridine-CO2 (left panel) and stacked quinoxaline-CO2 (right panel) complexes.

Figure 3.2 displays the differences between the benchmark MP2-F12/(Q,5)+∆CCSD(T)-

F12avg/(D,T) result and various other CCSD(T)/CBS estimates for in-plane pyridine-CO2

(left panel) and stacked quinoxaline-CO2 (right panel) as functions of η (η is defined through-

out the text as z
zmin

, where zmin represents the minimum-energy z distance for each dimer).

At the minimum separations for both complexes, all extrapolations shown agree with the

benchmark to within 0.1 kcal/mol. For larger η, all considered variants are nearly as accurate

as the benchmark MP2-F12/(Q,5)+∆CCSD(T)-F12avg/(D,T) value. It is the short range,

η < 1.0, where different benchmark variants start deviating more from each other. If only the

aDZ basis set is available for the ∆CCSD(T) contribution, MP2/(Q,5)+∆CCSD(T)/aDZ is

34



superior to MP2-F12/(Q,5)+∆CCSD(T)-F12avg/aDZ for in-plane pyridine-CO2 but inferior

for stacked quinoxaline-CO2.

MP2/(Q,5) + ΔCCSD(T)/aDZ

MP2/(Q,5) + ΔCCSD(T)/aTZ

MP2/(Q,5) + ΔCCSD(T)/(D,T)

CCSD(T)/(D,T)

MP2-F12/(Q,5) + ΔCCSD(T)-F12avg/aDZ

MP2-F12/(Q,5) + ΔCCSD(T)-F12avg/aTZ

MP2-F12/(Q,5) + ΔCCSD(T)-F12avg/(D,T)

M
U

E
 [

k
c
a
l/
m

o
l]

0

0.03

0.06

0.09

0.12

0.15

0.18

η

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Figure 3.3: The mean unsigned error (MUE) for different CCSD(T)/CBS estimates as a
function of η, using the MP2-F12/(Q,5)+∆CCSD(T)-F12avg/(D,T) as the benchmark in-
teraction energy for the seven symmetric 1- and 2-ring systems.

Since the performance of various CCSD(T)/CBS estimates for the in-plane and stacked

dimers is quite different, we examine the mean unsigned errors (MUE) of different CCSD(T)/CBS

schemes for all the symmetric 1- and 2-ring systems (7 dimers altogether) compared to the

benchmark MP2-F12/(Q,5)+∆CCSD(T)-F12avg/(D,T) results in Fig. 3.3. At the mini-

mum distance, η = 1.0, the values for all different schemes agree to within 0.06 kcal/mol.

However, different CCSD(T)/CBS estimates start deviating from each other in the repul-

sive region. From a statistical point of view, the MP2-F12/(Q,5)+∆CCSD(T)-F12avg/aDZ

results are slightly superior to the MP2/(Q,5)+∆CCSD(T)/aDZ ones, but the differences

are small and consistent across the whole distance range. Thus, the limited increase in the

35



short-range accuracy does not warrant the additional computational effort of a CCSD(T)-

F12 calculation and the benchmark interaction energies for larger systems will include the

∆CCSD(T) contribution from conventional CCSD(T).

The CCSD(T)/aDZ interaction energies cannot be computed for the 1,6-diazacoronene–

CO2 system due to the presence of diffuse basis functions on multiple centers leading to near

linear dependencies in the basis set. In order to overcome the linear dependency issue, at

least some of the offending diffuse basis functions have to be removed. However, the most

popular scheme of removing diffuse functions from aXZ, the “calendar” basis sets,110 may

lead to persisting linear dependencies, a significant drop in accuracy, or both, as shown for

the methane–pyrene and methane–coronene complexes.74 Instead, an alternative basis set

truncation scheme is employed where only the carbon dioxide atoms and the six closest heavy

atoms (relative to the carbon in carbon dioxide) of the N-PHAC molecule retain diffuse func-

tions; this approach is labeled as local-aug-cc-pVDZ (laDZ).74,75 Pictorial demonstrations of

the augmentation schemes in the 2-azapyrene–CO2 and 1,6-diazacoronene–CO2 complexes

are displayed in Fig. 3.1. The bronze-colored carbon atoms in the N-PHAC molecule as well

as the closest nitrogen atom (blue) are those that have diffuse functions in the laDZ basis.

A comparison of the MP2 interaction energies and ∆CCSD(T) corrections calculated using

the full aDZ basis, its laDZ subset, and the nonaugmented cc-pVDZ set across the whole

range of η is shown in Table 3.2. This table gathers the results for 2-azapyrene–CO2, for

which we can get the CCSD(T) results for both aDZ and laDZ, and 1,6-diazacoronene–CO2,

for which we can only obtain the ∆CCSD(T) values in the laDZ basis.

The 2-azapyrene–CO2 results in Table 3.2 demonstrate that diffuse functions are sig-

nificant for both the MP2 interaction energy and the ∆CCSD(T) correction. The energy

differences between full aDZ and cc-pVDZ are up to 4.8 kcal/mol for the MP2 interac-

tion energy and up to 0.6 kcal/mol for the ∆CCSD(T) contribution. At the minimum

distances, the deviations between ∆CCSD(T)/cc-pVDZ and ∆CCSD(T)/aDZ are 0.01 and

0.28 kcal/mol for the in-plane and stacked 2-azapyrene–CO2 complexes, respectively. These
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Table 3.2: The MP2 and ∆CCSD(T) contributions to the in-plane and stacked 2-azapyrene-
CO2 and 1,6-diazacoronene-CO2 interaction energies (in kcal/mol) as functions of η = z/zmin.
No density fitting was used in this table.

2-azapyrene–CO2 1,6-diazacoronene–CO2

MP2 ∆CCSD(T) MP2 ∆CCSD(T)
basis η in-plane stacked in-plane stacked in-plane stacked in-plane stacked

cc-pVDZ 0.8 7.093 12.359 0.300 3.484 7.992 12.241 0.483 3.670
0.9 -0.251 1.555 0.090 2.028 -0.363 1.183 0.179 2.236
1.0 -2.322 -1.405 0.005 1.218 -2.587 -1.929 0.053 1.396
1.2 -2.087 -1.525 -0.013 0.498 -2.215 -2.001 0.007 0.600
1.4 -1.222 -0.854 -0.001 0.233 -1.258 -1.180 0.010 0.287
1.6 -0.691 -0.462 0.002 0.118 -0.695 -0.675 0.009 0.147

laDZ 0.8 3.986 8.005 0.386 4.093 4.962 7.440 0.583 4.380
0.9 -2.365 -1.533 0.139 2.447 -2.442 -2.321 0.230 2.759
1.0 -3.855 -3.581 0.026 1.499 -4.089 -4.479 0.080 1.768
1.2 -2.878 -2.541 -0.012 0.621 -3.039 -3.264 0.014 0.781
1.4 -1.657 -1.320 0.001 0.292 -1.714 -1.793 0.015 0.382
1.6 -0.956 -0.692 0.008 0.151 -0.957 -0.991 0.016 0.201

aDZ 0.8 4.005 7.595 0.366 4.085 4.811 6.955
0.9 -2.369 -1.777 0.119 2.441 -2.540 -2.644
1.0 -3.826 -3.723 0.015 1.493 -4.151 -4.695
1.2 -2.906 -2.584 -0.018 0.615 -3.109 -3.337
1.4 -1.678 -1.331 -0.004 0.288 -1.721 -1.812
1.6 -0.943 -0.691 0.005 0.147 -0.975 -0.993
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values should be contrasted with the corresponding differences between ∆CCSD(T)/laDZ

and ∆CCSD(T)/aDZ, amounting to 0.01 kcal/mol in both cases. Thus, while for the in-

plane structure the ∆CCSD(T) correction is quite unimportant, for the stacked geometry

the partial augmentation present in the laDZ set is both necessary and sufficient to obtain

an accurate value of this term. For the two dimers presented, the differences between the

∆CCSD(T) terms in two basis sets are roughly an order of magnitude smaller than the

differences in the MP2 interaction energy. Thus, the results in Table 3.2 suggest that the

∆CCSD(T)/laDZ values for 1,6-diazacoronene-CO2 should be within about 0.02 kcal/mol

from the full aDZ results. Consequently, the benchmark 1,6-diazacoronene–CO2 interaction

energies will be obtained at the MP2/(Q,5)+∆CCSD(T)/laDZ level.

The results in Tables 3.1–3.2 show that the ∆CCSD(T) correction is quite small, typi-

cally less than 0.1 kcal/mol at the minimum distance, for the in-plane dimers. For the stacked

configurations, the ∆CCSD(T) correction is significantly larger and MP2 overbinds by up to

1.8 kcal/mol at the minimum distance. This is the case across all the in-plane and stacked

structures (eight planar and eight stacked configurations, as shown in Fig. 3.1). In order to

investigate this phenomenon for all systems, the mean unsigned relative errors (MURE) of

MP2 and spin component scaled MP2 (SCS-MP2)111 compared to the benchmark values are

displayed in Fig. 3.4. As explained in more detail below, the averaging includes 95 geometries

(the η=0.9 point of stacked pyridine–CO2 is discarded because it is accidentally very close

to zero). As the ∆CCSD(T) correction is small for in-plane complexes, the MP2/(aQZ,

a5Z) result is very good with an overall MURE of 4.4% while the SCS-MP2/(aQZ, a5Z)

results are quite poor (a MURE of 23.8%). The opposite is true for stacked complexes, with

a MURE of 12.7% for SCS-MP2/(aQZ, a5Z) and 44.6% for MP2/(aQZ, a5Z). The MURE

of the CP-uncorrected MP2 and SCS-MP2 interaction energies is also shown in Fig. S1.

One can conclude from this figure that the lack of a CP correction significantly worsens the

accuracy of MP2 but provides some limited improvement at the SCS-MP2 level.
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Figure 3.4: The mean unsigned relative errors (MURE) for MP2 and SCS-MP2 compared,
both CP-corrected and nonCP-corrected, to the CCSD(T)/CBS-level benchmark values as
defined in the text. The “CP” means CP-corrected, and “nonCP” represents the nonCP-
corrected values. The “overall” label signifies the results of all stacked and in-plane struc-
tures.

The benchmark interaction energies computed so far do not include any monomer flex-

ibility effects. These effects can be examined by comparing the van der Waals well depth

obtained with the monomers frozen at their own optimized geometries (as is the case through-

out the rest of this work) to the well depth calculated by a minimization of the CP-corrected

interaction energy between fully flexible monomers. In the latter case, the quantity that

needs to be minimized is

E flexible
int = [E AB(AB)− E AB(A)− E AB(B)]

+[EA(A)− EA
0 (A)] + [EB(B)− EB

0 (B)]

(3.3)

where the subscript 0 represents the nonrelaxed minimum geometry of the monomer, the

superscripts signify the basis set (dimer-centered or monomer-centered), and the symbols in
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parentheses denote the subsystems. On the example of the in-plane pyridine-CO2 dimer,

we first examined the effects of the CO2 flexibility, with the pyridine monomer remaining

rigid. The resulting flexible well depth, obtained by minimizing Eq. (3.3) with the system

constrained to the C2v symmetry, is larger by 0.166 kcal/mol (at the MP2/aTZ level) than

the conventional rigid well depth. Furthermore, the changes in the C-O bond lengths do not

exceed 0.0003 Å and the O-C-O angle change is 3.15◦. The flexible-CO2 energy is further

lowered by 0.031 kcal/mol in a completely unrestricted MP2/aTZ dimer optimization. Thus,

the total flexibility contribution to interaction energy is 0.197 kcal/mol, which is in good

agreement with the previous theoretical result of 0.20 kcal/mol obtained for this system at

the MP2/cc-pVTZ level.77 The C-O bond length and the O-C-O angle keep almost the same

values in the CO2-only and fully flexible optimizations. Therefore, the flexibility effect comes

mainly from the relaxation of the CO2 molecule and the flexibility of the N-PHAC monomer

will be neglected.

In the case of the stacked pyridine-CO2 complex, we first optimized the tilt angle of CO2,

resulting in an interaction energy (still rigid and symmetric but not restricted to parallel

configurations anymore) lower by 0.002 kcal/mol. Then, based on the geometry of this

tilted configuration, the CO2-only flexible minimization was performed and the relaxation

energy was 0.011 kcal/mol. Finally, a totally unrestricted MP2/aTZ dimer optimization

on stacked pyridine-CO2 dimer was performed, lowering the interaction energy by a further

0.023 kcal/mol. Thus, the total flexibility contribution to interaction energy for stacked

pyridine-CO2 dimer is 0.034 kcal/mol. The CO2-only relaxation energies for the N-PHAC-

CO2 dimers are gathered in Table 3.3 to demonstrate the flexibility effects. The flexibility

effects for stacked complexes turn out to be very small except for the phenanthroline–CO2

system.

We conclude that while the flexibility effects are significant for the in-plane orientations,

they are negligible for the stacked ones. One may note that the stacked configurations are

more representative of extended nanotubes than the in-plane ones, and that the precise
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Table 3.3: The optimized minimum distance zmin (Å), the O-C-O angle deformation ∆φOCO

(◦), the CO2-only flexible energy change ∆Eflex (kcal/mol), and the C-O bond length change
∆rCO (Å), calculated at the MP2/aTZ level for the lowest-energy N-PHAC–CO2 structures.
The N-PHAC monomer was kept rigid.

Complex Orientation zmin ∆φOCO ∆Eflex ∆rCO

pyridine-CO2 in-plane 2.826 3.15 0.166 0.0003
stacked 3.144 0.75 0.011 0.0011

pyrazine-CO2 in-plane 2.840 2.58 0.112 0.0002
stacked 3.370 0.13 0.001 0.0004

quinoline-CO2 in-plane 2.846 2.97 0.148 0.0003
stacked 3.138 0.73 0.011 0.0013

quinoxaline-CO2 in-plane 2.873 2.61 0.114 0.0002
stacked 3.080 0.31 0.003 0.0010

pyrido[3,2-g]quinoline-CO2 in-plane 2.883 2.80 0.132 0.0008
stacked 3.103 0.47 0.006 0.0015

phenanthroline-CO2 in-plane 3.791 3.93 0.258 0.0004
stacked 2.821 3.56 0.215 0.0014

2-azapyrene-CO2 in-plane 2.813 3.30 0.183 0.0004
stacked 3.139 0.41 0.005 0.0014

details of the geometry (flexible or rigid) are not relevant for the main purpose of this work, an

assessment of the performance of different DFT-based approaches. Moreover, as we proceed

to examine radial cross sections through the intermolecular potential energy surfaces, it would

be cumbersome to reoptimize the monomer geometry at each intermolecular separation.

Therefore, all calculations throughout the rest of this work utilize rigid monomers.

The accuracy of the benchmark energies obtained in this section does not only rely

on the accuracy with which the CCSD(T)/CBS limit is estimated, but also on the small-

ness of the effects neglected in the frozen-core CCSD(T) calculation. In order to examine

the effect of core-core and core-valence correlation on the interaction energy, we computed

the all-electron CCSD(T)/aug-cc-pCVDZ and CCSD(T)/aug-cc-pCVTZ interaction ener-

gies for the four 1-ring systems at η = 1.0. In the aug-cc-pCVDZ basis, the all-electron

and frozen-core interaction energies differ by 0.004–0.005 kcal/mol; for the aug-cc-pCVTZ

set the corresponding differences range from 0.002 to 0.011 kcal/mol. Thus, the interaction
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energy contributions from the core-core and core-valence correlation should not exceed a

few hundredths of a kilocalorie per mole. The relativistic effects are likely even smaller as

only light atoms are present. The effects of coupled-cluster excitations beyond CCSD(T)

are the hardest to estimate, especially since their basis set convergence is often slow.112,113

The most similar system for which these effects have been estimated is the benzene dimer,

for which Pitoňák et al.114 performed small-basis CCSD(TQf)
115 calculations, taking into

account approximate quadruple excitations. The post-CCSD(T) interaction energy correc-

tions obtained in this way ranged from 0.02 to 0.04 kcal/mol so we expect the post-CCSD(T)

effects to be of similar magnitude for the systems considered here. Overall, our benchmark

interaction energies are likely accurate to 0.1 kcal/mol or better at the minimum separations

(η = 1.0).

3.4.2 DFT calculations

In this section, we examine how well different DFT functionals recover the MP2/CBS

+∆CCSD(T) benchmark interaction energies for the N-PHAC-CO2 complexes. The 16 min-

ima obtained in Sec. 3.3.1 were investigated at η times the minimum distance zmin, η = 0.8,

0.9, 1.0, 1.2, 1.4, and 1.6, giving a total of 96 CCSD(T) results. The DFT interaction

energies were computed using the def2-SVP, TZVP, QZVP116 and Dunning aDZ and aTZ

basis sets combined with five possible variants of Grimme’s dispersion correction: -D2,29

-D3,34 -D3(BJ),105 -D3-E(3), and -D3(BJ)-E(3), both with and without the CP correction.

As the M0x series are interaction-optimized functionals, we also examined their performance

without an additional atom-pairwise dispersion term. This corresponds to a total of 450 dif-

ferent combinations of functionals, basis sets, dispersion corrections, and the CP correction

or lack thereof (note that the dispersion corrections for the M0x series include only -D3 and

-D3-E(3), and there is no -D2 correction for LC-ωPBE).

The accuracy of different DFT variants with respect to the CCSD(T)-level benchmark

interaction energy, obtained as described above, will be investigated using mean unsigned
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relative error (MURE). The results include all 96 points except for a point in the repulsive

region (the η=0.9 geometry of stacked pyridine–CO2) which is very close to zero and would

accidentally dominate the MURE. The MURE values of all 450 different combinations of

functionals, basis sets, dispersion corrections, and the CP correction or lack of it (nonCP)

are collected in the Supporting Information of Ref. 117. Overall, the MUE/MURE values in

the QZVP basis range from 0.17 kcal/mol / 6.4% for nonCP B2PLYP-D3 to 1.25 kcal/mol

/ 45.9% for CP B97-D2. This range of errors is very similar for smaller basis sets down

to aDZ, but a further basis reduction to SVP increases the errors to the range between

0.28 kcal/mol (CP M06-2X-D3)/11.1% (CP LC-ωPBE-D3-E(3)) and 1.33 kcal/mol (CP B97-

D2)/52.2 % (nonCP BLYP-D3(BJ)). To examine which DFT variants provide the most

consistent accuracy, we analyzed the MURE values for each η and each geometry type (in-

plane/stacked) separately — the pertinent results are given in the Supporting Information of

Ref. 117. The deterioration of accuracy at the short range is clear for most of the methods:

at the shortest separation 0.8zmin in the QZVP basis, only the different variants of M05-2X,

M06-2X, PBE0 (both CP and nonCP), LC-ωPBE, and B2PLYP-D3 (nonCP only) attain a

MURE below 20%. As expected, the M05-2X and M06-2X approaches without additional

dispersion perform poorly in the long range (MURE in the QZVP basis is over 20% for

all η ≥ 1.2). However, the M05-2X-D3 and M06-2X-D3 variants perform fairly well at

all separations. The MURE values as functions of η for these functionals, along with the

next best approaches B3LYP-D3(BJ), LC-ωPBE-D3 (with and without the CP correction),

and B2PLYP-D3 (nonCP only) are presented in Fig. 3.5. Additionally, this figure shows

the corresponding MURE separated into in-plane and stacked complexes. The PBE0-D3

functional was omitted from Fig. 3.5 as its reasonable (MURE 16–23% depending on the

-D3 variant and CP/nonCP) accuracy at η = 0.8, mentioned above, deteriorates to 35–43%

at η = 0.9.

The results in Fig. 3.5 indicate that the performance at different η varies significantly:

in particular, the relative accuracy of virtually all DFT-based methods decreases at distances

43



B2PLYP-D3/nonCP

M05-2X-D3/CP

M06-2X-D3/CP

B3LYP-D3(BJ)/nonCP

LC-ωPBE-D3/nonCP

B3LYP-D3(BJ)/CP

LC-ωPBE-D3/CP

M
U

R
E

 [
%

]

0

5

10

15

20

25

30

0.8 0.9 1 1.2 1.4 1.6 in-plane stacked overall

Figure 3.5: Mean unsigned relative errors (MURE) for the best-performing DFT-based meth-
ods in the QZVP basis set as functions of the relative intermolecular separation η (the overall
value for all η is displayed as “Overall”) compared against the MP2/CBS+∆CCSD(T) bench-
mark interaction energies for the 95 model N-PHAC-CO2 geometries. In addition, separate
MURE values for the in-plane and stacked structures are displayed.

somewhat shorter than the minimum. Both the -D3 extensions of standard DFT variants

such as B3LYP and PBE and the double hybrid functional B2PLYP-D3 perform very well

at the van der Waals minima and at larger distances, with most MURE values below 5%.

However, the errors increase several times in the mildly repulsive region of the interaction,

with B2PLYP-D3 performing somewhat better than lower-rung functionals but still unsat-

isfactorily. The M06-2X-D3 approach presents a particularly interesting case: it provides,

along with M05-2X-D3, by far the best accuracy at η = 0.8 but the errors vary irregularly

with the separation, with large MURE values at η = 1.2 and 1.6 (but not 1.4). The behavior

of M05-2X-D3 is much more stable although the errors at η = 0.9 are somewhat large. While

Fig. 3.5 indicates that M05-2X-D3, along with B2PLYP-D3, should be the method of choice

for studying N-PHAC–CO2 potential energy surfaces, the oscillating accuracy of M06-2X-D3

shows, in our opinion, the dangers of strongly parameterized functionals.118 Figure 3.5 also

shows that all top-performing DFT variants except for B2PLYP-D3 provide somewhat bet-

ter relative accuracy for the in-plane geometries than for the stacked ones, but the orderings
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of functionals according to their MURE for in-plane and stacked complexes are remarkably

similar.

The deterioration of the DFT+D accuracy in the mildly repulsive region of the interac-

tion presents a serious problem as this region is extensively sampled in dynamics calculations

and relevant for the computation of many interaction-dependent observables such as second

virial coefficients and scattering cross sections. As argued in our recent work on interactions

between CO2 and pristine carbon nanotubes,76 there are likely two reasons for this deteri-

oration: overestimation of exchange by standard GGA functionals119,120 and inadequacy of

the damping functions used in the -D3 dispersion correction. The first of these issues can be

alleviated by improving on the asymptotic behavior of the exchange functional by increasing

the fraction of exact exchange at long range. This can be accomplished through the range

separation (long-range correction) technique121–123 as exemplified by the LC-ωPBE func-

tional104 (for which the -D3 parameters are available). This is the reason why we included

the LC-ωPBE functional in the set of methods tested. However, Fig. 3.5 shows that the

performance of LC-ωPBE at η = 0.8 and 0.9 is still not satisfactory. Therefore, we believe

that at least a part of the problem lies in the damping forms of -D3 which have been opti-

mized mostly for data at the van der Waals minimum separations.34,105 Consequently, the

authors of Ref. 76 proposed a refitting of the -D3, -D3(BJ), and Tang-Toennies124 damped

dispersion -D3(TT) to optimally reproduce the curved coronene–CO2 benchmark interaction

energies, also at intermolecular separations as short as 0.8 times the minimum. Therefore,

without any additional refitting, we checked how the damping parameters of Ref. 76 perform

relative to the original parameters from Refs. 34 and 105 on our N-PHAC–CO2 benchmark

dataset. The results are shown in Fig. 3.6, in the largest basis set QZVP with the CP cor-

rection. With the refitting, PBE-D3refit/CP is the top DFT performer (5.1%), followed by

the B2PLYP-D3(TT)refit/CP (5.8%). Refitting improves results for almost all the variants

except for the -D3(BJ)refit approach for some functionals. While it was shown in Ref. 76 that
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-D3refit (though not -D3(BJ)refit or -D3(TT)refit) performs as well as original -D3 for the pop-

ular S22x5125 and S66x837 databases, the transferability of the refitted damping parameters

should not be taken for granted. Therefore, it is highly gratifying that the parameters from

Ref. 76 improve the performance of standard DFT-D3 also for the N-PHAC–CO2 complexes

without any refitting required.
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Figure 3.6: Mean unsigned relative errors (MURE) for CP-corrected DFT-D3 interaction
energies using different damping functions (original and refitted in Ref. 76) in the largest
basis set QZVP, against the MP2/CBS+∆CCSD(T) benchmark interaction energies for the
95 model N-PHAC-CO2 geometries.

Figure 3.7 illustrates the basis set dependence of the accuracy of the top-performing

functionals. This figure indicates that larger basis sets improve the DFT+D performance,

with the MURE generally decreasing in the order SVP → aDZ → TZVP → aTZ → QZVP.

In the largest basis set, QZVP, the MURE values for CP and nonCP are almost identical to

each other, except that B2PLYP/nonCP is superior to B2PLYP/CP. One should note that

conventional functionals such as B3LYP and M05-2X exhibit faster basis set convergence
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Figure 3.7: Mean unsigned relative errors (MURE) for the best performers: M05-2X-D3,
B2PLYP-D3, and B3LYP-D3(BJ) in different basis sets, with and without the CP correction,
against the MP2/CBS+∆CCSD(T) benchmark interaction energies for the 95 model N-
PHAC-CO2 geometries.

than the B2PLYP double hybrid method, and their accuracy does not decay so dramatically

in smaller basis sets (even SVP) as long as the CP correction is applied. This result is

in agreement with the findings of Refs. 5 and 76 who found that the CP-corrected DFT

results converge smoothly and different bases require similar damping parameters in the

accompanying -D3 term.

The mean unsigned relative error for the best DFT functionals as a function of the N-

PHAC size (the number of rings) is displayed in Fig. 3.8. In particular, we are interested to

find out if there is any deterioration of the DFT-D3 accuracy with increasing system size due

to the neglect of pairwise-nonadditive effects126 and, if so, if the three-body -E(3) dispersion

correction34 helps alleviate this deterioration as suggested in a recent benchmark study of

large weakly interacting complexes.38 However, the results in Fig. 3.8 show that the relative

47



accuracy of top-performing DFT variants is highly uniform across systems of different sizes

with an exception of M05-2X-D3 which strangely displays poor performance for the four-ring

(2-azapyrene–CO2) complexes. Moreover, the influence of the -E(3) term is minor in all cases.

We conclude that the pairwise-nonadditive dispersion effects are relatively unimportant for

the N-PHAC–CO2 complexes considered in this work.
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D3(BJ), B3LYP-D3(BJ)-E(3)/nonCP, in the largest basis set QZVP computed, as functions
of the number of rings in the N-PHAC molecule (the overall MURE for all 95 N-PHAC-CO2

geometries is displayed in the last column) against the MP2/CBS+∆CCSD(T) benchmark
interaction energies.

To conclude the DFT analysis, the interaction energies at the MP2/CBS level, the

MP2/CBS+∆CCSD(T) benchmarks, and the top DFT performers: B2PLYP-D3/nonCP
QZVP ,

B3LYP-D3(BJ)/nonCP
QZVP , and M05-2X-D3/CP

QZVP for each N-PHAC are shown in Fig. 3.9. As

mentioned above, the size of the ∆CCSD(T) correction is very small for in-plane geome-

tries. As a result, the MP2 and CCSD(T) results for the eight in-plane configurations

differ by only up to 0.07 kcal/mol. Conversely, the stacked dimers strongly benefit from

the ∆CCSD(T) contribution: as expected, the MP2 values overestimate the interaction
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Figure 3.9: Comparison of the interaction energies calculated by different approaches for the
in-plane and stacked minimum structures (obtained as described in the text) of all N-PHAC-
CO2 dimers considered here. The MP2 values are taken from MP2-F12/(Q,5) for the seven
symmetric 1- and 2-ring systems and MP2/(Q,5) for larger systems. The benchmark values
are calculated at the MP2+∆CCSD(T) level as described in the text. The DFT results are:
B2PLYP-D3/nonCP

QZVP , M05-2X-D3/CP
QZVP, and B3LYP-D3(BJ)/nonCP

QZVP .

energies. For all of the investigated systems, the global minimum configurations are in-

plane, even though MP2/CBS predicts an incorrect minimum structure for the 2-azapyrene

and 1,6-diazacoronene complexes. For both in-plane and stacked structures, the best DFT

performers do an excellent job of reproducing the CCSD(T)-level benchmark interaction

energy. Overall, the best performing DFT/QZVP functional at the minimum separations

(η = 1.0), B3LYP-D3(BJ)-E(3)/nonCP, reproduces the minimum benchmark values to within

0.06 kcal/mol or 1.7% on the average. This level of accuracy is clearly fortuitous and does

not carry on to other distances, but it illustrates that modern DFT variants are very capable

of providing accurate van der Waals minimum energies as opposed to interaction energies in

the mildly repulsive region.
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3.4.3 Performance of Selected DFT Variants on Model N-Doped Graphene

Holes

The DFT approaches that best reproduce the CCSD(T)-level benchmark results for CO2

interacting with N-PHACs should be the methods of choice for studying interactions involv-

ing larger N-PHACs as well as with extended structures such as nitrogen-doped graphene

sheets and carbon nanotubes. We performed the first step in this direction and computed,

for the best DFT performers identified in Sec. 3.4.2, the CO2 interaction energies with three

larger N-PHACs representing the barriers to the CO2 transition through model vacancies in

the N-doped graphene surface. The geometries for these N3, N4, and N4H4 vacancy models

interacting with CO2 are presented in Fig. 3.10. The geometry of the vacancy was optimized

at the MP2/aDZ, B3LYP/aTZ, and B3LYP/aDZ level for N3, N4, and N4H4, respectively,

and the CO2 molecule was confined to the perpendicular orientation along the symmetry axis

of the vacancy. Figure 3.11 displays the interaction energies for the best DFT performers

determined in Sec. 3.4.2: B3LYP-D3(BJ)/nonCP
aTZ , M05-2X-D3/CP

aTZ, and B2PLYP-D3/nonCP
aTZ

as well as the CP-corrected MP2/aTZ interaction energies. From this figure, the energy

barrier for CO2 traveling through the (rigid) N3 vacancy is 507, 472, 485, and 450 kcal/mol

for M05-2X-D3/CP
aTZ, B2PLYP-D3/nonCP

aTZ , B3LYP-D3(BJ)/nonCP
aTZ , and MP2/aTZ, respectively.

The highest energy barrier occurs when one of the oxygen atoms in carbon dioxide passes

through the N3 plane. For the N4 vacancy-CO2 complex, the respective energy barriers are

216, 209, 213, and 202 kcal/mol. Thus, the rigid N3 and N4 holes are impassable to CO2,

but we still need to consider the stretching of the vacancy by the passing CO2 molecule that

may significantly lower the barrier.

In the case of the N3 vacancy-CO2 dimer, we will first examine the flexibility effects

with the CO2 carbon remaining in the center of the vacancy and allowing both the N-

PHAC and the C–O bonds to stretch. The resulting flexible z = 0 barrier, obtained by

minimizing Eq. (3.3) with the system constrained to the C2v symmetry, is smaller by 97.7

kcal/mol (at the B3LYP/aDZ level) than the conventional rigid z = 0 barrier. Furthermore,
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Figure 3.10: The structures for CO2 interacting with the N-PHAC models of the N3, N4,
and N4H4 vacancies in N-doped graphene.

the C–O bond length is larger by 0.237 Å and the distance from the center of the N3

vacancy to the nitrogen atoms is elongated by 0.148 Å. Based on the geometrical parameters

from the B3LYP/aDZ flexible optimization, the single point calculations using MP2/aDZ,

B3LYP-D3/aTZ, and M05-2X-D3/aTZ (all CP-corrected) were performed. The resulting

interaction energies including the monomer deformation effects are 177.4, 174.0, and 186.4

kcal/mol, respectively.

When it comes to the N4 vacancy-CO2 dimer, the flexibility effects, estimated by min-

imizing Eq. (3.3) with the system constrained to the C2v symmetry, lower the rigid z = 0
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Figure 3.11: MP2 and DFT+D interaction energies (in kcal/mol) for the N3 vacancy–CO2

(left panels) and N4 vacancy–CO2 (right panels) complexes as functions of the distance z
from the CO2 carbon to the N-PHAC plane. The upper panels display interaction energies
at the repulsive region while the lower panels show interaction energies at the minimum and
long-range distances. The CO2 molecule is located along the symmetry axis perpendicular
to the N-PHAC plane as illustrated in Fig. 3.10. The interacting molecules are kept rigid.

barrier by 25.3 kcal/mol at the B3LYP/aDZ level. At the same time, the C–O bond length

increases by 0.026 Å and the distance from the center of the N4 vacancy to the nitrogen

atoms grows by 0.182 Å. Using the flexible geometry of the complex, we again performed

single-point calculations at the B3LYP-D3/aTZ and M05-2X-D3/aTZ levels including the

counterpoise and monomer deformation corrections, obtaining interaction energy values of

94.5 and 98.8 kcal/mol, respectively. Thus, the flexible energy barrier is still large enough

to prevent the CO2 molecule from passing through the N4 hole.

At z = 4.0 Å, close to the van der Waals minimum in Fig. 3.11, when CO2 is oriented

perpendicular to the N3 vacancy, the B2PLYP-D3/nonCP
aTZ interaction energy is -1.84 kcal/mol.

However, an orientation of CO2 parallel to the surface, at the same distance, is more favorable
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with an interaction energy of -2.99 kcal/mol. At the same z = 4.0 Å, the B2PLYP-D3/nonCP
aTZ

energies are -1.54 and -3.10 kcal/mol for the perpendicular and parallel N4 vacancy-CO2

complexes, respectively.
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Figure 3.12: MP2 and DFT+D interaction energies (in kcal/mol) for the N4H4 vacancy–CO2

complexes as functions of the distance z from the CO2 carbon to the N-PHAC plane. The
CO2 molecule is located along the symmetry axis perpendicular to the N-PHAC plane as
illustrated in Fig. 3.10.

It is interesting to explore a larger vacancy that allows the CO2 molecule to move from

one side of the N-PHAC to the other much easier than in the N3 and N4 cases. According to

Ref. 58, the CO2 molecule could pass the N4H4 vacancy almost freely. Therefore, we picked

the N4H4 vacancy model, Fig. 3.10, as a representative of a larger hole to study the N-

PHAC–CO2 interaction energy. We kept the monomers rigid and restricted the symmetry to
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D2h. Figure 3.12 displays the interaction energies for the best DFT performers determined

in Sec. 3.4.2: B3LYP-D3(BJ)/nonCP
aTZ , M05-2X-D3/CP

aTZ, and B2PLYP-D3/nonCP
aTZ as well as

the CP-corrected MP2/aTZ interaction energies. From this figure, all methods predict a

minimum when CO2 is located at the center of the vacancy (in good agreement with the

results of Ref. 58) with an interaction energy around -7.5 kcal/mol.

For comparison to the N3 and N4 vacancy models, we computed the B2PLYP-D3/nonCP
aTZ

energies for the two parallel C2v N4H4-hole-CO2 complexes as well, at z = 4.0 Å. The

interaction energies are -1.14 kcal/mol for the perpendicular orientation and -1.52, -1.72

kcal/mol for the two parallel C2v N4H4 vacancy-CO2 complexes (the oxygen atoms orient

towards the nitrogens for the first one and towards the intra-vacancy hydrogens for the

second one, respectively). Thus, the parallel orientations are energetically favorable at this

distance. Overall, while the N3 and N4 vacancies are clearly too small for CO2 (or, likely,

any molecule) to pass through, the N4H4 hole is large enough, and provides a large enough

dispersion interaction, to afford an (energetically) barrierless transition of CO2 to the other

side. This observation coincides, and the resulting well depth agrees quantitatively, with

the findings of Ref. 58 which used the PBE-D2 level of theory and a wide (19,0) porous

nanotube in place of graphene. The agreement between different approaches illustrated in

Fig. 3.12 could not have been taken for granted, but it is highly gratifying, confirming that

the DFT-based variants selected on the basis of their reproduction of benchmark data for

smaller N-PHAC-CO2 complexes are also appropriate, and consistent, for the study of carbon

dioxide permeation through realistic models of porous N-doped graphene.

3.5 Summary

High-accuracy benchmark interaction energies were obtained for weakly interacting com-

plexes of CO2 with nitrogen-containing polyheterocyclic aromatic compounds, N-PHACs

(pyrazine, pyridine, quinoline, quinoxaline, pyrido[3,2-g]quinoline, phenanthroline, 2-azapyrene,

and 1,6-diazacoronene). The energies were computed by the supermolecular MP2 approach
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extrapolated to the complete basis set limit plus a CCSD(T) correction calculated in a

moderate basis set (up to aTZ for most 1- and 2-ring N-PHACs, aDZ for most 3- and

4-ring systems, and laDZ for 1,6-diazacoronene-CO2). The calculations for 1- and 2-ring

N-PHAC-CO2 complexes (except for stacked quinoline-CO2) utilized the explicitly corre-

lated CCSD(T)-F12a/b approaches while all other systems were treated using conventional

CCSD(T). An extensive basis set convergence analysis indicates that our benchmark inter-

action energies are accurate to a few hundredths of a kilocalorie per mole at the minimum

separations. Our CCSD(T)-level results indicate that the global minimum structures for

CO2 interacting with N-PHACs are all in-plane. The ∆CCSD(T) correction is quite small

(less than 0.08 kcal/mol at the minimum distance) for in-plane dimers. For the stacked con-

figurations, the ∆CCSD(T) correction is significantly larger and the MP2 energies overbind

by up to 1.8 kcal/mol at the minimum distance.

The newly developed CCSD(T)-level benchmarks were subsequently used to investigate

the accuracy of several novel DFT approaches for the N-PHAC-CO2 interaction energies.

The comparisons included one-dimensional cuts through the N-PHAC-CO2 potential energy

surfaces passing through the lowest-energy structures for both the in-plane and stacked com-

plexes, with distances ranging from 0.8 times the minimum to 1.6 times the minimum. Thus,

the optimal DFT variant needs to provide a uniformly high accuracy for the entire potential

energy curve, not just around the van der Waals minima. The tested approaches included

M05-2X, M06-2X, B2PLYP, B3LYP, BLYP, PBE, PBE0, BP86, B97, and LC-ωPBE with

the def2-SVP, TZVP, QZVP and Dunning aDZ and aTZ basis sets combined with five pos-

sible variants of Grimme’s dispersion correction: -D2, -D3, -D3(BJ), -D3-E(3), and -D3(BJ)-

E(3), both with and without the CP correction. In the largest, QZVP basis set, the three

best approaches overall turned out to be B2PLYP-D3/nonCP, B2PLYP-D3(BJ)/nonCP, and

M05-2X-D3/(both CP and nonCP), with mean unsigned relative errors on the 95 benchmark

data points amounting to 6.4, 6.9, and 7.2%, respectively. Thus, a few DFT+D variants ex-

hibit reasonable accuracy throughout the entire range of distances unlike the case of pristine
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carbon nanotubes interacting with CO2.76 While a redesign of the atom-pairwise dispersion

expression is not necessary for this work, the refitting of damping parameters performed

for curved coronene-CO2 complexes in Ref. 76 improved the performance of most DFT+D

variants also for the N-PHAC-CO2 models considered here.

The top performing DFT variants along with the MP2 approach were subsequently

employed to study the barrier to a carbon dioxide transition through three model N-doped

graphene pores. We found that only the largest of them, the N4H4 pore, is permeable to

CO2. For this pore, we obtained a quantitative agreement between all computed energy

profiles and the results of Ref. 58. As the treatment of dispersion within the methods tested

by us ranges from additive (DFT+D) to partially nonadditive (B2PLYP-D3) to fully non-

additive (MP2) and no systematic discrepancies were observed as the model size increased,

the pairwise-nonadditive effects on dispersion44,126–128 are apparently not critical for the

complexes considered in this work.
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Chapter 4

Evaluation of DFT-D variants suitable for nanotube adhesion forces

4.1 Introduction

Graphene and nanotubes exhibit a wide range of mechanical and electronic properties

and have been proposed for a variety of applications. The construction of heterostructures

by stacking different two-dimensional (2D) atomic crystals on top of each other is a new hot

research topic in the past few years.129 Graphene is the most important known 2D material.

The 2D crystals are held together by weak adhesive forces which are responsible for the

adsorption of all kinds of molecules to surfaces. Therefore, it is very intriguing to study the

forces between small molecules and graphene. As we discussed in Chapter 1, the adsorption

of small molecules on graphene or nanotubes is an example of physisorption. In this project,

we are interested in the adhesive forces, which are the normal forces resisting the separation

of adsorbate and adsorbent.130 Understanding adhesive interactions is vital for interpreting

the role that a special class of solubilizer molecules plays in the solubilization of solid carbon

nanotubes (CNTs) in common organic solvents. Without suitable solubilizers,131 solid CNTs

cannot be dissolved in these solvents.132 In order to dissolve a solid A into a solvent B, one

has to rely on external forces, mainly stochastic forces coming from the solvent, to act on

the solute molecules and pull them off the bulk against the resistance of adhesive forces

that hold the solute molecules together. The efficiency of different solubilizers has strong

dependence on their molecular structures, but this dependence can only be ascertained by

detailed investigations of various model systems.

The quality of adhesive forces as derivatives of interaction energies with respect to

intermolecular separation depends crucially on the quality of the energies. For the systems of

interest, the total interaction energy is dominated by dispersion, as investigated in Chapter 3.
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Accurate non-covalent interaction energies are obtained with high-level quantum theoretical

methods, which are costly and can be applied to systems of only moderate size. Results

from high-level quantum methods will be used as benchmark in this work. Therefore, one

aim of this project is to find out an optimal DFT+D variant that can yield reliable forces

for moderately sized systems, compared to the established high-accuracy benchmark values.

Then, the next step is to modify computationally cheap low-level methods so that they

can describe the forces accurately even for large systems that cannot be studied with high-

level methods. Such low-level methods are necessary in molecular dynamics studies of such

systems. The low-level method used in this project is the semiempirical density functional

based tight-binding method (DFTB).133

4.2 The test set

In earlier studies75,76 we have established the curved coronene molecule as a nanotube

model that is both small enough to perform high-accuracy ab initio interaction energy cal-

culations up to CCSD(T) and large enough to capture nearly all exterior adsorption energy

as compared to larger models (the latter observation would not hold for interior adsorption).

The curvature of the coronene molecule can be adjusted to model nanotubes of different

types (zigzag/armchair/chiral) and different diameters. We have also investigated the de-

pendence of benchmark interaction energies on the details of how the CCSD(T) complete

basis set (CBS) limit is estimated, that is, the basis sets employed at different levels of theory

and the presence/absence and details of the explicitly correlated (F12) treatment. Based on

these investigations, we have generated74–76,117 several sets of accurate benchmark interaction

energies for models of nanotube adsorption that cover flat and curved aromatics, pristine

and N-doped nanotubes, and CH4 and CO2 adsorbates, for a broad selection of curvatures,

adsorbate orientations, and intermolecular distances (the latter aspect is especially crucial

for estimating adhesion forces). In this work, we follow essentially the same approach.
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4.3 Results and discussion

For the task of determining the performance of various DFT approaches for describing

interactions of solubilizer molecules with nanotubes, we selected three sets of benchmark

CCSD(T)/CBS data. These sets all involve a coronene molecule (flat or curved away from

the adsorbate) interacting with 1 methane, 2 carbon dioxide, and 3 ethylene. Set 1 orig-

inates from Ref. 75 and has the same three angular orientations of the methane molecule,

but the interior-adsorption geometries (those where the coronene molecule is curved to-

wards the adsorbate) were removed. At the same time, the benchmark calculations were

extended134,135 to one shorter intermolecular distance (R/Rmin = 0.8) in line with the other

datasets, for a total of 75 geometries. Set 2 originates from Ref. 76 (which already extends

down to R/Rmin = 0.8) but the interior-adsorption geometries were removed for a total

of 105 configurations. Set 3 has been constructed specifically for this project and involves

the exterior-adsorption complexes of coronene-sized nanotube models (corresponding to the

(5,5), (7,0), (9,0), and (12,0) nanotubes and flat graphene) interacting with ethylene at 5

intermolecular distances (R/Rmin = 0.8, 0.9, 1.0, 1.2, 1.4) and three symmetric angular orien-

tations of the ethylene molecule — those in which one of the ethylene C2 axes is perpendicular

to the nanotube axis and passes through the center of the central coronene ring (Fig. 4.1).

The geometry of the ethylene monomer is optimized at the DF-MP2/aTZ level. The curved

coronene structures are obtained using the TUBEGEN program. Then, the desired frag-

ment is cut from the TUBEGEN output so that its curvature corresponds to a particular

zigzag (k,0) or armchair (n,n) nanotube. For each of the three C2 axes, one has a choice

of aligning one of the other two axes to be parallel with the nanotube axis (the two choices

are equivalent for flat coronene and are related to each other by a 90-degree rotation around

the intermolecular axis otherwise). We chose the possibility (depicted in Fig. 4.1) that led

to a slightly stronger interaction (a lower interaction energy at the optimized intermolecular

distance Rmin). The value of Rmin was optimized at the MP2/aug-cc-pVTZ level of theory
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Figure 4.1: The ethylene-curved coronene configurations considered in this work (on the
example of the (7,0) nanotube).
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for each nanotube and each configuration. Thus, the overall set 3 consists of 75 configu-

rations — all geometries and benchmark interaction energies are given in the Supporting

Information to Ref. 135. The benchmark interaction energies have been calculated as

Eint = EMP2
int (aTZ, aQZ) + ∆E

CCSD(T)
int (laDZ) (4.1)

that is, the MP2 interaction energy was extrapolated to the complete-basis-set limit using

the standard X−3 scheme,91 and the post-MP2 interaction energy contribution ∆E
CCSD(T)
int =

E
CCSD(T)
int −EMP2

int was computed in the local-aug-cc-pVDZ≡laDZ basis set,74 that is, the aDZ

basis on all ethylene atoms and on the six coronene carbon atoms closest to the ethylene

center of mass, and the nonaugmented cc-pVDZ basis on all remaining atoms of coronene.

For the CO2–curved coronene structures (Set 2) the values of ∆E
CCSD(T)
int were obtained

from explicitly correlated CCSD(T)-F12a and CCSD(T)-F12b calculations,94,95 as explained

in detail in Ref. 76; for the remaining two datasets, conventional CCSD(T) was employed.

The 1s carbon electrons were not correlated. All wavefunction calculations were performed

with the molpro2012.1 code.83

The performance of different DFT variants on the combined 255-element dataset defined

above will be evaluated using mean unsigned error (MUE) and mean unsigned relative error

(MURE). It should be noted that this dataset does not feature any points close to where

the potential energy curve crosses zero so no special weighting of relative errors is needed in

contrast to Refs. 76 and 135. The DFT functionals considered include BLYP,25 B3LYP,23,24

B2PLYP,26 BP86,25 B97,29,89 PBE,101 PBE0,102,103 and LC-ωPBE.104 These functionals were

augmented with Grimme’s pairwise dispersion corrections -D334 and -D3(BJ)105 using both

original damping parameters and the parameters refitted in Ref. 135 to a broad database of

CCSD(T)-level intermolecular interaction energies (the latter will be labeled by the “refit”

subscript). Note that both refitted variants involve three damping parameters, similar to

-D3(BJ) and unlike -D3 which involves only two parameters. All DFT calculations were
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performed in the def2-QZVP basis set and include the counterpoise (CP) correction so they

can be viewed as near CBS limit values for the respective functionals. Additionally, CP-

corrected calculations in the aDZ basis were carried out to examine a more computationally

efficient protocol. The resulting MUE and MURE values are presented in Tables 4.1 (QZVP

basis) and 4.2 (aDZ basis).

Table 4.1: Mean unsigned errors (MUE, in kcal/mol) and mean unsigned relative errors
(MURE, in percent) for different DFT-D approaches with respect to the CCSD(T)-level
benchmark values for the full 255-element dataset presented here. All DFT computations
utilized the def2-QZVP basis with the CP correction. The best performers are indicated in
bold.

MUE MURE
Functional -D3 -D3(BJ) -D33,refit -D3(BJ)refit -D3 -D3(BJ) -D33,refit -D3(BJ)refit

B2PLYP 0.172 0.118 0.073 0.124 6.61 5.65 4.79 6.87
B3LYP 0.404 0.215 0.265 0.161 16.11 10.80 13.14 9.97
BLYP 0.458 0.256 0.240 0.235 20.15 13.08 13.72 14.38
BP86 0.321 0.347 0.319 0.396 20.58 18.16 19.35 21.37
PBE0 0.330 0.242 0.243 0.171 16.90 14.42 14.21 9.98
PBE 0.449 0.280 0.296 0.179 22.98 15.96 16.28 10.29
LC-ωPBE 0.174 0.223 0.163 0.239 10.03 13.03 9.88 13.05
B97 0.483 0.461 0.297 0.343 22.55 27.56 14.84 18.90

Table 4.2: Mean unsigned errors (MUE, in kcal/mol) and mean unsigned relative errors
(MURE, in percent) for different DFT-D approaches with respect to the CCSD(T)-level
benchmark values for the full 255-element dataset presented here. All DFT computations
utilized the aug-cc-pVDZ basis with the CP correction. The best performers are indicated
in bold.

MUE MURE
Functional -D3 -D3(BJ) -D33,refit -D3(BJ)refit -D3 -D3(BJ) -D33,refit -D3(BJ)refit

B2PLYP 0.275 0.201 0.099 0.097 10.58 8.92 4.55 5.15
B3LYP 0.414 0.213 0.275 0.163 16.49 10.68 13.32 9.98
BLYP 0.453 0.250 0.245 0.240 19.90 13.02 13.83 14.57
BP86 0.332 0.354 0.329 0.407 20.90 18.56 19.67 21.83
PBE0 0.329 0.248 0.233 0.148 16.44 14.26 13.24 8.88
PBE 0.451 0.283 0.284 0.174 22.95 15.99 15.64 9.99
LC-ωPBE 0.177 0.220 0.164 0.226 9.68 13.02 9.61 12.63
B97 0.470 0.472 0.297 0.356 22.30 28.65 15.38 19.93
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The approaches that perform particularly well for a given degree of computational com-

plexity (double hybrid and range-separated functionals are more demanding than conven-

tional hybrid functionals which in turn are more demanding than GGAs) have been marked

in bold. It is apparent that the performance of different DFT-D variants changes very little

between the two bases which validates the use of the small aDZ set (with the CP correction)

for reasonably accurate calculations on larger models. Moreover, while the double-hybrid

B2PLYP-D3 approach performs significantly better than the lower-rung functionals, the top-

performing GGA and hybrid variants exhibit very similar errors. In particular, the simple

PBE-D3(BJ)refit variant emerges as an optimal combination of accuracy and efficiency for

weakly interacting complexes of this kind.

4.4 Future work

The first task in the future will be to make a comparison of results obtained with

high- and low-level methods. The benchmark interaction energies will be compared with

interaction energies computed with DFTB plus an empirical dispersion correction. In this

step, the hope is that reparametrizing the dispersion corrections, both Grimme’s D3(BJ) and

Hobza et al. original correction for DFTB,136 will allow to bring low and high-level energies

in good agreement and thus also yield good adhesive forces.

The following step is to consider using a QM/QM method with DFTB as the low-level

method and the PBE-D3(BJ) with the reparametrized damping function as the high-level

method. With this method we want to investigate systems with large adsorbates on CNTs

of different curvature at a higher level than DFTB+D. The investigations with the low level

method will be performed at the University of Graz, in the group of Dr. Sax.

63



Chapter 5

Description of the interactions between carbon dioxide and polyheterocyclic aromatic

compounds containing nitrogen via local methods

5.1 Introduction

In general, a CCSD(T)/CBS computation,137 the gold standard, is the preferred way

to generate high-accuracy weak interaction energies for many systems. It is useful for test-

ing more efficient computational tools, like a newly developed density functional. However,

the requirement of a computationally demanding CCSD(T) calculation with a feasible basis

set is the obstacle for studying intermolecular interactions between medium-sized molecules.

Even worse, one cannot perform these calculations on somewhat larger systems. In our case,

the systems involving molecules slightly larger than 2-azapyrene cannot be computed by

CCSD(T) with the aug-cc-pVDZ basis. The application of traditional CCSD(T) calculations

is typically limited to complexes smaller than 40 atoms. We can only offer CCSD(T)/laDZ

for 1,6-diazacoronene to generate CCSD(T)-level results. Thus, it is impossible to utilize

CCSD(T) for even larger systems such as 1,10-diazacircumcoronene. The geometry of this

1,10-diazacircumcoronene-CO2 complex is displayed in Fig. 5.1. The motivation for go-

ing after 1,10-diazacircumcoronene-CO2 and similar models in this project is checking if

(1) the two-body nonadditivity effects become important and if (2) the many-body disper-

sion (MBD)44 describes them well. In the work of Ref. 138 from Alexandre Tkatchenko

and coworkers, the authors stated that the non-additive many-body dispersion (MBD) en-

ergy beyond the standard pairwise approach is critical for both the correct qualitative and

quantitative description of polymorphism in molecular crystals. Recently, another study of

Alexandre Tkatchenko and coworkers reported that the ubiquitous Van der Waals forces be-

tween polarizable nonmetallic nanostructures can be more completely understood in terms
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Figure 5.1: The 1,10-diazacircumcoronene-CO2 configuration.
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of collective interactions between wavelike charge density fluctuations, instead of simply

a summation over pairwise interactions between instantaneous particle- or fragment-like

dipolar fluctuations.139 The methods we were using in our projects so far are often called

wavefunction theory (WFT) based methods. If one goes beyond WFT, one of the promis-

ing alternatives is another family of methods that can describe noncovalent interactions for

large systems: Quantum Monte Carlo (QMC). QMC is a family of stochastic methods for

solving quantum many-body problems such as the stationary Schrödinger equation based on

techniques such as use of stochastic processes and sampling of wave functions in the space

of electron positions.46,140 Even though we cannot obtain conventional CCSD(T) results for

such large systems, we still need the same level of theory to assess the performance of DFT

results and generate CCSD(T)-level benchmark values. If we stick to WFT methods in this

thesis, it leaves us with only one way: local coupled cluster methods.

There are two basic categories for existing local correlation approaches.141 The methods

in the first category avoid the fragmentation of the system and solve the corresponding equa-

tions or compute perturbative corrections for the entire system at the same time. The main

idea of these methods is proposed by the pioneering works of Pulay,142,143 who adopted local-

ized occupied molecular orbitals (MOs) and projected atomic orbitals (AOs) to describe the

virtual space. For each occupied orbital pair a domain of spatially close virtual orbitals was

built and employed to choose the allowed configurations in the wave function. The represen-

tative methods included in this category are Werner and co-workers’144,145 and Schütz and

co-workers’146,146 various local correlation methods including local CC with single and double

excitations (LCCSD) and CCSD with perturbative triples correction [LCCSD(T)], the pair

natural orbital (PNO) CC methods of Neese and co-workers82,147,148 and the orbital-specific

virtuals (OSVs) approximation of Chan, Manby, and co-workers.81,149

The second category of the local correlation methods decomposes the system into frag-

ments of manageable size, and thus the correlation energy is obtained as the sum of the
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contributions of the individual fragments and of interactions thereof. Methods in this cat-

egory are the local CC model based on the fragment MO theory,150 cluster-in-molecule

(CIM)151 local correlation formalism of CCSD(T) (CIM-CCSD(T)), and divide-and-conquer

(DC) methods.152 Other methods also included in this subgroup are incremental methods.153

In the incremental scheme, the adsorption energy is obtained as the sum of the HF energy,

EHF , of the system and the correlation contribution, Ecorr.

Eads = EHF + Ecorr (5.1)

The localized orbitals are obtained from the HF canonical orbitals by using the Foster-

Boys154 procedure. Then the Ecorr term is expanded in contributions from the correlation

of electrons in these localized orbital groups by using the method of increments at a highly

accurate quantum-chemical level in the following formula:

Ecorr = ηmol +
∑
i

ηi +
∑
i

ηmol,i +
∑
i>j

ηij +
∑
i>j

ηmol,ij + ... (5.2)

where ηmol is the correlation energy change of molecule A due to adsorption, i, j, ... are the

individual localized orbital groups of the surface or macromolecule B. The first two terms

can be called one-body contributions because the correlation energy comes from one orbital

group.
∑

i ηmol,i and
∑

i>j ηij are the two-body contributions and so forth.

5.2 Methods and computational details

In order to assess the performance of these local methods, we adapted the geometries

from Ref. 117, since we already established the highly accurate benchmark interaction en-

ergies for these configurations. Different from Ref. 117, we currently just tested the local

methods on the minimum structures, instead of at different distances R. The geometries

were presented in Fig. 3.1.
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Table 5.1: The local CCSD(T) and conventional CCSD(T) interaction energies (in kcal/mol),
and the corresponding timings (in hours), for the lowest-energy structure of the in-plane
pyrazine-CO2 complex in the aDZ basis.

method interaction energy time
NONCP CCSD(T) -4.621 0.13
NONCP LCCSD(T) -3.266 8.60
CCSD(T) -3.245 0.13
LCCSD(T) with INTERACT=1 -3.118 29.53
DF-LCCSD(T) -3.094 26.17
LCCSD(T) -3.192 8.65
OSV-CCSD(T) with INTERACT=1 -2.990 1.62
DLPNO-CCSD(T) -3.116 0.80

The local methods tested were OSV-CCSD(T),155 LCCSD(T),156 DF-LCCSD(T),157

and DLPNO-CCSD(T).148 DLPNO is the shorthand for domain based local pair natural

orbital. For comparison, we also gathered the results from the frozen natural orbitals FNO-

CCSD(T) method158 in order to have a full picture for the local methods. One should

notice that FNO-CCSD(T) is not a local method. All conventional CCSD(T) results were

obtained from the previous project, i.e., Ref. 117. ORCA159 was used to generate the data

for DLPNO-CCSD(T) and FNO-CCSD(T) was computed with PSI4.109 All other results

were obtained using MOLPRO.83 To have a better understanding of these calculations, their

timings (in h) also will be included in Sec. 5.3.

5.3 Results and discussion

In order to find out a suitable local method to describe the interaction between carbon

dioxide and polyheterocyclic aromatic compounds containing nitrogen, we first tested out

the OSV-CCSD(T), LCCSD(T), DF-LCCSD(T), and DLPNO-CCSD(T) results for the in-

plane pyrazine-CO2 complex, computed in the aDZ basis. The interaction energies were

gathered in Table 5.1. In this table, it is demonstrated that the LCCSD(T) method does

reduce the basis set superposition error (BSSE), as claimed in the original literature (Ref.
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156), as the difference between the NONCP and CP LCCSD(T) is only 0.074 kcal/mol. On

the other hand, the conventional CCSD(T) is suffering from the BSSE, since the difference

between NONCP CCSD(T) and CCSD(T) is larger than 1.3 kcal/mol. The INTERACT=1

option in Table 5.1 means that individual molecules are identified automatically and all

intermolecular pairs are automatically treated as strong pairs and included in the LCCSD

treatment. However, this will make the LCCSD(T) calculations very expensive. On the

other hand, the inclusion of this command does not help the results much, so we will not

include it in later computations. The main problem for these local methods is the long

running time. One can easily obtain the conventional high-accuracy CCSD(T) result within

minutes, however, the calculations for local methods took hours to accomplish. Since the

OSV-CCSD(T) result does not show acceptable accuracy, we will drop this method from

now on. The conclusion that can be drawn from Table 5.1 is that DLPNO-CCSD(T) can

produce reasonable results in an acceptable time. We want to obtain fairly accurate results

(“silver standard”) for systems with at least 50 atoms. In this manner, it is time to turn

our attention to larger systems. The results for CCSD(T), DF-LCCSD(T), LCCSD(T), and

DLPNO-CCSD(T) are presented in Table 5.2 for one- and two-ring systems of Ref. 117 in

the aDZ basis.

It can be seen in Table 5.2 that the density fitting (DF) approximation is very helpful

to reduce the running time, compared with the conventional scheme. The conventional

LCCSD(T) calculations are very expensive, even when the systems contain only one ring.

The running times for DF-LCCSD(T) are not so large for one-ring systems, however, they

skyrocket for two-ring configurations. The running time is 472.5 h for stacked quinoxaline-

CO2, therefore, it is not feasible to investigate the interaction energies for larger systems

via either LCCSD(T) or DF-LCCSD(T). Based on Table 5.2, DLPNO-CCSD(T) is the most

promising local approach as the calculation can be done in less time than conventional

CCSD(T). One can also notice that the differences between the results of DLPNO-CCSD(T)
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Table 5.2: The local CCSD(T) and conventional CCSD(T) interaction energies (in kcal/mol),
and timings (in hours), for the lowest-energy structures for one- and two-ring systems from
Fig. 3.1, in the aDZ basis.

complex method interaction energy time
in-plane pyrazine-CO2 CCSD(T) -3.245 0.13

DLPNO-CCSD(T) -3.116 0.80
DF-LCCSD(T) -3.094 26.17
LCCSD(T) -3.192 8.65

stacked pyrazine-CO2 CCSD(T) -0.735 0.13
DLPNO-CCSD(T) -0.732 0.9
DF-LCCSD(T) -0.931 5.0
LCCSD(T) -0.543 45.4

in-plane pyridine-CO2 CCSD(T) -3.636 0.16
DLPNO-CCSD(T) -3.464 0.2
DF-LCCSD(T) -3.336 2.2
LCCSD(T) -3.292 16.7

stacked pyridine-CO2 CCSD(T) -1.630 0.48
DLPNO-CCSD(T) -1.741 0.2
DF-LCCSD(T) -1.755 3.3
LCCSD(T) -1.373 22.1

in-plane quinoline-CO2 CCSD(T) -3.994 5.1
DLPNO-CCSD(T) -3.713 2.2
DF-LCCSD(T) -3.318 372.4

stacked quinoline-CO2 CCSD(T) -2.121 15.5
DLPNO-CCSD(T) -2.295 0.9
DF-LCCSD(T) -2.215 721.3

in-plane quinoxaline-CO2 CCSD(T) -3.723 4.9
DLPNO-CCSD(T) -4.634 0.8
DF-LCCSD(T) -3.539 278.1

stacked quinoxaline-CO2 CCSD(T) -2.192 3.6
DLPNO-CCSD(T) -2.459 0.9
DF-LCCSD(T) -2.329 472.5
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and CCSD(T) are less than 0.3 kcal/mol, except in the case of in-plane quinoxaline-CO2,

where the difference is 0.911 kcal/mol. This result is out of the acceptable range.

Even though changing the default thresholds (TCutPNO=3.33×10−7, TCutPairs=1×10−4,

TCutMKN=1 × 10−3) was not recommended in the ORCA documentation, it is logical to

play with these thresholds trying to reduce the error. Here is the original statement about

these thresholds from the ORCA manual: (a) TCutPNO controls the number of PNOs per

electron pair. This is the most critical parameter and has a default value of 3.33e-7. (b)

TCutPairs controls a perturbative selection of significant pairs and has a default value of 1e-4.

(c) TCutMKN is a technical parameter and controls the size of the fit set for each electron

pair. It has a default value of 1e-3. All of these default values are conservative. Hence,

no adjustment of these parameters is necessary. All DLPNO-CCSD truncations are bound

to these three truncation parameters and should not be touched (Hence they are also not

documented :-)).

Apparently, we have to play with these thresholds in order to obtain accurate results

for systems like quinoxaline-CO2. The results of changing the first and second threshold

are displayed in Table 5.3. In this table, the combination of the first two thresholds still

could not reduce the error into the reasonable range. Even worse, the results are fluctuating

instead of monotonously increasing or decreasing. One should notice that in this table,

the other threshold values are the default ones. The conclusion from this table is that the

combination of TCutPNO amd TCutPairs is not enough to minimize the difference between

the DLPNO-CCSD(T) and conventional CCSD(T) methods. In this manner, the third

threshold, TCutMKN , will kick in. From the results shown in Table 5.4, one can conclude

that once TCutMKN is tightened to at least 1×10−4, then the DLPNO-CCSD(T) calculation

could give the difference between DLPNO-CCSD(T) and CCSD(T) within 0.236 kcal/mol.

When TCutMKN is tighter than 1×10−7, the DLPNO-CCSD(T) result is converged to a value

of -3.487 kcal/mol.
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Table 5.3: The DLPNO-CCSD(T) interaction energies with various combinations of thresh-
olds, and conventional CCSD(T) interaction energies (in kcal/mol) for the lowest-energy
structures of two N-PHAC-CO2 complexes.

method TCutPNO TCutPairs interaction energy
in-plane quinoxaline-CO2

DLPNO-CCSD(T)/aDZ 3.33×10−3 1×10−4 -4.905
8.33×10−4 1×10−4 -4.961
3.33×10−4 1×10−4 -4.657
9.33×10−5 1×10−4 -4.563
8.33×10−5 1×10−4 -4.260
6.33×10−5 1×10−4 -4.989
4.33×10−5 1×10−4 -4.571
3.33×10−5 1×10−4 -4.430
3.33×10−6 1×10−4 -4.623
2.33×10−6 1×10−4 -4.561

4×10−7 1×10−4 -4.668
3.33×10−7 1×10−4 -4.634
3.33×10−8 1×10−4 -4.744
2.33×10−8 1×10−4 -4.747
2.33×10−8 1×10−5 -4.676
2.33×10−8 1×10−6 -4.630
2.33×10−8 1×10−7 -4.630
2.33×10−9 1×10−4 -4.764
2.33×10−9 1×10−7 -4.706
2.33×10−10 1×10−4 -4.770
2.33×10−10 1×10−6 -4.738

CCSD(T)/aDZ -3.723
in-plane 1,6-diazacoronene-CO2

DLPNO-CCSD(T)/laDZ 4×10−6 1×10−4 -3.076
4×10−7 1×10−4 -2.341

3.33×10−7 1×10−4 -3.174
4×10−8 1×10−4 -3.234

DLPNO-CCSD(T)/aDZ 3.33×10−7 1×10−4 -3.835
CCSD(T)/laDZ -4.009
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Table 5.4: The local CCSD(T) and conventional CCSD(T) interaction energies (in kcal/mol)
for the lowest-energy in-plane quinoxaline-CO2 complex in the aDZ basis. The TCutPNO and
TCutPairs thresholds are fixed at 3.33×10−7 and 1×10−4, respectively.

method TCutMKN interaction energy
DLPNO-CCSD(T) default(1×10−3) -4.634

1×10−2 -3.398
7.5×10−3 -3.391
5×10−3 -3.515

2.5×10−3 -3.526
7.5×10−4 -4.637
5×10−4 -4.620

2.5×10−4 -4.589
1×10−4 -3.525

7.5×10−5 -3.528
5×10−5 -3.523

2.5×10−5 -3.516
1×10−5 -3.502

7.5×10−6 -3.498
5×10−6 -3.494

2.5×10−6 -3.491
1×10−6 -3.489
1×10−7 -3.487
1×10−8 -3.487
1×10−9 -3.487
1×10−10 -3.487
1×10−11 -3.487
1×10−12 -3.487

CCSD(T) -3.723
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Therefore, it seems that the appropriate thresholds to produce reasonable results for the

in-plane quinoxaline-CO2 have been found. Once we got this TCutMKN parameter settled,

we went back to all the other systems with the newly found value. In order to be on the safe

side, we decided for the value TCutMKN = 1×10−5.

The interaction energies with the third threshold TCutMKN = 1×10−5 (the other two kept

as default) are presented in Table 5.5. In particular, the calculation with this threshold for in-

plane quinoxaline-CO2 has a energy difference of 0.221 kcal/mol compared to the CCSD(T)

result. This agreement is satisfactory. All the other results also are within the acceptable

range except for stacked 2-azapyrene-CO2 and larger systems. Therefore, the third threshold

individually cannot lead to DLPNO-CCSD(T) interaction energies that are accurate enough.

Based on all the results in Tables 5.1 - 5.5, another strategy to reduce the error for the case

of stacked 2-azapyrene-CO2 is to use a combination of the three thresholds together. The

information from all difference combinations of the three thresholds is shown in Table 5.6. In

this table, we can tell that the TCutPairs value has strong impact on the interaction energies.

In order to have a converged result, it has to be tighter than 1×10−5. Once this threshold

is settled, all the interaction energies are less than -2.0 kcal/mol for in-plane quinoxaline-

CO2. It is shown again in this table that a single threshold of TCutMKN cannot reduce the

error. For instance, if we only change TCutMKN to 1×10−9, the interaction energy of in-plane

quinoxaline-CO2 is -2.726 kcal/mol, which gives a difference of 0.496 kcal/mol. This is not

accurate enough. Therefore, a combination of TCutPNO, TCutPairs, and TCutMKN with values

of 3.33×10−8, 1×10−6, and 1×10−6, respectively, is recommended based on the results of

Table 5.6.

At this point, we are done with playing with the three documented thresholds, however,

we are trying our best to obtain high-accuracy results out of ORCA. In this spirit, we tried

one more threshold, the TCutTNO one. This threshold is related to the accuracy for the

(T) triple excitation correction. Its default value is 1×10−7. Once again, we combined this

threshold with the previous three to gather the values in Table 5.7.
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Table 5.5: The DLPNO-CCSD(T) (with TcutMKN = 1×10−5) and conventional CCSD(T)
interaction energies (in kcal/mol) for the lowest-energy N-PHAC-CO2 structures. Unless
stated otherwise, the aDZ basis set was used.

complex method TCutMKN interaction energy
in-plane pyrazine-CO2 CCSD(T) -3.245

DLPNO-CCSD(T) 1×10−5 -3.079
stacked pyrazine-CO2 CCSD(T) -0.735

DLPNO-CCSD(T) 1×10−5 -0.728
in-plane pyridine-CO2 CCSD(T) -3.636

DLPNO-CCSD(T) 1×10−5 -3.430
stacked pyridine-CO2 CCSD(T) -1.630

DLPNO-CCSD(T) 1×10−5 -1.666
in-plane quinoline-CO2 CCSD(T) -3.994

DLPNO-CCSD(T) 1×10−5 -3.668
stacked quinoline-CO2 CCSD(T) -2.121

DLPNO-CCSD(T) 1×10−5 -2.208
in-plane quinoxaline-CO2 CCSD(T) -3.723

DLPNO-CCSD(T) 1×10−5 -3.502
stacked quinoxaline-CO2 CCSD(T) -2.192

DLPNO-CCSD(T) 1×10−5 -2.411
in-plane pyrido[3,2-g]quinoline-CO2 CCSD(T) -3.852

DLPNO-CCSD(T) 1×10−5 -3.586
stacked pyrido[3,2-g]quinoline-CO2 CCSD(T) -2.288

DLPNO-CCSD(T) 1×10−5 -2.461
in-plane phenanthroline-CO2 CCSD(T) -4.706

DLPNO-CCSD(T) 1×10−5 -4.660
stacked phenanthroline-CO2 CCSD(T) -3.298

DLPNO-CCSD(T) 1×10−5 -3.434
in-plane 2-azapyrene-CO2 CCSD(T) -3.811

DLPNO-CCSD(T) 1×10−5 -3.671
stacked 2-azapyrene-CO2 CCSD(T) -2.230

DLPNO-CCSD(T) 1×10−3 -2.776
1×10−5 -2.735
1×10−6 -2.726

in-plane 1,6-diazacoronene-CO2 CCSD(T)/laDZ -4.009
DLPNO-CCSD(T)/laDZ 1×10−5 -3.372
DLPNO-CCSD(T)/aDZ 1×10−3 -3.835
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Table 5.6: The local CCSD(T) and conventional CCSD(T) interaction energies (in kcal/mol)
for the lowest-energy structure of the stacked 2-azapyrene-CO2 complex in the aDZ basis.

method TCutPNO TCutPairs TCutMKN interaction energy
DLPNO-CCSD(T) 8.33×10−7 1×10−5 1×10−5 -1.762

3.33×10−7 7.5×10−4 1×10−5 -1.732
3.33×10−7 5×10−4 1×10−5 -2.612
3.33×10−7 2.5×10−4 1×10−5 -1.738
3.33×10−7 1×10−4 1×10−6 -2.726
3.33×10−7 1×10−4 1×10−9 -2.726
3.33×10−7 1×10−5 1×10−5 -1.720
8.33×10−8 1×10−5 1×10−5 -1.894
3.33×10−8 7.5×10−4 1×10−5 -2.897
3.33×10−8 7.5×10−4 1×10−6 -2.889
3.33×10−8 5×10−4 1×10−5 -2.644
3.33×10−8 5×10−4 1×10−6 -2.637
3.33×10−8 2.5×10−4 1×10−5 -2.672
3.33×10−8 2.5×10−4 1×10−6 -2.665
3.33×10−8 1×10−4 1×10−5 -2.826
3.33×10−8 1×10−5 1×10−6 -1.958
3.33×10−8 1×10−6 1×10−6 -1.765
3.33×10−8 1×10−7 1×10−7 -1.763

CCSD(T) -2.230
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Table 5.7: The DLPNO-CCSD(T) (with four thresholds) and conventional CCSD(T) inter-
action energies (in kcal/mol) for the lowest-energy structure of the stacked 2-azapyrene-CO2

complex in the aDZ basis.

method TCutPNO TCutPairs TCutMKN TCutTNO interaction energy
DLPNO-CCSD(T) 8.33×10−7 1×10−5 1×10−5 1×10−7 -1.762

3.33×10−7 5×10−4 1×10−5 1×10−7 -2.612
3.33×10−7 1×10−4 1×10−3 1×10−7 -2.776
3.33×10−7 1×10−4 1×10−5 1×10−7 -2.735
3.33×10−7 1×10−5 7.5×10−4 1×10−7 -1.732
3.33×10−7 1×10−5 2.5×10−4 1×10−7 -1.738
3.33×10−7 1×10−5 1×10−5 1×10−7 -1.720
8.33×10−8 1×10−5 1×10−5 1×10−7 -1.894
3.33×10−8 7.5×10−4 1×10−5 1×10−7 -2.897
3.33×10−8 7.5×10−4 1×10−6 1×10−7 -2.889
3.33×10−8 5×10−4 1×10−5 1×10−7 -2.644
3.33×10−8 5×10−4 1×10−6 1×10−7 -2.637
3.33×10−8 2.5×10−4 1×10−5 1×10−7 -2.672
3.33×10−8 2.5×10−4 1×10−6 1×10−7 -2.665
3.33×10−8 1×10−4 1×10−5 1×10−7 -2.826
3.33×10−8 1×10−4 1×10−5 1×10−8 -2.848
3.33×10−8 1×10−5 1×10−4 1×10−7 -1.966
3.33×10−8 1×10−5 1×10−4 1×10−8 -2.028
3.33×10−8 1×10−5 1×10−5 1×10−7 -1.965
3.33×10−8 1×10−5 1×10−5 1×10−8 -2.027
3.33×10−8 1×10−5 1×10−6 1×10−7 -1.958
3.33×10−8 1×10−5 1×10−6 1×10−8 -2.020
3.33×10−8 1×10−5 1×10−6 1×10−9 -2.034
3.33×10−8 1×10−5 1×10−6 1×10−10 -2.038
3.33×10−8 5×10−6 5×10−6 1×10−7 -1.806
3.33×10−8 1×10−6 1×10−6 1×10−7 -1.765
3.33×10−8 1×10−6 1×10−6 1×10−8 -1.830
3.33×10−8 1×10−7 1×10−7 1×10−7 -1.763
3.33×10−8 1×10−8 1×10−8 1×10−7 -1.763
3.33×10−8 1×10−8 1×10−8 1×10−8 -1.829

1×10−8 1×10−6 1×10−6 1×10−7 -1.831
1×10−8 1×10−6 1×10−6 1×10−8 -1.910

CCSD(T) -2.230
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Table 5.8: The conventional CCSD(T) and DLPNO-CCSD(T) (with default and optimal
thresholds) interaction energies (in kcal/mol) and timings (in hours) for the lowest-energy
N-PHAC-CO2 structures in the aDZ basis. DLPNO-CCSD(T) refers to the default-threshold
results, while DLPNO-CCSD(T)T ight denotes data for the optimal thresholds.

Complex CCSD(T) time DLPNO-CCSD(T) time DLPNO-CCSD(T)T ight time
in-plane pyrazine-CO2 -3.25 0.14 -3.12 0.8 -3.08 0.6
stacked pyrazine-CO2 -0.74 0.13 -0.73 0.9 -0.54 0.6
in-plane pyridine-CO2 -3.64 0.16 -3.46 0.2 -3.46 0.6
stacked pyridine-CO2 -1.63 0.48 -1.74 0.2 -1.44 4.1
in-plane quinoxaline-CO2 -3.72 4.9 -4.63 0.8 -3.50 3.4
stacked quinoxaline-CO2 -2.19 3.6 -2.46 0.9 -1.86 3.7
in-plane quinoline-CO2 -3.99 5.1 -3.71 2.2 -3.77 11.4
stacked quinoline-CO2 -2.12 15.5 -2.30 0.9 -1.86 3.8
in-plane pyrido[3,2-g]quinoline-CO2 -3.85 26.6 -3.65 2.6 -3.62 14.2
stacked pyrido[3,2-g]quinoline-CO2 -2.29 23.0 -2.33 2.9 -1.96 14.0
in-plane phenanthroline-CO2 -4.71 5.9 -4.70 2.4 -4.43 36.0
stacked phenanthroline-CO2 -3.30 22.6 -3.15 2.6 -2.99 14.0
in-plane 2-azapyrene-CO2 -3.81 12.8 -3.53 4.2 -3.64 22.0
stacked 2-azapyrene-CO2 -2.23 39.9 -2.78 4.3 -1.83 44.0
in-plane 1,6-diazacoronene-CO2 -4.01 96.6 -3.17 30.0 -3.35 76.0
stacked 1,6-diazacoronene-CO2 -2.71 85.8 -2.55 35.0 -1.80 93.0

Changing this new threshold gives more accurate results but the improvement is not

tremendous, as suggested in the ORCA manual, the previous three are the dominant thresh-

olds. Based on the information in this table, we obtained an optimal combination of the four

thresholds. The values are 3.33×10−8, 1×10−6, 1×10−6, and 1×10−8 for TCutPNO, TCutPairs,

TCutMKN , and TCutTNO, respectively.

Now, we collect all the default-threshold results, conventional CCSD(T), and optimal-

threshold DLPNO-CCSD(T), as well as the timings in hours for these calculations in Ta-

ble 5.8. From this table, it is obvious that the optimal-threshold results underestimate the

interaction energies, however, the good news for them is that they are consistent. Different

from the optimal-threshold values, the default-threshold ones are fluctuating. In the case of

1,6-diazacoronene-CO2, regardless of the in-plane or stacked structure, neither the default

nor the optimal thresholds provide an accurate description of the interaction. Another thing

is that the running times of default-threshold calculations exhibit a truly near linear behav-

ior, however, the running times for optimal thresholds are close to conventional CCSD(T).

These factors make the DLPNO-CCSD(T) approach troublesome in terms of describing the
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dispersion interaction between carbon dioxide and polyheterocyclic aromatic compounds

containing nitrogen.

Even though we already concluded that the local methods could not generate accu-

rate enough interaction energies for our target systems, we still want to try some methods

to possibly obtain CCSD(T)-level silver standard benchmark results. That is the reason

we did one further test by using the FNO-CCSD(T) method. There is one threshold to

play with when one is running FNO-CCSD(T) in PSI4 – OCC_TOLERANCE. This is a “Cutoff

for occupation of MP2 virtual NOs in FNO-QCISD/CCSD(T). Virtual NOs with occupa-

tions less than OCC_TOLERANCE will be discarded.” The default value for OCC_TOLERANCE is

1.0×10−6. When the default threshold is used, the differences between the FNO-CCSD(T)

and CCSD(T) interaction energies are less than 0.02 kcal/mol, which is excellent. The re-

sults for FNO-CCSD(T) are collected in Table 5.9. While we are computing the interaction

energies with OCC_TOLERANCE of 1×10−4, the results are still acceptable. However, when

1×10−3 is used to obtain the results, the errors are out of control. Therefore, it is safe

to conclude that FNO-CCSD(T) with the threshold OCC_TOLERANCE = 1×10−4 could pro-

duce fairly accurate results for the interaction between carbon dioxide and polyheterocyclic

aromatic compounds containing nitrogen.

5.4 Summary

In this project of assessment of the performance of local methods for the description of

the interaction between carbon dioxide and polyheterocyclic aromatic compounds containing

nitrogen, there are three main conclusions. Firstly, LCCSD(T) and DF-LCCSD(T) are too

expensive to obtain interaction energies for the complexes of interest, as can be seen from

the LCCSD(T) and DF-LCCSD(T) results obtained from 1- and 2-ring systems in Tables 5.1

and 5.2. Secondly, the default-threshold DLPNO-CCSD(T) results are inconsistent across

different dimers, especially when the larger systems are studied. Although it is claimed in the

ORCA documentation that these thresholds should not be touched at all, it is obviously not

79



Table 5.9: The conventional CCSD(T) and FNO-CCSD(T) interaction energies (in kcal/mol)
for the lowest-energy N-PHAC-CO2 structures, in the aDZ basis. The FNO threshold is given
in parentheses.

dimers CCSD(T) FNO-CCSD(T)
in-plane pyrazine-CO2 -3.245 -3.247(1×10−6)

-3.266(1×10−5)
-3.258(1×10−4)
-3.342(1×10−3)

stacked pyrazine-CO2 -0.735 -0.738(1×10−6)
-0.761(1×10−4)
-0.885(1×10−3)

in-plane pyridine-CO2 -3.636 -3.638(1×10−6)
-3.665(1×10−4)
-3.739(1×10−3)

stacked pyridine-CO2 -1.630 -1.633(1×10−6)
-1.656(1×10−4)
-2.202(1×10−3)

in-plane quinoxaline-CO2 -3.723 -3.726(1×10−6)
-3.753(1×10−4)
-3.838(1×10−3)

stacked quinoxaline-CO2 -2.192 -2.196(1×10−6)
-2.266(1×10−4)
-2.942(1×10−3)

in-plane quinoline-CO2 -3.994 -4.024(1×10−4)
-4.097(1×10−3)

stacked quinoline-CO2 -2.121 -2.159(1×10−4)
-2.349(1×10−3)

in-plane pyrido[3,2-g]quinoline-CO2 -3.852 -3.878(1×10−4)
-3.952(1×10−3)

stacked pyrido[3,2-g]quinoline-CO2 -2.288 -2.356(1×10−4)
-2.565(1×10−3)

in-plane phenanthroline-CO2 -4.706 -4.723(1×10−6)
-4.782(1×10−4)
-5.241(1×10−3)

stacked phenanthroline-CO2 -3.298 -3.390(1×10−4)
-3.892(1×10−3)

in-plane 2-azapyrene-CO2 -3.811 -3.820(1×10−5)
-3.825(1×10−4)
-3.914(1×10−3)

-3.819(1×10−4)(laDZ)
stacked 2-azapyrene-CO2 -2.230 -2.235(1×10−6)

-3.216(1×10−3)
-2.073(1×10−4)(laDZ)

in-plane 1,6-diazacoronene-CO2 (laDZ) -4.009 -4.118(1×10−3)
stacked 1,6-diazacoronene-CO2 (laDZ) -2.710 -3.524(1×10−3)
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the case as demonstrated in our research. On the other hand, it is very hard to manipulate

these thresholds in order to yield decent benchmark values. The reason that we cannot

get accurate interaction energies is that N-PHACs are highly nonlocal. Finally, the FNO-

CCSD(T) results are the best out of all the test methods. One can even loosen the default

threshold OCC_TOLERANCE to 1× 10−4.

As discussed very recently in Ref. 160, the new version of ORCA will be released in the

near future. The truly linear version of DLPNO-CCSD(T)160 will be included in this version

and it is claimed to have improved accuracy in addition to improved efficiency. Our hope is

that this new implementation could bring promising outcomes. Other than the truly linear

DLPNO-CCSD(T), CIM-CCSD(T)151 and methods of increments153,161 might be tried as

well.
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[146] Kats, D.; Korona, T.; Schütz, M. J. Chem. Phys. 2006, 125, 104106.

[147] Neese, F.; Wennmohs, F.; Hansen, A. J. Chem. Phys. 2009, 130, 114108.

[148] Riplinger, C.; Neese, F. J. Chem. Phys. 2013, 138, 034106.

[149] Yang, J.; Kurashige, Y.; Manby, F. R.; Chan, G. K. L. J. Chem. Phys. 2011, 134,

044123.

91



[150] Fedorov, D. G.; Kitaura, K. J. Chem. Phys. 2005, 123, 134103.

[151] Li, W.; Piecuch, P.; Gour, J. R.; Li, S. J. Chem. Phys. 2009, 131, 114109.

[152] Li, W.; Li, S. J. Chem. Phys. 2004, 121, 6649–6657.

[153] Stoll, H. Chem. Phys. Lett. 1992, 191, 548–552.

[154] Foster, J. M.; Boys, S. F. Rev. Mod. Phys. 1960, 32, 300–302.

[155] Yang, J.; Chan, G. K.-L.; Manby, F. R.; Schütz, M.; Werner, H.-J. J. Chem. Phys.
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