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Abstract

Plenoptic particle image velocimetry (PIV) was used to perform instantaneous three-

dimensional (3D) velocity measurements in the near-wake of a wall-mounted hemispherical

roughness element at a Reynolds number (based on roughness height) of 4.57 × 103 and

boundary layer to roughness height-ratio of 4.67. The experiment was performed in a refrac-

tive index matched flow facility to mitigate laser reflections from the hemispherical surface.

Data gathered from this experiment represents one of the first applications of plenoptic PIV.

The time-average flow is characterized by a separated shear layer off of the hemisphere, a

symmetric recirculation region, and an arch-shaped vortex. In the instantaneous 3D velocity

fields, a separated boundary layer and recirculation region with asymmetric characteristics

are present. Additionally, arch vortices are found that are both attached and detached to

the hemispherical surface, similar to previously studied recirculation arch (RA) vortices.

The proper orthogonal decomposition (POD) was applied to both the 3D velocity and 3D

vorticity fields. Velocity modes produced features associated with the overall flow whereas

vorticity modes produced features associated with the wake. The most energetic POD modes

confirm the fluctuations in the boundary layer and recirculation region, as well as suggest

the existence of shed arch-shaped vortices.
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Chapter 1

Introduction

In modern flow diagnostics, there has been a general trend to less intrusive and non-

intrusive diagnostics techniques. Historically, hot film and wire anemometry has been the

standard for quantitative measurements of velocity, while various flow visualization tech-

niques have provided qualitative insight to these measurements. Researchers were able

to make some connections between the one dimensional (1D)point measurements of the

anemometers and the two dimensional (2D) or three dimensional (3D) visualizations. While

hot film and wire anemometry is still commonly used today for dense temporal sampling, par-

ticle image velocimetry (PIV) is a well-established diagnostic for both industry and academia

[2]. Traditional PIV measures planar particle field displacements creating a 2D vector field.

This diagnostic is well suited for flows than can be simplified to a 2D problem, however many

flows relevant to engineering problems are 3D in nature. An example is flow over a highly

curved body.

There have been a number of non-intrusive diagnostic techniques to measure 3D flows,

each with pros and cons. A widely used technique is stereoscopic PIV, which uses two cam-

eras to create a two dimensional-three component (2D-3C) measurement [3]. Simply put,

stereoscopic PIV produces a measurement similar to the planar measurement from traditional

PIV with the addition of an out-of-plane component. Although this is an improvement over

traditional PIV, it is difficult to capture the flow physics of highly 3D flows. Researchers

have simply added more cameras, using four to six cameras to produce a 3D-3C measure-

ment using tomographic PIV [4]. Another technique, synthetic aperture PIV, requires at

least five cameras, although eight are commonly used [5]. However, many facilities cannot

accommodate this many cameras prompting researchers to consider single camera options.
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Plenoptic PIV [6], which is used in this study, falls into this category along with holographic

PIV [7, 8] and defocusing PIV [9]. Each technique has its own strengths and weaknesses,

and it very well may be that one 3D PIV technique will never be the industry wide standard.

The research presented in this thesis is concerned with flow of a turbulent boundary

layer over a hemispherical roughness element. This flow is similar to many real life flows, such

as domed buildings or aircraft rivets, but has been specifically modeled after a smooth river

rock in a river bed. The hemispherical body has a radius of 12.7 mm, so imaging the flow

both over and around the hemispherical body would be difficult with any of the previously

mentioned diagnostic techniques. Thus, this work uses a single camera, 3D-3C technique

known as plenoptic PIV to measure the flow. The critical component of plenoptic PIV is the

plenoptic camera which captures the entire light field of a scene, recording both the angular

and spatial information of light entering its aperture. When utilized for PIV, a plenoptic

camera can record a relatively cubic volume with a single camera, described in detail by

Fahringer, Lynch, and Thurow [6]. This study marks the first extensive application of

plenoptic PIV for 3D flow field measurements. This technique is implemented on a refractive

index matched (RIM) flow facility. The RIM facility is a free-surface recirculatory tunnel

developed by Blois et al. [10], with a working fluid of a sodium iodide solution that has

an index of refraction identical to the acrylic hemisphere model used for experimentation.

This allows the laser used for illumination in PIV to pass directly through the hemisphere-

fluid interface with minimal scattering. This unique collaboration of two novel experimental

devices allowed for observation of the 3D flow topology in the wake of a hemispherical

roughness element, which had not been observed directly with 3D velocity measurements.

This experiment was defined as a precursor to future studies of the 3D flow morphology of

both impermeable and permeable beds, using the plenoptic camera and the small-scale RIM

facility. The objective of this thesis can be summarized in two parts. First, this thesis aims

to successfully implement plenoptic PIV for quantitative 3D flow measurements. Second,

2



this thesis studies the 3D topology of large-scale vortices in the wake of a hemisphere to

better understand the flow physics.
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Chapter 2

Background

2.1 Light Field Imaging

Before understanding a plenoptic camera, it is important to understand what it is cap-

turing: the light field. Levoy formally defines the light field, or photic field as “radiance

along rays in empty space” [1]. It serves well to closely examine this definition.

First, consider the phrase light field. It is natural to think that light flows through an

environment, but Michael Faraday first suggested that light should be interpreted as a field,

in a lecture titled Thoughts on Ray Vibrations, summarized in a letter which NASA hosts

online [11]. By treating light as a field, Adelson and Bergen, set out to mathematically

describe this field [12]. Citing Leonardo da Vinci for their inspiration, Adelson and Bergen

begin by asking what can potentially be seen by an observer. The answer is defined as the

plenoptic function. Adelson and Bergen consider the plenoptic function to be a complete

holographic representation of the visual world, allowing for reconstruction of every possible

view, at every moment, from every position, and at every wavelength. Thus, the plenoptic

function P is expressed as

P = P (θ, φ, λ, t, Vx, Vy, Vz) (2.1)

where theta and phi represent the spherical coordinates of light seen from a viewpoint, λ is

the wavelength of the light seen from a viewpoint, t is the time that the light is seen from

a viewpoint, and Vx, Vy, and Vz are the Cartesian coordinates of a viewpoint. Thus, the

plenoptic function is a seven dimensional (7D) function.

Next, consider the definition of radiance: the amount of light traveling along a ray.

Radiance is denoted by L and has units of watts per steradian per square meter (W ·sr1 ·m2).
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By considering the plenoptic function for radiance and a single instant in time, the plenoptic

function is averaged over the wavelengths and reduced to the five dimensional (5D) function

given by

L = L(x, y, z, θ, φ) . (2.2)

Levoy notes that, if nothing is blocking the ray, the radiance along the ray remains constant.

This leads to a redundancy of the 5D plenoptic function. The plenoptic function can be

reduced to a four dimensional (4D) function using two-plane parametrization, shown below

in Figure 2.1.

Figure 2.1: Two plane parametrization of the plenoptic function for radiance adapted from
Levoy [1]

Many different methods have been proposed to record the light field. Perhaps the

simplest to imagine is moving a camera all around a scene, to capture many different views.

For this application to work, the scene would have to remain completely stationary, as a

technician moved the camera around to gather many different views. A logical improvement

to this technique is to use multiple cameras, so that many different views can be captured at

the same time. Photographers and cinematographers will use arrays of cameras to capture

many different views of a scene at an instant in time, so that the scene does not have to

be stationary. These camera arrays can quickly grow very large, requiring many cameras,

which is both expensive and difficult to operate. If the range of viewpoints does not span
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more than a couple centimeters, we can replace the array of cameras, with a single camera

and an array of lenses. First suggested by Gabriel Lippmman in 1908, a sensor behind an

array of lenses (microlenses) records a different perspective view of the scene depending on

the position of the microlens in the array. Using the two plane parameterization, this records

a light field with a uv resolution depending on the number of microlenses and st resolution

depending on the number of pixels behind each microlens [13, 1]. If a standard lens is

placed in front of the microlens array, focusing the light onto the microlens array, the light

field is transposed such that the uv resolution depends on the number of pixels behind each

microlens and the st resolution depends on the number of microlenses. This is the basis of

a plenoptic camera. A schematic showing a 2D comparison between a conventional camera

and a plenoptic camera is seen in Figure 2.2. In a conventional camera, a point source on

the world focal plane is focused onto a single pixel, shown in Figure 2.2a. When a microlens

array is inserted, angular information is encoded onto the image sensor. To illustrate this

effect, light is colored depending on which pixel it strikes behind the microlens. For example,

in Figure 2.2b, the light that strikes the bottommost pixel behind the illuminated microlens,

comes only from the rays that are emitted from the point source in the range of angles colored

purple. Thusly, the same point source is now focused over 8 pixels with the plenoptic camera

instead of 1 with the conventional camera.

(a) (b)

Figure 2.2: A schematic comparing how a conventional camera (a) and a plenoptic camera
(b) record a point source of light on the world focal plane
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The plenoptic camera has been limited by resolution. In 1992, Adelson and Wang de-

scribed and created an early digital camera, but were limited by the technology available.

Their camera used a 512 × 480 pixel image sensor [14]. The camera worked as hypothesized,

but the resulting images were only 100 × 100 pixels, which is not practical for most appli-

cations. With improved digital imaging technology researchers at Stanford University were

able to create the first hand-held plenoptic in 2005. The plenoptic camera built by Ng et al.

has a resolution of 4000 × 4000 pixels which can capture a light field with a resolution of

292 × 292 in st axes and just under 14 × 14 in the ut axes. Ng et al. describe the plenoptic

camera’s most well-known ability to refocus and shift perspective of a scene computationally

after the image has been captured.

The plenoptic camera used in this study uses a Imperx Bobcat B4820 conventional sci-

entific camera. The image sensor is a 16 megapixel (MP) TRUESENSE KAI-16000 interline

transfer CCD which provides an image resolution of 4904 × 3280, with square pixels 7.4

microns in size. The microlens array was manufactured by Adaptive Optics Associates, Inc.

to have a focal length of 500 microns and a microlens pitch of 125 microns such that there

are approximately 16× 16 pixels per microlens. A grid of 289× 193 microlenses image light

onto the image sensor [15, 6]. The physical components of the plenoptic can be seen in

the photographs of Figure 2.3. These photographs were taken during the construction of

the plenoptic camera. Figure 2.3a shows the microlens array. The physical microlenses are

glued to the back of a thick glass slab to allow for easier mounting and positioning of the

lenses. The glass slab has a flange around the top edge, opposite to the microlenses, which

rests in the microlens mount (MLM) assembly, shown in Figure 2.3b. The MLM assembly

is machined out of aluminum at Auburn University consisting of 3 main components: the

MLM bracket, the MLM bracket holder, and the MLM cover plate. The microlens array

rests in the MLM bracket supported by the glass flange. The MLM bracket is inserted into

the MLM bracket holder where it supported by 3 adjustment screws and 3 springs. The

MLM cover plate keeps the microlens array in the MLM bracket. The MLM bracket holder

7



has been designed to resemble a part that is removed from the Imperx Bobcat B4820 such

that the two feet on the bracket holder fit securely into the camera body, and the microlens

array is straddling the image sensor, seen in Figure 2.3c. This camera was developed as a

prototype camera, which has now been replaced by a Imperx Bobcat B6640, which is built

around the 29 MP TRUESENSE KAI-29050 interline transfer CCD with an image resolution

of 6600 × 4400. These next generation plenoptic cameras make use of a hexagonally packed

microlens array to minimize the amount of unused pixels.

(a) (b) (c)

Figure 2.3: Photographs of: (a) a rectangular microlens array; (b) a custom-designed mi-
crolens array mount to accurately position the microlens above the image sensor; (c) Imperx
Bobcat B4820 image sensor

A sample image taken with the prototype 16 MP camera is shown in Figure 2.4. The

plenoptic camera was set up in the laboratory and objects were placed at various depths

throughout the scene. The plenoptic image resembles a normal image but lacks the sharpness.

This is due to the microlens array spreading out the light. By examining the inset, it is seen

when you zoom in ever further, the letters in “IMPERX” are rather blurry. Also the inset

shows the image, or micro-image, formed by each of the microlenses, each circle representing

the specific view each microlens has of the aperture. It is clear that the camera is nominally

focused on the USA hat.
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Figure 2.4: A raw plenoptic image from the 16 MP camera with a rectangular array displaying
a scene of objects in the laboratory; the inset shows the micro-images formed by the each of
the microlenses

The Advanced Flow Diagnostics Laboratory (AFDL) of Auburn University has con-

structed several plenoptic cameras for a wide variety of applications, including plenoptic

PIV. In the next subsection, §2.2 serves as a brief summary of the plenoptic PIV and the

reconstruction technique, which is more completely described by Fahringer et al.[6]. To as-

sist with many of the other applications of the plenoptic camera, the AFDL has created the

Light Field Imaging Toolbox (LFIT), an open source MATLAB package designed to handle

light field images. Some of the main functions include perspective shifts and refocusing,

which is demonstrated with the sample in Figure 2.5.
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(a) (b)

(c) (d)

Figure 2.5: (a) A left perspective of the scene (b) a right perspective of the scene (c) focused
on the alarm clock (d) focused on the researcher in the back of the room

2.2 Plenoptic PIV

The plenoptic camera functions similarly to standard PIV cameras, recording image

pairs of an illuminated volume. The images are a two-dimensional (2D) representation of the

illuminated 3D volume. Thus, when compared to traditional PIV, there is an additional step

of reconstructing the 2D plenoptic images into 3D volumes. Tomographic reconstructions

are created using an implementation of the multiplicative algebraic reconstruction technique

(MART), similar to the algorithm used for tomographic PIV. The process is detailed by

Fahringer, Lynch, and Thurow [6]. This reconstruction technique iteratively solves a system

of linear equations that model the imaging system, shown in Equation 2.3. This equation
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can be thought of as the projection of the volume intensity distribution E(x, y, z) onto a

2D image I(x, y). However, the reverse of this operation is required to obtain a volume

E(x, y, z) from the image I(x, y). Thus, E(x, y, z) is initially defined as a volume discretized

into cubic voxels (volume equivalent of a pixel), each with an intensity of 1. Each voxel j

can then be projected onto a pixel located at (xi, yi), mathematically expressed by

∑
j∈Ni

wi,jE(xj, yj, zj) = I(xi, yi) (2.3)

where Ni is the number of voxels in the line-of-sight of the ith pixel and wi,j is the weighting

function, which describes what portion of light emitted from a voxel strikes each pixel. The

weighting function of a plenoptic camera is different from cameras used in tomographic PIV

because the entire volume is not in focus during plenoptic PIV. Thus, a novel approach to

create the weighting function was developed by Fahringer, Lynch, and Thurow [6].

Equation 2.4 describes the iterative procedure used to determine a solution for E(xi, yi, zi),

known as the MART Equation. Each kth + 1 iteration is defined as

E(xi, yi, zi)
k+1 = E(xi, yi, zi)

k

(
I(xi, yi)∑

j∈Nj
wi,jE(xi, yi, zi)k))wi,j

)
(2.4)

where µ is the relaxation parameter which can range between 0 and 1. Convergence is

determined by manual inspection of the particle volumes. Fahringer, Lynch, and Thurow

present results from this process for both simulated and experimental data [6]. Once the

plenoptic data has been reconstructed into a 3D intensity distribution, cross-correlation

techniques are applied in an identical fashion to tomographic PIV.

3D calibration was performed using a first order model based on the thin lens equation

and estimation of the magnification from imaging of a ruled target. This calibration does

not account for higher order effects such as pincushion or barrel distortion associated with

real complex lenses. As such, the reconstructed volume is slightly warped compared to

the real volume such that the data presented here is considered quasi-quantitative. The
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visualizations are expected to accurately identify regions of vorticity and the approximate

magnitude of the velocity and velocity gradients; however, a direct comparison with other

quantitative measurements will require a higher order volume calibration which is currently

under development. Using the same 3D calibration as this study, Fahringer et al. report the

potential of MART to resolve particle locations to better than 1 voxel in the lateral direction

and better than 3 voxels in the depth direction. Errors in particle displacement from a

16 × 16 × 16 voxel cross-correlation were estimated to be 0.2 voxels and 1.0 voxels for the

lateral and depth directions, respectively. Thus, the absolute accuracy of the plenoptic PIV

measurements made here are limited in comparison to conventional PIV, but are considered

sufficient for the visualization and identification of large-scale structures based on the 3D

velocity and vorticity fields.

2.3 The Small=Scale RIM

The non-intrusive optical approach to measurement of fluid flows has seen widespread

use in a variety of scientific disciplines. However, there exist a number of technologically-

relevant flows that are ill-suited for these optical techniques, limited by the presence of a

solid phase with a complex geometry (e.g. flow in porous media, internal combustion engines,

geophysical flows, etc.). Refractive index matching (RIM) techniques present a solution to

allow optical measurements on flow systems of this nature. Blois et al.describe that by

tailoring the RI of the working fluid in a flow facility to match the RI of the solid geometries

to be studied, refraction and reflection of light at solid-fluid interfaces can be diminished

[10]. This is the fundamental concept of the Small-Scale RIM flow facility (referred to as

RIM facility) constructed at the University of Illinois, Urbana-Champaign. Details on the

challenges and design parameters can be found in Blois et al.[10]. The RIM facility (pictured

in Figure 2.6) is a flow loop designed to recirculate an aqueous solution of ∼ 63% sodium

iodide (NaI) that has a RI identical to the acrylic models, 1.495. The NaI solution has the
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advantage of having a similar kinematic viscosity to water, allowing a broad spectrum of

complex flows to be studied at comparable Re to a standard water tunnel.

Figure 2.6: Photograph of the Small-Scale RIM flow facility showing a typical PIV system
setup

The tunnel test section is constructed entirely of scratch-resistant acrylic, 19.10 mm

thick, and is 2.50 m long. The cross-section is 0.1125 m × 0.1125 m with a removable cover

that allow for either fully-filled or free-surface conditions to be maintained as well as full

access to the interior of the test section for installation of models. The NaI solution is

driven by twin fiberglass pumps, capable of producing a combined discharge in the range

of 0.016 m3 s−1 to 1 m3 s−1. When using NaI as the working fluid, additional considerations

must be addressed in the design and operation of this RIM facility. The tunnel is slightly

pressurized (5 psi) with nitrogen gas (N2) in order to reduce the discoloration of the NaI

solution that occurs when I−3 ions form due to simultaneous exposure of the solution to oxygen

and visible light. The NaI solution must also remain at a relatively constant temperature

and is held within a 0.05 ◦C window which corresponds to a 0.001% change in fluid RI. The
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nearly exact RI match of the fluid to the acrylic model allows for the plenoptic camera to

image a volume that includes the model, which is crucial to the study of the near-wake

structures of a hemispherical roughness element.

2.4 The Proper Orthogonal Decomposition

This thesis revolves around the findings from a relatively large data set, comprised of

nearly 1000 volumes. This quantity of data created a need for a procedure to analyze large

data sets without rigorously inspecting every volume. The proper orthogonal decomposition

(POD) provides a method for extracting synthetic information from large sets of data. The

extracted information is synthetic in the sense that it exists only as a representation of the

data set as a whole, but does not exist as an individual data sample. The POD is a robust

procedure that proves useful in analyzing large data sets from assorted fields.

The study of fluid mechanics has been associated with large data sets for some time

now, both computationally and experimentally. The differences in the resolution of these two

branches is an important factor when considering the decomposition of a data set using POD.

The computational branch is standard in both industry and research as a powerful tool that

produces finely sampled data sets with large spatial domains. Although the time resolution of

computer generated simulations is highly resolved, it is often too computationally expensive

to simulate long temporal periods. Conversely, experimental fluid mechanics are generally

associated with extensive time domains that have exceedingly fine resolution. However,

data-capturing methods such as hotwire anemometry and laser Doppler anemometry record

a relatively small spatial resolution. An outlier in the experimental branch of fluid mechanics

is the optical measurement technique PIV, used in this thesis.

Credit for the application of POD to fluid mechanics is given to Lumley [16] who in

1967 used POD to more accurately describe the turbulent flow structures that Townsend

[17] originally termed “big eddies.” These phenomena are now widely known as coherent

structures. Another researcher, A. M. Yaglom, told Lumley in a personal conversation that
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POD is the natural idea to replace the usual Fourier decomposition in nonhomogeneous di-

rections. This idea truly was natural because it was a solution reached by many researchers

in a wide variety of fields. As a result, this technique is known by an assortment of names,

primarily as principle component analysis (PCA) in mathematics, the Karhunen-Love trans-

form (KLT) in signal processing, and the Hotelling transform in multivariate quality control.

The process of POD and its many affiliates all share a common goal: representing a data set

with a linear combination of orthogonal functions that form the best basis to represent the

data.

2.4.1 Basic Math Review

Despite being a relatively simple method to apply, the math behind POD is complex.

The less math savvy reader is encouraged to review linear algebra and applied mathematics.

The author recommends Linear Algebra with Applications [18] and Applied Mathematics [19]

as a reference. Furthermore, readers that are first beginning POD are referred to A tutorial on

Principal Components Analysis [20] and An introduction to the proper orthogonal decompo-

sition [21]. Emphasis is placed on the covariance matrix [18, 20], the eigenvalue-eigenvector

problem [18, 20], the Fredholm integral equation [19], and calculus of variations [19]. A

workable example is found in the tutorial on PCA[20].

2.4.2 Overview of POD

The overall objective of POD is to approximate a data set u, defined in Equation 2.5.

In this definition, t is the time instance that the data is sampled and x is a the data recorded

at each instance, t. In fluid mechanics, this data is often velocity measurements, both two

component and three component, or vorticity measurements. The following definitions in

this section and the next follow the procedure outlined in The Springer Handbook of Fluid

Mechanics [22].

u = f(x, t) (2.5)
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The approximation of u will be written as a sum defined in Equation 2.6, where φ(k)(x)

are basis functions, a(k)(t) are time function coefficients, and K is the number of basis

and time functions to be used in the approximation. As K → ∞, this approximation

will become exact. This approximation is not exclusive to POD, for example, if the basis

functions are defined as functions given a priori, Equation 2.6 could define a Fourier series,

Legendre polynomials, or Chebyshev polynomials. Alternatively, POD seeks to determine

basis functions that are “naturally intrinsic for the approximation of the function u(x, t)”

[22].

u(x, t) ≈
K∑
k=1

a(k)(t)φ(k)(x) (2.6)

Thus, the general objective of POD is to choose the basis functions φ(k)(x) and then deter-

mine the time functions, a(k)(t), by using the corresponding basis functions, the former being

more challenging. The next section defines the approach to defining this naturally intrinsic

basis function, which is shown to reduce to an eigenvalue-eigenvector problem.

2.4.3 POD: The Eigenvalue Problem

This section familiarizes the reader with the proper orthogonal decomposition drawing

from both The Springer Handbook of Experimental Fluid Mechanics [22] and Turbulence,

Coherent Structures, Dynamical Systems and Symmetry [23]. To begin, let Equation 2.7

denote a set of observations, or snapshots, that exist in the real positive 3 dimensional

space. These snapshots are obtained at discrete times throughout the domain of interest,

Ω(x = (x, y, z) ∈ Ω)

{u(X),X = (x, tn) ∈ D = R3 × R+} (2.7)

These snapshots could be velocity fields, vorticity fields, temperature, etc. either measured

experimentally or simulated numerically, recorded at different time steps or physical param-

eters (such as Reynolds number). Lumley proposes to extract coherent structures from these

random vector fields and defines a coherent structure as “the deterministic function which
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is best correlated on average with the realization u(X)”[16]. Simply put, we seek a function

Φ that has the largest mean squared projection onto the observations. Mathematically, Φ is

the solution to constrained optimization problem defined in Equation 2.8, where 〈·〉 denotes

an averaging operation (temporal, spatial, ensemble, phase average).

max
Ψ∈L2(D)

〈|(u,Ψ)|2〉
||Ψ||2

=
〈|(u,Φ)|2〉
||Φ||2

(2.8)

Here (·, ·) and || · ||2 denote the L2 inner product and the L2 norm, respectively, over D:

(u,Φ) =

∫
D

u(X) ·Φ∗(X)dX, ||u||2 = (u,u) (2.9)

where the ∗ represents the complex conjugate. Furthermore, the function Φ is defined such

that

||Φ||2 = (Φ,Φ) = 1 . (2.10)

Previously, it was suggested that defining the basis reduces to an eigenvalue problem.

The current objective is to show that the solution to the maximization problem defined in

Equation 2.8 can be cast in an equivalent eigenvalue problem of the form

Av = λv. (2.11)

To accomplish this, Equation 2.8 first needs to be modified to the form of the Fredholm

Integral Equation, a linear equation defined as

∫ b

a

k(x, y)u(y)dy − λu(x) = f(x), a 6 x 6 b (2.12)

by Logan[19]. Here, u is the unknown function, f is a given continuous function, and λ is a

parameter. The function k is called the kernel and is given a priori. The kernel is assumed

continuous on the square a 6 x 6 b, a 6 y 6 b. If it is required that Equation 2.12 is
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homogeneous (f ≡ 0) and of the second kind (λ 6= 0), it follows that

λu(x) =

∫ b

a

k(x, y)u(u)dy . (2.13)

This notation can be simplified by using integral operator notation. Seen below in Equa-

tion 2.14, K is the Fredholm integral operator. Equation 2.13 can be rewritten as Equa-

tion 2.15, which is observed to have the same form as the eigenvalue-eigenvector equation

defined in Equation 2.11.

Ku(x) =

∫ b

a

k(x, y)u(y)dy (2.14)

Ku = λu (2.15)

Returning to the problem defined in Equation 2.8, define a new operator R : L2(D)→

L2(D) as

RΦ(X) =

∫
D

R(X,X ′)Φ(X ′)dX ′ (2.16)

where R(X,X ′) = 〈u(X) ⊗ u∗(X ′)〉, termed the two-point space-time correlation tensor.

The operator ⊗ is the dyadic product, such that if a and b are vectors, a ⊗ b = abT . X ′

represents another snapshot, that may be identical to X but is not explicitly required to be.

Here the operator R is a Fredholm integral operator, the function R is the kernel, and Φ is

the unknown function. In a general sense, this operator R is building what amounts to a

covariance matrix of a zero-mean data set. This generalization is helpful when implementing

POD computationally.

The L2 inner product (RΦ,Φ) in Equation 2.17 is expanded to Equation 2.18, then

rearranged to form Equation 2.19.
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(RΦ,Φ) =

(∫
D

〈u(X)⊗ u∗(X ′)〉Φ(X ′)dX ′,Φ(X)

)
(2.17)

(RΦ,Φ) =

∫
D

∫
D

〈u(X)⊗ u∗(X ′)〉Φ(X ′)dX ′Φ∗(X)dX (2.18)

(RΦ,Φ) =

〈∫
D

u(X)Φ∗(X)dX

∫
D

u∗(X ′)Φ(X ′)dX

〉
(2.19)

Finally, it is seen that Equation 2.19 is reduced to

(RΦ,Φ) = 〈|u,Φ||2〉 (2.20)

Observe that the right hand side of Equation 2.20 is identically equal to the numerator of

the right hand side of Equation 2.8.

By repeating the steps in Equations 2.17–2.19, it can be shown that

(RΦ,Υ) = (Φ,RΥ) for any (Φ,Υ) ∈ [L2(D)]2. (2.21)

The implications of this relationship in Equation 2.21 can be proved using spectral theory or

calculus of variations to guarantee the maximization problem in Equation 2.8 has a solution

equal to the largest eigenvalue of Equation 2.22. In summary, because of the equality of

(RΦ,Φ) and the numerator of Equation 2.8 (shown in Equation 2.20 and the relationship

shown in Equation 2.21, it is concluded that maximizing RΦ will maximize Equation 2.8.

As defined in Equation 2.15, the Fredholm operator of the unknown function is equal to the

parameter λ times the unknown basis function Φ. It follows that the parameter λ represents

the eigenvalues of Equation 2.22, and the basis functions Φ are the eigenvectors, often called

eigenmodes or modes.

RΦ = λΦ (2.22)
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To determine the time coefficients a(k), simply restructure Equation 2.6 to find that the

time coefficients are actually projections of u onto Φ. This conclusion is a result of the

orthonormality of eigenfunctions Φ, defined below in Equation 2.23. Then a(k) can be found

using Equation 2.24. The coefficients a(k) are mutually uncorrelated and their mean square

values are the eigenvalues themselves (Equation 2.25.

nc∑
i=1

∫
D

Φ
(m)
i (X)Φ

∗(n)
i (X)dX = δmn; δmn =


0, for m 6= n

1, for m = n

(2.23)

a(k) = (u,Φ) (2.24)

〈a(n)a∗(m)〉 = δmnλ
(n) (2.25)

The basis and the coefficients are now defined and Equation 2.6 can now be used to

approximate the data set. As K is increased, the snapshot is projected onto more modes and

the approximation becomes more accurate. Because the modes are ranked from the most

energy to least, it follows that the approximation is altered less as each successive mode is

added to the summation.

This section has described the essence of the proper orthogonal decomposition in the

classical approach. The following subsections will outline the procedure for implementing

this technique in practice.

2.4.4 Classical Method vs Snapshots Method

Recall in the previous section that the averaging operation 〈·〉 in Equation 2.8 remains

undefined. This section describes the differences between two methods depending on how

the averaging operation is defined. The Classical, or Direct, method averages over time while

the Snapshots Method averages over space. These two methods are juxtaposed in Figure 2.7.

Selecting one method over the other is as straightforward as categorizing the working data

set.
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(a) (b)

Figure 2.7: A comparison between two POD methods: (a) Classical Method; (b) Snapshots
Method

Regarding fluid mechanics, Classical POD works best for experimental data. The av-

eraging operation is over time, and the correlation is across space, which works well with

data gathered using hot-wire anemometry or laser Doppler anemometry. These experimental

methods record data at specific spatial locations (often limited by the number of instruments

in a measurement array), resulting in a data set with coarse spatial resolution. However, the

measurements made by these instruments have a dense temporal resolution. During POD,

this high-resolution temporal data is averaged and correlated across the low-resolution spa-

tial data. While Classical POD is best suited for experimental data, Snapshot POD, first

suggested by Sirovich in 1987 [24], handles numerical simulation nicely. Data sets from

numerical simulation (direct numerical simulation, large-eddy simulation, etc.), are usually

highly resolved in space and time. However, due to computational cost, the time sample

is generally very short. As a result of this constraint, computational data is more densely

sampled in the spatial domain than the temporal. Snapshot POD averages this densely

sampled spatial domain and correlates the data temporally.
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An exception to this categorization is the experimental method, PIV. A typical PIV

experiment gathers image pairs, which are correlated to form a data set of velocity vectors

taken at different instances in time. A typical experiment could contain data at 1000 time

instances, with each instance corresponding to thousands or tens of thousands of velocity

vectors. In this way, PIV is more similar to numerical simulation than to the previously

mentioned experimental methods.

As shown in Figure 2.7, Snapshot POD is the exact symmetry of classical POD. The

mathematical implications of this are straightforward. The difference revolves around the

assumption that Φ has the form

Φ(x) =
Nt∑
k=1

a(tk)u(x, tk) (2.26)

where the coefficients a(tk), k = 1, . . . , Nt are to be determined so that Φ is a maximum to

the optimization problem previously defined in Equation 2.8. Following the same process, it

is shown that the maximum of Equation 2.8 is given by

∫
Ω

R(x,x′)Φ(x′)dx′ = λΦ(x) (2.27)

It follows that the two-point correlation tensor R(x,x′) can be estimated assuming station-

arity and ergodicity conditions as

R(x,x′) =
1

Nt

Nt∑
i=1

u(x, ti)⊗ u∗(x′, ti) . (2.28)

Finally, substituting the expression of R in Equation 2.28 and the decomposition of Φ in

Equation 2.26 into Equation (2.27 yields

Nt∑
i=1

[
Nt∑
k=1

1

Nt

(∫
Ω

u(x′, tk) · u∗(x′, ti)dx′
)
a(tk)

]
× u(x, ti) = λ

Nt∑
k=1

a(tk)u(x, tk) . (2.29)
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Which can be simplified to

Nt∑
k=1

1

Nt

[u(x′.tk) · u∗(x′, ti)] a(tk) = λa(ti) , i = 1, . . . , Nt (2.30)

where the coefficients a(tk) are defined. Equation 2.30 can be recast as the eigenvalue-

eigenvector problem

CV = λV (2.31)

where

Cki =
1

Nt

∫
Ω

u(x, tk) · u∗(x, ti)dx and

V = [a(t1), a(t2), . . . , a(tN)]T .

The definition of C is found to be the two-point temporal correlation tensor, which is straight-

forward to calculate. In direct symmetry to the calculation of the time coefficients in Equa-

tion 2.24, the basis function, or modes can be calculated similarly as

Φ(n)(x) =
1

Ntλ(n)

Nt∑
k=1

a(n)(tk)u(x, tk) . (2.32)

Fortunately, the application of the POD snapshots method is much simpler than the math

behind it. An overview of how the POD has applied to the data set used in this thesis is

provided in Chapter 4.

2.5 Flow Physics

Three-dimensional fluid flow over surface protrusions has long been an interest of fluid

dynamicists. In general, many experiments in the field pertain to rectangular features, often

resembling buildings. The wakes of highly curved bodies, such as hemispheres, have only
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been studied by a relatively small number of researchers. However, curved bodies are com-

monly used in engineering applications, such as surface protrusions on aircraft in aerospace

engineering. This study is motivated by roughness effects on the impinging boundary layer,

utilizing a hemispherical roughness element to perturb a turbulent boundary layer. The

hemisphere model is a simple representative geometry for real surfaces found in nature, such

as a smooth rock on the bottom of a river bed.

One of the earliest investigations of the near- and far-wake of a hemisphere was per-

formed by Jacobs in 1938, who traversed a pitot tube to measure pressure[25]. Plots of mean

pressure contours depicted curvature of the shear layer and flow separated from the body.

Later studies by Kovasznay in 1960 [26] and Klebanoff et al. in 1961 [27] were focused on

investigating the boundary layer instability using hot wire anemometry and qualitative flow

visualization techniques recorded with film cameras. While largely concerned with transition

on a smooth plate, both studies also noted that flow over a hemispherical roughness element

formed similar structures and behaviors as seen in smooth plate testing. The most striking

similarity being that both geometries generated interlacing elongated vortex loops, known

as hairpin vortices, first described by Theodore Theodorsen in 1954 [28].

Some of the most influential work on steady flow over wall-mounted hemispheres is that

of Acarlar and Smith [29]. Specifically, they studied vortex shedding from a hemisphere

within a laminar boundary layer. Using hot film anemometry, hydrogen bubbles, and dye

injection, the vortical structures created by the hemisphere were defined qualitatively and

quantitatively. Acarlar and Smith tested extensively over a Reynolds number (based on

roughness radius) range of 120 < Rer < 3400. Hairpin vortices were found to shed from the

hemisphere at a measurable frequency and the head of one hairpin overlapped the counter-

rotating legs of the preceding vortex. The mechanism of formation of hairpin vortices is

two-part: the build-up of concentrated vorticity and the release of this vorticity. It was

also found that the low-pressure region in the wake of the hemisphere plays a major role in

hairpin vortex creation. This low-pressure region causes the outer irrotational flow field to
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curve inward, narrowing the region between the separated boundary layer and the wall. As a

result, the free shear layer is curved and causes vortex lines to concentrate and form hairpin

vortices. When the vorticity is concentrated, it is shed into the main flow as a discrete

hairpin vortex. The downstream evolution of the hairpin vortex consists of the cancellation

of vorticity in the legs until they dissipate and the growth of the hairpin head as it moves

vertically out of the boundary layer. In addition to the hairpin vortices, Acarlar and Smith

also identified a standing, or horseshoe, vortex that is created at the upstream stagnation

point of the hemisphere. This standing vortex is formed by the roll-up of impinging vortex

sheets to form a steady vortex that follows the contours of the hemisphere. This vortex

closely resembles the turbulent horseshoe vortex defined by Baker around the base of a

cylinder in both a laminar and turbulent boundary layer [30, 31].

Another study devoted to flow over a wall-mounted hemisphere is the work of Savory

and Toy [32, 33], which investigated the near-wake of a hemisphere immersed in a turbu-

lent boundary layer. Velocity data was gathered in a dense sampling of the wake with a

pulsed wire anemometer, using a blowdown wind tunnel. Visualization of the near-wake was

also performed in a recirculating water tunnel using the thymol blue technique. A single

hemisphere was immersed in three different turbulent boundary layers, classified as “thin,”

“smooth,” and “rough.” The “smooth” and “rough” cases used vorticity generators and in

the “rough” case, various roughness elements to perturb the turbulent boundary layer be-

fore it impinged on the hemispherical element. The “thin” case used the natural boundary

layer of the the tunnel wall. The study used a hemisphere with a 95 mm radius resulting

in a boundary layer to roughness height ratio of 1.1. The Reynolds number, 1.4× 105, was

significantly larger than that of this study. At these conditions, Savory and Toy describe a

horseshoe vortex, similar to Acarlar and Smith. In the near-wake, Savory and Toy describe

a shear layer that interacts with periodically shed vortex loops. Half of the vortex loop is

described to propagate over the top of the hemisphere and through the shear layer, while

the other half remains connected slightly above the stagnation point on the windward side
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of the hemisphere. It appears that these vortices are the same vortices that Acarlar and

Smith identified as hairpin vortices, but Savory and Toy suggest a stronger connection to

the upstream face of the hemisphere. A computational study by Manhart in 1988 [34] used

an identical experimental setup to the “thin” case by Savory and Toy. Manhart used LES

to produce computational results, which were analyzed using Karhunen-Loève transform

(KLT), also known as the proper orthogonal decomposition. Although the experimental

conditions of these studies differ from the present work, the POD modes will be useful for

comparison.

Carr and Plesniak studied pulsatile flow over a hemisphere using planar PIV motivated

by human vocal fold polyps and nodules [35]. A hemispherical object with a radius 15 mm

was placed in flow ranging from Rer = 500 to 3400. For all of the Rer values, the boundary

layer was initially laminar, comparable to the work by Acarlar and Smith. Carr and Plesniak

refer to the classically named hairpin vortices described by Acarlar and Smith as shear layer

hairpin (SLH) vortices, as to maintain emphasis on origin as well as morphology. Following

this naming convention, Carr and Plesniak define recirculation arch (RA) vortex, which has

been seen in several studies on other wall-mounted geometries. The RA vortex can be found

in ensemble-averaged realizations, the core of which identifies the center of the recirculation

zone in the near-wake of the hemisphere. From experimental images, the RA vortex is

described as a half of a vortex ring with ends terminating at a solid surface. The RA vortex

differs from the SLH vortex, which forms from shear layer roll-up. Additionally, the RA

vortex is suggested to remain stationary, where SLH are known to shed downstream. Carr

and Plesniak note that the both the SLH vortex and the RA vortex originate from vorticity

in the boundary layer on the surface of the hemisphere. Either or both types of vortices can

be created when the boundary layer separates. The experiment used two different 2D PIV

data sets, one normal to the streamwise wall and one parallel to the streamwise wall, to infer

3D flow characteristics. Using the swirling strength criterion, the study found that when

the unsteady flow slows, the RA vortex propagates upstream, possibly due to self-induced
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velocity. The findings of a highly 3D vortex in this experiment further illustrate the need to

capture 3D flow physics, so instantaneous vortex geometries can be studied in full 3D.

There have been a handful of other studies performed on hemispherical roughness ele-

ments, although the previously presented work is the most similar to the current work. Many

of the studies involving a turbulent boundary layer impinging on the element do not provide

visualization or insight to the coherent structures of the flow [36, 37]. There has also been

computational work regarding strictly laminar flow past a hemisphere, but the primary focus

is a comparison of mean lift forces with a sphere [38]. Additionally, many researchers are

concerned with hemispherical elements that protrude above the boundary layer, commonly

involving turrets [39, 40]. Other studies examine wall-mounted cubes, prisms, or arbitrary

bodies, illustrating the sensitivity of this class of flow to many different parameters, Reynolds

number, geometry, boundary layer characteristics, etc.[41, 42, 43]. These studies are useful

to review, but lack strong similarities with the experiment presented.
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Chapter 3

Experimental Procedure

The hemispherical element was fixed to the side tunnel wall of the RIM facility, with

the plenoptic camera positioned outside of the opposite wall. The laser volume entered

perpendicularly from the bottom of the tunnel. A schematic describing the configuration of

the experimental apparatus and a photograph of the arrangement are presented in Figure 3.1.

(a) (b)

Figure 3.1: (a) Schematic depicting the experimental arrangement; (b) photograph showing
the experimental arrangement, highlighted with same coloring as the schematic in (a)

Illumination was provided by a Quantel (formerly Big Sky) EverGreen 200 mJ double

pulse Nd:YAG laser system. The laser beam was spread into a volume using two cylindrical

lenses and entered the tunnel along the z direction. A balsa mask clipped the laser in the
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y direction and a mirror was placed on top of the RIM facility to increase particle illumina-

tion. The resulting interrogation volume has dimensions of 31.5 mm× 30.0 mm× 47.0 mm.

The volume was offset 3 mm in the y direction from the wall opposite the plenoptic camera,

shown in Figure 3.1a. The dimensions of the volume measured can be seen in Figure 3.2a

and Figure 3.2b. The time between laser pulses was set to ∆t = 6 ms, which provided a

sufficient range of particle displacement.

The RIM Facility was set to a free stream velocity U∞ = 0.396 m s−1. At the x location

of the measurements, the boundary layer was measured to have a height of δ.99U∞ = 59.3 mm,

corresponding to Reδ = 2.13× 104. A single hemispherical roughness element of height k =

12.7 mm alters the flow, corresponding to Rek = 4.57 × 103 and δ/k = 4.67. A schematic

of the flow field and the hemispherical element is shown in Figure 3.2c. The facility was

seeded with silver-coated, hollow glass spheres with a mean diameter of 15 µm and a specific

gravity of 1.7, uniquely appropriate for seeding the NaI solution which has a specific gravity

of approximately 1.8 while also providing high reflectivity.
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(a) (b)

(c) (d)

Figure 3.2: (a) schematic detailing the measurement volumes of the near-wake of the hemi-
sphere; (b) a side view schematic to show the focal plane and the 3 mm separation of the
measurement volume from the wall; (c) a schematic displaying the size relation of the incom-
ing turbulent boundary layer and the roughness element; (d) a photograph of the plenoptic
camera and the roughness element inside the empty RIM facility

The 16 MP plenoptic camera was fitted with a 50 mm prime lens and 43 mm of extension

tubes, pictured in Figure 3.2d. The magnification of the optical configuration was −0.765

at the focal plane, in the center of the volume. The f-number of the prime lens was set to

f# = 2.85, so that the images formed by the microlenses were touching, but not overlapping.

In Figure 3.3, an example of a raw plenoptic image is shown. In the inset, the images formed
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by the microlenses can be seen. Using these imaging parameters, 1000 image pairs were

captured for the near-wake case.

Figure 3.3: A raw plenoptic image from the experimental data set, where flow is from top to
bottom; (inset) shows a detailed region where the circular images formed by the microlenses
can be seen
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Chapter 4

Data Reduction and Analysis

The data gathered was processed in three main steps: tomographic reconstruction using

MART, 3D cross-correlation, and the proper orthogonal decomposition. The overall process

is summarized in the flowchart in Figure 4.1. The process begins with the 2D plenoptic

image pairs, which are reconstructed into volumes using the iterative process MART. Using

a cross-correlation algorithm, velocity vector fields are calculated from the volume pairs.

The POD is applied to the instantaneous velocity fields, yielding the modes of the data

set. These modes represent the velocity fluctuations. In order to better understand and

identify the structures of the near-wake, the vorticity is also calculated from the instantaneous

velocity fields, and the POD is applied to the three-component vorticity fields. To aid in

understanding the physical significance of the higher modes, reduced order projections are

formed of the instantaneous velocity and vorticity data onto the respective modes.

Figure 4.1: Data processing scheme where the green box represents the starting point, an
orange box a computational process, and a blue box a result
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The tomographic reconstruction using MART, previously described, was the most com-

putationally expensive of the processes. To obtain the particle volumes, 7 iterations were

used and the relaxation parameter was set to µ = 0.3. The plenoptic images were re-

constructed into a 205 × 205 × 300 voxel grid, based on the volume dimensions shown in

Figure 3.2a. The resulting volumes were slightly larger than the measured volume to allow

particles to be placed more accurately on the edges of the measured volume, having dimen-

sions of 34 mm× 34 mm× 50 mm. The instantaneous vector fields were calculated using a

3D cross-correlation algorithm which consisted of 4 passes utilizing cubic windows of 64,

48, 32, and 16 voxel sides for each pass, respectively. Each correlation window overlapped

the previous, such that the percent overlap for each pass was 25, 33, 25, and 50 percent,

respectively. In physical space, the final correlation volume of 2.6 mm× 2.6 mm× 2.6 mm

produces a vector spacing of 1.3 mm× 1.3 mm× 1.3 mm. Vector fields of 24×24×36 vectors

were produced by the final pass, which is a sparser lateral sampling than conventional PIV.

This illustrates the main trade-off in plenoptic PIV: a sacrifice of lateral resolution for depth

resolution. However, the resulting 3D instantaneous vector field also allows for the calcula-

tion of all three vorticity components, which is not possible with conventional PIV methods.

Vorticity was calculated using a finite difference method, specifically a second order central

difference approximation for calculation of partial derivatives. The vorticity was smoothed

with a 3× 3× 3 box filter to better emphasize prominent flow features. Each vorticity field

was stored such that it complimented its corresponding velocity field, allowing the POD to

be applied to both the velocity and vorticity, separately.

The snapshots method of POD was implemented on the vector fields so the modes

could be analyzed. Fortunately, the application of POD is straightforward to implement in

MATLAB using the eig function. In fact, a basic POD algorithm could be written in a few

lines of code. In Table 4.1, snapshot POD is outlined in seven steps. Note that the process

is agnostic to scripting language and the only necessity beyond basic functionality is a script
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to find the eigenvalues and eigenvectors of a matrix. The MATLAB script to that performs

these steps can be found in Appendix A.1.

1. Reshape the data into vectors

2. Create a time average of the data (velocity or vorticity)

3. Subtract the time average from all of the data

4. Create the covariance matrix

5. Solve the eigenvalue-eigenvector problem

6. Sort the eigenvalue-eigenvector pairs by descending eigenvalue

7. Calculate the modes and reshape them

Table 4.1: Outline of Snapshot POD algorithm

The first three steps are rather self-explanatory, thus a detailed explanation begins after

Step 3, which results in mean-subtracted vectors. The creation of these vectors allows the

covariance matrix to be created in step 4 by taking the dot product of all of the vectors.

Mathematically, this is written as

cov(X(m),X(n)) = X(m) ·X(n) . (4.1)

The covariance matrix C has the form shown in Equation 4.2 below

C =


cov(X(1),X(1)) · · · cov(X(1),X(s))

...
. . .

...

cov(X(s),X(1)) · · · cov(X(s),X(s))

 (4.2)

where X(1) →X(s) represent all of the vectorized snapshots.

The substance of POD is finding the eigenvectors of the covariance matrix, Step 5.

Using a program such as MATLAB, the eigenvalue-eigenvector problem in Equation 4.3 is

easily solved using a function that inputs the matrix C and returns the eigenvalues λ and
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the eigenvectors V .

CV = λV (4.3)

Sorting the eigenpairs by eigenvalue, in Step 6, identifies the modes. The highest eigenvalue

corresponds to the first mode, the next the second, and so on. Finally, in Step 7, calculate

each of the modes by projecting the data set onto a basis function, seen in Equation 4.4,

which sums the product of the mth eigenvector and every snapshot from the data set.

M (m) =
s∑
i=1

V
(m)
i X(i) (4.4)

Finally, reshape the modes back to the original dimensions for visualization. Because the

data set is vectorized, POD is easily applied to either a 2D or 3D PIV data set with these

simple operations.
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Chapter 5

Results

5.0.1 Ensemble-Averaged Flow Field

After the images were processed, fourteen pairs were discarded because of poor corre-

lation results, reducing the data set to 986 velocity fields. The ensemble average of these

fields is presented below in Figure 5.1a and Figure 5.1b. As presented, the flow is traveling

in the positive x direction, traveling over the roughness element which is mounted in the

y plane. The streamtraces for this figure, and the following figures, are visualized using Tec-

plot 360 EX. The streamtraces are calculated using a two-step Runge-Kutta method with a

step size of 0.25 times the vector spacing. The streamtraces in Figure 5.1a are colored with

the normalized streamwise velocity U∗, with normalization achieved with the free stream

velocity, while the spatial directions are normalized by the roughness height k. Streamtraces

were regularly placed using two different approaches: one designed to visualize the entire

volume and one to visualize the near-wake. For total volume, streamtraces were placed at

x/k of 1.5 with 12 streamtraces equally spaced from y/k of 0.1 to 2.2 at every 0.2 z/k; cre-

ating 216 streams. The streamtraces propagated in both directions to form the larger image

in Figure 5.1a. In the inset, 384 streamtraces were created in the densely packed region be-

hind the hemisphere. Eight streamtraces were placed at three x/k locations (1.2, 1.5, 1.75)

equally spaced between y/k from 0.1 to 0.8 at every 0.1 z/k from -0.7 to 0.5, which were

propagated in both directions. The dense packing of streams at three different x/k locations

aims to capture more of the wake physics in the visualization. The mean flow field shows

a recirculation region directly behind the hemisphere, which is in agreement with previous

work.[32, 35] The flow separates from the hemisphere surface and approaches reattachment

near 2k downstream. As y increases, the normalized velocity increases and approaches 1.
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Figure 5.1b shows a center slice of the normalized streamwise velocity, highlighting the

backflow region, seen in the darker blue. The lighter blue marks the shear layer between the

backflow and the turbulent boundary layer, seen in the stratified colors above y/k of 1. Both

the streamtraces and the slice of the mean flow field illustrate the ability of the plenoptic

camera to resolve different velocities at different depths, as the volume was imaged along

the y axis.

The ensemble-averaged field of vorticity magnitude is shown in Figure 5.1c. A red

isosurface of higher vorticity sits inside a green surface of slightly lower vorticity. Both

surfaces exhibit a curved structure that arches over the region of reverse flow, shown in

the blue surface of U∗ = 0. This ensemble-averaged structure has some resemblance to the

definition of a recirculation arch vortex defined by Carr and Plesniak, who define the RA as

a time-averaged feature, the center of which defines the center of the recirculation region.

The structure shown in Figure 5.1c is more elongated in the x direction than RA vortex

sketched and hypothesized by Carr and Plesniak, although the interior red isosurface alone

is more similar. However, it is important to remember that Carr and Plesniak used two

normal planes of conventional 2D PIV, so 3D structure may not be accurately reflected in

their hypothesized sketch.
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(a)

(b)

(c)

Figure 5.1: (a) Streamtraces of mean velocity field of the near-wake region, colored by nor-
malized downstream velocity; inset shows near-wake streamlines (b) a center slice showing
velocity vectors, colored by normalized downstream velocity; (c) ensemble-averaged vorticity
magnitude shown with two isosurfaces at ‖~ω‖ = 0.4, 0.5 (colored in green and red, respec-
tively) and a ensemble-averaged velocity shown with an isosurface at U∗ = 0 (colored blue)
to highlight the reverse flow

A similar surface is shown in Figure 5.2, the turbulent kinetic energy (TKE) of this

data set. A contour isosurface plot is shown that defines an isosurface at each of the col-

orbar values to better reveal the interior structure of each surface. The highest levels of

TKE are concentrated in the near-wake region behind the hemispherical roughness element.

The isosurface demarcates a 3D shear layer, having a curved shape similar to the vorticity

isosurface in Figure 5.1c. This implies that the shear layer is not only the largest source

of vorticity, it also is the most turbulent region of the measurement volume. The greatest
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levels of TKE, shown in bright green, extend from the top of the hemispherical element

forming the shear layer between the recirculation region and the impinging boundary layer.

Although small surfaces exist at the top of the measurement volume, the near-wake shows

the highest amounts of TKE, indicating that the hemispherical element is adding energy to

the impinging boundary layer.

(a)

(b) (c)

Figure 5.2: Isourfaces at contour levels of ensemble-averaged turbulent kinetic energy (TKE):
(a) isometric view; (b) side view; (c) rear view

5.0.2 Instantaneous Flow Fields

The instantaneous velocity and vorticity results show a variety of phenomena, depicting

the unsteady nature of the flow. However, the instantaneous volume, shown in Figure 5.3 is
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representative of the majority of the realizations. The streamtraces in Figure 5.3a show a

recirculation region that stretches from the surface of the hemisphere to the downstream end

of the measurement volume at 2.0 x/k. The recirculation region extends to y/k of 0.6, well

below the crest of the hemispherical element. As a whole, the region is slightly off-center

with respect to the hemisphere, shown by the region of reverse flow in Figure 5.3b centered

at about 0.2 z/k. Two small, swirling legs can be seen at the edge of the recirculation

region at (x/k, y/k, z/k) location of (0.9, 0.2, 0.6) and (1.5, 0.2, 0.6), seen in the near-wake

inset. The legs are more easily identified in the bottom view of the near-wake streams in

Figure 5.3b. In the separated flow, the streamlines are relatively uniform with some vertical

fluctuation in the boundary layer around 2.0 y/k. An isosurface of vorticity magnitude is

shown in the two different views of Figure 5.3c and Figure 5.3d. From Figure 5.3c it is seen

the near-wake has a much stronger vorticity on the +z side of the wake and is relatively

centered in the z direction. The isometric view, Figure 5.3d, shows the complex structure

of the surface, which has a number of legs protruding down on the +z side of the structure.

The two largest legs align well with the swirling legs described in the streamtraces. At

lower levels of vorticity magnitude, the missing legs of the arch shape on the –z side begin

to fill in and the distinct legs on the +z side of the structure become connected. As the

structure extends in the downstream direction, it narrows in both the y and z directions as

the separated flow moves towards the wall to reattach.

40



(a)

(b)

(c)

(d)

Figure 5.3: Image pair 10 shown using (a) streamtraces colored by normalized streamwise
velocity with an inset showing two vortical legs; (b) a bottom view of the near-wake streams
depicting the vortical legs (c) an isosurface of vorticity magnitude of 0.33 s−1 shown from
the rear; (d) an isometric view of the same isosurface

Variations similar to the instantaneous volume shown in Figure 5.3 exist frequently in

the data samples, categorized by a recirculation region that extends towards the downstream
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end of the measurement volume. The center of the region of reverse flow and the vorticity

magnitude isosurfaces have been seen to fluctuate by as much as ±0.25 in the z direction.

In addition, the top of the surface of the vorticity magnitude plots rarely extends above

1.0 y/k or below 0.7 y/k throughout the data set. This instantaneous volume displays the

asymmetric behavior of the near-wake and the broken, asymmetric legs of the arch-shaped

vortex. Although RA vortex described in the mean is composed of these arch-shaped legs, it

appears that the RA vortex does not frequently, or ever, exist in instantaneous flow. Image

pairs such as these are categorized for resembling the ensemble-averaged flow, although there

exist some notable exceptions.

In Figure 5.4, two more instantaneous volumes are shown. These volumes show several

differences from the previously presented volume. The streamtraces shown in Figure 5.4a,

show similar oscillations in the upper boundary layer to Figure 5.3a. A stark difference

from Figure 5.3a is seen in the inset of Figure 5.4a, which shows the downward motion of

the flow over the hemisphere at about 1.4 y/k. This region of the flow enters the near-

wake, suggesting reattachment. The reader is reminded of the 3 mm separation between

the wall and the measurement volume when viewing the streamtraces in the near-wake

inset, which shows many streamlines terminating at the bottom of the measurement volume.

The corresponding vorticity magnitude isosurfaces for this instantaneous volume are shown

in Figure 5.4c. An immediate difference between these structures and the isosurfaces in

Figure 5.3d is the presence of clusters of high vorticity in the upper boundary layer. In

the near-wake, a small arch-shaped isosurface exists, complimented by a curved isosurface,

which curves around the hemisphere on the –z side of the volume. The arch-shaped vortex

in the near-wake is located where the streamtraces previously described enter the near-wake,

suggesting that this arch-shaped vortex is formed by the faster flow entering the near-wake,

thereby forcing the recirculation region downward and upstream. High levels of vorticity are

created by the shearing between these two opposing motions. A similar effect is seen in the

streamtraces flowing around the hemisphere on the +z side in the inset, which intersect the
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+z leg of the arch-shaped vortex. A symmetric effect is seen on the –z side of the volume,

although it cannot be seen in the inset. The significance of the curved structure around the

–z side of the hemisphere is later discussed in the POD analysis in Subsection 5.0.3.

Figure 5.4b shows similar streamtraces to Figure 5.4a, characterized by pronounced per-

turbations in the upper boundary layer and reattachment. Although the upper boundary

layer has large vertical fluctuations, the streamtraces uniformly travel downward near the

downstream end of the volume. In combination with the region of streams above the hemi-

sphere that travel downward into the near-wake, similar to Figure 5.4a, this instantaneous

volume suggests the flow reattaches at about 2.2 x/k. Unlike Figure 5.4c, Figure 5.4d does

not show an arch-shaped isosurface of vorticity magnitude. Instead, larger structures are

present in the upper boundary layer and a single, relatively flat structure hugs the hemi-

sphere in the near-wake. The recirculation region is drastically reduced as the reattaching

flow has forced the recirculation region upstream and upward. In the inset of Figure 5.4b,

a small swirling region of streams is seen in alignment with the isosurface in the near-wake

shown in Figure 5.4d. Overall, the two instantaneous volumes shown in Figure 5.4, represent

the smaller end of the spectrum regarding the size of the recirculation region and about the

upstream maximum of the reattachment point.
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(a) (b)

(c) (d)

Figure 5.4: Two instantaneous volumes are shown, 650 and 756: (a) streamtraces of 650
colored by normalized streamwise velocity with an inset showing the wake structure; (b)
streamtraces of 756 colored by normalized streamwise velocity with an inset showing the
wake structure; (c) an isometric view of an isosurface of vorticity magnitude of 0.33 s−1 of
instantaneous volume 650; (d) an isometric view of an isosurface of vorticity magnitude of
0.33 s−1 of instantaneous volume 756;
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A well-defined large-scale recirculation region produces the opposite effect by prolonging

boundary layer reattachment well outside the measurement volume. These characteristics

are present in the two instantaneous volumes compared in Figure 5.5. The velocity stream-

traces of the first instantaneous volume, shown in (5.5a, show a recirculation region that

extends from the surface of the hemisphere to 1.4 x/k, clinging near to the hemisphere,

enlarged in the inset. The isosurface of vorticity magnitude in Figure 5.5c is concentrated

in this region. This surface somewhat resembles the isosurface presented in Figure 5.4d,

although it is not coupled with any isosurfaces in the upper boundary layer. Although the

isosurface is relatively compact, the streamlines in Figure 5.5a do not indicate reattachment

in the measurement volume. Figure 5.5b shows the velocity streamtraces for the second

instantaneous volume that contains a larger recirculation zone. This expansive region spans

from the surface of the hemisphere to the downstream end of the measurement volume. Fur-

thermore, the recirculation zone has a nearly flat peak that is at a constant 1.1 y/k for its

entire span, suggesting that the separated flow will remain separated for a prolonged dis-

tance downstream. However, the flatness of this feature may be pronounced by the plenoptic

camera not having as much sensitivity along the optical axis. This recirculation region is cen-

tered at a (x/k, y/k, z/k) location of (1.6, 0.8, 0.0), shown larger in the inset. The vorticity

magnitude isosurface in Figure 5.5d is much more expansive than in Figure 5.5c. Again, the

vorticity isosurface aligns well with the recirculation area, extending to the downstream end

of the measurement volume. The structure of the surface resembles the vorticity isosurface

from Figure 5.5c, having some vertical legs, although the isosurface from Figure 5.5d is more

contiguous. In contrast to the isosurface in Figure 5.5c, the surface in Figure 5.5b nearly

occupies the entire near-wake. Of the well-defined recirculation zones, Figure 5.5b represents

the largest of the zones, whereas Figure 5.5a is slightly above average. In combination with

the instantaneous volumes shown Figure 5.4, these volumes describe the size variations of the

recirculation region. However, the upper bound of the recirculation region size has not been

captured by this study, as the downstream end extends outside the measurement volume.
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(a) (b)

(c) (d)

Figure 5.5: A comparison of large-scale recirculation regions, (a) streamtraces of a recir-
culation zone in image pair 106, shown in detail in the inset; (b) streamtraces of a larger
recirculation zone in image pair 253, shown in detail in the inset; (c) isosurface of vorticity
magnitude of 0.33 s−1 for image pair 106; (d) isosurface of vorticity magnitude of 0.33 s−1 for
image pair 253

The two image pairs shown in Figure 5.6 both contain more definitive arched-shaped

structures, showing clear separation from the surface of the hemisphere. The arch-shaped

vortex in these image pairs are minimally elongated in the x direction. By manual inspec-

tion, approximately fifteen percent of the image pairs have a complete or partial-arch vortex
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present in the near-wake flow. This structure is defined by high levels of vorticity, forming an

arch shape with counter-rotating legs, which is not connected to the hemispherical roughness

element. The image pair shown in Figure 5.6a contains a complete arch and the image pair

shown in Figure 5.6b contains a partial arch. In Figure 5.6a, the streamtraces show that

the recirculation region extends to at least the downstream end of the measurement volume.

The streamtraces flowing over the hemispherical element show that the separated shear layer

begins to approach reattachment, seen in the downward motion around 0.8− 1.0 x/k and

0 z/k. Then, at 1.5 x/k, the boundary layer turns back up in the y direction, traveling over

the peak of the arch vortex. A single vorticity magnitude isosurface shown in Figure 5.6c is

colored by y vorticity, and further defines the arch vortex. The structure of the isosurface is

clearly an arch, which is consistent with the arch-shaped streamtraces in Figure 5.6a. Despite

appearing fairly symmetric, the arch vortex is slightly off center, at −0.1 z/k. In addition,

the legs of the arch vortex are not of equal strength. The +z leg is stronger and encloses

more volume than the –z leg. The velocity streamtraces of the second image pair, shown

in Figure 5.6b, again show a large recirculation region extending to the downstream end of

the volume. This instantaneous volume has visible spiraling streamtraces at (2.0, 0.8, 0.3),

which is actually the peak of the arch structure. The vorticity magnitude isosurfaces in Fig-

ure 5.6d, depicts a partial arch vortex, which is partially missing a –z leg. The streamtraces

show that the region where the –z leg is expected, −0.3 z/k, is dominated by reverse flow

in the recirculation region. The partial arch vortex is centered relative to the hemisphere

and occurs at nearly the same x location as the complete arch vortex in Figure 5.6a, at

1.8 x/k. In both instantaneous volumes it is seen that the region of reverse flow passes

directly through the arch vortex. The arch vortices found by manual inspection consist of

both complete and partial arches located at about the same x location and centered any-

where from −0.25 to +0.25 z/k. Although the structure in Figure 5.6c resembles the RA

vortex sketched by Carr and Plesniak, it is important to note that Carr and Plesniak only

hypothesized the RA vortex in the mean, implying it to be stationary. The structure in
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Figure 5.6c does not appear to remain stationary, at least over the long sampling frequency

of this study, as it is only present in a small number of instantaneous volumes.

(a) (b)

(c) (d)

Figure 5.6: A comparison of arch vortices, (a) velocity streamtraces of instantaneous volume
649, shown in detail in the inset; (b) velocity streamtraces of instantaneous volume 575,
shown in detail in the inset; (c) isosurface of vorticity magnitude at 0.5 s−1 and colored with
y vorticity instantaneous volume 649; (d) isosurface of vorticity magnitude at 0.5 s−1 and
colored with y vorticity of instantaneous volume 575
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5.0.3 POD Results

The POD analysis of this experiment used both the instantaneous velocity data and

the instantaneous vorticity data. The cumulative normalized energy for each the velocity

and vorticity modes can be seen in Figure 5.7a. It was found that the first 100 modes of

the 986 modes contain about 70 percent of the energy for the velocity case, whereas the

first 100 vorticity modes contain less than 50 percent of the total enstrophy. In Figure 5.7b

the normalized modal energy for the first 50 modes are shown. It is seen that the first

two velocity modes are significantly more dominant than the following modes. Each of the

subsequent modes contain less modal energy than the previous by a considerable margin,

up to about the 10th mode. After the 10th mode, the modal energy decreases, but the

difference between the energy of two consecutive modes is small. An examination of the

vorticity modal enstrophy shows that the early modes have very similar enstrophy levels.

(a) (b)

Figure 5.7: Modal energy plots for velocity and vorticity data, (a) cumulative modal energy
for all 986 modes; (b) normalized modal energy for the first 50 modes

The first six velocity modes are shown in Figure 5.8 (at the end of this section). Each

mode is presented using isosurfaces of velocity magnitude ||U || at 1.1 and a slice through

the volume also showing ||U ||. Tangent vectors on the contour slice provide insight to the

dominant velocity component of each mode. The first and second modes, Figure 5.8a and
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Figure 5.8b, respectively, both describe a similar coupling between the upper boundary layer

and near-wake. Both the first two modes are dominated by fluctuations in the y direction,

indicating a strong correlation between the boundary layer and the near-wake, although

it is difficult to fully define the nature of this relationship. The distinction between the

first two modes is blurred by the similar modal energies of 6.46 percent and 5.72 percent,

respectively, suggesting that the vertical fluctuations of the upper boundary layer and near-

wake oppose each other slightly more often than compliment each other. The first two

modes are reminiscent of the first two modes in the study by Manhart [34], showing similar

opposing fluctuations from the boundary layer and near-wake. Due to differences between the

experiments, the comparison to the modes presented by Manhart is strictly focused on the

near-wake region and above. However, it is difficult to tell the y location of the isosurfaces as

Manhart provides only a top down view of the modes. Although it is not explicitly shown in

Figure 5.8, the u and w fluctuations also resemble the isosurfaces shown by Manhart. Due to

the synthetic nature of the modes, understanding the physical implications can be difficult. In

Figure 5.9, an instantaneous snapshot has been projected onto the modes to provide insight to

the physical significance of the modes. Figure 5.9a shows the original instantaneous volume,

which is identical to a projection with 100 percent of the total modal energy. Streamtraces

are used to visualize these projections, colored by streamwise velocity. The streamtraces are

placed sparsely throughout the volume and densely placed in the near-wake region to better

capture the finer details of the near-wake. This snapshot is characterized by large oscillations

in the upper boundary layer and the downward motion of the separated shear layer which

flows over a small recirculation bubble before heading towards reattachment. When this

snapshot is projected onto the first two modes, containing 11 percent of the total energy, the

volume appears very organized, seen in Figure 5.9b. The projection shows the downward

motion of the upper boundary layer and upward motion in the near-wake. Some influence

of the second mode is seen in the variation in the streamtraces in the upper boundary layer

that show some vertical perturbations from the overall downward motion attributed to the
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first mode. With only two modes, the separated shear layer shows no signs of reattaching as

the near-wake shows no downward motion.

The third and fourth modes, Figure 5.8c and Figure 5.8d, respectively, are both dom-

inated by fluctuations in the upper boundary layer. Whereas the first two modes show

fluctuations that vary spatially nearly exclusively with y, the third and fourth modes show

fluctuations in the upper boundary layer that vary with x, y, and z. The modal energies

of the third and fourth modes are significantly less than those of the first two, having 3.45

percent and 2.74 percent of the total energy, respectively. The physical effects of the third

and fourth modes can be seen in the projection shown in Figure 5.9c, which uses the first

four modes, containing 18 percent of the total energy. As expected, the near-wake closely

resembles the near-wake in Figure 5.9b. The influence of the third and fourth modes is seen

in the fluctuations in the upper boundary layer, specifically the non-uniformity in the x and

z directions. With only 18 percent of the total energy, the upper boundary layer resembles

the upper boundary layer of the instantaneous volume. This suggests that the higher modes

largely account for the changes in the near-wake.

The fifth and sixth mode are shown in Figure 5.8e and Figure 5.8f, containing 2.48 and

2.29 percent of the total modal energy, respectively. Again, these two modes are of similar

structure, consisting of both more and smaller isosurfaces when compared to the previous

four modes. Similar to the third and fourth modes, both the fifth and sixth modes show

isosurfaces in the upper corners of the volume. However, the fifth and sixth modes show a

coupling between these structures and the near-wake, which in both modes is enveloped in a

relatively flat isosurface at the bottom of the volume. In both modes, the near-wake has two

regions of opposite fluctuations, seen by the vectors in the slices. Additionally, a scattering of

isosurface exist in the middle of the volume, vertically, including large isosurfaces enclosing

the flow around the hemisphere in the z direction. A stark difference between the modes is

seen in the vectors in the slices. The fifth mode shows alternating fluctuations between the

four upper corners, suggesting some large-scale circulation motion, whereas the sixth mode
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has opposite fluctuations only on the +z side of the volume. Figure 5.9d shows a projection

onto the first 6 modes containing 23 percent of the total energy. The primary difference

between this projection and the projection with 18 percent total energy in Figure 5.9c is

the changes to the near-wake. The streamtraces are now nearly flat across the top of the

hemisphere. Compared to the instantaneous volume, the wake is still significantly different.

The upper boundary layer is nearly identical to the projection with 18 percent energy. Thus,

the physical significance of the fifth and sixth mode can be summarized as slight variation

to the upper boundary layer, coupled with larger changes to the near-wake region.

The next thirteen modes each contain between 1 and 2 percent of the total energy, and

all following modes are less than 1 percent of the total energy. For brevity, only the first 6

modes are presented in here and Appendix B.2 shows additional higher modes. However,

the effects of the higher modes are seen in the projections in Figure 5.9e and Figure 5.9f,

which contain 19 modes and 61 modes, respectively. These projections contain 40 and 60

percent of the total energy, respectively. In the 40 percent projection, Figure 5.9e, the

streamtraces traveling directly over the hemisphere head down into the near-wake, which is

characteristic of the instantaneous volume. Again, the upper boundary layer looks much the

same as the previous projection. With 60 percent of the total modal energy, the projection in

Figure 5.9f closely resembles the instantaneous volume. Both the boundary layer and wake

have visibly changed compared to the previous projection. The upper boundary layer is

not more perturbed and is nearly identical to the upper boundary layer in the instantaneous

volume. The near-wake still has significant differences from the instantaneous volume, which

signifies that the remaining 925 modes will be largely concentrated in the near-wake region,

which is also seen by manual inspection. Through this analysis, it is determined that a

majority of the energetic modes are characterized by fluctuations in the boundary layer,

which may not be a direct influence of the hemispherical roughness element. This motivated

a separate POD analysis on the vorticity, as it was hypothesized that the energetic modes
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would better describe the effects of the hemispherical roughness element on the incoming

turbulent boundary layer.

Returning to Figure 5.7, it is seen that the most energetic modes contain significantly

less modal enstrophy compared to the POD of velocity. The first six vorticity modes, shown

in Figure 5.10, contain only 8.8 percent of the total enstrophy compared to 23 percent of

the total energy contained in the first six velocity modes. The pairing of modes seen in

the POD of velocity is not present in these first 6 vorticity modes. Each mode is presented

with vorticity magnitude ||ω|| isosurfaces which are colored with y vorticity or z vorticity

to show the dominant component. The first mode, Figure 5.10a, depicts an extruded arch

shape similar to the ensemble-averaged vorticity. This mode contains 2.02 percent of the

total enstrophy and is completely concentrated in the near-wake region. The arch shape only

extends from 1.4 x/k to 2.0 x/k, as from 0.6 x/k to 1.4 x/k the shape is connected along

the bottom, resembling a donut. The opposing y vorticity fluctuations show two counter-

rotating legs in this arched structure. The surface is nearly symmetric along 0.0 z/k, except

for a bulge in the surface at 0.0 x/k on the –z side and a less defined end of the arched

surface on the –z side at 2.0 x/k. A similar asymmetry is seen on the –z side in the

second mode, Figure 5.10b. This mode contains 1.50 percent of the total enstrophy and is

largely concentrated in the near-wake region, except for two small isosurfaces in the upper

boundary layer. The second mode shows a more defined arch shape compared to the first

mode, although it is offset in the +z direction, such that the +y vorticity leg is centered

behind the hemisphere. The isosurface shows another leg branching off in the –z direction

that is at the upstream end of the volume, representing the flow directly over the hemisphere.

Although this mode shows three small isosurfaces in the upper boundary layer, it is largely

dominated by near-wake structures. This mode suggests a coupling between the vorticity

of the flow directly over the hemisphere to the superposition of the arch vortex. Similar

in structure, the third mode, Figure 5.10c, has 1.40 percent of the total enstrophy. The

arched vortex in this mode is larger than the previous and has a smoother, more regular
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arch shape. Additionally, the arch vortex is symmetric and centered about 0.0 z/k. It is

worth noting that this arch structure is reminiscent of the RA vortex sketched by Carr and

Plesniak, even more so than the vortex previously presented in the instantaneous volume

pair. As in the second mode, a similar curved isosurface exists over the –z side of the

hemisphere in the third mode. This suggests that the superposition of the arch vortex is not

dictated by an increase of vorticity of the flow directly over the hemisphere. The relatively

small difference in percent of total enstrophy between the two modes also suggests that the

modes are closely related. This superposition of the arch-shaped vortex has been seen in

the instantaneous pairs, although the arch vortex is rarely as well-defined as in these modes.

Unlike the first three modes, the fourth mode, Figure 5.10d, is composed of isosurfaces in the

upper boundary layer. These structures are each dominated by x vorticity, which is shown on

the colorbar. This mode has 1.31 percent of the total enstrophy. The small structure in the

near-wake is largely constituted of z vorticity, possibly representing the top of an arch vortex.

This mode represents the motivation of calculating the POD of the vorticity components,

as it is possible these structures originate from the incoming turbulent boundary layer and

are not directly seeded into the flow by the hemispherical roughness element, whereas the

earlier modes are clearly generated by the hemisphere. The fifth mode, in Figure 5.10e,

again shows the superposition of the arch-shaped vortex, this time offset in the –z direction.

This mode is nearly equivalent to the fourth mode in enstrophy, containing 1.30 percent

of the total enstrophy. Interestingly, this superposition is not coupled with a fluctuation

in the flow traveling around the hemisphere; suggesting that they are independent events.

The three isosurfaces in the upper boundary layer are analogous to the the isosurfaces in

the fourth mode and, when colored by x vorticity, follow the same pattern. The sixth

mode, Figure 5.10f, contains 1.26 percent of the total enstrophy and shows a combination

of structures in the upper boundary layer and the near-wake. The isosurfaces in the near-

wake are formed by concentrated y vorticity, whereas the isosurfaces in the upper boundary

layer are composed of both x vorticity and z vorticity. The near-wake does not contain
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any arch-shaped structures, which are no longer prominent in any of the subsequent modes.

Additionally, the structures in the near-wake region and the upper boundary layer continue

to get smaller in the subsequent modes.

Due to the comparatively small amounts of total enstrophy in the higher vorticity modes,

the reduced order projections presented in Figure 5.11 use more modes than the correspond-

ing POD results of velocity. Figure 5.11a shows the instantaneous volume having 100 percent

of the total enstrophy of the volume pair. Vorticity isosurfaces are calculated in the identi-

cal manner to the isosurfaces in the vorticity modes. This instantaneous volume has been

selected for its resemblance to both the second and third vorticity modes, which shows an

arch-shaped vortex and a higher vorticity leg on the –z side of the hemisphere. Additionally,

several structures are scattered throughout the upper boundary layer. In Figure 5.11b, the

the volume pair is projected onto the first four modes, containing only 6 percent of the total

enstrophy. The projection shows a single isosurface that is arch-shaped at the downstream

end and flares upward at the upstream end. It is interesting that none of the upper bound-

ary layer structures have been created by the fourth mode; suggesting that the physical

processes that creates the structures in this volume and the fourth mode are likely different.

In Figure 5.11c, the first 8 modes are used, accounting for 11 percent of the total enstrophy.

Visually, not much is changed from the previous projection, although twice the number of

modes have been used. In Figure 5.11d, 18 modes are used, accounting for 20 percent of

the total enstrophy. This projection again shows a single surface where the arch shape at

the downstream end is slightly reduced and the flow around the –z side of the hemisphere

is accented as it begins to resemble the instantaneous volume pair. With 40 percent of the

total enstrophy, Figure 5.11e shows the instantaneous volume pair projected onto the first 54

modes. Again, the projection shows a single surface, which bears much more resemblance to

the second and third vorticity modes now, despite being a combination of many more modes.

Still, even with 40 percent of the total enstrophy, no structures exist in the upper boundary

layer. Finally, in Figure 5.11f, the projection shows isosurfaces in the upper boundary layer.
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This projection uses the first 122 modes and contains 60 percent of the total enstrophy.

Thus, as predicted, the POD of the vorticity has produced modes with an emphasis on the

enstrophy of the near-wake structures. This projection also strongly resembles the second

and third modes, which is a physical indication that, although an increase of vorticity in the

flow around the hemisphere does not necessarily correspond to a more defined arch-shaped

vortex in the near-wake, the two events can occur simultaneously.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 5.8: The first six velocity modes shown with velocity magnitude ||U || isosurfaces at
1.1 and a slice to show vector direction
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(a) 100% total energy (b) 11% total energy

(c) 18% total energy (d) 23% total energy

(e) 40% total energy (f) 60% total energy

Figure 5.9: Reduced Order Projections of volume pair 756 with labeled total energy: (a) the
complete volume; (b)-(f) projections using the first 2, 4, 6, 19, and 61 modes, respectively
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 5.10: The first six vorticity modes shown with vorticity magnitude ||ω|| isosurfaces
at 1.1 which are colored by y vorticity or x vorticity, depending on which is more dominant
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(a) 100% total enstrophy (b) 6% total enstrophy

(c) 11% total enstrophy (d) 20% total enstrophy

(e) 40% total enstrophy (f) 60% total enstrophy

Figure 5.11: Reduced Order Projections of volume pair 650 shown using isosurfaces of vor-
ticity magnitude at 0.22, with labeled total enstrophy: (a) the complete volume; (b)-(f)
projections using the first 4, 11, 18, 40, and 54 modes, respectively
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Chapter 6

Conclusions and Future Work

The 3D topology of large-scale vortices in the wake of a hemisphere were measured and

studied. An experiment was conducted using a refractive index matched flow facility and

a plenoptic camera to make three-dimensional, three-component PIV measurements. This

experiment signifies the first paring of Plenoptic PIV with a refractive index matched flow

facility, as well as the first extensive application of plenoptic PIV for 3D flow measurements.

A dataset of 986 instantaneous volumes were collected, with the goal of conducting a sta-

tistical analysis on the flow. The ensemble-averaged results show stratification in flow along

the y direction, indicating the ability of the plenoptic camera to resolve particle motion at

different depths along the optical axis. The ensemble-averaged vorticity shows an extended

curved surface, stretching throughout the entire near-wake. A wide variety of flow phenom-

ena are seen in the instantaneous volumes, some of which have been presented previously,

showcasing spiraling legs of the shear layer, heavily perturbed overlying boundary layers,

various sizes of recirculation regions, and both partial and full arch vortices.

The proper orthogonal decomposition was applied to both the instantaneous velocity

and vorticity fields to better understand the flow physics. The POD of the velocity fields

revealed a distinct connection between fluctuations in the upper boundary layer to changes

in the near-wake region, a relationship that is seen in the most energetic modes. Conversely,

the most energetic modes of the POD of the vorticity fields do not show such a relation,

as structures are largely concentrated in the near-wake region. However, after the third

mode, a relationship between fluctuations in x vorticity in the upper region of the boundary

layer and y vorticity in the near-wake region is found in many lower energy modes. Arch-

shaped structures are common throughout the higher energy modes, in agreement with the
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arch-shaped vorticity structures seen in many of the instantaneous volumes. As a whole, the

POD analysis suggests that the link between changes in velocity in the upper boundary layer

is frequent, but the same coupling is not as strong with vorticity. Statistically, changes in

vorticity are more dependent on fluctuations local to the near-wake. Overall, the POD modes

describe a relationship between 3D structures in the near-wake region and the structures in

the upper region of the boundary layer. The POD modes confirm plenoptic PIV as a viable

technique for making statistically significant 3D velocity field measurements.

The presented flow features are shown to be linked to the size of the wake, however,

it is unclear how the evolution of these flow features occur. One possibility is that over

time, the recirculation region is stretched downstream, possibly linking the instantaneous

volumes shown in Figure 5.5. At some point, the recirculation region would weaken and

degrade; allowing the free stream flow to penetrate the recirculation region. This is the

scenario seen in Figure 5.4. It is possible that an intermediate step between these two

extremes would be the degradation of the recirculation region into a shed arch vortex, seen

in Figure 5.6. However, time resolved information is necessary to properly confirm the

relationship between the presented volumes, if any. This study has provided a starting

point for future experiments, perhaps utilizing time resolved plenoptic PIV or a comparable

technique, to further characterize the physics of this flow.
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Appendix A

Matlab POD Code

A.1 POD Snapshot Method

1 f unc t i on PODsnapshots ( vectorsDir , numOfModes , i n d i c i e s , loadC )
2 % Created by Kyle Johnson on 4/7/2016
3

4 % This code i s a f a s t e r and be t t e r organ ized func t i on o f the three codes
5 % ”prePOD .m” , ”snapshotsPOD” , and ”writePOD” , which were c on t r o l l e d by the
6 % func t i on ”runningPOD .” These f unc t i on s were based o f f o f code wr i t t en by
7 % Kyle Lynch in 2008 .
8

9 % The purpose o f t h i s func t i on i s to apply the proper orthogona l
10 % decomposit ion (POD) to 3D vo lumetr i c data and save the eigenmodes and
11 % which can be used to do reduced order modeling o f the data
12

13 % PODsnapshots ( vectorFo lder , numOfModes , i n d i c i e s , loadC )
14 % De f i n i t i i o n s :
15 % vectorFo lde r
16 % the d i r e c t o r y where the ve c t o r s are stored , p r e f e r ab l y in %04d
17 % numbered format
18 % numOfModes
19 % the number o f modes to c a l c u l a t e and save
20 % i n d i c i e s
21 % the i n d i c i e s that w i l l be co r r e l a t ed , g en e r a l l y [ 4 5 6 ] f o r
22 % ve l o c t i y or [ 7 8 9 ] f o r v o r t i c i t y . These are the i n d i c i e s in the
23 % . p l t data f i l e . ( This code should a l s o work f o r 2D data although i t
24 % has yet to be t e s t ed )
25 % loadC
26 % current ly , the only opt ion input i s ’LoadC ’ which w i l l load the
27 % covar iance matrix from f i l e . C.mat and Vectors . mat need to be in
28 % the appropa i te f o l d e r which i s the same as matDirOut
29

30

31 t i c
32 f i l eCon t en t s = d i r ( [ v e c to r sD i r ’ \∗ . p l t ’ ] ) ;
33 numOfVecs = numel ( f i l eCon t en t s ) ;
34

35

36 r e su l t sDi rOut = [ vec to r sD i r ’ \POD\ ’ ] ;
37 matDirOut = [ re su l t sDi rOut ’ \Mat ’ ] ;
38 pr intClock ( ’ S ta r t ’ , ’POD’ , r e su l t sDi rOut )
39 i f ˜ e x i s t ( ’ loadC ’ , ’ var ’ )
40 i f ˜ e x i s t ( resu l t sDirOut , ’ d i r ’ )
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41 mkdir ( r e su l t sDi rOut )
42 end
43 i f ˜ e x i s t (matDirOut , ’ d i r ’ )
44 mkdir (matDirOut )
45 end
46

47 % Begin Vec to r i z i ng the data . The vec to r f i e l d s w i l l now be co l l ap s ed to
48 % column vec to r s and the mean w i l l be c a l c u l a t ed
49

50 f p r i n t f ( ’ Vec to r i z i ng Data :\ t ’ )
51 f o r vecInd = 1 : numOfVecs
52 f i l e ID = fopen ( [ v e c to r sD i r ’ \ ’ f i l eCon t en t s ( vecInd ) . name ] ) ;
53 header1 = f g e t l ( f i l e ID ) ;
54 header2 = f g e t l ( f i l e ID ) ;
55 header3 = f g e t l ( f i l e ID ) ;
56 vars = numel ( f i nd ( header2 == ’ ” ’ ) ) /2 ;
57 s t r i n g = repmat ( ’%f ’ , [ 1 vars ] ) ;
58 data = text scan ( f i l e ID , s t r i ng , ’ d e l im i t e r ’ , ’ , ’ ) ;
59 f c l o s e ( f i l e ID ) ;
60 i f vecInd == 1
61 pts = s i z e ( data {1} , 1) ∗numel ( i n d i c i e s ) ;
62 Vectors = ze ro s ( pts , numOfVecs ) ;
63 end
64 X = c e l l (1 , numel ( i n d i c i e s ) ) ;
65 f o r ind = 1 : numel ( i n d i c i e s )
66 X{ ind } = data{ i n d i c i e s ( ind ) } ;
67 end
68 vec = ce l l 2mat (X) ;
69 Vectors ( : , vecInd ) = reshape ( vec , pts , 1 ) ;
70 f p r i n t f ( ’ \b\b\b\b%4d ’ , vecInd )
71 end
72

73 f p r i n t f ( ’ \ tComplete .\n ’ )
74 % The mean i s subtracted from a l l the ve c to r s .
75 f p r i n t f ( ’ Subtract ing Mean :\ t ’ )
76 VecAve = mean( Vectors , 2 ) ;
77 vecAve = reshape (VecAve , [ numel (X{1}) , numel ( i n d i c i e s ) ] ) ; %#ok<NASGU>
78 save ( [ matDirOut ’ \VecAve ’ ] , ’VecAve ’ )
79 save ( [ matDirOut ’ \Vectors ’ ] , ’ Vectors ’ )
80 meanSubVectors = Vectors − repmat (VecAve , 1 , numOfVecs ) ;
81 save ( [ matDirOut ’ \meanSubVectors ’ ] , ’ meanSubVectors ’ )
82 f p r i n t f ( ’ \ tComplete .\n ’ )
83

84 f p r i n t f ( ’ Creat ing Covariance Matrix : ’ )
85 C = ze ro s (numOfVecs , numOfVecs ) ;
86 f o r vecOuter = 1 : numOfVecs
87 f p r i n t f ( ’ \b\b\b\b%4d ’ , vecOuter )
88 X1 = meanSubVectors ( : , vecOuter ) ;
89 f o r vecInner = vecOuter : numOfVecs
90 X2 = meanSubVectors ( : , vec Inner ) ;
91 C( vecInner , vecOuter ) = sum(X1.∗X2) ;
92 C( vecOuter , vecInner ) = C( vecInner , vecOuter ) ;
93 end
94 end
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95 f p r i n t f ( ’ \ t \ r \ tComplete .\n ’ )
96 C = C/numOfVecs ;
97 save ( [ matDirOut ’ \C.mat ’ ] , ’C ’ )
98

99 e l s e % TO LOAD A COVARIANCE MATRIX AND VECTOR FILE TO CALCULATE MODES
100 f p r i n t f ( ’ Loading Covarinace Matrix : ’ )
101 laod ( [ matDirOut ’ \C.mat ’ ] , ’C ’ )
102 load ( [ matDirOut ’ \Vectors ’ ] , ’ Vectors ’ )
103 f p r i n t f ( ’ \ tComplete . ’ )
104 end
105

106 f p r i n t f ( ’ So lv ing the Eigenvector /Eigenvalue Problem : ’ )
107 [ evectorC , evalueC ] = e i g (C) ;
108 [ lam , energyInd ] = so r t ( diag ( evalueC ) , ’ descend ’ ) ;
109 evec to r = evectorC ( : , energyInd . ’ ) ;
110 lamNorm = lam ./ sum( lam) ;
111 lamCum = cumsum(lamNorm) ;
112

113 save ( [ matDirOut ’ \ lam .mat ’ ] , ’ lam ’ )
114 save ( [ matDirOut ’ \lamNorm .mat ’ ] , ’ lamNorm ’ )
115 save ( [ matDirOut ’ \lamCum.mat ’ ] , ’ lamCum ’ )
116

117 energyPlotsPOD ( resu l t sDirOut , lam , lamCum, lamNorm , numOfModes)
118

119 f p r i n t f ( ’ \ t \ tComplete .\n ’ )
120 f p r i n t f ( ’ Compiling Modes : ’ )
121

122 comma = f ind ( header3==’ , ’ ) ;
123 header3end = header3 (comma : end ) ;
124 f o r modeInd = 0 : numOfModes
125 i f modeInd == 0
126 mode = vecAve ;
127 e l s e
128 mode = ze ro s ( s i z e (meanSubVectors , 1 ) , 1 ) ;
129 f o r vecInd = 1 : numOfVecs
130 mode = mode + evec to r ( vecInd , modeInd ) ∗meanSubVectors ( : ,

vecInd ) ;
131 end
132 mode = reshape (mode , [ numel (X{1}) , numel ( i n d i c i e s ) ] ) ;
133 end
134 save ( [ matDirOut ’ \mode ’ num2str (modeInd ) ’ . mat ’ ] , ’mode ’ )
135

136 f i l e ID = fopen ( [ r e su l t sDi rOut ’ \mode ’ num2str (modeInd ) ’ . p l t ’ ] , ’wt ’ ) ;
137 f p r i n t f ( f i l e ID , ’%s \n ’ , header1 ) ;
138 f p r i n t f ( f i l e ID , ’%s \n ’ , header2 ) ;
139 header3 = [ ’ZONE T=”mode ’ num2str (modeInd ) ’ ” ’ header3end ] ;
140 f p r i n t f ( f i l e ID , ’%s \n ’ , header3 ) ;
141 i f i n d i c i e s (1 ) == 4
142 f o r k = 1 : s i z e (mode , 1 )
143 f p r i n t f ( f i l e ID , [ s t r i n g ’ \n ’ ] , data {1}( k ) , data {2}( k ) , data {3}( k ) ,mode

(k , : ) ) ;
144 end
145 e l s e
146 zerop = ze ro s (1 , i n d i c i e s (1 )−4) ;
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147 f o r k = 1 : s i z e (mode , 1 )
148 f p r i n t f ( f i l e ID , [ s t r i n g ’ \n ’ ] , data {1}( k ) , data {2}( k ) , data {3}( k ) ,

zerop ,mode(k , : ) ) ;
149 end
150 end
151 f c l o s e ( f i l e ID ) ;
152 f p r i n t f ( ’ \b\b\b\b%4d ’ ,modeInd )
153 end
154 f p r i n t f ( ’ \ tComplete .\n ’ )
155 f p r i n t f ( ’ \n\ tComputation Time : %3.1 f minutes\n ’ , round ( toc /60 ,1) )
156 pr intClock ( ’ Stop ’ , ’POD’ , r e su l t sDi rOut )

A.2 Reduced Order Projections

1 f unc t i on [ ] = ReducedOrderProject ions ( vectorDir , cumEnergies , vector s ,modeNums)
2 % created by Kyle Johnson 4/7/2016
3

4 % This code p r o j e c t s data onto the optimal ba sa i s c r ea ted by
5 % ”PODsnapshots .m” This ba s i s i s comprised o f the c o l l e c t i o n modes .
6 % This code has t a i l o r e d to work with ”PODsnapshots .m”
7

8 % [ ] = ReducedOrderProject ions ( vectorFo lder , cumEnegies , images , vara rg in )
9 % De f i n i t i i o n s :

10 % vectorFo lde r
11 % the d i r e c t o r y where the ve c t o r s are stored , p r e f e r ab l y in %04d
12 % numbered format
13 % cumEnergies
14 % the cumalt ive energy that the p r j e c t i o n s w i l l have . This can be a
15 % s i n g l e value , or mu l t ip l e values , f o r which the code w i l l loop f o r
16 % numel ( cumIndic i e s ) . These va lue s are a percenatage and should be
17 % entered as i n t e r g e r s not dec imals e . g . [ 1 0 , 20 ]
18 % vec to r s
19 % these are the ve c t o r s that w i l l be p ro j e c t ed onto the ba s i s .
20 % ∗∗NOTE∗∗ the se should be the vec to r numbers not the image numbers ,
21 % i f your data s e t i s o f the form {”0002. p l t ” , ”0004 . p l t ” ,
22 % ”0006. p l t ” , . . . , ”2000 . p l t ”} image 0004 would be i d e n t i f i e d by
23 % vector 0002 . e . g . [ 2 , 50 , 100 : 150 ]
24

25

26

27

28

29

30 PODdir = [ vec torDi r ’ \POD’ ] ;
31 matDir = [ PODdir ’ \Mat ’ ] ;
32 pr intClock ( ’ S ta r t ’ , ’POD Pro j e c t i on ’ , [ PODdir ’ \Pro j e c t i on s ’ ] )
33

34 f o r energyInd = 1 : numel ( cumEnergies )
35 cumEnergy = cumEnergies ( energyInd ) ;
36 f p r i n t f ( ’ P ro j e c t i ng at %2d percent o f Cumlative Energy\n ’ , cumEnergy )
37

38

39

40
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41

42 % load vec to r s
43 f p r i n t f ( ’ Loading ve c to r s :\ t ’ )
44 load ( [ matDir ’ \meanSubVectors ’ ] )
45 load ( [ matDir ’ \VecAve ’ ] )
46 f p r i n t f ( ’ \ t \ t \ t \ tComplete .\n ’ )
47

48 % Calcu la te the number o f modes needed
49 load ( [ matDir ’ \lamCum ’ ] )
50 numOfModes = f i nd (lamCum>cumEnergy /100 ,1) ;
51 f p r i n t f ( ’ Using %d modes ’ ,numOfModes)
52

53 % Load Modes
54 pts = s i z e (meanSubVectors , 1 ) ;
55 f p r i n t f ( ’ \nLoading Modes : ’ )
56 Modes = ze ro s ( pts , numOfModes) ;
57 f o r m = 1 : numOfModes
58 load ( [ matDir ’ \mode ’ num2str (m) ] ) ;
59 Modes ( : ,m) = reshape (mode ( : , : , : ) , [ pts , 1 ] ) ;
60 c l e a r v a r s mode
61 f p r i n t f ( ’ \b\b\b\b%4d ’ ,m)
62 end
63 f p r i n t f ( ’ \ t \ t \ t \ t \ tComplete .\n ’ )
64 % Load a sample . p l t f o r fo rmatt ing
65 f i l eCon t en t s = d i r ( [ vec torDi r ’ \∗ . p l t ’ ] ) ;
66 f i l e ID = fopen ( [ vec torDi r ’ \ ’ f i l eCon t en t s (1 ) . name ] ) ;
67 header1 = f g e t l ( f i l e ID ) ;
68 header2 = f g e t l ( f i l e ID ) ;
69 header3 = f g e t l ( f i l e ID ) ;
70 vars = numel ( f i nd ( header2 == ’ ” ’ ) ) /2 ;
71 s t r i n g = repmat ( ’%f ’ , [ 1 vars ] ) ;
72 comma = f ind ( header3==’ , ’ ) ;
73 header3end = header3 (comma : end ) ;
74 data = text scan ( f i l e ID , s t r i ng , ’ d e l im i t e r ’ , ’ , ’ ) ;
75 X = data {1} ;
76 Y = data {2} ;
77 Z = data {3} ;
78 f c l o s e ( f i l e ID ) ;
79 % Calcua l t e the redueced order approximation and wr i t e data out
80 f p r i n t f ( ’ Reduced Order Approximations : ’ )
81 a = ze ro s (numOfModes , 1 ) ;
82 f o r modeInd = 1 : s i z e ( vectors , 2 )
83 f o r vecInd = 1 : s i z e ( vectors , 1 )
84 V = meanSubVectors ( : , v e c t o r s ( vecInd , modeInd ) ) ;
85 RO = VecAve ;%/sum(VecAve .∗VecAve ) ;
86 f o r m = 1 : numOfModes
87 M = Modes ( : ,m) ;
88 a (m) = sum(M.∗V)/sum(M.∗M) ; % time co e f
89 RO = RO + a (m) ∗M; % reduced order
90 end
91 RO = reshape (RO, [ s i z e (X) , 3 ] ) ;
92 % wri t e data out
93 projDirOut = [ PODdir ’ \Pro j e c t i on s \mode ’ num2str (modeNums(

modeInd ) ) ] ;
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94 i f e x i s t ( projDirOut , ’ d i r ’ ) == 0 ;
95 mkdir ( projDirOut )
96 end
97 textName = [ ’ROM’ num2str (numOfModes) ’ CE ’ num2str ( cumEnergy ) ’

’ num2str ( v e c t o r s ( vecInd , modeInd ) ) ] ;
98 fi leNameOut = [ projDirOut ’ \ ’ textName ’ . p l t ’ ] ;
99 header3 = [ ’ZONE T=” ’ textName ’ ” ’ header3end ] ;

100 f i l e ID = fopen ( fileNameOut , ’wt ’ ) ;
101 f p r i n t f ( f i l e ID , ’%s \n ’ , header1 ) ;
102 f p r i n t f ( f i l e ID , ’%s \n ’ , header2 ) ;
103 f p r i n t f ( f i l e ID , ’%s \n ’ , header3 ) ;
104 i f vars ==6
105 f o r k = 1 : s i z e (X, 1 )
106 f p r i n t f ( f i l e ID , ’%f ,%f ,%f ,%f ,%f ,% f \n ’ ,X(k ) ,Y(k ) ,Z(k ) ,RO(k

, 1 ) ,RO(k , 2 ) ,RO(k , 3 ) ) ;
107 end
108 e l s e
109 f o r k = 1 : s i z e (X, 1 )
110 f p r i n t f ( f i l e ID , ’%f ,%f ,%f ,%f ,%f ,% f \n ’ ,X(k ) ,Y(k ) ,Z(k ) , 0 , 0 , 0 ,

RO(k , 1 ) ,RO(k , 2 ) ,RO(k , 3 ) ) ;
111 end
112 end
113 f c l o s e ( f i l e ID ) ;
114 end
115 f p r i n t f ( ’ \b\b\b\b%4d ’ ,modeInd )
116 end
117 f p r i n t f ( ’ \ tComplete .\n\n ’ )
118 end
119 pr intClock ( ’ Stop ’ , ’POD Pro j e c t i on ’ , [ PODdir ’ \Pro j e c t i on s ’ ] )
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Appendix B
Additional POD Modes

B.1 Velocity POD Modes

(a) Mode 7 (b) Mode 8

(c) Mode 9 (d) Mode 10
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(e) Mode 11 (f) Mode 12

(g) Mode 13 (h) Mode 14

(i) Mode 15 (j) Mode 16
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(k) Mode 17 (l) Mode 18

(m) Mode 19 (n) Mode 20

(o) Mode 25 (p) Mode 30
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(q) Mode 50 (r) Mode 100

(s) Mode 200 (t) Mode 500

Figure B.1: Additional POD modes of velocity are shown using slices of velocity magnitude
and isosurfaces of velocity magnitude shown at the following thresholds: (a)-(n) Mode 7 -
20 with isosurfaces at 1.1; (o)-(p) Mode 25 and 30 with isosurfaces at 0.9; (q) Mode 50 with
isosurfaces at 0.6; (r) Mode 100 with isosurfaces at 0.5; (s) Mode 200 with isosurfaces at 0.3;
(t) Mode 500 with isosurfaces at 0.2
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B.2 Vorticity POD Modes

(a) Mode 7 (b) Mode 8

(c) Mode 9 (d) Mode 10
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(e) Mode 11 (f) Mode 12

(g) Mode 13 (h) Mode 14

(i) Mode 15 (j) Mode 16
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(k) Mode 17 (l) Mode 18

(m) Mode 19 (n) Mode 20

(o) Mode 25 (p) Mode 30
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(q) Mode 50 (r) Mode 100

(s) Mode 200 (t) Mode 500

Figure B.2: Additional POD modes of vorticity are shown using isosurfaces of vorticity
magnitude at the following thresholds, colored by the most dominant vorticity component:
(a)-(n) Mode 7 - 20 with isosurfaces at 0.6; (o)-(p) Mode 25 and 30 with isosurfaces at 0.5;
(q) Mode 50 with isosurfaces at 0.4 (r) Mode 100 with isosurfaces at 0.3; (s) Mode 200 with
isosurfaces at 0.2; (t) Mode 500 with isosurfaces at 0.1
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