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Abstract

Suppose X ⊆ Rn, for some positive integer n, is closed under vector addition, ρ a

translation invariant distance function on X, and D ⊆ (0,∞). The distance graph Gρ(Rn, D)

is the graph with vertex set Rn with u, v ∈ Rn adjacent if and only if ρ(u, v) ∈ D. A rather

red coloring of G is a coloring of X with red and blue such that no two points adjacent in

G are both blue. The Szlam number of G is the minimum cardinality, over all rather red

colorings of G, of F ⊆ X such that no translate of F is all red. We exploit results of Johnson,

Szlam, and Kloeckner to show that for every positive integer n there exists ρ such that the

Szlam number of Gρ(R2, {1}) is n.

Let K,X ⊆ Rn for some positive integer n and suppose that K = −K and (0, . . . , 0) 6∈

K. We will call such a set a K-set. Define G(X,K), a K-graph on X, to be the graph

whose vertex set is X and x, y ∈ X are adjacent if and only if x − y ∈ K. We show

that for every K-set there exists a translation invariant distance function on Rn such that

G(Rn, K) = Gρ(Rn, {1}) and for every translation invariant distance function ρ on Rn and

D ⊆ (0,∞) there exists a K-set such that G(Rn, K) = Gρ(Rn, D). For certain K-sets we

find the Szlam number of Gρ(Rn, D) where Gρ(R, D) = G(Rn, K).
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Chapter 1

Introduction

If we color every point in the real plane either red or blue such that no two points

colored blue are unit distance apart in the Euclidean sense, then one can pose the following

problem. Find a set of points in the plane that has no translation in which all points are

red (an all red set). As a consequence to a result by Johnson and Szlam [10], the cardinality

of such a set is an upper bound of the chromatic number of the plane, that is, the minimum

number of colors needed to color every point in the real plane such that no two points of

unit distance are monochromatic; again, distance is Euclidean.

In light of the above result a natural question arises, which is, does there exist a red

and blue coloring of the plane as described above and a set in the plane with no translation

that is all red whose cardinality is the same as the chromatic number of the plane? It is well

known that the chromatic number of the plane is either 4, 5, 6, or 7. We define the Szlam

number of the plane to be the minimum size of a set such that no translation of the set is

all red for some red and blue coloring of the plane with no two blue points unit distance

apart. If one could show that the Szlam number of the plane is less than 7, thus lowering

the upper bound on the chromatic number of the plane, it would be an extraordinary result,

giving light to the chromatic number of the plane problem which has eluded many for over

60 years. Of course, the value of the Szlam number of the plane is unknown and may be as

elusive to find as the chromatic number of the plane. The following work is motivated by a

desire to better understand this relationship between the Szlam and chromatic numbers of

the plane. In particular we ask the above question for different notions of distance that are

translation invariant.
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In Chapter 1 we introduce basic definitions needed in understanding the following work

as well as a proof of the result by Johnson and Szlam from which it follows that the Szlam

number of the plane is an upper bound of the chromatic number of the plane. We conclude

by abstracting the notion of distance and proving some elementary results when distance is

defined in terms of the Euclidean metric, taxi-cab metric, and the max norm.

In Chapter 2 we characterize the possible values for the Szlam number of the plane

problem when the notion of distance is required to be translation invariant and to induce

the usual topology on the plane.

In Chapter 3 we introduce the definition of a K-graph on Rn and find that the class of

all K-graphs is equivalent to the class of all distance graphs Gρ(Rn, {1}) on Rn where ρ is a

translation invariant distance function on Rn. We then look at a class of K-graphs on R for

which the chromatic numbers and Szlam numbers are equal and find the Szlam numbers for

graphs within this class.

In Chapter 4 we look at a class of K-graphs on R2 for which the chromatic numbers and

Szlam numbers are equal and find Szlam numbers for graphs within this class. In other cases

we estimate the Szlam numbers of K-graphs, when K is a convex closed curve symmetric

around (0, 0).

1.1 Preliminaries

The following definitions and examples are fundamental in our investigations of the

Szlam number. For the reader familiar with graph theory and in particular distance graphs

most of what follows will be known, but not all since some definitions and notation are our

own. All of our work lies within Rn for n a positive integer.
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1.1.1 Distance Functions

Let X ⊆ Rn be a set, and ρ : X ×X → [0,∞) be a function that satisfies the following,

for all x, y ∈ X:

i. ρ(x, y) = 0 if and only if x = y

ii. ρ(x, y) = ρ(y, x).

Then we say ρ is a distance function on X. It is standard to require a third property,

ρ(x, y) + ρ(y, z) ≥ ρ(x, z) for all x, y, z ∈ Rn, also know as the triangle inequality, when

defining a notion of distance. A distance function that satisfies the triangle inequality is

called a metric. The reason for defining the notion of distance without the triangle inequality

is that there are many distance functions that are not metrics; for instance, ρ(x, y) = (x−y)2

on R. However, every distance function defined in the following work is a metric.

Now, a property of a distance function that is not a standard in the notion of distance,

but is of great importance for reasons that will become clear when we state Szlam’s lemma,

is that of translation invariance. Let ρ be a distance function on X ⊆ Rn for some positive

integer n, and suppose that X is closed under vector addition. Then ρ is translation invariant

on X if ρ(a+ b, a+ c) = ρ(b, c) for all a, b, c ∈ X, where + denotes vector addition.

There are several classic translation invariant distance functions on Rn. One such class

of distance functions is the p-norm which is defined on Rn as follows. Let x = (x1, . . . , xn),

y = (y1, . . . , yn) ∈ Rn and p a positive real number such that p ≥ 1. Define ρp : Rn × Rn →

[0,∞) by

ρp(x, y) =

(
n∑
i=1

|xi − yi|p
)1/p

.

We write |x − y|p and for

(
n∑
i=1

|xi − yi|p
)1/p

when expressing ρp. The 1-norm | · |1 is called

the taxi-cab metric, the 2-norm | · |2 is called the Euclidean metric and, the infinity-norm

lim
p→∞
|·|p = |·|∞ is called the max norm: |x−y|∞ = max(|x1−y1|, . . . , |xn−yn|). Notationally,

for the Euclidean metric it is common practice to drop the subscript and write | · |.
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1.1.2 Distance Graphs

Let ρ be a distance function on Rn for some positive integer n, X ⊆ Rn and, D ⊆ (0,∞).

We define the distance graph, Gρ(X,D), on X to be the graph with vertex set X, with

x, y ∈ X adjacent if and only if ρ(x, y) ∈ D. The most well known distance graph on Rn is

where ρ is |·| and D = {1}. This distance graph on Rn we denote by G(Rn). For convenience,

if ρ = | · | and D = {1} we write Gρ(X,D) by simply G(X). We note that these notational

liberties do not have to be used in conjunction.

1.1.3 Coloring Problems

There are two properties of a distance graph of general interest, both of which involve

the notion of coloring a graph. Let G be a graph with vertex set X, and let C be a set. A

coloring of the graph G is a function φ : X → C. The elements of C are called colors and the

set Xi = {x ∈ X : φ(x) = i} is called the ith color class of φ. A coloring φ of G is a proper

coloring of G if for every x, y ∈ X that are adjacent in G it follows that φ(x) 6= φ(y). A

classic coloring problem and the first property of concern is finding the minimum cardinality

of the set C such that there is a proper coloring φ : X → C of G, called the chromatic number

of G and denoted by χ(G). Notationally, we write the chromatic number of a distance graph

Gρ(X,D) as χρ(X,D) and, again, we drop the ρ when ρ is | · | and do not write the D when

D = {1}. The problem of finding the chromatic number of the plane [13] is then the same

as finding the chromatic number χ(R2) of the distance graph G(R2).

Let φ : X → {r, b} be a coloring of G, a graph with vertex set X, with colors r (red)

and b (blue), such that no two vertices adjacent in G are both blue. We denote the red and

blue color classes as R = {x ∈ X : φ(x) = r} and B = {x ∈ X : φ(x) = b} respectively

and say G has a rather red coloring {R,B}. Let Gρ(X,D) be a distance graph with a rather

red coloring {R,B} where X ⊆ Rn is closed under vector addition. Then a nonempty set

F ⊆ X is said to be forbidden by the rather red coloring {R,B} of Gρ(X,D) if no translate

of F is all red, that is, v+F 6⊆ R for all v ∈ X. Equivalently, (v+F )∩B 6= ∅ for all v ∈ X.
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We can now state the second property of interest. Let X ⊆ Rn be closed under vector

addition and Gρ(X,D) a distance graph. We define the Szlam number of Gρ(X,D), denoted

Szlρ(X,D), by Szlρ(X,D) = min {|F | : F is forbidden by a rather red coloring of Gρ(X,D)}.

Again, we drop the subscript ρ when ρ is | · | and do not write the D when D = {1}. Hence

the Szlam number of the plane is written as Szl(R2).

1.2 History

The history of the Szlam number of a given distance graph Gρ(X,D) where X ⊆ Rn,

D ⊆ (0,∞) and ρ is a translation invariant distance function is two fold. The flavor of the

problem may have its origins in Ramsey Theory but, because of the importance Szlam’s

Lemma plays in this work in relating the Szlam number of a distance graph Gρ(X,D) to its

chromatic number, the history of the chromatic number of a distance graph Gρ(X,D) must

also be given its due.

In 2009 Soifer [13] published The Mathematical Coloring Book in which he gives a

detailed account of the history of the chromatic number of the plane problem. The following

is a summary of some of his findings. In 1950 Edward Nelson, at the time an undergraduate

of the University of Chicago, asked John Isbell, a fellow student, the following question:

“What is the minimum number of colors needed to color the real plane such that no two

points of distance one apart are the same color?”

Shortly after Nelson proved that you needed at least 4 colors and Isbell, using techniques

of Hugo Hadwiger [8], showed that it could be done in 7. These bounds have not been

improved. The problem first appeared in a publication by Martin Gardner [7] in 1960 and

the proofs of both bounds appeared in a publication by Hugo Hadwiger [9] in 1961.

Throughout the years that followed the problem gained popularity and the problem

began to be seen as finding the chromatic number of the distance graph G(R2). Thus the

above bounds of Nelson and Isbell are stated as 4 ≤ χ(R2) ≤ 7. Of course there are many
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variations of the problem of finding χρ(X,D) where X ⊆ Rn, for some positive integer n,

D ⊆ (0,∞) and, ρ a distance function. A great many of these problems involve letting

ρ be the Euclidean metric and looking at different sets X and D. For more information

we refer the reader to [13]. In this work we are motivated to look at the opposite, which

is to fix X and D, and investigate the problem of finding χρ(X,D) for different distance

functions ρ. Moreover, since Szlam’s Lemma , as stated in Lemma 1.1 below, requires ρ to

be a translation invariant distance function we only concern our selfs with distance functions

of this type. In 1991 Chilakamarri [2] looked at the chromatic numbers of a distance graphs

Gρ(R2) on R2 where ρ is a Minkowski metric (the details of which we explore in Chapter

4), and Kloeckner in 2015 explored the chromatic numbers of distance graphs Gρ(R2) on

R2 where ρ is a translation invariant distance function that induces the usual topology (the

details of which we look at in Chapter 2).

For the origins of the Szlam number of a distance graph we need to look into Ramsey

Theory. The history and prehistory of Ramsey Theory is given in great detail in two works

by Soifer [14, 13]. In the following we extract from these two works the problems and results

that we find relevant to the history of developing the problem which is the Szlam number

of a distance graph. In 1973 Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus

[5] published a paper in which they were interested in problems of the following type which

we give in their own words.

Is it true that for any partition of the Euclidean plane into two classes (we say that

the plane is two-colored), there exists a set of three points all in the same class

forming the vertices of an equilateral triangle of side length 1 ?(We call such a set

monochromatic.)

The answer to the above was no and the authors provide a construction of a two-coloring of

the plane for which no triangle of side length 1 is monochromatic. When the above question
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is asked about R4 instead of R2 the answer is interestingly yes. In a follow up paper [6] in

1975 by the same authors the following question was posed:

Is it possible to color the Euclidean plane with two colors, say red and blue, so that

no two blue points are Euclidean distance 1 apart and no four red points are the

vertices of a unit square, a square of side length 1?

Anysuch coloring of the plane is clearly a rather red coloring of G(R2), though the authors

did not express their results in terms of distance graphs. The origins of this problem are

speculative since Johnson [1] recounts hearing the problem in 1973 from Don Greenwell, who

may well have gotten the problem from Lazio Lovose, who was his office mate for a period

when Greenwell was a graduate student at Vanderbilt. Not much later in 1979 Juhász [11]

not only showed the answer to be no but proved that given any coloring of the Euclidean

plane with two colors (red and blue) so that no two blue points are Euclidean distance 1,

then for any 4 point set F ⊆ R2 there exists a set F ′ congruent (F is congruent to F ′ if and

only if F ′ is a composition of translations and rotations of F ) to F such that F ′ is all red.

If we express Juhász’s result in the terms we have defined in the previous section by

strengthening our definition of a nonempty set F ⊆ R2 being forbidden by a rather red

coloring {R,B} of G(R2) by defining F to be forbidden∗ by a rather red coloring {R,B}

of G(R2) if there does not exist an F ′ ⊆ R2 congruent to F that is all red, and defin-

ing Szl∗(R2) = min {|F | : F ⊆ R2 is a forbidden∗ by a rather red coloring of G(R2)}. The

above Theorem by Juhász is equivalent to saying Szl∗(R2) > 4. Juhász [11], in the same

paper, went on to show that Szl∗(R2) ≤ 12 and in 1994 Csizmadia and Tóth [3] improved

the upper bound by proving Szl∗(R2) ≤ 8. These bounds have not been improved.

In 1999 Arthur Szlam, at the time participating in a summer research experience at

Auburn University for undergraduates, restricted the notion of a set being forbidden to the

definition we use in Section 1.1.3 and showed that if F ⊆ Rn is forbidden by a rather red

coloring of G(Rn), for n a positive integer, then χ(Rn) ≤ |F |. The immediate consequence

noted by both Johnson and Szlam [10, 15] is that since χ(R2) ≥ 4, for any set F forbidden
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by a rather red coloring of R2 it follows that |F | ≥ 4, or in our notation Szl(R2) ≥ 4. Szlam

[15] showed there exists a 7 point set forbidden by a rather red coloring of G(R2) which is

equivalent in our notation to saying Szl(R2) ≤ 7 . Though the idea of the Szlam number was

clearly evident in both Szlam’s work [15] and Johnson and Szlam’s work [10], a definition of

the Szlam number did not appear in publication until 2011 in a work by Berkert ad Johnson

[1]. To date, excluding the work that follows, there has been no other results on finding

the Szlam number of a distance graph Gρ(X,D) where X ⊆ Rn, D ⊆ (0,∞) and ρ is a

translation invariant distance function.

1.3 Szlam’s Lemma and some Elementary Results

In 2001 Johnson and Szlam published a paper [10] in Geombinatorics titled, “A New

Connection Between Two Kinds of Euclidean Coloring Problems”. The following is a corol-

lary of their main result.

Theorem 1.1. Let X ⊆ Rn be closed under vector addition for some positive integer n,

D ⊆ (0,∞), ρ a translation invariant distance function on X and Gρ(X,D) the distance

graph associated with X, D, and ρ. Suppose the set F ⊆ X is forbidden by a rather red

coloring of Gρ(X,D). Then

χρ(X,D) ≤ |F |.

Proof. Let F ⊆ X be forbidden by the rather red coloring {R,B} of Gρ(X,D). For each

x ∈ X choose an f ∈ F such that f + x ∈ B and define fx = f (we note that if F is

denumerable we do not need the axiom of choice here). We define a coloring φ : X → F

of Gρ(X,D) by φ(x) = fx. Suppose φ(x) = φ(y). Then fx = fy. Thus fx + y ∈ B

and fx + x ∈ B. It follows that fx + y and fx + x are not adjacent in Gρ(X,D). Then

ρ(x, y) = ρ(fx + x, fx + y) 6∈ D. Hence x and y are not adjacent in Gρ(X,D).

An immediate consequence of Johnson and Szlam’s result, which we call Szlam’s lemma, is

the following.
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Lemma 1.1 (Szlam’s Lemma). Let X, D, and ρ be as in Theorem 1.1. Then

χρ(X,D) ≤ Szlρ(X,D).

We can now see that not only is the Szlam number of the plane an upper bound to

chromatic number of the plane but also a corresponding inequality holds for any translation

invariant distance function ρ on X ⊆ Rn and any set D ⊆ (0,∞). We also notice that

if we have a set F forbidden by a rather red coloring of a distance graph Gρ(X,D) such

that Szlρ(X,D) = |F |, then by the proof of Johnson and Szlam’s result above we can

“construct” a proper coloring using |F | colors. A natural question arises, for which distance

graphs Gρ(X,D) does χρ(X,D) = Szlρ(X,D)? The breadth of this question is large to say

the least, so for now we refine our inquiry by letting X = R2, D = {1} and ask the above

question for the Euclidean metric, the taxi-cab metric and the max-norm.

Theorem 1.2. 4 ≤ Szl(R2) ≤ 7

Proof. Since |·| is translation invariant the lower bound follows directly from Szlam’s lemma,

since 4 ≤ χ(R2) ≤ 7 [13]. To prove the upper bound we construct a rather red coloring and

find a forbidden set whose cardinality is seven. We start with a Hadwiger tile which consists

of seven regular hexagons each with diameter slightly less than 1 as shown in Figure 1.1. We

color the center hexagon along with its boundary blue and other six hexagons along with the

sections of their boundaries that do not intersect with the center hexagon red. We can then

tile the plane with this colored Hadwiger tile as shown in Figure 1.2. Let B be the set of

points in R2 colored blue and R be the set of points in R2 colored red. {R,B} is a rather red

coloring. Let F be the set of seven hexagon centers as shown in Figure 1.2. F is a forbidden

set of {R,B}. To see this, think of moving F by translation, in any direction. Clearly, when

the point that was originally the center of the blue hexagon reaches the boundary of that

hexagon, a former center of a neighboring red hexagon will have reached the opposite blue

boundary segment, and will advance into the blue interior if the former blue center continues

9



into red territory, and will reach the blue boundary when the former blue center reaches the

red boundary of the original Hadwiger tile. Thus it is impossible to translate F so that

the blue center is in the original Hadwiger tile and all 7 elements of F are red. Thus, it is

impossible to translate F in any way so that F is entirely red. Hence Szl(R2) ≤ 7.

B

R

R

R

R

R

R

Figure 1.1: Hadwiger Tile
Figure 1.2: Tiling of Plane

Theorem 1.3. χ|·|1(R2) = Szl|·|1(R2) = 4

Proof. Let K = {(0, 0), (1/2, 1/2), (1/2,−1/2), (1, 0)}. Then G|·|1(K) is a subgraph of

G|·|1(Rn) and G|·|1(K) is isomorphic to K4. Hence χ|·|1(R2) ≥ 4. Clearly, | · |1 is trans-

lation invariant. Thus by Szlam’s lemma Szl|·|1(R2) ≥ 4. Define B = {(x, y) ∈ R2 : y ≥

−x + n − 1/2, y < −x + n + 1/2, y ≥ x + m − 1/2, y < x + m + 1/2 for some n,m ∈ Z},

R = R2\B, and F = {(0, 0), (1/2, 1/2), (1/2,−1/2), (1, 0)} as shown in the Figure 1.3 below.

Let v ∈ R2. It is straightforward to see that (v + F ) ∩ B 6= ∅. (See the proof of Theorem

1.4) Therefore F is forbidden by {R,B}. Hence, 4 ≤ χ|·|1(R2) ≤ Szl|·|1(R2) ≤ |F | = 4.

Red

Blue

Point in F

Figure 1.3: Rather red coloring and forbidden set of G|·|1(R2)
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Theorem 1.4. χ|·|∞(R2) = Szl|·|∞(R2) = 4

Proof. Let K = {(0, 0), (0, 1), (1, 0), (1, 1)}. Then G|·|∞(K) is a subgraph of G|·|∞(Rn) and

G|·|∞(K) is isomorphic to a K4. Hence χ|·|∞(R2) ≥ 4. Clearly | · |∞ is translation invariant.

Thus by Szlam’s lemma Szl|·|∞(R2) ≥ 4. Define B = {x, y ∈ R2 : 2n ≤ x < 2n + 1, 2m ≤

y < 2m+ 1 for n,m ∈ Z}, R = R2\B and F = {(1/2, 1/2), (1/2, 3/2), (3/2, 3/2), (3/2, 1/2)}

as shown in the Figure 1.4 below. Let v ∈ R2. Then for some integers s, t and θ1, θ2 ∈ [0, 1),

v +
(
1
2
, 1
2

)
= (s+ θ1, t+ θ2),

v +
(
3
2
, 1
2

)
= (s+ 1 + θ1, t+ θ2),

v +
(
1
2
, 3
2

)
= (s+ θ1, t+ 1 + θ2), and

v +
(
3
2
, 3
2

)
= (s+ 1 + θ1, t+ 1 + θ2).

Since one of s, s+ 1 is even, and one of t, t+ 1 is even, it follows that one of v+ u, u ∈ F , is

in B. Thus {v + F} ∩ B 6= ∅. Therefore F is forbidden by {R,B}. Hence, 4 ≤ χ|·|∞(R2) ≤

Szl|·|∞(R2) ≤ |F | = 4.

Red

Blue

Point in F

Figure 1.4: Rather red coloring and forbidden set of G|·|∞(R2)

Let G be a graph and define the clique number ω(G) of G to be the largest integer n

such that the complete graph Kn is a subgraph of G. We denote the clique number of a

distance graph Gρ(X,D) where X ⊆ Rn for some integer n, D ⊆ (0,∞) and ρ a distance

function on X by ωρ(X,D). From Theorem 1.2 and 1.3 one might observe the following.

11



Theorem 1.5. Let Gρ(X,D) be a distance graph on X where X ⊆ Rn is closed under vector

addition for some integer n, D ⊆ (0,∞) and ρ is a translation invariant distance function

on X. If χρ(X,D) = ωρ(X,D), then Szlρ(X,D) = χρ(X,D).

Proof. Let φ : X → C be a proper coloring of Gρ(X,D) such that |C| = χρ(X,D). Let

i ∈ C and Ci be ith color class of φ. Let B = Ci and R = X\B. Since φ is a proper coloring

{R,B} is a rather red coloring of Gρ(X,D). Let F ⊆ X such that Gρ(F,D) ∼= Km where

m = ωρ(X,D). Let v ∈ X. Since ρ is translation invariant, Gρ(v+F,D) ∼= Km. Furthermore,

since χρ(X,D) = ωρ(X,D), there exists an f ∈ F + v such that φ(f) = Ci = B. Hence

(F + v)∩B 6= ∅ for all v ∈ X. Therefore F is forbidden by {R,B} of Gρ(X,D). Since |F | =

ωρ(X,D), by Szlam’s Lemma ωρ(X,D) = χρ(X,D) ≤ Szlρ(X,D) ≤ |F | = ωρ(X,D).

The above results, although disappointing with regards to shedding any light on finding

χ(R2), do provoke some natural questions. First, does there exist a translation invariant

distance function ρ such that χρ(R2) < Szlρ(R2)? This question in particular becomes of

greater interest throughout the following work since for every translation invariant distance

ρ we discuss where χρ(R2) is known it is the case that χρ(R2) = Szlρ(R2). Another question,

on which we can shed some light, is the following. What can be said about Szlρ(R2) where

ρ is a p-norm and p > 2? In Chapter 4 we prove that for all p ≥ 1, 4 ≤ Szlρ(R2) ≤ 7 where

ρ a p-norm.

12



Chapter 2

Spectrum of Planar Szlam Numbers

In 2015 Kloeckner [12] investigated the possible values for χρ(R2) where ρ ranges over a

class of translation invariant distance functions. Let U(R2) = {ρ : ρ is a translation invariant

metric on R2 which induces the usual topology on R2}. Kloeckner begins by looking at

ρ ∈ U(R2) and defines PLANAR = {χρ(R2) : ρ ∈ U(R2)}. He proves PLANAR = N ∪ ℵ0
where N = {1, 2, . . .}. To our delight, for every value in PLANAR Kloeckner provides a

corresponding translation invariant metric. It is only natural that for each of these metrics

ρ we ask what is the value of Szlρ(R2). Define SZLAM = {Szlρ(R2) : ρ ∈ U(R2)}. In

the following we take the methods used by Kloeckner in characterizing PLANAR to prove

similar results for SZLAM . For each ρ ∈ U(R2) introduced by Kloeckner, we show that

χρ(R2) = Szlρ(R2).

2.1 Planar Szlam Numbers

Theorem 2.1. 1 ∈ SZLAM . Further, there is a such that

χρ(R2) = Szlρ(R2) = 1.

Proof. Let ρ(x, y) = |x−y|
1+|x−y| where | · | is the Euclidean metric. Then ρ is a translation

invariant metric that induces the usual topology on R2 and thus ρ ∈ U(R2). Since there

does not exist an x, y ∈ R2 such that ρ(x, y) = 1, it follows that any partition of R2

into sets R and B is a rather red coloring of Gρ(R2). Let B = R2 and R = ∅. Then

{R,B} is a rather red coloring of Gρ(R2). Let F = {(0, 0)}. Clearly F is forbidden by

13



the rather red coloring {R,B} and since |F | = 1, Szlρ(R2) ≤ 1. Then by Szlam’s lemma,

1 ≤ χρ(R2) ≤ Szlρ(R2) ≤ 1. The claims of the Theorem follow.

To show N\{1} ⊆ PLANAR Kloeckner uses the metric

ρd ((x1, x2), (y1, y2)) =

max

(
min(|x1 − y1|, 1),

1

d
|x1 − y1|,

|x− y|
1 + |x− y|

)
for d ∈ N and proves χρd(R2) = d+ 1. We note that ρd is translation invariant and induces

the usual topology. The crux of his argument relies on the fact χ(R, [1, d]) = d + 1 for

d ∈ N. In 1985 Eggleton, Erdős, and Skilton [4] showed that for d ∈ R such that d ≥ 1,

χ(R, [1, d]) = dde+1. We provide our own proof of this result in Chapter 3. For the purposes

of finding the elements of PLANAR Kloeckner need only let d ∈ N. Similarly, we need only

let d ∈ N to find the elements of SZLAM . Yet this is not our only concern; as discussed

in chapter 1 we wish to determine for which translation invariant distance functions do the

Szlam number and the chromatic number differ. For these reasons we let d be any real

number ≥ 1 even though it is an unnecessary generalization in determining SZLAM .

To show N\{1} ⊆ SZLAM first we need to prove some facts about ρd.

Lemma 2.1. ρd(x, y) = 1 if and only if |x1− y1| ∈ [1, d] where x = (x1, x2) and y = (y1, y2).

Proof. First note that |x−y|
1+|x−y| < 1 for all x, y ∈ R2. Suppose ρd(x, y) = 1. Then either

min(|x1 − y1|, 1) = 1 and 1
d
|x1 − y1| ≤ 1, or min(|x1 − y1|, 1) ≤ 1 and 1

d
|x1 − y1| = 1.

Let min(|x1 − y1|, 1) = 1 and 1
d
|x1 − y1| ≤ 1. It follows that |x1 − y1| ∈ [1, d]. Next let

min(|x1 − y1|, 1) ≤ 1 and 1
d
|x1 − y1| = 1. It follows that |x1 − y1| = d. Therefore, if

ρd(x, y) = 1 then |x1 − y1| ∈ [1, d].

Suppose |x1 − y1| ∈ [1, d]. Then min(|x1 − y1|, 1) = 1 and 1
d
|x1 − y1| ≤ 1. Thus

ρd(x, y) = 1.

Lemma 2.2. Let d ≥ 1. Then χρd(R2) = χ(R, [1, d]) = dde+ 1

14



Proof. Let C be a set of colors and φ : R→ C be a proper coloring of G(R, [1, d]). We define

π : R2 → C by π ((x1, x2)) = φ(x1). Let x, y ∈ R2, x = (x1, x2) and y = (y1, y2). Then,

π(x) = π(y) ⇒ φ(x1) = φ(y1)

⇒ |x1 − y1| 6∈ [1, d]

⇒ ρd(x, y) 6= 1

⇒ x 6∼ y in Gρd(R2, {1}).

Hence π is a proper coloring of Gρd(R2) with |C| colors; it follows that χρd(R2) ≤ χ(R, [1, d]).

Next, let C be a set and Π : R2 → C be a proper coloring of Gρd(R2). We define Φ : R→ C

by Φ(x) = Π ((x, 0)). Let x, y ∈ R:

Φ(x) = Φ(y) ⇒ Π((x, 0)) = Π ((y, 0))

⇒ ρd ((x, 0), (y, 0)) 6= 1

⇒ |x− y| 6∈ [1, d]

⇒ x 6∼ y in G(R, [1, d]).

Hence Φ is a proper coloring on G(R, [1, d]) with |D| colors; it follows that χρd(R2) ≥

χ(R, [1, d]). Therefore χρd(R2) = χ(R, [1, d]) = dde+ 1.

Theorem 2.2. N\{1} ∈ SZLAM . Further, for each d ≥ 1, χρd(R2) = Szlρd(R2) = dde+ 1.

Proof. Let d ≥ 1, B = {(x1, x2) ∈ R2 : x1 ∈ [k(dde+ 1), k(dde+ 1) + 1) for some k ∈ Z} and

R = R2\B. Suppose (x1, x2), (y1, y2) ∈ B. Then |x1− y1| ∈ [0, 1) or |x1− y1| > d. Therefore

ρd(x, y) 6= 1 by Lemma 2.1. Hence {R,B} is a rather red coloring of Gρd(R2). Next, let

F = {(0, 0), (1, 0), . . . , (dde, 0)} and v ∈ R2. Then (v+F )∩B 6= ∅. It follows F is forbidden

by the rather red coloring {R,B} of Gρd(R2). Therefore Szlρd(R2) ≤ dde + 1. Thus, by

Szlam’s lemma and lemma 2.2, dde+ 1 = χρd(R2) ≤ Szlρd(R2) ≤ dde+ 1. The claims of the

Theorem follows.
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0 1 dde

Red Blue Point in F

Figure 2.1: Rather red coloring and forbidden set of Gρd(R2) where 3 < d ≤ 4.

Theorem 2.3. ℵ0 ∈ SZLAM . Further, there is a ρ ∈ U(R2) such that

χρ(R2) = Szlρ(R2) = ℵ0.

Proof. Let ρ(x, y) = min(|x−y|, 1) for all x, y ∈ R2, where |·| is the Euclidean metric. Clearly

ρ ∈ U(R2). Let B = {(x, y) ∈ R2 | −1/2 ≤ x < 1/2,−1/2 ≤ y < 1/2} and R = R2\B as

seen in Figure 2.2 below. Let F = {(x, y) ∈ R2 | x, y ∈ Z}. Then {R,B} is a rather red

coloring and F is a forbidden by {R,B} with respect to ρ. Thus χρ(R2) ≤ Szlρ(R2) ≤ ℵ0.

On the other hand χρ(R2) ≥ ℵ0, since for any partition of R2 into finitely many sets, at least

one set must contain points further apart than 1 in the Euclidean distance and therefore at

ρ-distance 1. Hence χρ(R2) = Szlρ(R2) = ℵ0 and ℵ0 ∈ SZLAM .

1/2
−1/2

−1/2

1/2 Red

Blue

Point in F

Figure 2.2: Rather red coloring and forbidden set of Gρ(R2) where ρ(x, y) = min(|x− y|, 1).
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Theorem 2.4. Szlρ(R2) ≤ ℵ0 for any ρ ∈ U(R2).

Proof. Let Bρ(0, 1) = {y : ρ(0, y) < 1} and B(0, ε) = {y : |y| < ε}. Since ρ induces the

usual topology, there exists an r ∈ R such that B(0, r) ⊆ Bρ(0, 1). Let C be a closed

square centered at (0, 0) with Euclidean diameter d where d < r. Suppose x, y ∈ C. It

follows that |x − y| ≤ d < r. Hence x − y ∈ B(0, r) which implies x − y ∈ Bρ(0, 1). Thus

ρ(0, x − y) < 1. Furthermore, since ρ is translation invariant ρ(y, x) = ρ(0, x − y) < 1.

Let C = B and R = R2\C. Then {R,B} is a rather red coloring of Gρ(R2). Next, let

F = {(x1, x2) ∈ R2 : x1 = nd√
2
, x2 = md√

2
where m,n ∈ Z}. Then (F + v) ∩ B 6= ∅ for all

v ∈ R2. Hence F is forbidden by the rather red coloring {R,B} of Gρ(R2). Also, |F | = ℵ0.

Therefore Szlρ(R) ≤ ℵ0

The following is trivial given the above theorems.

Theorem 2.5. SZLAM = N ∪ ℵ0.

2.2 Proper Planar Szlam Numbers

Now, in view of the above results one may be inclined to remark that a stronger restric-

tion is needed on the class of translation invariant distance functions in question. Kloeckner

asks the same question and proposes to look at proper planar metrics; ρ is proper planar if

and only if ρ ∈ U(R2) and every closed ball of ρ is compact. Kloeckner proves several results

about the realizable values of χρ(R2) where ρ is a proper planar metric. Let U∗(R2) = {ρ :

ρ is a proper planar metric on R2} and define SZLAM∗ = {Szlρ(R2) : ρ ∈ U∗(R2)}. We

continue to use the methods of Kloeckner to prove the following results about SZLAM∗

which are similar to those of Kloeckner.

Theorem 2.6. If n ∈ SZLAM∗, then n > 2.

Proof. Kloeckner shows if ρ ∈ U∗(R2), then χρ(R2) > 2. By Szlam’s lemma the theorem is

trivial.
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Theorem 2.7. SZLAM∗ ⊂ N

Proof. Let ρ ∈ U∗(R2). By the argument in Theorem 2.4, there exists a square C centered

at (0, 0) whose side is of Euclidean length c, such that ρ(x, y) < 1 for all x, y ∈ C. Moreover,

since the closed balls of ρ are compact, they are bounded in the Euclidean sense. Then there

exists a square D whose side is of Euclidean distance d such that Bρ(0, 1) ⊂ D. Let B =

{(x, y) ∈ R2 : (d+c)n− c
2
≤ x < (d+c)n+ c

2
, (d+c)m− c

2
≤ y < (d+c)m+ c

2
, for m,n ∈ Z}

and R = R2\B. If x, y ∈ B, then either x and y both belong in some translate of C, hence

ρ(x, y) < 1, or x and y are not together in any translate of D, hence ρ(x, y) > 1. Thus {R,B}

is a rather red coloring of Gρ(R2). Let F = {(x, y) ∈ R2 : x = nc, y = mc where − (c+ d) ≤

nc,mc ≤ (c + d) for n,m ∈ Z}. Then F is forbidden by the rather red coloring {R,B}.

Since F is finite, Szlρ(R2) is finite; thus SZLAM∗ ⊂ N.

Let ρ1 and ρ2 be metrics on X1, X2 ⊆ Rn respectively. Define ρ1
∞
×ρ2 : X1×X2 → [0,∞)

by

ρ1
∞
× ρ2 ((x1, x2), (y1, y2)) = max (ρ1(x1, y1), ρ2(x2, y2)) .

It is easy to see that ρ1
∞
× ρ2 is a metric on X1×X2, and is translation invariant if ρ1 and ρ2

are.

Lemma 2.3. Let ρ1 and ρ2 be translation invariant metrics on X1, X2 ⊆ Rn, respectively,

where X1 and X2 are closed under vector addition. Then

Szl
ρ1

∞
×ρ2

(X1 ×X2) ≤ Szlρ1(X1) · Szlρ2(X2).

Proof. Since ρ1
∞
× ρ2 is a translation invariant metric, Szl

ρ1
∞
×ρ2

(X1 × X2, ) is well defined.

Let {R1, B1}, {R2, B2} be rather red colorings of Gρ1(X1),Gρ2(X2) respectively and F1, F2

be forbidden by {R1, B1}, {R2, B2} respectively. Let (x1, x2), (y1, y2) ∈ B1 × B2. Then

ρ1(x1, y1) 6= 1 and ρ2(x2, y2) 6= 1. It follows that ρ1
∞
× ρ2 ((x1, x2), (y1, y2)) 6= 1. Let R =

X1×X2\B1×B2 and B = B1×B2. Then {R,B} is a rather red coloring of G
ρ1

∞
×ρ2

(X1×X2).
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Let F = F1 × F2 and v = (v1, v2) ∈ X1 × X2. Then F + v = (F1 + v1) × (F2 + v2).

There exist a f1 ∈ F1 and f2 ∈ F2 such that f1 + v1 ∈ B1 and f2 + v2 ∈ B2. Therefore

(f1 + v1, f2 + v2) ∈ B, from which it follows that (F + v) ∩B 6= ∅. Hence F is forbidden by

{R,B}. Since |F | = |F1| · |F2|, the theorem follows.

Theorem 2.8. SZLAM∗ contains all non-prime integers greater than 1. Further, for each

such integer n there is a ρ ∈ U∗(R2) such that

χρ(R2) = Szlρ(R2) = n.

Proof. Let n > 1 be a non-prime integer and ρi : R → [0,∞) defined by ρi(x, y) =

max
(

min(|x− y|, 1), 1
di
|x− y|

)
where i = 1, 2 and di ∈ N such that (d1 + 1)(d2 + 1) = n.

Then Gρi(R) = G(R, [1, di]). Let ρ = ρ1
∞
× ρ2. Then ρ ∈ U∗(R2). It follows that

Szlρ(R2) ≤ Szlρ1(R) · Szlρ2(R)

= Szl(R, [1, d1]) · Szl(R, [1, d2])

= (1 + d1)(1 + d2) = n.

Kloeckner shows that χρ(R2) = n. Thus, by Szlam’s lemma, the theorem holds.

With regards to finding Szl(R2), the above results, though only reducing the spectrum

of Szlam numbers of Gρ(R2) at the extremes when ρ is required to be proper, give rise to the

thought that if one could characterize SZLAM∗ one then might reduce the possible values

of Szl(R2), since the Euclidean metric is indeed proper. The opposite direction may be

needed in finding the elusive distance function ρ, if it exists, such that χρ(R2) < Szlρ(R2).

It might be the case that such a distance function ρ is neither in U(R2) or U∗(R2). If we

lessen the restriction on the distance function ρ so that ρ does not necessarily induce the

usual topology we do get an increase in the spectrum of Szlam numbers. One can easily

show that when ρ is the discrete metric χp(R2) = Szlp(R2) = ℵ1.
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We conclude by generalizing a result due to Szlam [15] which concerns itself with what

a proper coloring must look like if indeed the Szlam number and chromatic number differ.

Let φ : Rn → C be a proper coloring of Gρ(Rn) where ρ is a translation invariant distance

function and let Ci = {x ∈ Rn : φ(x) = i}, i ∈ C, be the color classes of φ. Fix j ∈ C.

Then φ is called a regular proper coloring if for each i, j ∈ C there exists an fij ∈ Rn such

that Cj = Ci + fij. Szlam proves that if φ : Rn → C is a regular proper coloring of G(Rn)

where |C| = k ∈ N, then there exist a rather red coloring {R,B} and a set F ∈ Rn forbidden

by {R,B} such that |F | = k. We generalize his proof here to encompass all translation

invariant distance functions, let D ⊆ (0,∞) and not require the number of color classes to

be finite. We must give credit to Szlam since the proof here required little modification of

his original proof.

Theorem 2.9. Let ρ be a translation invariant distance function on Rn, D ⊆ (0,∞) and

φ : Rn → C be a regular proper coloring of Gρ(Rn, D). Then there exist a rather red coloring

{R,B} of Gρ(Rn, D) and a set F ∈ Rn forbidden by {R,B} such that |F | = |C|.

Proof. Let {Ci : i ∈ C} be the collection of color classes of φ. Fix j ∈ C. Then for each

i ∈ C choose an fij ∈ Rn such that Cj = Ci + fij. Let B = Cj and R = Rn\B. Because φ

is a proper coloring, {R,B} is a rather red coloring of Gρ(Rn, D). Let F = {fij : i ∈ C}.

Then |F | = |C|. Let v ∈ Rn. For some k ∈ C, v ∈ Ck. It follows that v + fkj ∈ Cj = B and

thus (v + F ) ∩B 6= ∅. Hence F is forbidden by {R,B}.

The above can be restated as: if χρ(Rn, D) < Szlρ(Rn, D) then there does not exist

a regular proper coloring φ : Rn → C of Gρ(Rn, D) such that |C| = χρ(Rn). We note

that for every translation invariant distance function ρ given above in this chapter there

exists a regular proper coloring of Gρ(Rn, D) that achieves the chromatic number. Clearly,

if we wish to find a translation invariant distance function ρ and D ⊆ (0,∞) such that

χρ(Rn, D) < Szlρ(Rn, D) its corresponding distance graph cannot have a regular proper

coloring that achieves the chromatic number.
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Chapter 3

K-Graphs and the Szlam Numbers of the Real Line

3.1 K-Graphs

Kloeckner [12] proposes to define a graph in the following way. Let K,X ⊆ Rn, for

some positive integer n, where K = −K and (0, . . . , 0) 6∈ K. We will call such a set a K-set.

Define G(X,K), a K-graph on X, to be the graph whose vertex set is X and x, y ∈ X are

adjacent if and only if x− y ∈ K.

Theorem 3.1. Let ρ be a translation invariant distance function on Rn, for some positive

integer n, X ⊆ Rn, and D ⊆ (0,∞). Let K = {x ∈ Rn : ρ(0, x) ∈ D}, then G(X,K) =

Gρ(X,D).

Proof. Let k ∈ K. Since ρ is translation invariant, ρ(0, k) = ρ(0 − k, k − k) = ρ(−k, 0) =

ρ(0,−k). Thus −k ∈ K. Since 0 6∈ D, (0, . . . , 0) 6∈ K. Hence K is a K-set and thus G(X,K)

is well defined. Let x, y ∈ X be adjacent in Gρ(X,D). Since ρ(0, x − y) = ρ(y, x) ∈ D,

x − y ∈ K. Therefore x and y are adjacent in G(X,K). Let x, y ∈ X be adjacent in

G(X,K). Since x − y ∈ K, ρ(y, x) = ρ(0, x − y) ∈ D. Therefore x and y are adjacent in

Gρ(X,D). Hence Gρ(X,D) = G(X,K).

For X, D, and ρ, as defined in Theorem 3.1, the graph Gρ(X,D) is a K-graph. Con-

versely we get that for X,K ⊆ Rn, for some positive integer n, and K a K-set, the K-graph

G(X,K) can be defined as a distance graph Gρ(X,D) where where D = {1}.

Theorem 3.2. Let K,X ⊆ Rn, for some positive integer n, and let K be a K-set. Then

there exists a translation invariant distance function ρ on Rn such that G(X,K) = Gρ(X).
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Proof. Define ρ : Rn → [0,∞) by

ρ(x, y) =


0 if x = y

1 if x− y ∈ K
1.1 otherwise

Clearly ρ(x, y) = 0 if and only if x = y. Further, since K = −K, for x, y ∈ X, x − y ∈ K

if and only if y − x ∈ K. Thus ρ(x, y) = ρ(y, x). Let v, x, y ∈ X. Since x − y ∈ K if

and only if x + v − (y + v) ∈ K and, x − y = 0 if and only if x + v − (y + v) = 0, then

ρ(x+ v, y + v) = ρ(x, y). Hence ρ is a translation invariant distance function (we note that

ρ is also a metric).

Let x and y be adjacent in Gρ(X). Then ρ(x, y) = 1 which implies x − y ∈ K.

Whence x and y are adjacent in G(X,K). Let x and y be adjacent in G(X,K). Then

x − y ∈ K which implies ρ(x, y) = 1. Therefore x and y are adjacent in Gρ(X) and hence

G(X,K) = Gρ(X).

We can now see that for ρ a translation invariant distance function on Rn, for some

positive integer n, X ⊆ Rn, and D ⊆ (0,∞) the class of distance graphs Gρ(X,D) is

equivalent to the class of K-graphs G(X,K) for K a K-set. Furthermore, we observe if

X, D, and ρ are defined as above, by the above two Theorems there exist a K-graph G(X,K)

and a distance graph Gτ (X) where τ is a translation invariant distance function on Rn such

that Gρ(X,D) = G(X,K) = Gτ (X). Thus, when looking at distance graphs Gρ(X,D) we

may assume D = {1} when ranging over all translation invariant distance functions ρ on Rn

for X ⊆ Rn. Of course, in practice this observation may not be useful; as we saw in Chapter

2 it can behoove us to look at distance graphs where D 6= {1}. Furthermore, as also seen

in chapter 2, defining translation invariant distance functions ρ can a be a tedious affair.

We are motivated to look at K-graphs for certain classes of K-sets and their corresponding

Szlam and chromatic numbers without resorting to their status as distance graphs.

Let X,K ⊆ Rn, for some positive integer n, and let K be a K-set. We denote the chro-

matic number of the K-graph G(X,K) by χ(X,K). Let G(X,K) be a K-graph with a rather
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red coloring {R,B}, and suppose that X is closed under vector addition. Then a set F ⊆ X

is said to be forbidden by the rather red coloring {R,B} of G(X,K) if no translate of F is all

red; that is, v+F 6⊆ R for all v ∈ X. Further, define the Szlam number of G(X,K), denoted

Szl(X,K), by Szl(X,K) = min {|F | : F is a forbidden by a rather red coloring of G(X,K)}.

Clearly, if G(X,K) = Gρ(X,D), then Szl(X,K) = Szlρ(X,D) and χ(X,K) = χρ(X,D).

For X,K ∈ Rn, for some positive integer n, where X is closed under vector addition, if

K is a K-set, G(X,K) is a K-graph and Gρ(X) is its equivalent distance graph as defined

in the proof of Theorem 3.2, it follows that χρ(X) = χ(X,K) and Szlρ(X) = Szl(X,K).

By Szlam’s Lemma χ(X,K) = χρ(X) ≤ Szlρ(X) = Szl(X,K). Therefore χ(X,K) ≤

Szl(X,K). For reasons of self satisfaction we provide the following proof of the K-graph

version of Szlam’s Lemma without invoking Szlam’s Lemma itself.

Theorem 3.3 (Szlam’s Lemma for K-graphs). Let X,K ⊆ Rn, for some positive integer

n, X closed under vector addition, K a K-set, and G(X,K) a K-graph. Then χ(X,K) ≤

Szl(X,K).

Proof. Let F ∈ X be forbidden by the rather red coloring {R,B} on G(X,K). For each x ∈

X choose an f ∈ F such that f +x ∈ B and define fx = f (we note that if F is denumerable

we do not need the axiom of choice here). We define a coloring φ : X → F of G(X,K) by

φ(x) = fx. Suppose φ(x) = φ(y). Then fx = fy. It follows that fx + x ∈ B and fx + y ∈ B.

Thus fx + y and fx + x are not adjacent in G(X,K). Hence x− y = fx + x− (fx + y) 6∈ K.

Therefore x and y are not adjacent in G(X,K). Thus φ is a proper coloring of G(X,K)

from which the claim of the Theorem follows.

Now, Kloeckner [12] does not prove anything about K-graphs, but notes that it may be

useful in finding the chromatic number of a given distance graph or in our case the Szlam

number. We continue our investigation of the relationship between the Szlam and chromatic

numbers by looking at K-graphs for certain classes of a K-set K. The first class of interest
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is when K is a subset of a line l in Rn, for some positive integer n. For K to be a K-set the

line l must pass through the origin. By this observation we get the following.

Theorem 3.4. Let l ⊆ Rn, for some positive integer n, be a line that passes through the

origin and let K ⊆ l be a K-set. Then there exists a K-set M ⊆ R such that χ(Rn, K) =

χ(R,M) and Szl(Rn, K) ≤ Szl(R,M).

Proof. Without loss of generality assume l to be the x-axis. Then for each k ∈ K there

exists k1 ∈ R such that k = (k1, 0, . . . , 0) ∈ Rn. Let M = {m ∈ R : k = (m, 0, . . . , 0) ∈ K}.

For each m ∈ M there exists k ∈ K where k = (m, 0 . . . , 0). Since K = −K, −k =

(−m, 0, . . . , 0) ∈ K and hence −m ∈M . Thus M = −M . Further, since (0, . . . , 0) 6∈ K, 0 6∈

M . Hence M is a K-set and thus the K-graph G(R,M) is well defined. Let x = (x1 . . . , xn)

and y = (y1 . . . , yn), then x− y ∈ K if and only if x1 − y1 ∈M .

Let C be a set and φ : R → C be a proper coloring of G(R,M). Define Φ : Rn → C

by Φ(x) = φ(x1) where x = (x1 . . . , xn). Let x and y be adjacent in G(Rn, K) where

x = (x1 . . . , xn) and y = (y1 . . . , yn). Then x − y ∈ K implies x1 − y1 ∈ M , and thus

x1 and y1 are adjacent in G(R,M). Hence Φ(x) = φ(x1) 6= φ(y1) = Φ(y). Therefore

Φ is a proper coloring of G(Rn, K). Then χ(Rn, K) ≤ χ(R,M). It is easy to see that

G(R,M) ∼= G(l,K). Therefore χ(R,M) = χ(l,K). Since G(l,K) is a proper subgraph of

G(Rn, K), χ(Rn, K) ≥ χ(l,K) = χ(R,M). Hence χ(Rn, K) = χ(R,M).

Let π : R→ {r, b} be a rather red coloring of G(R,M) and let B1 = {x ∈ R : π(x) = b}

and R1 = {x ∈ R : π(x) = r}. Define Π : Rn → {r, b} by Π(x) = π(x1). Let B = {x ∈

Rn : Π(x) = b} and R = {x ∈ Rn : Π(x) = r} where x = (x1 . . . , xn). Suppose x, y ∈ B

where x = (x1 . . . , xn) and y = (y1 . . . , yn). Then x1, y1 ∈ B1. Therefore x1 − y1 6∈ M from

which it follows that x− y 6∈ K. Hence x and y are not adjacent in G(Rn, K). Thus {R,B}

is a rather red coloring of G(Rn, K). Let F1 ⊆ R be forbidden by the rather red coloring

{R1, B1} of G(R,M). Then for all i ∈ R, there exists an f ∈ F1 such that i + f ∈ B1.

Let F = {(f, 0, . . . , 0) ∈ Rn : f ∈ F1}. Let v ∈ Rn where v = (v1, . . . , vn). Since there

exists an f ∈ F1 such that f + v1 ∈ B1, there exists (f, 0, . . . , 0) = s ∈ F such that
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v + s ∈ B. Thus F is forbidden by {R,B} in G(Rn, K). Since |F | = |F1|, it follows that

Szl(Rn, K) ≤ Szl(R,M).

The above Theorem is somewhat curious since G(R,M) is isomorphic to a subgraph of

G(Rn, K), for M and K as defined above, from which one might think that Szl(Rn, K) ≥

Szl(R,M) and thus Szl(Rn, K) = Szl(R,M). The proof, if the Szlam numbers are indeed

equal, becomes troublesome since there does not seem to be an obvious method to define

a rather red coloring and forbidden set of G(R,M) from a given rather red coloring and

forbidden set of G(Rn, K). We do note that if Szl(R,M) = χ(R,M), then

Szl(R,M) = χ(R,M) = χ(Rn, K) ≤ Szl(Rn, K) ≤ Szl(R,M)

and hence Szl(Rn, K) = Szl(R,M). This motivates us to find K-graphs G(R, K) on R

where χ(R, K) = Szl(R, K). Since for any K-graph G(R, K) on R, there exists a distance

graph G(R, D) on R, where D = {|d| ∈ R : d ∈ K}, such that G(R, K) = G(R, D), it

behooves us to return to distance graphs and exploit the known results about chromatic

numbers of some distance graphs on R.

3.2 Szlam Numbers on the Real Line

In 1984 Eggleton, Erdős, and Skilton [4] published a paper titled “Coloring the Real line”

in the Journal of Combinatorial Theory in which they determined the chromatic numbers

for distance graphs G(R, D) on R for certain sets D ⊆ (0,∞). We use their methods to

prove similar results about the Szlam number of distance graphs G(R, D) on R for certain

sets D ⊆ (0,∞) and show that for every set D introduced by Eggleton, Erdős, and Skilton

[4] χ(R, D) = Szl(R, D); thus determining both the chromatic numbers and Szlam numbers

of the K-graphs G(Rn, K) on Rn, for some positive integers n, for certain K-sets where K

is a subset of a line in Rn.
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Eggleton, Erdős, and Skilton [4] prove that χ(R, [1, d]) = dde + 1 for d ∈ R such that

d ≥ 1. We provide our own proof here which we discovered independently.

Lemma 3.1. Let d ∈ R such that d ≥ 1. Then χ(R, [1, d]) = dde+ 1.

Proof. First we show that χ(R, [1, d]) ≥ dde + 1. Let d 6∈ N. By way of contradiction

assume that χ(R, [1, d]) ≤ dde. Then there exists a proper coloring φ : R → {0, . . . , bdc} of

G(R, [1, d]).

Let i ∈ Z and ε ∈ R such that 0 ≤ ε ≤ d − bdc. Define Ai,ε = {k(1 + ε
bdc) : k ∈

Z, i ≤ k ≤ i+ bdc}. Then G(Ai,ε, [1, d]) ∼= Kdde and G(Ai,ε ∩ Ai+1,ε, [1, d]) ∼= Kbdc. It follows

for φ to be a proper coloring, G(Ai,ε ∩ Ai+1,ε, [1, d]) must use bdc colors which leaves only

one possible choice to color the vertices i(1+ ε
bdc) and (i+dde)(1+ ε

bdc). Hence φ
(
i(1 + ε

bdc)
)

=

φ
(

(i+ dde)(1 + ε
bdc)
)

. It follows that if i ≡ j mod dde, then φ
(
i(1 + ε

bdc)
)

= φ
(
j(1 + ε

bdc)
)

.

Without loss of generality suppose φ(0) = 0 and φ(1) = 1. Let ε = 0. Then for

all x ≡ 1 mod dde, it follows that φ(x) = φ
(
x(1 + ε

bdc)
)

= 1. Next, let ε = bdc(dde+1)
n

where n ≥ bdc(dde+1)
d−bdc and n ≡ 0 mod dde. Then ε satisfies the condition 0 ≤ ε ≤ d −

bdc and thus φ
(
n(1 + ε

bdc)
)

= 0. Furthermore, n(1 + ε
bdc) = n + 1 + dde ≡ 1 mod dde.

Hence φ
(
n(1 + ε

bdc)
)

= 1 which is a contradiction to φ being a proper coloring. Therefore

χ(R, [1, d]) ≥ dde+ 1 for d 6∈ N.

Let d ∈ N, X = {0, 1, . . . d}. Then G(X, [1, d]) ∼= Kd+1. Hence χ(R, [1, d]) ≥ d + 1 for

d ∈ N. Therefore χ(R, [1, d]) ≥ dde+ 1 for d ≥ 1.

Next we show that χ(R, [1, d]) ≤ dde + 1. Define φ : R → {0, . . . , dde} by φ(x) = bxc

mod (dde+ 1). Suppose φ(x) = φ(y) and without loss of generality let y ≤ x. Then for some

b, c ∈ R such 0 ≤ b, c < 1 and some k ∈ N ∪ {0}

φ(x) = φ(y)⇒ bxc = byc+k(dde+1)⇒ x+c = y+b+k(dde+1)⇒ x−y = b−c+k(dde+1).

26



If k = 0, then y − x = b− c ∈ (−1, 1). If k ≥ 1, then k + b− c > 0 and hence x− y > kdde.

Therefore |x− y| 6∈ [1, d], from which it follows x is not adjacent to y in G(R, [1.d]). Hence

φ is a proper coloring of G(R, [1.d]).

Theorem 3.5. Let d ≥ 1. Then χ(R, [1, d]) = Szl(R, [1, d]) = 1 + dde

Proof. Let d ≥ 1, B =
⋃
k∈Z[k(dde + 1), k(dde + 1) + 1) and R = R\B. Suppose x, y ∈ B.

Then |x − y| ∈ [0, 1) or |x − y| > d. Hence {R,B} is a rather red coloring of G(R, [1, d]).

Next, let F = {0, 1, . . . , dde} and v ∈ R. Then (v+F )∩B 6= ∅. It follows that F is forbidden

by the rather red coloring {R,B} of G(R, [1, d]). Therefore Szl(R, [1, d]) ≤ dde + 1. Thus,

by Szlam’s lemma, dde + 1 = χ(R, [1, d]) ≤ Szl(R, [1, d]) = dde + 1. Whence the theorem

follows.

The K-graph equivalent to the distance graph G(R, [1, d]) where d ≥ 1 is G(R, [−d,−1]∪

[1, d]). Thus χ(R, [−d,−1] ∪ [1, d]) = Szl(R, [−d,−1] ∪ [1, d]) = 1 + dde. Thus by the

observation after Theorem 3.4, Szl(Rn, ([−d,−1] ∪ [1, d])× {0}n−1) = dde+ 1. We continue

by looking at the Szlam number of distance graphs G(R, D) where D is an open interval.

Lemma 3.2. Let D,D′ ⊆ (0,∞) such that D ⊆ D′. Then Szl(R, D) ≤ Szl(R, D′).

Proof. Let {R,B} be a rather red coloring of G(R, D′) and F ⊆ R be forbidden by {R,B}.

Clearly {R,B} is a rather red coloring of G(R, D). Hence Szl(R, D) ≤ Szl(R, D′).

Theorem 3.6. Let d ≥ 1. Then χ(R, (1, d)) = Szl(R, (1, d)) = 1 + dde

Proof. Since (1, d) ⊆ [1, d], by Lemma 3.2 Szl(R, (1, d)) ≤ Szl(R, [1, d]). Eggleton, Erdős,

and Skilton [4] show that χ(R, (1, d)) = 1 + dde. Hence, by Szlam’s Lemma, 1 + dde =

χ(R, (1, d)) ≤ Szl(R, (1, d)) ≤ Szl(R[1, d]) = 1 + dde.

TheK-graph equivalent to the distance graphG(R, (1, d)) where d ≥ 1 isG(R, (−d,−1)∪

(1, d)). Hence χ(R, (−d,−1) ∪ (1, d)) = Szl(R, (−d,−1) ∪ (1, d)) = 1 + dde. Thus by the

observation after Theorem 3.4, Szl(Rn, (−d,−1) ∪ (1, d)× {0}n−1) = dde+ 1.
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Theorem 3.7. For d ≥ 1, let D =
⋃∞
k=0[k(dde + 1) + 1, k(dde + 1) + d]. Then χ(R, D) =

Szl(R, D) = dde+ 1.

Proof. Since [1, d] ⊆ D, by Theorem 3.5 and Lemma 3.2, 1 + dde = Szl(R, [1, d]) =

χ(R, [1, d]) ≤ χ(R, D) ≤ Szl(R, D). Let B =
⋃
k∈Z[k(dde+ 1), k(dde+ 1) + 1) and R = R\B.

Suppose x, y ∈ B and x < y. Then there exist integers r, s such that r ≤ s, r(dde + 1) ≤

x < r(dde + 1) + 1, and s(dde + 1) ≤ y < s(dde + 1) + 1. If s = r, then 0 < y − x < 1 and

hence y is not adjacent to x in G(R, D). Suppose r < s; then (s− r)(dde+ 1)− 1 < y− x <

(s− r)(dde+ 1) + 1. If x and y are adjacent in G(R, [1, d]), then there exists an integer k ≥ 0

such that [k(dde+1)+1, k(dde+1)+d]∩((s− r)(dde+ 1)− 1, (s− r)(dde+ 1) + 1) 6= ∅. The

previous holds when k(dde+1)+1 < (s−r)(dde+1)+1 and k(dde+1)+d > (s−r)(dde+1)−1.

This implies k < (s − r) and k + 1 > (s − r) which is a contradiction. Hence x is not

adjacent to y in G(R, D). Therefore {R,B} is a rather red coloring of G(R, D). Next,

let F = {0, 1, . . . , dde} and v ∈ R. Then (v + F ) ∩ B 6= ∅. It follows that F is for-

bidden by the rather red coloring {R,B} of G(R, D). Therefore, by Szlam’s Lemma,

1 + dde = Szl(R, [1, d]) = χ(R, [1, d]) ≤ χ(R, D) ≤ Szl(R, D) ≤ dde + 1. The claim of

the Theorem follows.

The K-graph equivalent to the distance graph G(R, D) where D =
⋃∞
k=0[k(dde + 1) +

1, k(dde+ 1) + d] is G(R,−D ∪D). Thus χ(R,−D ∪D) = Szl(R,−D ∪D) = 1 + dde. Thus

by the observation after Theorem 3.4, Szl(Rn,−D ∪D × {0}n−1) = dde+ 1.

Theorem 3.8. Let D = {1, 2, . . . ,m} for m a positive integer. Then χ(R, D) = Szl(R, D) =

m+ 1.

Proof. SinceD ⊆ [1,m], by Theorem 3.5 and Lemma 3.2, χ(R, D) ≤ Szl(R, D) ≤ Szl(R, [1,m]) =

m + 1. Moreover, the vertices 0, 1, . . . ,m induce a subgraph Km+1 of G(R, D). Hence, by

Szlam’s Lemma, m+ 1 ≤ χ(R, D) ≤ Szl(R, D) ≤ Szl(R, [1,m]) = m+ 1
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The K-graph equivalent to the distance graph G(R, D) where D = {1, 2, . . . ,m} for m

a positive integer is G(R,−D ∪D). Thus χ(R,−D ∪D) = Szl(R,−D ∪D) = m+ 1. Thus

by the observation after Theorem 3.4, Szl(Rn,−D ∪D × {0}n−1) = m+ 1.

Theorem 3.9. Let C be a nonempty subset of positive odd integers. Then χ(R, C) =

Szl(R, C) = 2.

Proof. Let D be the set as defined in Theorem 3.7 where d = 1. Then D =
⋃∞
k=0[2k+1, 2k+1]

is precisely the set of positive odd integers and by Theorem 3.7 χ(R, D) = Szl(R, D) = 2.

Since C ⊆ D, by Lemma 3.2 Szl(R, C) ≤ 2. Moreover the edge set of G(R, C) is nonempty

and thus G(R, C) has K2 as a subgraph. Hence, by Szlam’s Lemma, 2 ≤ χ(R, C) ≤

Szl(R, C) ≤ 2, from which the theorem follows.

The K-graph equivalent to the distance graph G(R, C), were C is a nonempty subset of

positive odd integers, is G(R,−C ∪ C). Thus χ(R,−C ∪ C) = Szl(R,−C ∪ C) = 2. Hence

by the observation after Theorem 3.4 Szl(Rn,−C ∪ C × {0}n−1) = 2.

Theorem 3.10. Let r, s be relatively prime positive integers of opposite parity such that

r < s. Then χ(R, {r, s}) = Szl(R, {r, s}) = 3.

Proof. Eggleton, Erdős, and Skilton [4] show that χ(R, {r, s}) = 3. Then by Szlam’s Lemma

Szl(R, {r, s}) ≥ 3. Let D be the set as defined in Theorem 3.7 where d = 2. Then D =⋃∞
k=0[3k + 1, 3k + 2]. Let c ∈ R such that c > 0 and define cD = {cd : d ∈ D}. Clearly

G(R, D) ∼= G(R, cD).

In the proof of χ(R, {r, s}) = 3 Eggleton, Erdős, and Skilton [4] show that there exists

c ∈ R such that {r, s} ⊆ cD. We repeat their argument here. {r, s} ⊆ cD precisely when

there exists an integer k such that c ≤ r ≤ 2c and (3k + 1)c ≤ s ≤ (3k + 2)c. These

inequalities are equivalent to r/2 ≤ c ≤ r and s/(3k + 2) ≤ c ≤ s/(3k + 1). There exist a

c and a k that satisfy these conditions when s/(3k + 2) ≤ r and s/(3k + 1) ≥ r/2. Again
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these conditions are equivalent to

1

3

(s
r
− 2
)
≤ k ≤ 1

3

(
2s

r
− 1

)
.

Let s/r = 3a + 2 for a ∈ R. It follows that a ≤ k ≤ 2a + 1. Without loss of generality

suppose s/r > 1. Then a > −1/3. If a > 0 the interval [a, 2a+ 1] contains at least 1 positive

integer n and we let k = n. If −1/3 < a ≤ 0, then 2a+ 1 > 0 and we let k = 0. Hence there

exists an integer k ≥ 0 and a real number c > 0 that satisfy the above conditions. Therefore

{r, s} ⊆ cD for some c > 0. Thus, by Szlam’s Lemma, 3 = χ(R, {r, s}) ≤ Szl(R, {r, s}) ≤

Szl(R, cD) = Szl(R, D) = 3.

The K-graph equivalent to the distance graph G(R, {r, s}), where r, s are relatively

prime positive integers of opposite parity, is G(R, {−s,−r, r, s}). Thus χ(R, {−s,−r, r, s}) =

Szl(R, {−s,−r, r, s}) = 3. Hence by the observation after Theorem 3.4, Szl(Rn, {−s,−r, r, s}×

{0}n−1) = 3.

Theorem 3.11. Let P denote the set of all prime numbers. Then χ(R, P ) = Szl(R, P ) = 4.

Proof. Eggleton, Erdős, and Skilton [4] prove that χ(R, P ) = 4. Hence, by Szlam’s Lemma

Szl(R, P ) ≥ 4. Let B =
⋃
k∈Z[4k, 4k + 1) and R = B\R. Let x, y ∈ B and x < y. Then

there exist integers r, s such that r ≤ s, 4r ≤ x < 4r + 1, and 4s ≤ y < 4s + 1. If s = r,

then 0 < y − x < 1 and hence y is not adjacent to x in G(R, P ). Suppose r < s. Then

4(s − r) − 1 < y − x < 4(s − r) + 1. Suppose y − x 6∈ Z. Hence y − x 6∈ P . Therefore

x and y are not adjacent in G(R, P ). Hence {R,B} is a rather red coloring of G(R, P ).

Suppose y − x ∈ Z. Since both 4(s − r) − 1 and 4(s − r) + 1 are both odd and differ by 2

it follows that y − x must be even. Furthermore, since r < s, 3 < y − x. Hence y − x 6∈ P .

Therefore x and y are not adjacent in G(R, P ) and hence {R,B} is a rather red coloring

of G(R, P ). Let F = {0, 1, 2, 3} and v ∈ R. Then {v + F} ∩ B 6= ∅. Since |F | = 4,

χ(R, P ) = Szl(R, P ) = 4.
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The K-graph equivalent to the distance graph G(R, P ), were P denotes the set of all

prime numbers, is G(R,−P ∪P ). Thus χ(R,−P ∪P ) = Szl(R,−P ∪P ) = 4. Hence by the

observation after Theorem 3.4, Szl(Rn, (−P ∪ P )× {0}n−1) = 4.
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Chapter 4

Szlam Numbers of K-graphs for K a convex closed curve in R2

In this chapter we look at the chromatic and Szlam numbers of the K-graph for K-sets

that are convex closed curves. The motivation to look at K-sets of this type comes from a

paper by Chilakamarri [2] in which he looks at the chromatic numbers of certain distance

graphs Gρ(R2) where ρ is a Minkowski metric. Let C be a convex closed centrally symmetric

(−C = C) curve in R2. Define the Minkowski norm || · ||C on R2 by ||(0, 0)||C = 0 and

for u ∈ R2\{(0, 0)}, ||u||C = |u|
|Pu| , where Pu is the point at the intersection of C and the

half-line with one end at (0, 0) which goes through u. We then define the Minkowski metric

ρC : R2 × R2 → [0,∞) by ρC(x, y) = ||x− y||C .

4.1 Szlam Numbers of K-graphs for K a convex closed curve in R2

Lemma 4.1. Let C ⊆ R2 be a centrally symmetric convex closed curve. Then GρC (R2) =

G(R2, C)

Proof. Since C is a centrally symmetric convex closed curve, C = −C and (0, 0) 6∈ C. Thus

C is a K-set. Hence G(R2, C) is well defined. Let x, y ∈ R2 be adjacent in GρC (R2). Then

ρC(x, y) = 1, which implies that x − y = Px−y. Hence x − y ∈ C, and thus x and y are

adjacent in G(R2, C). Let x, y ∈ R2 be adjacent in G(R2, C). Clearly ρC(x, y) = 1. Hence x

and y are adjacent in GρC (R2). Therefore, GρC (R2) = G(R2, C).

It is known that if there exists an isomorphism between graphs G and H then χ(G) =

χ(H). One can easily convince oneself that for two isomorphic distance graphs Gρ(X,D)

and Hτ (X
′, D′) where X,X ′ ⊆ Rn, for some positive integer n, X and X ′ are closed under

vector addition, D,D′ ⊆ (0,∞), and ρ, τ are distance functions it follows that Szlρ(X,D) =

32



Szlτ (X
′, D′), a fact we used without note in Theorem 3.10. We provide the following Lemma

so that the proof of the Theorem that follows is easier to see.

Lemma 4.2. Let π : Rn → Rn, for some positive integer n, be a linear isomorphism and K

be a K-set. Then G(Rn, K) ∼= G(Rn, π(K)) and Szl(Rn, K) = Szl(Rn, π(K)).

Proof. Let k ∈ K. Then −k ∈ K. Let y ∈ π(K). Then there exists x ∈ K such that

π(x) = y. Thus −y = −π(x) = π(−x) ∈ π(K). Hence π(K) = −π(K). Further, since

(0, . . . , 0) 6∈ K, π((0, . . . , 0)) = (0, . . . , 0) and π is one-to-one, (0, . . . , 0) 6∈ π(K). Hence

π(K) is a K-set and G(Rn, π(K)) is well defined. Let x, y ∈ Rn be adjacent in G(Rn, K).

Then x − y ∈ K. It follows that π(x − y) = π(x) − π(y) ∈ π(K). Hence π(x) and

π(y) are adjacent in G(Rn, π(K)). Let n,m ∈ Rn be adjacent in G(Rn, π(K)). Then

n − m ∈ π(K). Then there exist x, y ∈ Rn such that π(x) = n and π(y) = m. Hence

π−1(n − m) = π−1(m) − π−1(m) = x − y ∈ π−1(K) = K. Hence x and y are adjacent in

G(Rn, K). Therefore G(Rn, K) ∼= G(Rn, π(K)).

Let {R,B} be a rather red coloring of G(Rn, K) and F ⊆ Rn be forbidden by {R,B}.

Let x, y ∈ π(B). Then x and y are adjacent in G(Rn, π(B)) if and only if π−1(x) and

π−1(y) are adjacent in B. Since {R,B} is a rather red coloring of G(Rn, K), {π(R), π(B)}

is a rather red coloring of G(R, π(K)). Let v ∈ Rn. Then (v + F ) ∩ B 6= ∅ implies that

(π(v) + π(F )) ∩ π(B) 6= ∅. Since for every u ∈ Rn there exists a v ∈ Rn such that π(v) = u,

π(F ) is a forbidden by {π(B), π(R)} of G(Rn, π(K)). Hence Szl(Rn, K) ≥ Szl(R2, π(K)).

Replacing π with π−1 and K by π(K) we obtain the reverse of this inequality. Therefore

Szl(Rn, K) = Szl(Rn, π(K)).

Chilakamarri shows that for any parallelogram P centered at the origin, χρP (R2) = 4.

We get the following similar result.

Theorem 4.1. Let P ⊆ R2 be a parallelogram centered at the origin. Then χ(R2, P ) =

Szl(R2, P ) = 4.
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Proof. Clearly P is a K-set. Let S = {s ∈ R2 : |0 − s|∞ = 1}. Then S is a square

centered at the origin and S is a K-set. Therefore G|·|∞(R2) = G(R2, S). By Theorem 1.4,

4 = χ(R2, S) = Szl(R2, S). Without loss of generality we can assume that two sides of P are

parallel to the x-axis. Let (x1, y1), (x2,−y1), (−x1,−y1) and (−x2, y1) be the 4 vertices of P

as shown in the figure 4.1 below. Define π : R2 → R2 by π(x, y) =
(

(x1+x2)x
2

+ (x1−x2)y
2

, yy1

)
.

Then π is a linear isomorphism and π(S) = P . Moreover π−1 exists and π−1(P ) = S.

Hence, by Lemma 4.2, G(Rn, P ) ∼= G(Rn, S) and Szl(Rn, P ) = Szl(Rn, S). Thus χ(Rn, P ) =

χ(Rn, S). Therefore χ(R2, P ) = Szl(R2, P ) = 4.

(x1, y1)

(x2,−y1)(−x1,−y1)

(−x2, y1)

P

Figure 4.1: Parallelogram P

Lemma 4.3. Let K ⊆ R2 be a K-set such that K is a convex closed curve. Then Szl(R2, K) ≥

4.

Proof. Since K is a K-set, then K is a centrally symmetric convex closed curve. Chilakamarri

[2] shows that for any centrally symmetric convex closed curve C ∈ R2, χρC (R2) ≥ 4 where

ρC is the Minkowski metric for C on R2. Since GρK (R2) = G(R2, K) by Lemma 4.1, it

follows that χ(R2, K) ≥ 4. Hence, by Szlam’s Lemma, Szl(R2, K) ≥ 4

Theorem 4.2. Let P ⊆ R2 be centrally symmetric convex 6-gon. Then χ(R2, P ) = Szl(R2, P ) =

4.

Proof. Since P is a centrally symmetric convex closed curve, P is a K-set. Hence G(R2, P )

is well defined. We color R2 by first constructing a tile which consist of four copies of
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1
2
P =

{
p
2

: p ∈ P
}

as seen in Figure 4.1. We color the interior of the bottom left 1
2
P blue.

We color the boundary of this 6-gon by coloring 3 non-adjacent sides blue represented by the

bold lines and we color the end points of one of the blue sides blue as shown in Figure 4.1.

We color the rest of the tile red. We can then tile R2 as seen in Figure 4.2. Let B be the set

of all points in R2 colored blue and R be the set of all points in R2 colored red. It is easy

to see that {R,B} is a rather red coloring of G(R2, P ). Let F be the set of 4 centers of the

original tile as seen in Figure 4.2. It is easy to see that for v ∈ R2, (v + F ) ∩ B 6= ∅. Hence

F is forbidden by {R,B} of G(R2, P ). Therefore Szl(R2, P ) ≤ 4. Since P is a centrally

symmetric convex closed curve, by Lemma 4.3 Szl(R2, P ) ≥ 4. The claim follows.

B

R R

R

Figure 4.2: 4-Hexagon Tile
Figure 4.3: Tiling of Plane

Theorem 4.3. Let C be a centrally symmetric convex closed curve. Then

4 ≤ Szl(R2, C) ≤ 7.

Proof. The lower bound follows by Lemma 4.3. To prove the upper bound we look at the

coloring Chilakamarri [2] provides to show that χρC (R2) ≤ 7. Chilakamarri inscribes a convex

centrally symmetric hexagon in 1
2
C = { c

2
: c ∈ C} by the following.

Let O denote the origin, and let A and A∗ be the points of intersection of 1
2
C with the

positive and negative x-axis, respectively. If we translate the line segment OA in the upper

half plane in such a way that the point A is always on the curve 1
2
C then there exists a
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translate of OA such that both the end-points F and B are on the curve C. We note that

the uniqueness of both B and F depend on 1
2
C. If C is strictly convex then both B and F

are both unique. We let B∗ = −B and F ∗ = −F as shown in the Figure 4.3 below.

Chilakamarri shows that H = ABFA∗B∗F ∗ is a centrally symmetric convex hexagon.

He then constructs a Hadwiger tile of 7 copies of H and assigns colors 1 through 7 to the

interiors of the hexagons as shown in the bold Hadwiger tile in Figure 4.4 below. If a hexagon

is colored i we also give the same color to three non-adjacent sides and also give the same

color to the endpoints of one of the sides. We then tile R2 with these 7 tiles as shown in

Figure 4.4. If the same choice of colored sides and colored endpoints is made for every color

then as Chilakamarri shows, this is a proper coloring of G(R2, C). Moreover, it is easy to

see this coloring is a regular proper coloring and thus, by Theorem 2.9, Szl(R2, C) ≤ 7.

AOA∗

F
B

F ∗B∗

P1
2

Figure 4.4: Hexagon inscribed in 1
2
C

1
2

3
45

6
7

1
2

3
45

6
71

2
3

45
6

7

1
2

3
45

6
7

1
2

3
45

6
7

1
2

3
45

6
7

1
2

3
45

6
7

Figure 4.5: Proper coloring of G(R2, C)
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Corollary 1. Let ρp be the p-norm for p ≥ 1. Then 4 ≤ Szlρp(R2) ≤ 7

Proof. Let C = {c ∈ Rn : |0−c|p = 1}. Then C is a centrally symmetric convex closed curve

and Gρp(R2) = G(R2, C). It follows from Theorem 4.3. that 4 ≤ Szl(R2, C) ≤ 7. Hence

4 ≤ Szlρp(R2) ≤ 7.

4.2 Open Problems

At the start of our investigation of the Szlam number there were two main questions

of interest. The first was to find Szl(R2) and the second question was: does there exist

X ⊆ Rn closed under vector addition for some n a positive integer, D ⊆ (0,∞), and ρ a

translation invariant distance function such that χρ(X,D) < Szlρ(X,D)? Both of these

questions remain unanswered. As to the first, as shown in Theorem 1.2, we know the answer

is either 4,5,6, or 7. As to the second, as seen as the end of Chapter 2, we know that for the

question to be in the affirmative there cannot exist a regular proper coloring that achieves

the chromatic number of the distance graph. We note that for every distance graph or K-

graph discussed where the chromatic number is known there exists a regular proper coloring

of said distance graph that achieves its chromatic number. In our research of we have not

come across a distance graph Gρ(X,D) where X,D, and ρ are as above, that does not have

a regular proper coloring that achieves the chromatic number.
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[12] Benôıt R. Kloeckner. Coloring distance graphs: a few answers and many questions.
Geombinatorics, 24(3):117–134, 2015.

[13] Alexander Soifer. The Mathematical Coloring Book. Springer, New York, 2009. With
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