
Analyzing the Effects of Sequencer Discrepancies on Next-Generation Genome
Assembly Tools

by

Michael J. Pritchard Jr.

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 6, 2016

Keywords: Bioinformatics, Genomics, Genome Assembly

Copyright 2016 by Michael J. Pritchard Jr.

Approved by

Weikuan Yu, Co-chair, Associate Professor of Computer Science and Software Engineering
Saad Biaz, Co-chair, Associate Professor of Computer Science and Software Engineering
Hari Narayanan, John J. and Gail Watson Professor of Computer Science and Software

Engineering

Abstract

The advent of Next-Generation Sequencing (NGS) techniques in the early 21st century

massively increased genetic sequencing throughput while dramatically reducing associated

costs. This is turn lowered barriers of entry sufficient to permit vastly expanded research

interests. To handle the resulting explosion of sequencing data being produced, new tech-

niques for assembling genomes, transcriptomes, and proteomes were required. In the last

15 years, numerous tools for each of these assembly categories have arisen, each purporting

superiority relative to other tools. In particular, de novo genome assembly has spawned more

than 75 tools utilizing different assembly pipelines, error correcting methods, and novel data

structures. Previous works have shown that no one tool can lay claim to general supremacy

- some are, by design or happenstance, better suited to certain data types (e.g. human,

plant, or bacteria genomes). What these works have not done is shown how variations in se-

quenced libraries affect assembly or explained why these effects occur. The goal of this work

therefore is to analyze these effects. Execution of this goal is split into two primary parts:

an in-depth architectural analysis of several popular de novo genome assemblers including

expected behavioral changes across sequencer variations, and evaluations of these tools using

data sets permuted over a range of coverage depths, read lengths, and read types. The focus

of this work is to assess the flexibility of several popular de novo genome assemblers (which

can grouped as either utilizing de Bruijn graphs or a hybridized approach for their assembly)

with respect to sequencer variations over a single genome. The results of the evaluations

revealed a startlingly high sensitivity to variation in the de Bruijn based assemblers even

with libraries that would, at first glance, appear far better suited to assembly. Though error

detection and correction methodologies worked exceptionally for both de Bruijn assemblers,

the maximum contig length and other important metrics degraded rapidly as library coverage

ii

increased. As expected, the hybrid de Bruijn/String graph approach was not as vulnerable

to these same variations, but had its own shortcomings. The minimum threshold of coverage

for reasonable assembly was higher than the pure de Bruijn approaches; additionally, the

incidence of misassembled contigs was much higher. The analysis performed in this work

provides useful and practical insights into the behaviors of genome assemblers which can

both ease assembly tuning and expedite the process of choosing appropriate data sets for

future research.

iii

Acknowledgments

I would like to thank Dr. Weikuan Yu, my research advisor and committee co-chair,

first and foremost for welcoming me into his research group. His willingness to expand his

existing research into the realm of bioinformatics gave me an unprecedented opportunity to

learn and grow as a student. Aside from providing the opportunity for me to delve into the

fields of both bioinformatics and high-performance computing systems, Dr. Yu’s tutelage

improved my technical writing, presentation, and research skills. I am honored to have been

able to work with you.

I would also like to thank the other members of my committee, Dr. Saad Biaz (co-

chair) and Dr. Hari Narayanan, for their support and guidance. Outside the context of my

committee, I have worked with Dr. Narayanan as a teaching assistant for his introduction

and advanced algorithms courses – an opportunity I am pleased to have been able to pursue.

Working with Dr. Narayanan and aiding my fellow students in this capacity has both further

developed my own understanding of the material and improved my ability to communicate

ideas effectively.

Much of my tenure as a graduate student at Auburn University was spent as a member

of the Parallel Architecture and Systems Laboratory (PASL), and so I’d like to thank in

no particular order my fellow lab-mates: Kevin Vasko, Hai Pham, Xinning Wang, Dr. Bin

Wang, Dr. Zhuo Liu, Dr. Cong Xu, Dr. Hui Chen, Dr. Jianhui Yue, Huansong Fu, Lizhen

Shi, Fang Zhou, Teng Wang, Yue Zhu, and Hao Zhou. The PASL group was enormously

helpful and constantly piqued my research interest in a variety of topics. Working with all

of you was a pleasure and an honor, and I wish each and every one of you all the best.

I’m immensely grateful for my family members, without whose endless support, love, and

faith in me I would not be where I am today: Carol Pritchard (mother), Michael Pritchard

iv

(father), Grace Pritchard (sister), Laurel Novack (sister), Scott Novack (brother-in-law), and

Isabelle Novack (niece). You are all anyone could ask for in a family, and I love you all.

Finally, I’d like to express my gratitude to my friends, new and old. Each of you has

helped shape the person I am today, and I’m glad to have met you all. You’re the best.

v

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . viii

List of Tables . ix

1 Introduction . 1

2 Background and Motivation . 4

2.1 Sequencing as a Computational Problem . 4

2.2 Next-Generation Sequencing . 5

2.2.1 Read Types . 6

2.3 Genome Assembly Techniques . 7

2.3.1 Overlap Layout Consensus . 7

2.3.2 de Bruijn Graphs . 7

2.4 Tools Utilized . 8

2.4.1 ART . 8

2.4.2 SOAPdenovo . 9

2.4.3 Velvet . 10

2.4.4 StriDe . 10

2.4.5 QUAST . 11

3 Related Work . 12

3.1 Assemblathon . 13

3.2 GAGE . 13

4 Characterization and Analysis of Evaluated NGS Tools 15

4.1 Ease of Use . 15

vi

4.1.1 SOAP . 15

4.1.2 Velvet . 16

4.1.3 StriDe . 17

4.2 Architectural Differences . 17

4.2.1 de Bruijn vs. Hybrid . 17

4.2.2 SOAP vs. Velvet . 18

4.3 Expected Behavior with Input and Parameter Variation 20

4.3.1 Coverage . 20

4.3.2 Read length . 22

4.3.3 Read type . 23

4.3.4 k -mer Value . 24

5 Evaluation . 25

5.1 Testing Environment . 25

5.1.1 Hardware Specifications . 25

5.1.2 Assembler Parameters . 25

5.1.3 Data sets . 26

5.2 Evaluation Criteria . 26

5.3 Length 75 Single-end Reads . 27

5.4 Length 150 Single-end Reads . 30

5.5 Length 75 Paired-end Reads . 31

5.6 Length 150 Paired-end Reads . 35

6 Conclusion and Future Work . 37

Bibliography . 39

vii

List of Figures

2.1 Example of shotgun sequencing [17] . 6

2.2 Illustration of Single-end vs. Paired-end Read [5] 6

2.3 Example construction of a de Bruijn graph . 8

4.1 Example of a length three tip in a graph . 19

5.1 Length 75 Single-end Read N50 Values . 29

5.2 Length 75 Single-end Read Max Contig Values 29

5.3 Length 150 Single-end Read Total Length . 31

5.4 Length 150 Single-end Read Contig Count . 32

5.5 Length 75 Paired-End Read N50 Values . 33

5.6 Length 75 Paired-end Read Max Contig Values 34

5.7 150 Length Paired-End Read Total Length . 35

viii

List of Tables

5.1 Library size in Megabytes . 26

5.2 Evaluation of Length 75 Single-end Reads . 28

5.3 Evaluation of Length 150 Single-end Reads . 32

5.4 Evaluation of Length 75 Paired-End Reads . 34

5.5 Evaluation of Length 150 Paired-End Reads . 36

ix

Chapter 1

Introduction

The advent of Next-Generation Sequencing (NGS) techniques in the early 21st century

completely revolutionized the landscape of genomic, transcriptomic, and proteomic research.

The combination of drastically reduced per-base sequencing costs coupled with huge through-

put increases dramatically lowered financial barriers-of-entry for researchers, resulting in an

explosive growth of both quantity and variety of sequenced genomes. At the outset of the

Human Genome Project in 1990, the estimated cost of to sequence the entire 3 billion base

pair human genome was a staggering three billion dollars [9]. In addition, it was expected

that fifteen years would be necessary for the sequencing itself to be carried out. By compar-

ison, current generation solutions can sequence an entire human genome for approximately

one thousand dollars in under three days [3].

Classically, genetic sequencing was performed by the chain-termination method, popu-

larly known as Sanger sequencing. The method was developed independently by Frederick

Sanger[12][13] and Walter Gilbert[6] in 1977, and would prove to be a cornerstone of genetic

sequencing for decades to come. Sanger sequencing was first automated in 1986, resulting in

a huge throughput increase and representing a milestone on the path towards next-generation

sequencing. Though a slow and expensive process (relative to next-generation sequencing),

modern Sanger sequencing produces relatively long sequences (in the range of 300-1000 base

pairs in length on average) with a high degree of accuracy. These qualities make Sanger

sequencing appealing for individuals working with very small data sets, or for secondary

verification of particular next-generation assemblies.

Currently, there are four primary second-generation sequencing platforms in use: Roche

454, SOLiD, Illumina, and Ion Torrent. Roche 454, the first successful next generation

1

system from a commercial standpoint, was released in 2005 and had a read length of 100-150

base pairs and a throughput of 20 Mb per run [21]. Current Roche 454 models provide reads

up to 1000 base pairs in length with approximately 700 Mb per run [2]. Sequencing by Oligo

Ligation Detection, or SOLiD, had a 2006 release with initial specifications of 35 bp reads

and 3 Gb per run. The latest offering from SOLiD, the SOLiD 4 System, generates 80-100

Gb of data per run at 35-50 bp read lengths [1]. Solexa, which was purchased by Illumina

in 2007, originally released its Genome Analyzer (GA) in 2006. At the time, it produced 1

Gb per run with length 75 reads [19]. The latest offering from Illumina dwarfs these figures

with 1500 Gb per run and length 150 reads [3]. Finally, there is Ion Torrent. Released in

2010, the initial offering yielded 200 bp reads and emphasized its low execution time of two

hours [19]. Ion S5, the latest revision of the platform, can produce up to 15 Gb per run with

200 bp reads or 8 Gb per run with 400 bp reads [4].

This work in particular examines the effects of varying read coverage, read length, and

read type (e.g. single, paired) on three de novo genome assemblers: SOAPdenovo, Velvet, and

StriDe. The research presented in this work differentiates itself predominantly by focusing

on broadly permuting sequencer attributes over a single reference genome – previous efforts

at analyzing the quality of assembly tools provide one or more representative genomes (e.g.

human, plant, bacteria) with either fixed sequencer attributes or a very limited selection of

sequencer variations. In addition, a detailed architectural analysis of the tools and how the

variations affect the structure of produced graphs set it apart from previous works. The data

sets used were generated in silico with ART, a suite of sequencer read simulator tools. A

portion of the reference genome for Caenorhabditis elegans was the basis for the simulated

reads. Finally, the assembled reads for each permuted data set were analyzed against the

reference using the Quality Assessment Tool for Genome Assemblies (QUAST).

The remainder of this work proceeds as follows: Chapter 2, background and motivation,

will provide a primer on genetic sequencing concepts and terminology and an overview of

key techniques utilized by next-generation sequence assemblers. In addition, a high-level

2

description of the tools used in the work will be presented. An exploration of previously

published efforts at analyzing assembler quality will be presented in Chapter 3. Chapter 4

characterizes and compares the architectures of the tools utilized in the work and details the

expected behavior of the tools as variations are introduced. An evaluation of the previously

mentioned assemblers over applicable data sets will be discussed in Chapter 5. Finally,

Chapter 6 will contain concluding remarks and suggestions for future work.

3

Chapter 2

Background and Motivation

This chapter has two particular aims: providing a more detailed coverage of the ma-

terial mentioned in the Chapter 1, and providing the overall motivation for the work. As

bioinformatics is a topic encompassing multiple disciplines, primers on key concepts will be

presented with the hope of resolving unfamiliar aspects. Section 2.2 will provide a detailed

introduction to genetic sequencing concepts and terminology from a computational perspec-

tive. Section 2.3 provides details on two popular construction techniques critical to modern

assembly methods: Overlap Layout Consensus and de Bruijn graphs. Finally, a brief intro-

duction and high-level description of the tools utilized in this work will be given in section

2.4. Further information on each of these topics can be acquired by perusing referenced

works.

2.1 Sequencing as a Computational Problem

Before delving into the particulars of sequencing platforms and assemblers, it is useful to

frame the overall problem of genome assembly (in particular, genome assembly via shotgun

sequencing) as a computational problem. Each strand in the double-helix structure of DNA is

composed of nucleotides. In particular, those nucleotides contain one of four bases: adenine,

thymine, guanine, or cytosine. Each base from one strand bonds with one base from the

other, forming a base pair. These pairs obey base pairing rules – adenine only bonds with

thymine, and cytosine only bonds with guanine. We can simplify the visualization of these

bonds by imagining each strand to be a string of characters, the alphabet of which is size

four (A, T, G, and C). The act of sequencing a strand of DNA is doing just that – examining

the molecular structure of each nucleotide and resolving it to a character in a string. Having

4

established the correlation between genetic (DNA) sequences and strings, several terms which

will be used frequently through the course of this work can be given definitions relative to

strings and characters:

• A sequence or read (the terms will be used interchangeably) is a string comprised of

the alphabet {A, T, G, C}

• A base is a character in a string

• A base pair is a character and its complement, each occupying the same position in

their respective sequences

The concept of coverage, which is of some importance to this work, is a numerical value

denoting the average representation of each base. It can be calculated by multiplying the

total number of reads by the ratio of average read length to genome length.

2.2 Next-Generation Sequencing

Second-generation sequencing techniques (the first generation being Sanger sequencing)

operate on the principle of shotgun sequencing. This methodology, visualized in Figure

2.1, is predicated upon generating numerous random sequences of relatively small size. The

size of the sequenced fragments is restricted by underlying chemical and technological limi-

tations. One important aspect of shotgun sequencing not explicitly represented in Figure 2.1

is amplification, the process by which DNA is copied. Restructuring the original sequence

without amplification would be impossible, as randomly fragmentation does not preserve any

ordering information. By producing numerous copies of the original sequence and randomly

fragmenting each, we produce sequences which overlap with one another. This overlap serves

as the basis for sequence reconstruction.

5

Figure 2.1: Example of shotgun sequencing [17]

Figure 2.2: Illustration of Single-end vs. Paired-end Read [5]

2.2.1 Read Types

Two varieties of reads are utilized in this work: single reads and paired-end reads. The

former, as the name implies, sequences each fragment only once. Paired-end sequencing,

however, sequences each fragment from both ends. Since the total length of the fragment

is known, we know the exact distance between the two reads [5]. This is turn improves the

chances of correctly assembling the original sequence. Figure 2.2 illustrates the structure of

a paired-end read with respect to the reference.

6

2.3 Genome Assembly Techniques

2.3.1 Overlap Layout Consensus

Prior to the advent of high-throughput short-read sequencers, Overlap Layout Consensus

(OLC) was the primary technique utilized by assemblers [23]. With OLC, each read is

represented as a node, with directed edges between nodes indicating pairwise alignment.

An ordered Hamiltonian cycle of the graph produces a candidate genome. The limitation

of this method lies with the inherent complexity of finding a Hamiltonian Cycle – an NP-

hard problem. As such, the number of reads constituting the genome must be small (else

the problem becomes computationally intractable). This is turn limits application of this

technique to either long reads or short genomes.

The string graph variant of OLC simplifies the graph by removing transitive edges.

Further reductions in construction cost have arisen by utilizing the Ferragina-Manzini Index

to efficiently compute the overlaps necessary for graph construction [27].

2.3.2 de Bruijn Graphs

The de Bruijn graph, originally proposed in 1946 [8], has largely come to replace previous

overlap-consensus based construction methods. This is due in large part to the computational

complexity involved in generated contiguous sequences with overlap-consensus techniques.

De Bruijn graphs were first utilized with regard to assembly by the EULER assembler in

2001 [24].

The construction of a de Bruijn graph can be summarized as follows:

• Consider a set of strings, each of length n. For every unique substring of length n - 1,

create a vertex and label it as the substring.

• For each pair of vertices V1 and V2, add a directed edge from V1 to V2 if the last n - 2

characters in V1 (its prefix) correspond to the first n - 2 characters in V2 (its prefix).

7

Figure 2.3: Example construction of a de Bruijn graph [10]

• Label each edge with the length n string formed by joining the prefix of V1 with the

last character in V2.

Figure 2.3 provides a visual example of a de Bruijn graph (n = 4) comprised of binary

numbers. In the context of sequence assembly, de Bruijn graphs are especially useful because

they can repeat k-mers (of which there are typically many) without inflating the size of the

graph.

2.4 Tools Utilized

In this section a brief introduction to the various tools used as part of this work will be

provided. Aside from the three assemblers evaluated (SOAP, Velvet, and StriDe), ART was

utilized to produce /textitin silico reads based on a reference genome, and QUAST generated

evaluation metrics based on contig output from the assemblers.

2.4.1 ART

ART, the sequencing read simulator used in this work, is an actively maintained suite

of tools originally published in 2012 [15]. Chief among the features of ART is its ability

to accurately simulate sequences based on Roche 454, SOLiD, or Illumina sequencers. For

each of these platforms, ART has built-in empirically determined error profiles capable of

8

reproducing both substitution and indel errors as appropriate. Additionally, custom error

profiles or scaled error profiles (e.g. 1/10th or 2x standard) can be specified. For the read

lengths used in this work (75 bp and 150 bp), the Illumina Genome Analyzer II and Illumina

HiSeq 2500, respectively, were used as the error profiles.

2.4.2 SOAPdenovo

Short oligonucleotide alignment program (de novo), or SOAPdenovo [25] (SOAPden-

ovo2 [20] to be more precise) is the first of the assembly tools being analyzed in this work.

Released in 2010, SOAPdenovo was a de novo) variant of the original SOAP [18], a strictly

ab initio assembler. SOAPdenovo contains a full assembly pipeline based on de Bruijn graph

construction.

Prior to graph construction, SOAPdenovo analyzes the read libraries to prune erroneous

reads. This has the side effect of drastically reducing the number of distinct k-mers gen-

erated from the library, thus saving memory. For the human genome used in the original

SOAPdenovo paper, the number of distinct k-mers generated was reduced from 14.6 million

to 5 million – a reduction of almost 3 times [25].

After the initial de Bruijn graph has been constructed, SOAPdenovo performs four

correcting techniques: short tip clipping, low-coverage removal, tiny repeat resolution, and

bubble merging. Tips shorter than 50 bp are removed, as are low-coverage nodes that

appear only once. Read path information is used to resolve small repeats, and low-difference

bubbles were merged by analyzing depth information at the bubble site. From this corrected

de Bruijn graph contigs are generated and those of length greater than 100 are reported.

The last two phases in the assembly pipeline for SOAPdenovo are scaffolding and gap

closure. Scaffolding is achieved by aligning the original paired-end reads with the set of

contig sequences. Gaps are closed by taking paired reads that match a contig well at one

end are in the insert region on the other. Typically these reads would have been marked as

duplicates and masked prior to scaffold construction.

9

2.4.3 Velvet

Released in 2008, Velvet was one of the first de Bruijn-based assemblers designed to

handle very short reads [28]. Velvet’s pipeline begins by constructing a standard de Bruijn

graph (see Chapter 2 for more information), then simplifies the graph by iteratively collapsing

”blocks.” A block consists of two nodes, with one node’s only outgoing edge corresponding to

the other’s only incoming edge. Following simplification, Velvet undergoes a graph correction

phase very similar to SOAP’s: tips, bubbles (referred to ”bulges” in the original source), and

erroneous connections. Tips shorter than twice the k-mer value are cut, while bubbles are

collapsed utilizing the Tour Bus algorithm. Tour Bus detects redundant paths by executing a

breadth-first search from an arbitrary start node. A distance metric based on arc multiplicity

gives high coverage paths priority. When a previously-visited node is discovered along a path,

a common ancestor is found between the convergent paths, with the lower multiplicity path

being merged. Erroneous connections are removed based on a coverage cutoff value (typically

set by the user).

2.4.4 StriDe

StriDe, an integrated string and de Bruijn-based assembler, is the newest of the as-

semblers being evaluated in this work (it was released in January of this year). The main

concept behind the StriDe assembler is the identification of two distinct types of read re-

gions: repetitive and error-prone [16]. In repetitive regions, a walk of feasible extensions to

paired-end reads is performed. The result of this walk transforms the paired-end read into a

long read. Paired-end reads which cannot be extended are considered to be an error-prone

regions. In these regions, the reads are decomposed into smaller, overlapping sub-reads at

potential breakpoints (i.e. those points at which an error may exist). This ensures flexibility

when the final assembly is performed. The extended and decomposed reads are combined

into a string graph, and error correction procedures are performed.

10

2.4.5 QUAST

The QUality ASessment Tool for Genome Assemblies, QUAST [14], is a fully featured

assembly evaluation suite. Released in 2013, QUAST was designed to provide a comprehen-

sive selection of metrics with maximum ease-of-use. One major advantage to QUAST over

other assessment tools (e.g. GAGE, Assemblathon) is that QUAST can evaluate assemblies

without the assistance of a reference genome. Additionally, multiple assemblies can be few to

QUAST simultaneously to provide competitive analysis – it can even automatically generate

plots. More than 30 metrics are generated in the presence of a reference genome, eight of

which were included as evaluation criteria in this work.

11

Chapter 3

Related Work

In this chapter two pre-existing works related to genome assembler quality analysis,

GAGE and Assemblathon, will be discussed. Assemblathon 1 was published in 2011, while

GAGE was published in 2012. Each has since released a follow-up work. It is typical for cre-

ators of new assemblers to provide some manner of evaluation against existing tools. Though

no malice is assumed on the part of creator, several biasing factors have to be considered.

First and foremost, there is an inherent imbalance in relative expertise: the tool’s creator

has an inherent advantage with regard to parameter tuning for his/her assembler. The same

intimate level of familiarity will not be present when determining which combination of pa-

rameters to utilize with competing assemblers. In addition, assemblers are not all designed

with an agnostic attitude toward the type of data being assembled. These biasing factors,

along with the explosive growth of assembler variety, prompted the publication of the works

discussed in this chapter.

This research is differentiated from previous efforts in several notable ways. First,

the focus of this work is to assess the relative flexibility of assemblers with regard data

set variations arising from the sequencers – overall coverage, sequencer read length, and

single/paired end reads. Previous works have presented several differing data sets with

fixed sequencer attributes per data set or a very small number of sequencer variations.

Furthermore, the coverage variations used in this work (10x to 70x) are well below the 60x

to 300x coverages provided previously. As a final note utilizes the most up-to-date variants

of the representative assemblers and includes an assembler absent from previous efforts.

12

3.1 Assemblathon

Assemblathon 1, a competitive assessment of de novo short read assembly methods, was

published in 2011 by Earl et al.[11] The team responsible for the competition generated a

novel genome based partially on human chromosome 13 and then asked teams to assemble

the genome blind. Competitors were given just over a month to submit their entries. As an

additional metric, several assemblers were used with default parameters to evaluate ”naive”

executions. In total, 17 assemblers with 41 unique submissions were gathered.

Assemblathon 2, which took place in 2013, maintained the same competitive spirit of its

predecessor, but modified the underlying principles of the competition by providing three real

data sets (fish, snake, and bird) which did not have high quality reference genomes [7]. As

a result, alternative metrics were employed to evaluate the quality of the submitted assem-

blies. Four months were allotted to teams this time around, and intermediate ”evaluation”

assemblers were allowed. 43 unique assemblies from 21 participating teams were evaluated,

with the overall conclusion being that there was still significant room for improvement in

the field.

3.2 GAGE

The Genome Assembly Gold-Standard Evaluations, or GAGE, was published in 2011

by Salzberg et al.[26] Eight genome assemblers considered to be among the best were chosen

for evaluation against four distinct data sets. GAGE was conducted using in ”in-house” ap-

proach whereby a team of individuals possessed of expertise working with genome assemblers

personally tuned each tool for optimal results. Two bacteria (S. aureus and R. sphaeroides),

human chromosome 14, and Bombus impatiens, the common bumblebee, were chosen as the

representative data sets. These sets ranged from three million base pairs to 250 million base

pairs, and were all actual Illumina-sequenced data (not simulated data). With the exception

13

of Bombus impatiens, each data set possessed a high-quality reference genome from which

evaluations could be based.

The eight assemblers chosen were ABySS, ALLPATHS-LG, Bambus2, CABOG, MSR-

CA, SGA, SOAPdenovo, and Velvet. The full details concerning the parameter tuning of

these assemblers were released as supplemental material to the original publication. Though

GAGE determined that ALLPATHS-LG delivered the most consistent performance with the

best trade-off between size and error rate, concluding remarks for the work stressed the

importance of continued evaluation of assemblers.

14

Chapter 4

Characterization and Analysis of Evaluated NGS Tools

This chapter contains a characterization of the assemblers evaluated in the work. Among

the factors characterized are ease-of-use, sequencer platform compatibility, architectural dif-

ferentiations, and expected behaviors as parameters and sequencer attributes vary. Given

the popularity of de Bruijn graph-based assemblers, particular attention is given to the

underlying effects library variations have on the construction and correction of de Bruijn

graphs.

4.1 Ease of Use

Given the myriad assembly tools available for use, intangible characterizations are worth

considering. Factors such as documentation quality, ease of compilation/installation, broad

sequencer platform compatibility, and the presence or absence of convenient features can

play a non-trivial role in the selection process. In this section, each of the assemblers will be

analyzed with respect to these features.

4.1.1 SOAP

Though SOAP is available as a pre-compiled binary, the source code can also be down-

loaded and compiled manually. It is designed for use with 64-bit Linux, and has memory

requirements ranging from 5 GB to 150 GB depending on the size of the input genome.

Among the three assemblers, SOAP is unique in requiring a configuration file. This

file specifies the location of the read libraries to be assembled and contains some basic

information on the libraries (such as maximum read length, average insert size, and whether

the sequence should be reversed). Input files can be either FASTA or FASTQ format.

15

Documentation, including descriptions of input parameters and examples of configura-

tion files, are available on the main website for SOAP. Though there are discrepancies among

the parameters listed on the site and the actual parameters included in the latest versions

of the program, the most important and likely to be used parameters are covered. A full

description of the output files generated by the pipeline and a brief FAQ are also included.

The SOAP pipeline contains four primary phases (pregraph, contig, map, and scaffold);

however, a single command suffices to execute the full pipe. Fairly extensive intermediate

outputs are generated as the pipeline executes, giving users insight into the error correction

processes and providing significant quantities of useful data aside from generated metrics.

4.1.2 Velvet

Like SOAP, Velvet primarily designed for use with 64-bit Linux operating systems,

though some support for Mac OSX and Solaris is also provided. Unlike SOAP, there is no

pre-compiled binary avaiable (as there are several compiler options which the user may wish

to modify).

The author of Velvet provides an extensive manual. Contained within the manual are

both ”quick-start” instructions and a far more comprehensive set of instructions for those

wishing to tune the assembler. The latter contains compilation instructions (with details

on the various compilation settings) and running instructions filled with example commands

and parameter details. Additionally, there is a short FAQ for considerations such as k-mer

size and coverage cutoff size.

Of the three assemblers, Velvet is the only one which requires more than a single com-

mand to execute the entire pipeline. In particular, there are two commands which must

be executed: velveth and velvetg. The velveth command takes care of hashing the read

k-mers and producing some intermediate output files necessary for the execution of velvetg.

It supports a wide variety of standard input formats such as FASTA, FASTQ, SAM, and

BAM. The velvetg command generates the de Bruijn graph and handles the remainder of the

16

pipeline (error correction, contig generation, etc). The only required input is the directory

containing the data generated by velveth, though there are a number of parameters which

can be optionally modified.

4.1.3 StriDe

Also supporting 64-bit Linux, StriDe provides both public source code and a pre-

compiled binary for download. Compilation does not require specification of any additional

parameters. StriDe supports both FASTA and FASTQ formats, but requires paired-end

reads for execution. This is in sharp contrast to SOAP and Velvet, as they support both

single-end and paired-end reads.

In terms of provided documentation, StriDe is the sparsest of the three. A few basic

examples of command execution are provided, but no comprehensive list of parameters (op-

tional or mandatory) is provided. Parameter descriptions can be gleaned from the command

line by specifying a particular stage in the pipeline and appending ”–help.”

The seven stages in the StriDe pipeline can be executed individually or as part of a

single command. Depending on the data contained within the read libraries, execution can

be achieved without specifying any additional parameters beyond the input files.

4.2 Architectural Differences

This section will break down the primary architectural differences amongst the three

evaluated assemblers. In particular, two approaches will be considered: the practical dif-

ferences between the de Bruijn-based assemblers and StriDe’s hybrid approach, and the

differences between the error-correcting methods of SOAP and Velvet.

4.2.1 de Bruijn vs. Hybrid

From a high-level perspective, StriDe is predominantly differentiated from SOAP and

Velvet through its use of a string (overlap consensus) graph to construct contigs. Below this

17

level of abstraction, a de Bruijn graph is utilized to resolve errors in short, repeated regions

of the reference while an FM-Index is employed to fill the gaps in and extend paired-end

reads. As a result of how the hybrid approach produces these extended contigs, single-end

reads cannot be utilized. This is in direct contrast to the de Bruijn-based assemblers, which

depend on paired-end reads for ordering or scaffolding contigs.

4.2.2 SOAP vs. Velvet

Both SOAP and Velvet perform various error-correcting and graph simplification meth-

ods at different points during their pipeline, not all of which occur directly on the constructed

de Bruijn graph. For example, SOAP analyzes the initial library (or libraries) and prunes

reads which can through consensus be determined as containing errors. With both SOAP

and Velvet, most of the error correction methods mentioned below are performed iteratively

until no new corrections are made.

In an effort to reduce memory consumption, Velvet simplifies the de Bruijn graph it

generates by combining singly-linked nodes into a single larger node. For example, if a node

A has an outgoing arc to node B, which has no other incoming edges, then the two nodes

can be combined without affecting the overall assembly process.

SOAP’s first method of correction is a simple removal of any node which does not

exceed the minimum coverage threshold – a value which can be set by the user, but has a

default value of one. For reasonable coverage depths, the presence of a one-off node highly

suggests a sequencer error is present. Velvet employs a similar method of removing erroneous

connections, but does not utilize it until after bubbles have been resolved.

With regard to shared correction methods, the two assemblers are first differentiated by

their approaches to clipping tips, which is a node or a series of nodes disconnected at one

end. In other words, a tip is a set of vertices and their corresponding edges which can be

disconnected from the main graph by removing all outgoing edges from a single vertex in

the set. The circled portion in 4.1 shows an example of a tip of length three. SOAP handles

18

Figure 4.1: Example of a length three tip in a graph

tips through a predetermined cutoff length. By default, this length is 50 base pairs. Velvet,

by comparison, modifies the cutoff to be twice the length of the k-mer value.

Perhaps the most complex portion of error correction in either tool is resolving bubbles,

which are paths in the graph sharing both a start and end node. Since, natural biological

variation (like single-nucleotide polymorphisms), highly similar regions, or sequencer errors

can be the underlying cause of a bubble forming, some care is when attempting to collapse

bubbles. Before analyzing a bubble to determine the perceived correct path, the average

coverage (multiplicity) of the contigs formed by the parallel paths are considered. Only if

both paths have a coverage lower than (by default) 60% of the average will one of the paths

be collapsed. If this criteria is met, the analysis continues. Paths containing only a single

base-pair difference are immediately resolved by examining path coverage. In addition, paths

with 90% or greater similarity but fewer than four base-pairs difference are resolved in the

same manner.

By contrast, Velvet employs the ”Tour Bus” algorithm: progressing from an arbitrary

node in the graph, a breadth-first search is employed across the graph. If at any point an

already-visited node is discovered, a backtracking procedure from the current node and the

already-visited node is engaged to determine their closest ancestor. These paths are then

extracted and compared to determine the consensus path. The method of comparison is a

variant on distance computed by dividing the length (in nodes) of the paths by the total

multiplicity of the arcs. As with SOAP, there are some criteria which must be met if the

19

paths are to be resolved: branch length, divergence rate, and gap count. The first of these,

branch length, is an indicator of commonality. If two paths don’t have a common k-mer of at

least 100 base pairs (this being the default value), then it is assumed the paths are sufficiently

divergent to represent distinct portions in the reference. Similarly, if the alignment of the

parallel paths diverges by more than 20%, bubble resolution does not occur. Finally, if more

than three base pairs in the longest aligned sequences of the paths are unaligned, then we

assume the paths are distinct.

Of the two methods of bubble resolution, Velvet’s is the more strict of the two. As a

result, we expect that in general (other things being equal), Velvet will produce a smaller

number of total contigs. This expectation arises from there being fewer possible permutations

of walks in the corrected and simplified de Bruijn graphs.

4.3 Expected Behavior with Input and Parameter Variation

In this section, an analysis of the behavior expected by each of the assemblers coverage

depth, read length, single-end vs. paired-end read types, and, in the case of SOAP and

Velvet, k-mer values vary will be presented. The behaviors expected will span both metrics

utilized in the evaluation portion of the work and ancillary metrics.

4.3.1 Coverage

Coverage (sometimes referred to as depth), the average representation of each base in

a library of reads, plays an important (and deceptively complex) role in assembly. On one

hand, increasing coverage increases the probability of detecting and removing reads (or k-

mers) which contain erroneous base calls. For basic error correction, reads or k-mers which

appear only once (or below some minimum specified threshold) are considered to be erroneous

and are subsequently pruned. For de Bruijn graphs, increased coverage can also mitigate

the disconnection of components due to pruning – as coverage increases, the likelihood of

cut-edges (edges whose removal disconnects a graph or component) is reduced. Clearly, a

20

true 1x coverage library (i.e. a library in which every base is represented exactly once), is

unacceptably low; by its definition, there can be no overlap amongst reads, so reassembly is

impossible. In addition, error detection cannot be performed. 2x coverage similarly prevents

a guarantee of error detection, and still cannot be used to correct errors. In short, a true

3x coverage is the absolute minimum threshold for which a reasonable expectation of error

correction can occur. Unfortunately, the library preparation methods currently employed

cannot be relied upon to provide a true coverage; in fact, significant biases in coverage depth

can be present [22]. As such, coverages in excess of 10x are usually employed to improve the

odds of each region containing sufficient overlapping reads to effect quality reassembly.

The most straightforward effect of increasing coverage is an increase in the amount of

system memory required to execute the assembly pipelines. Though the increase in library

size is linear with the coverage, only a sub-linear growth in system memory requirements

due to the size of the de Bruijn graph is expected. As coverage continues to increase, fewer

additional unique k-mers will be added to the overall graph; most of the k-mers pulled from

the added reads will be duplicates, which merely change the multiplicity of an existing edge

or create a new edge.

Though a somewhat counterintuitive notion, increased read coverage does not always

result in improved assemblies. Error correction methods for de Bruijn graphs are heavily

dependent on multiplicity (the number of times a given k-mer appears in the library); fur-

thermore, the emphasis both SOAP and Velvet place on correct assemblies (rather than

maximal length assemblies) results in their methodologies being highly conservative. In-

creased coverage tends to result in more highly-connected graphs bearing edges with larger

multiplicity values – both attributes that make it difficult to prune and simplify. As a result,

excessively high coverage can hamper the performance of de Bruijn graph-based assemblers.

One method of increasing the coverage threshold at which this performance degradation

occurs is to increase the k-mer value – as explained below, larger k-mer values tend to result

in graphs with increased node counts but less overall connectivity. It should also be noted,

21

however, that larger k-mer values increase the minimum threshold of coverage for meaningful

assembly as well.

With StriDe, the read extension portion of the assembler handles improved coverage

quite well (since the extension process is not dependent on k-mer multiplicity); however,

at very high coverages the de Bruijn portion of StriDe is expected to encounter the same

manner of performance degradation as seen in SOAP and Velvet.

4.3.2 Read length

One natural effect of increasing read length (while keeping other parameters constant)

is a monotonic increase in the minimum length of a maximum trail in the graph. That is,

an ordered set of adjacent edges (no one of which appears more than once) which cannot

be made longer and is at least as long as any other maximal trail in the graph. This effect

can be demonstrated by examining three cases: a read which contains on a single unique

k-mer, one which has the maximum (n - k + 1) number of unique k-mers, and one which

has a number of unique k-mers greater than one but strictly less than the maximum. In

the first case, the subgraph generated is a single vertex with self-referencing directed edge

of multiplicity n - k + 1. Clearly, the length of any maximal trail in this subgraph is one;

furthermore, this length cannot be changed by increasing or decreasing the length of the

read, since only the multiplicity tied to length. In the second case, a maximum trail is

constructed by starting with the edge incident to the vertex containing no incoming edges

and ending with the edge incident to the vertex containing no outgoing edges. The length

of this trail will be exactly n - k + 1, where n is the length of the read and k is the choice of

k-mer length. Holding k constant, we can see that increasing the read length will result in a

strict increase in the length of the trail. For the third case, consider a read of arbitrary length

containing a non-maximum number of unique k-mers. If we extend that read by one base

pair, two outcomes are possible: either the additional base produces a non-unique k-mer, in

which case a directed edge is produced pointing to an existing node, or a new unique k-mer

22

is produced, resulting in the creation of a new node. In the first case, the larger read has a

maximum path of equal length; in the latter, it has a longer maximum path.

From the observation above, we can see that any tips present in the de Bruijn graph

will, as read length increases, have a tendency to grow in length as well. As a result, fewer

tips arising from non-erroneous portions of the graph should be clipped.

If the average insert/fragment size of a read is held constant across increasing read

length, StriDe should show a significant increase in overall assembly quality. This is due to

the reduced FM-walk length required to bridge the gaps between each of the paired-ends of

a particular read. For example, if the average fragment size is 500 and read length is 75,

there is a 350 base pair gap between reads. Increasing the length of the reads to 150 reduces

this gap to 200 base pairs, resulting in a walk that is both statistically more likely to succeed

and computationally faster to perform.

4.3.3 Read type

From the perspective of assembler architectures, no differentiation is made between

single and paired-end reads for all phases up to scaffold construction. For SOAP and Velvet,

no additional correlations or considerations are given to paired-end data, and StriDe was

constructed with the specific goal of utilizing paired-end reads. For the evaluated de Bruijn-

based assemblers, the primary benefit to paired-end reads is the improved ability to produce

scaffolds. By utilizing the original paired-end reads as a skeleton, assembled contigs can be

assigned relative orderings.

Despite a lack of differentiation at the architectural level, the underlying structure of

paired-end reads compared to single-end reads nonetheless has the potential to affect overall

library (and, by extension, assembly) quality.

23

4.3.4 k-mer Value

The choice of k-mer value has a number of effects on the execution of de Bruijn graph-

based assemblers. The most immediate of these effects is memory consumption – as k-mer

size increases, the number of unique k-mers which can be generated grows. Consider a k-mer

size of 23 (the default value used for the two assemblers in this work): given that each vertex

is constructed of a unique string of length k-1, there are on the order of 1013 possible strings

in this space. Changing the k-mer size to 31 increases the size of this space to approximately

1018. Though both of these string spaces far exceed the typical length of genomes being

assembled, the number of unique nodes in generated graphs is nonetheless higher for all but

the most trivial of graphs (e.g. references composed entirely or almost entirely of repeated

sequences). As a result, increasing k-mer size usually results in a correspondingly larger

memory requirement. Increases in read length and coverage depth magnify this effect.

It is usually the case that larger values of k result in simpler graphs, as there is a higher

level of uniqueness amongst nodes. As a trade-off, deeper levels of coverage and higher read

lengths are required for optimum assembly. For example, setting the k-value equal to the

read length would result in only those reads which shared k-1 common bases being connected.

As this is a fairly uncommon occurrence, the connectivity of the graph would be quite poor,

resulting in low average contig length.

24

Chapter 5

Evaluation

This chapter details the experimental evaluations performed as well as an analysis of the

findings. For each of the 16 datasets, SOAPdenovo (henceforth referred to as SOAP) and

Velvet were run using k-mer sizes of 23 and 31. For the eight paired-end datasets, StriDe

was also run using its default configuration. Several important metrics are recorded for each

execution (displayed in a table for convenience), and graphical representations of data are

included were relevant. Prior to the actual evaluation and analysis, a brief synopsis on the

testing environment and a description of the evaluation criteria will be provided.

5.1 Testing Environment

5.1.1 Hardware Specifications

All sequence simulations, assemblies, and analyses were performed independently across

a set of uniform nodes. Each node possesses a 24-core Intel Xeon X5650 clocked at 2.67 GHz,

24 Gigabytes of system memory, and a 500 Gigabyte Western Digital SATA hard disk drive,

200 Gigabytes of which were allocated to the partition experiments were performed in.

5.1.2 Assembler Parameters

Aside from the variations in k-mer for SOAP and Velvet, the only parameter modifica-

tion introduced was a reduction in minimum contig size in Velvet to 100. This was done to

match the default minimum contig size of SOAP.

25

Table 5.1: Library size in Megabytes

10x 30x 50x 70x
75 BP, Single 316 948 1581 2217
75 BP, Paired 320 960 1600 2244
150 BP, Single 301 905 1509 2112
150 BP, Paired 304 912 1518 2126

5.1.3 Data sets

In total, sixteen datasets were generated for evaluation purposes. Each data set is based

on ART simulated Illumina reads from C. elegans Chromosome 1. Both single and paired-

end reads were generated, and each of these read types was produced with a length 75 and

length 150 variant. For paired-end reads, an average fragment size of 500 was used. Average

coverage was swept from 10x to 70x in intervals of 20, for a total of four coverage depths.

Table 5.1 below shows the size of each generated dataset.

5.2 Evaluation Criteria

For each set of data, eight metrics were collected to evaluate the relative performance

of each assembler:

• The # Contigs metric is a numerical value denoting the total number of separate

contiguous segments of length greater than or equal to 100 that were generated by the

assembler.

• Max Contig denotes the length of the single largest contiguous fragment assembled.

• Total Length is the sum length of all contigs reported by the assembler.

• N50 is a commonly used evaluation metric providing a succinct description of contig

length distribution. The N50 length is determined by adding contig lengths in descend-

ing order until 50% of the total assembly size has been reached – the contig length at

which this value was reached is N50. In other words, N50 length is the value at which

26

the total length of all contigs less than N50 is approximately equal to the length of all

contigs greater than N50. As an evaluation metric, larger N50 values are considered

desirable.

• N75 is analogous to N50, but with 75% of the total assembly length. N75 will always

be less than or equal to N50, and as with N50 higher numbers are generally considered

desirable.

• L50 indicates the minimum number of contigs that sum to 50% of the total assembly

length. A small L50 value (relative to the total number of contigs) means that the

assembly possesses higher quantities of large contigs.

• Misses represents the total number of misassembled contiguous fragments as deter-

mined by comparison against the reference genome.

• Miss Length adds context to misses by providing the sum length of the erroneous

contigs.

5.3 Length 75 Single-end Reads

In examining table 5.2, several correlations amongst evaluation criteria and assem-

bler/sequencer variations should noted. The first of these is the presence of misassembled

contigs in the final assembly. For both assemblers operating with either a size 23 or 31 k-mer,

a 10x coverage produces multiple errors. This indicates the presence of at least one region

wherein coverage depth was insufficient. Considering Velvet’s superior performance relative

to this metric and taking into account the known architectural differences between the two

assemblers, the probably nature of these errors can be analyzed. Given the stricter tip-cutoff

threshold of SOAP with a k-mer value of 23 (length 50 versus length 46 for Velvet), it can be

concluded that erroneous tips are not the cause of SOAP’s greater number of misassemblies.

Certainly, errors resulting from erroneous tips are possible; however, a tip which failed to

27

Table 5.2: Evaluation of Length 75 Single-end Reads

Contigs Max Contig Total Length N50 N75 L50 Misses Miss Length
SOAP K23
10x 57685 1371 11713964 219 153 17882 63 22414
30x 57200 926 9788405 176 131 19490 1 221
50x 46400 546 6470853 136 114 18082 1 232
70x 36957 466 4708010 123 109 15379 1 279
SOAP K31
10x 53575 1635 9160016 175 131 18227 39 14250
30x 21616 8238 14146131 1187 611 3442 3 2748
50x 25790 7252 14072723 983 504 4203 0 0
70x 41366 3734 13931617 494 264 8552 0 0
Velvet K23
10x 47131 2672 10714619 258 165 13027 17 7968
30x 45961 1312 8852114 205 144 14447 0 0
50x 35100 649 5279587 149 119 12957 0 0
70x 19112 502 2468233 124 109 7832 0 0
Velvet K31
10x 63296 1470 10797060 174 132 21730 18 6009
30x 24743 9038 13717099 1034 488 3604 0 0
50x 31205 6343 13950388 789 383 5014 0 0
70x 45202 4249 14147248 474 238 8790 0 0

be pruned by SOAP would also pass Velvet’s clipping measures at this k-mer value. The

most likely cause of these errors (and, in particular, the discrepancy in their quantity) is

due to the different standards employed in resolving bubbles. One or more of the bubbles

successfully resolved by Velvet was considered a distinct contig by SOAP, thus introducing

a misassembly for each contig which included the erroneous path.

As expected, increase in total coverage translated into a decline in misassemblies for all of

the assembler/k-mer combinations. Velvet was more quickly able to completely eliminate its

own errors, owing to the aforementioned stricter bubble resolution method: by 30x coverage,

both k-mer variants were error free. Comparatively, the 23-mer variant of SOAP carried a

single misassembly throughout the 30x-70x coverage ranges, and the 31-mer variant was able

to purge its final three errors by 50x coverage.

In assessing assembly quality by the length of the maximum contig and the N50 value,

the trends are quite straightforward. As seen in both Figures 5.2 and 5.1, the 23-mer

28

Figure 5.1: Length 75 Single-end Read N50 Values

Figure 5.2: Length 75 Single-end Read Max Contig Values

29

variants of both SOAP and Velvet reached a coverage saturation threshold between 10x and

30x, resulting in successively worse assemblies for higher coverages. A similar threshold was

crossed between 30x and 50x for the 31-mer variants.

An interesting differentiation between the 23-mer and 31-mer variants of both SOAP and

Velvet is how they response to coverage saturation. For the 23-mer variants, a successive

reduction in both contig count and total contig length is evident; conversely, the 31-mer

variants begin to produce larger quantities of contigs while maintaining a total contig length

that is relatively stable (within 3% of the median).

5.4 Length 150 Single-end Reads

For both 23-mer assemblers, the increase in read length compared to the length-75

datasets resulted in superior assemblies with respect to all of the recorded metrics in the 10x

coverage case. Of particular note are SOAP’s sharp decrease in errors and Velvet’s complete

elimination of misassemblies.

Overall, the increased read length drastically reduced the quantity of errors across all

four assembler/k-mer variants. Both Velvet variants were error-free across the board, and

SOAP produced only five and three errors respectively for the 23-mer and 31-mer variants

at 10x coverage. Though the number of individual reads is roughly halved compared to the

length 75 data sets,

With regard to coverage thresholds, the 23-mer variants display the same behavior as the

length 75 tests; however, the threshold for the 31-mer variants changed from between 30x-50x

to 10x-30x. Additionally, the magnitude of the performance drop-off is far more significant

after crossing the threshold. For the length 75, 23-mer evaluations, SOAP and Velvet saw,

respectively, approximately 35% and 50% reductions in max contig length between 10x

and 30x. The same coverage difference for the 150 length evaluations produced maximum

contigs reduced by approximately 65% for both. As seen in Figure 5.3, 23-mer SOAP and

Velvet maintained the same trends of total read length degradation as in the length 75 case;

30

Figure 5.3: Length 150 Single-end Read Total Length

however, as Figure 5.4 displays, 23-mer Velvet saw a small increase in contig count at 30x

before reverting to the length 75 trend.

31-mer Velvet also maintained a similar trend with regard to the length 75 coverage

saturation effects; however, the total contig length did not possess the same level of stability.

31-mer SOAP, by contrast, exhibited new behavior: accompanying a drastic increase in total

contig count, the total length became unbounded, resulting in the 70x coverage assembly

containing more than twice the total length of the reference.

5.5 Length 75 Paired-end Reads

Though executed on several different nodes (and attempted several times on each),

the 70x 31-mer variant of SOAP was never able to successfully run to completion. An

examination of system resource utilization indicated this was due to insufficient available

memory. As shown in Table 5.1, the length 75 paired-end library was the largest 70x coverage

library in size at 2,244 MB.

31

Figure 5.4: Length 150 Single-end Read Contig Count

Table 5.3: Evaluation of Length 150 Single-end Reads

Contigs Max Contig Total Length N50 N75 L50 Misses Miss Length
SOAP K23
10x 51863 1427 10682585 231 150 14951 5 2303
30x 37561 498 4937472 125 108 14920 0 0
50x 30884 404 3633955 112 104 13534 0 0
70x 28640 340 3247480 109 103 12972 0 0
SOAP K31
10x 113329 1481 18893817 162 114 32292 3 1186
30x 185606 777 22250175 114 106 80374 0 0
50x 231595 410 26559093 112 105 105081 0 0
70x 274748 374 31293086 111 105 125548 0 0
Velvet K23
10x 36284 3544 11227901 412 229 8066 0 0
30x 41148 1196 7631244 199 136 12730 0 0
50x 31163 835 4543248 143 114 11467 0 0
70x 18701 457 2366482 120 107 7686 0 0
Velvet K31
10x 55160 3872 14922057 434 164 9562 0 0
30x 95736 1561 15321033 1561 113 28317 0 0
50x 109397 1177 14238789 119 107 43290 0 0
70x 108754 582 12877708 113 106 47818 0 0

32

Figure 5.5: Length 75 Paired-End Read N50 Values

The presence of paired-end reads appears to shift the coverage saturation threshold up

for each of the de Bruijn graph-based assemblers. Though the threshold is still between 10x-

30x for the 23-mer variants, the differences in max contig length are only (approximately)

5% and 25% for SOAP and Velvet, respectively. The threshold for 31-mer SOAP moved up

a bracket to 50x-70x, with significant performance gains being realized across all metrics at

50x coverage. As shown in Figure 5.6, max contig value at this coverage was a particularly

large improvement. Velvet saw a slight degradation in max contig length between 50x and

70x, but N50 and N75 values were improved (as seen in Figure 5.5).

StriDe performed abysmally at 10x coverage, managing only a tiny fraction of the ref-

erence length; however, increases in coverage successively improved the quality of contigs.

Because StriDe’s metrics exceeded the others by as much as two orders of magnitude, it

was excluded from the relevant figures. Compared to the pure de Bruijn assemblers, StriDe

was more error prone; furthermore, the errors produced had a tendency to be far longer in

length.

33

Figure 5.6: Length 75 Paired-end Read Max Contig Values

Table 5.4: Evaluation of Length 75 Paired-End Reads

Contigs Max Contig Total Length N50 N75 L50 Misses Miss Length
SOAP K23
10x 58877 1086 11324513 204 145 18835 52 19068
30x 58264 1048 9924720 175 131 19857 4 1209
50x 47652 724 6671573 137 114 18460 1 417
70x 38639 597 4920418 123 108 16062 2 489
SOAP K31
10x 49883 1948 7987105 161 125 17742 34 11077
30x 24098 7129 14159596 1001 512 4186 4 3343
50x 22253 10527 14089207 1243 611 3228 1 437
70x - - - - - - - -
Velvet K23
10x 48515 2069 10474720 238 157 13914 18 8169
30x 45957 1528 9143003 214 148 14071 0 0
50x 36624 755 5601363 152 120 13344 0 0
70x 21057 470 2749860 126 110 8562 0 0
Velvet K31
10x 61718 2765 9915372 161 126 22055 30 9917
30x 28053 7851 13632213 854 399 4400 0 0
50x 29104 7505 13951805 882 418 4439 0 0
70x 41360 4429 14151474 540 270 7663 0 0
StriDe
10x 45 2960 39782 1247 1026 12 7 7076
30x 3800 22925 9758376 3639 1908 768 263 9386
50x 2520 89869 13007164 13103 4520 245 30 180152
70x 2381 99180 12953732 14828 4972 222 5 33263

34

Figure 5.7: 150 Length Paired-End Read Total Length

5.6 Length 150 Paired-end Reads

The unbounded total contig length growth pattern displayed by 31-mer SOAP in the

length 150 single-end reads appears once again; however, with paired-end reads the effect is

magnified significantly. At 70x coverage, the total length of the assembly is more than five

times the reference length! Figure 5.7 shows that Velvet also begins to display this behavior,

albeit at a far more subdued severity.

As with the length 75 evaluations, StriDe is still quite error prone compared to the de

Bruijn assemblers; however, the other metrics are comparatively staggering. In each of the

remaining evaluation criteria, StriDe outperforms SOAP and Velvet by at least one order of

magnitude.

35

Table 5.5: Evaluation of Length 150 Paired-End Reads

Contigs Max Contig Total Length N50 N75 L50 Misses Miss Length
SOAP K23
10x 67922 883 9979364 141 113 24273 2 573
30x 62221 325 7084690 111 104 28275 0 0
50x 76421 266 8574654 109 104 35153 0 0
70x 85059 268 9494960 109 103 39243 0 0
SOAP K31
10x 192329 836 26298417 128 111 74301 0 0
30x 367562 391 43116968 115 106 165117 0 0
50x 523424 312 61168943 115 106 236060 0 0
70x 654013 338 76270424 115 106 295340 0 0
Velvet K23
10x 48094 1796 9445505 220 137 13556 0 0
30x 36003 520 4564080 118 106 14594 0 0
50x 26430 333 2950035 108 103 12152 0 0
70x 24225 204 2642031 107 103 11371 0 0
Velvet K31
10x 99526 2050 16746772 156 114 27345 0 0
30x 156172 702 19026051 116 107 67144 0 0
50x 192552 442 22151657 113 106 87714 0 0
70x 232743 337 26516469 112 105 106818 0 0
StriDe
10x 6062 17831 11492721 2884 1543 1197 454 1089840
30x 2938 180648 14533882 22734 7448 151 30 174234
50x 2967 158641 14656661 23154 8351 153 25 114089
70x 2947 147100 14689865 23386 8480 153 15 143404

36

Chapter 6

Conclusion and Future Work

With continued reductions in sequencing costs and increased throughput, the quantity

and variety of sequencing data will continue to expand. The variety and quality of genome

assembly tools will likely continue to grow unabated as well. More than ever, there will be

a need for periodic, comprehensive evaluations.

While other evaluation metrics focus on optimizing parameters for datasets with fixed

or only marginally variable sequencer attributes, this work presents an in-depth analysis of

several popular de Bruijn graph-based assemblers as well as a recently released hybrid de

Bruijn/String graph assembler. In addition, detailed behavioral expectations across a variety

of sequencer attributes are explored through evaluation and examination of the underlying

graph structures being generated. In general, the evaluations matched up quite nicely with

the analysis; however, novel behaviors arising from specific combinations of sequencer at-

tributes were also identified. By utilizing the analysis presented in this work, it is the hope

of the author that both tuning of assemblers employing these architectures and selection of

appropriate data sets will be enhanced.

For future work, several directions could be taken to further enhance this work. Com-

paring the evaluations included in this work with error-free versions of the same simulated

libraries could provide further insight into the behaviors of the assemblers by isolating one of

the major sources of aberrant behavior. Additionally, increasing the granularity and range of

coverages, k-mer values, and read lengths could reinforce the observations made during this

work and possibly identify optimal combinations without rigorous empirical trials. Including

additional reference genomes of larger and smaller sizes would also provide opportunities to

observe assembler behavior. Adding additional assemblers (especially those like StriDe which

37

haven’t been previously evaluated) and refreshing existing assemblers using newer releases

would add to the robustness of the work and maintain its relevance. Finally, packaging

the evaluations into an automated suite would greatly reduce the overhead associated with

testing and enable developers to help maintain and improve the body of evaluations.

38

Bibliography

[1] Applied biosystems solid 4 system.

[2] Gs flx+ system.

[3] Hiseq x series of sequencing systems.

[4] Ion s5 and ion s5 xl next-generation sequencing system specifications.

[5] Paired-end sequencing.

[6] Maxam A.M. and Gilbert W.A. A new method for sequencing dna. Proc. Natl. Acad.
Sci. USA, 1977.

[7] Keith R Bradnam, Joseph N Fass, and et al. Assemblathon 2: evaluating de novo
methods of genome assembly in three vertebrate species. GigaScience, 2013.

[8] N.G. De Bruijn. A combinatorial problem. Nederl. Akad. Wetensch. Proc., 1946.

[9] H Chial. Dna sequencing technologies key to the human genome project. Nature Edu-
cation, 2008.

[10] Phillip E C Compeau, Pavel A Pevzner, and Glenn Tesler. How to apply de bruijn
graphs to genome assembly. Nature Biotechnology, 2011.

[11] Dent Earl and et al. Assemblathon 1: A competitive assessment of de novo short read
assembly methods. Genome Research, 2011.

[12] Sanger F., Air G.M.and Barrell B.G., Brown N.L., Coulson A.R., Fiddes J.C., Hutchison
C.A., and Smith M. Nucleotide sequence of bacteriophage phx174dna. Nature, 1977.

[13] Sanger F., Nicklen S., and Coulsen A.R. Dna sequencing with chain-terminator in-
hibitors. Proc. Natl. Acad. Sci. USA, 1977.

[14] Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. Quast: Quality
assessment tool for genome assemblies. Bioinformatics, 2013.

[15] Weichun Huang, Leping Li, Jason R. Myers, and Gabor T. Marth. Art: a next-
generation sequencing read simulator. Bioinformatics, 2012.

[16] Yao-Ting Huang and Chen-Fu Liao. Integration of string and de bruijn graphs for
genome assembly. Bioinformatics, 2016.

39

[17] Darryl Leja. Shotgun sequencing.

[18] Ruiqiang Li1, Yingrui Li, Karsten Kristiansen, and Jun Wang. Soap: short oligonu-
cleotide alignment program. Bioinformatics, 2008.

[19] Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin, Lihua Lu,
, and Maggie Law. Comparison of next-generation sequencing systems. Journal of
Biomedicine and Biotechnology, 2012.

[20] Ruibang Luo, Binghang Liu, Yinlong Xie, Zhenyu Li, Weihua Huang, Jianying Yuan,
Guangzhu He, Yanxiang Chen, Qi Pan, Yunjie Liu, Jingbo Tang, Gengxiong Wu, Hao
Zhang, Yujian Shi, Yong Liu, Chang Yu, Bo Wang, Yao Lu, Changlei Han, David W
Cheung, Siu-Ming Yiu, Shaoliang Peng, Zhu Xiaoqian, Guangming Liu, Xiangke Liao,
Yingrui Li, Huanming Yang, Jian Wang, Tak-Wah Lam, and Jun Wang. Soapdenovo2:
an empirically improved memory-efficient short-read de novo assembler. GigaScience,
2012.

[21] ER Mardis. The impact of next-generation sequencing technology on genetics. Trends
Genet., 2008.

[22] Maura Costello Andrew Hollinger Niall J Lennon Ryan Hegarty Chad Nusbaum Michael
G RossEmail author, Carsten Russ and David B Jaffe. Characterizing and measuring
bias in sequence data. Genome Biology, 2013.

[23] Niranjan Nagarajan and Mihai Pop. Sequence assembly demystified. Nature Reviews
Genetics, 2013.

[24] Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An eulerian path approach
to dna fragment assembly. Proc. Natl. Acad. Sci, 2001.

[25] Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,
and et al. De novo assembly of human genomes with massively parallel short read
sequencing. Genome Research, 2010.

[26] Steven L. Salzberg, Adam M. Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc,
Sergey Koren, Todd J. Treangen, Michael C. Schatz, Arthur L. Delcher, Michael
Roberts, Guillaume Marais, Mihai Pop, and James A. Yorke. Gage: A critical eval-
uation of genome assemblies and assembly algorithms. Genome Research, 2011.

[27] Jared T. Simpson and Richard Durbin. Efficient construction of an assembly string
graph using the fm-index. Bioinformatics.

[28] Daniel R. Zerbino and Ewan Birney. Velvet: Algorithms for de novo short read assembly
using de bruijn graphs. Genome Research, 2008.

40

