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Abstract 

 

 

 Grasslands in the southeastern United States are an ecologically important habitat that has 

experienced habitat loss and degradation. Conservation efforts have increased the utilization of 

remotely sensed land cover data to inform management actions of these grasslands. Vertebrate 

conservation is a main objective of the conservation of grasslands in the region. We used 

occupancy estimation to determine multi-scale habitat relationships for two small mammal 

species, the hispid cotton rat (Sigmodon hispidus) and oldfield mouse (Peromyscus polionotus). 

We also evaluated the effects of error in remotely sensed land cover data on estimated habitat 

relationships. Our results indicate broad-scale landscape composition is an important habitat 

factor to consider for small mammal conservation; however, not accounting for error in land 

cover data could result in biased parameter estimates.  
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Chapter 1: 

Habitat Relationships of Grassland-associated Small Mammals in the East Gulf Coastal 

Plain 

 

ABSTRACT 

 Conservation and restoration of priority habitats and vertebrate species are major foci of 

many conservation organizations and agencies. The ability to access broad-scale spatial data 

from satellites and databases has expanded the scope of many conservation plans to include 

entire ecoregions. We utilized broad and fine-scale habitat data to create occupancy models to 

evaluate the relationships between multi-scale habitat features and occupancy of grassland-

associated vertebrates in the East Gulf Coastal Plain. We surveyed 57 sites during April-July 

2015 for 8 focal species associated with grasslands in the East Gulf Coastal Plain. We used 

visual encounter surveys to survey for squamates and track-tubes to survey for small mammals. 

We examined relationships between occupancy and both fine- and broad-scale habitat features. 

Fine-scale attributes, which were measured at each site, included grass height, ground cover, and 

tree density. Broad-scale features included proportion of grassland and 4 different classes of 

forest (e.g. deciduous, evergreen, mixed, woody wetlands) within 200 m, 500 m, 1 km 3km, and 

5 km radii around each site. Features measured at these radii were proportion of grassland and 

forest relative to all other habitat types within the given radii. Network connectivity 

measurements, such as number of grassland patches and number of links, were also included in 

the occupancy models. The most frequently detected focal species were the hispid cotton rat 

(Sigmodon hispidus) and the oldfield mouse (Peromyscus polionotus). We did not detect any of 
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the 4 squamate focal species. The hispid cotton rat was positively associated with the proportion 

of woody wetlands within 5 and 3 km. The oldfield mouse had no strong association with any of 

the habitat variables we examined. In this study, broad-scale habitat features seemed to possess 

more weight towards explaining occupancy of the two small mammals than the fine-scale habitat 

features.

INTRODUCTION 

Grasslands of the Gulf Coastal Plains have experienced > 90% area loss since the 1800’s 

due to land conversion, fire suppression, urban expansion, and other human activities (Wilson 

1981, Noss et al. 1995, Noss 2013). More specifically the grasslands found in the Black Belt 

prairie region of Alabama and Mississippi were converted for agricultural use in the late 1800s 

and early 1900s and now <1% of native grassland remains (Barone 2005). The remaining 

grassland patches in Alabama and Mississippi are highly fragmented and connectivity between 

the patches has been greatly affected by the anthropogenic habitat alterations in the surrounding 

landscape such as agriculture, urbanization and silviculture (Noss 2013). These remnant 

grassland patches are also currently threatened with degradation due to fire suppression. Without 

fire as an ecological influence, these grasslands become invaded by the fire intolerant red cedar 

(Juniperus virginiana) and rapidly deteriorate by losing herbaceous cover (Stipe and Bragg 

1989). The grasslands found in Alabama and Mississippi are important habitat for some 

vertebrates including small mammals. Habitat loss and fragmentation are implicated as the cause 

of drastic declines of some small mammal populations in the southeastern United States 

(Humphrey and Barbour 1981, Hafner et al. 1998). Exploring the relationships between small 

mammal populations and broad-scale habitat attributes may provide better insight into how 

broad-scale conservation efforts will affect small mammal populations.       
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However, limited information exists on small mammal habitat selection at multiple 

spatial scales, especially spatial scales larger than home ranges (Means 2006, Panzacchi et al. 

2010). Many studies have focused specifically on fine-scale vegetation conditions to analyze 

small mammal habitat selection (Jorgensen 2004). However there have been some studies that 

have expanded the spatial scale to investigate other factors such as broad-scale habitat attributes, 

and they have found the occupancy of small mammals may be influenced by broad-scale habitat 

attributes (Fitzgibbon 1997, Moore and Swihart 2005, Swihart et al. 2007, Urban and Swihart 

2009). One broad-scale habitat attribute that could affect occupancy, is habitat fragmentation 

which directly affects dispersal by increasing the distance needed to reach suitable habitat and 

reducing the proportion of individuals that can disperse, thus potentially decreasing the ability to 

occupancy suitable habitat in highly fragmented landscapes (Diffendorfer 1995). Research also 

indicates that habitat proportions and patterns, are two important factors that may affect small 

mammal population size. In a simulation study conducted by Flather and Bevers (2002) when 

large amounts of suitable habitat are available, the amount of habitat can explain 96% of the 

variation in population size; however, when the amount of suitable habitat falls below 30%-50%, 

the pattern of suitable habitat increases in explaining variation in population size. There seems to 

be a need to produce more empirical evidence of the relationships between broad-scale habitat 

attributes and small mammals to both increase our understanding of how occupancy is 

influenced and provide more specific data for the creation of conservation actions.  

One approach to modeling the relationships between habitat and species, which also 

incorporates imperfect detection of the species, is occupancy estimation (Mackenzie et al. 2002). 

Occupancy probability is the probability that a species is present at a site. However, in most 

circumstances the ability to detect a species is imperfect due to most species being 
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inconspicuous. Detection probability is the probability of a species being detected during a 

survey given that the species is present. Incorporating detection probabilities into occupancy 

models has improved occupancy estimates by removing the assumption that a non-detection 

represents an absence (MacKenzie et al. 2002). We used occupancy estimation to model multi-

scale habitat relationships of grassland-associated species. 

For this study, we focused on grassland-associated vertebrate population occupancy and 

habitat associations in the portion of the Gulf Coastal Plain that is east of the Mississippi River 

known as the East Gulf Coastal Plain (EGCP). We focused on two small mammals, the oldfield 

mouse (Peromyscus polionotus) which is a habitat specialist, restricted to grasslands, and is of 

moderate conservation concern in Alabama and the hispid cotton rat (Sigmodon hispidus, here 

after cotton rat) which is a habitat generalist, found in a variety of habitats, including grasslands. 

Although this species is of low direct conservation concern, it is an important prey item for many 

avian raptors, game species, and large-bodied snakes (Beasom and Moore 1977, Tyler and 

Jensen 1981, Preston 1990, Baker 1991, Baxley and Qualls 2009). We viewed occupancy of 

cotton rats to have a positive relationship with occupancy of cotton rat predators. Our objectives 

were to evaluate four hypotheses related to the conservation and management of small mammals 

that utilize grassland habitat in the Gulf Coastal Plain. First, we hypothesized that there is a 

positive relationship between small mammal occupancy and the amount of grassland in the 

surrounding landscape. Habitat loss is a cause of small mammal population declines and, 

therefore, an increase in grassland habitat in the surrounding landscape will cause an increase in 

these populations at any given site (Andrén 1994). Second, there will be a negative relationship 

between small mammal occupancy and the amount of forest in the surrounding landscape. An 

increase in the amount of forest around a grassland site will reduce the amount of other less 
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suitable herbaceous habitats such as shrub and hay/pasture (Clark et al. 1998). Third, small 

mammal occupancy will be influenced by site-level vegetation conditions. Tall, herbaceous 

vegetation can reduce avian predation risk and cotton rat occurrence is associated with abundant 

grass cover (Sheffield et al. 2001, Mengak and Guynn 2003). Finally, connectivity of grassland 

patches will influence small mammal occupancy. Evaluating these four hypotheses will give 

conservation planners a better capacity to design broad-scale grassland conservation plans that 

will benefit grassland-associated small mammals. 

 

STUDY AREA 

The study was conducted in portions of the EGCP occurring within the states of Alabama 

and Mississippi (Figure 1.1). More specifically a majority of the sites were located in the Black 

Belt Prairie region. The land cover of the EGCP is composed of 56% forest, 12% shrub, 10% 

cultivated crops, 10% hay/pasture, 7% developed, 4% grassland, and 1% water (Homer et al. 

2015). Alabama’s and Mississippi’s climate is classified a subtropical with an average annual 

temperature of 65°F and average annual rainfall of 53.05 inches (PRISM Climate Group). The 

soil in the coastal plain of Alabama and Mississippi is composed of loamy or clayey subsoil and 

a sandy loam or loam surface layer. The soils of Black Belt Prairie region are composed of 

mostly acid and alkaline clayey soils. The soils in the Black Belt Prairie region inhibit the 

survival of many species of trees, allowing prairies to form. 
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METHODS 

Patch and Plot Selection 

Grassland patches from the 2011 NLCD that were ≥1 hectare in size were used as a target 

population of potential survey patches. These patches were separated into two categories based 

on surrounding 2011 NLCD land cover, <50% and ≥50% forested land cover in a 1-km buffered 

area. For logistical reasons five polygons with a radius of 50 km were created to subsample from 

all grassland patches in the study area. We created 50 x 50 m grids that were overlaid on the 

patches that we had sampled using ArcMap 10.2. We numbered each cell that contained 

grassland land cover and used a random number generator to select 50 x 50 m plots. If selected 

plots were < 100 m away from each other, then one plot would be removed and resampled, so 

that no plots were closer than 100 m from each other. Each patch had two or more plots 

randomly selected; however, due to logistical constraints and patch size, only four patches had 

more than three plots surveyed.   

 

Focal Species Selection 

The selection of focal species was guided by GCPOLCC “Integrated Science Agenda”, 

literature review and expert elicitation. We evaluated two functional groups for potential focal 

species (e.g. squamates and small mammals). To select the focal species used in this study we 

used the natural history of species found in the study area and then identified the species with 

habitat requirements that could potentially be met with the proposed grassland restoration. 

Habitat usage and home range size were used to determine habitat requirements and population 

density was used to assess the probability of detection (Table 1.1). All focal species that were 

selected for this study are detectable with the proposed survey methods described below. 
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Vertebrate Surveys 

We conducted repeated presence/absence surveys for vertebrates between March and July 

2015. We used track-tubes and time-constrained visual encounter surveys to sample for small 

mammals at each site, visiting each site three times. Use of two different types of survey 

protocols was necessary since we were surveying for multiple species that have different activity 

patterns.  

Track-tubes can be equally as effective at detecting small mammals as live-trapping 

methods, but are less expensive, easier to deploy, cause no animal mortality, and eliminate 

zoonosis exposure (Drennan et al. 1998, Glennon et al. 2002). The track-tubes used in this 

research were, with minimal modifications, based on the design used by Glennon et al. (2002). 

The track-tubes were made of 2 pieces of plastic rain gutter (4.5” x 2.5” x 12”) duct taped 

together on one edge to create a hinged tube; 3/8” binder clips were used to attach the other edge 

and create the tube shape (Figure 1.2). Aluminum flashing (2.9” x 14” x 0.01”) was attached to 

the floor of the tube to allow a flat surface for an animal to walk on. Contact paper (3” x 11”) 

was taped to the aluminum at each end with painters tape. The side of the contact paper with the 

adhesive faced away from the aluminum so that the animals entering the tube would walk on the 

side with the adhesive. Felt squares (2” x 3”) were placed at each entrance of the tube and served 

as pads for the ink. The ink consisted of 2 parts carbon powder and 1 part mineral oil; animals 

entered the tube by walking across the ink-filled felt pad and left foot prints on the adhesive 

contact paper. Sunflower seeds were used to attract the animals into the tube. At each plot 9 

track-tubes were placed on two 50 m transects that were perpendicular to each other and crossed 

in the center (25 m). The track-tubes were placed in-line with each transect at 0 m, 12.5 m, 37.5 

m, and 50 m (Figure 1.3). One track-tube was placed at the center of the two transects. Track-
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tubes were checked every 48 hours during an 8-day sampling period. A total of 3 sampling 

occasions occurred at each plot.   

Visual encounter surveys (VES) are a common survey method for squamate species. This 

survey method is inexpensive and requires less time than common passive survey methods such 

as drift fences and pitfall traps. We employed a 30 minute time limit for each of the 3 visual 

encounter surveys at each 50 x 50 m site. We walked in a straight transect parallel to 2 sides of 

the site and when we would came in contact with the perpendicular sides of the site we would 

shift over 5 meters turnaround and walk in a straight transect parallel to the last transect (Figure 

1.4).  

 

Vegetation Surveys 

We measured the vegetative conditions in each plot to assess how these fine-scale 

parameters are associated with animal occupancy. The vegetation measurements that were taken 

include grass height, ground coverage, and tree density. These site attributes are defined by the 

GCPO LCC as criteria for “the desired ecological state” (GCPO LCC. 2014). At each 50 x 50 m 

plot, two 50 m measuring tapes were placed in the four cardinal directions, with the 25 m mark 

on each measuring tape crossing the center of the plot. Current-year growth and residual grass 

heights were measured at 12 points in each plot. The measurements were taken at 5 m, 15 m, and 

20 m from center on each leg of the line intercept (Figure 1.5). At those marks we measured the 

height of the tallest piece of current-year and residual grass in a 1 m radius. We measured ground 

cover using Daubenmire quadrats (20 cm x 50 cm; 1-m2) to determine percent grass, forb, shrub, 

litter and bare ground cover (Daubenmire 1959). The quadrats were centered on the left side of 

the legs looking out from the center and were placed at the 7.5 m, 12.5 m, 20 m, 32.5 m, 37.5 m, 

and 45 m marks on each of the two 50 m measuring tapes. We evaluated shrub coverage using 
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the line intercept method. Each time a shrub intersected the 50 m measuring tape, measurements 

were taken indicating the start and end of the intersection of the shrub with the transect line. We 

used 6 trees per 50 m2 as the tree density threshold for determining if the plot met the GCPO 

LCC’s vegetative condition for amount of trees allowed in a plot. 

Land Cover  

We used ArcMap 10.2 (ArcGIS Desktop: Release 10.2. Environmental Systems Research 

Institute, Inc., Redlands, CA), Geospatial Modeling Environment Ver. 0.7.3.0 (Beyer 2012) and 

2011 NLCD to determine land cover composition in specified buffered radii (200 m, 500 m, 1 

km, 3 km, and 5 km) around the surveyed sites. At each plot we created circular buffer polygons 

in ArcMap for each radius. We then used the “isectpolyrst” command in Geospatial Modeling 

Environment to determine land cover composition in each buffer polygon. Percent of habitat was 

measured for grassland, pine forest, deciduous forest, mixed forest, and woody wetlands at the 

specified radii listed above.  

  Network connectivity was a measure of grassland network size around each site. We 

used the methods from Farrell (2015) to calculate the number of grassland patches and linkages 

in a network with distances of 500 m, 1000 m, and 1500 m. Distances chosen were to reflect 

probable/possible dispersal movements of the oldfield mouse and cotton rat (Bowne et al. 1999, 

Oddy et al. 1999, Swilling and Wooten 2002).   

 

Statistical Analysis 

 Forty candidate models relating species occupancy and detectability were created for 

each species. These models were designed to identify habitat attributes that are correlated to 

occupancy probability of the focal species. The local-scale vegetation measurements, as well as 
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the broad-scale landscape metrics were used as covariates in single-season occupancy models for 

both species (Table 1.2). Model creation and analysis was conducted with the package 

“unmarked”, a statistical package produced for use in R (Fiske and Chandler 2011, R Core Team 

2014). We used a sequential modeling building process wherein we first evaluated detection 

probability covariates and then assessed occupancy probability covariates. We limited the 

number of covariates incorporated into each model because we had very few encounters of any 

species. We incorporated grass height or bare ground density into a single season model with 

occupancy as a constant parameter to determine covariate structure of detection models of the 

oldfield mouse and cotton rat using a model selection analysis (Burnham and Anderson 2002). 

We hypothesize increased grass height would affect observer vision during visual encounter 

surveys and increased bare ground would increase the ability of an observer to detect vertebrates. 

We observed in the field that increased bare ground helped facilitate track-tube placement to be 

flush with the ground, which could affect detectability. The best detection model was selected 

and used as the base model to assess occupancy models. Akaike information criterion adjusted 

for small sample size (AICc) measures the quality of statistical models (Burnham and Anderson 

2002) and offers an analytical method for comparing models of occupancy and detection. We 

used ≤ 2.00 Δ AICc as model selection criteria to determine which models best fits the data and 

model weight (w) to interpret relative likelihood of a model given the data and candidate models 

(Burnham and Anderson 2002, Arnold 2010). This model selection technique allowed us to 

determine the covariates that best explain variation in occupancy and detection.  

 

RESULTS 

We surveyed 57 grassland plots (28 plots had <50% forested land cover in their 1km 

buffered area, 29 plots had ≥50% forested land cover in their 1km buffered area). We observed 8 
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mammal species, 3 amphibian species, and 5 reptile species for a total of 16 species (Table 1.3). 

Nine species were only observed with visual encounter surveys, 4 species were observed with 

only track-tubes, and 3 species were observed with both methods. We recorded 86 small 

mammal detections during 342 track-tube nights or 8,208 track-tube hours. The cotton rat and 

oldfield mouse were the most frequently detected focal species in this survey, with detections 

recorded at 6 and 3 sites, respectively. The probability of detecting the cotton rat was 0.15 (0.02 

– 0.57; 95% CI) based on the intercept only model. The probability of detecting the oldfield 

mouse was 0.27 (0.06 – 0.67; 95% CI) when bare ground cover was 11.8%; the mean bare 

ground cover measured during this study.    

 

Broad-scale Habitat Composition 

The occupancy of the oldfield mouse was not associated with the amount of grassland 

and pine forest surrounding the site, but was negatively associated with the amount of woody 

wetland and positively associated with mixed forest surrounding the site (Table 1.4). In the top 

model for the oldfield mouse (w = 0.17) occupancy was negatively associated with proportion of 

woody wetlands within 5 km, however, the confidence interval on the beta parameter correlation 

coefficient included zero. Oldfield mice were 0.66 (0.39 – 1.13: 95% CI) times as likely to use 

sites for every 1% increase in woody wetlands within 5 km of the site (Figure 1.6), thus 

exhibiting a decrease in occupancy as woody wetlands increases.  The second best model (w = 

0.16) had the proportion of mixed forest within 200 m as an occupancy covariate for the oldfield 

mouse. Oldfield mice were 1.21(1.01 – 1.45: 95% CI) times as likely to use sites for every 1% 

increase in mixed forest within 200 m of the site (Figure 1.7). The constant model for the 

oldfield mouse (w = 0.01) was not one of the top models. Occupancy of the cotton rat was 
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associated with the proportion of woody wetlands around the site (Table 1.5). In the top 2 models 

(w = 0.44 and w = 0.27), cotton rats were 1.18 (1.03 – 1.34: 95% CI) times as likely to use sites 

for every 1% increase in woody wetlands within 5 km of the site and 1.14 (1.01 – 1.29: 95% CI) 

times as likely to use sites for every 1% increase in woody wetlands within 3 km of the site 

(Figure 1.8 and Figure 1.9). The amount of grasslands, mixed forest, and pine forest were not 

associated with cotton rat occupancy. The constant model for the cotton rat (w = 0.01) was not 

one of the top models. 

Mean grassland proportion was greatest at 200 m (0.10 ± 0.16 SD) and smallest at 5 km 

(0.03 ± 0.02 SD). The mean for pine forest proportion was greatest at 5 km (0.12 ± 0.07 SD) and 

smallest at 200 m (0.05 ± 0.08 SD). Similarly, the mean for deciduous forest proportion was 

greatest at 5 km (0.16 ± 0.11 SD) and smallest at 200 m (0.09 ± 0.16 SD). The mean for mixed 

forest proportion was greatest at 3 km (0.06 ± 0.05 SD) and smallest at 200 m (0.04 ± 0.06 SD). 

The mean for woody wetland proportion was greatest at 5 km (0.14 ± 0.10 SD) and smallest at 

200 m (0.06 ± 0.12 SD).  

 

Plot Vegetation Condition and Patch Connectivity 

According to our model selection analysis, occupancy of the oldfield mouse and cotton 

rat were not associated with grass height, grass density, forb density, bare ground density, and 

tree density. Furthermore, occupancy of both species was not associated with the number of 

linkages between grassland patches or the number of grassland patches in a network. Oldfield 

mouse detection was associated with bare ground density. We observed that the oldfield mouse 

was 1.12 (0.93 – 1.36: 95% CI) times as likely to be detected for every 1% increase in bare 

ground.  
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The plot vegetation conditions had high variability and only one site met all 5 of the 

vegetation criteria for the GCPO LCC’s “desired ecological state”. Plots met 4 criteria (n=13), 3 

criteria (n=18), 2 criteria (n=13), 1 criteria (n=9), or zero criteria (n=3) of the criteria listed for 

the GCPO LCC’s “desired ecological state”. The shrub density criteria (<20% cover) was met at 

50 of the 57 sites. The tree density criteria (<6 trees/50 m2) was met at 36 of the 57 sites. 

Herbaceous vegetation density criteria (>75% cover) was met at 33 of the 57 plots. The bare 

ground density criteria (>5% and <20% cover) was met at 25 of the 75 plots. The grass height 

criteria (4 – 6 feet) was met at 2 of the 57 plots surveyed. The mean grass height for all plots was 

69.5 cm (± 28.5 SD), mean grass cover was 41.0% (± 22.8 SD), mean forb cover was 28.2% (± 

23.4 SD), and mean bare ground was 11.8% (± 15.9 SD).  

 

DISCUSSION 

Occupancy of the cotton rat was not associated with the amount of grassland in the 

surrounding landscape; however, cotton rat occupancy was positively associated with woody 

wetlands in the surrounding landscape. These findings suggest that woody wetlands in the 

landscape may facilitate cotton rat occupancy in the EGCP. The cotton rat can persist in many 

different types of habitats with herbaceous vegetation other than grasslands (Flehartly and Mares 

1973, Best and Dusi 2014). Our results agree with previous studies that have found cotton rats to 

be the most abundant small mammal in regenerating bottomland forests (Chamberlain and 

Leopold 2003). The use of only the cotton rat as surrogate species for its grassland associated 

cryptic predators may not be appropriate because of the apparent non-association cotton rats 

have with grasslands.  
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The directionality of the relationship of woody wetlands and oldfield mouse occupancy 

could not be determined with certainty because the 95 % confidence interval around the estimate 

included zero, however the mean estimate and the model selection analysis indicate a negative 

relationship. The results from the models with mixed forest are difficult to interpret but they 

could be specious due to the small number of encounters in our study. If these estimates are 

accurate, it would support the observations from the central part of the species range where it 

inhabits mixed forest (Best and Dusi 2014). The oldfield mouse is a habitat specialist that 

requires sandy soils to build burrows and herbaceous vegetation as a food resource (Best and 

Dusi 2014). A majority of our sites were located in Black Belt Prairie region where soil is 

composed mostly of calcium carbonate and clay which is distinct from the sandier soils in other 

regions in the EGCP. The 3 plots were the oldfield mouse was detected were in the regions in the 

study area with sandier soils south of the Black Belt Prairie region. Soil type may have 

explanatory abilities for oldfield mouse occupancy that could not be identified because of its lack 

of inclusion in models during the study. A lack of understanding of how soil type affects 

occupancy could serve as a limiting factor for locations of grassland restoration projects.  

Many of our plots did not meet all of the desired vegetation conditions of grasslands 

described by the GCPO LCC. We hypothesize one of the reasons for this is because we used 

remotely sensed land cover data to randomly select plots in the grassland land cover class. 

Accuracy of land cover data can be a low for rare habitat types such as grasslands in the EGCP 

(Wickham 2013). Some of our plots were located on land used for even-aged timber 

management. Land cover data most likely classified the land as grassland because the 

classification process must have taken place shortly after timber harvest which removes almost 

all trees and allows herbaceous vegetation to grow. The desired vegetative condition of grass 
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height (1.22 – 1.83 m) was only met at 2 plots. We hypothesize the reasons for this is due to 

recent prescribed fires, haying and mowing operations, overgrowth, and surveys being conducted 

early in the growing season. The desired vegetative condition of bare ground density (5 -20%) 

was the met at 25 of the 57 plots. We hypothesize the reason is because some of our plots were 

located on land used for haying which may have had nonnative cool season grasses. Cool season 

grasses do not bunch like the native warm season grasses which increase bare ground density. 

These results suggest using remotely sensed land cover data to describe grasslands in the 

landscape may not be appropriate.   

Sample size can influence the results of occupancy estimation models by biasing 

estimates when sample size is small (Mackenzie 2002). Our ability to build more complex 

models by adding more covariates was limited by the small sample size. Freedman (1983) 

demonstrated how the number of predictor variables in a regression model should be of the same 

order of magnitude as the number of data points use in the model. Miller (2002) expanded on 

these findings and found that coefficient estimates are biased away from zero when more 

predictor variables are included in a regression model than should be included based on the 

number of data points.  

This study was designed to try and detect small mammals and squamates that utilize 

grassland patches in the EGCP. We selected VES, an active survey technique, to survey for 

squmates due to constraints on time and personnel. We intended to increase the number of sites 

surveyed and survey a large geographic distribution. Drift-fence arrays and pitfall traps, both 

passive survey techniques, have higher detection probabilities for squamates (Case and Fisher 

2001), however these techniques require large amounts of time and personnel to setup and 

monitor. Drift-fence arrays and pitfall traps would apply significant logistical restrictions on the 
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number of sites we could survey, so our study design intentionally sacrificed detection 

probability at a single site in favor of surveying a greater number of sites over a larger spatial 

extent. The squamate species we encountered during the study were black racer (Coluber 

constrictor), green anole (Anolis carolinensis), skink (Eumeces spp.) and eastern fence lizard 

(Sceloporus undulatus). Focal species squamates were never detected during surveys, and we 

conclude that the VES methods may be inappropriate for surveying these kinds of species with 

only 3 surveys per plot. Mackenzie and Royle (2005) suggest increasing the number of surveys 

as detection probability decreases. However detection probability is difficult to know at the start 

of a study without an extensive pilot study first being conducted.   

Our results indicate that broad-scale habitat features may be important for small mammal 

occupancy in the EGCP. The amount of woody wetlands and mixed forest were explanatory 

variables for the occupancy of the cotton rat and the oldfield mouse. However, broad-scale 

habitat features are seldom examined as explanatory variables for small mammal population 

patterns (Michel et al. 2007).  Fine-scale vegetation conditions are known to be able to explain 

small mammal abundance (Bowman et al. 2001). As seen with our results, broad and fine-scale 

habitat variables may not be mutually exclusive in their explanatory ability of small mammal 

population patterns, thus multiple scales should be considered when trying to identify influences 

of population pattern. Additional research should focus on how features of broad-scale habitat 

could influence the occupancy of small mammals and other terrestrial vertebrates.   

 

Management Implications 

Our results indicate small mammal occupancy is influenced by broad-scale habitat features. 

Previous studies of the old field mouse and the cotton rat have largely focused on habitat 
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selection at very small spatial scales, and while our results do not contradict those previous 

results, our study does indicate that larger spatial scales should be considered in habitat research 

and management decisions. Land managers who want to increase small mammal occupancy may 

want to consider broad-scale habitat features when selecting sites for restoration and 

conservation. Our results indicate cotton rat occupancy may have a positive association with 

woody wetlands in the surrounding landscape and oldfield mouse occupancy may have a positive 

association with mixed forest in the surrounding landscape. Certain habitat types that are not 

usually considered important for a species may have some facilitative or inhibitory properties 

that can influence occupancy of nearby grassland sites.  
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TABLES AND FIGURES 

 

Table 1.1. Final focal species list for the project after consideration of relevant selection criteria. 

Home range size (small: ≤5 ha, medium: >5 ha but ≤10 ha, large: >10 ha). Density (low ≤4 

individuals per ha, medium: >5 but ≤ 10 individuals per ha, high: >10 individuals per ha). 

Conservation Concern is based on the species status provided by the Alabama Department of 

Conservation and Natural Resources. GCPO LCC signifies if the species is listed in the GCPO LCC 

Integrated Science Agenda as a representative of grassland habitat. 

Functional  
Group 

Common 
Name Scientific Name Habitat Use 

Home 
Range Density 

Conservation 
Concern 

GCPO 
LCC  

Squamates 
 

Six-lined 
racerunner 

Aspidoscelis 
sexlineata 

open 
habitats Small Low Moderate YES 

Corn snake 
Pantherophis 

guttata guttata dry uplands Large Unknown Moderate YES 

Slender glass 
lizard 

Ophisaurus 
ventralis 

open 
habitats Unknown Unknown Moderate YES 

Eastern 
kingsnake 

Lampropeltis 
getula 

open pine 
savannas, 

macrohabitat 
generalist Large Unknown High YES 

Small 
Mammals 

Eastern 
harvest 
mouse 

Reithrodontomys 
humulis Fallow fields Small Medium Moderate YES 

Oldfield 
mouse 

Peromyscus 
polionotus 

Grassland, 
sandy soil Small Unknown Moderate YES 

Southeastern 
shrew 

Sorex 
longirostris 

old field, dry 
upland, 
shrubby 

areas Small Unknown Moderate YES 

Hispid cotton 
rat 

Sigmodon 
hispidus 

Grass-
dominated 

habitats Medium High Lowest NO 
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Table 1.2. Occupancy covariates used in the single season analysis of oldfield mouse 

(Peromyscus polionotus) and cotton rat (Sigmodon hispidus) occupancy in the Mississippi and 

Alabama portions of the East Gulf Coastal Plain from March 2015 – July 2015. Model 6 is the 

constant occupancy model.  

 (ψ) Occupancy Covariates  (ψ) Occupancy Covariates 

1 Woody Wetlands 1 km  21 Grassland 3 km  

2 Woody Wetlands 200 m  22 Grassland 500 m  

3 Woody Wetlands 3 km  23 Grassland 5 km  

4 Woody Wetlands 5 km  24 Herb Cover  

5 Woody Wetlands 500 m  25 Mixed Forest 1 km  

6 .  26 Mixed Forest 200 m  

7 Bare Ground  27 Mixed Forest 3 km  

8 Deciduous Forest 1 km  28 Mixed Forest 5 km  

9 Deciduous Forest 200 m  29 Mixed Forest 500 m  

10 Deciduous Forest 3 km  30 Evergreen Forest 1 km  

11 Deciduous Forest 5 km  31 Evergreen Forest 200 m  

12 Deciduous Forest 500 m  32 Evergreen Forest 3 km  

13 All Forest 1 km  33 Evergreen Forest 5 km  

14 All Forest 200 m  34 Evergreen Forest 500 m  

15 All Forest 3 km  35 Net Size 1 km  

16 All Forest 500 m  36 Net Size 1.5 km  

17 All Forest 5 km  37 Net Size 500 m  

18 Grass Height  38 Num Links 1 km  

19 Grassland 1 km  39 Num Links 1.5 km  

20 Grassland 200 m  40 Num Links 500 m  
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Table 1.3. Species detected during surveys in the Mississippi and Alabama portions of the East 

Gulf Coastal Plain from March 2015 – July 2015. This list includes the number of sites that the 

species was detected at and the detection method. 

 

  Detection Method 

Species 

Number of 

Sites 

Detected Track-tube VES 

    

Mammals    

Sigmodon hispidus 6 X X 

Peromyscus polionotus  3 X X 

Peromyscus spp. 11 X  

Didelphis virginiana 3 X  

Procyon lotor 12 X  

Microtus spp. 2 X  

Sorex spp./ Blarina spp./ Cryptotis spp. 4 X X 

Sylvilagus spp. 2  X 

    

Reptiles    

Anolis carolinensis 6  X 

Coluber constrictor 1  X 

Sceloporus undulatus 1  X 

Eumeces spp. 1  X 

Terrapene carolina triunguis 1  X 

    

Amphibians    

Hyla squirella 1  X 

Anaxyrus terrestris 1  X 

Pseudacris spp. 1  X 
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Table 1.4. Summary of single season occupancy (ψ) models for oldfield mouse (Peromyscus 

polionotus) at 57 plots in the Mississippi and Alabama portions of the East Gulf Coastal Plain 

from March 2015 – July 2015. Models are structured with occupancy (ψ) and detection (p) 

components and are reported with AICc, difference of model AICc to best model (AICc), model 

likelihood, model weight (w), and cumulative model weights (Cum. w). 

Model AICc Δ AICc Likelihood w Cum. w 

ᴪ(Woody Wetlands 5km) p(Bare Ground) 31.97 0.00 1.00 0.17 0.17 

ᴪ(Mixed Forest 200m) p(Bare Ground) 32.08 0.12 0.94 0.16 0.32 

ᴪ(Mixed Forest 5km) p(Bare Ground) 33.15 1.18 0.55 0.09 0.41 

ᴪ(Woody Wetlands 3km) p(Bare Ground) 34.36 2.39 0.30 0.05 0.46 

ᴪ(Mixed Forest 500m) p(Bare Ground) 34.38 2.42 0.30 0.05 0.51 

ᴪ(Grass Height) p(Bare Ground) 34.68 2.71 0.26 0.04 0.56 

ᴪ(Evergreen Forest 5km) p(Bare Ground) 35.32 3.35 0.19 0.03 0.59 

ᴪ(Mixed Forest 3km) p(Bare Ground) 35.38 3.42 0.18 0.03 0.62 

ᴪ(.) p(Bare Ground) 35.63 3.66 0.16 0.03 0.64 

ᴪ(Grassland 1km) p(Bare Ground) 35.93 3.96 0.14 0.02 0.67 

ᴪ(Mixed Forest  1km) p(Bare Ground) 36.19 4.22 0.12 0.02 0.69 

ᴪ(Evergreen Forest 3km) p(Bare Ground) 36.20 4.24 0.12 0.02 0.71 

ᴪ(Woody Wetlands 200m) p(Bare Ground) 36.21 4.24 0.12 0.02 0.73 

ᴪ(Grassland 3km) p(Bare Ground) 36.48 4.51 0.10 0.02 0.74 

ᴪ(Num Links 500m) p(Bare Ground) 36.50 4.53 0.10 0.02 0.76 

ᴪ(All Forest 5km) p(Bare Ground) 36.52 4.55 0.10 0.02 0.78 

ᴪ(Deciduous Forest 5km) p(Bare Ground) 36.93 4.97 0.08 0.01 0.79 

ᴪ(Grassland 5km) p(Bare Ground) 37.10 5.13 0.08 0.01 0.80 

ᴪ(Grassland 200m) p(Bare Ground) 37.14 5.17 0.08 0.01 0.82 

ᴪ(Woody Wetlands 1km) p(Bare Ground) 37.47 5.50 0.06 0.01 0.83 

ᴪ(All Forest 3km) p(Bare Ground) 37.47 5.50 0.06 0.01 0.84 

ᴪ(Woody Wetlands 500m) p(Bare Ground) 37.52 5.56 0.06 0.01 0.85 
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ᴪ(Deciduous Forest 3km) p(Bare Ground) 37.56 5.59 0.06 0.01 0.86 

ᴪ(Grassland 500m) p(Bare Ground) 37.58 5.61 0.06 0.01 0.87 

ᴪ(Deciduous Forest 200m) p(Bare Ground) 37.67 5.70 0.06 0.01 0.88 

ᴪ(Evergreen Forest 500m) p(Bare Ground) 37.69 5.72 0.06 0.01 0.89 

ᴪ(All Forest 500m) p(Bare Ground) 37.70 5.73 0.06 0.01 0.90 

ᴪ(Evergreen Forest 1km) p(Bare Ground) 37.72 5.75 0.06 0.01 0.91 

ᴪ(Num Links 1km) p(Bare Ground) 37.78 5.81 0.05 0.01 0.92 

ᴪ(All Forest 200m) p(Bare Ground) 37.85 5.89 0.05 0.01 0.92 

ᴪ(All Forest 1km) p(Bare Ground) 37.90 5.93 0.05 0.01 0.93 

ᴪ(Net Size 1km) p(Bare Ground) 37.92 5.95 0.05 0.01 0.94 

ᴪ(Deciduous Forest 500m) p(Bare Ground) 37.93 5.96 0.05 0.01 0.95 

ᴪ(Evergreen Forest 200m) p(Bare Ground) 37.94 5.97 0.05 0.01 0.96 

ᴪ(Net Size 500m) p(Bare Ground) 37.94 5.97 0.05 0.01 0.97 

ᴪ(Herb Cover) p(Bare Ground) 37.94 5.98 0.05 0.01 0.97 

ᴪ(Num Links 1.5km) p(Bare Ground) 37.95 5.98 0.05 0.01 0.98 

ᴪ(Deciduous Forest 1km) p(Bare Ground) 37.95 5.98 0.05 0.01 0.99 

ᴪ(Bare Ground) p(Bare Ground) 37.95 5.98 0.05 0.01 1.00 

ᴪ(Net Size 1.5km) p(Bare Ground) 44.43 12.46 0.00 0.00 1.00 
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Table 1.5. Summary of single season occupancy (ψ) models for hispid cotton rat (Sigmodon 

hispidus) at 57 plots in the Mississippi and Alabama portions of the East Gulf Coastal Plain from 

March 2015 – July 2015. Models are structured with occupancy (ψ) and detection (p) 

components and are reported with AICc, difference of model AICc to best model (AICc), model 

likelihood, model weight (w), and cumulative model weights (Cum. w). 

Model AICc Δ AICc Likelihood w Cum. w 

ᴪ( Woody Wetlands 5km) p(.) 53.19 0 1.00 0.44 0.44 

ᴪ( Woody Wetlands 3km) p(.) 54.21 1.02 0.60 0.27 0.71 

ᴪ( Woody Wetlands 1km) p(.) 56.11 2.92 0.23 0.10 0.81 

ᴪ( Woody Wetlands 500m) p(.) 56.62 3.43 0.18 0.08 0.89 

ᴪ( Woody Wetlands 200m) p(.) 59.1 5.91 0.05 0.02 0.91 

ᴪ(Mixed Forest  km) p(.) 60.44 7.25 0.03 0.01 0.92 

ᴪ(Grassland 1km) p(.) 61.05 7.86 0.02 0.01 0.93 

ᴪ(.) p(.) 61.29 8.1 0.02 0.01 0.94 

ᴪ(Evergreen Forest500m) p(.) 61.92 8.73 0.01 0.01 0.95 

ᴪ(Mixed Forest 200m) p(.) 62.34 9.15 0.01 0.00 0.95 

ᴪ(Mixed Forest 5km) p(.) 62.54 9.35 0.01 0.00 0.96 

ᴪ(Deciduous Forest 5km) p(.) 62.68 9.49 0.01 0.00 0.96 

ᴪ(All Forest 1km) p(.) 62.96 9.77 0.01 0.00 0.96 

ᴪ(All Forest 3km) p(.) 62.96 9.77 0.01 0.00 0.97 

ᴪ(Deciduous Forest 3km) p(.) 62.99 9.8 0.01 0.00 0.97 

ᴪ(Evergreen Forest 200m) p(.) 63.05 9.86 0.01 0.00 0.97 

ᴪ(Grassland 500m) p(.) 63.07 9.88 0.01 0.00 0.98 

ᴪ(All Forest 5km) p(.) 63.21 10.02 0.01 0.00 0.98 

ᴪ(Grassland 200m) p(.) 63.27 10.08 0.01 0.00 0.98 

ᴪ(Herb Cover) p(.) 63.32 10.13 0.01 0.00 0.98 

ᴪ(Deciduous Forest 500m) p(.) 63.36 10.17 0.01 0.00 0.99 

ᴪ(All Forest 500m) p(.) 63.4 10.21 0.01 0.00 0.99 
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ᴪ(All Forest 200m) p(.) 63.43 10.24 0.01 0.00 0.99 

ᴪ(Deciduous Forest 1km) p(.) 63.45 10.26 0.01 0.00 0.99 

ᴪ(Deciduous Forest 200m) p(.) 63.51 10.32 0.01 0.00 1 

ᴪ(Grassland 5km) p(.) 63.51 10.32 0.01 0.00 1 
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Figure 1.1. The study area boundary with the location of 57 plots surveyed for focal species and 

vegetation conditions. The blue triangles are the plots surveyed from March 2015 – July 2015 

and used in our occupancy analysis.  
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Figure 1.2. An example of the track-tubes used in this study.  

 

 

 

 

Figure 1.3. Schematic of track-tube placement used at each of 57 plots in the Mississippi and 

Alabama portions of the East Gulf Coastal Plain in March 2015 – July 2015. 

 

N 
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Figure 1.4. Survey pattern for time-constrained visual encounter surveys at 57 plots in the 

Mississippi and Alabama portions of the East Gulf Coastal Plain in March 2015 – July 2015. 
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Figure 1.5. Design for measuring current-growth and residual grass heights at each of 57 plots in 

the Mississippi and Alabama portions of the East Gulf Coastal Plain in March 2015 – July 2015. 

Circles represent 1 meter radius inside which the tallest grass stem was measured.   

 

 

N 
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Figure 1.6. Expected occupancy probability of oldfield mouse (Peromyscus polionotus) vs. 

percentage of woody wetlands within 5 km in the Mississippi and Alabama portions in the East 

Gulf Coastal Plain in 2015. Shading represents the 95% prediction interval of occupancy 

probability. 
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Figure 1.7. Expected occupancy probability of oldfield mouse (Peromyscus polionotus) vs. 

percentage of mixed forest within 200 m in the Mississippi and Alabama portions in the East 

Gulf Coastal Plain in 2015. Shading represents the 95% prediction interval of occupancy 

probability. 
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Figure 1.8. Expected occupancy probability of hispid cotton rat (Sigmodon hispidus) vs. 

percentage of woody wetlands within 5 km in the Mississippi and Alabama portions in the East 

Gulf Coastal Plain in 2015. Shading represents the 95% prediction interval of occupancy 

probability. 
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Figure 1.9. Expected occupancy probability of hispid cotton rat (Sigmodon hispidus) vs. 

percentage of woody wetlands within 3 km in the Mississippi and Alabama portions in the East 

Gulf Coastal Plain in 2015. Shading represents the 95% prediction interval of occupancy 

probability. 
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Chapter 2: 

The Effects of Error in Remotely Sensed Land Cover Maps on Habitat Relationship 

Models  

 

ABSTRACT  

The use of remotely sensed land cover data continues to grow in ecological research and 

conservation decision making. However, misclassification of land cover types, a type of error, is 

an inherent part of the process of creating land cover maps from remotely sensed data. The 

overall misclassification of land cover maps may misrepresent misclassification in some sub-

regions of the land cover map. In the southeastern United States, land cover changes occur 

quickly over time, due to clear-cutting of timberlands, rapid, natural succession rates and other 

factors. These temporal changes may not be fully represented in a remotely sensed land cover 

data products due to a time lag between when classification occurs and the time of interest. In 

this study, I used simulations to evaluate the effects of error in land cover data on occupancy 

estimation results. Occupancy estimation related to land cover data can provide estimates of 

focal species habitat associations for conservation decision makers to determine where and what 

habitat to manage on the landscape.  However error in land cover classification may bias 

occupancy analyses and lead to erroneous inference with respect to landscape scale habitat 

management. My simulations used 12 error scenarios, 2 habitat covariates, and 2 sets of 

predefined parameter estimates. The 12 error scenarios were representative of the accuracy 

assessment of the 2006 National Land Cover Database, the land cover change index from 2011 

National Land Cover Database or simulated misclassification rates. The 2 habitat covariates were 

measures of proportions of a common habitat class (i.e., forest) and a rare habitat class (i.e.,
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grassland).  One set of the predefined parameter estimates gave a hypothetical species a weak 

negative occupancy association to grassland land cover and a strong positive occupancy 

association forest land cover; the other set gave a strong positive occupancy association to 

grassland land cover and a weak negative occupancy association to forest land cover. I found 

regression coefficient biases are increased when the land cover class of interest is of lower 

proportions in the landscape. As the strength of the relationship between occupancy and 

covariates increases the precision of the regression coefficients decrease. Ecological researchers 

and conservation biologists who use remotely sensed land cover data to estimate habitat 

relationships of species should utilize measured land cover error to help estimate covariates that 

are closer to truth.  

 

 

INTRODUCTION 

In ecology and conservation biology, remote sensing is increasingly being used to 

support habitat and landscape conservation decisions and to benefit species and ecosystems 

(Horning et al. 2010; Rose et al. 2015; Turner et al. 2015). Remote sensing is the acquisition of 

data from scanning the Earth with satellites. Remotely sensed data products include land cover 

maps, elevational maps, bathymetric maps, and climatic maps (Horning et al. 2010). Land cover 

maps are commonly used in ecology and conservation biology to examine the broad-scale habitat 

relationships of vertebrate species (Greenwald et al. 2009; Steen et al. 2012; Urbanek and 

Nielsen 2013). Many land cover maps are produced using satellite spectral data combined with 

ancillary data, such as digital elevation models, to refine classifications (Vogelmann 1998). The 

spectral data received from satellites is used in a decision tree analysis to delineate classes of 

land cover. The decision tree uses the spectral signature of a grid cell, i.e., the variation in 

reflectance of wavelengths of light, to determine the most likely class of land cover for that cell. 
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A widely used land cover database in North America is the National Land Cover Database 

(NLCD), in which data is collected, maintained and updated by United States Geologic Survey 

every 5 years (Homer et al. 2015). 

Researchers are able to use remotely sensed data to find ecological patterns and processes 

at large scales, which can be measured and used in ecological models. Measurements of these 

patterns and processes include errors from the remote sensing process that are seldom discussed 

in an ecological context (Glenn and Ripple 2004, Shao and Wu 2008). Accounting for 

measurement error in remotely sensed data may allow conservation decision-makers to make 

better informed decisions that could improve conservation efforts while reducing the risk of 

misappropriating conservation resources. For instance if a habitat metric is considered to have a 

stronger relationship with a species than it actually does, the  value of areas with less than ideal 

conditions will be overestimated. The misclassification of land cover data from remotely sensed 

data is an inherent part of the process that is used to produce these products. It has been 

suggested that user accuracy and producer accuracy be measures of misclassification used for 

thematic land cover maps (Liu et al. 2007). The user accuracy is the probability of a classified 

cell on the map represents that class on the ground and the producers accuracy is the probability 

of the ground being correctly classified in the map (Story and Congalton 1986). Misclassification 

can occur when the spectral signature of multiple habitats is similar, and the sensors on the 

satellites lack the resolution to differentiate between the habitats (Horning et al. 2010). Grass-

dominated classes such as grassland/herbaceous, cultivated crops, emergent wetland, 

hay/pasture, and developed open space accounted for a high percentage of user accuracy error 

(26%) in the 2006 NLCD (Wickham et al. 2013). These classes all have herbaceous vegetation 

with similar spectral signatures which causes the large amount of misclassification.   
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Additionally, classification error can occur when map products are not frequently updated 

to reflect land cover change during the time of interest (Gallant 2009). Natural processes (e.g. 

wildland fire, forest disease, etc.) and anthropogenic influences (e.g. forest harvesting, 

urbanization, agricultural conversion, etc.) can change the land cover over time. According to the 

2011 NLCD land cover of the conterminous United States is mostly composed of 21.61% 

shrub/scrub, 15.51% cultivated crops, 14.56% grassland/herbaceous, 11.56% evergreen forest, 

and 10.84% deciduous forest (Homer et al. 2015). This composition is not considerably different 

than the composition of the 2006 NLCD; 1.24% total change in all 16 land cover classes (Fry et 

al. 2011) over the 5 year period between product releases. Some areas of the United States can 

see a greater rate of land cover change than others (Sleeter et al. 2013; Homer et al. 2015). In the 

southern United States 40% of the forested land cover is used for harvesting of timber (Oswalt 

and Smith 2014).  Land cover in this area can change frequently due to timber harvesting 

operations and the rapid regrowth of loblolly pine (Pinus taeda).  

Understanding habitat relationships for vertebrate species of conservation concern can be 

an important part of conservation and management for those species. By determining these 

relationships, researchers can identify how habitat patterns influence a species occurrence 

patterns and use that information to improve habitat features and composition for species of 

conservation concern. Occupancy estimation and modeling is one method used to evaluate 

habitat features and their influence on the probability of a species occurring at a location. Metrics 

calculated from remotely sensed land cover data can be used as predictor variables in habitat 

relationship studies that use occupancy models to predict the probability of species occurrence 

(Duren et al. 2011, Sadoti et al. 2013, and Chapter 1). The output of these models include 

regression coefficients that can be used to predict occupancy at sites that are not surveyed based 
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on the measured covariates at those unsurveyed sites. Regression coefficients can be used in 

predictive models to evaluate current and future distributions of species (Kéry et al. 2013).  

Measurement error in covariates used in linear and non-linear models can have two major 

effects on our interpretation of the models (Carroll et al. 2006). First, covariate error can cause 

estimators of regression coefficients from the models to be biased (Cochran 1968). Second, the 

statistical model can lose precision and we can lose ability to discriminate among alternative 

models, therefore reducing our ability to correctly identify the relationships of the variables 

(Tosteson et al. 2003). Biases could lead to incorrect conclusions and negatively affect 

conservation efforts based on such models. For example, with inaccurate covariate estimates, a 

predictive model of habitat use and landscape occupancy may provide inaccurate predictions 

leading to mismanaged habitat. However, there have been few studies specifically quantifying 

how serious this problem is for realistic levels of misclassification.  

Using simulations, I evaluated the effects of land cover misclassification on regression 

coefficients in binomial generalized linear models (GLMs). I had three primary objectives. First I 

evaluated known misclassification estimates and known temporal changes in land cover data, 

and determined if biases occur in occupancy model regression coefficients. Second, I attempted 

to determine what level of land cover misclassification resulted in the true regression coefficient 

of interest being omitted from the 95% confidence interval. Third, I wanted to evaluate 

predictive models that incorporate regression coefficients from occupancy models that use error 

laden land cover data.  
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METHODS 

 The East Gulf Coastal Plain (EGCP) is located in the southeastern United States and was 

used to produce realistic error and habitat proportions for this study. The EGCP is home to many 

different types of habitats that are rare in their abundance but are considered ecologically 

important for many species (GCPO LCC. 2009). Land cover of the EGCP is composed of 56% 

forest, 12% shrub, 10% cultivated crops, 10% hay/pasture, 7% developed, 4% grassland, and 1% 

water (Homer et al. 2015). I clipped the 2011 NLCD to the EGCP land area using ArcMap 10.2 

to measure region specific land cover composition change and land cover class change. I also 

measured land cover proportions in the EGCP so that the land cover covariates used in this 

analysis closely reflected reality. I used ArcMap 10.2 to randomly sample 100 points in the 

EGCP and measured the proportion of each land cover class in a 1 km buffered area around each 

point. Using the 100 sample points, I calculated the means for 3 land cover proportions: 

grassland, the sum of forest (deciduous, evergreen, and mixed forests), and the sum of all other 

classes. Grassland land cover was chosen because it is found in low abundance but is considered 

a high conservation priority. Forest land cover was chosen because it if found to be very 

abundant in the EGCP.  

I created a simulation in program R 3.0.1 (R Core Team 2014) that simulated occupancy 

data using 2 land cover proportions as covariates that were manipulated to simulate the effects of 

land cover classification error. The occupancy model had 3 parameters and 2 covariates. The 

simulation ran for 1,000 iterations with 500 sites and 1 observation period for each of the 12 

scenarios used in this study.  
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Habitat Covariate Generation 

 I generated habitat proportions (d) at each of the 500 sites (i) using three single trial 

random draws from beta distributions (di1 = (α = 1, β = 8), di2= (α = 4, β = 6), di3= (α = 4, β = 6)). 

The shape parameters for the beta distributions were based on the actual land cover data 

described above. The di1 distribution represents a land cover class with small proportions in the 

landscape (i.e. grasslands in the EGCP), di2 represents land cover with large proportions in the 

landscape (i.e. forests in the EGCP), and di3 represents the proportion all other land cover types. 

The values of these 500 habitat proportion sets were constrained to sum to 1 by normalizing the 

proportion of habitat in each type at each site so that  

𝑑𝑖𝑗

∑ 𝑑𝑖𝑗
3
𝑗=1

= 𝑘𝑖𝑗                                             (1) 

where ki,j is the normalized proportion of habitat type j at site i. I subsequently created a vector 

(s)  

𝑠𝑖=

𝑘𝑖1

𝑘𝑖2

𝑘𝑖3

                                                          (2) 

so that s is the vector of 3 land cover proportions measured from a land cover map. I created an 

error matrix (T) for each scenario (c) so that 

  [

𝑔𝑔 𝑔𝑓 𝑔𝑜

𝑓𝑔 𝑓𝑓 𝑓𝑜

𝑜𝑔 𝑜𝑓 𝑜𝑜

] = 𝑇𝑐                                         (3) 

where gg is the proportion of ki1 that is correctly classified as ki1, fg is the proportion of ki1 that is 

incorrectly classified as ki2, og is the proportion of ki1 that is incorrectly classified as ki3, gf is the 

proportion of ki2 that is incorrectly classified as ki1, ff is the proportion of ki2 that is correctly 

classified as ki2, of is the proportion of ki2 that is incorrectly classified as ki3, go is the proportion 
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of ki3 that is incorrectly classified as ki1, fo is the proportion of ki3 that is incorrectly classified as 

ki2, oo is the proportion of ki3 that is correctly classified as ki3. This matrix represents the 

misclassification found in the land cover data in each simulation scenario.  All values in T were 

drawn from a beta distributions that used land cover accuracy values as a mean and a standard 

deviation of 0.05 to create alpha and beta shape parameters for each distribution.  

I examined 12 scenarios where error was removed form land cover covariates (Table 

2.1). Scenario A had no misclassification error, scenario B used the error matrix from a user’s 

accuracy assessment of the conterminous United States from the 2006 NLCD (Wickham 2013) 

and scenarios C – G varied the accuracy of correctly identified land cover in increments of 10% 

from 0.9 to 0.5 with incorrectly identified land cover being evenly split between the other two 

land cover covariates. Scenarios H – L used the proportions of land cover change from 2006 to 

2011 NLCD in 1 year intervals, for example scenario H is 1/5 and scenario I is 2/5 of the total 

proportions of land cover change. I then multiplied A and s to create a vector (e)  

𝑇𝑐  × 𝑠𝑖 = 𝑒𝑖𝑐 =

𝑥𝑖𝑐1

𝑥𝑖𝑐2

𝑥𝑖𝑐3

                                                  (4) 

so that e  is the vector of 3 estimated land cover proportions (x) at each site at the time of survey, 

given the accuracy of each scenario. For example, scenario A had no misclassification, i.e., 

g1=f2=o3=1 and g2=g3=f1=f3=o1=o2=0, then  

𝑒𝑖𝐴 =  𝑠𝑖.                                                        (5) 

Habitat relationship parameter values 

I defined a vector (b)  

𝑏𝑣 =

ℎ𝑣1

ℎ𝑣2

ℎ𝑣3

                                                          (6) 
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of parameter values, (h1, h2, and h3) were the true regression coefficients for habitat associations 

used to simulate species occupancy in relation to habitat proportions at each of the 500 points. 

Specifically h1 was the true intercept, h2 was the true regression coefficient for proportion of 

grassland, and h3 was the true regression coefficient for proportion of forest. One vector (b1) 

contained true regression coefficients that gave grasslands relatively weak negative relationships 

(h12 = -2), forests relatively strong positive relationships (h13 = 6), and the intercept was equal to 

zero (h11 = 0). The other vector (b2) contained regression coefficients that gave grasslands 

relatively strong positive relationships (h22 = 6), forests relatively weak negative relationships 

(h23 = -2), and the intercept was equal to zero (h11 = 0).  

 

Occupancy Simulation 

The parameter values b were used in a logit link function that includes eic to generate true 

probability of occupancy (ψi) for each scenario. 

𝜓𝑖 =  
exp (ℎ1+ℎ2𝑥𝑖𝑐1+ℎ3𝑥𝑖𝑐2)

1+ exp (ℎ1+ℎ2𝑥𝑖𝑐1+ℎ3𝑥𝑖𝑐2)
                             (7) 

The third habitat proportion, other, was not included in this function to prevent over 

parameterization. I performed a Bernoulli trial for presence (pi) that used ψi as the probability of 

presence for sitei.  

𝑝𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑖)                                                         (8) 

All absences were treated as true absences (i.e., the simulation did not have a detection 

process). The simulated presence/absence data (p) and land cover covariates (s) for each iteration 

of the simulation were incorporated into a binomial GLM to obtain regression coefficients that 

explain habitat relationships. Thus, I had 1.000 estimates of occupancy, regression coefficients 
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and standard error. The average of the 1,000 estimated regression coefficients for each 

simulation was calculated along with the 95% confidence interval. I created a vector (u)  

𝑢𝑐 =

𝑟𝑐1

𝑟𝑐2

𝑟𝑐3

                                                          (9) 

so that u is the vector of the 3 average estimated regression coefficients from the 1000 iterations 

with scenario c. For example, rF3 describes the average estimated regression coefficient from 

scenario F that corresponds to forest land cover proportions. The coefficient estimates were 

compared to the values from the true underlying occupancy model. For example, if b1 was used 

then rF3 is compared to 6 and if b2 was used then rF3 is compared to -2. The average of the 1,000 

standard errors for each simulation was calculated to evaluate the precision of the estimated 

regression coefficients. I also calculated the percentage of 1,000 iterations where the true 

regression coefficient was omitted from the 95% confidence interval for each individual 

parameter estimate in the simulation.  

To put the changes in regression parameters estimates due land cover classification error 

in an applied context I created comparative maps to examine the differences in predicted 

occupancy under different land cover error scenarios. I used Program R to create predicted 

occupancy maps for the scenarios using u in a logit link function to calculate ψ. The covariates 

used to calculate ψ where the proportion of grasslands and forest within 1 km of each cell in the 

2011 NLCD. These covariates were calculated similarly to the methods used to create the 

covariates used in the simulations. The map was a small extent of the 2011 NLCD in the EGCP 

to visualize the effects of the scenarios on predicted occupancy. I used a non-quantitative visual 

comparison of predicted occupancy maps to examine the spatial arrangement of occupancy hot 

spots (e.g., ψ > 0.8) among scenarios.  
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RESULTS 

Land cover composition in the EGCP has changed 3.29% from 2006 to 2011. A total of 

91.54% of the EGCP land cover in 2006 was the same class in 2011. Three habitat classes 

(shrub/scrub, evergreen forest, and grassland/herbaceous) account for 65.72% of the total land 

cover change in the EGCP. From 2006 to 2011 50.58% of the grassland/herbaceous land cover 

changed to a different class in the EGCP; 30.14% to shrub/scrub, 16.03% to evergreen. 

I ran a total of 24 simulations, i.e., scenarios A-L with b1 and scenarios A-L with b2. All 

scenarios except for scenario A produced biased average regression coefficients. The most 

extreme bias of an estimated regression coefficient occurred in scenario L when the true 

parameter value for grassland was equal to -2 and the 95% confidence interval for the average 

estimated regression coefficient spanned zero (Figure 2.1). Biases increased for all estimated 

regression coefficients as the time since land cover classification increased (e.g., scenarios H – 

L). However, biases increased more greatly for the estimated regression coefficients of grassland 

than they did for forest (Figure 2.2, 2.3, 2.4). The strength and direction of the bias experienced 

by the intercepts were similar for b1 and b2 in scenarios C – G (Figure 2.5 and 2.6). However, the 

strength and direction of the bias experienced by the intercepts for b1 in scenarios I – L was more 

extreme and in opposite directions than the bias experienced by the intercepts for b2.  

For parameter set b1, where the intercept is equal to 0, the grassland parameter is equal to 

-2 and the forest parameter is equal to 6, the true regression coefficient was outside the 95% 

confidence intervals for the forest estimate in scenarios E, F, and G (Figure 2.7). Also for b1, the 

95% confidence intervals for the grassland estimates for all scenarios did include the true 

regression coefficient; however, they all included zero (Figure 2.8). For parameter set b2, where 

the intercept is equal to 0, the grassland parameter is equal to 6 and the forest parameter is equal 
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to -2, the true regression coefficient was outside the 95% confidence intervals for the grassland 

estimate in scenarios E, F, G, K, and L (Figure 2.9). Furthermore, for b2, the 95% confidence 

intervals for the forest estimates for all scenarios did include the true regression coefficient; 

however, the 95% confidence intervals of scenarios D, E, F, and G did include zero (Figure 

2.10). All scenarios with parameter set b1 provided 95% confidence intervals that bracketed the 

true intercept (Figure 2.11). The 95% confidence interval for the intercept of scenario G with 

parameter set b2 did not include zero which also means it did not include the true intercept 

(Figure 2.12).  

In summary, for parameter set b1, all scenarios gave 95% confidence intervals that 

included zero for the grassland parameter estimate, and the true regression coefficient was found 

in all 95% confidence intervals created from the average standard error of scenarios A, B, C, D, 

H, I, J, K, and L. For parameter set b2 scenarios A, B, C, H, I, and J produced 95% confidence 

intervals created from the average standard error, which included the true regression coefficients 

and did not include zero for the grassland estimate and forest estimate. 

The true parameter value for forest (6) was omitted from >50% of the 95% confidence 

intervals estimated in the 1,000 iterations for simulations of scenarios E – G (Table 2.2). The true 

parameter value for grassland (6) was omitted from >50% of the 95% confidence intervals 

estimated in the 1,000 iterations for simulations of scenarios E – G, K, and L (Table 2.3).   

The predicted occupancy maps visualized the change in regression coefficients from each 

scenario in a specific location. Scenario A produced a map that predicted occupancy when the 

land cover map correctly classifies the land cover at the time of animal sampling (Figure 2.13) 

and serves as the most accurate prediction of animal occupancy. The map for scenario J 

predicted occupancy when the land cover map was accurately classified 3 years before the time 
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of animal sampling (Figure 2.14). The map for scenario E predicted occupancy when mapping 

accuracy is 70% (i.e., 70% of pixels are correctly classified) for all habitat classes in the map 

extent (Figure 2.15). The three scenarios show differing occupancy maps of the same geographic 

area. I did not conduct quantitative comparisons of the maps, but instead used the maps for visual 

comparisons of the spatial arrangement of occupancy hot spots. Compared to the map from 

scenario A, the map from scenario J loses the areas with very high (ψ > 0.8) occupancy 

probability. That is, when the land cover was three years out of data, probable occupancy was 

under estimated for areas with high occupancy probability. While the map from scenario E 

retains very similar areas of high occupancy probability (ψ > 0.8), the low and intermediate areas 

of occupancy probability (0.2 < ψ < 0.6) appear to vary between the maps from scenario A and E 

(Figure 2.13, 2.15). That is, when 30% of the pixels are misclassified, occupancy probability was 

under estimated areas with low to moderate occupancy.  

 

DISCUSSION 

This simulation study provided evidence that low to moderate levels of misclassification 

in land cover data can affect occupancy estimation and assessment of habitat relationships. 

Simulations run with scenario B produced average regression coefficients that were bias (e.g., 

did not include the true parameter value). Simulations run with scenarios C – G, which specified 

accuracy of the land cover classes to be 90 – 50%, also produced average regression coefficients 

that were bias. Simulations run with scenarios H – L (i.e., land cover change in one year 

intervals) produced average regression coefficients that were bias; however, the grassland 

regression coefficients had more extreme bias than the forest coefficients.  
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I found the accuracy of the specific land cover class of interest was not the only 

determinate of regression coefficient bias when using land cover proportions. The accuracy of 

the other land cover classes will affect the regression coefficient by influencing the proportion of 

land cover of interest. For example, if true land cover in a specified area is composed of 50% 

grassland and 50% forest and 15% of grassland is misclassified as forest and 15% of forest is 

misclassified as grassland then grassland and forest proportions stay the same. This is most likely 

the reason why with parameter set b2 (e.g. Intercept = 0, Grassland = 6, Forest = -2) the mean 

regression coefficients for scenario E and J differ, even though the class accuracy for grassland is 

similar (i.e., 70% and 69.7% respectively). Scenario E had 15% of the high proportion of forest 

and other be reclassified as grassland while scenario J had < 3% of forest and other be 

reclassified as grassland. Grassland in scenario E had a large net gain while grassland in scenario 

J had a very small net loss. Many studies have found there is a positive relationship of land cover 

class abundance and accuracy (Wickham et al. 2004, Wickham 2010). In this study I used the 

accuracy of grassland land cover (i.e. a rarity in the EGCP) and forest land cover (i.e. common in 

the EGCP) to guide the creation of scenarios that described misclassification. I did not create 

scenarios that showed a negative relationship of land class abundance and accuracy, because of 

this, there is difficulty in describing the effects of land cover proportion separately from 

accuracy. That is, it is difficult to distinguish whether the parameter estimate biases in my 

simulation study were due to the fact that there was error added to the land cover proportions or 

if because when the proportions of a specific habitat type are quite small to start with, small 

changes might have larger effects on parameter estimates. To separate theses effects I performed 

additional analyses using 50% and 90% accuracy for both land cover proportions to gain 

preliminary results that would indicate the effect of starting land cover proportion and land cover 
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accuracy. With this post hoc partial assessment, results indicated that land cover accuracy affects 

regression coefficient bias and habitat proportion affects the variance of the regression 

coefficient. This is of concern since only 7 of the 16 land cover classes in the 2006 NLCD 

exceed 80% user accuracy (Wickham 2013).  These additional analyses suggest that when a land 

cover type of interest is limited or rare in the study area, the effects of misclassification error in 

remotely sensed data might be a greater concern. 

In the EGCP land cover changes frequently for 3 land cover classes (shrub/scrub, 

evergreen forest, and grassland/herbaceous). This is most likely due to timberland clearcutting 

and the long growing season that allows for quicker successional changes. Evergreen forests are 

cut down for industry and an open patch is left where grasses, vines, and woody shrubs grow. 

The open patch is eventually replanted with trees or natural regeneration will occur and trees will 

grow. The patch then becomes an evergreen forest again. This study used 5 scenarios that had 

estimated land cover change data from a freely available and widely used land cover product. All 

of the scenarios produced average regression coefficients that were bias. The most extreme bias 

occurred in the grassland parameter estimates. This is most likely because grasslands in the 

EGCP experience relatively high rates of land cover change. The rates of these changes explored 

here may be much more predictable with silviculture models that are able to estimate young tree 

height for each year (Zhang et al. 1996). Researchers could incorporate these known rates into 

land cover covariate estimates used in occupancy or other habitat relationship research. 

However, ecological time lag could counteract the effects of the highly dynamic landscape in the 

southeast, by allowing species to persist in an area for several years after land cover change 

(Metzger et al. 2009). 
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   I viewed this simulation study as the first step in developing an understanding of how 

misclassification might affect occupancy covariate analyses and future simulation analyses might 

expand their assessment to look at more than two habitat classes. Combining 16 habitat classes 

into 3 simplified the simulation and results, allowing for easier interpretation. Furthermore, I 

used only land cover proportions as covariates in the simulation to keep the simulation relatively 

simple for interpretation. However, land cover proportions are not the only remotely sensed land 

cover measurements used in occupancy modeling (Prugh et al. 2008). Habitat pattern metrics, 

which consider spatial patterns of land cover, are also affected by misclassification and the other 

errors in land cover data described in this study. The error found in land cover data has spatial 

properties and is not randomly distributed across the land cover map. Knowing the spatial 

distribution of error may allow insight into the causes of error and improve our understanding of 

how error affects land cover metrics. There are known correlations between habitat abundance 

and several habitat pattern metrics (Wang et al. 2014). Burnicki (2012) found error in land cover 

change maps impacted the number of patches and mean nearest neighbor metrics, while having 

little impact on patch shape and size metrics. It may be sensible to continue this research with 

covariates that measure spatially referenced land cover data such as total core area, mean 

nearest-neighbor distance, and total edge.  

 

Management Implications 

Habitat use and occupancy models are important tools used by researchers to understand 

the relationships of species and the habitats in the landscape (Morrison et al. 2012). However, 

when the habitat data used in models has known errors, it is up to the researchers to determine if 

the error in the habitat data will affect the interpretation and results of the model. Here, I 
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demonstrated with simulated data how errors in remotely sensed land cover data can affect the 

results from a binomial GLM that evaluates habitat relationships. The regression coefficients that 

are used to predict occupancy can be easily biased with error in land cover data. The biases in the 

scenarios studied here weakened the habitat relationships adding ambiguity to the occupancy 

predictions. The predicted occupancy map for scenario A, no error, indicated several patches 

with predicted occupancy >80%. However when using the current presence/absence data with a 

3 year old map (i.e., scenario J) under the assumption that the species is occupying the landscape 

based on the current land cover and not the land cover in the 3 year old map, the patches of 

predicted occupancy >80% disappeared. If highly mobile species can change their occupancy in 

the landscape at the same rate as land cover change then estimations of habitat relationships 

could be incorrect when using older land cover data. A decision maker that was given the map of  

scenario A would most likely prioritize the northeast portion for conservation efforts. If the 

decision maker was give the map of scenario J they may be more reluctant to prioritize 

conservation efforts in the northeast even though the true predicted occupancy is much greater 

than shown. Without a rigorous quantitative analysis of a broad spatial areas I cannot conclude 

that this pattern will hold true beyond the small area that I mapped, but I can infer that predicted 

occupancy has the potential to change on the landscape which could affect management 

decisions with respect to spatial arrangement of habitat acquisition, restoration or other habitat 

management decisions. For effective conservation actions, decision makers may need consider 

the accuracy of the remote sensing data used in models that create the regression coefficients that 

will be incorporated into management decisions.  
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TABLES AND FIGURES 

 

Table 2.1. The scenarios (A-L) that were used in a simulation to evaluate the effects misclassification in 

land cover data has on regression coefficients from occupancy models. The values are means that were 

used, plus a standard deviation of 0.05, to create a beta distribution to draw an error value for the 

simulation. 

Scenario 

grassland 

to 

grassland 

grassland 

to forest 

grassland 

to other 

forest to 

grassland 

forest 

to 

forest 

forest 

to other 

other to 

grassland 

other to 

forest 

other to 

other 

A 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 

B 0.75 0.03 0.22 0.01 0.91 0.08 0.03 0.08 0.89 

C 0.90 0.05 0.05 0.05 0.90 0.05 0.05 0.05 0.90 

D 0.80 0.10 0.10 0.10 0.80 0.10 0.10 0.10 0.80 

E 0.70 0.15 0.15 0.15 0.70 0.15 0.15 0.15 0.70 

F 0.60 0.20 0.20 0.20 0.60 0.20 0.20 0.20 0.60 

G 0.50 0.25 0.25 0.25 0.50 0.25 0.25 0.25 0.50 

K 0.90 0.04 0.06 0.01 0.98 0.01 0.00 0.01 0.99 

L 0.80 0.08 0.13 0.01 0.97 0.02 0.00 0.02 0.98 

M 0.70 0.11 0.19 0.02 0.95 0.03 0.00 0.02 0.97 

N 0.60 0.15 0.25 0.03 0.93 0.04 0.00 0.03 0.96 

O 0.49 0.19 0.32 0.04 0.91 0.05 0.00 0.04 0.96 
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Table 2.2. Percent of the 1,000 iterations for each simulation where the true parameter value was 

omitted from the 95% confidence interval. The true parameter values used in these simulations 

were h21 = 0, h22 = -2. h23 = 6. 

Scenario Intercept Grassland Forest 

A 4% 6% 4% 

B 9% 5% 10% 

C 9% 7% 15% 

D 12% 8% 34% 

E 19% 10% 60% 

F 32% 17% 87% 

G 48% 22% 99% 

H 5% 7% 7% 

I 8% 10% 8% 

J 7% 11% 8% 

K 8% 16% 9% 

L 7% 22% 12% 
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Table 2.3. Percent of the 1,000 iterations for each simulation where the true parameter value was 

omitted from the 95% confidence interval. The true parameter values used in these simulations 

were h21 = 0, h22 = 6. h23 = -2. 

Scenario Intercept Grassland Forest 

A 6% 5% 6% 

B 5% 33% 6% 

C 6% 14% 7% 

D 18% 38% 13% 

E 32% 61% 26% 

F 48% 85% 33% 

G 62% 95% 46% 

H 6% 9% 5% 

I 6% 26% 8% 

J 4% 46% 6% 

K 6% 66% 8% 

L 6% 87% 11% 
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Figure 2.1. The average regression coefficients and 95% confidence intervals from 1000 

replicates for the grassland parameter from binomial generalized linear regression using land 

cover proportions that have been changed to reflect different classification errors. The true 

parameter values used in these simulations were h21 = 0, h22 = -2. h23 = 6. 
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Figure 2.2. The average regression coefficients and 95% confidence intervals from 1000 

replicates for the grassland parameter from binomial generalized linear regression using land 

cover proportions that have been changed to reflect different classification errors. The true 

parameter values used in these simulations were h21 = 0, h22 = 6. h23 = -2. 
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Figure 2.3. The average regression coefficients and 95% confidence intervals from 1000 

replicates for the forest parameter from binomial generalized linear regression using land cover 

proportions that have been changed to reflect different classification errors. The true parameter 

values used in these simulations were h21 = 0, h22 = -2. h23 = 6. 
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Figure 2.4. The average regression coefficients and 95% confidence intervals from 1000 

replicates for the forest parameter from binomial generalized linear regression using land cover 

proportions that have been changed to reflect different classification errors. The true parameter 

values used in these simulations were h21 = 0, h22 = 6. h23 = -2. 
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Figure 2.5. The average regression coefficients and 95% confidence intervals from 1000 

replicates for the intercept from binomial generalized linear regression using land cover 

proportions that have been changed to reflect different classification errors. The true parameter 

values used in these simulations were h21 = 0, h22 = -2. h23 = 6. 
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Figure 2.6. The average regression coefficients and 95% confidence intervals from 1000 

replicates for the intercept from binomial generalized linear regression using land cover 

proportions that have been changed to reflect different classification errors. The true parameter 

values used in these simulations were h21 = 0, h22 = 6. h23 = -2.  
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Figure 2.7. The 95% confidence intervals calculated from the average standard error from 1,000 

iterations for the grassland parameter from binomial generalized linear regression using land 

cover proportions that have been changed to reflect different classification errors. The true 

parameter values used in these simulations were h21 = 0, h22 = -2. h23 = 6. 
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Figure 2.8. The 95% confidence intervals calculated from the average standard error from 1,000 

iterations for the grassland parameter from binomial generalized linear regression using land 

cover proportions that have been changed to reflect different classification errors. The true 

parameter values used in these simulations were h21 = 0, h22 = 6. h23 = -2. 
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Figure 2.9. The 95% confidence intervals calculated from the average standard error from 1,000 

iterations for the forest parameter from binomial generalized linear regression using land cover 

proportions that have been changed to reflect different classification errors. The true parameter 

values used in these simulations were h21 = 0, h22 = -2. h23 = 6. 
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Figure 2.10. The 95% confidence intervals calculated from the average standard error from 

1,000 iterations for the forest parameter from binomial generalized linear regression using land 

cover proportions that have been changed to reflect different classification errors. The true 

parameter values used in these simulations were h21 = 0, h22 = 6. h23 = -2. 

 

 



70 

 

 

Figure 2.11. The 95% confidence intervals calculated from the average standard error from 

1,000 iterations for the intercept from binomial generalized linear regression using land cover 

proportions that have been changed to reflect different classification errors. The true parameter 

values used in these simulations were h21 = 0, h22 = -2. h23 = 6. 
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Figure 2.12. The 95% confidence intervals calculated from the average standard error from 

1,000 iterations for the intercept from binomial generalized linear regression using land cover 

proportions that have been changed to reflect different classification errors. The true parameter 

values used in these simulations were h21 = 0, h22 = 6. h23 = -2.  
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Figure 2.13. A map that visualizes the predicted probability of occupancy in a geographic space 

clipped from the 2011 NLCD in the EGCP using parameter set b2, under scenario A. Scenario A 

occurs when the land cover map has no error.  

 



73 

 

 

Figure 2.14. A map that visualizes the predicted probability of occupancy in a geographic space 

clipped from the 2011 NLCD in the EGCP using parameter set b2, under scenario J. Scenario J 

occurs when current presence/absence data is modeled with a map created 3 years prior that does 

not take into account land cover change over time. 
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Figure 2.15. A map that visualizes the predicted probability of occupancy in a geographic space 

clipped from the 2011 NLCD in the EGCP using parameter set b2, under scenario E. Scenario E 

is modeled with a user accuracy of 70% for each habitat covariate.  


