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Abstract

In this thesis, we will discuss list edge coloring and its relation to stable matchings. In

particular, we will present three proofs of Galvin’s famous theorem that bipartite graphs

satisfy the list edge coloring conjecture. Galvin presented two of these proofs in his original

paper, one by induction and another using stable matchings and the Gale-Shapley Theorem

about stable matchings in bipartite graphs. The third proof we present is a corollary of a more

general result proven by Borodin, Kostochka, and Woodall. We will study the techniques of

these proofs to find a characterization of graphs that have stable matchings with respect to

their preference lists, and two alternative proofs of the Gale-Shapley Theorem. We will also

consider some new generalizations of stable matchings.
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Chapter 1

Introduction

In this introduction we will discuss several preliminary topics. We begin with list edge-

coloring, proceeding to line graphs, and then stable matchings. We conclude the introduction

with a short description of the content that will be discussed in this thesis.

1.1 List Edge Coloring

Let G be a graph which may contain parallel edges, but contains no loops. A function

c : V (G) → N is called a coloring of G if for any v1, v2 ∈ V (G) such that (v1, v2) ∈ E(G),

c(v1) 6= c(v2). The chromatic number of a graph G, denoted χ(G), which is the least amount

of different natural numbers necessary to properly color G. A function f , f : E(G) → N is

an edge coloring if for any e1, e2 ∈ E(G) such that e1 meets e2 at a vertex, f(e1) 6= f(e2).

The edge analogue of coloring can be viewed as vertex coloring the line graph L(G); the

vertex set of the line graph, V (L(G)) is E(G) and two vertices are joined by an edge for

each time they are incident in G. The chromatic index, denoted χ′(G), is the least amount

of different natural numbers necessary to properly color L(G).

A generalization of the coloring problem of graphs is called list coloring. Let Lv be a set

of lists of natural numbers for each v ∈ V (G). A list coloring is a function g : V (G) → Lv

such that for any v1, v2 ∈ V (G) with (v1, v2) ∈ E(G), g(v1) 6= g(v2). The list chromatic

number, denoted χl(G), is the least size for which G can be properly colored with any lists of

that size. To demonstrate that this is indeed a generalization, we first note that if all vertices

are given the same list, this is the same as standard coloring. Below we give a theorem and

example of a graph in which list coloring is indeed different from just coloring the graph.

Theorem 1.1. There exists a graph G such that χ(G) 6= χl(G)
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Figure 1.1: G1 above is a graph which has χ(G) 6= χl(G)

Proof. Let G be the graph in Figure 1.1. By coloring v1, v3, v5 with color 1 and v2, v4, v6

with color 2 we see that χ(G) = 2. Consider lists Sv1 = {1, 3}, Sv2 = {2, 3}, Sv3 = {1, 2},

Sv4 = {1, 2}, Sv5 = {2, 3}, Sv6 = {1, 3}. If G is 2-list colorable, then G can be properly

colored using this list. In particular, v3 must be colored either 1 or 2.

Suppose v3 is colored 1. Then v4 must be colored 2 and v6 must be colored 3. From

this, we see that v5 cannot be colored.

Suppose v3 is colored 2. Then v2 is colored 3 and v4 is colored 1. But with these colorings,

v1 is uncolorable. Therefore G is not 2-list colorable. In particular χ(G) < χl(G).

Now that we have an example of a graph in which the list chromatic number is different

from the chromatic number, we are left to determine what classes of graphs G have the

property χ(G) = χl(G) for all G ∈ G. The list edge coloring conjecture posits that equality

actually holds for all line graphs. That is, χ′(G) = χ′l(G) where χ′l(G) is the list chromatic

index of G, which is the least size of lists such that the graph G can be properly edge colored

for any lists of that size.

Conjecture 1.1.1 (List Edge Coloring Conjecture). All graphs G have the property that

χ′(G) = χ′l(G).

This conjecture has been made independently by many, but appeared first in print in a

paper by Bollobás and Harris [12]. There has been significant study into this property, see

Graph Edge Coloring, by Stiebitz, Scheide, Toft, and Favrholdt [13]. A graph G is considered

bipartite if there exists a partition of V (G), {X, Y } such that no edge has both of its ends

in either X or Y . Notice the graph in Figure 1.1 is an example of a bipartite graph. It is
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well known result of Kőnig [9] that χ′(G) is the maximum degree, ∆, of G for a bipartite

graph G. Galvin’s theorem gives a class of graphs which have equal chromatic number and

list chromatic number, line graphs of bipartite graphs.

Theorem 1.2 (Galvin’s Theorem[1]). For every bipartite graph G,

χl
′(G) = χ′(G).

While this theorem provides a class of graphs in which list coloring is the same as

coloring, it is not a characterization of such graphs as odd cycles are not bipartite but do

have χl
′(G) = χ′(G). There are more results on classes of graphs with equal chromatic

number and list chromatic number. For example, an analogue of the five color theorem has

been studied by Thomassen [10], finding that all planar graphs have list coloring number

at most 5. We note that planar graphs have chromatic number at most four, which is very

close to satisfying our desired equality, but does not quite achieve it.

The main goal of Chapter two is to present three proofs of Galvin’s Theorem. To present

these proofs, we will need some basic information on line graphs and stable matchings, which

will be provided in the next two sections of this chapter.

1.2 Line Graphs

Line graphs are a well understood and studied class of graphs, with several characteriza-

tions known. When working with edge coloring as vertex coloring a line graph, the following

results will be very useful. Below we state without proof two theorems due to Beineke[2] on

line graphs and some related line graph results and conjectures. These will be necessary as

we further discuss theorems throughout the thesis.

Theorem 1.3 (Beineke’s Theorem[2]). The following are equivalent
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Figure 1.2: G1, G2, . . . , G9 are the forbidden induced subgraphs for line graphs of simple
graphs.
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Figure 1.3: F1, F2, . . . , F7 are the forbidden induced subgraphs for line graphs of multigraphs.

1. The graph G is the line graph of some simple graph.

2. The edges of G can be partitioned into complete subgraphs in such a way that no vertex

belongs to more than two of the subgraphs.

3. The graph G does not contain any of the graphs in Figure 1.2 as an induced subgraph.

Theorem 1.4. Line graphs of multigraphs do not contain any of the graphs in Figure 1.3

as an induced subgraph.

These characterizations, in particular the characterization about paritioning edges into

complete graphs, will prove instrumental to our study.
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At this point, one would hope to find an example of a graph that is not list χ-colorable

for each forbidden subgraph to show that the list edge coloring conjecture may be the best

possible class of graphs that can be χ-list colored. We have given above in Figure 1.1

an example which contains the claw, which is the complete bipartite graph with bipartition

{X, Y } where X contains one vertex and Y contains three vertices (i.e. K1,3). Unfortunately

examples containing the remaining forbidden subgraphs have proven difficult enough to

inspire the following conjecture by Gravier and Maffray[3].

Conjecture 1.4.1 (Gravier and Maffray [3]). Every claw-free graph G has χl(G) = χ(G).

The conjecture Gravier and Maffray is a more general than the original list edge coloring

conjecture. It was proven by Maffray and Gravier [5] in 2004 that every claw-free perfect

graph with χ(G) = 3 has χl(G) = 3, where a perfect graph is a graph in which the chromatic

number of every induced subgraph is the size of the largest clique in that subgraph. Further

study into finding larger classes of graphs which have this equality have been studied by

Maffray, Gyarfas, and Esperet [6] [3] but no other class has been reported.

1.3 Stable Matchings

One of the proofs of Galvin’s Theorem that will be provided in Chapter 2 uses the

notion of stable matchings. A matching is a set of edges of a graph G such that no two edges

are adjacent. Let Lv be a set of edge preference lists which is a complete ordering of the

edges adjacent to any vertex v ∈ V (G). We define a stable matching as follows: a matching

M of G is said to be stable with respect to a set of preference lists Lv if, for any edge e /∈M

there exists some edge e′ incident to e at w ∈ V (G) such that e′ ∈ M and w prefers e′ to

e. The Gale-Shapley Theorem gives a characterization of bipartite graphs that a graph is

bipartite if and only if for any preference lists, there exists a stable matching [8] [11].

Theorem 1.5 (The Gale-Shapley Theorem [8]). Let G be a bipartite graph with edge pref-

erence lists Lv. Then there exists a stable matching of G with respect to Lv.
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There are several variations on an algorithmic proof that have been given to establish

Theorem 1.5 in polynomial time, giving nice constructions for stable matchings. All have

roughly the same steps. Create the set of all highest preferences of one part of the graph, and

then remove from the graph some edges if this set is not independent. Repeat this process

until the set is independent, at which point, one will find that the remaining set is indeed a

stable matching. Below is roughly the proof given by D. West in his textbook, Introduction

to Graph Theory [7].

Proof. Algorithm: Input preference rankings by n men and m women with n ≤ m.

Iterate by having each man propose to the highest woman on his preference list who

has not rejected him. If each woman receives at most one proposal, stop. Otherwise, every

woman receiving more than one proposal rejects all men except the one that is the highest

on her preference list. Every woman receiving a proposal says “maybe” to the man that she

does not reject each round.

Claim 1: The algorithm provides a matching if it terminates.

If the stopping condition is reached, we have a matching since each man proposes to at

most one woman, and each woman has at most one man to which she has said “maybe.” So

we need only observe that no man can be rejected by every woman. Suppose that a man is

rejected by every woman, then at each iteration, the woman that he proposed to had also be

proposed to by another man. But this means that each woman that the man has proposed

to has some “maybe.” after he proposes, and since men cannot propose to the same woman

after being rejected, the man can be rejected at most n− 1 times. Further, at the end of the

algorithm, every man must be married and no woman has two proposals.

Claim 2: The algorithm terminates.

Observe that the list of each male is non-increasing in size as the algorithm iterates and

that if no male’s list changes, the algorithm stops with a matching. Hence we have a strictly

decreasing list (of all male preferences) which may terminate before the list is empty if no

individual male’s list decreases.
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Claim 3: The algorithm provides a stable matching.

Suppose that the algorithm terminates, and for contradiction that the matching is not

stable. Hence there exists some edge such that it is preferred to both the man and woman

but is not a part of the matching. But, the man would have proposed to the woman before

his current match, and the woman must have rejected him, meaning that she had a higher

preference as a “maybe” and women will only reject for higher preferences so whoever the

woman is married to must have a higher preference than the man, a contradiction with the

edge being unstable.

We have now covered some preliminary results which are necessary as we progress

through the main goals of this thesis. In chapter two, we will provide three proofs of Galvin’s

Theorem. Two of which were provided originally by Galvin [1], one proof by induction and

one using stable matchings and the Gale-Shapley Theorem. As a part of this, we characterize

when a graph has a stable matching with respect to its preference lists. Then we will pro-

vide a proof which uses a more general result, proven by Borodin, Kostochka, and Woodall

[4]. In chapter three we will observe the relationships between the techniques of the proofs

of Galvin’s Theorem and stable matchings and two alternative proofs of the Gale-Shapley

Theorem. We also introduce two notions which generalize stable matchings.

7



Chapter 2

Galvin’s Theorem

In this chapter, we present three proofs of Galvin’s theorem. We will first see a key

lemma due to Bondy, Boppana, and Siegel, first reported by Galvin [1] and other common

elements of each proof in section 2.1. We give the proofs due to Galvin in section 2.2. As

part of this, we characterize when any graph has a stable matching. In section 2.3 we will

discuss and prove a result due to Borodin, Kostochka, and Woodall and demonstrate how it

implies Galvin’s Theorem..

2.1 Shared Elements of the Proofs of Galvin’s Theorem

A graph D is directed if each edge (v1, v2) ∈ E(D) has an orientation, that is to say that

it is an ordered pair. We say that (v1, v2) ∈ E(D) points from v1 to v2. Bondy, Boppana and

Siegel’s result on directed graphs is based on the use of kernels. A kernel of a directed graph

D is a set K ⊂ V (D) such that K is independent (which is to say that for any v1, v2 ∈ V (D)

there is no edge (v1, v2) such that both v1 ∈ K and v2 ∈ K) and such that for any v /∈ K,

there exists at least one edge (v, k) ∈ E(D) such that k ∈ K. We will also use the term

kernel-perfect to describe an directed graph D in which every subgraph of D has a kernel.

Theorem 2.1 (Bondy, Boppana, Siegel (see [1]). Let H be a graph and (Sv)v∈V (H) a family

of lists. If H has an orientation D such that d+(v) < |Sv| for every v and such that D is

kernel-perfect, then H can be colored from the lists Sv.

Proof. Proceed by induction on |V (H)|. If |V (H)| = 1 then by assumption, |Sv| ≥ 1 hence

the graph can be colored.

Let |V (H)| > 1 and suppose for all graphs of with vertex set of size n < |V (H)|

the lemma holds. Let α be a color appearing in at least one list. Consider the subgraph

8



induced by all vertices containing α in their list. By supposition this subgraph has a kernel

U . Color each vertex in U with the color α in H. Let H ′ be the graph H \ U with lists

S ′v = (Sv \ {α})v∈H\U . Note that for a vertex v ∈ V (H) if α /∈ Sv in H, d+H′(v) < |Sv| = |S ′v|.

Otherwise v /∈ U so d+H′(v) is strictly less than d+H(v) since U was a kernel of a graph

containing v, so v had at least one edge to a vertex in U . |S ′v| is exactly one less than |Sv|,

hence d+H′(v) < |Sv|. Therefore for all v ∈ H ′, d+(v) < |Sv| and by supposition since H ′

is an induced subgraph of H, every induced subgraph of H ′ has a kernel and |H ′| < |H|.

By induction hypothesis H ′ is colorable, with no vertices using α as their color, so H is

colorable.

Each of the proofs that we provide of Galvin’s Theorem 1.2 will conclude by applying

the result of Bondy, Boppana, Siegel. To this end, we will must prove that we can provide an

orientation of the line graph of any bipartite graph such that the out degree of each vertex

of the line graph is less than the size of each list (in this case, χ(G)). We give three different

proofs of the fact that the given oriented graph is indeed kernel-perfect.

Let G be a bipartite graph and let c be a proper edge coloring of G. Define D(G, c)

to be an orientation of L(G) such that for any e1, e2 ∈ E(G) with e1 incident to e2 and

c(e1) < c(e2), the edge (e1, e2) ∈ E(L(G)) is oriented as follows:

• If e1 and e2 meet only in X, orient from e1 to e2.

• If e1 and e2 meet only in Y , orient from e2 to e1.

• If e1 and e2 meet both in X and Y then by our construction of the line graph, there

exist two parallel edges (e1, e2) so orient one from (e1, e2) and the other from (e2, e1).

Lemma 2.2 (Galvin [1]). Let G be a bipartite graph with bipartition X, Y . Let c be a k-edge

coloring of G where k = χ′(G). For each v ∈ V (D(G, c)), d+(v) < k.

Proof. Consider e ∈ V (D(G, c)). Let c(e) = i. Let e′ ∈ V (D(G, c)) be adjacent to e such

that e′e is oriented from e′ to e. If e′ is not a parallel edge, then e′ meets e only in X, so

9



c(e′) ∈ {1, 2, 3, . . . , i − 1} or if e′ meets e only in Y , so c(e′) ∈ {i + 1, i + 2, i + 3, . . . , k} by

construction. Then each color appearing adjacent to e not from a parallel edge is from the

set {1, 2, . . . , i− 1, î, i+ 1, i+ 2, . . . , k} so at most k− 1 colors are adjacent from not parallel

edges. Notice that if e′ is a parallel edge, e′ ∈ {1, 2, . . . , i − 1, î, i + 1, i + 2, . . . , k} but e′ is

adjacent to all edges e is adjacent to, so c(e′) cannot be duplicated in either previous set

since c is a proper edge coloring. Similarly, any two edges meeting e both in X or Y cannot

have the same color. Hence, d+(e) ≤ |{1, 2, . . . , i− 1, î, i+ 1, i+ 2, . . . , k} = k − 1 < k.

With Lemma 2.2 proven, it remains only to show the following lemma so that we can

apply the result of Bondy, Boppana, and Siegel to complete our proofs of Galvin’s Theorem.

Lemma 2.3 (Galvin [1]). Let G be a bipartite graph with bipartition {X, Y } and c be a

k-edge coloring of G where k = χ′(G). Then D(G, c) is kernel-perfect.

2.2 Galvin’s Proofs

We now move to Galvin’s two proofs showing D(G, c) is kernel-perfect. We first go

through a proof using the Gale-Shapley Theorem, using the fact that a stable matching in

G will provide a kernel of L(G).

We first define D(G,Lv). Let G be a graph. Let Lv be a set of edge preference lists

for each vertex v ∈ G. D(G,Lv) is the orientation of L(G) oriented as follows: for e1, e2 ∈

V (L(G)) with (e1, e2) ∈ E(L(G)) where e1 meets e2 at a vertex v ∈ V (G) orient (e1, e2) from

e1 to e2 if and only if e1 <v e2.

Theorem 2.4. A graph G has a stable matching with respect to edge preference lists Lv if

and only if D(G,Lv) has a kernel.

Proof. We will first show that a kernel of D(G,Lv) provides a stable matching of G. Let K

be a kernel of D(G,Lv). Let k1, k2 ∈ K. Then there are no edges between k1 and k2 since

K is independent, therefore the k1 and k2 do not meet at any vertex. Hence, K ∈ G is a

matching. Let k′ ∈ V (D(G,Lv) \K, then since K is a kernel, there exists some edge (k, k′)

10



e1 e2

e3

e4

e5

e1 < e2

e2 < e3

e3 < e4e4 < e5

e1 < e5

e1

e2

e3e4

e5

Figure 2.1: Here we see a graph that is not bipartite, with which we can apply the technique
of checking D(G,Lv) to determine that there is a stable matching. The kernel of D(G,Lv)
is circled on the right, which is indeed a stable matching of the graph on the left.

oriented from k′ to k so by our definition of D(G,Lv), k meets k′ at a vertex v, and k′ <v k.

Therefore, K is stable in G. Hence we have a stable matching of G as desired.

We now show that a stable matching of G with respect to preference lists L(v) is a

kernel. Let M be a stable matching of G and consider M ∈ D(G,Lv). Let m1,m2 ∈ G.

Since M is a matching, m1 and m2 do not meet at any vertex in G, therefore in the line

graph, there is no edge (m1,m2). Thus, M is independent in D(G,Lv). Let m′ ∈ E(G) \M .

Since M is a stable matching, there exists some vertex v and some edge m such that m′

and m meet at v and m′ <v m, then the edge (m′,m) exists in D(G,Lv) and further by our

definition of D(G,Lv), it is directed from m′ to m. In particular, M absorbs all vertices not

in M . Therefore M is a kernel of D(G,Lv).

We will now use Lemma 2.4 to prove Lemma 2.3 completing our first proof of Galvin’s

Theorem.
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Proof. (Proof 1 of Lemma 2.3) Let H be an induced subgraph of D(G, c). To use the Gale-

Shapley Theorem on G define preference lists for all v ∈ V (G) by e1 <v e2 if the edge

e1e2 ∈ L(G) is directed from e1 to e2. We want to show H has a kernel. To see this, we

show that a stable matching in G induces a kernel in D(G, c), and as such, any subgraph of

G created by removing edges will induce a kernel in an induced subgraph of D(G, c). Let W

be a stable matching in G which exists since G is bipartite.

We proceed with contradiction to show that W is a kernel in D(G, c). Suppose that W

is not a kernel in D(G, c). Then there exists e ∈ V (D(G, c)) such that e does not have an

edge oriented into the vertices W ∈ V (L(G)). If e ∈ W , then W can still be a kernel, so

e ∈ E(G) \W . If e is not adjacent to any edges in W , then e must be in W since W is a

stable matching. So e is adjacent to some edge e1 ∈ W , oriented from e1 to e in D(G, c).

But then the vertex v1 at which they meet has e1 <v1 e, so if e is not adjacent to another

edge in W , this is not a stable matching. So e is adjacent to another edge e2 ∈ W . Similarly,

the edge in D(G, c) must be oriented from e2 to e. So by our preferences, the vertex v2 at

which e2 and e meet has e2 <v2 e. Since e1 <v1 e and e2 <v1 e, e is preferred at both vertices

to the current pairing, in contradiction with W being a stable matching. Therefore, W must

be a kernel.

Figure 2.2 provides a small example with which to check the above method of proof,

with colors solid<dashed and the kernel of the line graph found with this method in squares.

This proof is perhaps the most simple of any that will be done to prove Lemma 2.4,

but that is merely because it relies on the already known result of Gale-Shapley, meaning

some of the work is concealed. That being said, this demonstrates a significant relationship

between Gale-Shapley’s Theorem and Galvin’s Theorem, which is the guide for the rest of

this thesis. The next proof was also provided by Galvin [1], but relies on no outside results.

This is an inductive, self-contained proof.
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Figure 2.2: A small example with which to check proof 1 of lemma 2.3.

Proof. (Proof 2 of Lemma 2.3) We proceed by induction on |V (H)| where H is an induced

subgraph of L(G). Suppose that |V (H)| = 1 then the vertex in H is a kernel of H. For each

x ∈ X induced by the set V (H) let ex ∈ V (H) be the edge such that c(ex) is less than all

the colors of each other edge incident to x that is in V (H). Let U = {ex} for all x ∈ X. Let

e′ ∈ V (H) \ U . Clearly e′ is adjacent to some ex ∈ U since G is bipartite. Furthermore, the

edge (e, e′) ∈ H is directed from e′ to e. So every vertex not in U has an edge into U .

It remains to show that U is independent. Suppose there exist some e, e′ ∈ U such that

e and e′ are adjacent. Let c(e) < c(e′). Since U is defined to take only one edge incident to

each vertex in X, e and e′ must meet in Y . So by our orientation, (e, e′) is oriented from e

to e′. By our induction hypothesis, the graph V (H) \ {e} has a kernel U ′. If e′ ∈ U ′ then U ′

is a kernel in H since (e, e′) is directed from e to e′. So suppose e′ /∈ U ′. Then there exists

some edge e′′ ∈ U ′ such that e′e′′ exists and is directed from e′ to e′′. Notice that again e′

and e′′ cannot meet in X since e′ was chosen to have the least color for its corresponding

vertex in X so c(e′) < c(e′′), a contradiction with our orientation. Hence, e′ and e′′ meet

in Y and c(e′) < c(e′′) but also e and e′ meet in Y , therefore e and e′′ meet in Y . Also

c(e) < c(e′) < c(e′′), so since c(e) < c(e′′) and they meet in Y , (e, e′′) is directed from e to

e′′, so e has an edge into U ′, therefore U ′ is a kernel in H.

2.3 A Theorem of Borodin, Kostochka, and Woodall

Borodin, Kostochka, and Woodall provide an alternative proof of Galvin’s Theorem

through the following general theorem.
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Theorem 2.5 (Borodin, Kostochka, and Woodall[4]). An orientation D of a line-graph G

is kernel-perfect if and only if every oriented odd cycle in D has a chord and every clique

has a kernel.

The theorem is self-contained, in that it does not rely on any major results like the

Gale-Shapley theorem inherently, and can be applied to D(G, c) for any bipartite graph G.

The proof is both inductive and algorithmic, which gives some insight as to the depth of the

theorem. Again, this theorem merely serves to provide the kernel-perfect result desired in

Lemma 2.3.

Before going through this extensive proof, we will assume it and show how, if indeed it

is true, this theorem implies Galvin’s Theorem. For completeness, after we have applied it

to Galvin’s theorem, we will go back to give Borodin, Kostochka, and Woodall’s proof [4].

Proof. (Proof 3 of Lemma 2.3) We want to use Borodin, Kostchka, and Woodall’s Theorem

to prove this. Namely, we must show that the D(G, c) has the following properties:

1. Every clique has a kernel.

2. Every odd directed cycle has a chord.

We will consider the graph as described by Beineke’s characterization by separating the

vertices into cliques (representing each vertex). For each v ∈ V (G) let Kv be the clique in

D(G, c) created by all edges in E(G) meeting at v. Notice that each clique has a kernel,

since for any v ∈ X, the highest colored edge is a sink of Kv. Respectively, for any v ∈ Y

the lowest colored edge is a sink of Kv.

Let C be a cycle in D(G, c).Either the cycle contains at most one edge in Kv, or it

contains more than one edge of at least Kv.

Suppose C contains at most one edge of each clique, then in the original bipartite graph,

an induced cycle can be created in G which will, indeed, be a cycle since each clique of L(G)

is visited at most once, so each vertex will be visited at most once in G. Thus C corresponds

to a cycle in G, hence C is not odd.
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Figure 2.3: On the left is a bipartite graph, and on the right we have the line graph without
orientation so that the reader can check any number of orientations.

Suppose that C contains at least two edges of Kv for some v ∈ G. If it uses all edges,

it must be K3, else C is not a cycle. If indeed it is K3, since every Kv has a kernel C = K3

has a sink and is not a directed cycle. So at least one edge e in Kv is not in C, in particular,

that edge is a chord.

See Figure 2.3 for an example on how the argument above works. This completes the

third and final proof of Galvin’s Theorem. We will now continue to discuss in greater detail

the relationship between Galvin’s Theorem and the Gale-Shapley Theorem in chapter 3.

Prior to working through the details of this general theorem, we will discuss the ideas

behind each part of the proof. This is an inductive proof with an algorithm to find a kernel

in a smallest counterexample, a contradiction. We first define a “preference list” based

on each clique, and will use these preferences to create a kernel. We then create a set of

“proposals” being the highest preferred each for each vertex like in the traditional proof of

the Gale-Shapley theorem. In case 1, you will find a striking similarity to the induction

proof provided by Galvin to find a kernel using the removal of one edge. In case 2 we find

first of all that our set of highest preferences create only even cycles. We then label these

even cycles in increasing order (paying special attention to the parity of each label) to either

remove some set of the even cycles to create a smaller graph with a kernel similar to the

inductive proof by Galvin, or we find an odd cycle with no chords if there is no set that can
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be removed. By ensuring in the algorithm that we never relabel a cycle we ensure that the

algorithm terminates since our graph is finite.

Proof. (Proof of Theorem 2.5) Let G be the line graph of some multigraph H and proceed

by induction on the number of edges in H. For |E(H)| = 1 the theorem is clearly true.

Suppose H is the multigraph with the least number of edges such that the theorem is

not true, and let D be an orientation of L(H) such that every odd cycle in D has a chord

and every clique has a kernel. Since D is the smallest such counter example, D has no kernel

and all subgraphs of D do contain a kernel.

Since each clique in D has a kernel we have a tournament, therefore we can create a

topological sort which allows us to create the following labels. For each v ∈ V (H), each edge

e incident with v can be labelled by a number lv(e) so that the different edges get different

labels and lv(e
′) < lv(e

′′) implies that (e′, e′′) is an arc in D. We will treat this labelling

lv(e) as a preference list, saying that v prefers e′′ to e′ if lv(e
′) < lv(e

′′). For every vertex

v ∈ V (H), let e(v) denote the edge incident to v with the maximum label lv(e). Then v

prefers e(v) to any other edge it is incident to.

Suppose e(v) = e(w) for some v, w ∈ V (H) such that v 6= w. Consider the line graph

L(H − v, w) which has a kernel Q by minimality of H. Therefore Q ∪ {e(v)} is a kernel in

D, a contradiction. Notice that we must remove both v and w from H to ensure that the

set Q ∪ {e(v)} is independent. Therefore all e(v) are distinct.

Let M = {e(v)|v ∈ V (H)}, the set of all edges with highest preference for each vertex.

Since all e(v) are distinct, the ends of any e ∈M can be marked as x(e) and y(e) such that

x(e) is the vertex which has e as its highest preference, and y(e) is the other end. Note that

y(e) does not have e as its highest preference for any e.

Case 1. For some e1 ∈ M , there exists e2 ∈ E(H) incident with y(e1) such that

ly(e1)(e2) < ly(e1)(e1), in other words, y(e1) prefers e1 to e2.

Choose such an e2 with lowest preference with respect to y(e1). We proceed similarly

to proof 2 of lemma 2.3 by deleting vertex e2 to get a kernel W in D − e2. Notice that
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if e1 is in the kernel, we are done since there is an edge from e2 to e1 and adding e2 will

not affect independence of the kernel. Otherwise, e1 is the highest preference of x(e1) so it

cannot point to anything incident to x(e1). Therefore e1 points to some edge e3 incident to

y(e1) in the kernel. Therefore e3 is preferred to e1 at y(e1), but e1 is preferred to e2 hence e3

is preferred to e2. Therefore there exists an edge pointing from e2 to e3. So again, we have

a kernel in D.

Case 2. For each e1 ∈M and every e2 ∈ E(H) incident with y(e1) and distinct from e1,

ly(e1)(e1) < ly(e1)(e2). Meaning that each edge e ∈ M has the lowest preference amongst all

edges incident to y(e).

Notice that all y(e) for all e ∈ M should be distinct, otherwise two edges are incident

to one vertex and y(e) must have a preference between the two, so one of the is not the

least preference. Note also that |M | = |V (G)| since each e(v) is distinct. Therefore each

vertex must be y(e) for exactly one e ∈ M , so M forms a 2-factor in H. Suppose one of

those cycles is odd, then that creates an odd directed cycle in D because of the assumption

of our case. But this cycle is not chorded, because any chord would imply that an edge was

incident to three vertices, a contradiction with the assumption that all directed odd cycles

were chorded. Therefore all cycles formed by M must be even.

We now describe an algorithm with which to find either a kernel in D or a directed odd

cycle without chords. In either case, we will have arrived at a contradiction, so D will be

kernel-perfect.

Step 0. Among the cycles created by the edges in M , choose an arbitrary cycle C1.

Label the vertices of C1 v1,1, v1,2, . . . , v1,2r1 where C1 contains 2r1 vertices such that v1,i is

adjacent to v1,i−1 and v1,i+1 and v1,1 is adjacent to v1,2r1 . Set W1 = {v1,2j|1 ≤ j ≤ r1}

and B1 = V (C1) \W1 so W1 is all even labelled vertices and B1 is all odd labelled vertices.

Proceed to step 1.

Step k. Stop if either

(i) Wk is not independent in H; or
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(ii) no vertex in V (H) \ (Bk ∪Wk) is adjacent to Wk.

Otherwise, choose a vertex v ∈ V (H) \ (Bk ∪Wk) adjacent to Wk which must exist or we

would have stopped in (ii). Let Ck + 1 be the cycle in M containing v. Let v = vk+1,1 and

label the vertices in the cycle with increasing second index clockwise similarly to how C1

was labelled. Set Wk+1 = Wk ∪ {vk+1,2j and Bk+1 = Bk ∪ {V (Ck+1) \Wk+1}, so Wk+1 is all

vertices that have appeared in a chosen cycle of M given an even label, and Bk+1 is all those

which have an odd label. Go to step k+1.

Notice that this algorithm must terminate since there are only a finite number of cycles

in M able to be chosen, and each step uses a new cycle in M . Suppose we terminate in step

m. Assume that Wm is independent in H, so we are in stopping condition (ii). Then each

edge in H incident with Wm must also be incident to Bm, otherwise we have a vertex adjacent

to Wm that is in V (H) \ (Bk ∪Wk), a contradiction with the stopping condition. Since H is

chosen to be the smallest graph such that its orientation D has no kernel, the subgraph of

D induced by H −Wm − Bm has a kernel, call it Q, or is empty. Let M ′ = {e(v)|v ∈ Bm}

is the set of all of the highest preferences of Bm is a matching, and absorbs all vertices in

D corresponding to edges incident with Bm. Notice now that all edges in H but not in

H −Wm −Bm are incident to Bm, hence Q ∪M ′ is a kernel in D, a contradiction.

Now assume we are in stopping condition (i) so Wm is not independent in H. Let e = (a, b)

be an edge such that a, b ∈ Wm. Let a ∈ Cp and b ∈ Cq. Suppose that p = q. Since e goes

between two even labelled vertices, e creates two odd cycles with Cp. Notice that one of

these cycles will induce a directed odd cycle, since we can take the cycle created by following

e to the highest preference of b around to e, where the other edge on the cycle adjacent to

e is the lowest preference of a. So we have an odd directed cycle, and similarly to before,

we cannot have a chord similar to before, a contradiction with our assumption that every

directed odd cycle had a chord. Suppose instead p 6= q. There exist some paths along edges

only contained in the cycles of M or the edge from vk,1 to the cycle Ck for 2 ≤ k ≤ m chosen

in the algorithm following the edges of highest preference from v ∈ C1 adjacent to v2, 1 to
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a which goes through cycles of strictly increasing index, call it Pa, and a similar such path

to vertex b following along lowest preferences, call it Pb. Let t be the index of the cycle of

highest index which contains edges used in both paths Pa and Pb. We begin our odd cycle

by first following Pa from Ct to a, then to b. From b, follow P2 back to Ct, and either the

cycle is complete, or we must follow part of Ct to close the cycle, in which case follow along

lowest preferences in Ct. Note that this is an odd cycle because by construction we always

go from an even labeled vertex to an odd, or odd to even in cycles, and to move from one

cycle to another we must move from an odd labelled vertex to an even labelled except for

(a, b), which goes from even to even. This cycle creates an odd directed cycle due to the

preference designations of the paths, and is not chorded.

This concludes our discussion of the three proofs of Galvin’s Theorem. In chapter 3

we will use the techniques of these three proofs on stable matchings to find two alternative

proofs of the Gale-Shapley Theorem and discuss two new generalizations of stable matchings.

19



Chapter 3

The Gale-Shapley Theorem

We will begin with two alternative proofs of the Gale-Shapley Theorem in Section 3.1.

The second proof is by induction (similar to the induction proof of Galvin’s Theorem) which

leads to two generalizations of stable matchings which we will explore in Section 3.2. Our first

alternative proof of the Gale-Shapley Theorem will rely on the result of Borodin, Kostochka,

and Woodall, and will be very similar to the application of the theorem to Galvin’s Theorem.

3.1 Two Alternative Proofs of the Gale-Shapley Theorem

Below we use Lemma 2.4 and Theorem 2.5 to give our first alternative proof of the

Gale-Shapley Theorem.

Proof. (Alternative Proof 1 of Theorem 1.5, The Gale-Shapley Theorem)

Let G be a bipartite graph with preference lists Lv. To use Lemma 2.4 we will consider

the graph D(G,Lv) to find a kernel which induces as stable matching of G.

We will apply the theorem of Borodin, Kostochka, and Woodall to find a kernel of

D(G,Lv). To do so, we need to show two things about the graph D(G,Lv)

• Every clique in D(G,Lv) has a kernel

• Every oriented odd cycle of D(G,Lv) has a chord

To show that every clique in D(G,Lv) has a kernel. Since G is bipartite, each kernel is

induced by some vertex v ∈ V (G) via Beineke’s Theorem, label each kernel Kv. Since Kv is

induced by v and v has some highest preference of edges, that edge induces a sink in Kv. In

particular, each clique in D(G,Lv) has a kernel.
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We now want to show that every oriented odd cycle of D(G,Lv) has a chord. This

argument is identical to that of Proof 3 of Lemma 2.3. We note that any any cycle contains

edges of some largest Kv in terms of vertices. If it uses all of the edges of Kv either that

Kv was a clique on two vertices, or three vertices, since any larger clique is not a cycle. If

Kv was a clique on two vertices, C induces a cycle in G, hence it is even. If Kv is a clique

on three vertices, it is all of C, in particular C is a clique, hence has a kernel so it is not

a directed odd cycle. If there exists some Kv which has edges in C for which some edge of

Kv is not in C, that edge is a chord. So every oriented odd cycle has a chord. By Borodin,

Kostochka, and Woodall’s Theorem D(G,Lv) is kernel-perfect, in particular it has a kernel.

Therefore G has a stable matching by Lemma 2.4.

It is important to note here that we found that D(G,Lv) was kernel-perfect, a much

stronger condition than was necessary for finding a stable matching. We can also use the

first proof of Lemma 2.3 to produce another alternative, non-algorithmic proof of the Gale-

Shapley Theorem which states that for a bipartite graph and any preference lists, there exists

a stable matching.

Proof. (Alternative Proof 2 of Theorem 1.5, the Gale-Shapley Theorem)

Let G have bipartition {X, Y }.

We first note that a kernel of this oriented line graph corresponds to a stable matching of

G. Let K be a kernel of D(G,Lv). K is independent by definition, hence the corresponding

edges of G are not incident at any vertex, so each vertex has degree at most 1. In particular,

we have a matching. Now let e be an edge not in the matching induced by K. Then in

D(G,Lv), e is absorbed by some vertex e′ ∈ K. Therefore at a vertex w ∈ G where e and

e′ meet, e <w e
′. In particular, for any edge e /∈ K, at least one vertex incident to e prefers

the edge in K to which it is incident to e, so the matching is stable.

Now we must show that a kernel always exists in D(G,Lv) which will be shown by

induction. Suppose G has one edge, e. Clearly e is a kernel of D(G,Lv).
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Suppose for all G with |E(G)| ≤ n there exists a kernel of D(G,Lv). Let G be a bipartite

graph with preference lists Lv, total orderings of edges adjacent to each vertex v ∈ G, with

n + 1 edges. Let ev be the highest preference of v with respect to Lv for each v ∈ V . Let

eX = {ev|v ∈ X}. Claim: If eX is independent, eX is a kernel of D(G,Lv). Let e /∈ eX . Since

G is bipartite, e has one end in X, so there exists x ∈ X such that e <x ex so in D(G,Lv)

(e, ex) is directed from e to ex. So eX absorbs all vertices not in eX .

Suppose eX is not independent. Then for some v, w ∈ V (G) ev is adjacent to ew, but

they cannot meet in X since we chose only one edge incident to each vertex in X. Therefore

they meet in Y , call the vertex at which they meet y. Since Ly is a total ordering, one edge

is preferred by y to the other. Without loss of generality, say ew <y ev. We consider the

graph G− = G \ ew with preference lists Lv \ ew. Then G− has n edges, and by assumption

has a kernel K of D(G−, Lv). We consider K in D(G,Lv). K is independent and absorbs

all edges of G \K except potentially ew. Notice that if ev ∈ K, since ev and ew meet at y

and ew <y ev the edge (ew, ev) ∈ D(G,Lv) is oriented from ew to ev so ew is absorbed by

K. If ev /∈ K then ev is absorbed by K. Therefore there exists some edge e′ ∈ K such that

ev <z e
′ but ev is the highest preference of v, so e′ must meet ev at y. In particular ev <y e

′.

But also ew <y ev so ew <y ev <y e
′, hence ew <y e

′ so the edge (ew, e
′) is an edge of L(G)

and is oriented from ew to e′, therefore ew is absorbed by K. We now have that all edges

of D(G,Lv) are absorbed by K and K is independent, so K is a kernel of D(G,Lv). So

D(G,Lv) has a kernel, as desired.

3.2 Generalizations of Stable Matchings

The second method of proof in Section 3.1 provides a slight generalization of Galvin’s

theorem. To see this, first we must generalize the concept of stable matching. Let G be

a graph and M ⊂ E(G) be a matching. We will say that a matching M is loosely stable

if for any edge e /∈ M there exists some edge e′ in M such that e is incident to e′ and at
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Figure 3.1: An example of a bipartite graph with no strictly stable matchings, and a family
of graphs with no strictly stable matchings.

a vertex at which they are incident, e′ is preferred to e or e′ is tied with e. We define a

matching as strictly stable if for any edge e /∈ M there exists some edge e′ in M such that

e is incident to e′ and at a vertex at which they are incident, e′ is preferred to e. We now

want to determine if the notions of strictly stable and loosely stable matchings are different

from that of a stable matching.

Theorem 3.1. There exist bipartite graphs G that do not have a strictly stable matching.

As a proof, we notice that any graph containing Figure 3.1 provides on the left, a simple

example of such a graph. Either {e1} or {e2}. If the matching is {e1}, it is unstable since

{e2} is not incident to any edge in the matching to which it is less preferred. Similarly the

matching {e2} is unstable, so there are no strictly stable matchings. Further, any graph

which contains Figure 3.1 as a subgraph such that e1 is the highest preference of w, e2 is

the highest preference of u, and v has no higher preference than e1 and e2 would also be

unstable. We make a special note of this result since it demonstrates that we do not have

a result analogous to the Gale-Shapley Theorem for strictly stable matchings, a notable

difference in our definition.

To find a difference between loosely stable matchings and stable matchings we will have

to redefine a trait analogous to kernels for graphs with ties. Here we will orient the same

way as in D(G,Lv) (pointing to higher preferences) but leave equal edges unoriented. We

will define a kernel of a mixed graph G as an independent set of vertices K ⊂ V (G) such
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that for any vertex v /∈ K there exists some vertex w ∈ K such that v is incident to w and

either v points to w or there is an undirected edge between v and w.

It is important to notice here that trying to find a larger class of graphs in which for

any set of preference lists, there exists a stable matching is impossible. It has been proven

that if a graph G has a stable matching for any preference list, then the graph is bipartite

[11]. This forces us to relax some other conditions on stable matchings.

Theorem 3.2. Let G be a bipartite graph with bipartition {X, Y } and preference lists Lv

for each v ∈ V (G). For x ∈ X the Lx has no ties, but for each y ∈ Y Ly may contain ties.

Then G has a stable matching.

The proof of the theorem is identical to that of the ungeneralized proof above Theorem

1.5, only we break a tie arbitrarily if there are ties where the set eX is dependent and replace

all instances of < with ≤ in the proof. We notice that we cannot allow ties in X. Otherwise,

let ev ∈ E(G) be the highest preference of a vertex v ∈ X. The removal of ev may take us out

of our inductive hypothesis. That is to say that our highest preference of v ∈ E(G) \ ev may

be a tie and we have not defined how to create the set eX if there is a tie for highest preference

in X. We notice now that this generalization is actually inferior to a quick observation that

can be made once the idea of arbitrarily breaking ties has occurred. Indeed, if one breaks all

ties arbitrarily we can simply apply the original theorem of Gale-Shapley to find a kernel,

which will provide a loosely stable matching. A question that may be asked is if loosely

stable matchings have any properties that differ from stable matchings. Indeed, we find that

the following theorem about stable matchings is untrue of loosely stable matchings. Below

is a theorem I learned from D. Hoffman in a course, but have included my own proof of the

theorem for completeness, as his proof relies on a slightly different algorithm than the one

provided in the introduction.

Theorem 3.3 (Hoffman). Let G be a bipartite graph and Lv be a set of edge preference lists

for each vertex v ∈ V (G). Let M and N of G be stable matchings of G with respect to Lv.

Then |M | = |N |.
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Proof. We consider instead the graph H induced by the edges of M ∪ N . Suppose that

|N | < |M |. Let C be a component of H. Since G is bipartite, either C is an even cycle, or it

is a path. If the component is an even cycle, there are the same numbers of edges in C from

|N | as there are from |M |. So there exists at least one path P such that |P ∩N | < |P ∩M |.

Let e ∈ E(H) be an end of P , which must be in |M |. Now let e′ ∈ E(H) be the edge

adjacent to e meeting at a vertex v ∈ V (P ). Since e is an end of P then e′ <v e else e′ is

unstable. But again since e is an end of P , and N is stable, e <v e
′ else e is unstable. But

it cannot be the cease that both e′ <v e and e <v e
′ a contradiction. Hence |M | cannot be

greater than |N |.

We now want to observe that this theorem about bipartite graphs with respect to stable

matchings provides a difference between stable matchings and loosely stable matchings. The

theorem below gives us such a difference and will be proven with Figure 3.2.

Theorem 3.4. Let G be a graph and Lv be a set of edge preference lists for each vertex

v ∈ V (G). Let M and N of G be loosely stable matchings of G with respect to Lv. Then it

is not neccessarily the case that |M | = |N |.

Proof. See Figure 3.2. At the top of the figure, we have a graph G with preference lists

given. Since we know that arbitrarily breaking ties will provide a loosely stable matching,

on the bottom left we set e1 < e2. Here both of the middle vertices prefer e2 to any other

edge, hence {e2} provides a loosely stable matching of size 1. If we instead set e2 < e1 to

break our tie (on the bottom right), we find the set {e1, e3} is a loosely stable matching of

size 2. We have now provided a bipartite graph with preference lists that have loosely stable

matchings of varying sizes.

As this example demonstrates, our definition of loosely stable matching is different from

stable matchings thanks to this finding.
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Figure 3.2: A graph with stable matchings of two different sizes.
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Chapter 4

Conclusion

In this thesis, we studied the relationship between Galvin’s Theorem and stable match-

ings. We showed two proofs of Galvin’s Theorem which were originally provided by Galvin: a

proof by induction which was nicely self-contained, and a proof which relied on stable match-

ings and the Gale-Shapley Theorem. The proof by induction led us to a non-algorithmic

proof of the Gale-Shapley Theorem. We also provided a proof of Galvin’s Theorem which

used the powerful theorem of Borodin, Kostochka, and Woodall, which allowed us to give

a second alternative proof of the Gale-Shapley Theorem, though this theorem was perhaps

stronger than necessary to accomplish this goal. We also used the idea of creating directed

line graphs (used in all of the proofs of Galvin’s Theorem) to find a characterization of graphs

with stable matchings. We recall that the first alternative proof of the Gale-Shapley Theo-

rem in Section 3.1 provided a much stronger result than was necessary, that D(G,Lv) was

kernel-perfect for any bipartite graph G and any lists Lv. One may ask if there exists some

weakened version of this proof technique which finds only a kernel, instead of kernel-perfect

which may be applied back to Galvin’s Theorem?

Through the second of the alternative proofs of the Gale-Shapley Theorem, we were

motivated to give two new generalizations of stable matchings, loosely stable matchings

and strictly stable matchings, both of which we have proven are indeed different from stable

matchings. In finding this, several interesting questions arise. We found a forbidden subgraph

with special preferences for a graph to have a strictly stable matching. One might ask if there

are other forbidden subgraphs, or if there is a way to characterize graphs with strictly stable

matchings based on forbidden subgraphs, analogous to Beineke’s Theorem. Additionally, is

there a polynomial time algorithm with which to find a strictly stable matching?
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For loosely stable matchings, we noted that the traditional algorithm of the Gale-Shapley

Theorem can be used to find a loosely stable matching. To demonstrate a difference between

loosely stable matchings and stable matchings, we provided a bipartite graph with prefer-

ences for which the size of a loosely stable matching can vary. We then may ask if there

exist connected bipartite graphs for which the difference in size of loosely stable matchings

is unbounded? Without the constraint of connectedness, the answer is obvious as copies of

Figure 3.2 provide any desired size difference. Additionally one might ask what the propor-

tion of the size of loosely stable matchings might be. Our example provides a graph with

proportion 1
2
, but can it approach 0? We note now that we can achieve a proportion of 1

simply by taking a bipartite graph with no ties, in which all loosely stable matchings will be

stable matchings of the same size.
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