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Abstract

The nominally axisymmetric (2-D) magnetic configuration in the form of a tokamak has

proven to be the best candidate for a future reactor, and yet it is susceptible to instabilities

which lead to a complete loss of the confined plasma. Some of these instabilities are on ac-

count of the toroidal plasma current required to establish a magnetic cage to hold the plasma.

On the other end of the spectrum is the non-axisymmetric (3-D) magnetic configuration of

the stellarators in which the a robust magnetic cage is provided by the external coils, with no

need for a plasma current. For the application as a fusion reactor, non-axisymmetric shaping

of toroidal plasmas is expected to be incorporated in the design of future experiments (Spong

2015). Small amounts of non-axisymmetric magnetic fields have been used in improving the

stability and control of the tokamak plasmas (Spong 2015). The effect of varying amounts of

shaping effects in the hybrid configurations of current carrying stellarators, has been demon-

strated to suppress unstable magnetohydrodynamic (MHD) modes (W VII-A Team 1980,

Hirsch et al. 2008, Atkinson et al. 1976). This thesis presents an understanding of the

3-D structure of the MHD modes observed in the current carrying plasmas of the Compact

Toroidal Hybrid (CTH) device. Also presented is the 3-D shaping effect of stellarator fields

on the stability of current carrying plasmas.

CTH is a stellarator-tokamak hybrid device designed to investigate the stability of

current-carrying plasmas. The magnetic configuration of CTH is non-axisymmetric like

that of a stellarator, while on account of a toroidal plasma current, some of the equilibrium

properties are similar to that of a tokamak. The flexible CTH magnetic configuration allows

varying the amount of 3-D shaping by modifying the twist of the magnetic field lines, known

as the rotational transform. In current carrying CTH plasmas when the rotational trans-

form, ῑ, assumes rational values, fluctuations in equilibrium magnetic field are measured by

ii



the arrays of magnetic probes, some of which were built in the course of the research work

presented. These are believed to be associated with specific magnetic flux surfaces inside

the plasma, known as rational surfaces. MHD modes that lie on the rational surfaces can

drive the confined plasma unstable, especially if they are due to perturbations in the cur-

rent parallel to the equilibrium magnetic field. Therefore, it is important to understand the

structure of these MHD modes detected by the magnetic probes.

The structure of the current driven kink/tearing modes is flute-like, and in the cylindrical

geometries their helicity is characterized by the poloidal mode number, m, and the toroidal

mode number, n. The interpretation of the structure of these modes is complicated in the

toroidal geometry, and even more so in a non-axisymmetric configuration like that of CTH.

Information about the plasma equilibrium reconstructed by the V3FIT code (Hanson et

al 2009) is used to model these observed MHD modes as helical current filaments within

the equilibrium. It has been shown that these MHD modes are indeed a result of helical

perturbations within the 3-D plasma equilibrium of CTH, that is their structure is flute-like,

and they originate on rational flux surfaces with helicity given by n/m.

Studying the effect of increasing amounts of vacuum rotational transform, that is the

rotational transform generated by the external magnet coils, on the stability of current-

carrying discharges is an important research topic on CTH. A kink/tearing mode instability

constrains the amount of plasma current that can be driven in a tokamak; with the edge

safety factor constrained to values greater than two, q(a) > 2 (Wesson 2011). The edge safety

factor value is inversely proportional to the plasma current. CTH discharges can operate

without loss of confinement, even if q(a) < 2, if sufficient amounts of 3-D shaping is applied.

It is observed that increasing the amount of 3-D shaping by 10% is sufficient to successfully

stabilize the CTH discharges operating in the low edge safety factor regime. Additionally,

it is observed with the magnetic probes that the unstable modes implicated in the loss of

confinement, have mode structures characterized by m/n = 3/2, and 4/3.
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Chapter 1

Introduction

Thermonuclear fusion research today is carried out with the end goal of achieving con-

trolled steady state fusion reactions to generate electric power. The fusion process involves

the merging of light elements such as hydrogen and its isotopes, deuterium (D) and tritium

(T). All the stars in the universe, including the sun, are powered by fusion. On the earth,

controlled thermonuclear fusion offers the possibility of abundant, environment friendly and

safe power.1 Presently D-T fusion is considered to be of primary interest due to its suitabil-

ity in production of electricity. The result of D-T fusion reaction is one α-particle (helium

nucleus), one neutron, and 17.6 MeV of energy, most of which is carried by this neutron. En-

ergy from neutron has to captured, and transformed into heat, to replacing the heat provided

by the fossil fuels in the majority of power plants today, after which this heat is transformed

into electricity.

The nuclei of deuterium and tritium must overcome the repulsive electrostatic force

before their stored nuclear energy can be tapped. Fusion fuel when heated to high tem-

peratures transforms to the plasma state, and can gain enough energy to fuse together.

The plasma being electrically conducting can be confined, and controlled, using magnetic

fields to achieve conditions necessary for plasma ignition, that is to say, no external heating

sources are required to sustain fusion reactions. The Lawson criterion2 for an ignited fusion

reaction states that the product of density, n, and the energy confinement time, τE, must

exceed a critical value in the range of, 2− 5× 1020 m−3 s, with the temperature in the range,

10−20 keV.3 The energy confinement time can be experimentally determined as ratio of the

total plasma energy, W , and the supplied input heating power PH.3 The total energy stored

in the plasma volume, V , at temperature, T , and density n, is given by W = 3nTV .3 The
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success of building a fusion reactor depends on achieving a triple product beyond its critical

value of,3

nτET > 5× 1021 m−3 s keV. (1.1)

Since early 1950s, significant progress has been made in achieving this goal, with thermonu-

clear power of more than sixty percent of the input power being generated.3 Among all

the magnetic configurations that have been explored for plasma confinement, the best per-

formance has been achieved in a tokamak.1 The prominent concepts of plasma confinement

being explored today are, the tokamak, stellarator, reverse field pinch, spheromak, field

reversed configuration, and the levitated dipole.1 All of these configurations confine the

plasma in a toroidal geometry, and each of them, except the stellarator are axisymmet-

ric, two dimensional (2D) configurations. The stellarator is an inherently non-axisymmetric

(3D) configuration.1 The work presented in this dissertation is performed on the Compact

toroidal Hybrid (CTH) device, a stellarator-tokamak hybrid, so physics pertinent to this

thesis, concerning a tokamak and a stellarator, will be discussed in this chapter.

The confining force of the magnetic field is perpendicular to the motion of a charged

particle, and is given by the Lorentz force, F = q(v×B). In tokamaks and stellarators, the

plasma is confined by the application of toroidal and poloidal magnetic fields. The toroidal

geometry frequently referred to in this thesis is shown in the figure 1.1. The increments in

toroidal or azimuthal angle, ϕ, and poloidal angle, θ, are indicated by arrows. R is the major

radius of the torus, and r is the radius of poloidal cross-section of the torus. The Z-direction is

along the axis normal to the plane of the torus. In tokamaks, the confining toroidal magnetic

field is supplied by external electromagnetic coils, while most of the poloidal magnetic field

is generated by plasma current driven by a voltage in toroidal direction. In a stellarator

however, the poloidal and toroidal magnetic fields are generated by external magnet coils.

Equilibrium and stability of plasma are necessary requirements for any plasma confine-

ment scheme. The magnetohydrodynamic (MHD) model is a fluid model that describes the

macroscopic equilibrium and stability properties of a plasma. Ideal MHD is the simplest
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Figure 1.1: Toroidal geometry is used in plasma confinement. R is the major radius of the
torus, r is the minor radius, θ is the poloidal angle and φ is the toroidal angle. Z-axis is
vertical, and normal to the horizontal plane of the torus.

version of it, where the plasma is represented by single fluid with infinite conductivity and

zero ion gyro radius.4 The ideal MHD theory is explained in detail in the book by Freid-

berg4. According to the MHD theory, the magnetic field lines lie on a set of closed nested

flux surfaces, which follows from the momentum equation, given by,4

ρ
dv

dt
= J×B−∇p, (1.2)

where ρ is the mass density, v is the fluid velocity of the plasma, J is the current density,

B is the magnetic field, and p is the plasma pressure. In a static MHD equilibrium, the left

hand side of the equation is zero as no force is acting on the plasma, and thus,

J×B = ∇p. (1.3)

Taking the dot product of the above equation with B gives,

B · ∇p = 0. (1.4)
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This implies that the magnetic field must be tangential to the contours of constant pressure.

The pressure is maximum at the center of a poloidal cross-section, and decreases as we move

outwards. The only topological shape that satisfies the equation 1.4 is a torus.5 For such

pressure profiles, the contours of constant pressure are nested toroidal surfaces as shown in

the figure 1.2. These contours are usually referred to as magnetic flux surfaces, and the

limiting flux surface, which approaches single magnetic field line, is called magnetic axis.4

Figure 1.2: Model of magnetic field lines on closed nested flux surfaces in CTH.

The trajectories of magnetic field lines define three classes of magnetic flux surfaces:

rational, ergodic, and stochastic. If the magnetic field lines on a flux surfaces close on

themselves after finite number of toroidal circuits, then the surface is known as a rational

surface. If the magnetic field lines remain on the toroidal surface as it makes infinite number

of toroidal transits, but never close upon themselves, then the flux surface is known as an

ergodic surface. For the formation of a closed magnetic rational surface an infinite number

of field lines are required, whereas on an ergodic surface, a single filed line will define the

surface. In the case where the field line does not remain on a surface, but fills the entire

volume then the resulting region is stochastic.4 The rational and ergodic types of flux

surfaces, can be characterized in terms of rotational transform. Rotational transform is a
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measure of twistedness of the magnetic field line, defined as the average change in poloidal

angle, 〈∆θ〉, after an infinite number of toroidal transits:4

ῑ = lim
N→∞

1

N

N∑
1

∆θ

2π
. (1.5)

The factor of 2π is the change in toroidal angle, ∆φ = 2π for a single transit of the magnetic

field line. If the magnetic field line makes n poloidal transits, for every m toroidal transits,

then rotational transform, is also given by,

ῑ =
n

m
, (1.6)

where, if n and m are integers, the magnetic field line lies on a rational surface, otherwise,

it lies on an ergodic flux surface. In tokamak research, the twistedness of the magnetic field

lines is expressed in terms of the reciprocal of the rotational transform, and is termed as the

safety factor, q,

q =
1

ῑ
. (1.7)

Earlier, we identified a flux surface as a contour of constant pressure, therefore the pressure

is termed as a surface quantity. The poloidal and toroidal fluxes are two other surface

quantities that are constant on a flux surface. The poloidal and toroidal fluxes, Ψp and Ψt,

are is defined as,

Ψp =

∫
B · dSp, (1.8)

Ψt =

∫
B · dSt,

where, dSp and dSt are the surface elements, with their respective area-normals pointing

along the poloidal and toroidal directions. Both Ψp and Ψt can be used to label a given flux

surface. The rotational transform can alternately be shown to be reduce to a ratio of these
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fluxes and can be written as,4

ῑ =
dΨp

dΨt

. (1.9)

The rotational transform derived for a screw pinch, the magnetic configuration that confines

plasma in a straight cylinder with poloidal and toroidal magnetic fields, is often used to gain

intuition of the effect of changing magnetic fields. The rotational transform on the surface

of the plasma is given by,4

ῑ(a) =
R0Bθ(a)

rBz(a)
=

1

q(a)
(1.10)

where, the length of the cylinder is 2πR0, a is the minor radius of the plasma, Bθ(a) is the

poloidal magnetic field, Bz(a) is the magnetic field along the axis of the cylinder, and q is

the safety factor at the edge defined earlier in equation 1.7. The poloidal magnetic field

at the edge of the plasma due to the current, I, flowing along the axis of the cylinder can

be computed from Ampere’s law, Bθ = µ0I/2πa, therefore the rotational transform can be

expressed in terms of axial current,

ῑ(a) =
µ0R0I

2πa2Bz(a)
=

1

q(a)
. (1.11)

Thus the rotational transform, is proportional to the axial plasma current, which in toroidal

plasmas can be replaced with the toroidal plasma current. An important difference between a

tokamak and a stellarator is in the way they derive their rotational transform. As mentioned

earlier, the poloidal magnetic field in a tokamak is derived from a toroidal plasma current,

and this gives rise to the rotational transform. In a stellarator, the rotational transform is

entirely derived from the magnetic fields supplied by external coils, and in this dissertation,

it will be referred to as vacuum rotational transform, ῑvac. In the case tokamak case, ῑvac = 0.

A tokamak equilibrium is subject to MHD instabilities which can lead to sudden loss

of plasma confinement known as a disruption. In tokamaks a disruption may occur due

to either violation of an operational stability limit or due to technical failures in systems

associated with machine or plasma control. The disruption-free operation of a tokamak is
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limited with regard to maximum plasma current, maximum electron density and maximum

plasma pressure normalized to the magnetic field , β = 2µ0 < p > /B2.6 The current limit,

also known as the low edge safety factor limit or the low-q limit, restricts the operation of

tokamak to an edge safety factor greater than two, q(a) > 2, thereby restricting the amount

of plasma current achievable for a given toroidal magnetic field (see Eq.1.11). In general,

stellarators are not subject such current driven instabilities due to absence of externally

driven plasma current.

Another difference between a stellarator and a tokamak is the shape of their equilibrium

flux surfaces. The flux surfaces of a tokamak are nominally axisymmetric, that is, their shape

is independent of the toroidal angle, ϕ, whereas stellarator flux surfaces are non-axisymmetric

by design. The shape of last closed flux surface for an axisymmetric tokamak plasma, and

non-axisymmetric CTH plasma is shown in the figure 1.3. The shape of the plasma is an

(a) CTH
(b) Tokamak

Figure 1.3: Comparison of non-axisymmetric flux surfaces of (a) CTH stellarator, and the
axisymmetric case of (b) tokamak. The colors indicate magnitude of the magnetic field,
| B |.

important parameter that determines the stability in tokmaks7,8. To mitigate instabilities

such as edge localized modes9,10 and resistive wall modes11,12, non-axisymmetric magnetic

fields are applied to the axisymmetric tokamak equilibrium. The magnitude of these non-

axisymmetric fields, B3D, in comparison to the axisymmetric toroidal field, B0, is small,
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B3D/B0 ∼ 10−3. Recent theoretical work in this area suggests that some form 3D magnetic

field structure is expected in the design of future steady state reactors.13–16 Stellarator fields

are highly non-axisymmetric with the deviation from axisymmetry being on the order of,

B3D/B0 ∼ 10−1. So, a natural question could be, can intermediate levels of non-axisymmetric

fields provide a greater stability than a tokamak plasma? This question can be answered by

hybrid magnetic configurations, where a toroidal plasma current can be driven on the flux

surfaces of a stellarator equilibrium. Indeed, experiments on current-carrying stellarators

have shown improved stability with increasing levels of stellarator rotational transform.17–19

CTH device is a stellarator-tokamak hybrid designed to investigate effect of 3-D shap-

ing on current driven instabilities.20 This dissertation presents research carried out in the

current-carrying CTH discharges, and is summarized as follows:

• In the current-carrying plasmas of CTH, strong MHD activity is measured by the

magnetic pickup probes when the edge rotational transform, ῑ(a), is near rational

values. First measurements of the MHD mode structures, using poloidal and toroidal

arrays of these probes are presented in this dissertation.

• In cylindrical geometries kink/tearing modes have a flute like structure, which can be

expressed in terms of a helical perturbation, ξ(r) = ξ0(r) exp i(mθ + nφ), where m is

the poloidal mode number, and n is the toroidal mode number. The interpretation of

structure of MHD modes is complicated in a toroidal geometry, and even more so in an

non-axisymmetric configuration like that of CTH. The information about the plasma

equilibrium reconstructed by the V3FIT code21 is used to model observed MHD modes

as helical current filaments on rational surfaces. Such a model enables interpretation of

the MHD modes in terms of Fourier harmonics, m, and n, like in cylindrical plasmas.

Results presented for MHD modes with helicities, m/n =, 3/2, 4/1, 3/1, and 2/1 show

that these modes are indeed flute-like.
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• A study is performed to understand the effect of increasing stellarator transform on low

edge safety factor disruptions. Current driven kink/tearing mode with the structure,

m = 2/n = 1, is responsible for low edge safety factor tokamak plasmas, limiting

the operation to q(a) > 2.3 In contrast, the current-carrying discharges in CTH

are observed to operate disruption-free when the edge safety factor is less than two,

q(a) < 2, with the addition of a sufficient external rotational transform.22 When the

plasma does disrupt, the MHD precursors implicated in the low edge safety factor

disruptions have mode numbers, m/n=3/2, and 4/3 observed on the magnetic probes,

and m/n = 1/1 activity observed on core soft x-ray emissivity measurements.

The outline of this dissertation is as follows: Chapter 2 describes the magnetic configu-

ration of CTH, along with the diagnostics on CTH that are used for determining the equi-

librium, and for measuring fluctuations of magnetic field. Chapter 3 highlights the difficulty

in determining the MHD mode numbers in toroidal plasmas, and develops the biorthogonal

decomposition technique to identify the MHD modes observed in the current-carrying CTH

discharges. Chapter 4 discusses the modeling of these MHD modes as helical current fila-

ments on rational surfaces of the equilibrium. Chapter 5 gives a description of the generic

disruption phenomenon, the low edge safety factor disruptions observed in tokamaks, and

demonstrates the suppression of low edge safety factor disruptions with increasing amounts

of stellarator transform supplied by the external coils of CTH. Chapter 6 provides a summary

and discussion of the major results with possible extensions to the presented work.
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Chapter 2

The Compact Toroidal Hybrid experiment

2.1 Introduction

The Compact Toroidal Hybrid (CTH) is a torsatron-tokamak hybrid, in which a closed,

nested flux-surface equilibrium can be generated solely with external magnetic field coils. In

addition, CTH has a central solenoid, that when energized can drive a plasma current in

the pre-established equilibrium. A combination of these externally and internally generated

magnetic fields provides the rotational transform necessary for confinement. Rotational

transform and its radial variation, or shear, are fundamental parameters that affect the

stability of toroidal plasmas. A wide variety of magnetic configurations can be obtained

in CTH by varying the ratio of rotational transform from the external stellarator coils to

that generated by internal plasma current. This flexible magnetic configuration of CTH is

designed to investigate the stability of three-dimensional current-carrying plasmas.

An overview of the CTH magnetic configuration is presented in section 2.2, and magnetic

diagnostics is presented in section 2.3. The structure of magnetic fluctuations observed in

CTH has been analyzed in this thesis using five arrays of pickup coils, one of which was

built as part of this work. The design, construction and calibration of these pick-up coils is

presented in section 2.3.1. Details of equilibrium reconstruction relevant to this dissertation

are presented in section 2.4.

2.2 CTH magnetic configuration

CTH is low aspect ratio five-field period torsatron with ten auxiliary toroidal field coils to

vary the vacuum rotational transform. CTH is termed a torsatron type of stellarator because
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Parameter Dimension
Major radius (R0) 0.75 m

Inner vacuum vessel radius (avessel) 0.29 m

Toroidally averaged B-field along the
magnetic axis (B0)

0.64 T

Input ECRH heating ≤ 15 kW

Input OH heating 100 kW

Average plasma minor radius (a0) 0.2 m

Line-averaged density (ne) ≤ 5.0× 1019 m−3

Electron temperature (Te) ≤ 200 eV

Table 2.1: Major parameters of the CTH design and operation

its primary magnetic field is generated by a single helical field coil that carries current in

only one direction.1 The vacuum vessel is a torus having a major radius of R0 = 0.75 m,

and a circular cross-section of minor radius avessel = 0.29 m, giving a design aspect ratio of

R0/avessel = 2.6. The average plasma radius in CTH is about a0 = 0.2 m and so the plasma

aspect ratio is approximately R0/a0 ∼ 4. Major CTH design and operation parameters are

listed in table 2.1.

The CTH magnetic configuration is generated by the six, independently controlled,

magnet coil sets shown in figure 2.1. The primary magnetic field generating coil is a single,

96-turn, continuously wound helical field (HF) coil. The HF coil has a toroidal periodicity

of ` = 2, so it makes two toroidal circuits, and Np = 5, that is, it makes five poloidal circuits

as it encloses the vacuum vessel. Like other torsatrons, in order to obtain closed vacuum

flux surfaces, an additional vertical field is required. The flux surfaces obtained with only

the external magnetic coils are referred to as vacuum flux surfaces. In the case of CTH, this

vertical field is provided by the main vertical field (MVF) coil that is electrically in series

with the HF. A pair of trim vertical field (TVF) coils, provide radial position control of the

magnetic axis. A set of toroidal field (TF) coils are used to add to, or subtract from, the

toroidal component of the HF field, giving the ability to change the rotational transform

over a wide range. A shaping vertical field (SVF) coil set provides a quadrupole field for

controlling the vertical elongation and shear of the plasma, and a radial field (RF) coil set
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Figure 2.1: Closed magnetic flux surfaces are produced in CTH using the helical field coil
(HF), the main vertical field (MVF) coil which is in series with HF, and the trim vertical field
(TVF) coil. The TVF also controls the horizontal position of the magnetic axis. Toroidal
field (TF) coils generate a toroidal field which either adds or subtracts from the field produced
by the HF to give different values of vacuum rotational transform. The vertical elongation
and shear are controlled by the shaping vertical field (SVF) coil whereas vertical position
of the magnetic axis is controlled by the radial field (RF) coil. The ohmic (OH) coil in the
center stack is used to drive toroidal current in the plasma. The poloidal field coil packs
shown on top and bottom of the figure are identical.

is used for controlling the vertical position of the plasma. Lastly, an ohmic heating (OH)

solenoid is used to induce voltages in the toroidal direction to drive plasma current in the

pre-established stellarator equilibria.

The HF coil was wound to ensure existence of closed magnetic flux surfaces within the

CTH vacuum vessel.2,3 The nested, closed magnetic surfaces within the CTH vacuum equi-

librium are field-periodic, that is to say that cylindrical coordinates describing the magnetic
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flux surfaces have the property,4

[R(s, u, v), Z(s, u, v)]↔
[
R

(
s, u, v +

2πN

Np

)
, Z

(
s, u, v +

2πN

Np

)]
(2.1)

where s, u and v specify the location of a point in the flux coordinate system, a coordinate

system used in plasma physics to describe closed nested flux surfaces.5 The coordinate s is a

radial-like coordinate that is constant on a flux surface, u is a poloidal angle like coordinate

and v is the same as the geometric toroidal angle. In the equation above, N is any integer

and Np = 5 for CTH, thus making the CTH magnetic configuration five fold symmetric.

This five fold symmetry is on account of the fact that the HF coil is wound to make a

total of five poloidal rotations. In addition, CTH possesses stellarator symmetry, in that,

[R(s, u, v), Z(s, u, v)]↔ [R (s, u, v) ,−Z (s, u,−v)].

The vacuum magnetic field configuration of CTH is referenced by the value of vacuum

rotational transform at the last closed flux surface, ῑvac(a), and can be varied within the range

0.02 ≤ ῑvac(a) ≤ 0.4. Since, ῑ ∝ Bθ/Bφ, adding or subtracting the toroidal field supplied by

the TF coil to the helical field from the HF coil, adjusting the ratio of the currents in the

TF, and the HF coils changes the rotational transform of the system. Rotational transform

profiles obtained for different ratios of currents in the TF and HF coils, ITF/IHF, are shown

in figure 2.2. These profiles are obtained with equilibrium reconstructions of CTH equilibria

which is described later in the section 2.4. When the current ratio is negative, indicated

by solid lines in the figure, the magnetic field produced by the TF coil adds to the toroidal

field component of the HF coil, lowering the rotational transform profile. When the ratio

is positive, indicated by dashed lines, the field from the TF coil subtracts from the HF coil

increasing the transform. The dotted line indicates zero TF coil current in Fig.2.2.

In addition to the flexibility of the vacuum configuration, CTH can substantially change

the vacuum fields by the addition of induced plasma current. In a typical CTH discharge,

nested closed magnetic flux surfaces are first obtained with appropriate fields from the main
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Figure 2.2: Vacuum rotational transform profiles in CTH are obtained by varying the ratio
of currents in the TF and HF coils, ITF/IHF. The rotational transform values at different
radial locations is shown for each value of ITF/IHF. The normalized toroidal flux is 1 at the
last closed flux surface and 0 at the magnetic axis. The current ratio is negative, indicated
by solid lines in the figure, if the magnetic field produced by TF adds to the total toroidal
field component of HF. The positive TF current is indicated by dashed lines, and dotted line
indicates zero TF current.

Figure 2.3: The toroidal plasma current strongly modifies the rotational transform profile
of CTH equilibrium. The vacuum rotational transform profile, shown in gray, is monoton-
ically increasing with ῑvac(a) ∼ 0.05. With toroidally driven plasma current the rotational
transform profile is monotonically decreasing, tokamak like, with ῑtot(a) ∼ 0.45.
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magnet coils. Next, a hydrogen plasma is produced in this magnetic configuration by electron

cyclotron resonance heating (ECRH). This is what is referred to as “pure” stellarator plasma.

In this stellarator equilibrium, a large toroidal loop voltage is inductively applied with the

OH coil, resulting in a toroidally driven plasma current, giving rise to the hybrid phase

of the discharge. The resulting rotational transform thus has contributions from both the

vacuum field and the poloidal field generated by the toroidal plasma current, Ip (recall that

ῑ ∝ Bθ/Bφ and Bθ ∝ Ip). The total rotational transform is the sum of the vacuum rotational

transform and that generated by the plasma current, ῑtot(r) = ῑvac(r)+ ῑp(r), with the toroidal

plasma current contributing as much as 95% to the total rotational transform. Figure 2.3

shows rotational transform profiles with and without the plasma current. The rotational

transform profile in the stellarator phase is fairly flat and monotonically increasing, with an

edge rotational transform of ῑvac(a) ∼ 0.05. With the additional rotational transform from

to the plasma current, the profile is peaked at the center and monotonically decreases with

ῑvac(a) ∼ 0.5. This transform profile is more like that of a tokamak and is an important

feature of hybrid equilibria of CTH used to study tokamak relevant MHD stability issues.

2.3 CTH Diagnostics

Diagnosis of plasma parameters such as temperature, pressure and density is essential

to determine properties of a plasma equilibrium. The principles of plasma diagnostics have

been reviewed in numerous references6–8, and are generally classified on the basis of the

physical quantities they are used to measure. Magnetic diagnostics are used for basic mea-

surements such as plasma current, loop voltage, plasma position and shape, stored plasma

energy and current distribution. A three-channel 1 − mm microwave interferometer mea-

sures line-integrated plasma density in CTH.9 A multi camera soft-Xray (SXR) diagnostic

on CTH is employed to measure the equilibrium electron temperature profile and electron

temperature fluctuations resulting from MHD activity.10 An array of seven Hα detectors that

measuring the Balmer line of wavelength 656.28 nm, are installed to study edge fluctuations
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and measure neutral density. Spectrometers from the near-ultraviolet to visible region are

present to measure emission from impurities such as carbon, oxygen, nitrogen, etc. besides

the dominant hydrogen lines. A SXR spectrometer is used to measure central electron tem-

perature. A Thomson scattering system has been designed, and is presently being installed

on CTH to measure localized electron temperature and density.11 Magnetic diagnostics in

conjunction with the internal diagnostics that measure SXR emission and plasma density

are used on CTH to investigate equilibrium and fluctuating quantities in the plasma. In

this section we shall discuss the magnetic diagnostics used in the measurement of perturbed

magnetic fields used to characterize MHD instabilities.

Magnetic diagnostics on CTH are inductive in nature and are installed external to the

plasma, either on the inside or outside wall of the vacuum vessel. A Hall probe array4,12 was

fabricated for internal measurement of the poloidal magnetic field in the edge of low tem-

perature CTH stellarator plasmas. However, it was found to perturb ohmic CTH discharges

and it has not been used in the work presented in this thesis. The inductive response of a

magnetic coil is given by the Faraday’s law,

V = −dΦ

dt
= −NAdB

dt
(2.2)

where N is the number of turns of the coil, A is the cross-section area of the coil, B is

the component of magnetic field along the area-normal, and V is the voltage measured at

the ends of the solenoid. The signals from the diagnostics which are used for equilibrium

reconstructions are electronically integrated, whereas the signals from probes that are used

to study fluctuating components of magnetic field associated with the MHD instabilities

are not integrated to retain the high frequency oscillations within the signal, and are given

simply by equation 2.2.

A majority of the magnetic diagnostics on CTH are employed for measurement of the

plasma equilibrium. These diagnostics include full and partial Rogowski coils, saddle coils,
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and poloidal and radial pick-up coils, shown in figure 2.4. These diagnostics measure mag-

netic fields generated by both the external coils and those generated by the driven plasma

current. A Rogowski is a solenoidal coil that closes on itself, measuring the magnetic field

Figure 2.4: Magnetic diagnostics used in equilibrium reconstructions of CTH plasmas include
full Rogowskis that measure plasma current, multi-part Rogowskis that cover complete or
partial poloidal cross-sections, saddle coils to measure the radial field and an array of cube
coils that measures the poloidal and radial magnetic field.

due to the current through the plane defined by the coil. Assuming that the magnetic field

variation along the length of the solenoid is negligible, the total flux through the coil is

given by Φ = NAµ0I, where N , A, and I are respectively the number of turns per unit

length of the Rogowski, the cross-sectional area of the solenoid, and the current through the

plane defined by the coil. The Rogowski coils are installed around the current feeds of all

the magnet coils, and a section of the helical coil frame. A uniformly wound full Rogowski

coil installed on the inner wall of the vacuum vessel at Φ = 264◦ is used to measure the

toroidal plasma current. A coil exterior to the toroidal vacuum vessel is use to measure the

vacuum vessel current induced by the ohmic transformer. A uniformly wound full Rogowski

is insensitive to the shape or position of the plasma. In contrast, multi-part Rogowskis or

partial Rogowskis are composed of multiple pick-up coils which provide local measurements
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of the spatial variations of the current. These being sensitive to position and shape of the

plasma are used in equilibrium reconstructions.

Poloidal flux loops are installed outside the vacuum vessel to measure poloidal flux near

the plasma boundary. They consist of a conducting loop in a horizontal plane and are used

to measure loop voltage created by the ohmic system. Saddle coils are installed at Φ = 288◦

shown in the figure 2.4 to measure the local radial field, the field normal to the vacuum

vessel wall in this case. Saddle coils are rectangular loops whose area normals are in the

radial direction.

Poloidal and radial pick-up coils referred to as Cube coils on CTH located at Φ = 108◦

in the figure 2.4, are used for local measurements of Bθ and Br. Cube coils are turns

of wire wound on rectangular pieces of Teflonr. In addition to their use in equilibrium

reconstruction, they are used to determine the vertical position of the plasma.13

2.3.1 Magnetic diagnostics for fluctuation measurements

Strong MHD activity is observed in CTH plasmas when the value of the edge rotational

transform, ῑvac(a), is near low order rational values like 1/4, 1/3, etc. This can occur dur-

ing the initial plasma current ramp phase of ohmic discharges. MHD modes can also be

responsible for sudden loss of plasma confinement with strong fluctuations being observed

on multiple diagnostics prior to plasma termination. These loss of confinement events are

termed disruptions. MHD modes can be observed as perturbations to the equilibrium mag-

netic field by the magnetic pick-up coil diagnostics installed on the inner or outer wall of

vacuum vessel. The structure of the MHD fluctuations in CTH is discussed in detail later in

this dissertation, while the magnetic sensors built as part of this thesis work will be described

in detail in this section.

On CTH, poloidal and toroidal arrays of magnetic pick-up coils are installed inside the

vacuum vessel to study the structure of the MHD activity. There are three poloidal arrays

installed at Φ = 23◦, 223◦, and 240◦ consisting of 16, 16, and 36 probes respectively. The
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Figure 2.5: Three poloidal and two toroidal arrays of pick-up coils are installed on the
inner CTH vacuum vessel wall to study magnetic fluctuations. The two toroidal arrays are
nominally placed at top and bottom inside the vacuum vessel with a separation of about 36◦

between adjacent B-dot probes.

two toroidal arrays, with coils spaced 36◦ apart, are located approximately at ±90◦ with

respect to mid-plane of CTH vacuum vessel. Nominally they are placed at Φ = 18◦ + n36◦,

where n = 0, . . . , 9. The precise location of these probes is given in appendix B.

The poloidal array at Φ = 240◦ was constructed as a part of this thesis work to measure

the detailed poloidal structure of MHD modes with higher spatial resolution than the previ-

ously installed poloidal arrays. These probes are wound on custom Teflonr forms, shown in

the photograph in figure 2.6(a). The design of the forms is given in appendix B.1. Over 50

coil forms were built, with 36 of them were installed in the poloidal array and rest were built

to augment the toroidal array. Eighteen of the 36 probes have dual windings to measure

both the poloidal and radial components of the magnetic field, Bθ and Br.

The coil forms are designed to increase the effective NA relative to the previous probes

while maintaining ease of winding and convenience in measurement of the coil position after

they were installed in the machine. The product NA measures the response of the coil with

changing magnetic field (see eqn. 2.2). However care must be taken to keep the probes small
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(a) (b)

Figure 2.6: (a) The installed pick-up coils are wound on custom designed Teflonr forms
about 2 cm in length and 1 cm in diameter. (b) Insulator coated copper wire is wound
on the form, in two perpendicular directions to measure two components of the fluctuating
magnetic field. The circular cross-section is aligned along so as to measure Ḃθ whereas the
rectangular coil wound over it measures Ḃr .

enough that the measurement is considered local, and that the measured magnetic field does

not change substantially over the volume the coil. The measured effective NA for all the

probes built for this thesis are listed in appendix B. The ends of the coil form have tapped

holes used to hold them in place while being wound, and to measure the their position once

installed on the machine.

The coils are wound with 30 AWG magnet wire coated with a polymide resin insula-

tion. The winding leads are then twisted to minimize stray pickup. The magnet wire is

sourced from MWS wire industries with specification NEMA MW1000-1997 with quadruple

insulation coating to prevent exposure of bare copper, which could lead to shorting of the

coil.

A magnetic field generated by a Helmholtz coil was used to calibrate the probes. Shown

in figure 2.7 is a linear relationship between the magnetic field, B, generated by the current,

I0, through the Helhmholtz coil. The magnetic field is measured using a Hall probe as a

calibration standard. The slope of the line, α, is used later to relate the current in the coil

to the magnetic field.
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Figure 2.7: The magnetic field at the center of the Helmholtz coil is measured with a hall
probe as a function of current in the coils. The dots represent the measurements of the
B-field for different current values whereas the solid line is the linear fit to the data.

The calibration of the effective response, NA, of these B-dot probes is accomplished by

suspending them in a time varying magnetic field generated by the Helhmoltz coil. The B-

dot probe is suspended in such a fashion that the axis of the Helhmholtz coil coincides with

the axis of the B-dot probes. The magnetic field is measured to be uniform at the location

inside the bore of the Helmholtz coil where these B-dot probes are suspended, while the Hall

probe measurements are accurate to within 0.2 G. The current source to the Helmholtz coil

is connected to the sinusoidal voltage output of a function generator and the voltage response

of the B-dot probe is measured across the leads of the probe. The current through in the

Helmholtz coil was found by measuring the voltage drop, Vr, measured across an R = 5Ω,

high precision, ∼ 0.1% resistor, in series with the Helhmholtz coil. The response of the

B-dot probe, Vc, to the sinusoidally varying magnetic field, B = B0 sin(2πft+ δ) is given by

equation 2.3.

Vout = −NAdB
dt

= −2πfNAB0 cos(2πft+ δ) (2.3)
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Figure 2.8: The ratio of the voltage measured at the ends of the B-dot probe, Vc, and the
resistance r, Vr, is plotted against the frequency of the changing current or magnetic field.
NA can be computed from the slope of the line.

For simplicity we pick an instant to measure the voltage at the B-dot probe and using the

relation, B0 = αI0, gives us the relation in Eq.2.4, from which NA is determined.

(Vout)peak = 2πfNAB0

= (2πfαI0)NA (2.4)

The current in the calibration circuit, I0, is known from the measurement of voltage, Vr,

across the resistance, R. Solving for NA, equation 2.4 can be written as,

NA =
R

2πα
×

Vout
Vr

f

=
R

2πα
× slope (2.5)

where the slope is measured using a linear fit to the calibration data. Calibration data for

one B-dot probe and result of the fit are shown in figure 2.8. The calibration data was

collected for frequencies ranging from 500 Hz to 30 kHz. We could also compute the NA of

these probes from the knowledge of the geometry of the forms and the dimensions of the wire

used to wind them. The advantage of having used a designed form is that the NA values
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(a) Ḃθ-coils (b) Ḃr-coils

Figure 2.9: Comparison of effective response, NA, for all B-dot probes with their design
value is shown. The dashed red line indicates the NA computed from the knowledge of
number of turns and the area of these probes. (a) Calibrated effective response is shown for
36 probes, all of which are designed to measure poloidal field, Bθ, range from NA = 91 cm2

to NA = 96 cm2, close to their designed value of NA = 92.5 cm2. The probes are numbered
from 1 to 36 with every odd numbered probe also designed to measure radial field, Br.(b)
Calibrated effective response for 18 probes which are designed to measure radial field, Br, is
shown in the right figure. Their design value is NA = 215 cm2 whereas the measured values
are somewhat lower with a larger variation across the probes.

of these B-dot probes are comparable to each other and very close to their predicted values.

This is evident from the comparison of NA for all the probes shown in figure 2.9. These

new B-dot probes are more sensitive to the changing magnetic fields with an effective NA of

about 92 cm2 compared to roughly 50 cm2 for the previously installed B-dot probes. For the

B-dot probes that also measure the radial magnetic field Br, the NA is about 215 cm2. The

response of the radial field coils is designed to be larger to compensate for smaller values of

the Br, typically by a factor of three, compared to values that of Bθ. The data from the

these radial probes has not been used in the analysis presented in this dissertation. The

deviation from the theoretical value for all the probes that measure Ḃθ is in the range of

1.6-3.7%, while for the probes that measure Ḃθ, the deviation is in the range of 0.5-11.5%.

The B-dot probes were then assembled on a circular, nonmagnetic SS 316 frame 10.5′′

in diameter. The circular frame can be broken into two halves so that it fits through the

16′′ diameter tubes that makeup the side ports of CTH. The probes are attached to the
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frame using L-shaped mounting brackets as shown in figure 2.10. As can be seen from

the figure 2.10a, alternate B-dot probe measures both radial and poloidal field whereas the

poloidal field is measured by all the probes. To protect the B-dot probes from coming into

contact with the plasma, six stainless steel limiters 0.75′′ wide are placed along the circular

frame. The twisted leads of each B-dot probe are encased in a braid made out of PEEK, a

thermoplastic material, that runs along the outer circumference of the circular frame. The

PEEK is compatible with the base pressure of CTH which is of the order of 60− 80 nTorr.

Once the whole array was assembled on the bench, the position of each coil with respect

to the frame was measured using a coordinate measuring machine (CMM). The B-dot probes

were placed in such a fashion that the axis of each B-dot probe was tangent to the circumfer-

ence of the frame so that once installed inside the vacuum vessel they would measure mostly

the poloidal component of the magnetic field assuming the plasma is circular. In practice,

CTH plasmas are neither centered horizontally within the vacuum vessel nor circular; how-

ever the coil array is centered horizontally and vertically inside the vacuum vessel. The array

is then placed inside the vacuum vessel and the frame position is measured in place. Finally,

the probes are covered with stainless steel stock about 0.003′′ thick to shield out electrostatic

noise.

The leads of each B-dot probe are connected to sub-D feed-throughs sourced from Accu-

Glass products, Inc. On the outside of the vacuum vessel, these leads are connected to

instrumentation amplifiers designed for low impedance loads such as the B-dot probes. Data

acquisition for these B-dot probes is performed at the rate of 500 kS/s. The amplifier circuitry

for these probes include, a two-pole Sallen-Key low-pass Butterworth filter, for low gain at

signal frequencies greater than 250 kHz to prevent aliasing. The response of the amplifiers

is designed to be flat up to 50 kHz. The measured circuitry frequency response is shown

in figure 2.11. The gain of the circuit is approximately 7 and the 3 db frequency of the

filter circuit is near 80 kHz. The rotating MHD activity analyzed with these B-dot probes
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(a)

(b)

Figure 2.10: (a) Photo of the partially assembled poloidal array on the bench. B-dot probes
are mounted onto a SS 316 frame 101/2

′′
in diameter with L-shaped brackets also made out

of SS 316 material. SS limiter 3/4
′′

thick, prevents plasma from coming into contact with the
frame. B-dot probes designed to measure both poloidal and radial field, and those designed
to measure only the poloidal field are alternately positioned. The leads of the each probe is
protected by a PEEK braid that runs along the circumference of the whole assembly. (b)
The completed assembly is mounted inside vacuum vessel in a plane nominally located at
toroidal angle, Φ = 242◦.
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Figure 2.11: Frequency and phase response for the circuitry used in amplification of the
B-dot probe signals is shown. A gain of seven is designed to be flat up to a frequency of
50 kHz with the 3 db frequency occurring at 80 kHz. The data from these B-dot probes is
recorded at the rate of 500 kHz, thus the gain of these amplifiers is designed to drop to a
small value at the Nyquist frequency of 250 kHz to prevent aliasing effects. In addition to
the drop in gain, a phase shift is introduced by the filtering circuit of the amplifier, as a
function of frequency. The frequency of the MHD modes observed in CTH is in the range
1− 20 kHz; thus in order to determine whether a correlation between multiple modes exists,
the phase shift must be corrected.

is typically in the approximate range of 5 − 20 kHz. The phase-shift introduced by the

amplifiers must be numerically corrected at the time of data analysis.

2.4 Equilibrium Reconstruction of CTH Plasmas

Reconstructions of the CTH equilibria presented in this dissertation are performed using

the V3FIT code14, which presently uses the VMEC15 as its equilibrium solver. VMEC

solves for a three-dimensional MHD equilibrium assuming the existence of closed, nested

flux surfaces and VMEC takes as inputs the vacuum magnetic fields, plasma current profile

and pressure profile. The goal of the reconstruction process is to obtain the most probable

plasma current and pressure profiles consistent with the measurements. The measurements

can be from external magnetic diagnostics such as full and segmented Rogowski coils, saddle
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coils, and internal diagnostics such as an interferometer, and SXR emission diagnostics.

Information from external magnetic diagnostics are used in this dissertation to compute the

equilibrium reconstructions.

The current and pressure profiles which represent the VMEC equilibrium are defined

by a set of input parameters such as for example total enclosed toroidal flux, and the pa-

rameters that define current and pressure profiles. V3FIT optimizes the input parameters,

by minimizing the mismatch between the measured signals and the corresponding modeled

signals. For each measured signal, model signals are computed from the VMEC equilibrium

obtained with external currents.

This optimization of the input parameters involves minimzing the mismatch, χ2, defined

by,

χ2(p) ≡
N∑
i

[
SOi (d,p)− SMi (p)

]2
(σi)

2 (2.6)

where N is the number of diagnostics used. The observed signal for the ith diagnostic is given

by SO
i and the corresponding model-computed signal is given by SM

i . The observed signals are

dependent on the measured data, d, and the optimized input parameters, p. The modeled

signal is only a function of the input parameters to be optimized. An uncertainty of the

measurement is represented by σi, is the measured variance of signals.16 For measurements

within the uncertainty of the measurement the value of χ2 is expected to be approximately

equal to the number of diagnostics, N . Further details of equilibrium reconstruction on CTH

can be found in the thesis by Stevenson4 and a recent publication by Ma, et. al.16

The five-fold symmetry of the CTH magnetic configuration, and the effect of toroidal

plasma current is demonstrated in the figure 2.12, which shows contour plots of the outermost

flux surface of plasma with and without the ohmically driven current.16 The left hand side

of the contour figure is obtained by equilibrium reconstruction with no plasma current and

the closed flux surfaces are shown at four different toroidal locations. The right side shows

flux surfaces with a plasma current of Ip = 53.6 kA. The poloidal cross-section becomes

less elliptical with the addition of plasma current, but the n = 5 stellarator periodicity is
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Figure 2.12: Poloidal cross-sections of flux surfaces and contour plots of the last closed flux
surfaces of CTH with (left) and without (right) toroidal plasma current are shown. The
colors represent the magnitude of the magnetic field, blue being low and red, high. The
white lines represent the magnetic field lines which have larger twist when plasma current is
driven on the stellarator equilibrium.

enhanced. The figure also shows that individual magnetic field lines in white, are twisted

more with the addition of the poloidal field due to the toroidal plasma current, indicating

that the rotational transform of the flux surface has increased.
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Chapter 3

Magnetohydrodynamic activity in current-carrying CTH plasmas

3.1 Introduction

CTH plasmas with driven current harbor an interesting range of magnetohydrodynamic

(MHD) modes.1–4 In this chapter we shall identify several rotating MHD modes observed

during CTH discharges. In cylindrical geometries an MHD mode can be identified by the

Fourier harmonics of its poloidal and toroidal structure, m and n respectively.5 The interpre-

tation of the spatial structure of these modes is not as straightforward in toroidal plasmas,

which in CTH is further complicated by the nonaxisymmetric or three dimensional nature of

its equilibrium. The structure of the MHD modes and toroidal effects are discussed in detail

in chapter 4. We shall refer to MHD modes by Fourier mode numbers (m/n) even though

these modes may not be sinusoidal in nature.

The method to obtain fluctuations in the poloidal field, δBθ, from the raw pickup coil

signals is outlined in section 3.2. In the section 3.3 the biorthogonal decomposition technique

is developed to interpret the structure of rotating MHD modes using the measurements from

the poloidal and toroidal B-dot probe arrays inside CTH. Finally, in section 3.4, MHD modes

observed during a typical current-carrying CTH discharge are identified.

3.2 Identification of MHD mode numbers in current-carrying CTH plasmas

CTH is equipped with poloidal and toroidal arrays of magnetic pick-up coils, or B-dot

probes, to measure the fluctuations in the poloidal component of the magnetic field, δBθ, as

is described in Chapter 2. In the analysis presented in the rest of this thesis, we will use one

poloidal array consisting of thirty-six B-dot probes, located at toroidal angle, φ = −117◦,

34



and one toroidal array of ten B-dot probes positioned at θ = +90◦, at the top of the vacuum

vessel. Figure 3.1 shows the positions of the probes in these arrays. The angle θ = 0◦ at

the outboard mid-plane, and the angle φ = 0◦ as indicated in the figure 3.1. These probes

Figure 3.1: MHD activity observed in current-carrying CTH plasmas is measured with B-dot
probes (shown in blue) belonging to a poloidal array with 36 probes placed every 10◦ and a
toroidal array of 10 probes placed every 36◦. Shown in gray is the CTH vacuum vessel with
its vertical, horizontal and angled ports.

provide local measurements of the poloidal magnetic field from both equilibrium and MHD

perturbations. A method to extract the poloidal field fluctuations from the raw pickup coil

signals is outlined by the plots in figure 3.2. The measured raw signal, dBθ/dt, for one

of the probes is shown in the top panel, which after numerical integration gives the local

poloidal field, Bθ(t) =
∫

dBθ
dt
dt, at the location of this probe, shown in the second panel. The

fluctuations in the poloidal field, δBθ, are obtained by subtracting a boxcar averaged signal

from the total signal, δBθ = Bθ(t) − 〈Bθ(t)〉. The fluctuations for the window highlighted

in figure 3.2, shown in the bottom panel, are coherent, with peak-to-peak amplitude of

about 4 G. The spatial structure of these fluctuations can be deduced from measurements

of δBθ from the poloidal and toroidal arrays of the B-dot probes. Figure 3.3a shows the
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Figure 3.2: The raw signal, Ḃθ, measured by one of probes for shot 14021473 is shown the top
panel. The middle panel shows the poloidal field, Bθ, obtained after numerical integration
of the raw signal. Fluctuations in poloidal field, δBθ, for the highlighted region are shown
in the bottom panel.

δBθ measurements for all the probes in the poloidal array. The plotted signals are offset by

the poloidal angle at which they are located, with the probes at inboard midplane located

at the top and bottom of the stack, at θ = ±180◦, and probe at the outboard midplane at

the center, or θ = 0◦. The poloidal mode number of m = 2 can be deduced by counting the

number of peaks in the signal going from bottom to top. A vertical dashed line is shown

to help guide the eye. A contour plot of the intensity of the same signals is shown in figure

3.3b. At a fixed time there are two nodes, again giving an m = 2 mode. The toroidal mode

number of n = 1 is deduced in a similar manner from the measurements made with the

toroidal array of B-dot probes.
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(a)

(b)

Figure 3.3: (a) Signals for the poloidal array of probes for shot 14021473 are shown offset
by angular position of each probe with the probe located at the inboard midplane is shown
at the bottom of the plot and outboard midlplane is the middle. The poloidal structure of
MHD activity is determined to be m = 2 by counting the number of nodes at a fixed time
indicated by a vertical dashed line. (b) The contour plots of these signals from polodial and
toroidal array of B-dot probes show that the MHD activity corresponds to an m = 2/n = 1
mode. The black squares represent the location of the B-dot probes that measure the shown
signals. The probes are placed every 10◦ in the poloidal array and every 36◦ in the toroidal
array.
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Such visual inspection of mode activity however, does not determine the actual MHD

mode structure, which in circular, cylindrical plasmas is obtained by the Fourier analysis

of fluctuations measured by spatially distributed arrays of B-dot probes. In non-circular,

toroidal plasmas, the poloidal mode structure an MHD mode is no longer represented by a

single Fourier harmonic of poloidal structure, m. A Fourier analysis of δBθ performed for

the poloidal array of B-dot probes is shown in figure 3.4. This indicates that along with an

m = 2 mode, an m = 1, and other Fourier harmonics are associated with the MHD activity.

A discussion of the fact that in toroidal plasmas multiple poloidal harmonics are associated

Figure 3.4: A Fourier analysis of fluctuations, δBθ, measured by poloidal array of B-dot
probes indicates presence of multiple Fourier harmonics.

with a single MHD mode is presented in greater detail in Chapter 4. However, at present

we shall refer to MHD modes by the number of nodes deduced from visual inspection of the

fluctuations, δBθ, at a fixed time.

A visual inspection of the fluctuations fails if the observed magnetic activity is com-

prised of MHD modes having different poloidal, m, and toroidal, n, mode numbers. A more

systematic method to determine the spatial and temporal structures uses a bi-orthogonal
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decomposition technique (BD) which will be presented next, where BD will be applied to

the m = 2/n = 1 mode we have shown earlier in this section.

3.3 Identification of dominant MHD modes using biorthogonal decomposition

technique

The biorthogonal decomposition (BD) technique is used in plasma physics to investigate

the spatial and temporal structure of magnetic perturbations.6–11 BD is also known in the

literature as singular value decomposition (SVD)7,12. BD decomposes a set of signals evolving

in space and time into orthogonal spatial and temporal modes13, with each spatio-temporal

pair weighted by a singular value. This method has been demonstrated to be a robust tool

to analyze fluctuations measured by multichannel diagnostics like poloidally and toroidally

separated magnetic probes and multi-chord SXR cameras.6–8,10,14 An important feature of

this method is that it does not require any assumptions about the spatial structure of the

MHD mode. If the signals are sinusoidal in both space and time then the result of BD and

Fourier analysis will be identical. Some properties of the BD method are summarized as

follows6:

1. Rotating modes in the data are represented by degenerate singular values, each with

its own spatio-temporal structure;

2. Two or more spatial modes with different structures but rotating with same frequency

are identified as single mode by BD with distorted spatial structure; however, the BD

can’t distinguish between different MHD modes of same frequency;

3. The singular values not related to a coherent spatial or temporal behavior are small in

amplitude, and lie in the noise of the signal.
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The BD breaks a rectangular, m × n matrix, A, into two rectangular matrices, U and

V , and a diagonal, n× n matrix, Σ,

A = UΣV †. (3.1)

We shall apply this decomposition to determine the poloidal and toroidal mode struc-

tures embedded in the magnetic fluctuations measured by the arrays of B-dot probes shown

in figure 3.1. The columns of the signal matrix contain time history of individual channels,

while each row is the measured signal by all channels at one instance of time. Consider a

signal matrix composed of n channels with m sample points in time, then U can be thought

of as a set of n column vectors, ui, each of length m, while V † is a set of n row vectors, vi,

again of length m. This can be illustrated in the following way:


↑ ↑ ↑

s1 s2 · · · sn

↓ ↓ ↓


︸ ︷︷ ︸

Signal Matrix

=


↑ ↑ ↑

u1 u2 · · · un

↓ ↓ ↓


︸ ︷︷ ︸

Temporal Modes



σ1

σ2

. . .

σn


︸ ︷︷ ︸
Singular V alues/Weights



← v1 →

← v2 →
...

← vn →


︸ ︷︷ ︸

Spatial Modes

(3.2)

The result of the decomposition is a set of temporal modes, ui, arranged in columns, with

corresponding singular values or weights, σi, and a corresponding set of spatial modes, vi.

The matrix Σ contains the singular values arranged in a descending order. The condition

of bi-orthonormality implies that spatial modes are orthonormal, ui · uj = δi,j, and so are

temporal modes, vi · vj = δi,j. BD generates the same number of biorthogonal modes as the

number of diagnostic signals used, with the first mode being the most coherent mode in the

measurement, and the last mode in most cases is uncorrelated background noise.

Next, we apply biorthogonal decomposition to the magnetic fluctuation data shown in

the contour plots of figure 3.3b. The signal matrix is comprised of 35 channels belonging to

the poloidal array that determine the poloidal structure and 10 channels of the toroidal array
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that determine the toroidal structure of the poloidal magnetic field fluctuations, δBθ. The

resulting set of singular values are shown in figure 3.5 for a set of 45 modes, corresponding

to the 45 diagnostics, ordered by their singular value or weight. As can be seen from the

distribution of singular values in this example, the first two values are almost one order of

magnitude larger than the rest. It will be shown later that these two modes combine to

Figure 3.5: A set of 45 BD modes arranged in decreasing order are obtained when a set of
spatio-tempral signals from as many diagnostics are used. The singular value distribution
is dominated by a degenerate pair of BD modes. The singular value for the next pair of
degenerate modes is an order lower in magnitude, while rest of the singular values appear to
form a continuum.

form a quadrature pair of a rotating mode with poloidal mode number, m = 2 and toroidal

mode number, n = 1. After this dominant mode, there are two more singular values close

in amplitude, which later, will be shown to be another rotating mode, with mode number,

m/n = 4/2. The rest of the singular values form a continuum and are close to the noise floor

of the measurements. The weight distribution of these modes can be quantified by several

parameters, one of them is the global signal energy which is the sum of squared weights,

given by,7

E =
45∑
i=1

σ2
i . (3.3)
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The relative amount of energy in each pair of spatio-temporal mode is useful for comparing

different data sets and is given by,

pi = σ2
i /E. (3.4)

The value of relative energy is in the range, 0 ≤ pi ≤ 1 and the sum for all the spatio-temporal

pair is one,
∑45

i=1 pi = 1.

We mentioned earlier that the degenerate singular values obtained from biorthogonal

decomposition can represent a traveling wave. This can be demonstrated with an example

of a traveling wave which can be separated into spatial and temporal components using the

trigonometric identity as given by,

cos(nφ+ ωt) = cos(nφ)︸ ︷︷ ︸
Spatial

cos(ωt)︸ ︷︷ ︸
Temporal

− sin(nφ)︸ ︷︷ ︸
Spatial

sin(ωt)︸ ︷︷ ︸
Temporal

. (3.5)

For the singular value distribution shown in figure 3.5 the first two modes have approximately

degenerate singular values, σ1 = 0.011 and σ2 = 0.0084, together representing approximately

96% of the total signal energy. For a perfectly sinusoidal traveling wave in a cylinder these

singular values would be equal. Whereas the next two modes, also with approximately

degenerate singular values, σ3 = 0.0016 and σ4 = 0.0013, represent 3% of the total signal

energy. The spatio-temporal modes corresponding to first four singular values are shown in

figure 3.6. In figure 3.6a, a polar plot with radial excursion proportional to the strength of

the fluctuations measured by each probe is used to demonstrate the structure of the mode.

Each dot represents a probe in the poloidal array of probes and dashed circle represents zero

perturbation. Since there are two lobes, this is referred to as an m = 2 mode. The black

and orange colors represent the first and the second mode respectively, which are offset in

phase and thus forming a quadrature pair as demonstrated earlier with the simple example

of a traveling wave. For a perfectly sinusoidal traveling wave this phase difference would

be 90◦. That this is an n = 1 mode can be inferred from the structure of the fluctuations
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(a) m = 2 (b) n = 1 (c) f ∼ 7 kHz

(d) m = 4 (e) n = 2 (f) f ∼ 14 kHz

Figure 3.6: Corresponding to the first four BD modes, the spatial and temporal modes are
shown. The spatial structure of the first two modes separated into poloidal and toroidal
structure shown in (a) and (b), with dots representing a B-dot probe. The poloidal struc-
ture is represented by a polar plot where the radial excursion is proportional to size of the
perturbation and dashed circle represents zero perturbation. An m = 2/n = 1 spatial struc-
ture is evident from these plots. The temporal structure for the first two modes is shown in
(c). The spatial and temporal structure of both the modes is shifted in phase and forms a
quadrature pair of rotating modes. Plots (d)-(f) show that the third and fourth BD modes
also forms a quadrature pair, of a rotating m = 4/n = 2 mode.

measured by the toroidal array, shown in figure 3.6b. The temporal modes also consist of

the quadrature pair, with a frequency of f ∼ 7 kHz as is shown in 3.6c. Thus we identify

this to be an m = 2/n = 1 MHD mode. The poloidal and toroidal structure of the next

two BD modes corresponds to 4/2 with mode rotation frequency of f ∼ 14 kHz as is shown

in figures 3.6d to 3.6f. This 4/2 mode is a harmonic of the 2/1 mode that exists on the

flux surface with edge safety factor, q = 2, which is consistent with observations made in

other experiments.8 Contour plots of the 2/1 and 4/2 modes are shown in figures 3.7a and

3.7b by recombining the spatio-temporal modes with appropriate singular values. Note that

the modulations observed on the toroidal structure reflects the five-fold periodicity of the

equilibrium field of the CTH stellarator.
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In this section, we have presented an empirical method to identify multiple MHD modes

coexisting in 3D (non-axisymmetric) plasmas. In applying this method to mode identification

in CTH plasmas, we restrict our analysis to dominant modes with relatively large singular

values because one of the drawbacks of the BD algorithm is its inability to assign confidence

intervals to the components.7

3.4 Observation of MHD modes in typical current-carrying CTH plasmas

MHD modes are observed during the evolution of CTH discharges with inductively

driven plasma current. A set of signals from a CTH discharge is shown in figure 3.8, with

a discharge length of approximately 80 ms. A stellarator plasma is produced on the closed

nested flux surfaces using electron cyclotron resonance heating at t = 0 ms. At t = 20 ms

toroidal plasma current, Ip is inductively driven on this stellarator equilibrium shown in figure

3.8a. The plasma current reaches a peak value of Ip = 60 kA before rolling over as the power

supplied by the ohmic (OH) transformer coil (not shown) reaches the maximum. Eventually,

at around t = 78 ms, a sudden collapse of plasma current known as a disruption is observed.

A discussion of the disruption phenomenology is presented in section 5.2. Also shown is the

loop voltage, V`, in figure 3.8b, induced on the surface of the plasma by the OH coil, and the

plasma density, ne, in figure 3.8c. As the plasma current increases, the edge safety factor,

which is inversely proportional to the plasma current, q(a) ∝ I−1
p , decreases, shown in figure

3.8d. Fluctuations in the poloidal field, δBθ, shown in figure 3.8e, are observed when the

value of the edge safety factor is close to rational values, that is, q(a) = m/n, where m and n

are integers, describing the perturbation of the magnetic field on those surfaces. The poloidal

and toroidal structure of these modes are analyzed using biorthogonal decomposition and the

amplitude of the MHD modes, δBm/n, are computed as shown in figure 3.8f. MHD modes

with poloidal and toroidal mode numbers, m/n = 4/1, 3/1 and 2/1 are observed as the

edge safety factor approaches values of q(a) = 4, 3 and 2 respectively. Such observations of

modes with progressively decreasing m values are consistent with observations on tokamaks
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(a) m = 2/n = 1

(b) m = 4/n = 2

Figure 3.7: The spatial and temporal modes corresponding to quadrature pairs of BD modes
are multiplied and a signal in space-time coordinates is generated. Each mode is weighted by
its singular value.(a) Contour plots obtained after combining the first two BD modes shows
a rotating 2/1 mode (b) Third and fourth modes correspond to a rotating 4/2 mode.
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Figure 3.8: The time-evolution of various quantities for the CTH discharge 14082141 is
shown. The panels (a)-(c) show the plasma current, loop voltage, and density respectively.
The edge safety factor, computed using V3FIT equilibrium reconstruction is shown in panel
(d). The total poloidal magnetic fluctuations, and the fluctuations corresponding to rational
flux surfaces are shown in panels (e) and (f) respectively.

during current rise.5,15,16 In the discharge shown in figure 3.8, as the plasma current reaches

its peak value edge safety factor approaches a value of q(a) = 1.5 with an m = 3/n = 2

mode observed, shown in red in figure 3.8f. Even as the plasma current drops, the 3/2 mode

amplitude remains large. This mode along with the 4/3 mode is typically observed before

the disruption which is discussed in detail in chapter 5.

3.5 Summary

The structure of MHD modes is determined by Fourier analysis of magnetic perturba-

tions in circular and cylindrical plasmas. The interpretation of the mode structure is complex

because CTH plasmas are toroidal with stellarator non-axisymmetry. In this chapter we have
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demonstrated the use of magnetic probes to determine the poloidal, m, and toroidal, n, struc-

ture of the perturbations in CTH plasmas. We employed a heuristic method, biorthogonal

decomposition, to identify the dominant modes simply on the basis of the physical charac-

teristics of their spatial structure. It will be shown in Chapter 4 that these modes indeed

correspond to Fourier harmonics once we have taken into account the effects of toroidicity

and stellarator non-axisymmetry.
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Chapter 4

The structure of 3D magnetohydrodynamic modes in current-carrying CTH plasmas

4.1 Introduction

In the previous chapter we observed various MHD modes in a CTH discharge during

the initial plasma current ramp phase, and as precursor to the disruption. The structure

of observed MHD mode activity, without any prior information about the plasma equilib-

rium can be interpreted from the B-dot probe signals that measure the fluctuations in the

poloidal magnetic field. The biorthogonal decomposition technique was employed to inter-

pret the spatial and temporal structure of the MHD modes. The observed spatial structures

correspond to helical perturbations on rational flux surfaces where the rotational transform

is given by, ῑ = 1
q

= n/m, where n and m are integers. For example, the fluctuations ob-

served with helicity of m = 3, n = 2 mode are due to current perturbations on the rational

surface ῑ = 2/3 , or q = 3/2, where m and n are the poloidal and toroidal mode numbers

respectively. In this chapter we shall demonstrate that the fluctuations in the poloidal field,

δBθ, can be modeled as helical currents on these rational flux surfaces.

A literature survey of work done to understand the structure of MHD modes is pre-

sented in section 4.2. A recurring theme in the surveyed work suggests that most of the

work is restricted to large aspect-ratio, R0/a >> 1, circular, and low-β (β is the plasma

pressure normalized to the magnetic field pressure) tokamak plasmas. In toroidal plasmas, a

single Fourier harmonic in geometric coordinates does not adequately represent the poloidal

structure of MHD modes. However, we will see that corrections to the path of the mag-

netic field line can be made so that Fourier analysis can still be employed. Interpretation of

MHD activity in CTH is complicated by the fact that the equilibria are small aspect ratio,

R0/a > 3.5, and non-axisymmetric.
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A model for the current distribution on rational surfaces is developed in section 4.3.

The current distribution on a rational surface for an m = 3, n = 2 mode is obtained using

measured fluctuations in the poloidal field, δBθ, and the results are presented in section 4.4.

Application of the current filament model to other MHD modes is presented in section 4.5.

4.2 Structure of MHD modes

MHD equilibrium implies a complete balance of forces at every point in space.1 A

static, isotropic plasma equilibrium is described by the force balance equation, Ampere’s law

and Gauss’s law for magnetic field.

F ≡ J×B−∇p = 0,

∇×B = µ0J,

∇ ·B = 0 (4.1)

where, J is the current density, B is the equilibrium magnetic field, and p is the plasma

pressure. The residual MHD force, F, must vanish in equilibrium. Given an arbitrarily small

perturbation to the equilibrium, it is deemed stable if the plasma/magnetic field system

returns to its equilibrium state or oscillates about it. It is unstable if it tends to move

away from the point of equilibrium. The MHD equilibrium is examined for stability1–3 by

introducing an arbitrarily small displacement, ξ̃(r, t), away from the equilibrium.

ξ̃(r, t) = ξ(r)e−iωt (4.2)

The structure of an MHD mode is embedded in ξ(r). In a linear configuration like a cylin-

drical Z-pinch, a θ-pinch, or a screw-pinch, one can Fourier analyze the displacement with
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respect to the ignorable coordinates, θ and z 3, and the displacement can be written as,

ξ(r) = ξ0(r) exp i(mθ + kz) (4.3)

where m and k are poloidal and toroidal-like mode numbers, and (r, θ, z) are the cylindrical

coordinates.

Analogous to the cylindrical case one can write the perturbation in toroidal geometry

as,

ξ(r) = ξ0(r) exp i(mθ + nφ) (4.4)

where m and n are poloidal and toroidal mode numbers, and θ and φ are the corresponding

geometric angles. However, these are not eigenfunctions of the perturbation in a toroidal

plasma because, m is no longer a good quantum number since the equilibrium poloidal and

toroidal fields, Bθ and Bφ, vary on an equilibrium flux surface.4,5 In a screw pinch with

circular cross-section, the poloidal and toroidal fields are constant on a flux surface and so

the pitch of the magnetic field line is also constant on a flux surface. Therefore, the MHD

modes which are identified in cylindrical harmonics due to the property that pitch of the

magnetic field line is constant on a flux surface, cannot be described by a single Fourier

harmonic in toroidal equilibria. Another way to say this is that the equilibrium depends on

θ so it is no longer an ignorable coordinate. One way to deal with this problem is to “map

a general equilibrium to a screw pinch like geometry such that the pitch angle is constant

again”.5 This leads to a ‘corrected’ poloidal angle, θ∗, referred to as straight field line angle.

Considering large aspect-ratio, R0/r >> 1, and a circular cross-section toroidal geome-

try, a correction was first derived by Merezhkin4,

θ∗ = θ − λ sin θ (4.5)
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where the parameter λ is a function of equilibrium quantities,

λ =

(
βp +

`i
2

+ 1

)
ε. (4.6)

Here, βp is the poloidal beta , which is the plasma pressure normalized to the magnetic

pressure due to the poloidal magnetic field, `i is the internal inductance which has dependence

on the distribution of current in the plasma, and ε = r/R0 is the inverse aspect ratio. For low

aspect ratio, non-circular plasmas, higher order harmonics, sin 2θ and sin 3θ, can be present

in a θ∗ correction, on account of elongation and triangularity.5 This so-called Merezhkin

correction has to be considered when the poloidal structure of MHD modes is analyzed using

the magnetic pick-up coils in toroidal geometry.

The Merezhkin correction was successfully applied to determine poloidal mode numbers

in the ASDEX tokamak.6 The phase of measured fluctuations was assumed to have a fixed

functional form, φi = m(θi − λ sin θi) + δ, where the subscript, i, labels the B-dot probes

that measure fluctuations in poloidal field. The probes were placed at a fixed toroidal angle

around the inner circumference of the machine. Minimization with respect to measured data

gave an optimal set of λ, phase, δ, and the poloidal mode number, m. A similar, compre-

hensive analysis to determine MHD modes in the plasma startup of the TFTR tokamak was

demonstrated to work well.7

In low-β configurations, the MHD instabilities are driven by currents parallel to the

equilibrium magnetic field lines.3,8 MHD fluctuations measured by the Bθ-dot probes corre-

spond to perturbations in the parallel current at rational surfaces. An analytical framework

was first developed by Fussmann, et al.,9 where the magnetic field of a helical surface current

was determined for a large aspect ratio, circular cross section tokamak. It was shown that

the poloidal mode number, m, was coupled to sidebands with mode numbers, m ± 1. This

is referred to as torodial mode coupling as it couples different poloidal modes correspond-

ing to same toroidal mode number, n. The analysis by Kikuchi10 takes into account the
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Merezhkin correction and computes the poloidal flux due to the perturbed current on the

rational surface. The current distribution is assumed to is given by,

J̃φ
∗

= Jmn cos(mθ∗ + nφ+ φ0) (4.7)

where J̃φ
∗

is the perturbed toroidal current density, φ is the toroidal angle and φ0 is the

phase delay. Jmn is the amplitude of the perturbed currents on the m/n singular surface.

The superscript, ‘∗’, indicates that straight field line angle, θ∗, is used instead of geometric

angle θ.

Toroidal effects are dominant in low aspect ratio devices making the determination of the

poloidal mode number more difficult. Helical surface currents have been employed in forward

simulations of measured poloidal field fluctuations from toroidally coupled modes.11 Poloidal

mode numbers have been determined in non-circular plasma by least squares fit with ob-

served MHD mode activity.12 Helical filamentary currents were modeled as being along the

magnetic field lines of the equilibrium of the MAST tokamak,13 a spherical tokamak with

low aspect ratio. The equilibrium in this case was axisymmetric and was reconstructed using

EFIT14. The current distribution on the rational surface was obtained from a least squares

fit to measured B-dot probe signals. By obtaining a fit at multiple instances in time, poloidal

rotation and the growth amplitude of the mode were determined for a single tearing mode.

CTH is a low-aspect ratio tokamak-torsatron hybrid with five-fold stellarator symmetry

as demonstrated in Chapter 2. Basic analysis of the observed MHD mode structures was

presented in Chapter 3. Determination of poloidal mode number is complicated not just by

enhanced toroidal effects due to its low aspect ratio, but also its inherent non-axisymmetry.

However, reconstructions of CTH plasmas done using the V3FIT code15 can be used to locate

rational surfaces in the equilibrium. With this knowledge we can obtain the path of magnetic

field lines in terms of straight field line angle. As we mentioned earlier, transformation to

the straight field line angle incorporates the change in poloidal angle as a function of the
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equilibrium parameters. This is akin to applying the analytic Merezhkin correction, but

in a numerical sense. In straight field line coordinate system, the poloidal mode number

corresponding to a single rational surface is represented by one Fourier harmonic. Obtaining

a best fit with the measured B-dot probe signals allows us to associate observed MHD

activity to a particular rational surface. The analysis presented in this chapter is limited to

the consideration of equilibrium perturbations on one rational surface.

4.3 Development of the current filament model

The goal of the current filament model is to obtain a current distribution on a ratio-

nal surface, that results in fluctuations, δBθ, consistent with measurement. We use a χ2

minimization technique16 to minimize the discrepancy between the model and the measured

signals within the uncertainty of the measurements, where χ2 is defined as

χ2 =

ND∑
i=1

[
SMi − SOi

σi

]2

. (4.8)

Here the measured signal is given by SOi , model signal is given by SMi , ND is the number of

diagnostics, and σi is the uncertainty in the measurement of δBθ. The modeled signal for

the ith diagnostic coil is given by,

SMi =

Nf∑
j=1

MijIj, (4.9)

where Nf is the number of filamentary coils on a rational flux surface, Mij is the mutual

inductance between the ith diagnostic coil and jth filamentary coil, and Ij is the modeled

current in the jth filamentary coil. The current carried by each filament is modeled by

Ij = I0 sin(mθ∗j + δ), (4.10)
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where m is the poloidal mode number of the MHD mode that we are to model; θ∗j is a

descriptor or label for the jth filament chosen to be the poloidal position of the filament where

it is initialized on the flux surface. I0 and δ are variable parameters that are independent

of position, not tied to a specific filament. The χ2 optimization process involves varying

these parameters until the mismatch between SMi and SOi is minimized. The number of

filamentary coils is chosen to be much greater than the number of fit parameters. In our

simulations, we shall arbitrarily pick the number of filaments, Nf = 36, equally spaced on a

flux surface, whereas the number of fit parameters are just two, I0 and δ. All the analysis and

computation is done with the Interactive Data Language (IDL) software. χ2 minimization

is done using a publicly available code, MPFIT17, an IDL nonlinear least squares fitting

routine.

4.3.1 Choosing the equilibrium to model

MHD modes with multiple helicities are observed in a typical CTH discharge including,

but not limited to, m/n = 4/1, 3/1, 2/1 and 3/2. It is essential that the MHD mode we

model have a strong signature on the B-dot probes because the model seeks to obtain a

current distribution on the rational surface such that the magnitude and phase of δBθ is

consistent with the measured signal. Strong 4/1 and 3/1 kink modes are observed during

the initial plasma current ramp phase when the corresponding rational surfaces are close to,

or outside, the last closed flux surface of the plasma. In high current CTH plasmas where

low-q(a) disruptions are typically observed, a dominant 3/2 tearing mode is present prior to

the disruption and depending on the characteristics of a discharge, can be long-lived thus

making it an ideal candidate to model.

Shown in the figure 4.1 from top to bottom are temporal evolutions of the plasma current

Ip, edge safety factor q(a), Ḃθ signal (from one probe) and the line averaged density ne, for

CTH discharge 14021473. As the plasma current increases the rotational transform at the

edge, ῑ(a) = 1/q(a), increases, with strong fluctuations observed on the Bθ probe throughout
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Figure 4.1: Plots from the CTH discharge 14021473 having ῑvac(a) = 0.037, with strong
MHD activity is used to build a current filament model. The panels from top to bottom
are the plasma current, Ip; the edge safety factor q(a); B-dot probe signal, Ḃθ; and the
line-averaged density ne. The dashed horizontal line indicates a q(a) of 1.5. The vertical line
indicates the time when q(a) > 3/2, meaning the ῑ = 2/3 surface is inside the LCFS and the
observed MHD activity corresponds to a coherent m = 3/n = 2 MHD mode.

the discharge. The line averaged density, ne, is roughly flat during the discharge, until the

disruption at t = 79 ms. The vertical line shown at t = 71.8 ms is when q(a) > 3/2, meaning

the ῑ = 2/3 surface is inside the last closed flux surface (LCFS). The observed MHD activity

is due to m = 3/n = 2 mode, as will be shown later.

It is important that we choose a reconstruction of the shot when ῑ(a) ∼ 2/3 because our

knowledge of rotational transform comes from equilibrium reconstructed using only external

magnetic diagnostics. Such reconstructions are capable of providing accurate rotational
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transform profiles near the edge of the plasma but they do not, in general, inform the profile

shape deeper in to the plasma core.18

Figure 4.2 shows the rotational transform profile for the equilibrium at t = 71.8 ms.

The x-axis is the normalized toroidal flux represented by variable, s, in VMEC coordinates;

s = 0 at the magnetic axis and s = 1 at the LCFS. The rotational transform ῑ(s) is obtained

for the discrete radial locations indicated in the plot. The ῑ(a) ∼ 2/3 = 0.66̇ surface, shown

by the dashed line, is close to the edge of the plasma where the reconstructed equilibrium

rotational transform profile is most trusted. The uncertainty in reconstructed rotational

transform values is of the size of thickness of the line in figure 4.2.

Figure 4.2: A graph showing the rotational transform profile, ῑ(s), for an equilibrium with
ῑ = 2/3 close to the LCFS as indicated by the dashed horizontal line. The x-axis is the
normalized toroidal flux which essentially describes radial distance from magnetic axis at
s = 0 to s = 1 at the LCFS.

The total fluctuations in the poloidal field, δBθ, measured by the poloidal and toroidal

arrays of B-dot coils are shown in figure 4.3a. It is clear from the poloidal and toroidal struc-

ture that there is an m = 3/n = 2 mode present in the plasma. Flucutations corresponding

to the 3/2 mode (δB3,2) can be isolated from the total fuctuations using the biorthogonal

decomposition method as was shown in chapter 3; these are depicted in figure 4.3b. A quick
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look at the magnitude of MHD activity in both cases reinforces that the dominant MHD ac-

tivity is associated with the 3/2 mode. We shall continue to use biorthogonal decomposition

to isolate dominant mode activity for the analysis presented in this chapter.

4.3.2 Representation of magnetic field lines in VMEC

The paths of the magnetic field lines are obtained from the equilibrium computed by

the Variational Moments Equilibrium Code (VMEC). VMEC is an ideal MHD equilibrium

solver that uses a variational formulation of the MHD equilibria to seek an equilibrium

that represents the minimum energy state19. It uses a steepest-descent procedure16 to solve

nonlinear moment equations that arise in the MHD equilibrium problem. The plasma energy

given by W is minimized over a toroidal domain Ωp,

W =

∫
Ωp

(
B2

2µ0

+ p

)
dV. (4.11)

VMEC assumes the existence of 3-D nested flux surfaces and requires as input the magnetic

fields from external magnet coils, a pressure profile, and a current profile. A static, isotropic

plasma equilibrium is described by the ideal MHD equations shown in equation 4.1. The

pressure, p, is a flux surface function. The nested toroidal flux surface geometry is expressed

in flux coordinates, (s, u, v). The radial coordinate, s represents the fractional toroidal flux

enclosed within a radial distance from magnetic axis, and is given by

s =
Φ

ΦLCFS

, (4.12)

where Φ is the enclosed toroidal flux within the flux surface labeled s, and ΦLCFS is the

enclosed toroidal flux within the LCFS. This gives s = 0 at the magnetic axis and s = 1 at

the LCFS. The coordinate v is the geometrical toroidal angle, whereas u is a poloidal-like
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(a)

(b)

Figure 4.3: Contour plots show fluctuations in the poloidal magnetic field. (a) Figure shows
total fluctuations, δBθ, as measured by the poloidal and toroidal arrays of B-dot probes.
(b) Flutuations corresponding to the m = 3/n = 2 mode, δB3,2 obtained using biorthogonal
decompsition dominate the total fluctuations in the poloidal field.
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angle. VMEC uses an inverse coordinate representation of the cylindrical coordinates,

R = R(s, u, v),

Z = Z(s, u, v),

φ = v. (4.13)

The cylindrical coordinates (R,Z) are represented by Fourier sums given by equation 4.14.

A function, λ (s, u, v), also represented by a Fourier sum is introduced to make the magnetic

field lines straight.

R =
∑

Rmn(s) cos(mu− nv)

Z =
∑

Zmn(s) sin(mu− nv)

λ =
∑

λmn(s) sin(mu− nv) (4.14)

This λ parameter will be used later in our work to determine starting locations for the

current-carrying filaments on a rational flux surface. The conditions, B·∇p = 0 and∇·B = 0

can be satisfied by writing B in contravariant form,

B = ∇v ×∇Ψ +∇Φ×∇u∗, (4.15)

where 2πΨ(s) and 2πΦ(s) are the poloidal and toroidal magnetic fluxes within the flux surface

labeled s, and u∗ is the poloidal-like angle that makes the magnetic field lines straight given

by

u∗ = u+ λ(s, u, v) (4.16)

In equation 4.16, λ is the same periodic stream function given by equation 4.14. Note that λ

averages to zero over a magnetic surface. The local rotational transform, ῑ, is a flux surface
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function in the (s, u∗, v) coordinate system, and is given by,

ῑ(s) =
B · ∇u∗

B · ∇v
(4.17)

Thus far we have introduced the coordinate system used in VMEC and details relevant to

our application. A full description of VMEC can be found in the original paper by Hirshman

and Whitson.19 Mathematical details and development of a flux coordinate system is given

in chapter 4 of the book by D’haeseleer et al.20

4.3.3 Current filaments on a rational surface

The current filaments in our model are placed on a rational surface along the equilibrium

magnetic field lines. From our knowledge of a given equilibrium we can follow field lines on

the surface of interest. We shall continue with the example equilibrium having the vacuum

rotational transform profile given in figure 4.2. The flux surface of interest has ῑ = 2/3. This

surface lies between the two grid points of the reconstructed equilibrium as is evident from

the reconstruction result. Interpolation between the grid points gives us the location of the

flux surface as is shown in figure 4.4a with the dashed magenta line. VMEC output gives the

Fourier amplitudes Rmn(s), and Zmn(s) in equations 4.14. Thus interpolation from figure

4.2 gives a value of s that corresponds to the ῑ = 2/3 surface which can be used to get the

Fourier coefficients. The location of the flux surface is then simply computed from equation

4.14.

The path of a single magnetic field line on the flux surface labeled s is specified by its

poloidal-like angle, u, and toroidal angle, v, in our flux coordinate system. This magnetic

field follows a straight line path in (u∗, v) coordinates, where u∗ is the straight field line angle.

The rotational transform, ῑ(s), in this straight field line coordinate system is the slope of

the magnetic field line, simply given by20,

ῑ(s) =
du∗

dv
. (4.18)
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(a)

(b)

Figure 4.4: The path of a magnetic field line on the rational surface is shown. (a) Flux
surfaces are shown at the toroidal angle where a poloidal array of B-dot probes is located.
Shown with solid gray lines are the flux surfaces obtained from equilibrium reconstruction.
The dashed magenta line indicates the rational surface with ῑ = 2/3 whose position is
obtained by interpolation. Positions of three magnetic field lines, distinguished with different
shapes, are initialized at the outboard midplane (blue). Each field line comes back to its
starting position after three toroidal and two poloidal circuits. (b) The path of a single
magnetic field line is shown on the ῑ = 2/3 surface. The field line is initialized near outboard
mid-plane at the toroidal location of B-dot probes (shown in gray). The field line is colored
blue for the first circuit and green and red for the second and third circuits respectively.
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In our example we initialize a magnetic field line on the outboard side of the rational surface

at the nominal toroidal location of one of the poloidal arrays of B-dot probes, φ = −117◦.

As the field line advances toroidally, the poloidal location is determined through equation

4.18. Because the poloidal mode number is three and toroidal mode number is two, after 3

toroidal transits the magnetic field line completes two poloidal transits and returns to the

point of initialization. This is shown in figure 4.4b, where each toroidal circuit is indicated

by a different color.

Now that we can trace the path of a single magnetic field line on a flux surface, recall

that the end goal is to obtain a current distribution on the rational surface given by equation

4.10. We shall now describe the procedure to trace multiple field lines on the same rational

surface, with starting locations of the magnetic field lines obtained by integrating 4.19,

u∗ = ῑ(s) · v + u∗0, (4.19)

where u∗0 is the initial condition. Transformation of these straight field line coordinates

to flux coordinates, and subsequently to the cylindrical coordinates, (R,Z), gives the path

of the filamentary circuit which will used in further modeling work. This is achieved by

determining the initial condition in the flux coordinates, u0, corresponding to that in the

straight field like coordinates, u∗0, as given by equation 4.16. This is shown in figure 4.5 for

three different values of toroidal angle coordinate, v, while the radial coordinate, s, specifies

the radial location of the ῑ = 2/3 flux surface. Notice that the values of u and u∗ go from

0 radians to 4π radians corresponding to the two poloidal circuits made by the field line on

the flux surface. For a given u∗0 we use a root-finding procedure to determine u.

Figures 4.6a and 4.6b show plots of the magnetic field lines in flux coordinates (or

VMEC coordinates) and straight field line coordinates respectively. They are initialized at

the location of the poloidal array of B-dot probes, φ = −117◦, to be equally spaced in flux

coordinates and they follow a straight line path with slope being the inverse of the rotation
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Figure 4.5: The functional dependence of the straight field line coordinate, u∗(s, u, v), on
the flux coordinate, u, is shown for three different values of toroidal angle, v, and radial
coordinate, s, corresponding to the position of the rational surfaces, ῑ(s) = 2/3. A root
finding procedure is used to transform from the straight field line coordinates to the flux
coordinates. Note that all the magnetic field lines are initialized at the location of the
poloidal array of B-dot probes, φ = −117◦, as seen from the negative intercept on Y-axis.

number of the field line or 1/ῑ(s) = 3/2 for this rational surface. Note that u = 0 on the

outboard mid-plane and u = π on the inboard mid-plane. Each field line makes three toroidal

circuits as it goes around twice poloidally. On the other hand, in the VMEC coordinates,

they do not follow a straight line path. There are 36 magnetic field lines initialized in this

example. The field lines get closer as they move inboard and farther apart on the outboard.

This is reflected in the figure 4.4a where the field lines are closer on the inboard than the

outboard side of the plasma.

4.3.4 Calculation of the mutual inductances between current filaments and the

B-dot probes

Now that we have in place the filamentary circuits on the rational surface, we shall

determine the poloidal field that would be generated by a finite current in each of these

circuits, at the location of the B-dot probes installed in CTH. This is done by computing the

mutual inductance, Mij, between the jth current filament and the ith B-dot probe, which

will allow us to compute the model signal for the ith B-dot probe, SMi (see equation 4.9).
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(a) (b)

Figure 4.6: Current filaments are initialized on a rational flux surface, s, with ῑ = 2/3,
equally spaced in flux coordinates. (a) Current filaments in VMEC coordinates (u, v) are
plotted for the rational flux surface. Each filament makes 3 toroidal circuits as it goes
around twice poloidally. The field lines are closer on the inboard mid-plane, u = π, and
farther on the outboard mid-plane, u = 0. (b) The field lines follow a straight line path in
flux coordinates and are chosen to be equally spaced. Their slope is the 1/ῑ(s) = 3/2 for the
chosen rational surface.

The mutual inductances are computed using the V3RFUN code21, which is a part

of V3FIT suite of equilibrium reconstruction codes. Details of V3RFUN relevant to the

equilibrium reconstruction process can be found in the thesis by Stevenson22, and in the

paper by Hirshman, et al21. It takes as input, the geometrical descriptions of the external field

coils and diagnostic coils, and generates an output with coil and plasma response functions.

The V3RFUN output is then used by the V3FIT code. The field coils in V3FUN parlance

are the ones that produce the external magnetic fields. The field coils can be any of the

numerous types of magnet coils on CTH including helical field coils, toroidal field coils, etc.

Eddy currents in structures like vacuum vessel or coil frame can also be modeled as discrete

field coils. The second class of coils are the diagnostic coils that carry currents induced by

time-varying magnetic fields. Diagnostic coils could be magnetic probes, Rogowski coils, flux

loops and saddle coils.
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The V3RFUN code is used to compute the diagnostic response functions and store

them in separate files making up a database, which can be employed later to compute

plasma response for any given equilibria. In our present analysis we are interested in the coil

response function computed by V3RFUN given by equation 4.20.

The V3FUN code computes two kinds of response functions, coil response functions,

and plasma response functions. The coil response functions are defined by

Si =
∑
j

RijIj, (4.20)

where Si is the signal in the ith diagnostic coil, Rij is the response of the ith diagnostic coil

to the jth field coil, and Ij is the current in the jth field coil. The response function is just

a mutual inductance coefficient between the diagnostic coil and the field coil. The units of a

coil response function depends on the kind of diagnostic coil. Diagnostic coils measure the

total flux, in the units of Weber, or can make point measurements, with units of Tesla. The

plasma response function is defined by

Si =

∫
Vp

Jp(r′) ·Ri(r
′)dr′ (4.21)

where Si is the signal in the ith diagnostic coil, Jp(r′) is the current density in the plasma,

Ri(r
′) is the plasma response function for ith diagnostic coil and Vp is the volume of the

plasma.

We model the current distribution on the rational surface with 36 filamentary coils.

Figure 4.7 shows four current filaments on ῑ = 2/3 surface, each of them making a complete

electrical circuit by returning to their point of origin. Also shown is the poloidal array of B-

dot probes for which we are to compute the mutual inductances with each of the filamentary

coils. The Details of input files used to execute of V3RFUN code is given in appendix C.

Contour plots of the computed mutual inductances between the B-dot probes and the

current filaments, Mij (in equation 4.9), are shown in figure 4.8. Figure 4.8a shows the
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Figure 4.7: The mutual inductance is computed between the shown current filaments on the
rational surface and the poloidal array of B-dot probes. Only four of the 36 current filaments
for which the mutual inductances are computed are shown here. Each of the filamentary
coils is initialized on the ῑ = 2/3 surface at the toroidal location of the B-dot probes. The
path of each filamentary coil completes an electrical circuit, i.e. they begin and end at the
same point in space. Also shown is the rational surface on which these current filaments lie,
at the location of the B-dot probes, and then every half-period and full-period locations of
CTH stellarator symmetry.

mutual inductances for the probes in the poloidal array of B-dot probes and 4.8b shows

mutual inductances for the toroidal array. The white dots along the abscissa show locations

where the current filaments are initialized in geometric coordinates and the white squares

along the ordinate show the poloidal angle for the B-dot probes in the array. Note that the

geometrical poloidal angle is defined as 0◦ on the outboard side and 180◦ on the inboard side

of the vacuum vessel mid-plane. The contours represent the mutual inductances between the

B-dot probes and the filaments in the units of Tesla/Ampere. Note that the current filaments

are not equally spaced in the geometric coordinates, however they are spaced uniformly in

the straight field line coordinates as described previously.

The fact that filaments are on the rational surface having poloidal mode number, m = 3,

is reflected in the periodicity of the mutual inductances. For a particular B-dot probe in the

poloidal array, say the one located on outboard mid-plane (0◦), the mutual inductance is

maximum at three locations and minimum at three, implying an m = 3 poloidal structure.
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(a)

(b)

Figure 4.8: The computed mutual inductances between the current filaments located on a
q = 3/2 rational surface and the B-dot probes of (a) the poloidal array, (b) the toroidal
array. Along the x-axis are the poloidal locations where the current filaments are initialized
(white circles) and along the y-axis are the (a) poloidal, and (b) toroidal angles of the B-dot
probes in their respective arrays (white squares). The poloidal angle is 0◦ on the outboard
and 180◦ on the inboard side.

69



Also, it follows from geometry that the closer the current filaments and the B-dot probes

are to one another, the larger is their mutual inductance. For example the filament located

on outboard mid-plane has the largest mutual inductance with the B-dot probe located near

outboard mid-plane. However, it can also be seen that the mutual inductance is large for

all the B-dot probes located approximately thirty degrees on either side of the inboard mid-

plane. This is testament to the fact that the magnetic field lines, and hence the current

filaments, spend more time on the inboard side of the vacuum vessel as they make toroidal

transits.

The mutual inductances for the toroidal array shown in figure 4.8b are also reflective

of the helicity of the surface on which they are located. Considering a particular current

filament, the mutual inductance has two peaks in the toroidal direction. Whereas, for a

particular probe the mutual inductance has three peaks and troughs. The locations at

which hot spots are observed in the mutual inductance, the magnetic field line is closest

to the B-dot probe, that is close to the top of the machine. This happens at five different

toroidal locations, demonstrating five-fold periodicity of CTH equilibrium.

4.4 Determination of the current distribution on a rational surface

Now that all the necessary ingredients of the recipe to obtain a current distribution on

rational surface have been obtained, I(θ∗), modeled by equation 4.10, a χ2 minimization is

done to determine model signals, SMi , that best match the observed signal, SOi . The current

distribution is determined using measurements from one poloidal array and one toroidal

array of B-dot probes. Although, χ2 is the quantity that is minimized to obtain the fit, the

results will be compared in terms of a reduced χ2
R, defined as,

χ2
R =

χ2

d
(4.22)

d = ND −NF
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where d is the number of degrees of freedom, and is the difference between the number of

diagnostics, ND and the number of fit parameters, NF . For our case there are 36 poloidal

probes and 10 toroidal probes, so ND = 46. We are fitting I0 and δ so NF = 2, thus d = 44

for this system.

Figure 4.9: The current distribution on the ῑ(s) = 2/3 surface obtained after χ2 minimization
of discrepancy between the measured and computed fluctuations, δBθ. The determined
parameters of the fit are δ (radians), and I0 (Amps). respectively.

For the MHD mode of interest here, the current distribution that results in the minimum

χ2 is shown in figure 4.9. The parameters of the current distribution that are varied in the

fitting process are the phase, δ = 10.7 ± 0.26 degrees, and the magnitude of the current

I0 = 3.25± 0.133 Amps. The dashed blue line in figure 4.10 is the experimentally measured

signal at t = 71.8 ms, which is at the center of the time window in the data shown in figure

4.3b. The model signal, which is determined at the location of the B-dot probes, is shown

with solid black line. The χ2
R of the fit is about 1.8. For a fit that is within the standard

deviation of the measurement, σi, the χ2
R would be 1. The error bars on the measurement

in figure 4.10 indicate an estimated σi. The error in the model signal, SMi , is much smaller

than the error in measurement. The uncertainty in the computed parameters of the current

distribution, δ and I0, are obtained by propagation of measurement uncertainty σi.
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Figure 4.10: Comparison of model and the measured signals for poloidal(m = 3) and toroidal
mode structure(n = 2). The model signals are indicated by solid black lines and the mea-
surement by dashed blue lines. The symbols represent the poloidal/toroidal location of the
B-dot probes. Error bars on respective trend lines indicate uncertainty in the measurement
and the model.

It is a challenge to make an appropriate choice of σi because here it does not reflect

the uncertainty of our measurement of δBθ. That is, it does not represent the absolute

uncertainty of the measured voltage across the leads of B-dot probes. Instead, we have

chosen the uncertainty to be about 10% of the largest measurement of δBθ amongst all the

measurements. This means σi is chosen to be same for all the probes. This value is much

smaller than the standard deviation of the signal over 2− 3 cycles. The m = 3/n = 2 mode

shown in this example rotates in the laboratory frame with a frequency of f ∼ 12 kHz. Such

a choice of σi is found to be a reliable indicator of the goodness of fit. Hence χ2
R will be used

to make a comparison of fits across shots with varying MHD mode amplitudes.
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We have thus developed a method to obtain the distribution of current on a rational

surface that generates a poloidal magnetic field consistent with the measurement.

4.5 MHD modes observed in the plasma current rise

MHD modes with decreasing q are observed during the plasma current rise phase in

CTH. Figure 4.11 shows a discharge where the edge safety factor decreases from q(a) = 50

when Ip = 0 to q(a) ∼ 1.7 at peak plasma current. Shown in figure 4.11 from top to bottom

are the plasma current, the edge safety factor obtained from equilibrium reconstruction, and

δBθ as measured by one of the B-dot probes. As the plasma current increases, the edge

safety factor assumes different rational values as highlighted by the horizontal dashed lines.

Note that the ohmic part of the discharge begins at t ∼ 20 ms.

Figure 4.11: Multiple MHD modes are observed during the current rise phase of a CTH
discharge. As the plasma current increases (top panel) the edge safety factor assumes rational
values, q(a) = 4, 3, 2, indicated by dashed horizontal lines in the middle panel of the figure.
In the lower panel, poloidal magnetic field fluctuations, δBθ corresponding to each MHD
mode is indicated by vertical bars.
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In this section, current filament models for the m/n = 4/1, 3/1 and 2/1 modes are

obtained using the method outlined in sections 4.3 and 4.4. The sinusoidal current distribu-

tion on the rational surface is given by I = I0 sin(mθ∗ + δ) and the fit parameters of the χ2

minimization are I0 and δ.

4.5.1 The 3/1 mode

The value of edge safety factor is greater than 3 at t = 27 ms, as indicated by the

horizontal line in figure 4.11. As the plasma current is increases, the edge safety factor

evolves to a value q(a) < 3, thus pushing the q = 3 rational surface out of the plasma. The

equilibrium q−profile at the time when the surface is internal to the LCFS is shown in figure

4.12a. An equilibrium reconstruction is performed with a fixed current profile and using only

the external magnetic diagnostics. The x-axis of figure 4.12a is the square root of s, where

s is the normalized toroidal flux. The square root of s can be thought of as minor radius of

the flux surface normalized to average minor radius of the plasma. The contour plots of δBθ

measured by the poloidal and toroidal arrays of B-dot probes are shown in figure 4.12b.

The mutual inductances computed from the equilibrium are given in figure 4.13. Again,

the m = 3/n = 1 mode structure is embedded in the mutual inductances. The current

distribution on the rational surface is given by the model, Ij = I0 sin(3θ∗j + δ), where the

values of I0 = 0.66 Amps and δ ∼ 12.8◦ are obtained from the χ2 minimization. The resulting

χ2
R is 7.63. A comparison between the modeled signals and the measurement is shown in

figure 4.14. The model signals and measurement are a good match for the toroidal mode

structure. However, poloidal mode fit is poor, as indicated by a large overall χ2
R.

A quick look at the total fluctuations in figure 4.11 indicates that the amplitude of

MHD activity increases at about t = 27 ms as the 3/1 surface exits the plasma. At this time

the edge safety factor is decreasing and the minor radius of the 3/1 surface is increasing as

it is moving closer to the B-dot probes. Biorthogonal decomposition of the measurements

confirm a 3/1 structure to these perturbations. Fourier mode amplitudes of the dominant
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(a)

(b)

Figure 4.12: (a) The q−profile obtained from equilibrium reconstruction shows that the 3/1
surface is just inside the plasma. The x-axis is a radial-like variable, indicative of radius of
the flux surface normalized to average minor radius of the plasma. Each point in the plot
indicates a flux surface location where the reconstruction was computed for 15 magnetic
flux surfaces within the plasma. The horizontal line indicates that the q = 3 surface lies
just inside the LCFS (b) The total fluctuations, δBθ, measured by the poloidal and toroidal
arrays of B-dot probes indicate that a rotating m = 3/n = 1 mode is present. The time of
equilibrium reconstruction is indicated by a dashed yellow line at the center of the window.
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(a)

(b)

Figure 4.13: Mutual inductances between the current filaments on q = 3 surface and the
B-dot probes in (a) the poloidal array (b) the toroidal array. The poloidal (m = 3) and
toroidal structure (n = 1) is embedded in the mutual inductances.
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Figure 4.14: The model signals and measurement are a close match in terms of the toroidal
structure (bottom panel). The poloidal fit is poor thus giving a large χ2

R for the overall
fit(top panel).

MHD modes are shown in figure 4.15 and are also indicative of this. The shaded region in

the plots show the time when the equilibrium reconstruction is done with the 3/1 surface

close to the LCFS. The mode amplitude is less than 0.5 G when the 3/1 surface is internal

to the LCFS and increases to about 10 G before decaying. The dominant Fourier harmonics

corresponding to what would be an m = 3 in a cylinder, are represented by m = 3 and

m = 2. The dominant toroidal mode number is n = 1.

We shall construct a current filament model for the 3/1 mode when it is external to

the LCFS, using equilibrium information obtained when the mode is internal. Equilibrium

reconstruction gives the correct location of the rational surface only when it is internal to

the LCFS. In our case, when the surface is external to the plasma, strong fluctuations are
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(a) (b)

Figure 4.15: Fourier mode amplitudes of poloidal (a) and toroidal (b) mode structures is
shown for the dominant MHD modes obtained from biorthogonal decomposition. The m = 3
and m = 2 modes are the dominant poloidal harmonics whereas the n = 1 toroidal harmonic
is dominant. The shaded area at t = 27 ms indicates the time when the mode is inside
the LCFS. It exits the plasma later in time when the MHD mode amplitude gets large in
amplitude.

measured by the B-dot probes. We shall assume that the shape of the rational flux surface

does not change much and hence we assume that the mutual inductances are unchanged. So

the larger mode amplitude will simply result in a larger current, I0, on the rational surface.

The resulting χ2
R(t) plotted in figure 4.16a shows that a better fit is obtained when the mode

is external to the plasma. The large spike in χ2
R after t ∼ 29.5 ms corresponds to a sudden

change in MHD activity also evident in the Fourier harmonics in figure 4.15. The χ2
R is less

than 2 after t = 30 ms and the q(a) ∼ 3.2 (see fig. 4.11). An example of such a fit is shown

in figure 4.16b, where the model and measurement are both within the variance of measured

signals σi resulting in χ2
R < 1. The amplitude of the current in this case I0 = 4.7 A and

phase δ = 43◦.

4.5.2 The 4/1 mode

Next, we shall obtain a perturbed current on the q = 4 surface that results in mea-

sured fluctuations in the poloidal field. This mode is short-lived compared to 3/1 mode
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(a)

(b)

Figure 4.16: The current filament model obtained for the 3/1 mode when it is external to
the plasma. (a) The χ2

R(t) is small when the q = 3 surface is external to the plasma and
the MHD amplitude is large. The shaded region indicates the time when the equilibrium
reconstruction is done and the surface is inside the plasma, shown in figure 4.12. The fit at
t = 30.4 ms has a lower value of χ2

R as shown in the next plot. (b) Model signals are a good
match to the measured signals resulting in a χ2

R < 1.
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(a) (b)

Figure 4.17: (a) The q−profile obtained from equilibrium reconstruction shows that the q = 4
surface is just inside the plasma. The x-axis is radial position of flux surface normalized
to average minor radius of the plasma. Each point in the plot indicates a flux surface
location and the reconstruction is done with 15 surfaces in the plasma. (b) Total fluctuations
δBθ measured by the poloidal and toroidal arrays of B-dot probes indicate that a rotating
m = 4/n = 1 mode is present. The equilibrium reconstruction is done at t = 24.06 ms, in
the middle of the shown data window.

because the high initial plasma current ramp quickly moves the rational surface out of the

plasma. However, it follows the general behavior of 3/1 mode in that the mode amplitude

is larger when it is external to the LCFS. For this mode, it will be demonstrated that the

sinusoidal current distribution given by equation 4.10, with m = 4, satisfactorily reproduces

the observed fluctuations in the poloidal field.

The q−profile when the surface is internal to the plasma is shown in figure 4.17a. Again,

the equilibrium reconstruction is performed assuming a fixed current profile and using only

the external magnetic diagnostics. The m = 4/n = 1 mode is observed by the B-dot probes

at the reconstruction time and is shown in figure 4.17b.

The mutual inductances between the filaments and the poloidal and toroidal arrays of

B-dot probes are shown in figure 4.18. Model signals are obtained following the procedure

outlined earlier in 4.3. A comparison between the model signals and measurements when

the 4/1 surface is inside the LCFS is shown in figure 4.19a. The fit is quite acceptable

with χ2
R ∼ 2. When the surface is external to plasma, the mode amplitude is larger and

the computed model signals are shown in 4.19b. The model signals are a better match to
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measurement when the mode amplitude is large even though the surface is external, as was

observed for the 3/1 mode.

(a) (b)

Figure 4.18: Mutual inductances between the current filaments on the q = 4 surface and the
B-dot probes in (a) the poloidal array, (b) toroidal array. The poloidal (m = 4) and toroidal
structure (n = 1) is embedded in the mutual inductances.

4.5.3 The 2/1 mode

Analysis of the 2/1 mode is done along the lines of previous examples. We shall obtain

the current filament model for the 2/1 mode for the discharge shown in figure 4.11 and for

another case where the 2/1 mode amplitude is considerably larger.

Like the 4/1 and 3/1 modes the amplitude of the 2/1 mode is larger when the rational

surface, q = 2 surface, is external to the plasma. The Fourier analysis of the poloidal mode

structure is shown in figure 4.20a, where the spectrum is dominated by m = 2 and m = 1

modes. The dashed vertical line indicates the time at which the q = 2 surface goes external

to the LCFS. The current filament model when the 2/1 mode is internal to plasma results

in poor fits. We shall look at the fits when the mode is external, shown with highlighted

region in the figure. The equilibrium reconstruction is performed when the surface is inside

the LCFS.
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(a)

(b)

Figure 4.19: A comparison between the model signals and the measurements is shown when
the q = 4 surface is (a) internal to the LCFS, and (b) external to the LCFS. Note the
magnitude of the mode is about four times larger when it is external. In both cases the fits
are acceptable but better when the mode is external and the signals are larger in amplitude.
Note that y-axis is different in (a) and (b) due to differences in mode amplitude.

82



The model signals and the measurements are compared in figure 4.20b. The fits are poor

in this case. In general the toroidal structure is well matched except for one measurement at

the toroidal angle of φ = −18◦. The poloidal structure matches well on the bottom inboard

side of the plasma but does not match otherwise. Numerous examples of the 2/1 mode

in the current rise have been analyzed and large discrepancies between the model and the

measurement exist for them all.

(a)

(b)

Figure 4.20: (a) Fourier analysis of the dominant MHD modes show that the m = 2 and
m = 1 harmonics correspond to the 2/1 mode. The q = 2 surface exits the plasma at the
time indicated by dashed line. The mode amplitude is larger when rational surface it is
external to LCFS. The current filament model is obtained at t = 43.6 ms indicated with
blue shaded region.(b) The current filament model is obtained when mode is external to the
plasma shows a poor fit between the model and the measured signals.

Next, we look at another example of the 2/1 mode with significantly larger amplitude.

Contour plots of the dominant MHD activity is shown in figure 4.21a. The model signals

obtained using the current filament model are shown in figure 4.21b. Even though a very clear

2/1 mode dominates the MHD activity, the observed fits are poor. The χ2
R is unacceptable

in this case as well.
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(a)

(b)

Figure 4.21: (a) Contour plots showing a large m/n = 2/1 mode in the plasma current rise.
(b) Current filament model when the 2/1 surface is internal shows poor fit even when a
larger mode amplitude is observed.

Analysis of the 2/1 mode has been done for times during the plasma current ramp

down phase of CTH discharges. Here also it is found that the model is inconsistent with the

measurement giving large χ2
R.
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Chapter 5

Suppression of low edge safety factor disruptions in current-carrying CTH plasmas

5.1 Introduction

A high temperature plasma must be confined long enough for a self-sustaining burn of

the fusion fuel,1 thus a stable magnetohydrodynamic (MHD) equilibrium with high tem-

perature and pressure is important. In tokamaks, ideal MHD instabilities often lead to the

catastrophic loss of confined plasma, but may be avoided by limiting the amount of pressure

and toroidal current. Though, large toroidal current is desirable to increase energy confine-

ment times2, the operation of tokamaks with high toroidal current is limited by edge safety

factor values greater than 2, q(a) ∝ I−1
p > 2. Lower values of q(a) often lead to uncontrolled

loss of equilibrium.3 The focus of this chapter is the passive avoidance of such instabilities

with the application of external rotational transform in the current-carrying CTH device.

An introduction to the disruptive instability, a survey of observations of low-q disrup-

tions in tokamaks along with efforts to mitigate them, and the role of non-axisymmetric

configurations like CTH in the mitigation of these instabilities is presented in section 5.2.

Observations of low-q disruptions in CTH and their precursors are presented in sections 5.3

and 5.4 respectively. The observation of suppression of low edge safety factor disruptions

with increasing vacuum rotational transforms is presented in section 5.5.4

5.2 Background

A disruption is a sudden loss of confined plasma which can lead to large heat, particle

and mechanical loads on the confining vessel. Disruptions in tokamaks have long been stud-

ied and are known to impose limits on the plasma pressure, density and current.3,5–9 Such
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catastrophic loss of confinement introduces roadblocks in the design and operation of large

reactor scale devices like ITER.10 A disruption leads to a sudden loss of plasma, during

the current ramp, flat-top and current fall.5 The various stages of disruption occuring pro-

gressively with time are pre-precursor phase, precursor phase, thermal quench, and current

quench. They are outlined as below:

• In the pre-precursor phase some operational limit such as a density limit may be

attained, in which case a density increase leads to the onset of an m = 2 mode that

increases to a large magnitude in the precursor phase.5

• Once the MHD instability grows to a critical point a thermal quench is observed,

collapsing the central temperature on a very short timescale. A rapid flattening of the

current profile is also observed, the evidence of which is a short positive spike in plasma

current accompanied by a negative loop voltage spike. Loop voltage is a measure of the

change in total flux given by, V` = −dΦ/dt. A negative spike in loop voltage implies an

increase in total flux in the space between the poloidal flux loop that measures the loop

voltage and the ohmic coil. This increase in the magnetic field implies an increase in

the total plasma current because
∮
B ·dl = µ0I . The magnetic energy associated with

the plasma current is given by W = 1
2
LI2, where L is the total inductance associated

with the plasma current. The total magnetic energy, which is the sum of the energy

stored in the plasma and the energy due to the inductance between the plasma and

the the external ohmic coil, is conserved on the short timescale of the negative loop

voltage spike. Since the inductance between the plasma current and the ohmic coil is

geometric in nature it does not change and so the inductance of the plasma current, `i

must decrease. The internal inductance, `i is a measure of the current profile, a small

value implying a broad current profile whereas a larger value means that the current

profile is more peaked.5
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• Finally, a rapid temperature decrease increases the plasma resistivity, and unless the

external power supplies respond to adjust the loop voltage on a short time scale, the

plasma current eventually decays to zero in most cases. This is known as the current

quench.5,9 In a major disruption, the plasma current decays rapidly to zero, while in

a minor disruption the plasma may heat up again before eventual collapse later in the

discharge.9

In tokamaks a disruption may occur due to either a violation of an operational limit or due to

technical failures in systems associated with machine or plasma control. Operational limits

include the β-limit, where β is plasma pressure normalized to magnetic field pressure, the

low-q(a) limit, and the density limit.9 Here q(a) is the magnetohyrdodynamic (MHD) edge

safety factor, which for large aspect ratio approximation, R >> a, is given by

q(a) =
2πa2Bφ

µ0IR
, (5.1)

where R is the major radius, a is the plasma minor radius, I is the total toroidal plasma

current, Bφ is the toroidal magnetic field, and µ0 is the magnetic permeability in vacuum.

The low-q limit on tokamak operation restricts the amount of plasma current achievable with

a given toroidal magnetic field.

Low-q(a) disruptions are caused by tearing/kink instabilities which grow to catastrophic

levels. As q(a) value reaches q(a) = 2, the m = 2/n = 1 MHD mode grows to a large

amplitude and locks, i.e. stops rotating in the laboratory frame, resulting in a disruption.3

These high current disruptions are driven by steep gradients in the current density profile

near the edge of the plasma.5 Thus, in high current tokamak discharges, disruption free

operation is limited to edge safety factor values approximately greater than or equal to two,

q(a) & 2.3 In many cases the disruptions are observed even before the edge safety factor

value reaches q(a) = 2.11–13

90



Historically, various methods have been applied to stabilize MHD modes to achieve

q(a) < 2, including the use of a close-fitting shell around the plasma,14 and lowering of

the toroidal magnetic field as the plasma current increases.15 In tokamaks, the application

of external fields bearing the same helicity as that of the instability has been found to in-

fluence the MHD mode amplitudes.16,17 Operation with q(a) < 2 has been achieved by

using feedback techniques in recent experiments on circular cross-section18 and shaped toka-

maks.19,20 These feedback-assisted techniques employ small amounts of non-axisymmetric

fields (3D) on top of the largely axisymmetric fields, B0, of tokamak plasmas. A relatively

small amount of 3D field, B3D/B0 ∼ 10−3, is employed to suppress unstable mode activity

as the q(a) = 2 operational boundary is approached.

In general, stellarators are immune to the disruptive effects of current-driven instabilities

due to the absence of externally driven plasma current.21 However, in stellarators where

plasma current is driven, disruptions are possible, and experiments have shown evidence

of disruption avoidance and suppression with increasing levels of transform provided by

external magnet coils.22–24 Indeed, previous experiments on CTH have shown suppression

with increasing the amount of 3D fields.25 CTH plasmas are very non-axisymmetric as

the deviation of the equilibrium field from the average axisymmetric equilibrium field is

appreciable, B3D/B0 ∼ 0.1. In current-carrying CTH plasmas, we shall study the effect of

these 3D fields on discharges with the edge safety factor less than two, q(a) ≤ 2.

The amount of 3D shaping of plasmas in the CTH device is adjusted by varying the

vacuum rotational transform provided by the external magnet coils. When current is driven

in an already established stellarator equilibrium, the total rotational transform is given by

ῑtot = ῑvac + ῑp = 1/q, with contribution from both the external coils, ῑvac, and the plasma

curent, ῑp. The amount of 3D shaping in these plasmas can also quantified by the fractional

transform,

f =
ῑvac(a)

ῑtot(a)
, (5.2)

the ratio of vacuum transform at the edge of the plasma to the total transform at the edge.
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5.3 A typical low-q disruption in CTH

The evolution of a typical CTH discharge terminating in a low edge safety factor, q(a) ≤

2, disruption is shown in the plots of figure 5.1. The vacuum transform for this discharge

is ῑvac = 0.024 with a fractional transform at peak current of f = 0.04. The evolution of

the plasma current and loop voltage are shown in the first two panels. The evolution of the

edge safety factor, q(a), is shown in the third panel. Also shown in the figure is output from

one of the B-dot probes, and the plasma density which is maintained fairly constant over

the quiescent portion of the discharge. The equilibrium is reconstructed using the V3FIT

code.26

The ohmic phase of the CTH discharge is initiated at about t = 20 ms with a strong

current ramp, dIp/dt ≈ 3 MA/s, that gives rise to a broad current profile and a steep edge

gradient. Bursts of magnetic activity with m/n = 4/1 and 3/1 are detected as the q = 4

and q = 3 rational surfaces exit the plasma. This correlation between the observed mode

activity and the edge safety factor value is a common occurrence in tokamaks.3,27,28 These

instabilities observed during the current rise phase are believed to be driven by a steep

current gradient.5

After the initial current rise, a current ramp of dIp/dt ≈ 1 MA/s is maintained from

t = 35 ms to t = 50 ms, again resulting in an edge current gradient, as the q = 2 surface

moves into the vacuum region. Note that in tokamak experiments, large current gradients are

observed to cause disruptions in the current rise when q(a) ∼ 2.3,18 Like this example, similar

current ramp rates are maintained for all the discharges presented later in this chapter.

Magnetic fluctuations corresponding to the 2/1 and 3/2 modes are observed during the

periods indicated by arrows in the figure. Note that the value of edge safety factor at peak

plasma current is q(a) ∼ 1.8, and since the q−profile of these current driven tokamak-like

plasmas is monotonically increasing, the q = 3/2 surface is close to, but always internal to

the last closed flux surface. The current reaches a peak value at about t = 50 ms and then

decreases prior to the sudden loss of confinement at t = 70 ms. This disruption event is

92



Figure 5.1: Typical evolution of a low-q(a) disruption in CTH indicated by a positive spike
in plasma current, negative loop voltage spike, and rapid quench of the plasma current just
prior to t = 70 ms: (a) the plasma current, Ip, (b) loop voltage (c) edge safety factor, q(a),
(d) measured magnetic fluctuation level, dBθ/dt, (e) and the plasma density, ne.
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accompanied by the usual tokamak disruption signatures, a positive spike in plasma current

and a negative loop voltage spike.

The vertical position of the plasma in this discharge was centered at the mid-plane by

applying a radial magnetic field using the radial field coils (RFC). The rapid decay of plasma

current is accompanied by a loss of the vertical positional control, which on the timescale of

the disruption, cannot be compensated with the RFC. The sudden increase of the plasma

density just after the disruption is thought to be due to plasma contacting the limiters,

liberating neutral hydrogen which is then briefly ionized as the plasma current quenches.

5.4 Low-q(a) disruption precursors

The amplitudes of poloidal field fluctuations, δBθ(t), corresponding to m/n = 2/1 and

3/2 modes determined from biorthogonal decomposition29, are shown in figure 5.2. The

time windows for these signals are centered at t = 45.5 ms and t = 69.25 ms, as indicated

by vertical gray bars in figure 5.1. Note that in figure 5.2 there is a difference in scale and

that the amplitude of the 2/1 mode is smaller than that of the 3/2 mode observed later in

the discharge. In general the 2/1 mode can be bursty, although for this discharge it is fairly

coherent. The amplitude of the 2/1 mode does not get large enough to disrupt the plasma

when the q = 2 surface moves into the vacuum region. With increasing plasma current, the

edge safety factor approaches the value q(a) = 1.5 and a large amplitude m = 3/n = 2 mode

is observed, along with an m = 4/n = 3 mode. Both of these modes are implicated by the

external magnetic diagnostics as being primary causes of these low-q(a) disruptions. Soft

x-ray emission measurements indicate that a non-sawtoothing, periodic m/n = 1/1 mode is

also present in the core of the plasma.

The secondary 4/3 mode is inferred from biorthogonal decomposition and its amplitude

is shown in figure 5.3. Note that in this figure the time axis spans 0.2 ms from t = 69.3 ms

to t = 69.5 ms as opposed to 0.5 ms for the 3/2 mode shown in figure 5.2. Figures 5.2 and

5.3 show simultaneous observation of 3/2 and the 4/3 modes in the plasma prior to the
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Figure 5.2: Poloidal magnetic field fluctuation amplitudes, δBθ(t), as measured by a poloidal
and toroidal array of pick-up coils, showing (a) the evolution of the m/n = 2/1 component
of the field, and at a later time, (b) the evolution of the m/n = 3/2 mode amplitude. The
time windows shown for the m/n = 2/1 and m/n = 3/2 activity are indicated by the gray
highlights in Fig. 5.1.

disruption, with amplitudes of 3 G and about 1 G, respectively. One thing to keep in mind

when comparing these amplitudes is the relative location of these surfaces inside the plasma.

Since q(a) ∼ 1.8 at the time of disruption, the q = 4/3 surface is necessarily farther inside the

plasma, with a smaller minor radius than the 3/2 surface. This means 4/3 surface is farther

away from the B-dot probes so its actual amplitude maybe significantly larger. The rotation

frequencies for the 3/2 and the 4/3 modes are determined using a fast Fourier transform

(FFT) to be f3/2 ∼ 12 kHz and f4/3 ∼ 18 kHz respectively.

Next, evidence of a periodic m = 1 mode coexisting in the plasma with the 3/2 and

4/3 modes will be presented. The 1/1 mode, which is expected to be at a smaller minor

95



Figure 5.3: Contour plots show the m = 4/n = 3 that is observed prior to the low-q(a)
disruptions. The 4/3 mode is observed concurrently with 3/2 mode during this time window
and is of comparatively smaller amplitude.

radius near the core of the plasma, is too far away from the magnetic diagnostics to be

detected. However, CTH is equipped with multiple arrays of detectors that measure chord

integrated soft X-ray (SXR) emission.30 All the SXR cameras are located at one toroidal

angle, φ = 252◦, therefore only the poloidal mode number can be detected with it. The

toroidal mode number is assumed to be n = 1, with the presumption that the central edge

safety factor is close to one.

The figure 5.4a shows the lines of sights for one of the three, 20-channel SXR cam-

eras, with channel 1 viewing the inboard side of the plasma, and channel 20 viewing the

outboard part of the plasma column. The chords are shown overlaid on flux surfaces from

an equilibrium reconstructed at about t = 69 ms. Measured SXR signals from t = 68.5 ms

to t = 69.5 ms are shown in figure 5.4b. The top panel shows the raw measured signals

in arbitrary units, indicating a fluctuating emission from the center of the plasma, around

channel 11. The amplitude of the SXR signal is small outside of channels 5 on the inboard

side, and 17 on the outboard side indicating a strong emission from the core as compared

to the edge. The second panel below this is the box-car average of the total raw signal (top

panel), and the difference between the two highlights the fluctuations in the SXR emission

96



(a)

(b)

Figure 5.4: CTH is equipped with cameras to measure soft X-ray emission. Lines of sights for
one of the cameras and the measured signals are shown in this figure. (a) The lines of sights
for the different channels of the SXR camera are overlaid on the reconstructed equilibrium.
The core of the plasma is viewed by the chords 10 to 14. (b) The top panel shows the raw
signals with large emission from the core of the plasma. The box-car averaging of raw signals
shown in the second panel indicates a peaked profile from chords 10 to 14 which is consistent
with reconstructed location of the core from the figure on the left. The difference between
the total raw signals and the box-car averaged signals shows an m = 1 like fluctuation near
the center of the plasma.
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as is shown in the bottom panel. These fluctuations show an m = 1 like poloidal structure

rotating in the core at a frequency of about f = 3− 4 kHz.

The SXR cameras measure bremsstrahlung emission whose amplitude is proportional

to square of the plasma density.31 The density in these low-q(a) discharges was maintained

relatively low and constant throughout discharge to stay away from the high density disrup-

tion regime observed on CTH. Thus the measured signals are generally small with a small

signal to noise ratio. Even so, the observation of an m = 1 mode in the center of the plasma

is indicative of the presence of a q = 1 surface in the plasma core.

Strong current perturbations on the q = 1, 4/3 and 3/2 surfaces may be implicated

in the disruption process, as multiple rational surfaces are known play a role in inducing

stochasticity within a plasma, eventually precipitating a disruption.5

5.5 The suppression of low-q(a) disruptions with increasing vacuum rotational

transform

Next we look at the effect that the amount of vacuum transform has on the character-

istics of the low-q(a) disruptions. This is achieved on CTH by varying the ratio of currents

in the helical field coil (HF) and the toroidal field coil (TF). The evolution of plasma cur-

rent and the edge safety factor for discharges with vacuum rotational transform values of

ῑvac(a) = 0.02, 0.03 and 0.05 are shown in figure 5.5 from top to bottom respectively. The

plasma current evolution was chosen to be nearly identical. The small variation in the edge

safety factor is attributed primarily to the differences in their vacuum transforms. The

plasma density of these discharges have similar values. The amount of vacuum transform

can be thought of as the amount of passive 3D shaping in the equilibrium.

For the discharge with the lowest edge vacuum transform, a fast current quench is

observed. A partial or complete collapse is observed when the vacuum transform is increased

further to 0.03 whereas no disruption occurs when ῑvac(a) is raised to 0.05. The magnetic

fluctuations also exhibit variability for these discharges; examples for the ῑvac(a) = 0.05, and
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Figure 5.5: A series of discharges with similar plasma current time histories and differing
vacuum transform values illustrating the changing character of the observed disruptivity. (a)
The evolution of the total plasma current, and (b) the edge safety factor for these discharges.
The measured total magnetic fluctuation amplitude for the ῑvac(a) = 0.05 case is shown in
(c) and for the ῑvac(a) = 0.03 in (d).

ῑvac(a) = 0.03 cases are shown in figures 5.5c and 5.5d. The amplitude of MHD activity is

smaller for the discharge with vacuum transform ῑvac(a) = 0.05 from t = 60 ms onwards,

unlike for the discharge with ῑvac(a) = 0.03 where strong MHD activity eventually disrupts

the plasma.

All disruptions suffer from loss of vertical positional control during the current quench

and terminate in what is referred to as vertical displacement event (VDE).5 The vertical po-

sition is deduced from measurements of the poloidal field due to the toroidal plasma current,

made by coils symmetrically located at the top and bottom of the vacuum vessel.25 Figure

5.6 shows the vertical position of plasma for the discharges shown in figure 5.5. The plas-

mas are vertically centered until right before the current quench begins. The plasmas move

99



Figure 5.6: Vertical position of the plasma for the set of discharges with different vacuum
transforms shown in figure 5.5. The plasmas are vertically centered until right before the
current quench begins. For the non-disrupting case, position control is eventually lost because
the current in RFC is unable to hold the plasma at low plasma currents.

rapidly up at about t = 70 ms, and t = 80 ms, for the fast current quench cases. For the

partial current quench, the plasma moves up slowly after the initial current quench begins

at about t = 85 ms, but then moves up at a faster rate at t = 90 ms when the current quench

is fast. For the non-disrupting case, vertical position control is eventually lost at low plasma

current value as the plasma becomes vertically unstable.

The effect of external transform on low-q(a) disruptions in CTH has been studied for

an ensemble of 526 discharges. The vacuum transform at the edge, ῑvac(a), is varied in the

range 0.02-0.1 while keeping the evolution of the plasma current, density, and the average

equilibrium magnetic field comparable across the discharges in the dataset. The density

is held between ne = 4 × 1018 m−3 and ne = 8 × 1018 m−3, whereas the average magnetic

field magnitude is between | B |= 0.45 T and | B |= 0.55 T. A plot of q(a) versus the edge

vacuum rotational transform ῑvac(a) is shown in figure 5.7. The value of the edge safety factor

is taken at peak plasma current. The disruptivity of these low-q(a) plasmas is observed to

have three regimes, depending upon the value of the vacuum transform.

Plasmas in the regime ῑvac(a) . 0.03 terminate with a fast current quench. The second

regime, 0.03 . ῑvac(a) . 0.07, consists of discharges terminating in fast and partial current

quenches, as well as the discharges for which disruption has been suppressed. In the third
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Figure 5.7: An ensemble of low-q(a) discharges showing the value of q(a) at peak plasma
current as a function of the applied vacuum transform. Disrupting shots are represented
by gold circles and non-disrupting shots are indicated by blue diamonds. Also shown is a
histogram of the data using a vacuum transform bin-size of 0.01. The corresponding y-axis
on the right represents the number of shots within a bin. Only disruptions are observed to
occur at the lowest values of edge vacuum transform ῑvac(a) ∼ 0.02 to 0.03. The observed
disruptivity is seen to reduce with increased edge vacuum transform in the range of 0.03 .
ῑvac(a) . 0.07. Disruptions are completely suppressed when ῑvac(a) & 0.07.

regime, where the external helical transform is increased to ῑvac(a) & 0.07, disruption free

operation is achieved with q(a) < 2. This data set can also be viewed in terms of the

fractional transform, f , defined in equation 5.2. The plot of q(a) versus f shown in figure

5.8 indicates that for complete disruption suppression a fractional transform of f ≈ 0.1, or

about 10% of the total transform at the edge of plasma is sufficient.

As mentioned earlier, in tokamaks disruptive behavior is observed during the current

rise if the ramp rate is sufficiently large, and the onset of low-q disruptions can be delayed

by tailoring the plasma current ramp rate.3,18 However, they still do occur when the edge

safety factor is greater than 2. The current ramp rate in this data set when q(a) ∼ 2 is

maintained at roughly 1.5 MA/s. The fluctuating component of the poloidal field, δBθ, can
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Figure 5.8: The same data set shown in figure 5.7 plotted in terms of the fractional transform,
showing disruption suppression for f > 0.1.

be bursty for some shots when q(a) ∼ 2; however, the amplitude is not large enough to

disrupt the plasmas. The 3/1 mode which is also observed during the current rise, has

comparatively larger amplitude and occurs much earlier in the plasma current evolution

but does not appear to have an effect on the magnitude of the 2/1 mode. A survey of the

total fluctuation amplitude, δBθ, when q(a) ∼ 2 and q(a) ∼ 3, is shown in figure 5.9a for

a subset of the discharges in the data set over the complete range of vacuum transform in

the dataset. It shows that when q(a) ∼ 3, the amplitude of fluctuations is in the range,

δBθ = 0.5 G to δBθ = 1.0 G, whereas the fluctuation amplitude has a larger scatter when

q(a) ∼ 2, but for the majority of the shots its value is smaller, δBθ < 0.5 G. The values

larger than 1.0 G usually correspond to large amplitude transient bursts. Figure 5.9b shows

that the magnitude of δBθ is proportional to the plasma current ramp rate when q(a) ∼ 3,

whereas in the majority of discharges when q(a) = 2, the ramp rates are consistently about

1.5 MA/s.

102



(a) (b)

Figure 5.9: Magnitude of fluctuations in poloidal field when q(a) ∼ 2 and q(a) ∼ 3 is
compared for dependence on (a) vacuum transform (b) plasma current ramp rates.

To access different values of the edge safety factor, which is inversely proportional to

the plasma current, the plasma current was varied by applying different amounts of ohmic

input power. Figure 5.10 shows that the peak plasma current, Ip, varies from 40 kA to 80 kA.

The disrupting discharges are marked by solid circles whereas the open circles indicate non-

disrupting discharges. This shows that for a fixed vacuum transform, say ῑvac(a) = 0.05,

disruptions are observed for multiple values of Ip and by extension, for a range of q(a)

values.

A survey of q(a) just prior to disruption is plotted in figure 5.11. This shows that the

edge safety factor values fall within a narrow range of, 1.6 . q(a) . 1.9, indicating that the

q = 1.5 surface is internal to the plasma and the q = 2 surface is outside, though close to the

plasma edge. The magnetic activity prior to the disruptions does not indicate the presence

of a 2/1 mode and so it is not implicated in the disruption.

From the scatter plot shown in figure 5.7 it is observed that for discharges with vacuum

transforms in the range, 0.04 . ῑvac(a) . 0.06, about half of the discharges terminate in a

disruption. These discharges may terminate either with a fast or a partial current quench.

Three of these discharges with vacuum transform of ῑvac(a) = 0.05 are shown in the figure

5.12. One ends with a fast current quench, second with a partial current quench, while the
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Figure 5.10: The dataset consists of discharges with varying amounts of driven plasma
current, between 40 kA and 80 kA. The disruptions are indicated by solid circles whereas
open circles indicate non-disrupting discharges.

third does not disrupt. The plasma current and the edge safety factor evolutions shown in

the top two panels are identical up to the time of disruption, and the MHD fluctuations are

of comparable amplitude. For all three discharges, MHD activity corresponding to the m =

3/n = 2 and 4/3 modes are measured with B-dot probes; corresponding mode amplitudes

for the time period indicated by the shaded region are shown in figure 5.13. Biorthogonal

decomposition is applied to the total fluctuations and the dominant modes, 3/2 and 4/3, are

isolated from the total fluctuations. The amplitudes of these modes are comparable for the

three shots from t = 62 ms to t ≈ 68 ms. The average 3/2 mode amplitude during this time

is about 1 − 1.2 G while the average amplitude of the 4/3 mode is about 0.2 − 0.3 G. The

mode amplitudes from t = 70 ms to about t = 74 ms decrease for all shots. The difference in

mode activity between the three shots is seen from about t = 74 ms. For the discharge with

a fast current quench, both 3/2 and 4/3 mode amplitudes rapidly increase to about 1.5 G

and 0.5 G respectively. For the partial current quench, the 3/2 mode growth is not as rapid

but does have a similar amplitude, whereas the 4/3 mode grows to only about 0.2 G. For

the non-disrupting case, the 3/2 mode amplitude is comparable though somewhat smaller,

and the 4/3 mode is distinctly small, being barely above the noise floor of the detectors.
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Figure 5.11: A survey of q(a) just prior to disruption shows that discharges disrupt with
edge safety factor values within a narrow range of, 1.6 . q(a) . 1.9

Thus, it is concluded that both 3/2 and 4/3 modes are implicated in low edge safety factor

disruptions.
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Figure 5.12: The disruptivity of three discharges with identical values of edge rotational
transform, ῑvac(a) = 0.05, are compared. Shown from top to bottom are the measured
plasma current,Ip; the edge safety factor obtained from equilibrium reconstruction, q(a),
and the signals measured by the B-dot probes, dBθ/dt. Note that B-dot signals are offset by
50 T/s for ease of presentation. The evolution of plasma current and the edge safety factor
are identical. Two of these discharges disrupt at a different rate of current quench while one
does not.
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Figure 5.13: The growth of MHD modes with helicities m/n = 3/2 and 4/3 are compared
for discharges with identical vacuum transform but different disruption outcomes.
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Chapter 6

Discussion and future work

6.1 Discussion

MHD modes in low-β cylindrical plasmas can be expressed as Fourier harmonics of

poloidal and toroidal mode numbers, m and n respectively. This is because a magnetic field

line, which always lies on a given flux surface as it makes toroidal transits, has a constant

pitch. However, the bending of a cylinder into a torus causes the local magnetic field pitch

to depend on the poloidal angle. A single Fourier poloidal mode, m, is then insufficient to

express a single MHD mode.1 In high-β cases the structure of MHD modes is expected to

be comprised of multiple poloidal harmonics.1 CTH plasmas are low-β, low aspect ratio,

and do not possess toroidal symmetry. Thus the interpretation of poloidal mode numbers is

difficult.

In chapter 4 we developed current filament models for the MHD modes often observed

in CTH plasmas, such as m/n = 3/2, 4/1, 3/1, 2/1. Our model assumed field aligned per-

turbed currents on rational surfaces. Knowing the shape of the flux surface from equilibrium

reconstruction enabled us to determine the fluctuations in the poloidal magnetic field at the

location of B-dot probes due to these helical currents. Only two parameters, the amplitude

and the phase of the current distribution were varied such that the modeled, δBθ, are con-

sistent with the measurements. Since the total fluctuations may have contributions from

multiple MHD modes, we have used the biorthogonal decomposition technique to isolate

fluctuations corresponding to a single mode. The model worked well for the 3/2 mode which

had its resonant surface inside the LCFS, close to the edge of plasma, implying that the

perturbed currents are located at the rational surface parallel to the equilibrium magnetic

field lines. Thus, its structure is flute-like, as expected for current driven long wavelength
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modes.2 Since CTH equilibria are low-β, the current driven modes may be expected to have

such a structure, which is reflected in the results of the current filament model, that takes

into account the 3-D magnetic field equilibrium of CTH. In high-β tokamaks the field aligned

perturbed current model does not describe the perturbation well3.

For the cases of the MHD modes observed in the current rise, the 3/1, and the 4/1

modes, the reduced χ2 of the fit between the model and the measured signals was large

when the resonant surface associated with these modes was inside the LCFS. Then, as

resonant surfaces moved outside the LCFS, while being close to the edge of the plasma,

the amplitude of observed perturbation increased, and also the dominant Fourier harmonics

representing the spatial structure of these modes increased relative to the other harmonics of

the spatial structure. The current filament model was obtained for the equilibrium when the

rational surface was close to the LCFS, but inside the plasma so that we can still determine

the path of the magnetic field lines from the reconstructed equilibrium; however, measured

signals were chosen for the time when the surface was external to the LCFS. This resulted

in much lower χ2 values. Here, a current filament model was obtained with the assumption

that shape and the position of the equilibrium flux surface does not appreciably change in

the short time that it takes as the rational surface move out. This result implies that even

when these 3/1, and the 4/1 modes are external to the plasma the perturbation induced

by them on the edge of the plasma is well modeled by the perturbed currents along to the

equilibrium magnetic field lines on the surface. When the 3/1 and 4/1 magnetic islands are

internal to the plasma, they may be large enough so that the simple current filament model

is insufficient; while, as the island moves outside the plasma, the perturbation induced by it

on the plasma edge could be represented well by our model.

In contrast to the 3/1 and the 4/1 mode, the model for the 2/1 mode observed during

the current rise did not agree with the measurements for both cases where it is located inside

and outside LCFS. This could be possibly due to the presence of a large 2/1 magnetic island

within the equilibrium or due to coupling with its harmonic, the 4/2 mode that is often
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detected. While the 2/1 mode is not modeled well by the current filament, the fact the 3/2

mode fit well while being internal to the LCFS may indicate the corresponding magnetic

island is small.

Low edge safety factor disruptions constrain the amount of toroidal plasma current in

tokamaks as the equilibrium approaches the value q(a) = 2. The MHD instability that leads

to a plasma current quench has been suppressed in axisymmetric configurations by various

methods4–7, and more recently, by applying small amounts of non-axisymmetric fields to the

background axisymmetric field8–10.

In chapter 5 low-q disruptions have been studied in non-axisymmetric 3D equilibria by

varying the amount of externally applied transform, ῑvac. Disruption free operation with

edge safety factors q(a) < 2 is routine on CTH if a sufficient amount of external rotational

transform, ῑvac, is applied. It has been shown that low-q disruptions are suppressed with the

application of an external rotational transform of, ῑvac(a) ≥ 0.07, or a fractional transform of

f = 0.1. When the plasma does disrupt, for ῑvac(a) ≤ 0.07, the precursors to the disruption

are m/n = 3/2 and 4/3 modes observed from magnetics, and a periodic non-sawtoothing

1/1 mode inferred from the SXR emission. This indicates the presence of three different

resonant surfaces inside the plasma. In cylindrical plasma equilibria it has been shown that

perturbations of two resonant modes q = m1/n1 and q = m2/n2 may couple with other

modes with helicities q = (m1 + m2)/(n1 + n2) and q = (| m1 −m2 |)/(| n1 − n2 |).11,12 A

coupling between the 3/2, and the 4/3 modes maybe possible by the way of the observed

1/1 mode, which has not been investigated in the present analysis.

Current driven disruptions have been suppressed in previous experiments in ohmically

heated stellarator discharges.13–15 In hybrid discharges of the W VII-A stellarator, which

like CTH was an ` = 2, five field-period current-carrying device, the low-q disruptions were

suppressed with sufficient external rotational transform; in this case the stabilizing effect was

observed for ῑvac between 0.14 and 0.17.13 The MHD mode responsible for the disruption

was primarily an m/n = 2/1, and even though a small amplitude 3/2 mode was observed, its
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Figure 6.1: The effect of increasing vacuum transform is to shift the location of the q = 2
rational surface towards the edge, where the current density profile is less steep. Shown in
the figure are the radial current density profile j(r/a), and the profiles of edge safety factor,
q(r/a), for two different values of vacuum transforms, ῑvac = ῑ0 and ῑvac = ῑ1 > ῑ0.

role in disruption was not clear.13 The reason for disruption suppression was conjectured

to be a shifting of the resonant surface, in this case, the q = 2 surface, to a region of smaller

current density gradient, as the vacuum transform is increased. This effect is illustrated

in figure 6.1. Shown in figure 6.1 is the radial current density profile as a function of

normalized plasma minor radius, j(r/a), and the profiles of the edge safety factor, q(r/a),

for two different values of vacuum transforms, ῑvac = ῑ0 and ῑvac = ῑ1 > ῑ0. Recall that the

edge safety factor has contributions from vacuum fields and the inductively driven plasma

current, ῑtot = ῑvac + ῑp = 1/q. The profiles shown are arbitrary and are not related to either

experiment or simulation; however, central and edge safety factors were chosen such that

q(r = 0) ∼ 1 and q(a) < 2, so that the illustration is consistent with observations of q = 1

in the core and the q = 2 surface internal to the plasma.13 It can be seen from the figure

that for a fixed radial current density profile, the effect of increasing the vacuum transform

is to shift the q = 2 surface towards the edge of the plasma, where the current density profile

is less steep; thereby increasing the stability of the equilibrium. A similar stabilization

mechanism may be responsible for the disruption suppression observed in CTH plasmas.

Numerical studies on the stability of kink and resistive tearing modes in a current-carrying
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linear stellarator with an ` = 2 helical field have been performed by Matsuoka.16,17 That

study showed an improvement in the MHD stability against kink and tearing modes with

increasing levels of vacuum rotational transform when the total edge safety factor less than

two, q(a) < 2.

6.2 Future work

In the analysis presented in chapter 4, we have established that the assumption of field

aligned current perturbations is suitable for CTH plasmas. Our modeling is limited to ratio-

nal flux surfaces being close to the LCFS whose shape and position are considered to be well

known. This is because the equilibrium reconstructions are done only with external magnetic

measurements which provide limited information about the internal rotational transform pro-

file. Ongoing work of the CTH group to incorporate SXR18,19 and Thomson scattering20

data to better understand hybrid equilibria will improve the equilibrium reconstruction of

CTH plasmas by incorporating the internal information. This will provide a better estimate

of the current profile and thus the rotational transform profile. With this additional knowl-

edge, it should be possible to obtain a current filament model simultaneously including more

than one rational surface in the equilibrium. This should be a straight forward extension of

the present analysis. The results could be compared with the non-dominant modes identified

from biorthogonal decomposition, which at the moment are not considered as reliable in the

absence of corroborating evidence. Additionally, one could apply the filament model to the

measurements of fluctuations in the the radial magnetic field.

The mechanism for low edge safety factor disruptions was discussed earlier. It is possible

that shifting of the rational surface to a location in the plasma with less steep current density

gradient may be responsible for the observed low edge safety factor disruption suppression.

At the moment no direct measurement of the current profile is available. To confirm this

hypothesis of disruption mitigation it is essential to directly measure the current profile,

either with diagnostics such as Hall probes, or derive it from equilibrium reconstructions
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that use information from internal diagnostics. A periodic 1/1 mode is observed in SXR

emission but a clear sawtoothing activity, which may aid in identifying central safety factor,

q(0), is not observed. This could be because the amplitude of the sawtooth oscillation is too

small due to the low densities used in this dataset. Confirming the presence of the q = 1

surface by increasing the density, and/or the sensitivity of the SXR cameras, could help put

a constraint on the equilibrium reconstructions,18 thus giving a better estimate of current

density profile. A correlation analysis of the 3/2, and 4/3 modes could also be investigated

to determine if a coupling between these modes by the way of 1/1 mode.

An analysis technique to reconstruct observed MHD activity due to perturbed currents

on a single rational surface has been developed in chapter 4. With improved understanding

of the rotational transform profile, precise locations of the flux surfaces further inside the

plasma could be obtained. Thus the structure of the perturbed currents on multiple rational

surfaces, viz. q = 3/2, 4/3, could also be obtained. The model could then reconstruct the

relative phase of the perturbed current distribution on these rational surfaces to determine

any correlation between these disruption precursors.
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Appendix A

CTH coordinate system

The locations of the diagnostics installed on CTH are measured in the Cartesian coor-

dinate system of a coordinate measuring machine (CMM), that is different from the CTH

coordinate system. The relation between the CMM coordinate system and the Cartesian

Coordinate system defined for CTH is given by the following set of equations:

xCTH = xCMM (A.1)

yCTH = −zCMM

zCTH = yCMM

The subscripts for the CTH coordinates shall be dropped for the remainder of this Appendix.

A top-view of the CTH laboratory indicating the local Cartesian coordinate system is shown

in the figure A.1. The toroidal coordinate system is illustrated in the figure 1.1. The toroidal

coordinate system are transformed to the CTH coordinates in the following manner:

x = (R0 + r cos θ) cosϕ, (A.2)

y = (R0 + r cos θ) sinϕ,

z = r sin θ,

where, (x, y, z) are the CTH coordinates, R0 = 0.75 is the major radius of the CTH vacuum

vessel, r is the radial location with respect to the center for the poloidal cross-section, θ is

the poloidal angle, and ϕ is the toroidal angle. The Z-axis is points out of the plane, while
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Figure A.1: The top-view of the CTH vacuum vessel is shown with its local Cartesian
coordinate system. The Z-axis points out of the plane of the figure. The east wall of the
laboratory is to the right in this schematic. Also shown is the ϕ = 0◦ location with respect
to the CTH vacuum vessel.

the vacuum vessel centered at z = 0, θ = 0 at the outboard midplane and θ = ±180◦ at the

inboard midplane.
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Appendix B

Design and Calibration of the B-dot probes

Construction, assembly, and calibration of the poloidal array of B-dot probes located

nominally at the toroidal angle of Φ = −117◦ is presented in section 2.3.1. This array is

composed of 36 probes that measure dBθ/dt, 18 of which have dual windings that additionally

measure the fluctuations in the radial magnetic field, dBr/dt. An annotated photograph of

the complete assembly is shown in the figure 2.10a. Appendix B.1 includes machine drawings

for the following components of the assembly:

Fig. B.1: forms that were used to construct B-dot probes that measure Bθ;

Fig. B.2: forms that were used to construct B-dot probes that measure both Bθ, and Br;

Fig. B.3: brackets that were built to mount the forms onto the frame;

Fig. B.4a: circular frame on which the poloidal array was assembled;

Fig. B.4b: limiters that were attached to this frame.

Section B.2 provides the following details of individual probes of the poloidal array and

both the toroidal arrays:

1. measured sensitivity of the probes in terms of effective NA, where N is the number of

turns of the wire, and A is the cross-section area;

2. measured position in toroidal coordinates (R, θ,Φ), which can be transform to the CTH

coordinates using the set of equations given in appendix A, and the corresponding area-

normals (x̂, ŷ, ẑ).

The details of the way the B-dot probes are connected to feed-throughs on the vacuum

vessel are given in appendix B.3 and the amplifier-filter circuitry is given in appendix B.4.
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B.1 CAD designs

The B-dot probes are wound on circular cross-section forms machined out of Teflon.

The CAD drawing for the form designed to measure the poloidal magnetic field is shown

in the figure B.1. The form has dimensions, 1.3′′ × 0.5′′ × 0.5′′. The magnet wire is wound

on the central part of the form 0.38′′ in diameter, and 0.78′′ in length. All the dimensions

shown in the design are in inches. Additionally, there are two 4-40 tapped holes on both

the ends along the axis of the form, which facilitate mounting these forms onto the motor

used to wind the magnet wire on these forms. A vertical 4-40 tapped hole was made to hold

the coil form onto a bracket, which was then mounted to the circular frame shown in figure

B.4a.

The form used to wind the dual probes shown in figure B.2 is similar to the Bθ probe,

with an additional notch along the horizontal direction to enable a rectangular winding for

the Br probe. The axis of this winding is orthogonal to the circular cross-section of the form.
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Figure B.1: Bθ probe design.
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Figure B.2: Design of the dual probe that measures Bθ, and Br.
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Figure B.3: Bracket made out of SS316 material was used to attach the forms to the circular
frame.

B.2 Probe position and calibration data

The measured positions, and calibration information for the poloidal array located at

the toroidal angle , Φ = −117◦, is given in the table B.1. The table lists toroidal coordinates,

(R, θ,Φ), of the center of the wound portion of the coil forms previously shown. There are

thirty-six probes in the array that measure Bθ, labeled, P01, . . . , P36, placed 10◦ apart.

Additionally, the direction of the axis is given in terms of unit vectors in CTH coordinates,

(x̂, ŷ, ẑ). The sensitivity of each probe is given in terms of measured effective NA in the

units of cm2; the negative sign of NA indicates that the polarity of the measured signal is to

be switched to get the appropriate direction of the measured poloidal field. The measured

output voltage of the probe can be converted into the units of magnetic field fluctuation,

T/s, using the equation 2.3.

The table B.2 shows the position, and the calibration information for the toroidal array

nominally located at θ = 90◦.

The 18 probes that measure the radial field, Br were labeled with odd numbers, R01,

R03, R05, . . . , R35. The pair of Bθ and the Br probes labeled with same number such as,
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(a)

(b)

Figure B.4: (a) One half of the circular frame made out from SS316 material that was used
to mount the poloidal array of B-dot probes. (b) The 3/16′′ thick SS316 limiter was attached
to a section of the circular frame. Six such limiters spanned the circular frame.
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P01-R01, P03-R03, . . . , P35-R35, were wound on the same coil form, the design of which is

shown in the figure B.2.
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Probe label R [m] θ [deg.] Φ [deg.]. x̂ ŷ ẑ NA(cm2)

P01 0.810 76.919 -117.322 -0.447 -0.865 -0.226 -93.320

P02 0.764 86.985 -117.372 -0.459 -0.887 -0.053 -92.550

P03 0.717 97.201 -117.380 -0.456 -0.881 0.125 -92.460

P04 0.671 107.352 -117.365 -0.439 -0.848 0.298 92.490

P05 0.627 117.497 -117.436 -0.409 -0.787 0.462 91.250

P06 0.588 127.585 -117.531 -0.366 -0.703 0.610 93.100

P07 0.553 137.713 -117.561 -0.311 -0.596 0.740 -91.530

P08 0.524 147.812 -117.531 -0.246 -0.472 0.846 -92.980

P09 0.502 157.935 -117.417 -0.173 -0.333 0.927 -95.910

P10 0.488 167.985 -117.307 -0.095 -0.185 0.978 92.050

P11 0.482 177.749 -117.293 -0.018 -0.035 0.999 -95.310

P12 0.484 -172.309 -117.297 0.061 0.119 0.991 95.940

P13 0.493 -162.171 -117.317 0.141 0.272 0.952 91.420

P14 0.512 -152.057 -117.321 0.215 0.416 0.883 -92.500

P15 0.536 -142.066 -117.264 0.282 0.546 0.789 92.610

P16 0.569 -132.121 -117.217 0.339 0.660 0.671 -94.540

P17 0.605 -122.218 -117.233 0.387 0.752 0.533 92.400

P18 0.647 -112.295 -117.273 0.424 0.822 0.379 94.790

P19 0.692 -102.400 -117.314 0.448 0.868 0.215 95.000

P20 0.739 -92.384 -117.269 0.458 0.888 0.042 93.570

P21 0.786 -82.362 -117.208 0.453 0.881 -0.133 -94.340

P22 0.832 -72.440 -117.151 0.435 0.848 -0.302 -92.220

P23 0.876 -62.611 -117.115 0.405 0.790 -0.460 101.490

P24 0.914 -52.757 -117.093 0.363 0.709 -0.605 92.760

P25 0.950 -42.779 -117.082 0.309 0.605 -0.734 95.300

P26 0.978 -32.816 -117.070 0.247 0.483 -0.840 95.760

P27 1.000 -22.957 -117.001 0.177 0.348 -0.921 -93.970

P28 1.013 -13.133 -117.018 0.103 0.202 -0.974 92.130

P29 1.020 -3.482 -117.208 0.028 0.054 -0.998 -93.820

P30 1.018 7.144 -117.104 -0.057 -0.111 -0.992 -91.960

P31 1.008 17.562 -117.250 -0.138 -0.268 -0.953 -94.690

P32 0.989 27.645 -117.436 -0.214 -0.412 -0.886 -92.260

P33 0.965 37.184 -117.344 -0.278 -0.537 -0.797 -94.480

P34 0.934 46.758 -117.213 -0.333 -0.648 -0.685 91.630

P35 0.896 56.853 -117.206 -0.383 -0.745 -0.547 94.760

P36 0.855 66.930 -117.251 -0.421 -0.818 -0.392 92.840

Table B.1: Position and calibration information for the toroidal array of B-dot probes located
nominally at Φ = −117◦.
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Probe label R [m] θ [deg.] Φ [deg.]. x̂ ŷ ẑ NA(cm2)

TA198T 0.764 87.137 -162.349 -0.966 -0.255 0.043 52.897

TA234T 0.736 92.912 -126.279 -0.532 -0.845 0.049 -48.575

TA270T 0.775 84.882 -89.275 -0.008 -1.000 -0.017 56.381

TA306T 0.737 92.599 -54.912 0.663 -0.748 -0.020 -56.749

TA342T 0.762 87.498 -17.542 0.955 -0.296 -0.029 53.165

TA018T 0.743 91.373 18.101 0.960 0.279 -0.028 52.260

TA054T 0.742 91.630 53.924 0.552 0.831 0.074 -51.322

TA090T 0.737 92.741 89.575 -0.091 0.994 0.062 -52.561

TA126T 0.765 86.870 126.079 -0.624 0.780 0.038 52.863

TA162T 0.732 93.799 161.801 -0.960 0.277 0.047 49.412

Table B.2: Position and calibration information for the toroidal array of B-dot probes located
nominally at θ = 90◦.

B.3 Pin diagrams for connectors

The leads of the B-dot probes at the vacuum side are connected to a 4.5′′ CF flange on

the machine. This section describes how the poloidal array of B-dot porbes are connected to

this flange. Three 4.5′′ CF feed-through was sourced from the company Accu-Glass Products

Inc, having model number 25D2-450. Each flange has two male 25 pin sub-miniature D

connections. Twisted pairs of the B-dot probes were connected to the feed-through using

a vacuum compatible 25-pin female connector, that was sourced from the same company,

model number 25D-PKS. Since there are a total of 54 probes in the poloidal array, these

connections were made on 6 such CF flanges. Figure B.5 shows the vacuum side view of

one such connector with pin-labels 1 through 25. The pin-connections corresponding to each

probe are listed in the table B.3.

Figure B.5: Vacuum side view of a 25-pin sub-miniature D connector. Pins in the top row
are labeled 1 through 13, and the ones in the bottom row are labeled 14 through 25.
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Pin # Sub-D connectors for Bθ probes Sub-D connectors for Br probes

C2-Poloidal C4-Poloidal C6-Poloidal C1-Radial C3-Radial

1,2 P01 P13 P25 R01 R19

3,4 P02 P14 P26 R03 R21

5,6 P03 P15 P27 R05 R23

7,8 P04 P16 P28 R07 R25

9,10 P05 P17 P29 R09 R27

11,12 P06 P18 P30 R11 R29

13 - - - - -

14,15 P07 P19 P31 R13 R31

16,17 P08 P20 P32 R15 R33

18,19 P09 P21 P33 R17 R35

20,21 P10 P22 P34 - -

22,23 P11 P23 P35 - -

24,25 P12 P24 P36 - -

Table B.3: The poloidal array contains 54 probes out of which, 36 probes that measure
Bθ use connectors labeled, C2-Poloidal, C4-Poloidal, and C6-Poloidal. The 18 probes that
measure Br use connectors labeled C1-Radial, and C5-Radial. The details of pin assignment
for each B-dot probe is listed in this table.

B.4 Amplifier circuitry

The voltage output between the twisted pair of each B-dot probe is connected to an

amplifier box which then connects to the data acquisition (DAQ) system in the CTH labo-

ratory as shown in the schematic diagram in the figure B.6. Each subminiature-D (sub-D)

connector has 12 twisted pairs connected on the vacuum side of the CF flange. On the

air-side, a 12-pair twisted shielded cable connects to the amplifier box, the output of which

is connected to the SCSI input of the DAQ system. The amplifier circuitry, shown in figure

B.7a, consists of an instrumentation amplifier, INA03, manufactured by Texas Instruments,

designed for low impedance loads such as our B-dot probes. The pin connections for the

amplifier are shown in the figure. The output of the amplifier circuit is connected to a filter

circuit shown in the figure B.7b. The filter circuit uses the operational amplifier, NE5532,

also manufactured by Texas Instruments. The two operational amplifiers on the chip form

a two-pole Sallen-Key Butterworth filter configuration designed to provide a flat response
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Figure B.6: This schematic shows how output voltage from the B-dot probes is transferred
to the data acquisition (DAQ) system.

up to a frequency of 50kHz. The measured gain, and frequency response of the amplifying

circuit is shown in the figure 2.11.
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(a)

(b)

Figure B.7: (a) The output of the B-dot probes is connected to an instrumentation amplifier.
(b) The output of the amplifying circuit is connected to a filter circuit shown in the figure.
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Appendix C

V3RFUN input files

V3RFUN is used to compute the mutual inductances between the B-dot probes and

the current filaments in section 4.3. It is also used to compute mutual inductances between

the CTH magnet coils such as the HF, TVF, TF, SVF, etc. and the B-dot probes installed

in CTH, which are described in appendix D. The goal here is to describe the format of the

input files required to execute the V3RFUN code and give some example files used in the

actual computation.

V3RFUN execution requires three input files: A namelist input file, which contains a

set of input variables to the code, the diagnostic dot file which contains descriptions of the

diagnostic coils, with the name of the file specified as a variable in the namelist file, and the

coils dot file which contains descriptions of the field coils and is also specified as a variable

in the namelist file. A sample of input files used in this example are given in appendix C.

The Cartesian coordinates of points along the path of the current filaments are specified in

the coils dot file. The position of the B-dot probes and their area-normals are supplied via

the diagnostic dot file. The sample files used in the execution of the V3RFUN code for the

analysis presented in chapter 4 are placed on CTH share drive as detailed in the following:

V3RFUN Documentation: This file contains Cartesian coordinates for 36 current-carrying

filaments placed on the rational flux surface initialized on a poloidal cross-section. The

magnetic field lines return to their starting location after making three toroidal cir-

cuits.

Path: Z:\_Users\Mihir\public\v3rfun_inputfiles\Currentfilament_coilsdot\

fil_coilsdot_140214733_32mode.dot
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Diagnostics dot file for CTH B-dot probes: This file contains the location and the

normals for the B-dot probes used in simulations presented in chapter 4.

Path: Z:\_Users\Mihir\public\v3rfun_inputfiles\Bdotprobes_diagnosticsdot\

bdot_diagdot

Coils dot file for current filaments on m = 3/n = 2 rational surface: This file contains

Cartesian coordinates for the 36 current-carrying filaments placed on the rational flux

surface initialized on a poloidal cross-section. The magnetic field lines return to their

starting location after making three toroidal circuits.

Path: Z:\_Users\Mihir\public\v3rfun_inputfiles\Currentfilament_coilsdot\

fil_coilsdot_140214733_32mode.dot

Coils dot file for CTH magnet coils: This file contains the Cartesian coordinates for all

the magnet coils on CTH. This file along with the diagnostics dot file mentioned above

is used to compute the mutual inductance between the B-dot probes and the CTH

magnet coils shown in appendix D.

Path: Z:\_Users\Mihir\public\v3rfun_inputfiles\CTHcoilsdot\coils.cth.18b.

mo.f5sa
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Appendix D

Mutual inductances between the B-dot probes and the magnet coils

The B-dot probes described in this dissertation are used to make local measurements of

the fluctuating component of the poloidal magnetic field, δBθ, and to model the fluctuations

in the equilibrium poloidal magnetic field modeled by current filaments superimposed within

a reconstructed equilibrium, as presented in chapter 4. The determination of the poloidal

magnetic field due to the current filaments requires accurate knowledge of the calibration,

location, and orientation of these probes inside the vacuum vessel. A comparison of measured

and computed mutual inductances between the B-dot probes and the magnet coils such as

the HF, TVF, TF, etc. helps determine the accuracy of the known properties of the B-

dot probes. Experimentally, this mutual inductance between a magnetic coil and the B-dot

probes is determined by measuring the magnetic field at the location of the coil generated

by a known current in the magnet coil, while open circuiting the other magnet coils. The

V3RFUN code, described in chapter 4 uses the known information of the B-dot probes to

compute mutual inductance with the magnet coil. This procedure is outlined in detail in

previous work done to optimize the calibration of the Rogowski coils used in equilibrium

measurement.1

This appendix presents a comparison of measured and computed mutual inductances

between the B-dot probes and the HF, TVF, TF, and SVF. The mutual inductances for the

B-dot probes in the poloidal array and the toroidal arrays are shown in figures D.1 and D.2

respectively.
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(a) HF (b) TVF

(c) SVF (d) TF

Figure D.1: The mutual inductances between the B-dot probes in the poloidal array and the
magnet coils, (a) HF, (b) TVF, (c) TF, and (d) TF are shown. The black squares represent
the measured values of the mutual inductances, while the blue circles represent the computed
values.
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(a) HF (b) TVF

(c) SVF (d) TF

Figure D.2: The mutual inductances between the B-dot probes in the toroidal array and the
magnet coils, (a) HF, (b) TVF, (c) TF, and (d) TF are shown. The black squares represent
the measured values of the mutual inductances, while the blue circles represent the computed
values.
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Appendix E

Hα detector array

A seven-chord array of Hα detectors has been installed to view a poloidal cross-section

of the plasma. Each Hα detector assembly consists of collection optics, filter optics, and

amplifying circuitry. The collection optics are mounted on 2.75 in windows as shown in the

photograph in figure E.1 . Unfiltered light from the plasma is focused onto an optical fiber

in the collection assembly and is coupled to the filter optics that collimate the light onto an

interference filter. The filtered light is focused onto a photo-diode detector and the resulting

signal is amplified and digitized. The signal from the midplane Hα chord is shown in figure

E.2a. The initial spike at 1.6 s corresponds to the beginning of the ECRH phase of the

discharge and a second increase at 1.62 s occurs when the ohmic system is discharged. A

contour plot of all seven Hα channels in E.2b shows the emission is updown symmetric until

well into the shot when the plasma drifts upward.

The line of sight of each detector is constrained in the poloidal and toroidal directions

by a rectangular slit installed on the vacuum side of the flange, 0.75′′ wide and 0.375′′ tall.

The collection optics consists of a one inch diameter plano-convex lens that focuses the Hα

emission onto an optical fiber which carries the light to the optical filter assembly. The optical

filter assembly consists of one collimating lens, one interferences filter, and one focusing lens,

in that order. The focused light is collected by the active area of the photodiode positioned

at the focal length of the focusing lens in the filter assembly. The collection and the filter

optics are held within custom-designed holders made out of black Delrin; their assembly is

shown in figure E.3. The machine design for individual components is shown in figures E.4a

and E.4b. The details of the components used in each channel of the Hα detector are listed

in table E.1.
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Figure E.1: The photograph shows collection optics of the seven channel Hα detector array
installed at a horizontal port on CTH. The collection optics for each channel consists of a
set of seven plano-convex lenses held within custom-made holders made out of black Delrin.
Optical fibers transport the light to the filter optics.

(a) (b)

Figure E.2: (a) The signal during an ohmic CTH discharge as measured by the mid-plane
channel is shown in the figure. The ECRH phase of the discharge is recognized by a break-
down spike at 1.6 s, while the ohmic phase can be seen by another voltage spike at approx-
imately 1.62 s. (b) The contour plot shows signals measured by all the seven channels of
the detector. The mid-plane channel measures Hα signal along a horizontal line of sight at
y = 0 m. The vertical positions of the other chords are indicated by blue squares.
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Figure E.3: The assembly of custom designed holders for the collection and filter optics is
shown in this figure. The lens held within the collection holder, B1, focuses the light onto
the optical fiber, that connects to the fiber optics holder. The component labeled A1 holds
the collimating lens; and the interference filter is held sandwiched between the components
A2, and A3; the focusing lens A4 focuses the light onto a photodetector.
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(a)

(b)

Figure E.4: The design specifications of the optics holders for (a) filter optics, and (b)
collection optics are shown in this figure. The dimensions of the components are decided
keeping in mind the focal lengths of the lenses used. Note that the components A1 and B1
are identical.
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Component Specification

Optical fiber (1
nos.)

Numerical aperture:0.39
Diameter: 1000µm,
Part number: FMT1000UMT, Thorlabs Inc.,

Plano-Convex
Lenses (3 nos.)

Diameter: D = 25.4 mm,
focal length,f = 25.4 mm,
material: N-BK7,
part number: LA1951, Thorlabs, Inc.

Interference filter (1
nos.)

Mounted diameter: D = 25.0 mm,
clear aperture: 21 mm,
Central wavelength (CWL): 656 nm,
FWHM:10 nm ,
transmission: ≥ 50% ,
part number: NT65-716, Edmund Optics

Photo-diode with
inbuilt amplifier (1
nos.)

Responsivity: 0.4 Amps/Watt,
Active area: 2.54 mm,
part number:SD 100-41-21-23, Advanced Photonix Inc.

Table E.1: Specifications of various components used in each detector

The trans-impedance amplifier circuit converts the output of the photodiode in the units

of current to a voltage which is recorded by the data acquisition system. The amplifying

circuitry is shown in the figures E.5

A relative calibration was performed using a hydrogen gas discharge lamp for each Hα

channel, which includes the collection optics, optical fiber, filter optics, and the photodetector

circuitry. The calibration data relative to channel number 2 is given in table E.2.

Hα channel Relative calibration

1 0.993

2 1.000

3 0.954

4 0.947

5 0.826

6 0.677

7 0.915

Table E.2: Relative calibration of the Hα detector channels
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Figure E.5: The photodiode-amplifier circuit which was used for each Hα detector is shown
in this figure. The light incident on the photodiode is indicated on the left, while the built-in
operational amplifier is labeled V1. Amplification is done in two more stages, indicated by
V2, and V3.
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